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Abstract
A constructive spectral method is presented to jointly calibrate hydrofacies and hydraulic conductivity to transient pressure 
heads. The method iteratively constructs Gaussian random fields to model the spatial correlation of hydraulic conductivity 
and hydrofacies using pluriGaussian simulation. Borehole conditioning is done quickly by replacing the slow Gibbs sampler 
method with an approach that is based on calibrating the underlying Gaussian fields that are subject to inequality constraints. 
Calibration to transient pressure heads is performed by shallow optimization of the phase vectors of the continuous spectral 
method. A parameterization technique makes it possible to reduce phase vector optimization from multivariate to univariate. 
The algorithm is tested on two-dimensional (2D) and 3D synthetic regional aquifers made of three hydrofacies. It reduced 
the objective function by one order of magnitude in one hundred iterations. The tests on the 2D aquifers indicated that the 
transient hydraulic heads alone cannot provide much information about hydrofacies. However, combining them with hydro-
facies observations from boreholes results in improved hydrofacies identification compared to when only borehole data 
are used. Similar results were obtained in the 3D aquifer case, although the improvement in aquifer identification was less 
pronounced. The spectral method presented makes it possible to calibrate complex aquifers to transient heads using a limited 
number of calls to the flow simulator. Doing so helps to characterize sub-surface heterogeneity and assess the uncertainty 
and geological risks associated with groundwater flow.

Keywords  Geostatistics · Inverse modeling · Stochastic hydrogeology · Data assimilation · Parameter uncertainty 
assessment

Introduction

The characterization of groundwater flow parameters is criti-
cal for understanding complex aquifer systems (Bárdossy 
and Hörning 2015; Benoit et al. 2017; Benoit et al. 2020; 
Khambhammettu et al. 2020). Having heterogeneous hydro-
geological parameter values renders modeling complex since 
data are usually sparsely available (Pasquier and Marcotte 
2006). When a groundwater system is modeled using hydro-
facies, the proportions and connectivity of hydrofacies are 
essential to assess a hydrogeological system’s response to 

external perturbations such as pumping tests, a significant 
influx of precipitation, or the transportation of contami-
nants (Benoit et al. 2017). Since only incomplete knowl-
edge is available about the geological system, calibrating the 
groundwater flow model requires solving an inverse problem 
(Tarantola 2005). The objective is to determine the unknown 
parameters (e.g., hydraulic conductivity, porosity, compress-
ibility, the location of hydrofacies) while ensuring the state 
variables (e.g., transient hydraulic heads, geochemical con-
centration, travel time between wells, tracer test responses) 
are faithfully reproduced.

Parameter uncertainty (e.g., hydrogeological param-
eter range, spatial heterogeneity, hydrofacies proportions, 
hydrofacies architectures, boundary conditions) need to 
be adequately characterized (Chilès and Delfiner 2012). 
If some model parameters exhibit spatial correlation, the 
inverse problem can be solved using geostatistical inversion 
methods (Carrera et al. 2005; Bárdossy and Hörning 2015). 

 *	 Dany Lauzon 
	 dany.lauzon@polymtl.ca

1	 Civil, Geological and Mining Engineering Department, 
Polytechnique Montréal, P.O. Box 6079 Station Centre‑Ville, 
Montréal, Québec H3C 3A7, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10040-023-02638-1&domain=pdf
http://orcid.org/0000-0001-7774-4460


1648	 Hydrogeology Journal (2023) 31:1647–1664

1 3

Hydrofacies uncertainty may be simulated using a variety 
of geostatistical methods (dell’Arciprete et al. 2011) such as 
multiple-point simulation (Strebelle 2002; Huysmans and 
Dassargues 2009; Mariethoz et al. 2010b), object-based 
simulation (Allard et al. 2005; Pyrcz et al. 2009), transi-
tion probability-based methods (D’Or 2003; Allard et al. 
2011; Benoit et al. 2017), and pluriGaussian simulation 
(Armstrong et al. 2011; Le Blévec et al. 2017). Continuous 
variables such as hydraulic conductivity, on the other hand, 
may be simulated using geostatistical simulation methods 
that are based on the Gaussian hypothesis, like sequential 
Gaussian simulation (Deutsch 1992), discrete spectral meth-
ods (Dietrich and Newsam 1993; Chilès and Delfiner 1997; 
Le Ravalec et al. 2000) and continuous spectral methods 
(Shinozuka 1971; Shinozuka and Jan 1972; Shinozuka and 
Deodatis 1996; Lantuéjoul 2002; Emery et al. 2016). Many 
of these simulation methods have been combined in pertur-
bation mechanisms for inverse modeling (Kirkpatrick et al. 
1983; Marsily et al. 1984; Gómez-Hernández et al. 1997; Hu 
2000; Mariethoz et al. 2010a; Bárdossy and Hörning 2015; 
Hörning and Bárdossy 2018; Rezaee and Marcotte 2018; 
Lauzon and Marcotte 2019; Barbosa et al. 2019; Lauzon and 
Marcotte 2020a; Khambhammettu et al. 2020; Benoit et al. 
2020; Lan et al. 2020), to cite a few.

Categorical or multi-facies aquifers are generally con-
structed using a two-step methodology. First, the hydrofacies 
are modeled according to available borehole data. Then, the 
hydrogeological properties of each of the hydrofacies are 
generated to account for spatial correlations. This raises the 
issue that the inverse problem matches the state data when 
the hydrofacies are fixed, which could result in unrealistic 
parameter values in each of the hydrofacies.

Markov Chain-based methods have been proposed to 
jointly calibrate hydrofacies and hydraulic conductivity 
(Alcolea and Renard 2010; Mariethoz et al. 2010a; Hansen 
et al. 2012). Multi-point models are sampled to maximize 
the likelihood that the simulated and observed state variables 
match and corroborate the known facies data. One possibil-
ity is the iterative spatial resampling algorithm, in which the 
transition from one element to the next in the Markov Chain 
is obtained by transferring the spatial information contained 
in a random set sampled from the previous simulation and 
using this set as conditioning data for the next simulation 
(Mariethoz et al. 2010a). Despite the algorithm’s simplic-
ity, it converges too slowly (Khambhammettu et al. 2020) 
to realistically be used for complex three-dimensional (3D) 
aquifers.

Recently, authors have proposed using the traveling pilot-
point method in conjunction with object-based simulation 
to parameterize the inverse problem for categorical fields 
(Khambhammettu et al. 2020). The idea is to adapt the posi-
tion of pilot points instead of perturbing their values to define 
the geometries of discrete categories. This has led to two 

advantages: (i) the categorical problem is restated as a prob-
lem with continuous parameters, and (ii) the location of pilot 
points, and the pilot points help to infer the categories’ geom-
etry by object displacement. The traveling pilot point method 
can be used with pluriGaussian or multi-point simulation. 
However, developing an appropriate calibration methodology 
with these two pixel-based algorithms remains a challenge. 
For example, previously published examples assumes constant 
hydraulic conductivity within each of the hydrofacies, which 
is a strong simplification of reality, as a given hydrofacies 
often has a heterogeneous hydraulic conductivity distribution.

One way to approach the inverse problem for categori-
cal aquifers is to parameterize optimization using only 
continuous variables modeled by Gaussian or underlying 
Gaussian random fields. One new variogram-based calibra-
tion algorithm, the sequential spectral turning band method 
(S-STBM), can provide an excellent framework for this pur-
pose. It consists of building an aquifer system from scratch 
(Lauzon and Marcotte 2020a) and can efficiently handle the 
categorical inverse problem when combined with pluriGauss-
ian simulation (Lauzon and Marcotte 2022). The method 
consists of sequentially adjusting each phase of the spectral 
algorithm to minimize the error between the observed and 
simulated state data. The S-STBM has been applied in both 
continuous and discrete domains to inverse problems that 
calibrate the first arrival travel time between wells and to 
matching steady-state pressure heads (Lauzon and Marcotte 
2020a; Lauzon and Marcotte  2020b; Lauzon and Marcotte 
2022). As for categorical problems, a study by Lauzon and 
Marcotte (2022) showed that the S-STBM is better suited to 
calibrate state data for categorical problems than the usual 
calibration methods, such as gradual deformation and itera-
tive spatial resampling. Note that the S-STBM has never been 
applied to transient head data assimilation.

The proposed methodology uses the S-STBM to jointly 
calibrate hydrofacies and hydraulic conductivity to state 
data, in this case, transient pressure head data. To the 
authors’ knowledge, this is the first time that joint calibration 
is performed to simultaneously determine the uncertainty 
of hydrofacies and hydraulic conductivity distribution. This 
paper proposes a method to model and simultaneously cali-
brate the underlying Gaussian fields of pluriGaussian simu-
lations corresponding to hydrofacies and the Gaussian fields 
associated with the hydraulic conductivity of each hydrofa-
cies using S-STBM. Parameterization reduces phase vector 
optimization from multivariate to univariate. The algorithm 
proposed here is tested on 2D and 3D synthetic aquifers.

The rest of the paper is structured as follows. Section Meth-
odology explains the basis of the methodology. The pluriGauss-
ian simulations and spectral algorithm that are used for condi-
tioning to the borehole data and for the inverse problems are 
described. A parametrization technique is presented to reduce 
the multi-dimensional optimization space to a one-dimensional 
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one. Section Synthetic study presents the flow simulator and the 
evaluation measures. Section A two-dimensional inversion intro-
duces the 2D synthetic categorical aquifer model and presents 
the algorithm’s technical details. Section Application to a 3D 
synthetic model illustrates the method’s application to a hetero-
geneous 3D field. The paper ends with a discussion of the main 
results and the problems encountered.

Methodology

Spectral turning bands method

The spectral turning bands method (STBM) replaces the 
simulation of a random field in IRd (in general, d = 2 or 3) 
with a simpler series of simulations in IR . Let us consider a 
d-dimensional stationary continuous covariance Cd(h) whose 
spectral representation is (Chilès and Delfiner 2012, p. 66):

where h is a d-dimensional vector specifying a direction, � 
refers to a d-dimensional frequency vector, < h,� > is the 
inner scalar product in IRd and d�(�) is the spectral measure.

If the covariance matrix, Cd(h) , is real and symmetrical 
around the origin, then so is the spectral measure. Further-
more, if Cd(h) is square integrable, one can express the spec-
tral measure as d�(�) = f (�)d� where f (�) is the spectral 
density (Lantuéjoul 2002). The spectral densities of some 
common covariance models can be found in Lantuéjoul 
(2002); Emery and Lantuéjoul (2006); Chilès and Delfiner 
(2012); Marcotte (2015, 2016); Marcotte and Allard (2017).

Thereafter, let us consider a stationary zero-mean random 
field Z(x) defined by:

where V is a random frequency vector whose distribution 
is given by the spectral density f (�) oriented on a unit half 
d-sphere and U is a phase vector uniformly distributed on 
[0, 1]. The random process Z(x) is zero-mean with covari-
ance Cd(h) . According to the central limit theorem, Z(x) 
becomes more ergodic and Gaussian as N increases. The 
STBM can be implemented sequentially or parallelized. 
Note that parallelization can be done for each cosine func-
tion by computing the coordinate projections on the line 
with the graphics processing unit (GPU) as suggested by 
Räss et al. (2019). Also, the STBM: is grid-free, as projection 
can be performed on any coordinate x ; is not limited to small 
systems, as there is no real memory limitation; and has a 

(1)

Cd(h) = ∫IRd

ei<h,�>d𝜒(�) = ∫IRd

cos (< h,� >)d𝜒(�)

(2)Z(x) =

�
1

N

N�

i=1

√
2 cos (< Vi, x > +2𝜋Ui)

complexity of only O(n) where n is the number of simulated 
points, which makes it tractable for large fields.

Spectral density sampling

The one-dimensional spectral density f
1
(�) , with � = ‖�‖ , 

defines the distribution of the frequency vector Vi . Matheron 
(1973) proved that one-to-one mapping between a continu-
ous and isotropic covariance in IRd and a covariance in IR 
is possible:

where Cd(h) is the d-dimensional covariance, C1(h) is the 
one-dimensional line covariance associated with Cd(h) , with 
h = ‖h‖ , Sd is the d-sphere and Ud  is the uniform distribu-
tion over Sd . Note that anisotropic fields can be obtained 
by dilating, contracting or rotating an isotropic field. This 
relationship can be used to simulate a Gaussian random field 
in IRd through a series of line simulations in IR with covari-
ance C1(h) or, in this case, a series of spectral bands using 
the one-dimensional spectral density corresponding to C1(h).

It is often complicated to relate the covariance function in IRd 
to the one in IR . However, in d=3, using spherical coordinates 
makes the relationship simpler. The one-dimensional spectral 
density f

1
(�) can be easily determined by taking the Fourier 

transform of the line covariance C1(h) , which is defined as:

Another option is to use the Fourier transform of C3(h) to 
obtain the spectral density f3(�) and then obtain the one-
dimensional spectral density f

1
(�) from it:

V can be drawn from a given spectral density by first sam-
pling a random direction v and then uniformly sampling the 
radial spectral cumulative distribution:

A uniform 0-1 value b is drawn, and V is obtained with 
V = �F−1

1
(b) where v is an oriented unit vector in the 

d-sphere. Low-discrepancy sequences like the van der Cor-
put sequence (van der Corput 1935) or the Halton sequence  

(3)Cd(h) =∫Sd
C1(< h,� >)Ud(d�)

(4)C1(h) =
d(hC3(h))

dh

(5)f1(ω) = 2∫
∞

0

C1(h) cos (�h)dh

(6)f3(ω) =
1

(2𝜋)3 ∫IR3

C3(h)e
−i<h,�>dh

(7)f
1
(�) = (2��)2f

3
(�)

(8)F1(�) =
1

� ∫
�

0

f1(s)ds
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(Halton 1964) can be used to populate the d-sphere more 
evenly than is possible with purely random drawing (Freulon 
and de Fouquet 1991; Lauzon and Marcotte 2020a). The 
van der Corput sequence is used in the algorithm described 
here.

Number of cosine functions used

In the STBM, it is suggested to generate hundreds of ran-
domly oriented bands (Tompson et al. 1989; Freulon and 
de Fouquet 1991) to reproduce covariance models with 
linear behavior at the origin. However, it is more com-
plicated to adequately represent the covariance function 
in the spectral counterpart. Some authors (Lantuéjoul 
2002; Emery and Lantuéjoul 2006; Chilès and Delfiner 
2012; Marcotte 2016) suggest using several hundred to 
several thousand cosine functions to help sample the high 
frequencies for covariance models with linear behavior at 
the origin. For smooth covariance functions, such as the 
cubic or Gaussian models, the STBM generally requires 
hundreds of cosine functions (Lantuéjoul 2002).

The classical S‑STBM calibration algorithm

The S-STBM (Lauzon and Marcotte 2020a; Lauzon and 
Marcotte  2020b) works essentially the same as an STBM 
except that the phases are chosen sequentially using optimi-
zation to assimilate as many state variables as possible. Eq. 2 
can be rewritten in a sequential manner as follows:

Then, the classical S-STBM algorithm can be summarized 
as follows: 

1.	 Pre-processing step

•	 Compute the one-dimensional spectral density f1 asso-
ciated with the covariance matrix in question ( Cd).

•	 Generate an exhaustive set of line directions {v} over 
the unit half d-sphere using a quasi-random sequence 
and keep the directions in a list.

•	 Set i to 0, Z0 to a null field, and the condition to false.

2.	 While the condition is false

•	 Increase i by one increment.
•	 Select the ith element in the line directions list, 

namely, vi.
•	 Randomly sample frequency �

i
 from the radial spec-

tral density f
1
(�i).

•	 Compute the frequency vector Vi = �ivi.

(9)

Zi(x) =

�
i − 1

i
Zi−1(x) +

�
1

i

√
2 cos (< Vi, x > +2𝜋Ui)

•	 Determine the phase Ui in Eq. 9 that minimizes the 
objective function using a line search minimizer 
(e.g., golden-section search).

•	 Compute Zi using Eq. 9.
•	 Verify the stopping criteria. If one is satisfied, set the 

condition to true.

3.	 Return Zi , the calibrated field.

Conditioning to hydrogeological properties

The conditioning of stationary Gaussian random fields to a set of 
hydrogeological parameters is efficiently handled using simple 
kriging, namely post-conditioning by simple kriging (Journel 
1974; Chilès and Delfiner 2012). It is performed before trans-
forming the Gaussian fields to the marginal distribution of data, 
solving the flow simulator and evaluating the objective function.

Given an unconditional simulation Zu(x) and a set of 
observed Gaussian-transformed hydrogeological data 
Z(xi),∀i = 1, ...,N , post-conditioning can be done using the 
following classical equation:

where (Z∗(x) − Z∗
u
(x)) is the difference between the kriging 

prediction using the set of observed data Z∗(x) and the krig-
ing prediction using the set of unconditional data from the 
observed data location Z∗

u
(x).

PluriGaussian simulations

The idea behind pluriGaussian methods is to combine two 
or more underlying Gaussian random fields (U-GRFs) simu-
lated over the area of interest and assign them categories 
according to the values simulated at each point (Armstrong 
et al. 2011). Assignment leads to the categorical field C(x) 
and is done using a partitioning rule, P ∶ IRP

→ IN , that 
transforms a vector formed of P underlying fields into a 
categorical field. The function P takes a coordinate x , forms 
a vector with the respective values of the P underlying fields 
at coordinate x , and returns a categorical variable.

PluriGaussian simulation is a flexible method that can be 
used to simulate a wide variety of aquifer architectures. For 
example, it can accommodate (non-stationary) facies propor-
tions that vary in different directions by spatially adapting 
the truncation rule (Emery 2007; Armstrong et al. 2011; 
Doligez et al. 2015). Also, it makes it possible to represent 
cyclicity in depositional sequences using correlated and 
shifted GRFs (Armstrong et al. 2011; Le Blévec et al. 2017). 
In reservoir engineering, it can be used to model (separately) 
reservoir architecture and diagenesis (Renard et al. 2008). 

(10)Zc(x) = Zu(x) + (Z∗(x) − Z∗
u
(x))

(11)P(Z(x)) ∶
(
Z
1
(x), Z

2
(x), ..., ZP(x)

)
→ C(x)
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For simplicity, but without loss of generality, only stationary 
cases with uncorrelated U-GRFs are considered.

Conditioning to hydrofacies observed in boreholes

Traditionally, U-GRFs are conditioned to observed 
hydrofacies, C(xa) for a = 1, ...,A , using the Gibbs sam-
pler. This method is widely known to be slow when an 
abundance of data is available, i.e., A is greater than, say, 
100,000 (Marcotte and Allard 2018).

Lauzon and Marcotte ( 2020b) have proposed an alterna-
tive to quickly constrain U-GRFs to inequality constraints. 
Instead of imposing random Gaussian values that follow 
the partitioning rule at coordinates xa and gradually intro-
ducing the spatial correlation as in the Gibbs sampler, one 
can resort to calibrating with the S-STBM, which preserves 
the correlation structure and seeks to gradually impose the 
inequality constraints. This results in random fields where 
P
(
Z(xa)

)
∶
(
Z
1
(xa), Z2(xa), ..., ZP(xa)

)
→ C(xa).

The objective function to be minimized is defined as fol-
lows: the domain D(Pj) refers to each Gaussian vector 
W ∈ IRP that gives facies j (Eq. 12) when P(W) is applied. 
The boundary of the domain D(Pj) is SD(Pj)

 . The distance 
between a categorical observation C(xa) = j and the Gauss-
ian vector Z(xa) is 0 when P(Z(xa)) = j ; otherwise it is the 
minimum Euclidean distance to the boundary SD(Pj)

 . The 
objective function is the average of these shortest distances 
(see Eq. 13). Fig. 1 shows a partitioning rule made of three 
facies and an example of the objective function.

where A is the number of categorical observations. Only 
underlying Gaussian values at borehole locations are sim-
ulated conditionally to the inequality constraints. Post-
conditioning by simple kriging (see Section The classical 
S‑STBM calibration algorithm) is used to condition the 
U-GRFs to those values. Therefore, the categories observed 
in boreholes are reproduced exactly in all simulated aquifers.

Joint calibration of hydrofacies and hydraulic 
conductivity

The methodology consists of modeling the aquifer facies archi-
tecture using pluriGaussian simulation. The U-GRFs of the 
pluriGaussian simulation and the Gaussian fields associated 
with the hydrogeological properties are then simultaneously 

(12)D(Pj) =
{
∀W ∈ IRP ∣ P(W) = j

}

(13)

OF(Z) =
1

A

∑A
a=1

da
�
Z(xa) ∣ C(xa) = j

�
where

da
�
Z(xa) ∣ C(xa) = j

�
=

⎧
⎪
⎨
⎪
⎩

min
Z∈SD(Pj )

�
dist

�
Z
�
xa

�
,Z

��
if Z(xa) ∉ D(Pj)

0 otherwise

calibrated to assimilate state variables. The study is restricted 
to the joint calibration of hydrofacies and hydraulic conductiv-
ity to transient head data. However, the methodology may be 
applied to any hydrogeological properties needed to model an 
aquifer or any state variables, such as particle travel time and 
the concentrations obtained from tracer tests.

Forcing ergodicity and limiting the number of flow 
simulator calls

Running a flow simulator is computationally time-consuming, 
especially for 3D problems. The number of calls made to the flow 
simulator must therefore be kept low to obtain calibrated models 
in an acceptable time frame (Saetrom and Omre 2013). As hun-
dreds or thousands of phases are required to ensure the ergodic-
ity of the Gaussian fields when using STBM, many calls to the 
flow simulator are needed just to avoid banding artifacts.

One, therefore, proposes to generate several (here, M) 
cosine functions at each iteration. This should avoid any 
risk of banding and ensure good calibration while mini-
mizing the number of calls to the flow simulator that are 
required. Eq. 9 then becomes:

where Vi,m and 2�Ui,m are the mth (among M) frequency vec-
tor and phase at iteration i, respectively.

Vector phase parameterization

As multiple Gaussian random fields are simulated, the 
same number of phases (M) needs to be optimized for 
each field at any given iteration. The number of calls made 
to the flow simulator may be significantly higher in such 
conditions than in the univariate case. Also, the discrete 
nature of the geological models prohibits using gradient-
based optimization methods (Hu and Le Ravalec 2004).

The idea is to reduce optimization from multivariate to uni-
variate using parameterization on the phase vector by taking 
advantage of the building nature of the S-STBM. The gradual 
deformation scheme is used to achieve this. Two Gaussian 
white noise vectors of length (P + Q) times M, z1 and z2 , are 
fused. Note that (P + Q) refers to the number of Gaussian ran-
dom fields simulated, with P underlying fields to model the 
categorical field and Q fields to simulate the hydrogeological 
properties, and M refers to the numbers of cosine functions 
(and phases) per field simulated at a given iteration. The Gauss-
ian values are transformed to normal cumulative distribution 
function values ( G(⋅) ) that give a set of phases to use in Eq. 2:

(14)

Zi(x) =

�
(i − 1)

i
Zi−1(x)

+

�
1

i

�
1

M

M�

m=1

√
2 cos (< Vi,m, x > +2𝜋Ui,m)
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As a result, a single continuous variable, t, defined on [0,2� ] 
needs to be optimized instead of P + Q times M phases, 
which significantly reduces the number of calls that need to 
be made to the flow simulator. Lauzon and Marcotte (2020a) 
showed that shallow optimization, as is done here with 
parameterization, at each iteration is a better choice than 
deep optimization in terms of the objective function (OF) 
reduction for a fixed number of calls to the direct problem 
(the flow simulator). t is optimized using a golden-section 
search with only two iterations ( � = 2), which results in 
three calls to the flow simulator per iteration with the golden 
search algorithm. Lauzon and Marcotte (2022) showed that � 
= 2 is a better choice than � = {5, 10, 20} for a fixed number 
of flow simulator calls in a variety of cases.

Joint calibration algorithm based on S‑STBM

If one consider P to denote the number of U-GRFs used 
in the pluriGaussian simulation scheme, Q to be the num-
ber of hydrogeological properties simulated and M to be 
the number of cosine functions generated, the building 
sequence of the S-STBM-based algorithm for joint cali-
bration can be summarized as follows: 

(15)U = G(z1 cos (t) + z2 sin (t))
1.	 Pre-processing step

•	 For i=1, ..., P, generate the underlying Gaussian val-
ues for the conditioning of the hydrofacies observed 
in boreholes (See section PluriGaussian simulations).

•	 For i=1, ..., Q, compute the transformation 
Yi = �i(Zi) where Yi is the hydrogeological property 
field in original units for property i and Zi is the 
Gaussian equivalent for property i. �i is the trans-
formation associated with property i.

•	 For i=1,..., P + Q , evaluate the one-dimensional spectral 
density associated with the prescribed covariance matrix 
of each underlying field or property field simulated.

•	 Generate a list of nIter elements, with nIter being 
the maximum number of iterations, using a quasi-
random sequence. Each element in the list con-
tains M × (P + Q) line directions, {v}M,P+Q , on the 
unit half d-sphere.

•	 Set the P underlying fields and the Q property 
fields, Z0,i for i=1, ..., P + Q , to null fields, and 
the condition to false.

2.	 While the condition is false

•	 Randomly sample each one-dimensional spectral 
density M times.

•	 Select the ith element of the set vi containing 
M × (P + Q) line directions.

Fig. 1   An example of a 
pluriGaussian simulation with 
two uncorrelated U-GRFs. 
The dashed arrows represent 
the partitioning produced by 
Eq. 11. The facies domain 
( D(P

3
) ), facies bound-

ary ( SD(P3
) ) and distance 

( Da(Z(xa) ∣ C(xa) = 3) ) for the 
yellow facies numbered 3 are 
shown in the partitioning rule 
(see Eq. 12 and Eq. 13)
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•	 Compute the (P + Q) times M frequency vectors.
•	 Optimize parameter t in Eq. 15 to minimize the mismatch 

between the observed and simulated state variables.

–	 Generate two Gaussian white noise vectors of 
length (P + Q) times M.

–	 Compute the phase vector using Eq. 15.
–	 Use the frequencies and phases to compute the 

P underlying fields and the Q property fields, 
respectively.

–	 If conditioning data are available, perform 
post-conditioning by kriging (see Sec. The 
classical S‑STBM calibration algorithm  and 
Sec. PluriGaussian simulations).

–	 Apply the partitioning rule to the P underly-
ing fields of the pluriGaussian simulation (see 
Eq. 11) to obtain the hydrofacies.

–	 Transform the Q Gaussian fields that correspond 
to properties using their respective transformation 
function �i , and assign the properties to hydrofacies.

–	 Run the flow simulator to obtain the simulated 
state variables.

–	 Evaluate the objective function.

•	 If the objective function is reduced, keep the new 
fields. Otherwise, keep the fields unchanged.

•	 Verify the stopping criteria. If one is satisfied, set 
the condition to true.

3.	 Return the P underlying fields and the Q property fields 
associated with the hydrofacies and the simulated prop-
erties, respectively.

Synthetic study

The algorithm’s performance was tested using a 2D and a 
3D synthetic aquifer. The evaluation measures used are the 
root mean square error of head calibration and the identifica-
tion of the model parameters, including categorical field and 
hydraulic conductivity fields reproduction.

Objective function

The objective function measures the root mean square error 
between the transient heads measured, hm

l,t
 , and those simu-

lated, hs
l,t

 , at each time t for each piezometer l:

where T is the number of time steps and L the number of 
piezometers.

Evaluation measures

The percentage of points with coincident simulated and ref-
erence hydrofacies, Pcp , is used as a performance measure 
to evaluate the reconstruction of the categorical field and 
defined as:

(16)OF =

√√√√ 1

L × T

T∑

t=1

L∑

l=1

(hm
l,t
− hs

l,t
)2

Table 1   Hydrogeological properties of the three units of the 2D aqui-
fer. (E[k] denotes hydraulic conductivity.)

Facies Type of soil E[k] Covariance Effective 
range

Sill

(m/s) model (m)

1 Clean sand 1.48E-3 Isotropic exponential 750 0.25
2 Silty sand 2.96E-4 Isotropic exponential 750 0.25
3 Silt 1.97E-6 Isotropic exponential 750 0.25

Fig. 2   a) Categorical field and b) log
10

 hydraulic conductivity field. (Black 
circles: location of the 24 data collection boreholes—12 at piezometer 

locations and 12 at randomly sampled locations. Black crosses: location 
of the 12 piezometers. The pumping well is in the middle of the area.)
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where I(⋅) is the indicator function that has a value of 1 when 
the condition is verified, Cs is the simulated categorical field, 
Cr is the reference categorical field, and n is the number of 
grid points. A higher value indicated a better reconstruction 
of hydrofacies than a lower value.

Kullback-Leibler divergence, DKL(p ∥ q) , is used to 
measure the difference between the probability distribution 
p and the reference distribution q . In this case, q is the vec-
tor of hydrofacies proportions in the reference model, while 
p as the vector of hydrofacies proportions in the calibrated 
realizations.

where P is the number of hydrofacies in the pluriGaussian 
scheme. The closer the value is to zero, the more similar are 
the proportions of the hydrofacies to the reference.

The correlation between the reference hydraulic con-
ductivity field ( Kr ) and a calibrated hydraulic conductivity 
field ( Ks ), �(Kr,Ks) , can be used to validate how faithfully 
hydraulic conductivity was reproduced. Note that correla-
tion is determined using the log10 K fields instead of the 
original units.

Flow simulator

Hydrogeological inversion was performed using the MAT-
LAB Reservoir Simulation Toolbox (MRST), which is a 
free open-source software program for modeling hydro-
geological systems (Lie 2019). It is worth mentioning that 
MRST’s primary function is not a flow simulator, but rather 
a research tool for the rapid prototyping of new simulation 
methods and modeling concepts. It offers a wide variety of 
easily customizable data structures and pre-programmed 
methods to model and simulate geological phenomena. In 
this case, transient head data were obtained by solving a 
non-linear physical model using automatic differentiation 
on a regular grid.

Let us consider three-dimensional (or two-dimensional) 
groundwater flow in a heterogeneous confined aquifer. Under 

(17)Pcp =
1

n

n∑

i=1

I
(
Cs(xi) = Cr(xi)

)

(18)DKL(p ∥ q) =

P∑

i=1

pi log
(pi
qi

)

appropriate boundary conditions, the single-phase fluid must 
satisfy the following continuity equation:

where � and �w represent the porosity and the density of 
water, respectively, vD is the macroscopic Darcy velocity, 
and Qs is a source term. That equation represents the con-
servation of mass. Then, Darcy’s law is used to provide the 
phenomenological relationship between vD and fluid pres-
sure pf as follows:

where k is the permeability, � is the fluid viscosity, z is the 
vertical coordinate, and g is the gravitational constant. Note 
that porosity and fluid density are both functions of fluid 
pressure (i.e., �(pf) and �w(pf) ). Fluid compressibility ( Cf ), 
aquifer compressibility ( Ca ), and the storage coefficient ( SS ) 
are now introduced to obtain:

Eq. 20 and Eq. 21 can be used to transform Eq. 19 in terms 
of hydraulic conductivity (K) and pressure head (h) and 
obtain:

Note that ∇h =
∇pf

�wg
− ∇z and K =

k�wg

�
 . Eq. 22 acts as the 

governing flow equation in the system.

(19)
�

�t
(��w) + div (�wvD) = �wQs

(20)vD = −
k

�
(∇pf − g�w∇z)

(21)Cf =
1

�w

d�w

dpf
;Ca =

d�

dpf
;SS = �wg(Ca + Cf�)

(22)div (−K∇h) + Q = SS
�h

�t

Fig. 3   Transient pressure heads at time t =0 s, 102 s, 104 s, and 106 
s, categorical field and log

10
 conductivity field for the reference field 

(left), Realization 1 (middle), and Realization 2 (right). A total of 24 
borehole data points (hydrofacies and hydraulic conductivity) were 
used for conditioning and 96 transient head data from the 12 piezom-
eters were used for calibration

◂

Fig. 4   Normalized objective function. (Solid black line: mean objec-
tive function. Gray lines: objective function of 100 realizations. 
Dashed black lines: 90% confidence interval.)
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A two‑dimensional inversion

The synthetic aquifer represents a confined aquifer made 
of three geological units. The model was obtained by using 
pluriGaussian simulation with two uncorrelated U-GRFs 
and applying the partitioning rule illustrated in Fig. 1. The 
log-conductivity field is shown in Fig. 4b. It measures 1 km 
× 1 km and is discretized on a 101 × 101 grid. The depth 
of the aquifer is assumed to be constant throughout the area 
and set at 1 m. The upper and lower sides are set as no-flow 
boundaries, and the fixed head boundary conditions are 
set to 5 m and 0 m on the left and right sides, respectively.

A pumping well with a constant pumping rate of 25 m 3 /h 
is located at the center of the area. The heads obtained at 0 
s (initial state), 102 s, 103 s, 104 s, 105 s, 106 s, 107 s and 109 
s (steady state) over 12 piezometers constitute the condi-
tioning data (96 head data points). The locations of the 12 
piezometers (black crosses) and the 24 conditioning data 
collection boreholes (black circles) are illustrated in Fig. 4a. 
The conditioning data was collected from 24 boreholes, of 
which 12 were from piezometer locations and 12 were from 
randomly sampled locations. The first U-GRF is modeled 

using anisotropic cubic covariance with a range of ax=600 m 
and ay=100 m. The second U-GRF is modeled using expo-
nential covariance with an effective anisotropic range of ax
=600 m and ay=300 m. Hydraulic conductivity follows a 
base-10 log-normal distribution whose parameters are given 
in Table 1. The conductivity fields are simulated separately 
(i.e., Q = 3 ) for the different facies. The specific storage, SS , 
is set to 1E-4 m−1 , and the porosity is set to 0.3 for the three 
types of hydrofacies.

The reference fields (the two underlying Gaussian 
fields for the pluriGaussian simulation and the three 
Gaussian fields for hydraulic conductivity) are sampled 
from unconditional simulations and have statistics that 
deviate from the parameters. For example, on average, 
the partitioning rule induces proportions of 20%, 32% 
and 48% for hydrofacies number 1, 2 and 3, respectively, 
whereas the reference proportions are 12.1%, 45.5% and 
42.4%, respectively, which represents a deviation of about 
6% to 14%. Such large fluctuations are to be expected 
considering the large correlation range (600 m along the 
x-direction) of the underlying Gaussian fields compared 
to the 1000 m extent of the field.

Table 2   Influence of spatial 
discretization and the number of 
nodes on calibration results

(HD: refers to the hydrofacies and hydraulic conductivity data observed in the 24 boreholes. M = 250 . 
Realizations: 100. The initial fields were obtained by conditional simulation to HD without transient head 
calibration.)

Number of nodes Time to calibrate 
one realization

Mean (OF
I
)   

without HD
Mean(OF

I
)   

with HD
Mean (OF

F
) Std (OF

F
)

(n) (min) (m) (m) (m) (m)

2 601 0.21 6.97 3.12 0.25 0.08
10 201 0.55 7.52 2.69 0.22 0.09
22 801 1.21 7.66 2.22 0.22 0.04
40 401 2.40 7.92 2.34 0.24 0.05
90 601 5.67 7.79 2.62 0.25 0.05
160 801 12.05 7.61 2.67 0.27 0.05

Table 3   Influence of borehole data on calibration results

(HD: refers to the hydrofacies and hydraulic conductivity data observed in the boreholes. The mean initial objective function error without HD is 
the same for all nine cases—7.52 m. The grid size is 101× 101, for 10,201 points.)

Case Number of HD Mean (OF
I
) with HD   Mean (OF

I
) Std (OF

F
) PI

cp
PF

cp �(Kr,Ks)
I

�(Kr,Ks)
F

(-) (m) (m) (m) (%) (%) (-) (-)

1 12 (0.12%) 3.80 0.24 0.07 42.9 44.2 0.15 0.20
2 24 (0.25%) 2.69 0.22 0.09 43.5 45.2 0.15 0.17
3 51 (0.5%) 2.42 0.21 0.05 48.5 50.2 0.27 0.28
4 102 (1%) 2.22 0.18 0.05 56.6 57.1 0.36 0.37
5 204 (2%) 1.94 0.15 0.04 63.9 64.1 0.47 0.49
6 357 (3.5%) 0.76 0.13 0.02 72.2 72.4 0.60 0.63
7 510 (5%) 0.72 0.13 0.02 75.8 76.0 0.69 0.72
8 765 (7.5%) 0.72 0.12 0.02 78.9 79.1 0.72 0.75
9 1020 (10%) 0.73 0.12 0.02 81.2 81.3 0.74 0.75
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The number of iterations was set to 100, which resulted 
in 300 flow simulator calls per realization (see Sec Joint 
calibration of hydrofacies and hydraulic conductivity). Fig. 2 
shows the categorical fields and the reference log10 hydraulic 
conductivity field. One hundred realizations were calibrated 
per test.

First, the results of the inversion are presented. Then, the 
added value, with respect to hydrofacies identification over 
the whole field, of combining the hydraulic head information 
and the hydrofacies observed in boreholes in the inversion 
is explored.

Joint inversion of a 2D aquifer

Figure 3 shows the head field at various times and the 
hydraulic conductivity field for the reference field and 
two calibrated realizations. The main differences observed 
in the pressure maps appear around the low-conductivity 
lenses where the head drops are stronger. Despite the 
small number (24) of known hydrofacies and hydraulic 
conductivity data points, the hydrofacies and conductiv-
ity fields of the two realizations show good agreement 
with the reference field. The zone of intermediate con-
ductivity located in the upper left corner is relatively well 

identified, and the one of higher conductivity around the 
well is present. The low-conductivity hydrofacies of the 
realizations show some similarities with the reference 
field, but also noticeable differences in terms of the loca-
tion and extent of the lenses. By jointly calibrating to 
transient head data, the percentage of points with coinci-
dent simulated and reference hydrofacies ( Pcp ) increases 
about 1.7%, from 43.5% (uncalibrated realizations condi-
tioned to borehole data) to 45.2%, on average. Moreover, 
the mean correlation of the hydraulic conductivity fields 
( �(Kr,Ks) ) increased slightly, from 0.15 to 0.17. Note that 
the mean OF error is reduced by a factor of 12.22, from 
2.69 m to 0.22 m (see the normalized OF, Fig. 4, where 
0.22/2.69=0.081).

Impact of field size on calibration

Some calibration algorithms may become less efficient 
with larger discretization grids caused by a greater number 
of hydrogeological parameters and more computationally 
complex optimization schemes (Khambhammettu et al. 
2020; Lauzon and Marcotte 2022).The discretization of 
the grid has therefore been varied from 2,601 nodes (51 

Table 4   Joint calibration results. Comparison between the classical sequential approach and joint calibration

Scenario 1: Unconditioned simulations
Scenario 2: Realizations conditioned solely to the 24 borehole data points
Scenario 3: Calibrated to transient heads using a sequential approach without conditioning to the 24 borehole data points
Scenario 4: Joint calibration without conditioning to the 24 borehole data points
Scenario 5: Calibrated to transient heads using a sequential approach with conditioning to the 24 borehole data points
Scenario 6: Joint calibration with conditioning to the 24 borehole data points

Scenario Conditioning Conditioning Joint P
cp �(Kr,Ks) P

F
1

P
F
2

P
F
3

D
KL
(p ∥ q

ref
) D

KL
(p ∥ q

HD
) Mean(OF)

to borehole to transient calibration (%) (%) (%) (%) (%) (%) (m)

data data

1 No No - 37.0 0.00 20.2 32 47.8 4.82 0.86 7.52
2 Yes No - 43.5 0.12 18.7 30 51.3 5.41 0.2 2.69
3 No Yes No 37.5 0.03 20.2 30.7 49.1 5.48 0.62 0.45
4 No Yes No 40.5 0.05 16.5 32.5 51 3.6 0.27 0.29
5 Yes Yes Yes 43.5 0.14 17.8 30.2 52 5.11 0.09 0.27
6 Yes Yes Yes 45.2 0.17 16.1 30.1 53.8 4.97 0.03 0.22
Reference - - - - - 12.1 45.5 42.4 - - -
Borehole Data - - - - - 16.7 29.2 54.1 5.61 - -

Table 5   Hydrogeological 
properties of the three units of 
the 3D aquifer. (E[k] denotes 
hydraulic conductivity.)

Facies Type of soil E[k] Porosity Covariance Horizontal Vertical Sill
(m/s) (%) model range (m) range (m) (-)

1 Silt 6.91E-7 30 Exponential 500 4 0.3
2 Silty sand 1.48E-5 30 Exponential 500 4 0.3
3 Clean sand 1.97E-4 30 Exponential 500 4 0.3
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× 51) to 160,801 nodes (401 × 401). The calibration was 
performed with the same conditioning data as is used in 
the previous section. One hundred calibrated realizations 
were obtained for each grid size.

Table 2 presents the results. The mean initial objective 
function error (Mean(OFI) ) with and without hard data 
conditioning, and the mean and standard deviation (Std) 
final objective function error ( Mean(OFF) and Std(OFF) , 
respectively) are shown. One note that there is a reduc-
tion of one order of magnitude in each case regardless of 
the discretization size of the field (See Table 2, fifth col-
umn). This indicates that the proposed algorithm does not 
become less efficient when the number of nodes increases, 
which suggests that it could be applicable to real large-
scale three-dimensional studies without loss of efficiency. 
Note that conditioning to the 24 hard data points alone 
does not provide acceptable matching between the meas-
ured and simulated transient pressure heads.

Influence of borehole data on calibration

This case study seeks to illustrate the influence that hard 
data—in this case, hydrofacies and hydraulic conductiv-
ity observations—have on the calibration of transient 
pressure head data. Nine scenarios are studied with the 
following proportions of hard data: 0.12% , 0.25% , 0.5% , 
1 % , 2 % , 3.5% , 5 % , 7.5% and 10% . In the 0.12% case, only 
the data observed at the 12 piezometers were used. The 
remaining hard data were randomly sampled. The grid 
size was 101 x 101 for 10,201 points. The results are 
presented in Table 3. The percentage of points with coin-
cident simulated and reference hydrofacies ( Pcp ) and the 
log10(K) mean correlation between the reference field and 
the one hundred calibrated realizations of the hydraulic 
conductivity fields ( �(Kr,Ks )) are reported.

When the proportion of hard data used ranges from 0.12% 
to 2 % , a reduction in OF of around one order of magnitude is 

observed. With more hard data, the initial fields are more con-
strained by the additional hard data points and the reduction 
in OF is a bit less. Nevertheless, even with 10% hard data, cali-
bration is able to reduce the OF by a factor six. As expected, 
the calibrated fields correlate more closely with the reference 
hydraulic conductivity field, and hydrofacies identification 
improves as the number of hard data points increases. Note that 
conditioning to only hard data is not sufficient to reproduce the 
hydraulic conductivity field at an acceptable level.

Is joint calibration worthwhile?

Six scenarios are studied in order to answer the following 
two questions: 1) Does jointly calibrating hydrofacies and 
hydraulic conductivity ensure more accurate identification of 
the reference model than sequential calibration ? and 2) Do 
hydraulic head data help improve hydrofacies recognition? 
The six scenarios are presented in Table 4.

Fig. 5   (a) Categorical field. (b) log
10

 hydraulic conductivity field. (Black lines: location of the 12 piezometers. Red line: location of the pumping well.)

Fig. 6   Normalized objective function. (Solid black line: mean objec-
tive function. Gray lines: objective function of 100 realizations. 
Dashed black lines: 90% confidence interval.)
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The first two scenarios are cases without calibration to 
transient heads. Scenario 1 represents unconditioned simula-
tions, and Scenario 2 depicts realizations conditioned solely 
to the 24 borehole data points. The third and fourth scenarios 
are cases in which no borehole data are available. In Sce-
nario 3, the transient heads are calibrated using a sequential 
approach. First, the hydrofacies are modeled. Then, only 
hydraulic conductivity is calibrated to match the transient 
data. In Scenario 4, the proposed joint calibration methodol-
ogy is used. Scenarios 5 and 6 are identical to Scenarios 3 
and 4, respectively, except that they incorporate the 24 bore-
hole data points. Note that one hundred realizations were 
generated for each scenario. The last two columns of Table 4 
present the statistics associated with the reference field and 
the borehole data. The − symbol indicates that the statistic 
or result in question could not be computed.

The mean percentage of points with coincident simu-
lated and reference hydrofacies ( Pcp ), the mean proportions 
of facies ( PF1

,PF2
,PF3

 ), the mean correlation between the 
reference field and the hydraulic conductivity fields of the 
realizations ( �(Kr,Ks) ), the Kullback-Leibler divergence 
( DKL(p ∥ q) ), and the mean final OF (Mean(OF)) are shown 
in Table 4.

When Scenarios 3 and 4 and Scenarios 5 and 6 are com-
pared, one can see that joint inversion improves calibration 
(lower Mean(OF)), hydrofacies identification (higher Pcp ), 
hydraulic conductivity modeling (improved �(Kr,Ks) ), 
and the overall proportion of hydrofacies identified (lower 
DKL(p ∥ q)).

The Kullback-Leibler divergence (KL) from the refer-
ence field ( DKL(p ∥ qref) ) is slightly higher for the cali-
brated Scenarios 3, 5, and 6 than it is for the uncalibrated 
Scenario 1 but remains less than the KL considering only 
borehole data vs reference. When KL is computed with 
the proportions of hydrofacies observed in boreholes 
( DKL(p ∥ qHD) ) and calibration to transient heads is per-
formed, one observe a significant reduction in KL. There-
fore, calibrating to transient heads brings the proportion of 
hydrofacies identified closer to the proportion observed in 
the borehole data than does Scenario 2, in which no cali-
bration occurs but borehole data are used for conditioning. 
Moreover, the transient head data were not useful alone in 
sequential calibration to identify the hydrofacies (37.5% of 
hydrofacies were correctly identified in Scenario 3 com-
pared to 37% in the unconditioned and uncalibrated realiza-
tions of Scenario 1), but it was useful in the joint calibra-
tion case (40.5% of hydrofacies were correctly identified 
in Scenario 4). However, the best results were obtained 
when combining borehole data and transient head data in 
the joint calibration approach (Scenario 6), in which case 
45.2% of hydrofacies were correctly identified.

Overall, the case study shows that 1) joint calibration pro-
vides better results than the classical sequential approach 

and 2) transient head data is useful to improve hydrofacies 
identification when used in the joint calibration approach.

Application to a 3D synthetic model

The synthetic model represents a confined aquifer made of 
three geological units (see Fig. 5a). The model was obtained 
by using pluriGaussian simulation with two uncorrelated 
U-GRFs and applying the same partitioning rule as was used 
in the 2D case (see Fig. 1, top left image). The field meas-
ures 2 km × 2 km x 10 m and is discretized on a 101 × 101 
x 11 grid (for 112,211 grid nodes). The aquifer’s floor, roof, 
south, and north sides are set as no-flow boundaries, and the 
fixed head boundary conditions are set to 10 m and 0 m on 
the east and west sides, respectively.

A pumping well is located at the center of the area and 
has a constant pumping rate of 25 m3∕h screened from the 
aquifer floor to its roof. The heads obtained at 0 s (initial 
state), 103 s, 104 s, 105 s, 106 s, 107 s, and 109 s (steady state) 
over 12 piezometers constitute the conditioning data (84 
head data points). The location of the 12 piezometers (black 
lines) are illustrated in Fig. 5. Only borehole data are consid-
ered in the conditioning data set for hydrofacies recognition 
and hydraulic conductivity assessment. The boreholes were 
drilled from the roof to the floor of the aquifer and represent 
132 (12 x 11) hydrofacies data points. Hydraulic conductiv-
ity data were not used for direct conditioning as, in a real 
3D case study, precisely evaluating hydraulic conductivity 
at a point in a borehole is a complex problem in itself. This 
additional complexity has been avoided.

The first U-GRF is modeled using anisotropic Gaussian 
covariance with a range of aE = 200 m, aN = 600 m and 
av = 8 m (E: east direction; N: north direction, v: verti-
cal direction). The second U-GRF is modeled using cubic 
covariance with an effective anisotropic range of aE = 400 
m, aN = 1600 m and av = 8 m. Hydraulic conductivity fol-
lows a base-10 log-normal distribution whose parameters 
are given in Table 5. The number of iterations was set to 
100, which resulted in 300 flow simulator calls per realiza-
tion. Figure 5 shows the categorical fields and the reference 
log10 hydraulic conductivity field. The conductivity fields 
are simulated separately (i.e. Q = 3 ) for the different facies.

Joint inversion of a 3D aquifer

One hundred realizations were calibrated using M = 250 . 
Figure 6 shows the evolution of the normalized objective 
function. Normalization is done using the model’s mean 
initial error before calibration and computed on uncondi-
tioned realizations. The gray lines represent the 100 reali-
zations; the solid black line is the mean; and the dashed 
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black lines are the 90% confidence interval. Despite the 
complex nature of the aquifer system, calibration achieves 
a reduction factor of 9, on average, in less than 100 itera-
tions. Note that no realization seems trapped in a local 
minimum, and the reduction in OF is fast for the initial 
iterations.

Figure 7 illustrates the head field at various times, the 
categorical field, and the hydraulic conductivity field for the 
reference field and two calibrated realizations. The transient 
hydraulic head fit is good overall. The main differences in the 
head maps are located close to the boundaries where no data 
are available to characterize the flow. If one compares subfig-
ures (a), (d), (g), and (j) in Fig. 7 to subfigures (b), (e), (h), and 
(k), respectively, one can see that drawdowns along the imper-
vious southern boundary occur closer to the western boundary 
in Realization 1, whereas they are more evenly distributed in 
the reference field.

The percentage of points with coincident simulated and 
reference hydrofacies is 46% in the uncalibrated realization 
and becomes 47% after calibration to the pressure heads. The 
variation is slight, which indicates that the pressure heads 
did not help with hydrofacies recognition.

After calibration, Realization 2 ended up with hydraulic 
conductivity values that were closer to those in the reference 
field than did Realization 1. In Realization 2 and the refer-
ence field, the hydraulic conductivity values are high in the 
eastern zone and lower in the western zone. However, both 
Realizations 1 and 2 show similar behavior around the well, 
with a mix of low conductivity values (Hydrofacies 1) and 
high conductivity values (Hydrofacies 3). The mean cor-
relation of the calibrated hydraulic conductivity fields and 
the reference field is slightly higher after calibration (0.08) 
than before (0.06).

In this scenario, calibration to transient pressure heads 
was of little help for hydrofacies modeling and hydraulic 
conductivity identification despite a decrease of close to 
one order of magnitude in the objective function meas-
uring the match to the transient heads. This result con-
trasts with the corresponding result in the 2D case, where 
calibration had a non-negligible impact on the identifica-
tion of the aquifer’s main characteristics. The differences 
between the 2D case and 3D case may be explained by 
the much larger number of degrees of freedom for flow in 
3D. The transient head data observed at a few wells do not 
provide as much information as is desired about the aqui-
fer’s architecture and the spatial distribution of hydraulic 

conductivity. Significantly increasing the number of 
borehole data points or adding auxiliary geophysical data 
would probably help to improve hydrofacies recognition 
and hydraulic conductivity assessment, but this may prove 
to be too costly for the application in question. Neverthe-
less, the calibrated fields have the obvious advantage of 
being able to better map the hydraulic head in response to 
the pumping stress applied, which is useful to identify the 
capture zone of the pumping well and the flow paths in the 
event of contamination.

Discussion

In this article, a new approach for the joint inverse modeling 
of categorical and hydraulic conductivity fields and their 
associated uncertainties has been proposed. Joint calibration 
is achieved with Gaussian fields simulated using the spectral 
method. Calibration to the state variable, transient pressure 
heads, is done sequentially by adding sets of cosine func-
tions that are shallowly optimized on their phase vectors. In 
line with the gradual deformation method, the phase vectors 
are parametrized so as to follow a circular path in IRM(P+Q) , 
which reduces optimization to a one-dimensional process 
(the position on the circle) and makes it possible to achieve 
a one-order-of-magnitude reduction in the objective function 
with a reasonable fixed number of calls to the flow simulator 
(300 calls per realization). This is an interesting result con-
sidering how many parameters need to be calibrated.

Although the number of cosine functions at each itera-
tion was set to M = 250 , the tests indicate that the results 
obtained are robust to the value of this parameter, as values 
of M between 100 and 400 provided similar results. A higher 
value could potentially generate some realizations that are 
trapped in a local minimum, and a lower one may not use 
enough cosine functions to be able to avoid banding artifacts 
and ensure convergence to a Gaussian distribution.

One way to improve the inversion for the state variable is 
to use an annealing schedule to reduce the parameter M as 
the iteration number increases, similarly to the FFTMA-SA 
method (Lauzon and Marcotte 2019) or the phase annealing 
algorithm (Yan et al. 2020). However, the use of anneal-
ing is nontrivial, and doing so requires several tries to tune 
its parameters. The experience indicates that an annealing 
schedule is useful when more than one thousand iterations 
are carried out. It makes it possible to decrease the intensity 
of perturbations as calibration progresses (Lauzon and Mar-
cotte 2019; Lauzon and Marcotte  2020b).

The proposed algorithm is an interesting tool for inver-
sion, as it can simultaneously assess the uncertainty of cat-
egorical and continuous parameters. The synthetic cases 
presented involved the inversion of hydrofacies location and 

Fig. 7   Transient pressure heads at time t = 0 s, 103 s, 105 s, and 107 s, 
categorical field and log10 conductivity field for the reference field 
(left), Realization 1 (middle), and Realization 2 (right). A total of 12 
borehole data points (or 132 hydrofacies data along the vertical) were 
used for conditioning and 84 transient head data were used for cali-
bration (12 boreholes x 7 observation times)

◂
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hydraulic conductivity determination. These are probably 
the parameters that most influence flow, but several other 
parameters, like porosity and compressibility, may also be 
uncertain. The approach can easily handle these uncertain 
parameters by adjusting the number of underlying Gaussian 
fields to reflect the number of hydrogeological parameters.

The method proposed should also be applicable to the cali-
bration of other state variables, like contaminant concentra-
tion, but this remains to be verified. Further research is also 
needed to include the uncertainty in the hydrogeological mod-
el’s boundary conditions. Moreover, it is not clear whether 
increasing the number of hydrogeological parameters (i.e., the 
number of Gaussian fields) will result in more calls to the flow 
simulator being needed to obtain a similar level of calibration, 
i.e., a reduction in the OF of one order of magnitude.

The main drawback of pluriGaussian simulations lies in 
identifying the variogram models for the underlying Gauss-
ian fields. One can find several sets of parameters that sat-
isfy the field data. Therefore, it may be difficult to justify 
using a given variogram model. In practice, geoscientists’ 
geological interpretation or conceptual models help guide 
variogram model selection. For example, cubic or Gaussian 
variogram models are suitable to represent silty lenses, as in 
the presented examples. Moreover, the partitioning rule may 
impact not only hydrofacies transitions, but also higher-order 
statistics, which can in turn modify hydrofacies connectivity 
(Beucher and Renard 2016). The same partitioning rule has 
been applied throughout this paper (Fig. 1), with the lenses 
defined by the first Gaussian field and the two areas of sand 
defined by the second one. This has implications for the 
geometry of hydrofacies bodies and for hydrofacies relation-
ships. It is recommended that hydrogeologists try different 
partitioning rules and inspect the visual aspect of simula-
tions to ensure they match the conceptual knowledge. Some 
strategies may require changing the hydrofacies proportion 
in a certain direction in accordance with borehole observa-
tions (D’Or et al. 2017) or adjusting a complex variogram 
model using correlated underlying functions and shift opera-
tors (Le Blévec et al. 2020). These two strategies can easily 
be incorporated in the algorithm.

In the synthetic case studies considered, the facies 
architecture was represented by pluriGaussian simulation. 
Recent developments in pluriGaussian simulation have 
made it possible to model spatially variable proportions 
(Mariethoz et al. 2009; Armstrong et al. 2011; Doligez 
et al. 2015; Madani and Emery 2016), represent discord-
ant or conformable depositional sedimentation processes 
and diagenesis geometries (Renard et al. 2008), and model 
cyclic and rhythmic sedimentary deposits (Le Blévec 
et al. 2018). The proposed calibration algorithm makes 
these complex models straightforward to use. The same 
applies for the classical sedimentary model based on the 
stacked thickness of facies (Allard et al. 2020), as each 

facies thickness is represented by a distinct Gaussian field. 
Hence, the calibration algorithm is versatile.

Conclusion

In this paper, a simple and computationally efficient algo-
rithm was tested to solve transient inverse problems for 
groundwater modeling. The algorithm relies mostly on the 
spectral simulation method and calibrates as the fields are 
constructed. The methodology can jointly invert a series of 
Gaussian fields associated with the hydrofacies, which are 
modeled using pluriGaussian simulation, and hydraulic con-
ductivity through a one-dimensional optimization scheme. 
A one-order-of-magnitude reduction in the OF was achieved 
with 300 calls to the flow simulator, and synthetic cases 
showed that the methodology is robust to the discretization 
adopted and does not get easily trapped in local optima. The 
fast calibration achieved with the proposed approach makes 
it possible to quantify the uncertainty associated with the 
hydrogeological model and favors geological risk assessment. 
Future research is needed to simultaneously assess the uncer-
tainty of other hydrogeological parameters such as boundary 
conditions, porosity, and contaminant concentration.
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