
Comput Geosci (2014) 18:265–282
DOI 10.1007/s10596-014-9409-z

ORIGINAL PAPER

History matching of statistically anisotropic fields
using the Karhunen-Loeve expansion-based global
parameterization technique

Haibin Chang · Dongxiao Zhang

Received: 16 May 2013 / Accepted: 28 January 2014 / Published online: 1 March 2014
© Springer International Publishing Switzerland 2014

Abstract Traditional ensemble-based history matching
method, such as the ensemble Kalman filter and iterative
ensemble filters, usually update reservoir parameter fields
using numerical grid-based parameterization. Although a
parameter constraint term in the objective function for deriv-
ing these methods exists, it is difficult to preserve the
geological continuity of the parameter field in the updat-
ing process of these methods; this is especially the case
in the estimation of statistically anisotropic fields (such
as a statistically anisotropic Gaussian field and facies
field with elongated facies) with uncertainties about the
anisotropy direction. In this work, we propose a Karhunen-
Loeve expansion-based global parameterization technique
that is combined with the ensemble-based history match-
ing method for inverse modeling of statistically anisotropic
fields. By using the Karhunen-Loeve expansion, a Gaussian
random field can be parameterized by a group of inde-
pendent Gaussian random variables. For a facies field, we
combine the Karhunen-Loeve expansion and the level set
technique to perform the parameterization; that is, for each
facies, we use a Gaussian random field and a level set algo-
rithm to parameterize it, and the Gaussian random field is
further parameterized by the Karhunen-Loeve expansion.
We treat the independent Gaussian random variables in the
Karhunen-Loeve expansion as the model parameters. When
the anisotropy direction of the statistically anisotropic field
is uncertain, we also treat it as a model parameter for updat-
ing. After model parameterization, we use the ensemble
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randomized maximum likelihood filter to perform history
matching. Because of the nature of the Karhunen-Loeve
expansion, the geostatistical characteristics of the parame-
ter field can be preserved in the updating process. Synthetic
cases are set up to test the performance of the proposed
method. Numerical results show that the proposed method
is suitable for estimating statistically anisotropic fields.

Keywords Reservoir history matching · Statistically
anisotropic field · Global parameterization ·
Karhunen-Loeve expansion

1 Introduction

For reservoir development and management, a solid under-
standing of geological formation properties is extremely
important for future production predictions and produc-
tion optimization. Reservoir geological formation properties
are always heterogeneous, and, due to limited knowledge,
there are large uncertainties in the description of the for-
mation properties. Sequential data assimilation of dynamic
production data plays an important role in characterizing
the formation properties and reducing uncertainty. A reli-
able history matching method can gradually update the
uncertain model parameters to match the data and, at the
same time, preserve the geostatistical characteristics of
the model parameters. To achieve this aim, several meth-
ods have been developed, such as the gradual deformation
method [3, 12, 14, 26] and the probability perturbation
method [4, 5, 11, 13]. In its basic formulation, the grad-
ual deformation algorithm uses a linear combination of two
independent Gaussian random vectors with the same mean
and covariance to produce a new Gaussian random vector
that has the same geostatistical characteristics as the original
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random vectors. In the data assimilation step, the defor-
mation parameter is gradually updated to match the data
[12, 26]. The gradual deformation method is also developed
to perform an iterative calibration of sequential stochastic
simulations [3, 14]. In addition to the gradual deforma-
tion method, the probability perturbation method is another
method that can effectively preserve the geostatistical char-
acteristics of the model parameters in the data assimilation
process; it is achieved by perturbing the conditional prob-
ability model in the sequential simulation algorithm, rather
than by directly updating the model parameters.

In recent years, ensemble-based history matching meth-
ods, such as the ensemble Kalman filter [1, 7, 23, 24]
and iterative ensemble filters [10, 18, 30], have attracted a
great deal of attention and have been successfully applied in
the petroleum industry. The ensemble-based methods show
superiority in their ease of implementation and their capabil-
ity of dealing with large scale problems. The most common
model parameters of the ensemble-based history matching
method are spatially correlated rock properties, such as per-
meability and porosity. In the updating process of the history
matching method, the parameter values at all the numeri-
cal grids are usually updated to match the observation data.
The ensemble-based methods with grid-based model param-
eterization can be directly used for history matching of
statistically anisotropic Gaussian field. For history matching
of facies field with elongated facies, truncated plurigaus-
sian is one of the popular approaches [2, 8, 17, 20]. The
flexibility of grid-based model parameterization allows it
to capture the local features of the unknown random field
through data assimilation. Although there exists a param-
eter constraint term in the objective function for deriving
ensemble-based methods [10, 18, 30] using a grid-based
local parameterization, it is difficult to preserve the geologi-
cal continuity of the parameter field in the updating process
of these methods, especially in the estimation of statistically
anisotropic field with uncertainties about the anisotropy
direction. The geostatistical characteristics of a statistically
anisotropic random field, such as anisotropy direction and
directional correlation lengths, are difficult to character-
ize or preserve using a grid-based local parameterization
technique.

Besides the grid-based local parameterization, there are
some global parameterization techniques, including the
Karhunen-Loeve (KL) expansion [9, 16, 21]. The KL expan-
sion, which is a spectral expansion, transforms the corre-
lated Gaussian random field into a group of independent
variables. Because the variables in the KL expansion are
independent, any realizations of these variables can provide
a parameter field that honors the given correlation structure.
The KL expansion is usually used as a parameterization
or dimension reduction technique in the development of
various methods. Reynolds et al. [25] discuss the use of

the KL expansion for efficient parameterization. Zhang and
Lu [32] develop a KL expansion-based moment equation
(KLME) for uncertainty quantification of flow in porous
media. In KLME, the parameter field is represented with
the KL expansion, and the flow response quantities are
decomposed by perturbation expansions. Sarma et al. [28]
use the KL expansion to represent the parameter field and
maintain the geological constraints in the development of
a closed-loop reservoir production optimization method. Li
and Zhang [19] use the KL expansion to parameterize the
reservoir property fields and use polynomial chaos expan-
sion to represent the flow response quantities in the develop-
ment of the probabilistic collocation method for uncertainty
quantification. Zhang et al. [33] use the KL expansion to
parameterize the reservoir property fields and obtain the
principle modes of the major source of the uncertainty in
the development of the KL-based Kalman filter for data
assimilation. Romary [27] uses the KL expansion of geo-
statistical models to reduce the dimension of the inference
problem in the Monte Carlo Markov chains algorithm to
increase its efficiency. There are some other global param-
eterization techniques, such as discrete cosine transform
and polynomial chaos expansion. Jafarpour and McLaugh-
lin [15] use discrete cosine transform to parameterize both
model parameters and state variables, and the coefficients
of the retained cosine basis function are updated with the
data assimilation method. Zeng et al. [31] develop a prob-
abilistic collocation-based Kalman filter (PCKF) for his-
tory matching. In PCKF, all the system parameters, states,
and production data are approximated by the polynomial
chaos expansion.

In this work, we propose a KL expansion-based global
parameterization technique that is combined with the
ensemble-based history matching method for inverse mod-
eling of statistically anisotropic fields. For a spatially dis-
tributed Gaussian field, the geostatistical characteristics are
the mean, variance, and covariance model. To preserve
the geostatistical characteristics of a Gaussian field in the
history matching process, the KL expansion is a proper
parameterization technique. For a Gaussian random field
with a known mean, variance, and covariance model, by
using the KL expansion, it can be parameterized by a
group of independent Gaussian random variables. For a
facies field, we combine the KL expansion and the level
set technique to perform the parameterization; that is, for
each facies, we use a Gaussian random field and a level
set algorithm to parameterize it, and the Gaussian random
field is further parameterized by the KL expansion. The
global model parameters of the Gaussian field or facies
field are the independent Gaussian random variables. When
the anisotropy direction of the statistically anisotropic field
is uncertain, we also treat it as a model parameter. We
adopt an iterative ensemble filter, the ensemble randomized
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maximum likelihood filter, to perform the history match-
ing. The performance of the proposed method is tested by
synthetic cases.

This paper is organized as follows: We introduce the KL
expansion-based parameterization and the ensemble ran-
domized maximum likelihood filter in Sections 2 and 3,
respectively. The case studies are given in Section 4. Some
conclusions and discussions are presented in Section 5.

2 KL expansion-based parameterization

2.1 Karhunen-Loeve expansion

Let Y(x, ω) be a random field, where x ∈ D (the
physical domain) and ω ∈ � (the probability space). One
may write Y(x, ω) = Ȳ (x) + Y ′(x, ω), where Ȳ (x) is
the mean and Y ′(x, ω) is the fluctuation. The correlation
structure of the random field may be described by the
covariance CY (x, y) = 〈

Y ′(x, ω)Y ′(y, ω)
〉
. Since the covari-

ance is bounded, symmetric, and positive-defined, it may be
decomposed as follows [9]:

CY (x, y) =
∞∑

n=1

λnfn(x)fn(y), (1)

where λn and f n(x) are eigenvalues and eigenfunctions,
respectively, and can be solved from the following Fredholm
equation:
∫

D

CY (x, y)f (x)dx = λf (y). (2)

Then the random field Y(x, ω) can be expressed as follows:

Y(x, ω) = Ȳ (x)+
∞∑

n=1

√
λnfn(x)ξn(ω), (3)

where ξn(ω) are independent Gaussian random variables
with a 0 mean and unit variance when Y is assumed to be
Gaussian. The expansion in Eq. 3 is called the Karhunen-
Loeve (KL) expansion. The KL expansion, which is a
spectral expansion, is optimal with a mean square conver-
gence when the underlying process is Gaussian [9]. As such,
one may truncate the infinite series of Eq. 3 with a finite
number (N) of terms. From Eq. 3, one can get Vol(D)σ 2

Y =
∞∑
n=1

λn, where Vol(D) is the domain size and σ 2
Y is the

variance of Y(x, ω). The decay rate of λn determines the
number of terms that are retained in the KL expansion,
which determines the retained random dimensionality (N)

and the retained percentage of energy

(
N∑

n=1
λn/

∞∑
n=1

λn

)
of

the problem.

Although, in general, the eigenvalue problem in Eq. 2 has
to be solved numerically, analytical or semi-analytical solu-
tions exist under certain conditions. For a one-dimensional
random field with an exponential covariance function
CY (x1, y1) = σ 2

Y exp(−|x1 − y1|/η), where σ 2
Y and η are

the variance and the correlation length of the random field,
respectively, the eigenvalues and their eigenfunctions can be
expressed as follows [32]:

λn = 2ησ 2
Y

η2w2
n + 1

, (4)

and

fn(x) = 1
√
(η2w2

n + 1)L/2+η

×
[
ηwn cos(wnx)+ sin(wnx)

]
, (5)

where wn are positive roots of the characteristic equation:

(η2w2 − 1) sin(wL) = 2ηw cos(wL). (6)

Equation 6 has an infinite number of positive roots. If
the roots wn are sorted in an increasing order, the related
eigenvalues λn decrease monotonically.

For problems in multidimensions, if we assume that the
covariance function is a separable exponential function,
CY (x, y) = σ 2

Y exp(−|x1 − y1|/η1 − |x2 − y2|/η2) for a
rectangular domain D={(x1, x2) : 0 ≤ x1 ≤ L1, 0 ≤ x2 ≤
L2}, the eigenvalues and eigenfunctions can be obtained
by combining those in each dimension. For the statistically
anisotropic fields, we select the major and minor corre-
lation directions as the two coordinates of the covariance
model. The coordinate system of the covariance model may
be different from the reservoir coordinate system. How to
generate the statistically anisotropic fields using KL
expansion is discussed in Section 4.

2.2 Global parameterization

In reality, there exist some statistically anisotropic reservoir
parameter fields. Figure 1a shows a statistically anisotropic
Gaussian field, which has a large correlation length differ-
ence between the major and minor correlation directions.
Figure 1b, c shows the facies field with elongated facies.
The most common parameterization technique for these
fields is the grid-based local parameterization. For exam-
ple, a Gaussian random field, Y(x, ω), can be parameterized
by the property values at all or some of the grid blocks,
Y(xi , ω), i = 1, ..., m, where m is the number of the grid
blocks used for parameterization. Each of these parame-
ters is related to a physical location and will determine the
property at its location or a local region near its location.

Using a numerical grid-based local parameterization
technique is difficult to preserve the geostatistical character-
istics of the parameter field in the history matching process,
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Fig. 1 Statistically anisotropic random fields. a Gaussian field. b Facies field with one elongated facies (the white shade). c Facies field with two
elongated facies (the white shade and the black shade)

and illustrative examples will be given in Section 4. To
preserve the geostatistical characteristics of the parameter
field during history matching, the KL expansion is a proper
global parameterization technique. In the following, we will
discuss how to parameterize a Gaussian field and a facies
field using the KL expansion, respectively.

2.2.1 Parameterization of a statistically anisotropic
Gaussian field

For a second-order stationary Gaussian random field with
a known mean, variance, and covariance model, by using
the KL expansion, the model parameters, m, are the same
independent Gaussian random variables as those in Eq. 3.
Then we have

m = [ξ1, ξ2, ..., ξN ]T . (7)

These variables have global properties, that is, they are not
related to physical locations, and each of these variables will
affect the parameter field distribution in the whole physical
domain. Because these variables are independent, any real-
izations of these variables can provide a parameter field that
honors the given covariance model.

For the kind of parameter field shown in Fig. 1a, the
anisotropy direction (the major correlation direction), θ , is
an important factor and may be associated with uncertainty.
If θ is uncertain, we treat it as a model parameter. Under this
condition, the model parameter for the Gaussian random
field takes the following form:

m = [θ, ξ1, ξ2, ..., ξN ]T . (8)

2.2.2 Parameterization of a facies field with elongated
facies

To parameterize the facies fields as shown in Fig. 1b, c, we
introduce the level set idea to perform the parameterization

[6]. For a reservoir with one facies, the parameter field p(x)
can be written as follows:

p(x) = pfH(	(x))+ pn(1 −H(	(x))) (9)

where 	(x) is the level set function, H is the Heaviside
function, and the coefficients pf and pn are the parameter
values for the facies and normal reservoir medium, respec-
tively. Furthermore, we define	(x) = Y(x)−a, where Y(x)
is the second-order stationary Gaussian field for indicating
the occurrence of facies; a is a predefined constant. When
there are multi-facies types in the reservoir, we first param-
eterize each facies distribution independently. For facies i,
we define 	i(x) = Yi(x)−ai , and the distribution of facies i
is determined by using Eq. 9 with pf = pfi . Then the reser-
voir parameter field is composed by combining all the facies
distributions. For the location passed by multiple facies, we
need to determine a facies type that occupies the location.
This should be done according to the understanding of the
formation sequence of all the facies from the prior geolog-
ical knowledge. If the prior geological knowledge is not
enough to determine the formation sequence of the facies
and the intersection area of different facies is large, a param-
eterization of the formation sequence should be taken. The
geostatistical properties of Yi(x) should be designed accord-
ing to the characteristics of facies i. The value of ai should
be designed according to the proportion of facies i. We
denote the mean and the standard deviation of Yi(x) as μ

and σ , respectively. Considering the definition of the level
set function, if the proportion of facies i is propi , then ai
should satisfy

1√
2πσ

∫ +∞

ai

e
− (t−μ)2

2σ2 dt = propi . (10)

In order to preserve the geostatistical characteristics of each
facies in the updating process, we use the KL expansion to
parameterize the Gaussian field that is used for indicating
each facies. For a facies field with nf facies types, if we
assume that the proportion and geostatistical characteristics
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of each facies are known, then the model parameter takes
the following form:

m =
[
ξ1,1, ξ1,2, ..., ξ1,N1, ξ2,1, ξ2,2, ...,

ξ2,N2 ..., ξnf ,1, ξnf ,2, ..., ξnf ,Nnf

]T
, (11)

where N1, N2, ..., Nnf denote the number of retained terms
in the KL expansion of each Gaussian random field. If the
anisotropy direction of each facies is uncertain, the model
parameter takes the following form:

m =
[
θ1, θ2, ..., θnf , ξ1,1, ξ1,2, ..., ξ1,N1, ξ2,1,

ξ2,2, ..., ξ2,N2..., ξnf ,1, ξnf ,2, ..., ξnf ,Nnf

]T
, (12)

where θ1, θ2, ..., θnf denote the anisotropy direction of each
facies.

From the above, we can see that combining the KL
expansion and the level set algorithm can parameterize a
facies field by a group of global model parameters. An
important step of the parameterization process is to design
the geostatistical properties of the Gaussian field according
to the characteristics of each facies. For a second-order sta-
tionary Gaussian random field, the geostatistical properties
contain the mean, variance, covariance model type, correla-
tion direction, and directional correlation lengths. The mean
value can be set to any constant because it only impacts the
value of parameter a. For the facies cases in this paper, we
set the mean to be 0. The variance should not be too large
because, otherwise, the uncertainty of the generated Gaus-
sian fields will be large, which will increase the difficulty
of the ensemble convergence. Also, if the variance is too
small, the generated Gaussian fields will be too sensitive to
the innovation. For the facies cases in this paper, we set the
variance to be 0.5. The covariance model type can be set
to common type, such as the Gaussian type or exponential
type. For the facies cases in this paper, we choose exponen-
tial covariance model because of its analytical solutions of
the eigenvalue problem. The major correlation direction of
the Gaussian field should be the same as the facies elon-
gated direction. The directional correlation lengths should
be designed according to the directional facies mean length,
which could be achieved through prior test. For a two-
dimensional problem, let lprior

i , i = 1, 2, denoting the facies
mean length in the major and minor correlation directions
obtained by prior geological information. We first set the
initial guess of correlation lengths of the Gaussian field as
η0
i = αl

prior
i , i = 1, 2, where α is a coefficient. With this

initial choice of η, we generate M set of Gaussian random
fields and obtain the facies distributions using Eq. 9. The
facies mean length of each generated realization is calcu-
lated by statistics and denoted by l1i

(
η0

)
, ..., lMi

(
η0

)
, i =

1, 2. Let lmean
i = 1

M

M∑

n=1
lni

(
η0

)
, i = 1, 2. By comparing

l
prior
i and lmean

i , if η0 is not the value we need, we decrease
(or increase) η0

i by �ηi step by step until we get the region
that contains the solution as

[
η0
i − (n+ 1)�ηi, η

0
i − n�ηi

]
(
or

[
η0
i + n�ηi, η

0
i + (n+ 1)�ηi

])
. In the following, we

can only check the midpoint of the region to get a new
solution region, which is half of the previous region. Con-
sidering that lmean

i (η) is a monotonic function, with this
procedure, we can refine the solution we wanted. The
recommended values for α and �ηi are 1 and 0.5lprior

i ,
respectively.

3 Ensemble randomized maximum likelihood filter

Using the global model parameterization technique for his-
tory matching, there will be large modification to the param-
eter fields after the data assimilation, especially when the
model parameters contain the anisotropy direction of the
random field, which will increase the inconsistency prob-
lem of the history matching method that updates the model
parameters and state variables simultaneously [29], such as
the ensemble Kalman filter. To obviate the inconsistency
problem and enhance convergence, in this work, we choose
an iterative ensemble filter, the ensemble randomized maxi-
mum likelihood filter (EnRML), for history matching. Here,
we briefly introduce the algorithm of EnRML, additional
details of which are given by Gu and Oliver [10]. In
EnRML, the model parameter update algorithm is

ml+1
j = βl

jmpr,j +
(

1 − βl
j

)
ml

j

−βl
jCMGT

l

(
CD +GlCMGT

l

)−1

×
[
g

(
ml

j

)
− dobs,j −Gl

(
ml

j − mpr,j

)]

j = 1, ..., Ne,

(13)

where l denotes the iteration index, j denotes the real-
ization index, β denotes the step length factor, mpr

denotes the prior estimation of m, CM denotes the model
parameter covariance, CD denotes the observation error
covariance, Gl denotes the ensemble average sensitivity
matrix, g(m) denotes model prediction observation, dobs

denotes the observation data, and Ne denotes the number of
realizations.

At every data observation step, the updating process will
be performed. Let Mpr be the matrix whose columns con-
sist of model parameter vectors after the assimilation of
all previous data. The model parameter covariance, which
is prior to the assimilation of the current data but after
the assimilation of all previous data, can be calculated by
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CM = �Mpr�MT
pr/(Ne − 1), where �Mpr denotes the

matrix of deviations from the means of the prior variables.
The ensemble average sensitivity matrix changes with each
iteration. At the lth iteration, let �Dl represent the devia-
tion of each vector of computed data from the mean vector
of computed data, and let �Ml represent the deviation of
each vector of model variables from the current mean. The
ensemble average sensitivity matrix can be calculated by

�Dl = Gl�Ml (14)

where �Ml is NM × Ne, �Dl is ND × Ne, and Gl is
ND ×NM. NM is the number of model parameters, and ND

is the number of data. The model prediction observation is
obtained by running the reservoir simulation from time 0 to
the current observation step.

To evaluate the quality of the updated model parameters,
a data mismatch function is defined as follows:

S(M) =
Ne∑

j=1

(
g(mj )− dobs,j

)T
C−1
D

(
g(mj )− dobs,j

)
(15)

The convergence criteria are defined as follows:

1. MAX1≤i≤NM;1≤j≤Ne

∣∣∣ml+1
i,j −ml

i,j

∣∣∣ < ε1,

2. S
(
Ml+1

) − S
(
Ml

)
< ε2S

(
Ml

)
,

3. Iteration exceeds the preset maximum number of
iterations, IMAX.

4 Case studies

In this section, the proposed global parameterization tech-
nique is used in the EnRML process to estimate the sta-
tistically anisotropic fields. A synthetic two-dimensional
reservoir model is set up. The reservoir is a square with a
side length of 3,000 ft, and is evenly divided into 100 grid
blocks in both directions. The reservoir has a thickness of
60 ft and is located at a depth of 4,000 ft. There are nine
producers and four injectors in the reservoir, and the well
locations are shown in Fig. 2. The producers are controlled
by the bottom-hole pressure (BHP) constraint of 1,000 psi.
The injectors are controlled by the surface flow rate target
of 2,000 stb/day and are subjected to the maximum BHP
constraint of 6,000 psi. The injection starts on the first day
of production. The observations are obtained from running
the reservoir simulation with a given reference parameter
field. The observation data include the oil production rate,
the water cut of the producers, and the bottom-hole pressure
of the injectors. The simulation for acquiring observation
data lasts for 510 days. The observations are available at
the interval of 30 days, and then there are 17 observation
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Fig. 2 The well locations

steps. In the following subsections, three kinds of parame-
ter fields are selected as the reference parameter fields. The
performance of the proposed method is discussed.

4.1 Case 1: statistically anisotropic Gaussian field

In this subsection, we discuss the history matching of a sta-
tistically anisotropic Gaussian field. The permeability field
is the unknown random field that satisfies lognormal distri-
bution. We assume that the geostatistical properties of ln k
are known. The mean and variance are 5.0 + ln mD and 0.5,
respectively. The covariance follows the separable exponen-
tial model. The major correlation direction is 45◦ with the
positive x direction. The correlation lengths in the major and
minor correlation directions are 1,500 and 150 ft, respec-
tively. Figure 1a shows one example of the ln k field, which
is selected as the reference field. The corresponding obser-
vation data for the history matching method are generated
through reservoir simulation. The measurement errors are
drawn from a 0-mean Gaussian distribution, and the stan-
dard deviation is set to 3 % of the actual measurement. The
statistical property of the measurement errors is the same for
all of the following cases.

We use the KL expansion to parameterize the described
Gaussian random field to obtain the global model param-
eters. The number of retained terms in the KL expansion
in the major and minor correlation directions is 8 and 80,
respectively; thus, there are a total of 640 independent
Gaussian random variables, which are the global model
parameters. The retained energy is about 90 % of the total
energy, which is assumed to be sufficient for the approx-
imation. For EnRML, we set ε1 = 10−4, ε2 = 10−3,
IMAX = 2, and Ne = 100. The error tolerance (ε1 and
ε2) and the number of realizations (Ne) are the same for
all of the following cases, but the preset maximum num-
ber of iterations (IMAX) is different for different cases.
The initial realizations of the ln k field are generated by
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Fig. 3 Three initial realizations of the Gaussian random field (a–c) and the corresponding updated realizations (d–f)

sampling the independent Gaussian random variables (that
have a 0 mean and unit variance) in the KL expansion.
Figure 3a–c shows three initial realizations of the ln k field.
From these figures, we can see that the generated initial real-
izations have the same geostatistical characteristics as the
reference; however, the spatial distributions differ from each
other and from the reference. We then perform the EnRML
algorithm to update those global model parameters, and the
updated global model parameters are used to construct the

new ln k field. Figure 3d–f shows three updated realizations
of the ln k field. By comparing these figures with Fig. 1a,
we can see that the updated realizations can capture the
features of the reference field well, and the geostatistical
characteristics of the random field are preserved in the
updating process. Figure 4 shows the match of the oil
production rates and the forecast of three producers from
the initial ensemble (Fig. 4a–c) and the updated ensemble
(Fig. 4d–f). The simulations run from time 0 to day 900 with
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Fig. 4 The match to the oil production rates and the forecast of three
producers from the initial ensemble (a–c) and the updated ensemble
(d–f). In these figures, the red line indicates the oil production rate

from the reference, the black lines indicate the oil production rates
from the ensemble, and the vertical dash lines indicate the beginning
of forecast
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Fig. 5 Three initial realizations of the Gaussian random field with uncertain anisotropy direction (a–c) and the corresponding updated realizations
(d–f)

the initial ensemble and the updated ensemble as parameter
input, respectively. Thus, the results in the last 390 days are
pure forecasts. In Fig. 4d–f, the vertical dash lines indicate
the beginning of forecast. From these figures, we can see
that, after data assimilation, the uncertainties in the initial
ensemble are greatly reduced, and the production behavior
from the updated ensemble can match the reference well and
can provide reliable forecast. From this case, we can see that
the KL expansion-based global parameterization technique
can be properly used in the history matching method to esti-
mate the statistically anisotropic Gaussian random field and
to preserve the geostatistical characteristics of the random
field in the updating process. In this case, we do not use the
parameter value measurements at the well locations; if this

kind of data is available, a conditional KL expansion can be
used to perform the proposed algorithm [22].

For a statistically anisotropic Gaussian random field,
the anisotropy direction (also the major correlation direc-
tion), θ , is an important factor and may be associated with
uncertainty. Here, we further investigate the history match-
ing problem described above with the assumption that θ

is uncertain. At this time, the model parameter takes the
same form as that in Eq. 8. In addition to the independent
Gaussian random variables, the model parameters contain
the anisotropy direction. For the reference field, θ equals
45 (the degree with the positive x direction), and this is
the reference value. For the initial ensemble, we suppose
that θ follows the uniform distribution of U[25, 65]. The
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Fig. 6 Histogram of the anisotropy direction from the initial ensemble (a), the updated ensemble at step 3 (b), and the updated ensemble at step
10 (c). The blue vertical line indicates the reference value
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Fig. 7 Three updated realizations of the Gaussian random field with uncertain anisotropy direction using the grid-based parameterization in the
history matching method

initial realizations of the ln k field are generated by sam-
pling of {ξi}Ni=1 in the KL expansion and θ . We select the
major and minor correlation directions as the two coordi-
nates of the separable exponential covariance model. To
simplify the problem, we assume that the directional cor-
relation lengths are not varying. Then, the eigenvalue and
eigenfunction have to be solved only once. For each real-
ization of {ξi}Ni=1, we generate a random field realization
in the coordinate system of the covariance model. Further-
more, we perform a coordinate rotation, with respect to the
realization of θ , to obtain the random field realization in the
reservoir coordinate system. Figure 5a–c shows three ini-
tial realizations of the ln k field. From these figures, we
can see that the generated initial realizations have different
anisotropy directions and that the spatial distributions are
different from the reference. We then perform the EnRML
algorithm to update those global model parameters. Here,
we increase the preset maximum number of iterations to
four, i.e., IMAX = 4. Figure 5d–f shows three updated real-
izations of the ln k field. By comparing these figures with
Fig. 1a, we can see that the updated realizations can capture
the features of the reference field well. Figure 6 shows the
histogram of the anisotropy direction from the initial ensem-
ble and the updated ensemble at step 3 and step 10. We can
see that the updated ensemble at step 3 shows a tendency to
converge to the reference value and that the updated ensem-
ble at step 10 has a good convergence. From this case, we
can see that, when the anisotropy direction of the random
field is uncertain, it can be treated as a model parameter and
an accurate estimation can be obtained using the proposed
method.

In order to test the necessity of the KL expansion-based
parameterization technique used for estimating the statisti-
cally anisotropic field with uncertain anisotropy direction
and preserving the geostatistical characteristics, we add
one more case. In this case, the initial realizations shown
in Fig. 5a–c are updated using a grid-based parameteri-
zation, i.e., the ln k values at all the numerical grids are

the model parameters and are updated at the data assim-
ilation steps. Figure 7 shows three updated realizations,
from which we can see that the updated realizations can-
not capture the features of the reference well. Furthermore,
the geostatistical characteristics, such as the large corre-
lation length in the major correlation direction, are not
preserved for each realization. The updated results show
a tendency to capture the reference anisotropy direction,
but cannot provide an accurate estimation. In deriving the
ensemble-based method, there exists a constraint term in
the objective function, which constrains the deviation of
the updated model parameter from the prior estimation.
However, there does not exist a constraint term that con-
strains the model parameter to preserve the geostatistical
characteristics. So, it is not appropriate to use a grid-based
parameterization technique for the history matching of
statistically anisotropic field with uncertain anisotropy
direction.

4.2 Case 2: facies field with one elongated facies

In this subsection, we discuss the history matching of a
facies field with one elongated facies. Figure 1b shows one
example of the facies field, and, in which, the white shade
denotes the facies medium and the black shade denotes
the normal reservoir medium. The proportion of the facies
medium is 17 %. The permeability and porosity of the facies
medium are 1,000 mD and 35 %, respectively. The per-
meability and porosity of the normal reservoir medium are
50 mD and 15 %, respectively. The distribution of the facies
medium is the unknown field. The facies field shown in Fig.
1b is selected as the reference field, which is generated by
the SISIM program of the GSLIB Fortran library. The prior
geological knowledge is about the facies elongated direction
and the directional facies mean lengths. The facies elon-
gated direction is about 30◦ with the positive x direction,
and the directional facies mean lengths in the major and
minor correlation directions are approximately 1,000 and
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120 ft, respectively. From the reference field, we can see
that the facies occurrence near I3 has large lengths in both
correlation directions, and the facies occurrence near I1 has
small length in the minor correlation direction. The prior
information is rough.

In order to perform the history matching, we first design
the geostatistical properties of the Gaussian field for param-
eterizing the facies distribution. Following the discussion
at the end of Section 2, the mean and the variance of the
Gaussian random field are set to be 0.0 and 0.5, respectively.
We select the separable exponential model as the covari-
ance model. The anisotropy direction of the Gaussian field
is set to be the same as the anisotropy direction of the facies
(i.e., also the facies elongated direction). The correlation
lengths in the major and minor correlation directions are set
to be equal to the directional facies mean lengths that are
1,000 and 120 ft, respectively. Using Eq. 10, we calculate
the level set constant, a, which equals 0.675. The KL expan-
sion is used to parameterize the Gaussian field, and the

number of retained terms in the major and minor correlation
directions is 10 and 100, respectively.

The model parameter takes the same form as that in
Eq. 11, with nf = 1 and N1 = 1, 000. The initial realiza-
tions of the facies field are generated by sampling of {ξi}Ni=1
in the KL expansion and performing the level set algorithm
described in Eq. 9. Figure 8a–c shows three initial realiza-
tions of the facies field. From these figures, we can see that
the generated initial realizations have the same characteris-
tics as the reference; however, the spatial distributions of the
initial realizations are different from the reference. Then,
we perform the EnRML algorithm to update those global
model parameters, and the updated global model parame-
ters are used to construct the new facies field. For EnRML,
IMAX is set to be 2. Figure 8d–f shows three updated real-
izations of the facies field. By comparing these figures with
Fig. 1b, we can see that the updated realizations can capture
the features of the reference field well and that the geosta-
tistical characteristics of the facies field are preserved in the
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Fig. 8 Three initial realizations of the facies field (a–c), the corresponding updated realizations (d–f), and the probabilistic maps from the initial
ensemble (g), the updated ensemble at step 3 (h), and the updated ensemble at step 17 (i)
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Fig. 9 Three initial realizations of the facies field with uncertain anisotropy direction (a–c), the corresponding updated realizations (d–f), and the
probabilistic maps from the initial ensemble (g), the updated ensemble at step 3 (h), and the updated ensemble at step 17 (i)

updating process. Figure 8g–i shows the probabilistic maps
of facies from the initial ensemble and the updated ensem-
ble at step 3 and step 17, respectively. In these maps, the
white shade corresponds to a probability of 1, and the black
shade corresponds to 0 probability that facies is observed
at a specific location in the domain. The different shades

of gray represent probability values between 0 and 1. We
can see that the probabilistic map from the initial ensemble
show approximately equal probability in the whole domain.
The probabilistic map from the updated ensemble at step 3
shows some high-probability regions that facies occurrences
may occur, and it can approximately indicate the locations
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Fig. 10 Histogram of the anisotropy direction of facies from the initial ensemble (a), the updated ensemble at step 3 (b), and the updated ensemble
at step 10 (c). The blue vertical line indicates the reference value
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Fig. 11 The match to the oil production rates and the forecast of three producers from the initial ensemble (a–c) and the updated ensemble (d–f)

of the facies occurrences near I1 and I3 in the reference
field. The probabilistic map from the updated ensemble at
step 17 can capture the reference facies distribution well,
and it also reflects the convergence of the ensemble. In this
case, we do not use the facies type measurements at the
well locations; if this kind of data is available, a condi-
tional Gaussian random field should be used to parameterize
the facies distribution. The Gaussian random variables at
the well locations should be set a value that matches the
facies types after the level set parameterization. Furthermore
the conditional KL expansion can be used to parameter-
ize the conditional Gaussian field and perform the proposed
algorithm.

When the anisotropy direction of facies, θ , is uncer-
tain, we treat it as a model parameter. At this time, the
model parameter takes the same form as that in Eq. 12,
with nf = 1 and N1 = 1, 000. In addition to the inde-
pendent Gaussian random variables, the model parameters

contain the anisotropy direction of facies. Here, note that the
anisotropy direction of facies is the same as the anisotropy
direction of the Gaussian field that is used for parameteriz-
ing the facies distribution. For the reference field, θ equals
30◦, and this is the reference value. For the initial ensem-
ble, we assume that θ follows U[18, 38]. The ensemble of
the Gaussian field is generated by sampling of {ξi}Ni=1 in the
KL expansion and θ in the same way as that described in
case 1. Furthermore, the level set algorithm is performed on
the Gaussian field ensemble to obtain the initial ensemble
of the facies field. Figure 9a–c shows three initial realiza-
tions of the facies field. From these figures, we can see that
the generated initial realizations have different anisotropy
directions of facies. We then perform the EnRML algo-
rithm, and IMAX is set to be 4. Figure 9d–f shows three
updated realizations of the facies field. By comparing these
figures with Fig. 1b, we can see that the updated realiza-
tions can capture the features of the reference field well.

500 1000 1500 2000 2500

2500

2000

1500

1000

500

(a)

 X(ft)

 Y
(f

t)

500 1000 1500 2000 2500

2500

2000

1500

1000

500

(b)

 X(ft)

 Y
(f

t)

500 1000 1500 2000 2500

2500

2000

1500

1000

500

(c)

 X(ft)

 Y
(f

t)

Fig. 12 The probabilistic maps from the initial ensemble (a), the updated ensemble at step 3 (b), and the updated ensemble at step 17 (c) of the
facies field with uncertain anisotropy direction using the grid-based parameterization in the history matching method
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Fig. 13 The match to the oil production rates and the forecast of three producers from the updated ensemble (a–c) of the facies field with uncertain
anisotropy direction using the grid-based parameterization in the history matching method

Figure 9g–i shows the probabilistic maps of facies from
the initial ensemble and the updated ensemble at step 3
and step 17, respectively. We can see that the probabilistic
map from the final updated ensemble can capture the ref-
erence field well, and the ensemble has good convergence.
Figure 10 shows the histogram of the anisotropy direction of
facies from the initial ensemble and the updated ensemble
at step 3 and step 10. We can see that the updated ensem-
ble at step 3 shows a tendency to converge to the reference
value, and that the updated ensemble at step 10 has a mean
value 32.4, which is close to but different from the reference
value. Figure 11 shows the match to the oil production rates
and the forecast of three producers from the initial ensemble
(Fig. 11a–c) and the updated ensemble (Fig. 11d–f); we can
see that the production behavior from the updated ensem-
ble can match the reference well and can provide a reliable
forecast. From Figs. 10 and 11, we can see that although the
updated ensemble of the anisotropy direction does not cover
the reference, the observation data can be perfectly matched.
So the difference between the true anisotropy direction and
the updated ensemble cannot be distinguished by the data
assimilation process. This slightly biased estimation of the
anisotropy direction is reasonable, but it clearly indicates
that the uncertainty quantification for anisotropy direction
is not enough. To get a better uncertainty quantification for
the anisotropy direction, a larger ensemble should be used.

In order to test the necessity of the KL expansion-based
parameterization technique used for estimating the elon-
gated facies field with uncertain anisotropy direction and
preserving the geostatistical characteristics, we add one
more case. In this case, the initial Gaussian field realiza-
tions used for parameterizing the facies distribution with
uncertain anisotropy direction as shown in Fig. 9a–c are
updated using a grid-based parameterization, i.e., the val-
ues of the Gaussian field at all the numerical grids are
the model parameters and are updated at the data assimila-
tion steps. The updated Gaussian field realizations are used
to obtain the facies distribution realizations using Eq. 9.
Figure 12a–c shows the probabilistic maps of facies from
the initial ensemble and the updated ensemble at step 3

and step 17, respectively. From these probabilistic maps, we
can see that the updated ensemble can approximately esti-
mate the locations of the reference facies occurrences, but
it indicates some wrong facies occurrences. The anisotropy
direction of the reference field is not captured well by the
updated ensemble, and this may be caused by the differ-
ences of the anisotropy direction in the initial Gaussian
field realizations and the grid-based local parameterization.
Figure 13 shows the match to the oil production rates and
the forecast of three producers from the updated ensemble.
We can see that the forecasts for producer 2 and producer 5
are slightly biased, and the forecast for producer 9 is largely
biased.

By comparing the above cases, we can see that the KL
expansion-based global parameterization is more appropri-
ate than the grid-based local parameterization for estimating
the elongated facies distribution with uncertain anisotropy
direction.

4.3 Case 3: facies field with two elongated facies

In this subsection, we discuss the history matching of the
facies field with two elongated facies. Figure 1c shows one
example of the facies field, in which the white shade denotes
facies 1, the black shade denotes facies 2, and the gray shade
denotes the normal reservoir medium. Facies 1 and facies
2 have equal proportions, which is 14 %. The permeability
of facies 1, facies 2, and the normal reservoir medium are
1,000, 0.1, and 50 md, respectively. The porosity of facies
1, facies 2, and the normal medium are 35, 10, and 20 %,
respectively. Facies 1 acts as a high-permeability channel,
and facies 2 acts as a low-permeability barrier. The dis-
tributions of the two facies are the unknown fields. The
facies field shown in Fig. 1c is selected as the reference
field. This reference field is generated by the level set algo-
rithm described in Eq. 9 using two Gaussian random fields
respectively, and an assumption that facies 1 will occupy the
locations passed by both facies 1 and facies 2. The assump-
tion used will not affect the result much by considering that
the intersection area of the two facies in the reference field
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is not large. When dealing with the field that the intersection
area of different facies is large, a parameterization of the
formation sequence should be taken. The two Gaussian ran-
dom fields for generating the reference field are generated
by KL expansion with truncated terms.

In this case, the geostatistical properties of the Gaus-
sian fields for parameterizing the two facies distributions are
known. So, there is no prior error about the geostatistical

properties of the Gaussian fields for parameterization. The
mean and the variance of the two Gaussian random fields
are 0.0 and 0.5, respectively. The covariance model is sep-
arable exponential model. The anisotropy directions of the
two Gaussian fields are the same as the anisotropy direc-
tions of the two facies, respectively. The correlation lengths
in the major and minor correlation directions are 1,500 and
150 ft, respectively. The level set constant equals 0.76. The
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Fig. 14 Three initial realizations of the facies field (a–c), the corresponding updated realizations (d–f), and the probabilistic maps for facies 1
and facies 2 from the initial ensemble (g, j), the updated ensemble at step 3 (h, k), and the updated ensemble at step 17 (i, l)
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KL expansion is used to parameterize the Gaussian fields,
and the number of retained terms in the major and minor
correlation directions is 8 and 80, respectively.

The model parameter takes the same form as that in
Eq. 11, with nf = 2 and N1 = N2 = 640. The initial
realizations of the facies field are generated by sampling
two groups of independent Gaussian random variables and

performing the level set algorithm. Figure 14a–c shows
three initial realizations of the facies field. We then perform
the EnRML algorithm, and IMAX is set to be 2. Figure 14d–f
shows three updated realizations of the facies field. By com-
paring these figures with Fig. 1c, we can see that the updated
realizations can capture the features of the reference field
well. Figure 14g–i shows the probabilistic maps of facies 1
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Fig. 15 Three initial realizations of the facies field with uncertain
anisotropy directions (a–c), the corresponding updated realizations (d–
f), and the probabilistic maps for facies 1 and facies 2 from the initial

ensemble (g, j), the updated ensemble at step 3 (h, k), and the updated
ensemble at step 17 (i, l)
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from the initial ensemble and the updated ensemble at step
3 and step 17, respectively. Figure 14j–l shows the proba-
bilistic maps of facies 2 from the initial ensemble and the
updated ensemble at step 3 and step 17, respectively. From
the probabilistic maps, we can see that updated ensemble at
step 17 has a good convergence and can estimate the facies
distributions well.

When the anisotropy directions of facies are uncertain,
we treat them as model parameters. At this time, the model

parameter takes the same form as that in Eq. 12, with
nf = 2 and N1 = N2 = 640. For the reference field, the
anisotropy direction of facies 1, θ1, equals −40◦, and the
anisotropy direction of facies 2, θ2, equals 40◦. For the ini-
tial ensemble, we assume that θ1 follows U[-47, -37], and θ2

follows U[37, 47]. Figure 15a–c shows three initial realiza-
tions of the facies field. From these figures, we can see that
the generated initial realizations have different anisotropy
directions of facies. We then perform the EnRML algorithm,
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Fig. 17 The match to the oil production rates and the forecast of three producers from the initial ensemble (a–c) and the updated ensemble (d–f)
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and IMAX is set to be 4. Figure 15d–f shows three updated
realizations of the facies field. Figure 15g–l shows the prob-
abilistic maps of the two facies from the initial ensemble
and the updated ensemble at step 3 and step 17. From the
updated realizations and the updated probabilistic maps, we
can see that the updated results can capture the main fea-
tures of the reference well. Figure 16 shows the histogram
of the anisotropy directions of the two facies from the ini-
tial ensemble and the updated ensemble at step 3 and step
15. We can see that the updated ensembles at step 3 show
a tendency to converge to the reference values and that
the updated ensemble of θ1 and θ2 at step 15 has mean
value of 39.1◦ and 41.2◦, respectively, which are close to
the reference values. Figure 17 shows the match to the oil
production rates and the forecast of three producers from
the initial ensemble (Fig. 17a–c) and the updated ensemble
(Fig. 17d–f); we can see that the production behavior from
the updated ensemble can match the reference well and can
provide reliable forecast.

5 Discussion and conclusion

In the history matching process, the parameter field will be
continuously updated. Using a numerical grid-based local
parameterization technique makes it difficult to preserve
the geostatistical characteristics of the parameter fields. The
KL expansion is a proper global parameterization technique
to preserve the geostatistical characteristics of a Gaussian
parameter field in the updating process of the history match-
ing method. In this work, we propose a KL expansion-based
global parameterization technique for the history matching
of statistically anisotropic fields. For a Gaussian field or
facies field with a known correlation structure, by using
the KL expansion, it can be parameterized by a group
of independent Gaussian random variables, which can be
treated as model parameters. When the anisotropy direc-
tion of the unknown random field is uncertain, it can also
be treated as a model parameter for updating. We adopt the
EnRML algorithm to perform the history matching. Three
kinds of parameter fields (i.e., a statistically anisotropic
Gaussian field, a facies field with one elongated facies, and
a facies field with two elongated facies) are selected as the
reference parameter fields to test the performance of the
proposed method. The case studies show that, by using the
KL expansion-based global parameterization technique, the
updated results can match the reference well and the geosta-
tistical characteristics of the random field can be preserved
in the updating process. Using the proposed method, the
estimation of the anisotropy direction of the random field is
satisfactory.

One drawback of the global parameterization technique
is that it is difficult to capture all the local features of the

unknown field. If the data matches in some regions of the
reservoir are not satisfactory, using some local parameters
in those regions to refine the parameterization is a way to
solve the problem.

The KL expansion-based global parameterization tech-
nique is only suitable for parameterizing Gaussian ran-
dom fields (that can be completely depicted by the first
two moments). For non-Gaussian random fields, such as
curvilinear channels or fractures, other parameterization
techniques should be investigated.

In this work, although we only use two-dimensional
cases to test the proposed method, the KL expansion-
based method can be easily extended to three-dimensional
problems.
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