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Abstract The spatial distributions of earth science and engineering phenomena un-
der study are currently predicted from finite measurements and second-order geosta-
tistical models. The latter models can be limiting, as geological systems are highly
complex, non-Gaussian, and exhibit non-linear patterns of spatial connectivity. Non-
linear and non-Gaussian high-order geostatistics based on spatial connectivity mea-
sures, namely spatial cumulants, are proposed as a new alternative modeling frame-
work for spatial data. This framework has two parts. The first part is the definition,
properties, and inference of spatial cumulants—including understanding the interre-
lation of cumulant characteristics with the in-situ behavior of geological entities or
processes, as examined in this paper. The second part is the research on a random
field model for simulation based on its high-order spatial cumulants.

Mathematical definitions of non-Gaussian spatial random functions and their high-
order spatial statistics are presented herein, stressing the notion of spatial cumu-
lants. The calculation of spatial cumulants with spatial templates follows, including
anisotropic experimental cumulants. Several examples of two- and three-dimensional
images, including a diamond bearing kimberlite pipe from the Ekati Mine in Canada,
are analyzed to assess the relations between cumulants and the spatial behavior of
geological processes. Spatial cumulants of orders three to five are shown to capture
directional multiple-point periodicity, connectivity including connectivity of extreme
values, and spatial architecture. In addition, they provide substantial information on
geometric characteristics and anisotropy of geological patterns. It is further shown
that effects of complex spatial patterns are seen even if only subsets of all cumu-
lant templates are computed. Compared to second-order statistics, cumulant maps
are found to include a wealth of additional information from underlying geological
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patterns. Further work seeks to integrate this information in the predictive capabilities
of a random field model.

Keywords High-order statistics · Non-Gaussian spatial random functions · Spatial
cumulants · Complex geology

1 Introduction

Random field models and stochastic data analysis, termed geostatistics, have long
been established as the mainstream approach to modeling and predicting spatially
distributed and location dependent natural phenomena from limited sets of mea-
surements. Theoretical developments and applications exist in a variety of geo-
science and engineering fields (e.g. Matheron 1971; David 1977, 1988; Journel
and Huijbregts 1978; Cressie 1993; Kitanidis 1997; Goovaerts 1998; Chilès and
Delfiner 1999; Caers 2005; Webster and Oliver 2007; Remy et al. 2009). Despite
the considerable work and developments in the field over the past four decades,
the mainstream modeling paradigm is founded upon both second-order spatial sta-
tistics and the geological information it contains. Although second-order statistics
are adequate for the complete statistical description of Gaussian processes, they
are inadequate for modeling geological phenomena which typically deviate from
Gaussianity and exhibit complex non-linear spatial patterns. These concerns have
been articulated since the 1990s (Guardiano and Srivastava 1993; Journel 1997;
Tjelmeland 1998; and others).

If the effectiveness of geostatistical modeling, particularly in the presence of non-
Gaussianity and non-linearity, is to be enhanced, more spatial information needs to
be extracted from measurements and made available. This vital information enhances
modeling applications such as the prediction and quantification of spatial uncertainty.
Enhancing modeling and predictive capabilities have major applied implications, as
demonstrated in mining operations, where the spatial grade distribution and connec-
tivity of the high grade ore to other high grade or low grade ore drives the economics
of a mining operation. Similarly, in oil reservoirs, complex spatial arrangements of
permeable and impermeable units drive the production characteristics of the reser-
voir, and predictions from drilling and seismic data have major economic implica-
tions. One can certainly expand this list with examples from environmental modeling,
ground water resources, CO2 sequestration in geological formations, and so on.

Related to the efforts to enhance modeling is the early work by Guardiano and Sri-
vastava (1993). They attempt to measure, and then use to quantify spatial uncertainty,
the relations of multiple-point configurations in the context of connectivity. Connec-
tivity is a notion defined earlier without any spatial reference in Cox (1972) for a set
of jointly binomial random variables. The authors use template, an array of a lim-
ited number of spatial point indicator variables, to scan a known image. Then, they
compute Bayesian conditional probabilities of ‘success’ of one categorical variable,
given that a surrounding multinomial event is computed and subsequently used in an
extension of the known sequential indicator simulation. All that is required in this
multiple-point approach is the inference of the probabilities or indicator covariances.



Math Geosci (2010) 42: 65–99 67

Concerns about the above work include the physical meaning of point templates ver-
sus event covariances, and that the method ignores the role of high-order statistics
such as cumulants, which in turn suggest that the choice of templates may be arbitrary
in the context of spatial random fields. Furthermore, the approach may be limited in
the information integrated into the modeling process, while the spatial templates used
appear geologically un-interpretable, unlike the known second-order spatial connec-
tivity measures (e.g. David 1988; Rendu and Ready 1982; Dreiss and Johnson 1989)
and high-order spatial statistics, such as the spatial cumulants presented herein.

Since the earlier work, efforts have been made to further develop new techniques
dealing with spatial complexity. These include the now established multiple-point ap-
proach described in Strebelle (2002), a multiple-point method based on filters (Zhang
et al. 2006; Wu et al. 2008), new Markov random field based approaches (Daly 2004;
Tjelmeland and Eidsvik 2004), computer graphic methods that reproduce multiple-
point patterns (Arpat and Caers 2007) and other related developments (Boucher 2009;
Chugunova and Hu 2008; Mirowski et al. 2008; Remy et al. 2009; Scheidt and Caers
2009; Gloaguen and Dimitrakopoulos 2009; and others). The above developments
replace the two-point variogram with a training image (or analog) so as to account
for high-order dependencies in geological processes. Although these are all notable
advances, it can be argued that a well-defined spatial stochastic modelling framework
can contribute further to the capacity to tackle the complex high-order geostatistical
description of non-Gaussian and/or non-linear geological phenomena.

High-order spatial cumulants are introduced here as a theoretically grounded and
general alternative that can capture the complex spatial geological characteristics,
curvilinear features, geometric relations, complex spatial heterogeneity, and the con-
nectivity of extreme values needed for the modeling of spatially dependent geolog-
ical phenomena. Cumulants are combinations of statistical moments that allow the
characterization of non-Gaussian random variables (Billinger and Rosenblatt 1966;
Rosenblatt 1985). The cumulants of a random field are derived from its joint charac-
teristic function, which is defined as the logarithm of the moment generating function.
Cumulants are also critical contributors to non-Gaussian and non-linear modeling; re-
lated developments in the technical literature focus on cumulants for signal filtering
and blind deconvolution, as discussed below. Spatial cumulants are a new concept in-
troduced here because they characterize non-linear and non-Gaussian stationary and
ergodic spatial random fields, and can provide a new, consistent framework in ad-
dressing the issues mentioned above. When considered in space, cumulants allow for
large possible combinations of point random variables, suggesting a link to complex
spatial connectivity patterns in a geological sense. Early work in the frequency do-
main is presented in Shiryaev (1960), Billinger and Rosenblatt (1966), and Mendel
(1991). Nikias and Petropulu (1993) provide new definitions and terms, in a system-
atic way, for signal processing approaches that are widespread in the signal process-
ing literature, including the use of high-order multivariate cumulants in non-linear
signal processing (Zhang 2005). Another known area of applications of cumulants is
astrophysics (e.g. Gaztanaga et al. 2000). In the field of geostatistics, Matérn (1960)
refers to the notion of spatial higher-order moments without definitions. There is no
documented attempt for defining spatial cumulants in the context of earth science and
engineering problems.
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The development of a high-order framework as an alternative to current models
requires two key elements: (a) the definitions of spatial cumulants and the under-
standing of the interrelation of cumulant characteristics and in-situ behavior of geo-
logical entities or processes, and (b) the development of the related predictive aspects
of random field models—the current framework is based on second-order statistics
or multiple-point methods that cannot employ spatial cumulants.

This paper contributes to the first element mentioned above, while the second one
is addressed in a subsequent publication (Mustapha and Dimitrakopoulos 2010). In
the following sections, mathematical definitions, including random variables, their
moments, and cumulants, are first outlined. Then, non-Gaussian spatial random func-
tions and their high-order spatial statistics are described in detail. Definitions are fol-
lowed by approaches to the calculation of spatial cumulants, including implementa-
tion of anisotropic experimental cumulants using spatial templates. Subsequently, ex-
amples with two- and three-dimensional images are presented. The three-dimensional
data is from a kimberlite pipe at the Ekati Diamond Mine, Canada. The examples are
used to calculate cumulants up to fifth-order from both complete training images and
drillhole data. The examples provide interpretations of cumulant characteristics ver-
sus spatial characteristics of the images used in the context of the duality relations
between cumulants and geological process. Conclusions and suggested further work
follow.

2 High-order Statistics for Non-Gaussian Random Functions

Let (Ω,�,P ) be a probability space. A function Z : Ω → R is a real random vari-
able, if for every r ∈ R the subset Ar = {x ∈ Ω/Z(x) ≤ r} ∈ �. Using a more intu-
itive definition, a random variable may be seen as a numerical coding of the possible
outcomes of a given experiment. If a real random variable is defined on the prob-
ability space (Ω,�,P ), then it is fully characterized by its cumulative distribution
function

FZ(z) = P(Z ≤ z), (1)

or its probability density function, if it exists,

fZ(z) = d

dz
FZ(z). (2)

The probability distribution of a random variable is often parameterized by a small
number of parameters, which have a practical interpretation. For example, it is often
of interest to know the average value that is represented by the expected value of
the random variable, E[Z]. Other typical parameters are the variance, skewness and
kurtosis.
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2.1 Moments and Cumulants of Random Variables

2.1.1 Definition

Given a real-valued random variable, Z, its moment-generating function (Rosenblatt
1985) is defined by

M(w) = E
[
ewZ

] =
∫ +∞

−∞
ewzfZ(z) dz. (3)

The cumulant-generating function of Z is the Neperian logarithm of the moment-
generating function M

K(w) = ln
(
E

[
ewZ

])
. (4)

A random variable is fully determined by its probability density function, its cu-
mulative distribution function, its first or second characteristic function. The r th
(r ≥ 0) moment of Z is Mom[Z, . . . ,Z] = E[Zr ] = ∫ +∞

−∞ zrfZ(z) dz. Provided that
the moment-generating function M has a Taylor expansion about the origin,

M(w) = E
[
ewZ

] = E
[
1 + wZ + · · · + wrZr/r! + · · ·] =

∞∑

r=0

wr Mom[
r

︷ ︸︸ ︷
Z, . . . ,Z]
r! ,

(5)

then the r th moment of Z is the r th derivative of M at the origin. The cumulants of
Z are the coefficients in the Taylor expansion of the cumulant-generating function,
K , about the origin

K(w) = ln
(
E

[
ewZ

]) = ln
(
E

[
1 + wZ + · · · + wrZr/r! + · · ·])

=
∞∑

r=0

wr Cum[
r

︷ ︸︸ ︷
Z, . . . ,Z]
r! . (6)

Evidently, the moment of order zero is 1 and the cumulant of order zero is 0. The
relationship between the first few moments and cumulants, obtained by extracting
coefficients from the expansion, is as follows

Cum[Z] = Mom[Z],
Cum[Z,Z] = Mom[Z,Z] − Mom[Z]2,

Cum[Z,Z,Z] = Mom[Z,Z,Z] − 3 Mom[Z,Z]Mom[Z] + 2 Mom[Z]3,

and the expressions in the reverse direction are

Mom[Z,Z] = Cum[Z,Z] + Cum[Z]2,

Mom[Z,Z,Z] = Cum[Z,Z,Z] + 3 Cum[Z,Z]Mom[Z] + Cum[Z]3.
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2.1.2 Multivariate Cumulants

The relation between moments and cumulants, somewhat surprisingly, is simpler and
transparent in the multivariate case than in the univariate case. Let Z = (Z1, . . . ,Zn)

be the components of a random vector. From the above notation in the univariate
case, one may write Er = E[Zr ] for the component of the mean vector, Ers =
E[ZrZs] for the component of the second moment matrix, Erst = E[ZrZsZt ] for
the third moment, and so on. In addition, the cumulants are consistently intro-
duced by cr = Cum[Zr ] for the component of mean vector, cr,s = Cum[Zr,Zs] and
cr,s,t = Cum[Zr,Zs,Zt ]. It is convenient to use Einstein’s summation convention, so
wrZr denotes the linear combination w1Z1 + w2Z2 + · · · + wnZn, the square of the
linear combination is (wrZr)

2 = wrwsZrZs a sum of n2 terms, and so on for the
higher powers. The Taylor expansion of the moment-generating function of Z is now
given by

M(w) = 1 + wrEr + wrwsErs/2! + wrwswtErst /3! + · · · , (7)

and the cumulants are defined as the coefficients in the Taylor series of the cumulants-
generating function

K(w) = ln
(
M(w)

) = wrcr + wrwscr,s/2! + wrwswtcr,s,t /3! + · · · . (8)

2.1.3 Relation Between Moments and Cumulants

Comparison of coefficients reveals that each moment Ers,Erst , . . . is a sum of cumu-
lant products over the partitions of the subscripts. For example,

Ers = crs + crcs,

Erst = crst + crsct + crt cs + cst cr + crcsct .

Moreover, the translation of moments to cumulants, and vice versa, can be obtained
recursively as

Ei1...in =
i1∑

j1=0

. . .

in−1∑

jn−1=0

in−1∑

jn=0

(
i1
j1

)
. . .

(
in−1
jn−1

)(
in − 1

jn

)

× ci1−j1,...,in−1−jn−1,in−jnEj1...jn , (9)

and

ci1,...,in =
i1∑

j1=0

. . .

in−1∑

jn−1=0

in−1∑

jn=0

(
i1
j1

)
. . .

(
in−1
jn−1

)(
in − 1

jn

)

× E(i1−j1)...(in−1−jn−1)(in−jn)cj1,...,jn . (10)

Using the relation between moments and cumulants, it is shown that

c1,2,3 = E123 − E1E23 − E2E13 − E3E12 + 2E1E2E3.
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Applying the same relation for {Z1,Z2,Z3,Z4} gives

c1,2,3,4 = E1234

− E12E34 − E13E24 − E14E23 − E1E234 − E2E134 − E3E124 − E4E123

+ 2E12E3E4 + 2E13E2E4 + 2E14E2E3 + 2E24E1E3 + 2E34E1E2

+ 2E23E1E4 − 6E1E2E3E4.

If Z is a zero-mean random vector, then the cumulant reduces to

c1,2,3,4 = E1234 − E12E34 − E13E24 − E14E23.

2.2 Non-Gaussian Stationary Spatial Random Functions

2.2.1 Spatial Moments and Cumulants

Let (Ω,�,P ) be a probability space and let (Rn,β(Rn)) be a measurable space.
A spatial random field Z(x), x ∈ Rn, is a family of N random variables {Z(x1),

Z(x2), . . . ,Z(xN)} at locations x1, x2, . . . , xN , where each random variable is de-
fined on (Ω,�,P ) and takes values in (R,β(R)). Assuming Z(x) is a zero-mean
ergodic stationary random field indexed in Rn, the moments and cumulants can be
modeled by distance functions. For example, the third-order cumulants, c1,2,3, can be
written as

c1,2,3 = Cum
[
Z(x1),Z(x2),Z(x3)

] = cz
3(h1,h2), (11)

where the subscript in cz
3 denotes the order of cumulant. The terms h1 = h1e1 and

h2 = h2e2 represent, respectively, two vectors oriented from the point x1 and the
points x2 and x3; h1 and h2 are the distances along these vectors, and e1, e2 describe
the orientations of h1 and h2. For simplicity, hi is replaced by hi in the following.

Similarly, the r th-order cumulants of Z(x) can be denoted as

cz
3(h1, h2, . . . , hr−1) = Cum

[
Z(x),Z(x + h1), . . . ,Z(x + hr)

]
. (12)

For example, the second-order cumulant of a non-centered random function Z(x),
known as the covariance, is given by

cz
2(h) = E

[
Z(x)Z(x + h)

] − E
[
Z(x)

]2
. (13)

Its third-order cumulant is given by

cz
3(h1, h2) = E

[
Z(x)Z(x + h1)Z(x + h2)

] − E
[
Z(x)

]
E

[
Z(x + h1)Z(x + h2)

]

− E
[
Z(x)

]
E

[
Z(x + h1)Z(x + h3)

]

− E
[
Z(x)

]
E

[
Z(x + h2)Z(x + h3)

] + 2E
[
Z(x)

]3
. (14)
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It can be computationally convenient to consider zero-mean random functions as
some of the terms vanish. For example, the second-order cumulant of a zero mean
random function Z(x), known as centered covariance, is given by

cz
2(h) = E

[
Z(x)Z(x + h)

]
, (15)

the third-order cumulant is defined as

cz
3(h1, h2) = E

[
Z(x)Z(x + h1)Z(x + h2)

]
, (16)

the fourth-order cumulant is

cz
4(h1, h2, h3) = E

[
Z(x)Z(x + h1)Z(x + h2)Z(x + h3)

] − cz
2(h1)c

z
2(h2 − h3)

− cz
2(h2)c

z
2(h3 − h1) − cz

2(h3)c
z
2(h1 − h2), (17)

and the fifth-order cumulant is

cz
5(h1, h2, h3, h4) = E

[
Z(x)Z(x + h1)Z(x + h2)Z(x + h3)Z(x + h4)

]

− cz
2(h1)c

z
3(h3 − h2, h4 − h2) − cz

2(h2)c
z
3(h3 − h1, h4 − h1)

− cz
2(h3)c

z
3(h2 − h1, h4 − h1) − cz

2(h4)c
z
3(h2 − h1, h3 − h1)

− cz
2(h2 − h1)c

z
3(h3, h4) − cz

2(h3 − h1)c
z
3(h2, h4)

− cz
2(h4 − h1)c

z
3(h2, h3) − cz

2(h3 − h2)c
z
3(h1, h4)

− cz
2(h4 − h2)c

z
3(h1, h3) − cz

2(h4 − h3)c
z
3(h1, h2). (18)

The cumulants of an order higher than three of a zero mean random function are
related to their moments of lower orders and a combination of their moments of order
two.

Spectral representation of regularly sampled spatial cumulants is of interest, both
in terms of computational efficiency and physical properties. For more details, the
reader is referred to the Appendix.

2.2.2 Summary of Main Properties of Moments and Cumulants

• Mom[w1Z1, . . . ,wrZr ] = w1 . . .wr Mom[Z1, . . . ,Zr ] and Cum[w1Z1, . . . ,wrZr ]
= w1 . . .wr Cum[Z1, . . . ,Zr ], where (w1, . . . ,wr) are constants.

• Moments and cumulants are symmetric functions in their arguments, e.g.
Mom[Z1,Z2,Z3] = Mom[Z2,Z1,Z3] = Mom[Z1,Z3,Z2], and so on.

• If the random variables {Z1,Z2, . . . ,Zr} can be divided into any two or more
groups which are statistically independent, their r th-order cumulant is identi-
cal to zero, i.e. Cum[Z1,Z2, . . . ,Zr ] = 0 whereas, in general, Mom[Z1,Z2, . . . ,

Zr ] �= 0.
• If the sets of random variables {Z1,Z2, . . . ,Zr} and {Y1, Y2, . . . , Yr} are inde-

pendent, then Cum[Z1 + Y2,Z2 + Y2, . . . ,Zr + Yr ] = Cum[Z1,Z2, . . . ,Zr ] +
Cum[Y2, Y2, . . . , Yr ], whereas, in general, Mom[Z1 +Y2,Z2 +Y2, . . . ,Zr +Yr ] �=
Mom[Z1,Z2, . . . ,Zr ] + Mom[Y2, Y2, . . . , Yr ].
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• If the set of variables {z1, z2, . . . , zr } are jointly Gaussian then all joint cumulants
of order r > 2 are identical to zero.

• The r th-order cumulant function of a non-Gaussian stationary random process
Z(x) can be written (Nikias and Petropulu 1993), for r = 3,4 only, as

cz
3(h1, h2, . . . , hr−1) = Mom

[
Z(x),Z(x + h1), . . . ,Z(x + hr)

]

− MomGz
[
Z(x),Z(x + h1), . . . ,Z(x + hr)

]
,

where MomGz[Z(x),Z(x + h1), . . . ,Z(x + hr)] is the r th-order moment func-
tion of an equivalent Gaussian process that has the same mean and autocorrelation
function as Z(x). In addition, if Z(x) is Gaussian, then

Mom
[
Z(x),Z(x + h1), . . . ,Z(x + hr)

]

= MomGz
[
Z(x),Z(x + h1), . . . ,Z(x + hr)

]
, and

cz
3(h1, h2, . . . , hr−1) = 0.

2.3 Calculating Experimental Anisotropic Spatial Cumulants

In this section, the definitions and implementation details of the calculations of ex-
perimental cumulants from exhaustive and sparse data sets are described.

2.3.1 Definitions

Spatial cumulants are defined in terms of distances in space. Existing cumulant cal-
culations assume regularly sampled data and/or a regularly sampled training data set.
In general, however, geological data is available only on irregularly spaced borehole
locations. Similarly to anisotropic experimental variograms, it is possible to restrict
the calculation of cumulants to a given direction. For this purpose, the concept of
a spatial template for calculating cumulants is introduced. A spatial template T is
defined as a particular geometry of points in space; more formally, given a set of
directional vectors {h1, . . . , hn}, the associated spatial template of order (n + 1) is
defined (considering a spatial location x as a reference) as

T
e1,e2,...,en

n+1 (h1, h2, . . . , hn) = {
(x, x + h1, x + h2, . . . , x + hn)

/{x, x + hi, i = 1, . . . , n} ⊂ input image
}
. (19)

For example, the third-order cumulant of a zero-mean random function Z(x) with the
given template T

e1,e2
3 is computed from

CT
e1,e2
3 = 1

Nh1,h2

Nh1,h2∑

k=1

Z(xk)Z(xk + h1)Z(xk + h2),

{xk;xk + h1;xk + h2} ∈ T
e1,e2

3 , (20)
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and its fourth-order cumulant with the given template T
e1,e2,e3
4 is calculated as

CT
e1,e2,e3
4 = 1

Nh1,h2,h3

Nh1,h2,h3∑

k=1

Z(xk)Z(xk + h1)Z(xk + h2)Z(xk + h3)

− 1

(Nh1,h2,h3)
2

[(Nh1,h2,h3∑

k=1

Z(xk)Z(xk + h1)

)

∗
(Nh1,h2,h3∑

k=1

Z(xk + h2)Z(xk + h3)

)]

− 1

(Nh1,h2,h3)
2

[(Nh1,h2,h3∑

k=1

Z(xk)Z(xk + h2)

)

∗
(Nh1,h2,h3∑

k=1

Z(xk + h1)Z(xk + h3)

)]

− 1

(Nh1,h2,h3)
2

[(Nh1,h2,h3∑

k=1

Z(xk)Z(xk + h3)

)

∗
(Nh1,h2,h3∑

k=1

Z(xk + h1)Z(xk + h2)

)]

,

{xk;xk + h1;xk + h2;xk + h3} ∈ T
e1,e2,e3
4 , (21)

where Nh1,h2 and Nh1,h2,h3 are the number of elements of T
e1,e2
3 and T

e1,e2,e3
4 , respec-

tively. The high-order cumulants can recursively be calculated using (10). Note that
(21) shows the difference between fourth-order cumulants and fourth-order moments
expression.

2.3.2 Implementation on Irregular Grids

The algorithm developed in this paper is conceptualized for irregular grids. In ad-
dition, the general algorithm adapts its algorithm for regular grids and treats them
as particular cases of irregular grids. The template presented in Fig. 1 is convenient
for regular grids. For irregular grids, tolerances in distances, angles, and bands are
incorporated as shown for the third-order template in Fig. 2. In Fig. 2, h1 and h2
are the lags distances with T h1 and T h2 tolerance distances, respectively; a1 and a2
are the angles with tolerances T a1 and T a2, respectively, and (i, j) is the basis of
the Cartesian coordinate system. Other n (n ≥ 1) directions can be added by speci-
fying n supplementary angles with the corresponding tolerances for (n + 3)rd-order
cumulant calculation. For the two-dimensional case, the rotation angle, measured in
degrees clockwise, which rotates the original Y axis (principle direction oriented to
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Fig. 1 L-shape template for
cumulant calculation on regular
grid data

Fig. 2 Irregular template for
3rd order cumulant calculation.
h2 and h1 are the distances with
T h1 and T h2, tolerance
distances, respectively. a1 and
a2 are the angles with tolerances
T a1 and T a2, respectively.
(i, j) is the basis of the
Cartesian coordinate system

the north) in the horizontal plane is used; however, in 3D, in addition to the rotation
angle in the horizontal plane, a second rotation angle is also employed. The second
angle is measured in negative degrees down from the horizontal, which rotates the
principal direction from the horizontal.

3 Numerical Examples and Interpretations

This section presents several examples of third- to fifth-order cumulants calculated on
two- and three-dimensional data sets. Results are interpreted so as to understand the
pattern recognition and description capabilities of spatial cumulants, thus assisting
the understanding of the interrelation of cumulant characteristics and in-situ behav-
ior of geological entities. If this is understood, then spatial cumulants can be used
to enhance predictive modeling capabilities. Most data sets utilized herein represent
complete images, and the regular grid approach described in a previous section is fol-
lowed. In addition, an incomplete and irregularly spaced (drillhole) data set is used
to elaborate on the calculation of cumulants up to order five. Calculations are as
discussed in a previous section and shown in Fig. 2. It should be noted that the co-
variance is a measure of the periodicity between pairs of points separated by given
distances; similarly, the spatial cumulants of orders higher than two are also a mea-
sure of periodicity, but in the direction of the symmetry axis of the template used, that
is, the multiple point symmetry. In the examples that follow, cumulants are computed
on zero mean data sets.
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Fig. 3 The four experimental
third-order cumulant templates
used in the following examples.
(1) L-shape, (2) 45°, (3) XX and
(4) YY . h1 is the distance
between x and x1 and h2 is the
distance between x and x2

3.1 Spatial Templates

In the following example, the covariance map and four directional experimental cu-
mulants are presented, unless otherwise specified. Cumulants are computed with the
templates L-shape, 45 degree direction, xx axis direction and yy axis direction, as
shown in Fig. 3, and fourth- and fifth-order cumulants are, respectively, computed
with the xy(−x) and xy(−x)(−y) templates in 2D and with xyz and xyz(−z) tem-
plates in 3D, as shown in Fig. 4. The number of data pairs and/or replicates under-
lying the estimates varies from 220 to the total number of points in the image under
study. Note that only the largest template will have a relatively small number of repli-
cates.

3.2 Two-dimensional Images

3.2.1 Simple Binary Images

The first example in Fig. 5(1) consists of five squares of high positive value (0.8)
compared to the background of negative value (−0.07). The overall mean value of
the original image is zero. Note that the top left, the bottom left and bottom right
squares have L-shape symmetry. This example shows that similarly to the second-
order cumulant (covariance), all of the third-order cumulant maps identify the size of
the largest object in the image. This is represented by the high positive value around
the origin in all the cumulant maps. The extent of this high value is equal to the size
of the largest squares. In addition, this example shows that the L-shape cumulant in
Fig. 5(3) detects the redundancy of features in the direction of the template axis. For
example, the high intensity anomaly on the top right corner in Fig. 5(3) corresponds
to the L-shape interaction between the top left squares, the bottom left square and
the bottom right square of the original image in Fig. 5(1). When the branches of the
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Fig. 4 Examples of
fourth-order cumulant templates
(1) and fifth-order cumulant
templates (2)

L-shape template are inside the squares, the cumulant then involves the product of
three high positive values, leading to a high intensity third-order cumulant for the
given distances and cumulant template.

It is interesting to observe what happens when the L-shape symmetry in the orig-
inal image is broken, as shown in Fig. 6. Figure 6(1) shows the same image as
Fig. 5(1), but without the top left square. This removal breaks the L-shape symme-
try of the previous image and allows for observation of the impact on the L-shape
cumulant. As expected, the high value at the top right corner is replaced by a strong
negative value. The reason is that when removing the mean, white corresponds to
−0.1, whereas black corresponds to 0.8. Thus, for the lags equal to the separation
between squares, the multiplication of three high 0.8 values is replaced with two
times 0.8 multiplying −0.1, leading to a strong negative value. Note that the other
cumulant maps do not show many changes, except that the intensity of the anomalies
decreased.

The next example shows the importance of the choice of the orientation of the
template. Figure 7(1) shows five squares showing no L symmetry at large lags in the
configuration of the squares in the image Cartesian basis. Hence, the corresponding
L-shape cumulant is very similar to the one corresponding to a single square, but with
higher magnitude around the origin. On the other hand, at distances 50 units along X

and along Y , it can be seen that there is a negative anomaly. This anomaly is due to
the redundancy of the 3 squares on the diagonal of the image. In this L-shape con-
figuration, there is non-negligible contribution of triplets where the two ends are in
the positive (black) squares and the corner is in the negative (white) zone. This leads
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Fig. 5 From top left to bottom right: (1) original image, (2) covariance map, and (3) to (6) cumulant maps
using templates shown in Fig. 3

to a strong negative value. The same appears for distances of 100 units, where the
L-shape takes into consideration the first and the last positive square on the diagonal.
Figure 7(7) also shows the cumulant map of the L-shape template rotated by 45 de-
grees, so as to be in the same symmetry axis as the squares in Fig. 7(1). The latter
cumulant map shows high positive values at 75 units along X axis and 75 units along
Y axis, corresponding to the interaction between the square located in the center, the
bottom right, and the top right squares of the image in Fig. 7(1).
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Fig. 6 From top left to bottom right: (1) original image, (2) covariance map, and (3) to (6) cumulant maps
using templates shown in Fig. 3

3.2.2 Images Sharing the Same Histogram and Variogram

Two images sharing the same histogram and variogram are examined here. The exam-
ples were used in the past to demonstrate the limits of second-order spatial statistics
in capturing geologic information (Krishnan and Journel 2003). The first image and
the corresponding cumulant maps in Example 1 are shown in Fig. 8; and the sec-
ond image, also with the corresponding cumulant maps in Example 2, is shown in
Fig. 9. Example 2 corresponds to the set of elongated ellipses of heights of 15 units
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Fig. 7 From top left to bottom right: (1) original image, (2) covariance map, and (3) to (6) cumulant maps
using templates shown in Fig. 3

and width of 25 units. Comparing Example 1 and Example 2 provides several ob-
servations. Cumulant maps of images in Example 2 are quite different to those of
Example 1. In particular, the YY direction cumulant in Fig. 9(5) show a strong dif-
ference compared to YY cumulant in Fig. 8(5). These are features not shown in the
cumulant maps of Example 1.
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Fig. 7 (Continued)

3.2.3 Continuous Examples

Two two-dimensional continuous images, shown in Figs. 10(1) and 11(1), are consid-
ered in this section. These images show porosity variation in 100 × 100 m2 sections
of the field. The data originates from the Stanford V Reservoir Data Set (Mao and
Journel 1999). Covariance maps in Figs. 10(2) and 10(3) illustrate the existence of
high continuity in the vertical direction corresponding to the direction of the continu-
ity. However, several more details can be found in the third-order cumulant maps, as
shown by the following observations made from Figs. 10 and 11.

The high values between 0 < x < 5 and along y, in the L-shape cumulant map in
Fig. 10(3), reflect the existence of at least one vertical and continuous channel with
width equal to about 5 m. The other high values around x = 40 m and vertically
along y come from interactions between different vertical and continuous channels
separated by a distance equal to about 40 m in the original image. In addition, the
region of high values between 80 < x < 100 and along y indicates that two channels
exist in the original image and are separated by 80 m. Given that the width of this
region is about 20 m (in the bottom of the figure), the two or three close channels in
the original image are 80 m from theses channels, and show that other vertical chan-
nels exist. The 45 degree cumulant map in Fig. 10(4) shows important information
related to the location of the channels. The intersections of the diagonal of Fig. 10(4)
and the different channels are highlighted at the borders of the map, i.e. x = 100 or
y = 100. The high values along the diagonal in Fig. 10(5) between about 0 < x < 80
indicate that the channels are irregular and at most they are about 80 m apart. Finally,
indications about the channels’ separation along x axis can be found in Fig. 10(6).
The diagonal shows that between 60 < x < 80 there are no channels; at least two
channels are within a range of 20 m along x.

The same type of interpretation is valid for the interpretation of the cumulant maps
in Fig. 11. For example, at the borders of the 45 degree map in Fig. 11(4), four clear
and separated sets of high values are shown. These high values reflect the intersec-
tions of the channels in the original image and the diagonal as explained earlier; there
is at least one channel in the region 0 < x < 5 and along the vertical direction. The
L-shape map in Fig. 11(3) shows around x = 20 and up to y = 70 a region of high
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Fig. 8 Example 1, from top left to bottom right: (1) original image, (2) covariance map, and (3) to (6) cu-
mulant maps using templates shown in Fig. 3

values; this reflects the existence of two sub-channels parallel and separated by a dis-
tance equal to about 20 m. This is consistent with the information provided by the 45
degree map. The length of the larger regular part of a channel is equal to about 70 m,
as shown in the yy cumulant map in Fig. 11(5). This is exactly the part of the channel
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Fig. 9 Example 2, from top left to bottom right: (1) original image, (2) covariance map, and (3) to (6) cu-
mulant maps using templates shown in Fig. 3

that is located at x = 20 in the original image. The separation of channels along x

axis can be shown in Fig. 11(6).
Note that the values of the different maps may not be in the same range, depend-

ing on the order of calculation. The interactions between objects, help in describing
interesting properties of the main patterns. For example, the 45 degree third order
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Fig. 10 From top left to bottom right: (1) original image, (2) covariance map, and (3) to (6) cumulant
maps using templates shown in Fig. 3

cumulants in Figs. 8(4) and 9(4), provide the intersection between the objects, i.e. the
channels, in the original image and the diagonal as shown at the right hand borders of
these figures. This property, combined with what the other orders provide, will better
characterize the images. Then, the goal from this discussion is to show that in the
cumulant maps there are clear indicators of object locations; at x = 80 and along y
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Fig. 11 From top left to bottom right: (1) original image, (2) covariance map, and (3) to (6) cumulant
maps using templates shown in Fig. 3

there are a reasonable number of replicates for the L-shape template. For example,
for h1 = 80 and h2 = 10, the number of replicates estimated is about 1350.

3.2.4 Information Gain Through Higher-orders: A Simple Example

In this example, three different block shapes are considered in a binary image as
shown in Fig. 12(1). Cumulants of high-order provide information on the interac-
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Fig. 12 The interaction between three blocks in (1) using third-, fourth- and fifth-order cumulants in (2),
(3) and (4), respectively

tion between these blocks. Figure (2) presents the L-shape (third-order) cumulant
map. This map reflects the size of the biggest object and translates it at the origin.
In addition, this map shows an object between 50 < x < 60 and 45 < y < 50, which
results from interaction between blocks as shown in Fig. 12(2). Both the length and
width of this block are approximately the minimal length and the minimal width
of interacted blocks. Thus, the third-order cumulant maps provide the approxima-
tions of the intersections of the different objects in the directions of the L-shape
used.

Figures 12(3) and 12(4) show two 2D cross-sections from the xy(−x) fourth-order
cumulant map (at −x = 0) and xy(−x)(−y) fifth-order cumulant map (at −x = 0
and −y = 0). Equations (3) and (4), for the fourth- and fifth-order, express not only
the interaction between blocks at the extremities of the template used, but also the
cross-relations between these blocks as shown in Fig. 13. These cross-relations be-
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Fig. 13 The interaction between three blocks using L-shape third-order cumulants (1) and xy(−x) and
xy(−x)(−y) using fourth- and fifth-order cumulants, respectively

tween objects provide more information about the size of the anomaly as shown in
Figs. 12(3) and 12(4).

It is important to comment on the difference between cumulants and moments,
which can be demonstrated and stressed with the example in Fig. 12. More specifi-
cally, if the same templates employed in this example are used to calculate the fourth-
and fifth-order moments, no difference will be present when compared to the third-
order moment. This is because moments provide only, and are limited to, the inter-
section between the objects located at the extremities of the template used.

3.3 Three-dimensional Case Study

3.3.1 Training Image

In Figs. 14(2) and 14(3), we consider an interpretation of a diamond bearing kimber-
lite pipe of the Ekati Diamond Mine, NWT, Canada (Nowicki et al. 2004), and its
translation to a 3D binary training image (76,055 nodes). The geological interpreta-
tion of the pipe geometry suggests two parts: one on the top and another one on the
bottom, as shown in Fig. 15. The part on the bottom is close to a three-dimensional
geometric cone shape. The base of this cone, or the intersection between the two parts
of the pipe, is a nearly horizontal section 150 m along x and 200 m along y (Fig. 15).

The third-order cumulant maps provide approximations of the pipe shape as shown
in Fig. 16(1) to (3). The fourth-order xyz cumulants average the objects and translate
them to the origin. For example, the pipe, considered as the only object in Fig. 14(3),
is translated to the origin as shown in Fig. 17(1). From this figure, 2D cross-sections
are shown in Figs. 17(2) and 17(3). These cross-sections provide, approximately,
the results obtained by the third-order cumulant maps in Fig. 16. This conclusion is
justified by the fact that the pipe shape is approximately reflected, in a specific plane,
by using orthogonal shapes (xy or L-shape, xz or yz) cumulants, while it is fully
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Fig. 14 A geological interpretation of a kimberlite pipe, (1) drillholes; (2) a geological interpretation
of (1); (3) regular block approximation of the pipe surrounding rock

characterized using xyz cumulants. It is not surprising that these observations show
the ability of the higher order cumulants to include key relations seen in lower orders.
More generally, relations between cumulants can be extended for an order higher than
four and, in particularly, order five. The fifth-order cumulant maps are based on four
directions, and placed in four-dimensional space. Then, cross-sections are used as
detailed in a previous section. For example, Fig. 18 shows a 3D cross-section of the
xyz(−z) fifth-order cumulant map. This figure translates the pipe to the origin and
reflects the results of the fourth-order and, consequently, the third-order results are
reflected too.

The pipe shape varies strongly between the bottom and top along the vertical axis
(z), while the variations are less along the horizontal axis (x and y), as shown in
Fig. 15. Figure 19 shows results of the third-, fourth- and fifth-order with a different
way. Figure 19(1.a) to (3.a) present third-order cumulant maps using line contours
from Fig. 16. Several 2D cross-sections along x, y and z directions are selected from
the fourth-order cumulant maps in Fig. 17. The fronts from 2D cross-sections of
Fig. 17 are selected as shown in Fig. 19(1.b) to (3.b). The third-order cumulant map
in Fig. 19(1.a) shows a regular shape of the horizontal sections of the pipe, while the
fourth- and fifth-order cumulant maps, in Fig. 19(1.b) to (1.c), reflect some horizontal
irregularity of the pipe. The main reason comes from the variation of the pipe size
along the vertical axis.

This variation is better described by the fourth- and the fifth-order cumulants be-
cause they manipulate points in more than two directions. For example, four points
are considered for the fourth order-cumulant and one of the points varies along
the z direction. The variations along the x and y axes are less than the variation
along z axis. The third-order cumulant maps in Fig. 19 (2.a) to (3.a) show, approx-
imately, results close to those obtained from fourth- and fifth-order maps as shown
in Figs. 17(2) and 18(3). The fourth- and fifth-order maps detect with more precision
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Fig. 15 Different horizontal and vertical 2D cross-sections of the pipe in Fig. 14

the size along x (150 m) and y (200 m) of the intersection between the two parts of
the pipe.

3.3.2 Drillhole Data

The cumulant maps calculated on the 3D training image provide good interpreta-
tion for the pipe’s shape. In the following, cumulants are calculated on the original
data obtained from the pipe drillholes in Fig. 14(1). Figures 20 to 22 show the re-
sults obtained. In these figures, the red lines represent the borders of the set of high
values in the cumulant maps. These borders reflect the shape of the pipe along x
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Fig. 15 (Continued)

Fig. 16 Third-order cumulants. (1) to (3) are third-order cumulants for the Fox kimberlite pipe, NT in
Fig. 14(3), using xy, xz and yz templates

and y directions, which is approximately similar to the results obtained on the 3D
training image (Fig. 19). The top part of the pipe is more easily detected than the
bottom part because most of the data points are in the top part until a 300 m depth
is reached, as the pipe drillholes show in Fig. 14(1). In Figs. 21 and 22, the fourth-
and fifth-order cumulant maps calculated provide better description of the horizontal
sections than the third-order map. They show irregularity between 400 < x < 500
and along y, as detected with the fourth- and fifth-order maps from the 3D training
image.



Math Geosci (2010) 42: 65–99 91

Fig. 17 Fourth-order cumulants. (1) is a fourth-order cumulant map for the Fox kimberlite pipe, NT in
Fig. 14(3), using xyz templates; (2) are three 2D cross-sections from (1)

Fig. 18 Fifth-order cumulants. (1) is a 3D cross-section at −z = 0 of the five-dimensional xyz(−z) tem-
plate cumulant map; (2) are three 2D cross-sections from (1)
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Fig. 19 Third-, fourth- and fifth-order cumulant maps for the pipe (3D training image) in Fig. 14

4 Comments on Pattern Recognition and Duality Relations

The examples presented above provide an insight to the ability of the higher order
spatial cumulants to reflect spatial characteristics of various geological patterns. Fur-
thermore, the examples contribute to our understanding of the interrelation between
characteristics of cumulants as mathematical entities, and the in-situ behavior of geo-
logical characteristics and patterns in the context of the so-called duality relations. As
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Fig. 20 xy views of the third-, fourth- and fifth-order cumulant maps calculated using the data from
drillholes in Fig. 14(1)

Fig. 21 xz views of the third-, fourth- and fifth-order cumulant maps calculated using the data from
drillholes in Fig. 14(1)

noted earlier, understanding this type of relation is particularly important for the fu-
ture use of high-order spatial cumulants in spatial prediction and simulation models.
Main observations from the previous examples refer mostly to the cumulants calcu-
lated using orthogonal shaped templates (i.e. L-shape, xyz and xyz(−z) templates)
and may be summarized as follows.

• L-shaped cumulants identify the size of the biggest object in the image considered.
This depends on the homogeneity of the objects present in an image. If the geology
contains some large objects, and some clusters of separated small objects, we may
not be able to distinguish between the different small objects if we use a small
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Fig. 22 yz views of the third-, fourth- and fifth-order cumulant maps calculated using the data from
drillholes in Fig. 14(1)

number of lags (h1, h2); however, if we increase the number of lags, the resolution
would be better and the details will be clearer.

• L-shaped cumulants correctly identify dominant anisotropies in the training image.
• L-shaped cumulants average objects, translating them to origin; this implies that

the L-shaped cumulant becomes increasingly insensitive to anisotropies when
more objects with different anisotropies are present in an image.

• L-shaped cumulants outside a neighborhood of the origin measure the redundancy
of binary objects in horizontal or vertical directions.

• 45-degree cumulant borders (opposite to origin) specify the number of times the
45 degree line intersects objects in the image examined. This provides an idea of
the absolute position of some objects in the scene.

• Cumulants of order three are able to determine periodicity in their symmetry axis.
• xyz fourth-order and xyz(−z) fifth-order cumulants show, not surprisingly, the

ability of the higher order cumulants to include key relations seen in the L-shape
cumulant map.

• The L-shape properties, cited above, can be generalized for higher-order cumu-
lants; for example, xyz and xyz(−z) templates identify the size of the biggest
object in the image considered. In addition, they also average objects, translating
them to origin.

• xyz and xyz(−z) are three-dimensional templates and they account for the in-
teractions between anisotropies distributed in 3D, while the L-shape third-order
cumulant is based on the variations along two main directions. This property is
the main difference between the cumulants and moments. The fourth-order cumu-
lant in (21) shows the extra terms added with respect to the fourth-order moment;
these terms provide much more interactions between objects at the extremities of
the template, in contrary to the fourth-order moment which only focuses on the
intersection between these objects.
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• For three-dimensional images, xyz fourth- and xyz(−z) fifth-order cumulants are
more accurate in describing the main anisotropies. In particular, they provide more
geometric information about the shape of the anomalies.

• xyz fourth- and xyz(−z) fifth-order cumulant functions include not only the inter-
actions between the elements on the extremities of the template used, but also the
cross-relations between these elements.

Duality relations between the mathematically related properties of cumulants and
the behavior of geological processes may be expressed as follows.

• The variation of the nth-order spatial statistics values with several spatial templates
provides information on the anisotropy of the n-point connectivity. For example,
if the process under study consists of horizontal layers, the L-shape experimental
third-order cumulant will show strong variations, whereas the third-order cumulant
along the horizontal axis will be zero.

• The behavior of the cumulants around the origin determines the zone of influence
of the average size of a possible existing anomaly in the field under study. For
second-order cumulants, this behavior corresponds to the well-known range of in-
fluence. The high-order range is related to the rate of decrease of the absolute value
of the cumulant. It shows that the samples of natural processes that are closer to
each other are subject to stronger interactions than those that are far from each
other. In addition, non-collinear templates quantify the directional connectivity of
the process under study.

• The behavior of cumulants at large distance determines the degree of homogeneity
and the connectivity of the process. As shown on the examples with the squares in
the images, the third-order cumulant of such processes tends to constant values for
large distances, confirming that for those distances the process is homogeneous. On
the contrary, high anomalies at large distances would correspond to the interactions
and pseudo-periodicity between the beginning and the end of the geological shapes
present. The fourth- and the fifth-order cumulants show homogeneity for large
distances in the example of the diamond pipe.

• The behavior of the L-shape third-order cumulant is a representation of the con-
nectivity between perpendicular points. It is a tool to represent processes with main
anisotropy in the L directions. In addition, this property is valid for a higher-order
to describe anisotropies in the directions of the templates used.

• The relative energy between a set of the directional templates reflects the relative
anisotropy in terms of their n-points interactions. For example, the continuous im-
age presented earlier shows strong variation in the 45 degree cumulant compared
to the XX and YY ones. This reflects the fact that the main anisotropy is in the 45
degree direction.

5 Conclusions

This paper presented developments towards a new approach to modeling complex,
non-linear, non-Gaussian earth sciences and engineering data, as required in most
applications. The new alternative framework is founded upon concepts from high-
order statistics that are introduced here in a spatial context. Mathematical definitions
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of non-Gaussian spatial random functions and their high-order spatial statistics were
described in detail, stressing the notion of spatial cumulants. The calculation of spa-
tial cumulants was introduced, including anisotropic experimental cumulant calcula-
tions using spatial templates. Several examples of two- and three-dimensional images
were presented, and their characteristics analyzed, to understand and document the
interrelations between cumulants and geological patterns.

The present work shows that high-order cumulants characterize spatial pattern re-
dundancy in cumulants and are correlated to the orientation of the spatial template
branches in the main axis of the original image. As a result, the choice of the cumu-
lant appears to depend on the geological process, anisotropy and pattern redundancy.
Spatial cumulants, up to and including fifth-order, are found to be efficient in char-
acterizing spatial patterns on both binary and continuous images, in two and three
dimensions. At the same time, and besides being part of a consistent mathematical
model, spatial cumulants were shown to have specific relations between the higher
and the lower order moments or cumulants, making the representation of spatial in-
formation consistent over a series of orders, globally as well as within a given neigh-
borhood. This consistency, or relation, does not exist in spatial templates as used in
currently defined multiple-point statistics. Further research will address the spatial
predictive aspects of non-Gaussian, non-linear random field models, so as to facil-
itate the use of spatial cumulants and related information that current frameworks
cannot accommodate.
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Appendix: Spectral Representation

A.1 Spectral Representation of Spatial Cumulants

As the power spectrum is the spectral domain representation of the auto-covariance
function, the polyspectrum is the spectral representation of cumulants of order three
or higher. Assuming that the cumulant sequence satisfies the following conditions
(Nikias and Petropulu 1993)

∞∑

h1=−∞
· · ·

∞∑

hr−1=−∞

∣∣cz
r (h1, . . . , hr−1)

∣∣ < ∞

or
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· · ·

∞∑

hr−1=−∞

(
1 + |hj |

)∣∣cz
r (h1, . . . , hr−1)

∣∣ < ∞ ∀j ∈ {1, . . . , r − 1},

the r th-order polyspectrum Cz
n(ω1, . . . ,ωn−1) of Z(x) exists, is continuous, and is

defined as the (r − 1)-dimensional Fourier transform of the r th-order cumulant se-
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quence. The r th-order cumulant spectrum is thus defined as

Cz
r (ω1, . . . ,ωr−1)

=
∞∑

h1=−∞
· · ·

∞∑

hr−1=−∞
cz
r (h1, . . . , hr−1) exp

{−j (ω1h1 + · · · + ωr−1hr−1)
}

with |ωi | ≤ π ∀i ∈ {1, . . . , r − 1} and |∑r−1
i=1 ωi | ≤ π .

In general, Cz
r (ω1, . . . ,ωr−1) is complex, carrying information on both magnitude

and phase of the phenomena under study and can be represented as

Cz
r (ω1, . . . ,ωr−1) = ∣∣Cz

r (ω1, . . . ,ωr−1)
∣∣ exp

{
jΨ z

r (ω1, . . . ,ωr−1)
}
,

where |Cz
r (ω1, . . . ,ωr−1)| is the amplitude and Ψ z

r (ω1, . . . ,ωr−1) is the phase. It is
also periodic with period 2π , i.e.

Cz
r (ω1, . . . ,ωr−1) = Cz

r (ω1 + 2π, . . . ,ωr−1 + 2π).

The power spectrum, bispectrum, and trispectrum are special cases of the r th-order
cumulant spectrum.

Power Spectrum: r = 2

Cz
2(ω) =

∞∑

h=−∞
cz

2(h) exp
{−j (ωh)

}
,

|ω| ≤ π.

Bispectrum: r = 3

Cz
2(ω1,ω2) =

∞∑

h1=−∞

∞∑

h2=−∞
cz

3(h1, h2) exp
{−j (ω1h1 + ω2h2)

}
,

|ω1| ≤ π, |ω2| ≤ π, |ω1 + ω2| ≤ π.

Trispectrum: r = 4

Cz
4(ω1,ω2,ω3)

=
∞∑

h1=−∞

∞∑

h2=−∞

∞∑

h3=−∞
cz

4(h1, h2, h3) exp
{−j (ω1h1 + ω2h2 + ω3h3)

}
,

|ω1| ≤ π, |ω2| ≤ π, |ω3| ≤ π, |ω1 + ω2 + ω3| ≤ π.

A.2 The Link Between the Spatial and Spectral Domains

Similarly to the power spectrum and covariance case, the polyspectrum is related
to cumulants through the inverse Fourier transform. The inverse Fourier transform
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yields

cz
r (h1, . . . , hr−1) = 1

(2π)r−1

∫ +π

−π

∫ +π

−π

· · ·
∫ +π

−π

Cz
r (ω1, . . . ,ωr−1)

× exp
{
j (ω1h1 + · · · + ωr−1hr−1)

}
dω1 · · ·dωr−1.

By choosing r = 2,3,4 and setting (hi) = 0, ∀i ∈ {1, . . . , r − 1}, at hr = 0, the fol-
lowing well known statistical parameters can be derived

cz
2(0) = 1

2π

∫ +π

−π

Cz
2(ω)dω

(
spatial variance γ z

2

)
,

cz
3(0,0) = 1

(2π)2

∫ +π

−π

∫ +π

−π

Cz
3(ω1,ω2) dω1 dω2

(
spatial skewness γ z

3

)
,

cz
3(0,0,0) = 1

(2π)3

∫ +π

−π

∫ +π

−π

∫ +π

−π

Cz
4(ω1,ω2,ω3) dω1 dω2 dω3

(
spatial kurtosis γ z

4

)
.
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