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a b s t r a c t 

Categorical parameter distributions are common-place in hydrogeological systems consisting of geologic fa- 

cies/categories with distinct properties, e.g., high-permeability channels embedded in a low-permeability ma- 

trix. Parameter estimation is difficult in such systems because the discontinuities in the parameter space hinder 

the inverse problem. Previous research in this area has been focused on the use of stochastic methods. In this 

paper, we present a novel approach based on Traveling Pilot points (TRIPS) combined with subspace parameter 

estimation methods to generate realistic categorical parameter distributions that honor calibration constraints 

(e.g., - measured water levels). In traditional implementations, aquifer properties (e.g., hydraulic conductivity) 

are estimated at fixed pilot point locations. In the TRIPS implementation, both the properties associated with the 

pilot points and their locations are estimated. Tikhonov regularization constraints are incorporated in the param- 

eter estimation process to produce realistic parameter depictions. For a synthetic aquifer system, we solved the 

categorical inverse problem by combining the TRIPS methodology with two subspace methods: Null Space Monte 

Carlo (NSMC) and Posterior Covariance (PC). A posterior ensemble developed with the rejection sampling (RS) 

method is compared against the TRIPS ensembles. The comparisons indicated similarities between the various 

ensembles and to the reference parameter distribution. Between the two subspace methods, the NSMC method 

produced an ensemble with more variability than the PC method. These preliminary results suggest that the 

TRIPS methodology has promise and could be tested on more complicated problems. 
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. Introduction 

Groundwater flow and contaminant transport models are commonly
sed to answer questions pertaining for example, to groundwater man-
gement and contaminant migration. These models solve the forward
roblem to answer the question under investigation. The forward prob-
em involves model parameterization followed by solving a partial dif-
erential equation to obtain a state vector d (representing, for exam-
le, the groundwater head or contaminant concentration) in response to
pecified boundary conditions. The inverse problem, on the other hand,
nvolves identifying the model parameter vector m from the state vec-
or d . Inverse problems in the groundwater modeling context have been
tudied extensively. Zhou et al. ( Zhou et al., 2014 ) present a recent de-
ailed discussion of the groundwater inversion problem and a review of
istorical and modern methods. The probabilistic formulation of the in-
erse problem (see, for example, Aster et al. ( Aster et al., 2013 )) can be
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xpressed in terms of conditional probabilities as shown in Eq. (1) . 

 ( 𝒎 |𝒅 ) = 

𝑓 ( 𝒅 |𝒎 ) 𝑝 ( 𝒎 ) 
𝑐 

(1) 

The term q ( m | d ) is the posterior probability density function and rep-
esents the probability of occurrence of a parameter vector conditioned
y the observed measured dataset. The term p ( m ) is known as the prior

nd represents the probability of occurrence of any model based only
n the initial information such as geological knowledge without consid-
ring the measurements of the state variables d . The term f ( d | m ) known
s the likelihood represents the probability of simulating the measured
ata d given a model vector m . 

The categorical inverse problem is a special case of the groundwater
nverse problem, pertaining to aquifers that consist of discrete geological
acies/categories. For example, consider a two-categories aquifer with
uvial high-permeability channels incised in a low-permeability matrix.
s of America 
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t any location in this aquifer, we would find only one of the two fa-
ies - channel or matrix. The inverse problem, in this case, requires us to
enerate categorical aquifer distributions when presented with prior ge-
logic information about borehole logs (static data) and measurements
f aquifer state (e.g., groundwater heads). Categorical problems are of-
en more challenging to solve than their continuous counterparts be-
ause the parameter space is discontinuous. Linde et al. ( Linde et al.,
015 ) presented an extensive review of existing methods for this class
f problems. We summarize a few of them here. 

The gradual deformation method (GDM) formulated by Hu et al.
 Hu et al., 2001 ), ( Hu, 2000 ) generates a sequence of model realiza-
ions that converge to matching the measured data. The key underlying
oncept in GDM is that the linear combinations of multiGaussian fields
re also multiGaussian fields with similar statistics. It is, therefore, pos-
ible to explore a part of the model space by adjusting only one sin-
le parameter: a weight allowing to move between two pre-computed
imulations. If the categorical field is obtained by truncation of one or
everal multi-Gaussian realizations, this process is straightforward and
btaining a discrete model that matches the measured observations can
e treated as a usual continuous optimization problem. Caers and Hoff-
an ( Caers and Hoffman, 2006 ) proposed the Probability Perturbation
ethod (PPM) when dealing with non-Gaussian priors and non-linear

orward model responses. Rather than computing the posterior from the
rior and likelihood, they instead decompose the posterior into a set of
re-posterior distributions containing facies and measurement data re-
pectively. These pre-posterior probability distributions are perturbed
ntil newer model realizations in the sequence increasingly converge to
atching measurements. Ronayne et al. ( Ronayne et al., 2008 ) applied

he PPM to a transient aquifer test model and generated a distribution of
ermeable discrete channels embedded within less permeable deposits.

Alcolea and Renard ( Alcolea and Renard, 2010 ) and Hansen et al.
 Hansen et al., 2012 ) used an iterative Blocking Moving Window algo-
ithm in conjunction with simulated annealing or a Markov chain based
ethod to guide a multiple-point statistics (MPS) model in reproduc-

ng state variables and honor facies data known from prior knowledge.
ariethoz et al. ( Mariethoz et al., 2010 ) proposed the Iterative Spatial
esampling (ISR) technique, a Markov chain-based method to sample

rom the posterior distribution. The transition from one element to the
ext in the Markov chain is based on sampling the values of the previous
eld at a set of random locations and using these points as conditioning
ata for the next iteration. While this procedure is straightforward and
amples the posterior space in an unbiased manner, it is rather time-
onsuming. Jäggli et al. ( Jaggli et al., 2017 ) proposed a faster approach
amed posterior population expansion (POPEX) expanding an initial en-
emble of parameter models using MPS and local conditioning in such
 manner that the new models are likely to belong to the posterior pop-
lation. The POPEX approach was subsequently modified ( Jäggli et al.,
018 ) to overcome predictive biases by combining machine learning
echniques with an adaptive importance sampling strategy. 

Several approaches to solve the categorical inverse problem based
n pilot points have also been presented. Pilot points have been used
o estimate heterogeneous hydrogeological parameter distributions for
everal decades ( ( Certes and de Marsily, 1991 ), ( LaVenue and de
arsily, 2001 ), ( Doherty, 2003 )). Doherty et al. ( Doherty et al., 2010 )

efine pilot points as surrogate parameters in the inverse modeling pro-
ess for representing heterogeneity in a lower-dimensional space. In
hese applications, a location-specific hydrogeological attribute (e.g.,
orosity, hydraulic conductivity) is associated with the pilot point. A
re-determined number of pilot points are placed at strategic locations
long the model domain to capture the heterogeneity in the system. An
teration of the forward problem involves estimation of properties asso-
iated with each pilot point followed by spatial interpolation to create a
patially continuous parameter distribution from the discrete pilot point
ocations. The inverse problem involves the estimation of parameter val-
es at the pilot point locations that honor the calibration constraints.
ver the course of the parameter estimation, the locations of the pilot
oints remain static, but the parameters associated with the pilot points
hange. In the context of categorical fields, Li et al. ( Li et al., 2003 )
sed pilot points to guide an ensemble Kalman Filter approach to match
ynamic (head) and geologic data simultaneously. 

In this paper, we develop and test a new approach where pilot points
re used in conjunction with linear subspace methods ( Tonkin and Do-
erty, 2008 ) to solve the categorical inverse problem. The primary mo-
ivation here is that linear subspace methods are computationally in-
xpensive, and their application in the estimation of continuous real-
orld parameter fields has been well documented ( ( Keating et al.,
010 ), ( Herckenrath et al., 2011 )). We explore if these same approaches
ould be used to estimate discrete/categorical parameter fields. In our
pproach, we use pilot points in a non-traditional manner, that we refer
o as the “Traveling Pilot Points (TRIPS) ” approach. Rather than using
ilot points for spatial interpolation, we iteratively adapt their positions
o define the geometries of the discrete categories. In our opinion, there
re two advantages to this approach. First, by using the positions of the
ilot points, the categorical problem has been restated as a problem with
ontinuous parameters which is easier to solve. Second, this approach
llows us to infer the category geometries rather than to estimate them
rom spatial interpolation operations such as kriging indirectly. 

The methodology described in this paper has only been tested so
ar on a synthetic problem with two categories and saturated two-
imensional groundwater flow. The technique might require additional
odifications for more complex problems with multiple facies. 

The subsequent sections of this paper are organized as follows. In
ection 2 , we present an overview of the TRIPS method and its applica-
ility in the context of generating categorical parameter distributions.
n Section 3 , we present an overview of the various sampling methods
sed in Section 5 . In Section 4 , we present a synthetic groundwater prob-
em with a categorical parameter distribution. In Section 5 , we use the
RIPS approach to develop multiple likely parameter realizations for
he synthetic problem. Finally, we present a summary of our findings in
ection 6 . 

. TRIPS Methodology 

In Section 2.1 , we introduce the principle and present the details of
he implementation of Traveling Pilot Points (TRIPS) to solve the cate-
orical inverse problem. In contrast to traditional pilot points, TRIPS
re not fixed in location but instead can travel to locations of interest in
he model domain. 

.1. The Traveling Pilot Points principle 

Let us consider an aquifer containing permeable channels embed-
ed within an impermeable matrix. It is possible to generate such dis-
rete geological fields with different geostatistical techniques. One could
se for example, transition probabilities (TProGS), plurigaussian simu-
ations, object-based models, or multiple-point statistics to model these
tructures. For all these techniques, it is possible to set a fixed number of
ocations where the type of geology is known (for example presence of
 channel), but the locations themselves are unknown. Providing these
ocations as conditioning data to the geological simulation algorithm al-
ows to change the parameterization of the geological simulation and to
olve the inverse problem in this manner means to search for the opti-
al locations of these traveling pilot points. This approach modifies a
iscrete inverse problem into a continuous one and should, therefore,
acilitate its resolution. This idea is very general and can have many
pplications. 

.2. An example of geological model 

To test this idea in a simple situation, we consider a binary case with
hannels as illustrated in Fig. 1 . To constrain the geometry of the chan-
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Fig. 1. Training Image representative of the 

geology in the synthetic aquifer. The image has 

a size of 2500 by 2500 pixels. The black pix- 

els represent the matrix, while the white repre- 

sent the channels. This image is borrowed from 

Laloy et al. 2018 . 

Fig. 2. Development of object-based model 

from pilot points with (top) initial position 

of TRIPS and (bottom) updated positions of 

TRIPS. Splines connecting related TRIPS are 

shown in the central panel and the channel ob- 

jects created by buffering the splines are shown 

in the right panel. 
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els in a simple manner, we use a two-step approach based on object-
ased simulations constrained by a training image. 

On the one hand, the training image ( Fig. 1 ) provides in a graphical
anner the size of the channels, their sinuosity, their spacing, and so

n. This image can be drawn by hand based on a geological concept.
t offers flexibility and simplicity. On the other hand, the object-based
odel ensures that all the channels are continuous and that the geolog-

cal models are generated very rapidly. 
For the object-based model, we consider that there is a fixed number

f channels crossing the area from left to right ( Fig. 2 ). For each chan-
el, we define a fixed number of traveling pilot points. For example, for
 channel spanning an X distance of 100m, we can characterize it by 5
oints spaced 20m apart. If the aquifer domain is 100 m × 100 m with
 typical distribution of 3 channels, 15 points are used to track all the
hannels. To simulate the entire domain, the channel central lines are
nterpolated with a spline function using the position of the traveling
ilot points as input. Then a constant thickness is applied along the cen-
ral lines, and all pixels falling within this area are labeled as channel.

e then have a simple function that relates the pilot point positions
o channel geometry. To constrain the geometry of those channels in a
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e  
imple manner and make the link with the training image, we assumed
hat we could reproduce reasonably well the variability of the channels,
heir shapes and their relative positions using a multiGaussian distribu-
ion of the position of the traveling pilot points. In this manner, the prior
eological model is fully determined by a set of mean values and a prior
ovariance matrix. 

To estimate the prior covariance matrix, the training image has been
ut into many sub-images having the same lateral extension as the sim-
lation domain. The vertical extension was taken larger in order to ac-
ount for channels that would enter the domain from the top or the
ottom of the domain but not being entirely included in the simulation
omain. For each sub-image, the positions of channels are tracked by
ecording the Y coordinate of the channel centerline at fixed intervals
long the X axis. Then, the mean Y values 𝒑̄ for every traveling pilot
oint and an empirical covariance matrix, C p , representing the covari-
nce of their position along the Y axis is calculated from these recorded
 coordinates. 

Once the covariance matrix is known, the generation of a geological
odel is obtained by first simulating a random vector p and then apply-

ng the procedure described above. The realizations of p are obtained
sing the discrete Karhunen-Loève expansion as shown for example by
arma et al. ( Sarma et al., 2008 ): 

 = 𝒑̄ + 𝑬 𝑺 

1∕2 𝝆 (2)

In the above equation, E is the matrix of the eigenvectors of the
ovariance matrix C p , S is a diagonal matrix containing the eigenvalues
f C p , and 𝝆 is a vector of uncorrelated random normal variables (mean
 and variance 1). 

.3. The Traveling Pilot Points approach 

In the subsequent paragraphs, we present a more detailed description
f the methodology. Let us consider a case where TRIPS are used to
arameterize a property (e.g., hydraulic conductivity distribution) of
 categorical aquifer containing f facies categories. Let n i represent the
umber of TRIPS in facies i . The location of the j th TRIP in the i th facies in
hree-dimensional (3D) space is represented by ( x ij ,y ij ,z ij ). The property

alue associated with the i th facies category is represented by val i . For
xample, if the x coordinates are known and the y and z coordinates are
o be estimated, the vector p, which contains all the unknowns (locations
nd category values) is represented by Eq. (3) . This equation can be
xtended/modified for other problems with complex geometries. 

 = 

[
𝑦 𝑖𝑗 , 𝑧 𝑖𝑗 , 𝑣𝑎 𝑙 𝑖 , …

]
𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ [ 1 , 𝑓 ] 𝑎𝑛𝑑 𝑗 ∈

[
1 , 𝑛 𝑖 

]
(3)

The model parameter vector m is then determined by a spatial map-
ing/interpolation operation, as shown in Eq. (4) . For example, m could
epresent the hydraulic conductivity field containing typically on the or-
er of several tens of thousands of values which can be categorical while
 contains only a few tens of continuous unknowns. 

 = 𝒁 ( 𝒑 ) (4)

In the above equation, the operator Z could represent a spatial inter-
olation method such as kriging or inverse distance weighted interpo-
ation, for example. In this paper, this operator represents the mapping
ethod illustrated in Fig. 2 and described in Section 2.2 . 

A groundwater flow/transport model uses the model param-
ter field m in conjunction with site-specific initial and bound-
ry conditions to produce an output vector d of simulated
eads/velocities/concentrations as represented in Eq. (5) . The op-
rator g in Eq. (5) , an abstraction for the groundwater model, acts upon
he parameter vector m to produce the output vector d of simulated
eads/concentrations. 

 = 𝒈 ( 𝒎 ) = 𝒈 [ 𝒁 ( 𝒑 ) ] (5)

If the vector d obs represents the measured counterparts to d , the mea-
urement objective function, ∅ , which defines the misfit between the
m 
odel and the measurements is calculated in Eq. (6) as 

𝑚 = 

[
𝒅 𝑜𝑏𝑠 − 𝒈 ( 𝒎 ) 

]𝑇 
𝑪 

−1 
𝑫 

[
𝒅 𝑜𝑏𝑠 − 𝒈 ( 𝒎 ) 

]
(6)

Where the T superscript represents the matrix transpose operation
nd 𝑪 

−1 
𝑫 

is a diagonal matrix with element q ii (element in the i th row
nd i th column) containing the weight associated with the (i th ) measure-
ent and equal (in this paper) to the inverse of the measurement error

ariance ( Doherty, 2010 ). 
In Eq. (6) , no consideration was given to the nature of the parameter

ector. In cases where prior/preferred knowledge about the underlying
arameter distribution exists, it is important to include that information
o reduce the ill-posedness of the problem ( Tonkin and Doherty, 2005 ).

e incorporate a plausibility/regularization term ∅r in Eq. (7) to repre-
ent the deviation of the parameter set from the prior knowledge about
heir preferred values. 

𝑟 = 

(
𝒑 − 𝒑 𝑖 

)𝑇 
𝑪 

−1 
𝒑 

(
𝒑 − 𝒑 𝑖 

)
(7)

In the above equation, the vector p i represents our knowledge about
referred conditions. Here, we take for p i the vector containing the simu-
ated initial differences of the Y coordinates of the traveling pilot points
btained from the procedure defined in Section 2.2 . Eq. (7) ensures that
he traveling pilot points can move around the initial position but in a
anner that is compatible with the statistics derived from the analysis

f the training image. Furthermore, to better constrain the relative po-
itions of the traveling pilot points, we also considered the differences
etween the values in the regularization term. This is implemented by
ssuming that the differences between the updated and initial parame-
ers should remain small. The covariance of the differences can be esti-
ated from the covariance matrix of the parameter values as described

n Appendix A . 
Note that for the sake of keeping the above explanations as simple as

ossible, we did not describe how the covariances and mean parameter
alues were included in the parameter for the hydraulic conductivities.
his is done in a straightforward manner by assuming that the parameter
alues were uncorrelated to the positions. The final covariance matrix
ontains in this case two independent blocks: one for the position, one
or the parameter values. 

Finally, the global objective function, ∅g , includes both measurement
nd parameter misfit: 

𝑔 = ∅𝑚 + 𝜇2 ∅𝑟 (8)

The above equations represent a technique of regularization
hat was implemented in the parameter-estimation software, PEST
 Doherty, 2010 ). The factor 𝜇2 is a regularization weight multiplier,
ontrolling the parameter misfit, and is explicitly estimated during the
nversion process. The inverse problem in the current context is a con-
trained minimization problem where the global objective function ∅g 

s minimized while keeping the channel geometry compatible with our
rior knowledge expressed through regularization. 

In summary, the overall flowchart for the TRIPS algorithm is pre-
ented in Fig. 3 . An initial vector p i is generated using Eq. (2) . This
nformation is then transformed into a model parameter field (e.g., hy-
raulic conductivity) with the aid of the spatial interpolation operator.
n initial forward model simulation is carried out. If the misfit is con-
idered acceptable, the parameter estimation is stopped. Otherwise, an
ptimization method (in this paper, gradient optimization in the PEST
oftware) is used to minimize the global objective function ∅g and ob-
ain better values of the TRIPS. An updated field of model parameters
s created, forward model simulation is carried out, and the objective
unction is re-evaluated. This process is repeated until the optimization
bjectives are met. 

. Generating ensembles of realizations 

In this section, we describe three different approaches to generate
nsembles of realizations. The first approach, rejection sampling (RS), is
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Fig. 3. Flowchart depicting the TRIPS algo- 

rithm. 
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J  
 simple but computationally expensive approach to sample from the
osterior distribution. Since this approach is capable of handling any
ind of prior or posterior distributions, it serves as a benchmark for the
ther approaches which rely at least partly on a multiGaussian assump-
ion. The second approach, Null Space Monte Carlo (NSMC), describes
ow the TRIPS methodology can be used in conjunction with subspace
echniques which are computationally faster. The third approach, Pos-

erior Covariance (PC), also a subspace technique, uses an alternate way
o calculate the covariance matrix of the posterior and generates an en-
emble rapidly. The second and third approaches are of interest in this
aper as they cannot be applied to categorical inverse problems without
sing an indirect parameterization such as the one proposed here with
RIPS . 

In summary, the TRIPS approach provides a framework for generat-
ng a channelized categorical aquifer field from pilot points spaced along
he channel centerlines. The NSMC and PC methods use subspace tech-
iques to sample the positions of these pilot points and the hydraulic
onductivities of the aquifer categories. 

These three approaches are applied and compared in Section 5 on a
ynthetic problem. 

.1. Rejection sampling 

Rejection sampling (RS) described in ( Mariethoz et al., 2010 ),
 Tarantola, 2005 ), is a simple but computationally expensive way of
ampling the posterior distribution. In this method, many candidate pa-
ameters, p , are generated by sampling from the prior distribution, as
escribed in Section 2.2 . These parameters are converted into model
arameters m . Forward simulations are carried out, and misfit between
he modeled and measured counterparts are tabulated. An acceptance
robability, P ( m ), defined in Eq. (9) , is calculated for each candidate
odel based on the ratio of the likelihood function L ( m ) = f ( d | m ) to the
aximum possible value of the likelihood function L max . 

 ( 𝒎 ) = 

𝑳 ( 𝒎 ) 
𝑳 𝒎 𝒂 𝒙 

(9) 

In this paper, L max was determined as the maximum sampled value
f the prior ensemble. The likelihood function is computed according to
q. (10) . It expresses the likelihood of a candidate model to reproduce
he available data. It is inversely proportional to the measurement ob-
ective function and directly proportional to the standard deviation of
he measurement error 𝜎. 

 ( 𝒎 ) ∝ exp 
[
− ∅𝑚 ( 𝒎 ) 

]
(10) 

For each candidate model, a random number from the Uniform dis-
ribution U (0, 1) is concurrently generated along with the acceptance
robability. If the acceptance probability is greater than this random
umber, the candidate model is accepted as a member of the posterior
istribution. Otherwise, the candidate model is rejected. This method
ay reject many models, and therefore it is not computationally ef-
cient, but the ensemble of accepted models represents the posterior
istribution in an unbiased manner. 

.2. Null space Monte Carlo 

The second method that we use in this paper is the Null Space
onte Carlo (NSMC) methodology described by Tonkin and Doherty

 Tonkin and Doherty, 2008 ). It is a subspace-based pseudo-linear
ethod capable of generating an ensemble of parameter realizations

hat have a reasonable fit with the data by construction. The NSMC
ethod is described below. 

The first step is to generate a single model with an acceptable level
f misfit between the model and measurements. We do this using the
radient-based optimization method described in Section 2.3 . The opti-
ized parameter set from this model is denoted by the vector p c . The

acobian matrix X is estimated. It contains the partial derivatives of the
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Fig. 4. Model setup, boundary conditions, and 

well locations for the synthetic problem. The 

locations of the pumping well and monitoring 

wells are shown in the plot to the right. 
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o  
easured data with respect to the components of the vector p c . X ij (rep-
esenting the value in row i and column j ) is calculated as the partial
erivative of observation i with respect to parameter j . The weighted
acobian matrix, 𝑿 

𝑻 𝑪 

−1 
𝑫 
𝑿 is computed. The matrix 𝑪 

−1 
𝑫 

contains obser-
ation weights as defined in Section 2.3 . This weighted Jacobian ma-
rix is decomposed using singular value decomposition ( Tonkin and Do-
erty, 2008 ) as the product of three matrices in Eq. (11) . 

 

𝑻 𝑪 

−1 
𝑫 
𝑿 = 𝑼 𝑺 𝑽 𝑻 (11)

U is an orthonormal matrix containing the basis vectors for the range
pace of the weighted Jacobian; S is a rectangular diagonal matrix con-
aining eigenvalues of the weighted Jacobian matrix; V is an orthonor-
al matrix containing the basis vectors for the parameter solution space

nd parameter null space. If there are n eigenvalues and the partition
etween the solution and null spaces is drawn after the first r eigenval-
es, the matrix V from Eq. (11) can be thought of as 𝑽 = [ 𝑽 1 𝑽 2 ]
here V 2 has ( n − r ) columns which form the basis vectors for the null

pace. Moore et al. ( Moore and Doherty, 2005 ) present a discussion on
he impact of this partition on predictive error variance. 

Next, we generate multiple parameter vectors by sampling from the
rior distribution following the methodology described in Section 2.2 .
hese parameter vectors constitute the “uncalibrated parameters ”. The
ifference between each uncalibrated parameter set p u and the cali-
rated parameter set is computed and projected into the parameter null
pace by multiplying with the null space projection matrix V 2 V 2 

T . This
rojected parameter set will lie in the parameter null space if the model
ere linear and if the null space was delineated accurately. The pro-

ected differences are added to the calibrated parameter set to create a
ew parameter set p u − new . This process is described by Eq. (12) where

𝒑 𝒖 − 𝒏 𝒆 𝒘 = 𝒑 𝒄 + 𝑽 2 𝑽 2 
𝑻 
(
𝒑 𝒖 − 𝒑 𝒄 

)
(12)

Since the model is non-linear and there is uncertainty about the
artition between the null and solution spaces, the parameter set from
q. (12) does not often result in a calibrated model. Hence this parame-
er set is further updated using PEST ( Doherty, 2010 ) until the measure-
ent mismatch is acceptable. 

.3. Posterior Covariance Calculation 

In this method, the posterior covariance matrix C ′ is estimated
rom the prior covariance matrix under the assumption of linearity
 Tarantola, 2005 ). 

 

′ = 𝑪 𝒑 − 𝑪 𝑝 𝑿 

𝑻 
[
𝑿 𝑪 𝒑 𝑿 

𝑻 + 𝑪 𝑫 

]−1 
𝑿 𝑪 𝒑 (13)

In Eq. (13) , C p is the prior covariance matrix. The second term on
he right-hand side represents the impact of calibrating the model. The
erm C D represents the covariance of the measurement errors. The ma-
rix X represents the Jacobian matrix of the calibrated model. After cal-
ulating C ′ , several parameter sets are randomly generated using a ran-
om parameter generator as described in Section 2.2 . If the model were
erfectly linear, each of these parameter sets would reproduce the ob-
erved data. An inspection of the likelihood functions revealed that it
s not the case. Hence this parameter set is further updated using PEST
 Doherty, 2010 ) until the measurement mismatch is acceptable. 

. Synthetic problem 

A synthetic problem derived from Mariethoz et al. ( Mariethoz et al.,
010 ) is analyzed in this paper. A constant discharge pump test is
onducted in a square-shaped (100m × 100m) confined aquifer. The
umping well extracts 0.003 m 

3 /s from the center of the aquifer.
he aquifer contains high-permeability fluvial channels embedded in
 low-permeability matrix. Groundwater flow in the aquifer is two-
imensional flowing from left to right. A constant head boundary of
m is located on the left edge, and a constant head boundary of 0m is
ocated along the right edge. 12 monitoring wells are located around the
umping well. The aquifer schematic, boundary conditions, and well lo-
ations are shown in Fig. 4 . Aquifer heads are recorded at the pumping
nd monitoring wells once the system reaches steady-state. The model
epresenting this synthetic reality is referred to as the ‘reference model’.

The facies distribution was developed following the approach de-
cribed in Section 2.2 . We used the training image (TI) introduced in
ig. 1 . It represents channels and matrix in a 2500m × 2500m area. A
arge number (30,000) of sub-images were extracted from this TI. After
isually inspecting a subset of these images, it was determined that there
re typically three fluvial channels of width 13m in a 100m × 100m
rea. The covariance matrix C p of the Y coordinates along the chan-
el centerline was estimated according to the methodology described in
ection 2.2 . 15 points – 5 for each channel, were used to track the chan-
els. The matrix scatter plot of the Y coordinates shown in Fig. 5 depicts
he correlation between the various coordinates. In this plot, the vari-
bles y11 to y15 represent the coordinates of the top channel in a left
o right direction. The variables y21 to y25 represent the coordinates of
he middle channel in a left to right direction and the variables y31 to
35 represent the coordinates of the bottom channel in a left to right
irection. The off-diagonal plots show the scatter between two coordi-
ates and the diagonal plots show the histogram of a single coordinate.
he plot shows that each point is strongly correlated with its neighbors
long the same channel and weakly correlated with points in the other
hannels. 

The discrete Karhunen-Loève expansion, expressed in Eq. 2 , was then
sed to generate 100,000 parameter realizations based on C p . For each
ealization, three cubic B-splines ( 27 ) were used to connect the channel
oordinates. A buffer of width 6.5m around each of the splines was cre-
ted to represent a channel of 13m width. These channels were overlaid
n the model grid and model cells fully covered by the channels were
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Fig. 5. Matrix Scatter Plot of the sampled Y Coordinates 
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ssigned a hydraulic conductivity value randomly generated within a
ognormal distribution with mean = -2 log 10 (m/s) and standard devia-
ion = 0.1 log 10 (m/s). The remaining cells were assumed to be a part of
he matrix and were assigned a hydraulic conductivity randomly gen-
rated based on a lognormal distribution with a mean = -4 log 10 (m/s),
tandard deviation = 0.1 log 10 (m/s). 

A realization was randomly selected to represent the synthetic real-
ty. For this selected realization, the hydraulic conductivity values of the
hannel and matrix were 8.7 ×10 − 3 m/s and 1.1 ×10 -4 m/s respectively.

Reference head observations were obtained in the following manner.
teady-state groundwater flow was simulated for the aquifer described
bove using the USGS MODFLOW-NWT simulator ( Niswonger et al.,
011 ). The facies distribution and the head distribution of the refer-
 p  
nce model are shown in Fig. 6 . The calculated head distribution was
ampled at the thirteen ( (13) ) observation wells. Normally distributed
andom noise (mean = 0 m, standard deviation = 0.05 m) was added
o the sampled heads to simulate measurement error. These 13 adjusted
eads constituted the reference head measurements. 

. Results 

In this section, we generate an ensemble of conditional parameter re-
lizations for the synthetic problem using the various methods described
n Section 3 (RS, NSMC, and PC). For each ensemble, the cell-by-cell
robability of finding a channel in the model domain, mean ensemble
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Fig. 6. Facies Distribution (a) and Head Distribution (b) of the Reference Model 

Fig. 7. Six randomly selected realizations from the 100 realizations chosen using Rejection Sampling. For each realization, the hydraulic conductivity distribution 

is shown on the left and the fit between the observed and simulated heads is shown on the right. 
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ead distribution, and standard deviation of the simulated head distri-
ution were calculated. 

.1. Rejection Sampling 

A large set of parameter fields were generated based on the prior
ovariance matrix described in Section 4 . Forward simulations were un-
ertaken for each of these simulations, and the results evaluated under
he rejection sampling methodology described in Section 3.1 . We could
btain 100 models in the posterior distribution by evaluating 100,050
odels. Six of these models were randomly selected and the hydraulic

onductivity distributions and the corresponding fits between observed
nd simulated heads are presented in Fig. 7 . These models demonstrate
hat several channel/hydraulic conductivity distributions can result in
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Fig. 8. Facies Distribution (a), Head Distribution (b), and Observed vs. simulated heads of the uncalibrated model (top panel), intermediate models (middle panels) 

and the calibrated model (bottom panel) 
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Fig. 9. Six randomly selected realizations from the 100 realizations generated using NSMC. For each realization, the hydraulic conductivity distribution is shown 

on the left and the fit between the observed and simulated heads is shown on the right. 
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easonable matches to the measurements. Five of the six realizations
ave three channels whereas one realization has only two channels. 

.2. NSMC Method 

The first step to sample a posterior distribution using the NSMC
ethods is to obtain a model corresponding to a maximum value of

he likelihood ( Section 3.2 ). Here, we describe how this model was ob-
ained. A parameter set was first randomly generated from the prior
ovariance matrix C p . With the measurement and regularization con-
traints, parameter estimation was carried out by maximizing the likeli-
ood function. The optimization was stopped when the modeled heads
ere considered acceptable. Facies distribution, head contours, mea-

ured vs. simulated heads for the initial, two intermediate models, and
he calibrated model are presented in Fig. 8 . This figure illustrates how
he likelihood function increases as the central channel moves closer to
he location of the pumping well (blue circle enclosing a red cross). A
otal of 484 groundwater flow model evaluations were required during
his optimization to evaluate the misfit and the Jacobian. The resulting
odel is then used as the starting step for generating the ensemble. 

The NSMC methodology described in Section 3.2 was used to gener-
te 100 realizations. The computational cost for obtaining this ensem-
le was 12,754 forward model evaluations. Six of these models were
andomly selected and the hydraulic conductivity distributions and the
orresponding fits between observed and simulated heads are presented
n Fig. 9 . All the six realizations have three channels with the central
hannel exhibiting more curvature than the top/bottom channels. 

.3. PC Posterior Ensembles 

The PC methodology described in Section 3.3 was used to generate
nother ensemble consisting of 100 realizations. This method is much
ore computationally efficient, since we generated 100 models with

nly 505 forward model evaluations. Six of these models were ran-
omly selected and the hydraulic conductivity distributions and the cor-
esponding fits between observed and simulated heads are presented in
ig. 10 . All the six realizations have three channels. 

.4. Comparison of Posterior Ensembles 

The characteristics of the parameter ensembles obtained using the
arious methods are presented in Fig. 11 . Information is presented in
 grid with four rows and four columns. Each row represents the char-
cteristics of a parameter ensemble. In the first column of each row,
ell-by-cell probabilities of finding a channel for that ensemble are de-
icted. Reddish colors imply a higher probability of finding a channel
nd bluish colors imply a lower probability. The probabilities for the
rior distribution (first row) are low everywhere. When the head data
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Fig. 10. Six randomly selected realizations from the 100 realizations chosen using the Posterior Covariance method. For each realization, the hydraulic conductivity 

distribution is shown on the left and the fit between the observed and simulated heads is shown on the right. 
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re not accounted for, the proposed geological model can place the chan-
els anywhere in the domain in a uniform manner. 

All the methods that are conditioned by the head data show that they
an locate the presence of a channel at the location of the pumping well
ith a high probability. They also indicate a high probability to find
atrix above and below the pumping well as well as 2 other channels

n the top and bottom of the field. However, there are some differences
n the values of the probabilities when moving away from the location
f the pumping well. 

The ensemble obtained with RS is unbiased and considered as the
eference in this experiment. The RS and the NSMC ensembles exhibit
ore similarities than RS and PC. The PC method shows higher values

or the probabilities than the RS and NSMC methods. It means that the
ubspace methods did not capture the complete variability of the pos-
erior ensemble. They are much more efficiently numerically but this
omes at the cost of an underestimation of the uncertainty. Some chan-
el configurations that can reproduce the data and belong to the prior
eological model are not identified in that case. 

Histograms for the log-transformed hydraulic conductivities pre-
ented in the second column exhibit a bimodal distribution. The chan-
el hydraulic conductivities are shown in red and the matrix hydraulic
onductivities are in blue. The hydraulic conductivities of the reference
odel are shown as black dots on the histogram. The matrix hydraulic
onductivities vary more than their channel counterparts. As with the
nsemble probability, the PC method has narrower histograms imply-
ng a lack of variability. We also see on these graphs that all methods
dentify properly the hydraulic conductivity of the channels, while the
atrix conductivity may be overestimated as compared to the reference

y the NSMC and PC methods. A possible reason for this overestima-
ion could be to compensate for deviations from the geometry in the
eference field for maintaining the observed gradients. 

Mean and standard deviation of the ensemble head distributions are
n the third and fourth columns. The prior mean and variance are show-
ng symmetry around the pumping well. The uncertainty on the head
alue is high as shown by the high values of the standard deviation. The
ffect of conditioning to the head values reduces significantly the uncer-
ainty for the three ensembles. The ensemble mean head from the NSMC
ethod resembles the ensemble mean head from the RS method and the
ead from the reference model ( Fig. 6 ). The mean head estimated with
he PC ensemble does not show as clearly as the two other methods
he shift of the cone of depression toward the bottom of the image. Fur-
hermore, in terms of standard deviation and uncertainty estimation the
C method has a very low ensemble standard deviation lending further
redence to the lack of variability in realizations. As compared to the
eference method (RS), the NSMC is closer to it but still underestimates
he variability especially in the upper part of the domain. 
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Fig. 11. Parameter ensemble characteristics from various methods, Prior (top row), Rejection sampling (second row), NSMC (third row) and PC (bottom row). In 

each row, ensemble parameter probability, histogram of ensemble conductivities, mean and standard deviation of simulated heads are shown. 
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. Summary and Discussion 

In this paper, we propose a new approach involving Traveling Pilot
oints (TRIPS) and linear subspace methods to solve the categorical in-
erse problem in a probabilistic framework. We summarize some of the
ain findings below. 

The first key proposition that we make in this paper is in letting
ilot points travel and estimating both the locations of the channels
nd associated properties like hydraulic conductivity. We then pro-
ose to estimate the prior covariance matrix of the position of the pi-
ot points from a training image. The advantage of that approach is
n its simplicity. The user can provide an image of the type of chan-
els that they want to model, and the covariance will be inferred di-
ectly. If the training image is too small, it is possible to use a multiple-
oint statistics simulation algorithm and generate an ensemble of sim-
lations and derive the covariance matrix from the analysis of this
imulation in the same manner as we analyze the sub-images in this
ork. In addition, we use first-order (difference) regularization con-
traints to preserve the curvature of the channels in the inversion
rocess. 

The proposed TRIPS parametrization was integrated in an optimiza-
ion framework based on linear subspace methods allowing to obtain
olutions of the categorical inverse problem for a synthetic aquifer. A
osterior ensemble obtained with the rejection sampling method was
onsidered to represent the reference solution and compared against
he Null Space Monte Carlo (NSMC) and Posterior Covariance (PC) en-
embles. The comparisons indicate that these parameter ensembles ex-
ibit similarities with the reference distribution. The PC method was
uch more efficient in estimating members of the posterior ensemble.
owever, the variability was underestimated ( Fig. 11 , bottom row).
he NSMC method was comparably slower because more model evalu-
tions were required. However, the ensemble probability estimated by
his method is closer to the ensemble from RS. The NSMC method pro-
ides a balance between computational efficiency and representation of
he posterior ensemble. The number of model evaluations required by
he NSMC method were comparable to stochastic approaches like ISR
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 Mariethoz et al., 2010 ) and POPEX ( Jaggli et al., 2017 ), while the PC
ethod is much faster. 

Overall, we believe the TRIPS methodology to be a promising entrant
n the field of categorical inversion. While the example problem pre-
ented in this paper considers only two-dimensional channels travers-
ng the domain, the methodology can be extended to real-world three-
imensional datasets with a larger number of facies and more complex
eometries. For example, the TRIPS method could be used to estimate
he complex channel framework at a real site such as the one discussed
y Ronayne et al ( Ronayne et al., 2008 ). For this case, the pilot points
ould represent the positions of channels in three dimensions and three-
imensional splines passing through the pilot points could be used to
elineate the channels. 

More generally, the extension of the proposed methodology is
traightforward for all object-oriented geological modeling techniques
 Pyrcz and Deutsch, 2014 ) since the positions of the objects are con-
rolled in these models by seed points which can be considered as Travel-
ng Pilot Points. The prior statistics on the number of objects and relative
ocations of these points can be derived from a set of initial simulations.
he proposed algorithm described could then be used to update these lo-
ations and solve the inverse problem. The shape parameters concerning
he three-dimensional size and orientation of the objects can be handled
s well easily since these are continuous parameters that an inversion
ode like PEST can optimize. This step would be analogous to the iden-
ification of the hydraulic conductivity values within the channels as
llustrated in the example treated in this paper. For objects having a flex-
ble shape such as channels with varying width, traditional techniques
uch as the standard pilot points can be coupled with TRIPS: one can
ttach a width parameter to every traveling pilot point and interpolate
he width along the channel length and update these parameters during
he inversion. 

The TRIPS method could also be used with pixel based geostatis-
ical methods such as plurigaussian or MPS simulations ( Pyrcz and
eutsch, 2014 ). Starting from one or a set of initial realizations, we
ould extract a set of conditioning locations and the corresponding cat-
gories from the realization. TRIPS would then proceed by moving the
ocations of these points, keeping the value of the categories and sim-
lating again the complete field using these new conditioning data as
nput in the geostatistical algorithm. In this last case, developing the
ppropriate parameter covariance matrix remains a challenge. 

Considering the subspace methods tested in this paper, one aspect
hich works to their favor is the large null space. As the size of the null

pace increases, TRIPS/NSMC methods could prove to be computation-
lly parsimonious in comparison with other methods. We have shown
n this paper, on a simple synthetic problem, that the gain in numer-
cal efficiency comes at the cost of an underestimation of the overall
ncertainty . 
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ppendix A 

.1 Calculation of a covariance matrix for parameter differences 

Given the covariance matrix C for a parameter vector p , calculation
f the covariance matrix C ( p − ) for the parameter difference vector
 − is described in this section with an example. If the parameter vector
 had three parameters y 1, y 2, and y 3 , the parameter difference vector
 − would have the differences y 1 − y 2, y 1 − y 3, and y 1 − y 2. In matrix
orm, this relationship can be expressed by the equation 

 

 

 

 

𝑦 1 − 𝑦 2 
𝑦 1 − 𝑦 3 
𝑦 2 − 𝑦 3 

⎤ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎣ 
1 −1 0 
1 0 −1 
0 1 −1 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝑦 1 
𝑦 2 
𝑦 3 

⎤ ⎥ ⎥ ⎦ 
(1) 

The above equation could be generalized for an arbitrary number of
arameters/parameter differences by the equation 

 − = 𝑨 𝒑 (2) 

If we have y = Ax , Aster et al. ( Aster et al., 2013 ) state that the
ovariance matrix of y, C ( y ) can be calculated by the equation 

 ( 𝒚 ) = 𝑨 𝑪 ( 𝒙 ) 𝑨 

𝑻 (3) 

Combining Eqs. (2) and (3) , the covariance matrix for the parameter
ifference vector can be calculated by the equation 

 ( 𝒑 − ) = 𝑨 𝑪 ( 𝒑 ) 𝑨 

𝑻 (4) 
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