
1. Introduction
Random fields play a very important role in the investigation of hydrological and meteorological variables. 
The spatial distribution of these variables is often very specific. The random fields used for the stochastic 
description of such fields can be divided into two parts - the univariate marginal distribution of the variable 
and the multivariate copula describing the spatial dependence (Bárdossy, 2006). In most cases, the copula of 
the multivariate Gaussian distribution is used for the description of the spatial dependence. This approach is 
advantageous due to its relatively simple form but has the disadvantage that many natural processes show no 
Gaussian types of dependence — for example, asymmetrical dependencies due to the underlying processes such 
as dispersion/diffusion (Guthke & Bárdossy, 2017) or advection (Bárdossy & Hörning, 2017). The importance 
of non-Gaussian spatial dependence structures has been demonstrated in many studies. Gomez-Hernandez and 
Wen (1998), for example, showed how different non-Gaussian models, all sharing the same marginals and the 
same covariance function, lead to different groundwater travel times. In Zinn and Harvey (2003) the authors 
demonstrated the effect of non-Gaussian spatial dependence on groundwater flow and mass transfer. In Haslauer 
et al. (2012) it was shown that spatial dependence of transmissivities cannot be adequately described using a 
Gaussian copula.

In Bárdossy  (2006) a parametric non-Gaussian family of copulas (v-copulas) was introduced for the descrip-
tion of spatial variability. An interpolation and simulation approach using v-copulas was presented in Bárdossy 
and Li (2008). These copulas however are not very flexible and interpolation and conditional simulations are 
computationally very expensive, limiting its applicability in 3D cases. An alternative to describe complex spatial 
dependence is using vine-copulas as in Gräler (2014). The vine copula approach has the disadvantage that it can 
only accommodate a few points and does not produce random fields.

Non-Gaussian fields can be simulated using simulated annealing (Deutsch, 1992). The disadvantage of this is 
that the non-Gaussian properties have to be defined explicitly, and the subsequent annealing has a very high 
computational cost. Due to the very high computational effort 3 dimensional realizations can only be obtained 
for very small fields. Multipoint geostatistics (MPS) (Mariethoz et al., 2010; Strebelle, 2002) offers a method to 
reproduce non-Gaussian features derived from training images. According to Journel (2003), the major source 
of uncertainty in MPS is the choice of the training image and not the fluctuations between multiple realizations. 
Further 3 dimensional training images are not available thus 3D simulations require different treatment for exam-
ple, a combination of 2D images (Huang et al., 2022).

Recently in Papalexiou et  al.  (2021) the authors published interesting random field constructions related to 
complex natural processes. Their simulations are based on Gaussian fields and subsequent geometrical transfor-
mations which are used to simulate complex patterns and motion, for example, representing advection of rainfall, 
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spiraling fields that resemble weather cyclones, or fields converging to a point. The authors also presented an 
extensive summary of the methods and application of random fields, therefore the reader interested in this topic 
should refer to that publication. The approach presented here complements that work from the non-Gaussian 
simulation perspective.

In this contribution we present a new flexible method to define non-Gaussian spatial dependence. The method 
is explicit — defining random fields with flexible two or three dimensional spatial copulas. Realizations of the 
corresponding random fields are very simple to simulate, and their conditioning to observation points requires a 
few iterations.

This study is structured as follows, after this introduction a brief description of copulas is presented, followed 
by the definition of the non-Gaussian random fields for the infinite and the finite case. In the fourth section 
examples of specific random fields are presented. The fifth section describes the application of the correspond-
ing copula for selected groundwater quality parameters. The paper ends with a discussion and conclusions.

2. Copulas
In the following, the basics of copulas are briefly reviewed. For further information the interested reader is 
referred to Bárdossy (2006), Bárdossy and Li (2008), Joe (1997), and Nelsen (1999).

Copulas are multivariate distribution functions defined on the unit hypercube:

 ∶ [0, 1]
𝑛𝑛
= [0, 1] (1)

with all univariate marginals being uniformly distributed on [0,1]. Copulas are used to describe the dependence 
between random variables independently of their marginal distributions, thus monotonic transformations of the 
marginals do not influence the dependence structure. According to Sklar's theorem (Sklar, 1959) any continuous 
multivariate distribution F (x1, …, xn) can be represented with the help of a unique copula:

𝐹𝐹 (𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛) = 
(

𝐹𝐹𝑥𝑥1
(𝑥𝑥1), . . . , 𝐹𝐹𝑥𝑥

𝑛𝑛
(𝑥𝑥𝑛𝑛)

)

 (2)

where 𝐴𝐴 𝐴𝐴𝑥𝑥
𝑖𝑖
(𝑥𝑥) denotes the ith one-dimensional marginal distribution of the multivariate distribution. Copulas of 

multivariate distributions can be extracted by taking:

(𝑢𝑢1, . . . , 𝑢𝑢𝑛𝑛) = 𝐹𝐹

(

𝐹𝐹
−1
𝑥𝑥1
(𝑢𝑢1), . . . , 𝐹𝐹

−1
𝑥𝑥
𝑛𝑛
(𝑢𝑢𝑛𝑛)

)

 (3)

where 𝐴𝐴 𝐴𝐴
−1
𝑥𝑥
𝑖𝑖
(𝑥𝑥) denotes the ith one dimensional inverse marginal distribution.

In the geostatistical context, spatial copulas can be used to describe the joint multivariate distribution corre-
sponding to variables that are spatially distributed in the domain of interest. As in traditional geostatistics, it 
is assumed that the univariate marginal distribution corresponding to each point of the domain is the same, 
and the spatial dependence is translation invariant. This means that for any set of points si in the investi-
gation domain such that si + h is also in the domain, the spatial copula of the multivariate distribution is 
defined as:

𝑆𝑆 (𝑢𝑢1, . . . , 𝑢𝑢𝑘𝑘) = 𝑃𝑃 (𝐹𝐹𝑍𝑍 (𝑍𝑍(𝑠𝑠1)) < 𝑢𝑢1, . . . , 𝐹𝐹𝑍𝑍 (𝑍𝑍(𝑠𝑠𝑘𝑘)) < 𝑢𝑢𝑘𝑘)

= 𝑃𝑃 (𝐹𝐹𝑍𝑍 (𝑍𝑍(𝑠𝑠1 + ℎ)) < 𝑢𝑢1, . . . , 𝐹𝐹𝑍𝑍 (𝑍𝑍(𝑠𝑠𝑘𝑘 + ℎ)) < 𝑢𝑢𝑘𝑘)

= 𝑆𝑆+ℎ(𝑢𝑢1, . . . , 𝑢𝑢𝑘𝑘)

 (4)

3. Methodology
Gaussian random fields are relatively simple to generate in any dimensions. If two random fields are gener-
ated using the same random numbers but different spatial variograms then the corresponding random fields 
are called common random fields (Guthke & Bárdossy, 2012) and can be very similar, depending on how 
different the variograms are. This idea can be used to define non-Gaussian random fields which are combi-
nations of Gaussian random fields with different variograms. For the definition the formulation of Gaussian 
random fields using Fast Fourier transform moving average (FFT-MA) approach as suggested in Ravalec 
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et al. (2000) is used. According to FFT-MA, a Gaussian random field X with covariance function C(h) can 
be defined as:

𝑋𝑋 = 
−1

(

√

 (𝐶𝐶(ℎ)) (𝑈𝑈 )

)

 (5)

where U is Gaussian white noise, 𝐴𝐴  denotes the Fourier transform and 𝐴𝐴 
−1 the inverse Fourier transform. FFT-MA 

can be used to simulate common random fields (Guthke & Bárdossy, 2012). Therefore, the same Gaussianily 
guarantee that the marginal dist white noise, Y, is used with changing covariance functions to simulate a set 
of common random fields. Figure 1 shows an example of such a set of fields. It can be seen that the fields are 
similar due to the common Gaussian white noise, but the size of the structures is increasing due to the increasing 
variogram range.

3.1. Definition of the Non-Gaussian Field

The construction of the fields follows the same idea as presented in Bárdossy (2023). In that paper a set of multi-
variate distributions are combined to form a new different distribution.

Let C (τ, h) be a set of covariance functions for τ ∈ [0, 1] and h being the spatial separation vector, which is 
continuous for each h in τ. τ is a parameter that links the different C (τ, h) and ensures a continuous transition. For 
each τ, a normal random field is generated using the same random numbers.

Definition: Let X0 be a standard normal field with the covariance function C (0, h). Define the field Xτ such that

𝑋𝑋𝜏𝜏 = 
−1

(

√

 (𝐶𝐶(𝜏𝜏𝜏 𝜏))
 (𝑋𝑋0)

√

 (𝐶𝐶(0𝜏 𝜏))

)

 (6)

This way a set of standard normal random fields are defined which are continuous in τ. The final field Z corre-
sponds to the smallest root of the equation

𝑋𝑋𝜏𝜏 (𝑢𝑢) = Φ−1(𝜏𝜏) 

𝑍𝑍(𝑢𝑢) = min
{

Φ−1(𝜏𝜏) ;𝑋𝑋𝜏𝜏 (𝑢𝑢) < Φ−1(𝜏𝜏)
}

 (7)

The right-hand side of the set is not empty as for each u Xτ(u) is a continuous function and Φ −1 (0) = −
𝐴𝐴 ∞  < X0(u) and X1(u) < Φ −1 (1) = +𝐴𝐴 ∞ , where Φ −1 denotes the inverse of the standard normal distribution. 

While Equation 7 defines the random field Z(u) from below, this definition could also be made from above 
which means that

𝑍𝑍(𝑢𝑢) = max
{

Φ−1(𝜏𝜏) ;𝑋𝑋𝜏𝜏 (𝑢𝑢) > Φ−1(𝜏𝜏)
}

 (8)

Figure 1. Common random fields simulated using Fast Fourier transform moving average. All fields share the same random numbers and an exponential variogram, 
however, the variogram range “a” is increasing from left to right.
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Figure 2 illustrates the definition of the random field. For a given set of random numbers and for two selected 
locations u1 and u2, the values corresponding to the generated fields Xτ are plotted against Φ −1(τ). The line is 
continuous due to the continuity of the covariance function. The intersections with the diagonal represent the 
values assigned to Z (u1) and Z (u2), respectively. As the Figure shows the two different points get values from 
different Xτ fields. Further, it can be seen that location u1 has two values 𝐴𝐴 𝐴𝐴(𝑢𝑢1)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐴𝐴 𝐴𝐴(𝑢𝑢1)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 corresponding to 
the different definitions of the random field. If the definition in Equation 7 is applied, 𝐴𝐴 𝐴𝐴(𝑢𝑢1)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the simulated 
value. If the definition in Equation 8 is applied, one gets 𝐴𝐴 𝐴𝐴(𝑢𝑢1)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 as simulated value. It can be seen that there 
is no distinction for location u2 as there is only one intersection with the diagonal. In general, the definition from 
above or from below does only affect less than 1% of all values, that is, the resulting fields are almost identical. 
As the definition of the random field does not necessarily guarantee that the marginal distribution of Z is normal, 
one can transform it to normal via 𝐴𝐴 𝐴𝐴𝑁𝑁 (𝑢𝑢) = Φ−1(𝐹𝐹𝐴𝐴 (𝐴𝐴(𝑢𝑢)).

3.2. Parameters

The definition of the random field according to Equations 6 and 7 (or Equation 8) is very flexible and has a 
number of advantages:

1.  Through the flexible selection of the covariance functions C (τ, h) very complex dependence structures can 
be defined - such as value-dependent geometrical anisotropies or different types of smoothness as shown in 
the examples in Section 4.

2.  The simulation can obtain asymmetric random fields, that is, non-Gaussian random fields as shown in 
Section 4.

3.  A large number of spatial copulas according to Equations 3 and 4 can be obtained.
4.  The simulation procedure is very simple and efficient as only Gaussian random fields have to be generated to 

simulate the non-Gaussian field.

Figure 2. Definition of the random field Z.
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5.  The spatial dependence can vary between fully dependent and independent.

This huge flexibility however also has some disadvantages. These are:

1.  In the general form the field has an infinite number of parameters (τ ∈ [0, 1]).
2.  It is not trivial to find the appropriate covariance functions C (τ, h) based on observed data.

one way to overcome these problems is by using simple assumptions on the changes of the correlation function. 
The continuity of C (τ, h) can be assured by using parametric theoretical covariance functions C (θ, h) such that 
θ (τ) is a continuous function.

The above definition requires an infinite number of parameters. A large number of simplifications leading to a 
small number of parameters are possible:

1.  Linearly changing range of the variograms γ(c, a, h)

𝑎𝑎(𝜏𝜏) = (1 − 𝜏𝜏)𝑎𝑎(0) + 𝜏𝜏𝑎𝑎(1) (9)

where c denotes the variogram sill and a denotes the variogram range.

2.  Linearly changing nugget of the variograms γ(c, a, h)

𝑐𝑐0(𝜏𝜏) = (1 − 𝜏𝜏)𝑐𝑐0(0) + 𝜏𝜏𝑐𝑐0(1) (10)

3.  Changing anisotropy

𝜙𝜙(𝜏𝜏) = (1 − 𝜏𝜏)𝜙𝜙(0) + 𝜏𝜏𝜙𝜙(1) (11)

𝜆𝜆(𝜏𝜏) = (1 − 𝜏𝜏)𝜆𝜆(0) + 𝜏𝜏𝜆𝜆(1) (12)

with ϕ denoting the anisotropy ratio and λ the anisotropy angle.

4.  Linearly changing variogram types γ(a, h) with fixed range.

𝛾𝛾𝜏𝜏 (ℎ) = (1 − 𝜏𝜏)𝛾𝛾0(ℎ) + 𝜏𝜏𝛾𝛾1(ℎ) (13)

The above models can be combined and many other definitions can be defined. The simulation of all these models 
is straightforward and very fast.

One can also define more complex structures by piece-wise linear definition of the parameters for example, 
instead of Equation 9 taking ranges a (τ0 = 0), a (τ1), …, a (τJ = 1):

𝑎𝑎(𝜏𝜏) =
𝜏𝜏 − 𝜏𝜏𝑗𝑗

𝜏𝜏𝑗𝑗+1 − 𝜏𝜏𝑗𝑗

𝑎𝑎(𝜏𝜏𝑗𝑗+1) +

(

1 −
𝜏𝜏 − 𝜏𝜏𝑗𝑗

𝜏𝜏𝑗𝑗+1 − 𝜏𝜏𝑗𝑗

)

𝑎𝑎(𝜏𝜏𝑗𝑗) if 𝜏𝜏𝑗𝑗 ≤ 𝜏𝜏 ≤ 𝜏𝜏𝑗𝑗+1 (14)

Furthermore, then one parameter can also be changed - for example, the range and the anisotropy could both 
change in a linear or a piece-wise linear manner at the same time.

However, note that these kinds of models require more parameters and thus can only be assessed in the case of 
large data sets.

3.3. Numerical Simulation

For applications, only a finite set of different τ values have to be selected. Let:

0 = 𝜏𝜏0 < 𝜏𝜏1 < . . . < 𝜏𝜏𝑚𝑚 = 1 

Then the definition (Equation 7) is in its finite form:
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𝑍𝑍(𝑢𝑢) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑋𝑋𝜏𝜏
𝑖𝑖
(𝑢𝑢) if Φ−1(𝜏𝜏𝑖𝑖−1) < 𝑋𝑋𝜏𝜏

𝑖𝑖
(𝑢𝑢) ≤ Φ−1(𝜏𝜏𝑖𝑖)

and 𝑋𝑋𝜏𝜏
𝑗𝑗
(𝑢𝑢) > Φ−1(𝜏𝜏𝑗𝑗) ∀𝑗𝑗 < 𝑖𝑖

Φ−1(𝜏𝜏𝑖𝑖−1) if 𝑋𝑋𝜏𝜏
𝑖𝑖
(𝑢𝑢) ≤ Φ−1(𝜏𝜏𝑖𝑖−1)

and 𝑋𝑋𝜏𝜏
𝑗𝑗
(𝑢𝑢) > Φ−1(𝜏𝜏𝑗𝑗) ∀𝑗𝑗 < 𝑖𝑖

 (15)

It is reasonable to select an equidistant spacing with 𝐴𝐴 𝐴𝐴𝑖𝑖 =
𝑖𝑖

𝑚𝑚

 .

The above approximation allows building the distribution from below - starting with X0. Note that as in the infinite 
definition Zu is not dependent on the spatial structure of the fields Xτ for τ such that Z(u) < Φ −1(τ).

3.4. Conditioning

For the simulation of random fields, conditioning on observations is of great importance. Direct conditioning 
using conditional distributions is due to the definition of the random fields not possible. Instead, a Monte Carlo 
optimization-based conditioning approach as shown in the flowchart in Figure 3 can be performed. The purpose 
is to find a random field of the above type with Z (ui) = zi for i = 1, …, n where n is the number of observations. 
As described in Figure 3, the procedure consists of two main steps. The first step is to simulate an initial reali-
zation with Z (ui) ≈ zi. Therefore, a conditional Gaussian random field has to be simulated first. The parameters 
corresponding to τ  =  0.5 should be used for that simulation. Note that any conditional Gaussian simulation 
approach can be used. From that conditional field, one can calculate the corresponding random numbers Y via 
inverse FFT-MA. These random numbers are subsequently used to simulate the initial non-Gaussian field with 
Z (ui) ≈ zi. In the second step, the conditioning is optimized. Therefore, the random numbers Y are updated in 
a window around the conditioning point locations. Note that there is no general rule for the window size, that 
is, it has to be adjusted for the specific problem at hand. Using the updated random numbers one can calculate 
the updated non-Gaussian field. From that updated field an objective function such as the sum of the squared 
differences is calculated. Note that other objective functions such as the root mean squared error (RMSE) could 
be used instead. If the objective function is less than a user defined threshold ϵ, the realization is accepted. If the 
objective function is greater than that threshold, the random numbers are updated again until a satisfactory match 
is obtained. It is worth mentioning that this conditioning approach is not exact. However, the conditioning error 
can be controlled using the threshold ϵ. Further, the conditioning error can be used to represent measurement 
uncertainties. Note that in the simplest case, the updating step is a pure Monte Carlo. However, updating can also 
be performed using other approaches, for example, via linear combinations of random numbers similar to the 
procedure presented in Hörning et al. (2019) which results in a more efficient optimization.

3.5. Interpolation and Uncertainty Estimation

The definition of these random fields is relatively complex and conditional distributions cannot be derived easily, 
therefore interpolation and uncertainty estimation can only be obtained using simulations. The mean and the 
uncertainty can be obtained using a suitably large number of conditional fields. The number of fields required to 
achieve a stable mean and a representative uncertainty estimation depends on the complexity of the individual 
case. However, as a rule of thumb, one should use at least 100 conditional realizations.

4. Examples
In this section, realizations of 2D spatial random fields demonstrate the large range of spatial dependencies 
covered by this family of copulas. Figures 5–14 show realizations of selected special cases and the corresponding 
variograms (isotropic, minor, and major directions), spatial asymmetry function, and spatial copulas. The spatial 
asymmetry function is a bivariate third order moment that is defined as:

𝐴𝐴(ℎ) =
1

𝑁𝑁(ℎ)

∑

𝑢𝑢
𝑖𝑖
−𝑢𝑢

𝑗𝑗
≈ℎ

(𝐹𝐹 (𝑍𝑍(𝑢𝑢𝑖𝑖)) + 𝐹𝐹 (𝑍𝑍(𝑢𝑢𝑗𝑗)) − 1)
3

 (16)
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where F is the univariate marginal of Z and N(h) denotes the number of pairs where Z (ui) and Z (uj) are separated 
by a distance of approximately h. The spatial asymmetry function goes beyond the average description of depend-
ence of a variogram as it measures the different dependence between high and low quantiles. A comprehensive 
description of the spatial asymmetry and its interpretation can be found in Guthke and Bárdossy (2017). Another 
type of spatial asymmetry function is the direction-dependent asymmetry. While the function defined in Equa-
tion 16 measures order based asymmetry, its direction-dependent counterpart measures directional asymmetry. 
It is defined as:

𝐴𝐴𝑑𝑑(𝐡𝐡) =
1

𝑁𝑁(𝐡𝐡)

∑

𝑢𝑢
𝑖𝑖
−𝑢𝑢

𝑗𝑗
≈𝐡𝐡

(𝐹𝐹 (𝑍𝑍(𝑢𝑢𝑖𝑖)) − 𝐹𝐹 (𝑍𝑍(𝑢𝑢𝑗𝑗)))
3

 (17)

Figure 3. Flowchart for the proposed conditioning algorithm.
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where h is a distance vector with a direction. Equation 17 can distinguish dependencies in different directions that 
could for example, arise from advection processes. In the following examples, only order asymmetry is consid-
ered but for more information on direction-dependent asymmetry the interested reader is referred to Bárdossy 
and Hörning (2017).

All fields were generated as common random fields (Guthke & Bárdossy, 2012), using the same random numbers 
for the simulation. Thus, the fields are similar but one can also see the differences depending on the correspond-
ing model. Note, that the structures are in most cases clearly asymmetrical with different dependencies of high 
and low values. To demonstrate that these asymmetries are significantly non-Gaussian, each example shows 
the 90% confidence interval for the asymmetry that can be obtained from Gaussian fields. 100 Gaussian reali-
zations are simulated using the variogram model corresponding to τ = 0.5 and their asymmetries are calculated 
according to Equation 16 to determine these confidence intervals. Further note, that all fields exhibit a standard 
normal marginal distribution, however, as described in Section 3 any marginal distribution (parametric as well as 
non-parametric) can be imposed.

Figure 4 shows the base case field for comparison. It is an isotropic Gaussian spatial random field with an expo-
nential variogram with a range of 40, simulated using FFT-MA (Ravalec et al., 2000). Figure 4 also shows the 
corresponding variograms, the spatial asymmetry function, and the spatial copulas for a few selected separation 
distances. From the spatial asymmetry function, it can be seen that the field is Gaussian as it exhibits close to 
zero asymmetry which lies within the 90% confidence interval. This can also be observed from the spatial copulas 
which show similar densities for the low and the high values, indicating symmetrical spatial dependence.

Figure 5 shows a field simulated with a linearly changing range of the variograms according to the definition 
in Equation 9. An exponential variogram with its range changing from 5 to 80 has been applied. It can be seen 
that the low values correspond to the short ranges, while the high values correspond to the long ranges. The 
variogram plots show that the field is isotropic. Further, apart from a small change in the variogram nugget, the 

Figure 4. Base case field (isotropic Gaussian field with exponential variogram with range 40) with corresponding variograms, spatial asymmetry function, and spatial 
copulas for separation distances (from left to right) of 3, 8, 15, 50, 90. The blue shaded area represents the 90% confidence interval for the spatial asymmetry.
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variograms are almost identical (the average variogram range is similar to the variogram range of the base case) 
to the variograms corresponding to the base case shown in Figure 4. This indicates that variograms are not able to 
distinguish the differences between the fields. The asymmetry function, however, shows a strong positive asym-
metry for separation distances up to approximately 100. It is outside the 90% confidence interval thus the field is 
significantly non-Gaussian. The positive asymmetry indicates that high values exhibit a stronger dependence for 
these separation distances compared to the low values. The high values form larger clusters while the low values 
form smaller clusters. This can also be seen in the spatial copulas which exhibit higher densities for high values 
(the upper right corner) compared to the densities for low values (lower left corner).

Figure 6 shows a field simulated using a linearly changing nugget of the variograms according to the definition 
in Equation 10. Again, an exponential variogram has been used. The variogram range was constant for all values 
of τ with a value of 50, while the nugget of the variogram linearly changed from 50% to 0%. The higher nugget 
has been imposed on the low values, gradually decreasing to a zero nugget for the high values. This change in 
the nugget can clearly be seen in the field where the low values exhibit a nugget effect while the high value have 
no nugget effect. The variograms again indicate that the field is isotropic and a nugget can clearly be identified. 
However, the variograms cannot distinguish the difference in the nugget for low and high values. The spatial 
copulas enable a more detailed insight. It can be seen that the densities for the lower values are more dispersed 
than the densities for the high values, indicating a higher nugget effect for the low values. The spatial copulas 
also exhibit a positive asymmetry, that is, a higher density for the high values compared to the low values. This 
positive asymmetry can also be seen in the spatial asymmetry function which is positive for separation distances 
up to approximately 70. Again, the asymmetry function is clearly outside the 90% confidence interval, indicating 
significant non-Gaussianity.

Figure 5. Simulated field with a linearly changing range of the variograms (exponential variogram with range changing from 5 to 80) according to Equation 9 with 
corresponding variograms, spatial asymmetry function, and spatial copulas for separation distances (from left to right) of 3, 8, 15, 50, 90. The blue shaded area 
represents the 90% confidence interval for the spatial asymmetry that can be observed from Gaussian fields.
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Figure 7 shows a field simulated using a combination of Equations 9 and 10, that is, with a linearly changing vari-
ogram range and a linearly changing nugget effect. Note, both the range and the nugget change according to the 
same parameter τ. The variogram model is again exponential with its range changing from 5 to 80 and its nugget 
changing from 50% to 0%. The short range, high nugget has been imposed on the low values, and the long range, 
zero nugget on the high values. It can be seen that the low values exhibit a short range structure as well as a nugget 
effect. The range gradually increases and the nugget gradually decreases with increasing values. The variograms 
show that the field is isotropic with a nugget effect. Again, the variograms cannot distinguish the difference in 
the nugget effect for the low and the high values. This difference can again be seen in the spatial copulas which 
exhibit a more dispersed density for the low values compared to the high values. It can also be seen that this field 
has a stronger positive asymmetry compared to the field in Figure 6. The copulas have higher densities for the 
high values and lower densities for the low values compared to the ones in Figure 6. This is also apparent from 
the spatial asymmetry function which is outside the 90% confidence interval with higher values up to a separation 
distance of approximately 100.

Figure 8 shows a field simulated with a linearly changing anisotropy according to Equation 12. The variogram is 
again exponential with a constant major range of 50. The anisotropy exhibits a constant angle of 25° but the ratio 
between the range of the major and minor axes changes from 1 to 0.2. Thus, for the high values, the variogram 
is isotropic (major and minor range of 50), linearly changing to a more and more anisotropic variogram for the 
low values. For the lowest values, the major range is 50 while the minor range is 10. This can be seen in the field 
where the low values exhibit very strong anisotropy and the high values are isotropic. The major and the minor 
direction variograms also show this anisotropy, however, the differences are not as pronounced as the variogram 
is an average description of spatial dependence. The change from isotropic high values to anisotropic low values 
also introduces spatial asymmetry. For separation distances up to approximately 100, the spatial asymmetry 

Figure 6. Simulated field with a linearly changing nugget of the variograms (exponential variogram with range 50, nugget changing from 50% to 0%) according to 
Equation 10 with corresponding variograms, spatial asymmetry function, and spatial copulas for separation distances (from left to right) of 3, 8, 15, 50, 90. The blue 
shaded area represents the 90% confidence interval for the spatial asymmetry that can be observed from Gaussian fields.

 19447973, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034446, W

iley O
nline L

ibrary on [18/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

BÁRDOSSY AND HÖRNING

10.1029/2023WR034446

11 of 24

function indicates slightly positive asymmetry which is outside the 90% confidence interval for distances up to 
50. This can again also be seen in the spatial copulas which have higher densities for the high values than for the 
low values.

Figure 9 shows a field with a linearly changing range and a linearly changing anisotropy according to a combina-
tion of Equations 9 and 12. As in the previous examples, the variogram is exponential. It has a minor and major 
range of 80 (i.e., isotropic) for the high values, linearly changing to a major range of 5 and a minor range of 1 
(anisotropy ratio of 0.2) for the low values. The anisotropy has again a constant angle of 25°, independent of 
the ratio. It can be seen that the field has large clusters of isotropic high values and small clusters of anisotropic 
low values. Again, due to its average nature, the variograms for the minor and major directions only show small 
differences. The combined change of range and anisotropy introduces a strong positive asymmetry which can be 
seen in the asymmetry function as well as in the spatial copulas.

Figure 10 shows another field with a linearly changing range and a linearly changing anisotropy according to 
Equations 9 and 12. This field, however, exhibits the opposite anisotropy to Figure 9. Here, the high values are 
simulated with a major range of 80 and a minor range of 16 (anisotropy ratio of 0.2) while the low values are 
simulated with a minor and major range of 5 (i.e., isotropic). The anisotropy angle is again 25°, independent of the 
ratio. As the anisotropy is in the long range part of the field, it is more distinct in the minor and major direction 
variograms. The asymmetry function again exhibits a positive asymmetry for separation distances up to approx-
imately 100. This can again also be seen in the spatial copulas which show a higher density for high values than 
for low values.

Figure 7. Simulated field with a linearly changing range and linearly changing nugget of the variograms (exponential variogram with range changing from 5 to 80 and 
nugget changing from 50% to 0%) according to a combination of Equations 9 and 10 with corresponding variograms, spatial asymmetry function, and spatial copulas 
for separation distances (from left to right) of 3, 8, 15, 50, 90. The blue shaded area represents the 90% confidence interval for the spatial asymmetry that can be 
observed from Gaussian fields.
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Figure 11 shows again a field with a linearly changing range and a linearly changing anisotropy according to a 
combination of Equations 9 and 12, but with a negative asymmetry. The field has been simulated with an expo-
nential variogram with a major and minor range of 5 (i.e., isotropic) for the high values and a major range of 80 
and a minor range of 16 for the low values (anisotropy ratio of 0.2). Again, the anisotropy angle is independent 
of the ratio and 25°. It can be seen that the high values form small isotropic clusters while the low values exhibit 
strong anisotropy with a long range in the major direction. As in the previous example, the anisotropy is clearly 
visible in the major and minor direction variograms. As the low values exhibit larger clusters compared to the 
high values, the spatial asymmetry of this field is negative as indicated by the spatial asymmetry function. The 
spatial copulas also show a negative asymmetry with higher densities for low values and lower densities for high 
values.

Figure 12 shows a field simulated with a linearly changing range, anisotropy ratio, and anisotropy angle according 
to a combination of Equation 9, Equation 12, and Equation 11. This example has again been simulated using an 
exponential variogram model. The high values have a major range of 80 and a minor range of 40 (anisotropy 
ratio of 0.5) with a 25° angle. The low values have a major range of 5 and a minor range of 1 (anisotropy ratio 
of 0.2) with a 70° angle. The difference in the angle and in the anisotropy ratio can clearly be seen in the field. 
The variograms for the major and the minor direction indicate anisotropy. As the high values form much larger 
clusters than the low values, the asymmetry function is positive for separation distances up to approximately 100. 
This can again also be seen in the spatial copulas which exhibit very high densities for the high values and very 
low and dispersed densities for the low values.

Figure 13 shows a field simulated with a linearly changing variogram model according to Equation 13. The 
field has been simulated using a Gaussian variogram for the low values that linearly changes to an exponential 

Figure 8. Simulated field with a constant variogram range and linearly changing anisotropy ratio (exponential variogram with range 50 and anisotropy ratio changing 
from 1 to 0.2) according to Equation 12 with corresponding variograms, spatial asymmetry function, and spatial copulas for separation distances (from left to right) of 
3, 8, 15, 50, 90. The blue shaded area represents the 90% confidence interval for the spatial asymmetry that can be observed from Gaussian fields.
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variogram for the high values. Both variograms are isotropic with a range of 60. It can be seen that, as a result of 
the Gaussian variogram, the low values form smoother clusters while the high values are less smooth due to the 
exponential variogram. The variograms for the major and minor directions show no anisotropy and the asymme-
try is slightly negative for separation distances up to approximately 50. This negative asymmetry is a result of the 
smoother clusters of low values and the less smooth high values.

Figure  14 shows a field simulated with a linearly changing variogram model and a linearly changing range 
according to a combination of Equation 13 and Equation 9. As in the previous example, this field has been simu-
lated using an isotropic Gaussian variogram for the low values that changes linearly to an isotropic exponential 
variogram for the high values. The variogram range also changes linearly from 60 for the low values to 5 for the 
high values. This results in large, smooth clusters of low values, and small, less smooth clusters of high values. 
The minor and major variograms show no anisotropy. The large clusters of smooth, low values in combination 
with the small clusters of less smooth, high values lead to a very strong negative asymmetry as shown in the 
asymmetry function as well as the spatial copulas.

The previous examples demonstrate the very high diversity of the simulated fields. Further combinations of the 
parameters defined in Equations 9–13 would allow the simulation of even more complex structures.

4.1. Parameter Estimation

The definition of a non-Gaussian field according to Equation 7 is very flexible. It allows the definition of fields 
with a very high number of parameters. The parameter estimation for the presented approach depends on the 
choice of the model parametrization.

Figure 9. Simulated field with a linearly changing variogram range and linearly changing anisotropy ratio (exponential variogram with range changing from 5 to 
80 and anisotropy ratio changing from 1 to 0.2) according to Equations 9 and 12 with corresponding variograms, spatial asymmetry function, and spatial copulas for 
separation distances (from left to right) of 3, 8, 15, 50, 90. The blue shaded area represents the 90% confidence interval for the spatial asymmetry that can be observed 
from Gaussian fields.
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A reasonable method to estimate parameters is via Monte Carlo simulation. Once a model like those in Equa-
tions 9–13 is chosen, one can select a set of desired statistics such as the variogram and the spatial asymmetry 
function. Fields with randomly selected parameters (according to the selected model) are subsequently simulated 
until a set of parameters is obtained for which the observed and the simulated statistics match. The procedure is not 
difficult to realize as the unconditional simulation of the fields is very fast. The procedure can be summarized as:

1.  The observed data are transformed to normal using a normal score transformation.
2.  The experimental statistics (e.g., variogram and the spatial asymmetry function) are calculated from the 

observations.
3.  A model is selected according to Equations 9–13. Note that combinations of these models are possible as 

shown in Section 4.
4.  A random set of parameters of the selected model is chosen.
5.  A realization with the selected model parameters is simulated.
6.  The experimental statistics of the simulated field are calculated.
7.  The observed and the simulated statistics are compared using a suitable objective function. In this paper, 

the sum of the root mean squared errors (RMSE) of the observed and simulated statistics is used but other 
objective functions such as the mean absolute error (MAE) could be used instead. If they fit well (e.g., the 
objective function value is below a predefined threshold), the parameters are accepted, otherwise, a new set of 
parameters is randomly generated and the procedure continues at step 5.

Figure 10. Simulated field with a linearly changing variogram range and linearly changing anisotropy ratio (exponential variogram with range changing from 5 to 
80 and anisotropy ratio changing from 0.2 to 1) according to Equations 9 and 12 with corresponding variograms, spatial asymmetry function, and spatial copulas for 
separation distances (from left to right) of 3, 8, 15, 50, 90. The blue shaded area represents the 90% confidence interval for the spatial asymmetry that can be observed 
from Gaussian fields.
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Note that one can also consider statistics of the untransformed variables for the parameter estimation. In this case, 
one has to transform the simulated fields (step 5) from normal back to the original marginal distribution. Further 
note that the above described approach can also be coupled with a suitable numerical optimization algorithm such 
as Powell's conjugate direction method (Powell, 1964).

For the model defined in Equation 9, the estimation can be started with the following assumption:

𝛾𝛾𝑍𝑍 (ℎ) ≈ 𝛾𝛾𝑋𝑋 1
2

(ℎ) (18)

To estimate a (0) and a (1), that is, the variogram ranges corresponding to τ = 0 and τ = 1 as defined in Equation 9, 
the spatial asymmetry function can be considered. One can simulate fields with the variogram shape correspond-
ing to γZ(h) with ranges from a (0) to 𝐴𝐴 𝐴𝐴(1) = 2𝐴𝐴

(

1

2

)

− 𝐴𝐴(0) and calculate the corresponding asymmetry function. 
The a (0) for which the asymmetry function is the closest to the observed (Z) asymmetry is then selected.

A similar procedure can be selected for the model defined according to Equation 10 and a combination of the two 
models is also possible.

Another approach including models with anisotropy changes can be obtained by using indicator variograms 
corresponding to different thresholds θ:

𝐼𝐼𝜃𝜃(𝑢𝑢) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑍𝑍(𝑢𝑢) ≤ 𝜃𝜃

0 else

 (19)

Figure 11. Simulated field with a linearly changing variogram range and linearly changing anisotropy ratio (exponential variogram with range changing from 80 to 
5 and anisotropy ratio changing from 0.2 to 1) according to Equations 9 and 12 with corresponding variograms, spatial asymmetry function, and spatial copulas for 
separation distances (from left to right) of 3, 8, 15, 50, 90. The blue shaded area represents the 90% confidence interval for the spatial asymmetry that can be observed 
from Gaussian fields.
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Spatial correlation functions of the indicator variables corresponding to the observed data and those from uncon-
ditional simulations can be compared, and parameters can be estimated on this basis.

4.2. Parameter Estimation Example

The above described parameter estimation approach has been applied to two of the presented fields in Section 4. 
The fields shown in Figures 5 and 10 have each been randomly sampled at 300 and 3,000 locations and their 
variograms and spatial asymmetry functions have been calculated based on these sampled values. Note that the 
variograms and asymmetry functions are calculated using the FFT-based approach described in Marcotte (1996) 
which allows the fast calculation of variogram and asymmetry maps. Thus, no separation distance lags need to be 
defined and the anisotropy can be obtained directly from these maps. The models according to Equations 9–13 
are assumed to be known for both fields. For the field shown in Figure 5 two parameters, the two variogram 
ranges a (0) and a (1) need to be estimated. The results are shown in Table 1. For the field shown in Figure 10 
five parameters need to be estimated. These are the two variogram ranges (a (0) and a (1)), two anisotropy ratios 
(ϕ(0) and ϕ(1)), and the anisotropy angle λ. The results are shown in Table 2. Note that for both examples the 
above described approach coupled with Powell's conjugate direction method has been applied to estimate the 
parameters.

The results indicate that the parameter estimation approach works well for both examples. Table 1 shows that for 
both cases (300 and 3,000 observations) corresponding to the field in Figure 5 the estimated parameters are close 
to the true parameters. For the field shown in Figure 10, Table 2 shows that the case with 3,000 observations 
leads to a better estimation than with 300 observations. Due to the higher complexity of this example, the case 

Figure 12. Simulated field with a linearly changing variogram range, linearly changing anisotropy ratio, and linearly changing anisotropy angle (exponential 
variogram with range changing from 5 to 80, anisotropy ratio changing from 0.2 to 0.5, and angle changing from 70° to 25°) according to Equation 9, Equation 12, and 
Equation 11 with corresponding variograms, spatial asymmetry function, and spatial copulas for separation distances (from left to right) of 3, 8, 15, 50, 90. The blue 
shaded area represents the 90% confidence interval for the spatial asymmetry that can be observed from Gaussian fields.
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with more observations results in a better parameter estimation. However, the estimated parameters based on 300 
observations are still satisfactory.

5. Applications
5.1. Synthetic Conditional Simulation Example

The conditioning approach described in Section 3.4 is applied to a synthetic example. First, an unconditional 
random field is simulated according to Equation 9 using an isotropic exponential variogram with a range of 40 
for the low values, linearly decreasing to a range of 4 for the high values. This field is sampled at 50 random 
locations shown in Figure 15. These sampled values are subsequently used as conditioning values and the vario-
gram model is assumed to be known. 100 conditional realizations are simulated. Figure 15 shows two conditional 
realizations and Figure 16 shows the ensemble mean and the ensemble standard deviation across all realizations. 
Note that the mean is considered to represent the interpolation while the standard deviation represents the estima-
tion uncertainty. Figure 16 also shows the Ordinary Kriging (OK) interpolation for the sampled values together 
with the Kriging estimation uncertainty in terms of the standard deviation. Note that for OK the variogram used 
was the one corresponding to τ = 0.5, that is, an exponential variogram with a range of 20. It can be seen that the 
uncertainty resulting from the presented approach is very different to the Kriging uncertainty. The Kriging uncer-
tainty is only a function of the geometry of the observations while the uncertainty obtained from the presented 
approach is also value-based.

The proposed conditioning approach is not exact. Figure 17 shows the box plots for the 100 realizations for the 
50 conditioning points. It can be seen, that, except for five outliers which are highlighted with red circles in 

Figure 13. Simulated field with a linearly changing variogram model (Gaussian variogram changing to an exponential variogram, both isotropic with a constant range 
of 60) according to Equation 13 with corresponding variograms, spatial asymmetry function, and spatial copulas for separation distances (from left to right) of 3, 8, 15, 
50, 90. The blue shaded area represents the 90% confidence interval for the spatial asymmetry that can be observed from Gaussian fields.
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Figure 17, all simulated values are close to the true conditioning values. For most of the conditioning points, the 
simulated values are within ±1% of the true values. Note, that this error margin could be adjusted to consider 
measurement uncertainties, for instance.

5.2. Groundwater Quality Parameter

The above concept was applied to an extensive groundwater quality data set from the state of Baden-Württemberg 
in South-West Germany. This data set consists of more than 2,500 measurements of groundwater quality param-
eters of the near-surface groundwater layer. A detailed geostatistical analysis of this data set is presented in 
Bárdossy (2006). The author shows that the spatial dependence structure of the investigated groundwater quality 
parameters is not Gaussian. In Bárdossy and Li (2008) the authors present a copula-based interpolation approach 
to model these non-Gaussian spatial dependence structures. Figure 18 shows the groundwater quality observation 
network within the state of Baden-Württemberg and the red box highlights the selected study area. The selected 
study area is 100 km by 100 km (discretized into 100 m by 100 m grid cells) and it contains 386 observations. 

For this study, nitrate concentrations, measured in mg/L, were selected as 
the groundwater quality parameter of interest. A linearly changing variogram 
range and a linearly changing nugget according to a combination of Equa-
tions 9 and 10 was selected and the parameter estimation approach described in 
Section 4.1 was applied. An exponential variogram with a range of 11 km and 
a nugget of 0.18 for the low values, linearly changing to a range of 10 km and 
a nugget of 0.38 for the high values resulted in the best fit. A non-parametric 
marginal distribution was estimated using Kernel density estimation (KDE). 
Using the estimated parameters, the KDE marginal distribution, and the 386 

Figure 14. Simulated field with a linearly changing variogram model and linearly changing range (Gaussian variogram with range 60 linearly changing to an 
exponential variogram with range 5, both isotropic) according to Equations 13 and 9 with corresponding variograms, spatial asymmetry function, and spatial copulas 
for separation distances (from left to right) of 3, 8, 15, 50, 90. The blue shaded area represents the 90% confidence interval for the spatial asymmetry that can be 
observed from Gaussian fields.

a (0) a (1)

True 5 80

Estimated (300) 6.6 80.3

Estimated (3,000) 6.2 81.0

Table 1 
Estimated Parameters According to the Field Shown in Figure 5
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observations, 100 realizations were simulated according to the conditional 
simulation approach described in Section  3.4. As an alternative, Ordinary 
Kriging was used for interpolation. The interpolated (mean of the 100 simu-
lated realizations) field and the Ordinary Kriging interpolation are shown in 
Figure 19. Figure 20 shows the box plots for the 100 simulated realizations 
for the 386 nitrate observations. It can be seen that, except for a few outliers, 
the Monte Carlo optimization-based conditioning performs well. The stand-
ard deviations across the 100 realizations for each individual observation are 
less than 1.5% of the actual values. As mentioned in Section 5.1, this condi-

tioning error can be considered to represent the measurement error of the actual nitrate concentration data. A 
k-fold cross-validation (with k = 8) was performed to test how well the model fits the observed data. The root 
mean squared error of the presented copula-based approach is RMSE = 24.38 mg/L, which is slightly lower than 
the Ordinary Kriging result of RMSE = 24.43 mg/L. As the presented simulation approach and OK provide an 
estimation of the full conditional distributions, these can also be verified. Therefore, the value of the conditional 
distribution function (i.e., 𝐴𝐴 𝐴𝐴

∗
𝑖𝑖
= 𝐹𝐹𝑧𝑧𝑧𝑧𝑧

𝑖𝑖
(𝑧𝑧(𝑧𝑧𝑖𝑖)) ) for the observation was calculated for each point of the control set 

in the cross-validation. The values of 𝐴𝐴 𝐴𝐴
∗
𝑖𝑖
 should follow a uniform distribution. Figure 21 shows the distributions 

of 𝐴𝐴 𝐴𝐴
∗
𝑖𝑖
 for both, Ordinary Kriging and the presented simulation approach. It can be seen that the distribution of 𝐴𝐴 𝐴𝐴

∗
𝑖𝑖
 

corresponding to the simulation approach is much closer to a uniform distribution than the distribution according 
to Ordinary Kriging. This indicates that the presented  approach better represents the estimation uncertainty than 
Ordinary Kriging.

6. Discussion and Conclusions
Natural and anthropogenic processes often lead to specific spatial distributions of the related variables. The 
resulting fields are non-Gaussian in their spatial structure, having different spatial dependencies for high and low 
values. In order to capture these differences copula-based models can be used. In this contribution, a family of 
new copula models was introduced. The new model allows a very flexible definition of value-dependent spatial 
variability.

An advantage of the formulation is that the random fields can be modified by changing the generating random 
numbers only, and this means that the non-Gaussian properties remain unchanged. This is an advantage for the 
use in non-linear inversion problems as the simulation procedure is very fast. The adjustments of the U fields 
only influence the Gaussian Xτ fields and their subsequent combination assures that the non-Gaussian structure 
is fully kept.

The presented approach can provide fields with asymmetric dependence in the sense of diffusion (order based 
asymmetry according to Equation 16), but not asymmetric in the sense of advection (direction-dependent asym-
metry according to Equation  17). Further research is required to incorporate directional asymmetry into the 
presented simulation approach.

a (0) a (1) ϕ(0) ϕ(1) λ

True 80 5 0.2 1 25

Estimated (300) 74.1 7.2 0.25 0.75 23.9

Estimated (3,000) 77.4 6.2 0.28 0.81 21.5

Table 2 
Estimated Parameters According to the Field Shown in Figure 10

Figure 15. Left: True random field. Middle and right: Two realizations conditioned on the sampled values of the true field. “x” marking the sampling locations.
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The presented examples demonstrate the vast diversity of spatial structures resulting from the simulation 
approach. Further parameter combinations can generate even more complex spatial dependence structures. It has 
been shown that the Monte Carlo optimization-based conditioning approach performs well for both, synthetic and 
real-world data. The presented approach is mainly useful for unconditional and conditional simulation. The direct 
estimation in the sense of Kriging requires further research. At the present interpolation is obtained using a large 
number of conditional simulations.

The cross-validation for the nitrate concentration examples demonstrated that the presented approach had a 
smaller estimation error than Ordinary Kriging. Further, it was shown that the presented approach resulted in a 
better distribution of uncertainty than Ordinary Kriging. This also means that the simulation leads to reasonable 
realizations.

Changing the linear function in Equations 9–13 to a continuous h(τ) can produce additional varieties of fields and 
may be used to generate fields with upper or lower tail dependence.

Figure 16. Upper: Mean (left) and standard deviation (right) over the 100 conditional realizations. Lower: Ordinary Kriging interpolation (left) and the corresponding 
estimation uncertainty in terms of the standard deviation (right).
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Figure 17. Box plots for the 50 conditioning points over 100 realizations where the blue “x” denotes the true value and the red circles highlight outliers. Note that there 
is no particular order in which the points are labeled from 1 to 50.

Figure 18. Map of Germany (left), Map of Baden-Württemberg with study area highlighted in red.
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Although all examples presented in this paper are 2D, it is straightforward to use the presented approach 
for 3D cases too. The conditioning procedure in 3D is the same as in the 2D case. This way, with relatively 
small computational efforts, large conditional 3D non-Gaussian fields can be simulated, orders of magni-
tude faster than for example, simulated annealing. Further, it is worth mentioning again, that the presented 
approach simulates non-Gaussian spatial structures directly rather than through a time-consuming optimiza-
tion process.

Figure 19. Mean (left) of 100 conditional realizations and Ordinary Kriging interpolation (right) of nitrate concentrations in mg/L.

Figure 20. Box plots for the 386 nitrate conditioning points over 100 realizations where the blue x denotes the true value.
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Data Availability Statement
The data and the Python code used in the paper are available at Hörning  (2023) under GNU General Public 
License v3.0.

References
Bárdossy, A. (2006). Copula-based geostatistical models for groundwater quality parameters. Water Resources Research, 42(W11416). https://

doi.org/10.1029/2005WR004754
Bárdossy, A. (2023). Changing correlations: A flexible definition of non-gaussian multivariate dependence. Stochastic Environmental Research 

and Risk Assessment, 37, 2619–2629. https://doi.org/10.1007/s00477-023-02408-1
Bárdossy, A., & Hörning, S. (2017). Process-driven direction-dependent asymmetry: Identification and quantification of directional dependence 

in spatial fields. Mathematical Geosciences, 45(4), 871–891. https://doi.org/10.1007/s11004-017-9682-1
Bárdossy, A., & Li, J. (2008). Geostatistical interpolation using copulas. Water Resources Research, 44, W07412. https://doi.

org/10.1029/2007WR006115
Deutsch, C. V. (1992). Annealing techniques applied to reservoir modeling and the integration of geological and engineering (well test) data. 

PhD Thesis.
Gomez-Hernandez, J., & Wen, X. (1998). To be or not to be multi-gaussian? A reflection on stochastic hydrogeology. Advances in Water 

Resources, 21, 47–61. https://doi.org/10.1016/s0309-1708(96)00031-0
Gräler, B. (2014). Modelling skewed spatial random fields through the spatial vine copula. Spatial Statistics, 10, 87–102. 

https://doi.org/10.1016/j.spasta.2014.01.001
Guthke, P., & Bárdossy, A. (2012). Reducing the number of MC runs with antithetic and common random fields. Advances in Water Resources, 

43, 1–13. https://doi.org/10.1016/j.advwatres.2012.03.014
Guthke, P., & Bárdossy, A. (2017). On the link between natural emergence and manifestation of a fundamental non-gaussian geostatistical prop-

erty: Asymmetry. Spatial Statistics, 20, 1–29. https://doi.org/10.1016/j.spasta.2017.01.003
Haslauer, C., Guthke, P., Bárdossy, A., & Sudicky, E. (2012). Effects of non-gaussian copula-based hydraulic conductivity fields on macrodisper-

sion. Water Resources Research, 48(7). https://doi.org/10.1029/2011wr011425
Hörning, S. (2023). Sebastianhoerning/laycop: Layercopula 1.1. [Software]. Zenodo. https://doi.org/10.5281/zenodo.7508645
Hörning, S., Sreekanth, J., & Bárdossy, A. (2019). Computational efficient inverse groundwater modeling using random mixing and whittaker–

shannon interpolation. Advances in Water Resources, 123, 109–119. https://doi.org/10.1016/j.advwatres.2018.11.012
Huang, J., Wang, C., Wang, W., Hu, X., Feng, W., & Yin, Y. (2022). A novel method of 3d multipoint geostatistical inversion using 2d training 

images. Lithosphere, 13. https://doi.org/10.2113/2022/5946595
Joe, H. (1997). Multivariate models and dependence concepts. Chapman Hall.
Journel, A. G. (2003). Multiple-point geostatistics: A state of the art. Stanford Center for Reservoir Forecasting.
Marcotte, D. (1996). Fast variogram computation with fft. Computers and Geosciences, 22(10), 1175–1186. https://doi.org/10.1016/

s0098-3004(96)00026-x
Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The direct sampling method to perform multiple-point geostatistical simulations. Water 

Resources Research, 46. https://doi.org/10.1029/2008WR007621
Nelsen, R. (1999). An introduction to copulas. Springer Verlag.

Figure 21. Distributions of 𝐴𝐴 𝐴𝐴
∗
𝑖𝑖
= 𝐹𝐹𝑧𝑧𝑧𝑧𝑧

𝑖𝑖
(𝑧𝑧(𝑧𝑧𝑖𝑖)) according to the presented copula simulation approach and Ordinary Kriging. 

The dashed blue line represents a uniform distribution.

Acknowledgments
Research leading to this publication was 
supported by the German Science Foun-
dation (DFG) under Grant BA 1150/24-1 
and by The University of Queensland 
Centre for Natural Gas and its industry 
members (APLNG, Arrow Energy, and 
Santos). Open access publishing facili-
tated by The University of Queensland, 
as part of the Wiley - The University of 
Queensland agreement via the Council of 
Australian University Librarians.

 19447973, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034446, W

iley O
nline L

ibrary on [18/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1029/2005WR004754
https://doi.org/10.1029/2005WR004754
https://doi.org/10.1007/s00477-023-02408-1
https://doi.org/10.1007/s11004-017-9682-1
https://doi.org/10.1029/2007WR006115
https://doi.org/10.1029/2007WR006115
https://doi.org/10.1016/s0309-1708(96)00031-0
https://doi.org/10.1016/j.spasta.2014.01.001
https://doi.org/10.1016/j.advwatres.2012.03.014
https://doi.org/10.1016/j.spasta.2017.01.003
https://doi.org/10.1029/2011wr011425
https://doi.org/10.5281/zenodo.7508645
https://doi.org/10.1016/j.advwatres.2018.11.012
https://doi.org/10.2113/2022/5946595
https://doi.org/10.1016/s0098-3004(96)00026-x
https://doi.org/10.1016/s0098-3004(96)00026-x
https://doi.org/10.1029/2008WR007621


Water Resources Research

BÁRDOSSY AND HÖRNING

10.1029/2023WR034446

24 of 24

Papalexiou, S. M., Serinaldi, F., & Porcu, E. (2021). Advancing space-time simulation of random fields: From storms to cyclones and beyond. 
Water Resources Research, 57(8). https://doi.org/10.1029/2020WR029466

Powell, M. J. D. (1964). An efficient method for finding the minimum of a function of several variables without calculating derivatives. The 
Computer Journal, 7(2), 155–162. https://doi.org/10.1093/comjnl/7.2.155

Ravalec, M. L., Noetinger, B., & Hu, L. Y. (2000). The FFT moving average (FFT-MA) generator: An efficient numerical method for generating 
and conditioning gaussian simulations. Mathematical Geology, 32(6), 701–723. https://doi.org/10.1023/a:1007542406333

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l'Institut de statistique de l'Université de Paris, 8, 
229–231.

Strebelle, S. (2002). Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34(1), 1–21. 
https://doi.org/10.1023/a:1014009426274

Zinn, B., & Harvey, C. (2003). When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in 
connected and multivariate gaussian hydraulic conductivity fields. Water Resources Research, 39, 1051. https://doi.org/10.1029/2001wr001146

 19447973, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034446, W

iley O
nline L

ibrary on [18/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1029/2020WR029466
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1023/a:1007542406333
https://doi.org/10.1023/a:1014009426274
https://doi.org/10.1029/2001wr001146

	Definition of Spatial Copula Based Dependence Using a Family of Non-Gaussian Spatial Random Fields
	Abstract
	1. Introduction
	2. Copulas
	3. Methodology
	3.1. Definition of the Non-Gaussian Field
	3.2. Parameters
	3.3. Numerical Simulation
	3.4. Conditioning
	3.5. Interpolation and Uncertainty Estimation

	4. Examples
	4.1. Parameter Estimation
	4.2. Parameter Estimation Example

	5. Applications
	5.1. Synthetic Conditional Simulation Example
	5.2. Groundwater Quality Parameter

	6. Discussion and Conclusions
	Data Availability Statement
	References


