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L'analyse des donnees est "un outil pour degager de la gangue des don
nees le pur diamant de la veridique nature". 

IP BENZECRI (according to [333]) 

Multivariate analysis is "a tool to extract from the gangue of the data the 
pure diamond of truthful nature". 



Preface to the 3rd edition 

Geostatistics has become an important methodology in environmental, c1imatological 
and ecological studies. So a new chapter demonstrating in a simple manner the ap
plication of cokriging to conductivity, salinity and chlorophyll measurements as well 
as numerical model output has been incorporated. Otherwise some recent material on 
collocated cokriging has been added, leading to aseparate chapter on this topic. Time 
was too short to inc1ude further results at the interface between geostatistics and data 
assimilation, which is a promising area of future developments (see reference [27]). 

The main addition, however, is a detailed treatment of geostatistics for selection 
problems, which features five new chapters on non linear methods. 

Fontainebleau, September 2002 HW 

Preface to the 2nd edition 

"Are you a statistician?" I have been asked. "Sort of ... " was my answer. A geostatis
tician is probably as much a statistician as a geophysicist is a physicist. The statisti
cian grows up, intellectually speaking, in the culture of the iid (independent identically 
distributed random variables) model, while the geostatistician is confronted with spa
tially/temporally correlated data right from the start. This changes radically the basic 
attitude when approaching a data set. 

The present new edition has benefited from a dozen reviews in statistical, applied 
mathematics, earth and life science journals. The following principal changes have 
been made. The statistical introductory chapter has been split into three separate chap
ters for improved darity. The ordinary kriging and cokriging chapters have been re
shaped. The part on non-stationary geostatistics was entirely rewritten and rearranged 
after fruitful discussions with Dietrich Stoyan. I have also received interesting com
ments from Vera Pawlowsky, Tim Haas, Gerard Biau and Laurent Bertino. Last but 
not least I wish to thank Wolfgang Engel from Springer-Verlag for his editorial advice. 

Fontainebleau, May 1998 HW 

Preface to the first edition 

Introducing geostatistics from a multivariate perspective is the main aim of this book. 
The idea took root while teaching geostatistics at the Centre de Geostatistique (Ecole 
des Mines de Paris) over the past ten years in the two postgraduate programs DEA and 
CFSG. A first script of lecture notes in French originated from this activity. 

A specialized course on Multivariate and Exploratory Geostatistics held in 
September 1993 in Paris (organized in collaboration with the Department of Statistics 
of Trinity College Dublin) was the occasion to test some of the material on a pluridis
ciplinary audience. Another important opportunity arose last year when giving a lec
ture on Spatial Statistics during the summer term at the Department of Statistics of 



the University of Washington at Seattle, where part of this manuscript was distributed 
in an early version. Short accounts were also given during COMETI and TEMPUS 
courses on geostatistics for environmental studies in Fontainebleau, Freiberg, Rome 
and Prague, which were sponsored by the European Community. 

I wish to thank the participants of these various courses for their stimulating ques
tions and comments. Among the organizers of these courses, I particularly want to 
acknowledge the support received from Georges Matheron, Pierre Chauvet, Margaret 
Armstrong, John Haslett and Paul Sampson. Michel Grzebyk has made valuable com
ments on Chapters 29 and 30, which partly summarize some of his contributions to 
the field. 

Fontainebleau, May 1995 HW 
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1 Introduction 

Geostatistics is a rapidly evolving branch of applied mathematics which originated in 
the mining industry in the early fifties to help improve ore reserve calculation. The first 
steps were taken in South Afriea, with the work of the mining engineer DG KRIGE 
and the statistician HS SICHEL (see reference number [164] in the bibliography). 

The techniques attracted the attention of French mining engineers and in particular 
of Georges MATHERON (1930-2000), whoput together KRIGE's innovative concepts 
and set them in a single powerful framework with his Theory o[ Regionalized Variables 
[195, 196, 197, 198, 200, 63, 2]. 

Originally developed for solving ore reserve estimation problems the techniques 
spread in the seventies into other areas of the earth sciences with the advent of high
speed computers. They are nowadays popular in many fields of science and industry 
where there is a need for evaluating spatially or temporally correlated data. A first 
international meeting on the subject was organized in Rome, Italy in 1975 [132]. Fur
ther congresses were held at Lake Tahoe, U.S.A. in 1983 [331], at Avignon, France 
in 1988 [11], at Troia, Portugal in 1992 [305], at Montreal, Canada in 1994 [92], 
at Wollongong, Australia in 1996 [19], at Cape Town, South Africa in 2000 [161]. 
Three well attended European Conferences on Geostatistics for Environmental Appli
cations took place at Lisbon in 1996 [306], at Valencia in 1998 [116] and at Avignon 
in 2000 [225]. 

As geostatistics is now incorporating an increasing number of methods, theories 
and techniques, it sounds like an impossible task to give a fuH account of all devel
opments in a single volume whieh is not intended to be encyc1opedic.1 So a selection 
of topies had to be made for the sake of convenience and we start by presenting the 
contents of the book from the perspective of a few general categories. 

The analysis of spatial and temporal phenomena will be discussed keeping three 
issues in mind 

Data description. The data need to be explored for spatial, temporal and multivari
ate structure and checked for outlying values which mask structure. Modern 
computer technology with its high-power graphie screens displaying multiple, 
linkable windows allows for dynamic simultaneous views on the data. A map 
of the position of samples in space or representations along time can be linked 
with histograms, correlation diagrams, variogram c10uds and experimental var
iograms. First ideas about the spatial, time and multivariate structure emerge 

lCHILES & DELFINER [51] have neverthe\ess managed this tour de force and produced a major ref
erence text that gives a complete pieture of the whole range of geostatistical techniques in one volume. 



2 Introduction 

from a variety of such simple displays. 

Interpretation. The graphical displays gained from the numerical information are 
evaluated by taking into account past experience on similar data and scientific 
facts related to the variables under study. The interpretation of the spatial or 
time structure, the associations and the causal relations between variables are 
built into a model which is fitted to the data. This model not only describes the 
phenomenon at sampIe locations, but it is usually also valid for the spatial or 
time continuum in the sampled region and it thus represents a step beyond the 
information contained in the numerical data. 

Estimation. Armed with a model of the variation in the spatial or temporal continuum, 
the next objective can be to estimate values of the phenomenon under study at 
various scales and at locations different from the sam pIe points. The methods 
to perform this estimation are based on least squares and need to be adapted 
to a wide variety of model formulations in different situations and for different 
problems encountered in practice. 

We have decided to deal only with these three issues, leaving aside questions of 
simulation and control which would have easily doubled the length of the book and 
changed its scope. To get an idea of what portion of geostatistics is actually covered 
it is convenient to introduce the following common subdivision into 

1. Linear stationary geostatistics, 

2. Non-linear geostatistics, 

3. Non-stationary geostatistics, 

4. Geostatistical simulation. 

We shall mainly cover the first topic, examining single- and muIti-variate methods 
based on linear combinations of the sampIe values and we shall assurne that the data 
stern from the realization of a set of random functions which are stationary or, at least, 
whose spatial or time increments are stationary. 

The second topic deals with the estimation of the proportion of values above a 
fixed value for distributions that are generally not Gaussian. This requires non linear 
techniques based on multivariate models for bivariate distributions and an introduc
tory treatment has therefore been included. While starting with lognormal kriging it 
focuses on isofactorial models which provide a coherent model of the coregionaliza
tion of indicators and explicit change of support models. The more primitive methods 
of indicator cokriging, which give only unsatisfactory solutions to these problems are 
exposed in [121, 51] and will not be treated in this book. An important omission is 
also the cokriging of orthogonal indicator residuals [267, 270]. 

A short review of the third topic is given in the last three chapters of the book 
with the aim of providing a better understanding of the status of drift functions which 
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are not translation invariant. We had no intention of giving an extensive treatment of 
non-stationary geostatistics which would justify a mono graph on its own. 

The fourth topic, i.e. stochastic simulation of regionalized variables, will not at all 
be treated in this volume. A monograph entirely devoted to geostatistical simulation 
has just been published by LANTUEJOUL [178]. 

Multivariate Geostatistics consists of thirty-nine short chapters which each on av
erage represent the contents of a two hour lecture. The material is subdivided into six 
parts. 

Part A reviews the basic concepts of mean, vatiance, covariance, variance-covariance 
matrix, mathematical expectation, linear regression, multiple linear regression. 
The transposition of multiple linear regression into a spatial context is explained, 
where regression receives the name of kriging. The problem of estimating the 
mean of spatially or temporally correlated data is then solved by kriging. 

Part B offers a detailed introduction to linear geostatistics for a single variable. Af
ter presenting the random function model and the concept of stationarity, the 
display of spatial variation with a variogram c10ud is discussed. The necessity 
of replacing the experimental variogram, obtained from the variogram c1oud, 
by a theoretical variogram is explained. The theoretieal variogram and the co
variance function are introduced together with the assumptions of stationarity 
they imply. As variogram models are frequently derived from covariance func
tions, a few basic isotropic covariance models are presented. Stationarity means 
translation-invariance of the moments of the random function, while isotropy is 
a corresponding rotation-invariance. In the case of geometric anisotropy a lin
ear transformation of space is defined to adapt the basieally isotropie variogram 
models to this situation. 

An important feature of spatial or temporal data is that a measurement refers to 
a given volume of space or an interval of time, whieh is called the support of the 
measurement. Extension and dispersion variances take account of the support of 
the regionalized variable and furthermore incorporate the description of spatial 
correlation provided by the variogram model. 

Spatial regression techniques known as kriging draw on the variogram or the 
covariance function for estimating either the mean in a region or values at par
ticular locations of the region. The weights computed by kriging to estimate 
these quantities are distributed around the estimation location in a way that can 
be understood by looking at simple sam pIe configurations. 

The linear model of regionalization characterizes distinct spatial or time scales 
of a phenomenon. Kriging techniques are available to extract the variation per
taining to a specific scale and to map a corresponding component. As a byprod
uct the theory around the analysis and filtering of characteristic scales gives a 
better understanding of how and why ordinary kriging provides a smoothed im
age of a regionalized variable which has been sampled with irregularly spaced 
data. 
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Part C presents three well-known methods of multivariate analysis. Principal com
ponent analysis is the simplest and most widely used method to define factors 
explaining the multivariate correlation structure. Canonieal analysis generalizes 
the method to the case of two groups of variables. Correspondence analysis is an 
application of canonical analysis to two qualitative variables coded into disjunc
tive tables. The transposition of the latter, by coding a quantitative variable into 
disjunctive tables, has yielded models used in disjunctive kriging, a technique 
of non-linear geostatistics. 

Part D extends linear geostatisties to the multivariate case. The properties of the 
cross variogram and the cross covariance function are discussed and compared. 
The characterization of matriees of covariance functions is a central problem of 
multivariate geostatisties. Two models, the intrinsie correlation model and the 
nested multivariate model, are examined in the light of two multivariate random 
function models, the linear and the bilinear coregionalization models. Cokrig
ing of real data is discussed in detail in three separate chapters, depending on 
whether or not all variables involved have been sampled at the same locations 
and whether the auxiliary variables are densely sampled in space. A detailed 
cokriging case study using data from the Ebro estuary in Spain is proposed in 
aseparate chapter. The cokriging of a complex variable is based on a bivariate 
coregionalization model between the real and the imaginary part and its com
parison with complex kriging provides a rieh reservoir of problems for teasing 
students. The modeling of the complex covariance function in complex kriging 
opens the gate to the bilinear coregionalization model which allows for non-even 
cross covariance functions between real random functions. 

Part E introduces to non-linear methods of geostatisties. The selection problem 
posed by a threshold that serves as basis of adecision is discussed and several 
statistics based on thresholds, the selectivity curves, are presented. Lognormal 
kriging is a simple entry point to non linear geostatistieal methods and perrnits 
with little effort to discuss and exercise the central questions of selective geo
statisties. The severe limitations of the lognorrnal model are then resolved in the 
following chapters by Gaussian and gamma anamorphosis, isofactorial change 
of support and kriging methods based on discrete point-block models. 

Part F discusses phenomena involving a non-stationary component called the drift. 
When the drift functions are translation-invariant, generalized covariance func
tions can be defined in the framework of the rieh theory of intrinsic random 
functions of order k. In multivariate problems auxiliary variables can be incor
porated into universal kriging as external drift functions which however are not 
translation-invariant. 

The Appendix contains two additional chapters on matrix algebra and linear re
gression theory in a notation consistent with the rest of the material. It also contains 
a list of common covariance functions and variograms, additional exercises and solu
tions to the exercises. References classified according to topies of theory and fields 
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of applications are found at the end of the book, together with a list of sources of 
geostatistical computer software, the bibliography and a subject index. 

Geostatistics has become a branch of its own of applied stochastics (Greek: 
aTOxaaTU'l,6<:;, the art of aiming, skillful guessing, estimation), which encompasses 
probability theory and mathematical statistics. Like in other areas of applied mathe
matics, three levels can be distinguished: pure theory, sound application of theory and 
data cooking. This book is dedicated to the second aspect, keeping at the one end the 
mathematics as elementary as possible, but seeking at the other end to avoid simplified 
recipes, which anyway may change with the rapidly evolving practice of geostatistics. 



PartA 

From Statistics to Geostatistics 



2 Mean, Variance, Covariance 

In this chapter the elementary concepts of mean, variance and covariance are pre
sented. The expectation operator is introduced, which serves to compute these quan
tities in the framework of probabilistic models. 

The mean: center of mass 

To introduce the notion of mean value let us take an example from physics. 
Seven weights are hanging on a bar whose own weight is negligible. The locations 

z on the bar at which the weights are suspended are denoted by 

z = 5, 5.5, 6, 6.5, 7, 7.5, 8, 

as shown on Figure 2.1. The mass w (z) of the weights is 

w(z) = 3, 4, 6, 3, 4, 4, 2. 

The location z where the bar, when suspended, stays in equilibrium is evidently 
calculated using a weighted average 

(2.1) 

where 

(2.2) 

are norrned weights with 

(2.3) 

In this example the weights W(Zk) can be disassembled into n= 7 elementary 
weights v(z",) of unit mass. 
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center of mass 

5 6 7 8 

elementary weight v 

, weight w 

Figure 2.1: Bar with suspended weights w, subdivided into elementary weights v. 

The normed weights p(za) corresponding to the elementary weights are equal to 
1/ n and the location of equilibrium of the bar, its center of mass, is computed as 

n 1 n 

Z = '2:ZaP(Za) = - LZa = 6.4. 
n 

a=l a=l 
(2.4) 

Transposing the physical problem at hand into a probabilistic context, we realize 
that z is the mean value m* of data Za, 

1 n 

* - '" m - - LZa, 

n a=l 
(2.5) 

and that the normed weights p(Zk) or p(za) can be interpreted as probabilities, i.e. the 
frequency of appearance of the values Zk or Za. The Zk represent a grouping of the Za 
and have the meaning of classes ofvalues Za. The weights P can be called probabilities 
as they fulfill the requirements: 0 :'::: P :'::: 1 and 2: P = 1. 

Another characteristic value which can be ca1culated is the average squared dis
tance to the center of mass 

n 

a=l 
.83. 

This average squared distance will be called the experimental variance, 

1 n 
82 = - L(Za - m*)2, 

n 
a=l 

(2.6) 

(2.7) 

which gives an indication about the dispersion of the data around the center of mass 
m * of the data. 
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Figure 2.2: Histogram. 

COMMENT 2.1 In the framework of c1assical statistics based on a hypothesis of in
dependence (i.e. the sampIes are considered as realizations of independent identically 
distributed random variables) the sampIe variance would usually be defined as 

(2.8) 

dividing by n-l instead of n. Dealing with spatially or temporally correlated data, 
we favour in this text (like e.g. PRIESTLEY [251 j, p48) the more straightforward 
definition (2.7). 

In fact, what has been introduced here under the cover of a weightless bar with 
weights of different size attached to it, can be seen as an upside down histogram, as 
represented on Figure 2.2. 

An alternate way to represent the frequencies of the values z is by cumulating 
the frequencies from left to right as on Figure 2.3, where a cumulative histogram is 
shown. 

Distribution function 

Suppose we draw randomly values z from a set of values Z. We call each value z a 
realization of a random variable Z. The mathematical idealization of the cumulative 
histogram, for a random variable Z that takes values in lR, is the probability distribu
tionfunction F(z) defined as 

F(z) = P(Z< z) with - 00 < z < 00. (2.9) 

The distribution function indicates the probability P that a value of the random 
variable Z is below z. The probability P actually teIls the proportion of values of Z 
that are below a given value z. 
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Figure 2.3: Cumulative histogram. 

If we partition z into intervals of infinitesimal length dz, the prob ability that a 
realization of Z belongs to such an interval is F(dz). We shall only consider differen
tiable distribution functions. The derivative of the frequency distribution is the density 
function p( z) 

F(dz) p(z) dz. (2.10) 

Expectation 

The idealization of the concept of mean value is the mathematical expectation or ex
pected value. The expected value of Z, also called the first moment of the random 
variable, is defined as the integral over the realizations z of Z weighted by the density 
function 

E[Z] J zp(z) dz = m. 

z E IR. 

(2.11) 

The expectation is a linear operator, so that computations are easy. Let a and b 
be constants; as they are deterministic (i.e. non random) we denote them with small 
letters, reserving capitals for randorn variables. From the definition (2.11) we easily 
deduce that 

E[a] 
E[bZ] 

a, 

bE[Z], 
(2.12) 

(2.13) 
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and that 

I E[a+bZ] = a+bE[Z] I. (2.14) 

The second moment of the random variable is the expectation of its squared value 

E[Z2] = f z2 p(z)dz 

z E lR 

and the k-th moment is defined as the expected value of the k-th power of Z 

E[Zk] = f zkp(z)dz. 

z E lR 

(2.15) 

(2.16) 

When Z is a discrete random variable with states Zi, the integral in the definition 
(2.11) of the mathematical expectation is replaced by a sum 

E[Z] = LZiPi = m, (2.17) 

where Pi = P(Z = Zi) is the probability that Z takes the value Zi. We are back to the 
weighted average of expression (2.4). 

Variance 

The variance (J2 of the randorn variable Z, called the theoretical variance, is defined 
as 

(2.18) 

Multiplying out we get 

var(Z) = E[ Z2 + m 2 - 2mZ] 

and, as the expectation is a linear operator, 

I var(Z) = E[Z2]- (E[Z])21· (2.19) 

The variance can thus be expressed as the difference between the second moment 
and the squared first moment. 

EXERCISE 2.2 Let a and b be constants. Show that 

var( a Z) = a2 var( Z) (2.20) 

and that 

var(Z + b) var(Z). (2.21) 
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Covariance 

The theoretical covariance O"ij between two randorn variables Zi and Zj is defined as 

E[ (Zi - E[ Zi]) . (Zj - E[ Zj]) 1 
E[ (Zi - mi) . (Zj - mj) 1 = O"ij, 

where mi and mj are the rneans of the two randorn variables. 
Note that the covariance of Zi with itself is the variance of Zi, 

(2.22) 

(2.23) 

The covariance divided by the square root of the variances is called the theoretical 
correlation coefficient 

Pij (2.24) 

EXERCISE 2.3 Two randorn variables whose covariance is zero are said to be uncor
related. Show that the variance of the sum of two uncorrelated variables is equal to 
the surn of the variances, that is 

var(Zi) + var(Zj), (2.25) 

when COV(Zi, Zj) = o. 



3 Linear Regression and Simple Kriging 

Linear regression is presented in the case of two variables and then extended to the 
multivariate case. Simple kriging is a transposition of multiple regression in a spatial 
context. The algebraic problems generated by missing values in the multivariate case 
serve as a motivation for introducing a covariance function in the spatial case. 

Experimental covariance 

In the case of two variables, Zl and Z2 say, the data values can be represented on a 
scatter diagram like on Figure 3.1, which shows the c10ud of data points in the plane 
spanned by two perpendicular axes, one for each variable. The center of mass of the 
data c10ud is the point defined by the two means (mi, m~). A way to measure the 
dispersion of the data c10ud around its center of mass is to multiply the difference be
tween a value of one variable and its mean, called a residual, with the corresponding 
residual of the other variable. The average of the products of residuals is the experi
mental covariance 

(3.1) 

When the residual of Zl tends to have the same sign as the residual of Z2 on aver
age, the covariance is positive, while when the two residuals are of opposite sign on 
average, the covariance is negative. When a large value of one residual is on average 
associated with a large value of the residual of the other variable, the covariance has a 
large positive or negative value. Thus the covariance measures on one hand the liking 
or disliking of two variables through its sign and on the other hand the strength of this 
relationship by its absolute value. 

We see that when Zl is identical with Z2, the covariance is equal to the variance. 
It is often desirable to compare the covariances of pairs of variables. When the 

units of the variables are not comparable, especially when they are of a different type, 
e.g. cm, kg, %, ... , it is preferable to standardize each variable z, centering first its 
values around the center of mass by subtracting the mean, and subsequently norming 
the distances of the values to the center of mass by dividing them with the standard 
deviation, which is the square root of the experimental variance 8 2• The standardized 
variable z 

z-m* 

8 
(3.2) 
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Figure 3.1: Scatter diagram showing the cloud of sampie values and the center of mass 
(m~,miJ 

has a variance equal to 1. The covariance of two standardized variables Zl and Z2 is a 
normed quantity rij, called the experimental correlation coefficient, with bounds 

-1 < r·· < 1. - '] - (3.3) 

The correlation coefficient rij can also be calculated directly from Zi and Zj divid
ing their covariance by the product of their standard deviations 

(3.4) 

Please note that the experimental variance of Zi is also the covariance of Zi with 
itself 

(3.5) 

so that Si stands for the standard deviation. 

Linear regression 

Two variables that have a correlation coefficient different from zero are said to be 
correlated. It is often reasonable to suppose that some of the information conveyed by 
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the measured values is common to two correlated variables. Consequently it seems 
interesting to look for a function which, knowing a value of one variable, yields the 
best approximation to the unknown value of a second variable. 

We shall call "best" or "optimal" a function z* of a given type which minimizes 
the mean squared distance dist2 (z*) to the sampies 

(3.6) 

This is intuitively appealing as using this criterion the best function z* is the one 
which passes dosest to the data values. 

Let us take two variables Zl, Z2 and denote by zr the function which approximates 
best unknown values of Zl. 

The simplest type of approximation of Zl is by a constant c, so let 

z~ = c, (3.7) 

and this does not involve Z2. The average distance between the data and the constant 
is 

(3.8) 

The minimum is achieved for a value of c for which the first derivative of the 
distance function dise ( c) is zero 

ßdist2 (c) 
0 (3.9) 

Oe 

(~~(zr - c?)' 0 

1 n 
- 2 czr)' n L ((zr? + c2 0 

a=l 

1 n 
- L(2c - 2zf) 0 
n 

<>=1 

1t a n Zl 
0=1 

c. (3.10) 

The constant c which minimizes the average square distance to the data of Zl is the 
mean 

Jc (3.11) 
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The mean is the point nearest to the data in the least squares sense. Replacing c 
by mt in expression (3.8), we see that the minimal distance for the optimal estimator 
zr = mt is the experimental variance 

(3.12) 

A more sophisticated function that can be chosen to approximate Zl is a linear 
function of Z2 

(3.13) 

which defines a straight line through the data c10ud with a slope a and an intercept b. 
The distance between the data of Zl and the straight line depends on the two pa

rameters a and b: 

dise(a, b) 
1 n 

r;: ~)zf - a z~ - b)2 
0=1 

(3.14) 

1 n 

r;: L ((Zf)2 + a2(z~? + b2 - 2azf z~ - 2bzf + 2abz~) 
0=1 

1 n 

= -2 bm~ + 2abm; + r;: L ((zf)2 + a2(z~)2 + b2 - 2 azf z~) . 
0=1 

If we shift the data c10ud and the straight line to the center of mass, this translation 
does not change the slope of the straight line. We can thus consider, without loss of 
generality, the special case mt = m5 = 0 to determine the slope of the straight line, 
introducing a new intercept b'. In the new translated coordinate system the distance is 

(3.15) 

where b' is the intercept of the shifted straight line. 
At the minimum, the partial first derivative of the distance function with respect to 

ais zero 

ß dist2 (a, b') 
ßa 

o 

2 a 8~ - 2812 0, 

so that the slope is 

As the minimum with respect to b' is reached for 

ßdise(a,b') 
=2b'=0 {::::::::> 

ßb' 
b' = 0, 

(3.16) 

(3.17) 

(3.18) 
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Figure 3.2: Data cloud with regression line zr. 

we conc1ude that the optimal straight line passes through the center of mass. 
Coming back to the more general case mi f=. 0, mi f=. 0, the optimal value of b 

(knowing a) is 

° (3.19) 

1 n 

- ~)2 b - 2 zr + 2 a z~) 0, 
n 0=1 

so that the intercept is 

mi -ami I· (3.20) 

The best straight line approximating the variable Zl knowing Z2, called tbe linear 
regression of Z2 on Zt, is represented on Figure 3.2. 

Rewriting the linear regression, using the values of the coefficients in (3.17) and 
(3.20) we have 

z* 1 (3.21) 
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so that 

(3.22) 

where Z2 is a standardized variable as defined in the expression (3.2). 
The linear regression is an improvement over the approximation by a constant. 

The proportion rl2 of the normed residual Z2, rescaled with the standard deviation Sb 

is added to the mean mt. The linear regression is constant and equal to mean in the 
case of a zero correlation coefficient. 

The improvement can be evaluated by computing the minimal squared distance 

dist~in (a, b) (3.23) 

and finally we get 

(3.24) 

The stronger the correlation between two variables, the smaller the distance to the 
optimal straight line, the higher the explanative power of this straight line and the 
lower the expected average error. The improvement of the linear regression (3.22) 
with respect to the approximation by the constant mt alone depends on the strength 
of the correlation rl2 between the two variables Zl and Z2. The higher the squared 
correlation, the doser (in the least squares sense) the regression line fits the bivariate 
data doud. 

Variance-covariance matrix 

Take N different types of measurements Zi. Suppose they have been sampled n times, 
and arrange them into a rectangular table, the data matrix Z: 

Variables 
Zll Zli ZlN 

(3.25) 
Samples 

Zal Zai ZaN 

Znl Zni ZnN 

Define a matrix M with the same dimension n x N as Z, replicating n times in its 
columns the mean value of each variable 

m* 1 m'!" • m* N 

M mt m* • m* N (3.26) 

mt m* • m* N 
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A matrix Zc of eentered variables is obtained by subtraeting M from the raw data 
matrix 

Z M. (3.27) 

The matrix V of experimental variances and covarianees is ca1eulated by premulti
plying Zc with its matrix transpose Z~ (the T indicates matrix transposition, as defined 
in the appendix on Matrix Algebra) and dividing by the number of sampies 

v = ~ZTZ c c n 

var(zt) cov(zl, Zj) COV(ZI,ZN) 

= COV(Zi' ZI) var(zi) COV(Zi,ZN) 

COV(ZN, ZI) ... COV(ZN, Zj) var(zN) 

S11 Slj SIN 

Sil Sii SiN (3.28) 

SNI ... SNj SNN 

The variance-eovariance matrix V is symmetrie. As it is the result of a produet 
AT A, where A = Jn Zc, it is nonnegative definite. The notion of nonnegative defi
niteness of the varianee-covariance matrix plays an important role in theory and also 
has praetieal implieations. The definition of nonnegative definiteness together with 
three eriteria is given in the appendix on Matrix Algebra on p324. 

Multiple linear regression 

Having a set of N auxiliary variables Z;, i = 1, ... , N, it is often desirable to estimate 
values of a main variable Zo using a linear funetion of the Nother variables. 

A multiple regression plane Zu in N + 1 dimensional space is given by a linear 
eombination of the residuals of the N variables with a set of eoefficients ai 

N 

z~ = m~ + Lai(Zi - m:), (3.29) 
;=1 

where mt are the respective means of the different variables. 
For n sampies we have the matrix equation 

Z~ = mo+(Z-M)a. (3.30) 
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The distance between Zo and the hyperplane is 

dist2 (a) .!. (zo - z~)T (zo - z~) 
n 

= var(zo) + aTVa - 2 aT Vo, 

where Vo is the vector of covariances between Zo and Zi, i = 1, ... , N. 
The minimum is found for 

odist2 (a) 
0 

oa 

~ 2Va - 2vo 0 

~ Va = Vo· 

This system of linear equations 

( va,(z.) 

COV(Z:N, Zl) 

'Ov(z;,ZN)) 
var(zN) (] ( oov(~., z.) ) 

cov(Zo, ZN) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

has exact1y one solution if the determinant of the matrix V is different from zero. 
The minimal distance resulting from ilie optimal coefficients is 

(3.35) 

To make sure that iliis optimal distance is not negative, it has to be checked be
forehand that the augmented matrix Vo of variances and covariances for all N + 1 
variables 

( 
var(zo) 

Vo = : 

COV(ZN,ZO) 

(3.36) 

is nonnegative definite. 

EXAMPLE 3.1 (MISSING VALUES) In the following situation a major problem can 
arise. Suppose that for some variables data values are missing for some sampIes. If 
the variances and covariances are naively calculated on the entire set, then the vari
ances and covariances will have been obtained trom subsets of sampIes with a varying 
size. The matrix Vo assembled with these variance-covariance values stemming trom 
different sampIe subsets can be indefinite, i.e. not a variance-covariance matrix. 

This is illustrated with a simple numerica1 example involving three sampIes and 
three variables. A data value of Zo is missing for the first sampIe. The eight data values 
are 

Zo Zl Z2 

Sampie 1 3. 5. (3.37) 
Sampie 2 3. 2. 2. 
Sampie 3 l. 4. 5. 
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The means are m~ = 2, mt = 3, m~ = 4. We center the three variables and 
obtain the following matrix Vo of variances and covariances 

1 -1 
3 
2 

Vo 
2 

(3.38) -1 - 1 
3 

3 
2 

1 2 

which is not nonnegative definite because one of the minors of order two is negative 
(following a criterion given on p325) 

det ( 1 
-1 

The linear regression equations for zn 

Va 

1 

3' ( 
1 -~) d t 2 

e 3 
-- 2 

2 

Vo 

can be solved as the matrix V is not singular. The solution is 

(3.39) 

(3.40) 

The minimal distance achieved by this "optimal" regression line is however nega
tive 

1 

2 

and the whole operation turns out to be meaningless! 

(3.41) 

The lesson from this is that the experimental variances and covariances for a set 
of variables have to be calculated on the same subset of sampies. This is the sub set of 
sampies with no values missing for any variable. 

Similarly, in a spatial context we wish to estimate values at locations where no 
measurement has been made using the data from neighboring locations. We see im
mediately that there is a need for a covariance function defined in such a way that 
the corresponding matrix Vo is nonnegative definite. The spatial multiple regression 
based on a covariance function model is called simple kriging. We briefty sketch this 
in the next section. 
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Figure 3.3: Data points X u and the estimation point Xo in a spatial domain V. 

Simple kriging 

Suppose we have data for one type of rneasurement z at various locations X u of a 
spatial dornain V. Take the data locations X u and construct at each of the n locations 
a randorn variable Z(xu ). Take an additionallocation Xo and let Z(xo) be a randorn 
variable at Xo. Further assurne that these randorn variables are a subset of an infinite 
collection of randorn variables called a random function Z (x) defined at any loeation 
x of the dornain V. We assurne the randorn function is second-order stationary. This 
rneans that the expectation and the covariance are both translation invariant over the 
dornain, i.e. for a vector h linking any two points x and x+h in the dornain 

E[Z(x+h) 1 

cov [Z(x+h), Z(x)] 

E[ Z(x)], 

C(h). 

(3.42) 

(3.43) 

The expected value E[ Z(x) 1 = m is the same at any point x of the domain. The 
covariance between any pair of locations depends only on the vector h which separates 
thern. 

The problem of interest is to build a weighted average to rnake an estimation of a 
value at a point Xo using information at points x u , a = 1, ... ,n, see Figure 3.3. This 
estimation procedure should be based on the knowledge of the covariances between 
the random variables at the points involved. The answer closely resernbles multiple 
regression transposed into a spatial context where the Z (xu ) play the role of regressors 
on a regressand Z(xo). This spatial regression bears the name of simple kriging 
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(after the mining engineer DG KRIGE). With a mean m supposed constant over the 
whole domain and calculated as the average of the data, simple kriging is used to 
estimate residuals from this reference value m given apriori. Therefore simple kriging 
is sometimes called kriging with known mean. 

In analogy with multiple regression the weighted average for this estimation is 
defined as 

n 

Z*(xo) = m + L Wo (Z(xoJ - m), (3.44) 
0=1 

where Wo are weights attached to the residuals Z(xo ) -mo Note that unlike in multiple 
regression the mean m is the same for alllocations due to the stationarity assumption. 

The estimation error is the difference between the estimated and the true value at 
Xo 

Z*(xo) - Z(xo). (3.45) 

The estimator is said to be unbiased if the estimation error is nil on average 

n 

E[ Z*(xo) - Z(Xo) 1 = m + L Wo (E[ Z(xo ) 1 - m) - E[ Z(Xo) 1 
0=1 

n 

m+ Lwo(m-m)-m 
0=1 

= o. (3.46) 

The variance of the estimation error, the estimation variance O"~, then is simply 
expressed as 

O"~ = var(Z*(xo) - Z(xo)) = E[ (Z*(xo) - Z(XO))2]. (3.47) 

Expanding this expression 

E[ (Z*(XO))2 + (Z(xo))2 - 2 Z*(xo) Z(xo) 1 (3.48) 

n n n 

0=1 ß=1 0=1 

In computing the last equation we have written: 

(3.49) 

because the spatial covariances depend only on the difference vector between points, 
following our stationarity assumptions (3.42) and (3.43). 

The estimation variance is minimal where its first derivative is zero 

80"~ 
8wo 

= 0 for a = 1, ... , n. (3.50) 



26 From Statistics to Geostatistics 

Explicitly we have, for eaeh a= 1, ... , n, 

n 

2 L wß C(x",-xß) - 2 C(x,,-Xo) 0, 
ß=1 

and the equation system for simple kriging is written 

n 

L wß C(x",-xß) = C(x",-xo) 
ß=1 

fora= 1, ... ,n. 

(3.51) 

(3.52) 

The left hand side of the equations describes the covariances between the loea
tions. The right hand side describes the covariance between eaeh data loeation and the 
loeation where an estimate is sought. The resolution of the system yields the optimal 
kriging weights w"'. 

The operation of simple kriging ean be repeated at regular intervals displacing 
eaeh time the loeation xo. A regular grid of kriging estimates is obtained which ean 
be contoured for representation as a map. 

A seeond quantity of interest is the optimal variance for eaeh loeation xo. It is 
obtained by substituting the left hand of the kriging system by its right hand side in 
the first term of the expression of the estimation variance a~. This is the variance of 
simple kriging 

n n 

a~K LW", I C(X",-Xo) 1+ C(Xo - Xo) - 2 L W", C(X",-Xo) 
",=1 

n 

C(O) - LW", C(x",-xo). (3.53) 
",=1 

When sampIe loeations are scattered irregularly in space it is worthwhile to pro
duee a map of the kriging variance as a eomplement to the map of kriged estimates. 
It gives an appreciation of the varying precision of the kriged estimates due to the 
irregular disposition of informative points. 



4 Kriging the Mean 

The mean value of sampies from a geographical space can be estimated, either using 
the arithmetic mean or by constructing a weighted average integrating the knowledge 
of the spatial correlation of the sampies. The two approaches are developped and it 
turns out that the solution of kriging the mean reduces to the arithmetic mean when 
there is no spatial correlation between data locations. 

Arithmetic mean and its estimation variance 

We denote by z the realization of a random variable Z. Suppose we have n measure
ments z'" where 0: is an index numbering the sampies from 1 to n. This is our data. We 
introduce a probabilistic model by considering that each Za is a realization of a ran
dom variable Za and we further assurne that the random variables are independent and 
identically distributed (iid). This means that each sampie is a realization of aseparate 
random variable and that all these random variables have the same distribution. The 
random variables are assumed independent which implies that they are uncorrelated 
(the converse being true only for Gaussian random variables). 

Let us assurne we know the variance a 2 of the random variables Za (they have the 
same variance as they all have the same distribution). We do not know the mean m 
and wish to estimate it from the data Za using the arithmetic mean as an estimator 

1 n 

m'l = ~ Lz". n 
,,=1 

(4.1) 

Imagine we would take many times n sam pies Z" under unchanged conditions. As 
we assurne some randomness we c1early would not get identical values each time and 
the arithmetic mean would each time different. Thus we can consider m'l itself as a 
realization of a random variable and write 

1 n 

M1 = ~LZ". n 
a=1 

(4.2) 

What is the average value of MI? Dur probabilistic model allows to compute it 
easilyas 

E[M1l m. (4.3) 
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So the estimated mean ftuctuates around the true mean and is on average equal to 
it. If we call M A - m the estimation error associated with the arithmetic mean, we see 
that the error is zero on average 

E[MA -m] = O. (4.4) 

The use of the arithmetic mean as an estimator of the true mean does not lead to a 
systematic error and the estimator is said to be unbiased. 

What is the average ftuctuation of the arithmetic mean around the true mean? This 
can be characterized by the variance al of the estimator 

1 n 1 n 

var(M1) = var( - E Za) = 2 var(E Za) 
n n a=1 a=1 

(4.5) 

using relation (2.20). Applying relation (2.25) to the uncorrelated identically dis
tributed random variables we get 

I n 2 

2 '"""' a aA = 2 ~ var(Za) = -. 
n n a=1 

(4.6) 

So the distribution of M A has a variance n times smaller than that of the random 
variables Z. We can view the variance of the estimator also as an estimation variance 
a~, i.e. the variance of the estimation error MA - m, because by relation (2.21) we 
have 

var(M1 - m) var(M1) 
n 

(4.7) 

Estimating the mean with spatial correlation 

When sampies have been taken at irregular spacing in a domain V like on Figure 4.1, 
a quantity of interest is the value of the mean m. We assurne again that each sampie 
z(xa ) is a realization of a random variable Z(xa) and that the random variables are 
identically distributed. 

A first approach for estimating m is to use the arithmetic mean 

1 n 

M1 = - E Z(xa ). 
n a=1 

(4.8) 

However the sam pies from a spatial domain cannot in general be assumed inde
pendent. This implies that the random variables at two different locations are usually 
correlated, especially when they are near to each other in space. 

A second approach to estimate m is to use a weighted average 

n 

M* = EWaZ(xa) (4.9) 
a=1 

with unknown weights Wa. 
How best choose the weights wa ? We have to specify the problem further. 
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• 
• 

Figure 4.1: A domain with irregularly spaced sampie points. 

No systematic bias 

We need to assurne that the rnean exists at all points of the region 

E[Z(x)] = m for all xE V. 

We want the estirnation error 

to be zero on average 

M* 
'------v------' 

estirnated value 
~ 

true value 

E[ M* -m] = 0, 

i.e. we do not wish to have a systernatic bias in our estirnation procedure. 
This can be achieved by constraining the weights Wo. to surn up to one 

n 

LWo. = l. 
0.=1 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Indeed, if we replace M* by the weighted average, the unbiasedness condition is 
fulfilled 

E[M*-m] 
n 

E[ LWo.Z(Xo.) - m ] 
<>=1 

n 

m LWo.-m 
0.=1 
'-v--' 

1 

o. 

n 

L Wo. E[Z(xo.)]- m 
0.=1 ~ 

m 

(4.14) 
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Variance of the estimation error 

We need to assurne that Z(x) is second-order stationary and thus has a covariance 
function C(h) which describes the correlation between any pair of points x and x+h 
in the spatial domain 

C(h) = cov(Z(x), Z(x+h)) = E[ Z(x) . Z(x+h)]- m 2 . (4.15) 

The variance of the estimation error in our unbiased procedure is simply the aver
age of the squared error 

var(M*-m) = E[(M*-m?]- (~[M*v-mlr. (4.16) 

o 

The variance of the estimation error can be expressed in terms of the covariance 
function 

var(M* - m) E[ M*2 - 2mM* +m2 ] 

n n n 

n n 

2: 2: W", wß C(x", - Xß)· (4.17) 
",=1 ß=l 

The estimation variance is the sum of the cross-products of the weights assigned 
to the sampie points. Each cross-product is weighted by the covariance between the 
corresponding sam pie points. 

Minimal estimation variance 

The criterion to define the "best" weights will be that we want the procedure to reduce 
as much as possible the variance of the estimation error. Additionally we want to 
respect the unbiasedness condition. We are thus looking for the 

n 

minimum of var(M* - m) subject to 2: w'" = 1 (4.18) 
",=1 

The minimum of a positive quadratic function is found by setting the first order 
partial derivatives to zero. The condition on the weights is introduced into the problem 
by the method of Lagrange (see, for example, STRANG [319], p96). 

An objective function tp is defined, consisting of the quadratic function plus a term 
containing a Lagrange multiplier p" 

n 

tp(w""p,) = var(M*-m)-2p,(2:Wa-1). (4.19) 
a=l 
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The new unknown JL is built into the objective function in such a way that the 
constraint on the weights is recovered when setting the partial derivative with respect 
to JL to zero. The Lagrange multiplier is multiplied by a factor -2 only for ease of 
subsequent computation. 

Kriging equations 

To solve the optimization problem the partial derivatives of the objective function 
rp( WOll JL) are set to zero 

o for Ct = 1, ... , n (4.20) 

(4.21) 

This yields a linear system of n + 1 equations. The solution of this system provides 
the optimal weights W~M for the estimation of the mean by a weighted average 

n 

L W~M C(x" - xß) - JLKM o 
ß=l 

for Ct = 1, ... , n (4.22) 

n 

Lw~M 1. 
ß=l 

This is the system for the kriging o[ the mean (KM). 
The minimal estimation variance akM is computed by using the equations for the 

optimal weights 

n 

L w~M C(x" - xß) = JLKM 

ß=l 

in the expression of the estimation variance 

n n 

for Ct = 1, ... ,n. 

var(M* - m) L L W~M W~M C(x" - Xß) 

,,=1 ß=l 

n 

'"' KM ~ W" JLKM JLKM· 

,,=1 

(4.23) 

(4.24) 

The variance of the kriging of the mean is thus given by the Lagrange multiplier 

JLKM· 
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Case of no correlation 

It may happen that there is no eorrelation between different points in the spatial do
main. This is deseribed by the following eovarianee model 

ifx" = xß' 

if x" =1= xß. 

With this model the system for the kriging of the mean simplifies to 

{ 

nw~M(Y2 

Lw~M 
ß=l 

= J.LKM for a = 1, ... ,n 

1. 

As all weights are equal and sum up to one, we have 

KM 1 w =-
" n 

(4.25) 

(4.26) 

(4.27) 

and the estimator of the kriging of the mean is equivalent to the arithmetie mean 

The estimation varianee associated to Mt-.M is 

1 2 
J.LKM = -(Y. 

n 

(4.28) 

(4.29) 

When there is no eorrelation between points in spaee, the arithmetie mean is the 
best linear unbiased estimator and we reeover also the eorresponding estimation vari
anee. The kriging of the mean is thus a generalization of the arithmetie mean estimator 
to the ease of spatially correlated sampies. 

EXAMPLE 4.1 Assuming a known population variance and independent identica1ly 
normally distributed data, the 95% confidence interval for the true mean m is 

P(M1 -1.96 :In < m < M1 + 1.96 :In). (4.30) 

With autoeorrelated data and assuming a multinormal distribution, the 95% confi
dence interval using the kriged mean estimator becomes 

(4.31) 

Let us consider a time series of autocorrelated trichloroethylene data, with sam
pIes averaged over 7mn measured during one afternoon near a degreasing machine 
(for more details see [342, 332]). The recommended maximum exposure at the time 
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ofwriting is 405 mglm3• Neglecting autocorre1ation, i.e. assuming independence, the 
upper bound of the confidence interval is estimated at 145 mglm3 . Taking account of 
the autocorrelation in a kriging of the mean we however get a value of 219 mglm3 . 

We see that ignoring the autocorrelation could easily lead, in other situations, to un
derestimate severely the risk of exceeding legal limit values, as well as the associated 
health risks for the workers. 



PartB 

Geostatistics 
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La chance a voulu que, d'entree de jeu, deux circonstances imposent a la 
geostatistique d'utiliser des variogrammes (plutöt que des covariances), 
c'est-a-dire des FA. intrinseques (plutöt que des EA. stationnaires). 
La premiere circonstance, ce sont les resultats experimentaux de l'Ecole 
d' Afrique du Sud, en particulier cette courbe d'allure logarithmique OU 
DG KRIGE (1952) presentait la variance experimentale d'echantillons de 
taille fixee dans des zones de plus en plus grandes du gisement (panneaux, 
quartiers, concessions, le Rand tout entier, etc ... ). 
La seconde circonstance, c'etait le modele a homothetie interne elabore 
par DE Wus (1951), et qui permettait de retrouver cette loi logarithmique 
de la variance. 

G MATHERON [208] 

Chance has determined that, from the beginning, two circumstances were 
responsible for geostatistics to use variograms (instead of covariances), 
that is to say intrinsic Random Functions (rather than stationary Random 
Functions). 
The first circumstance was given by the experimental results of the South 
Mrican School, in particular this curve of logarithmic shape where DG 
KRI G E [163] presented the experimental variance of sampies of fixed size 
in increasingly large zones of the deposit (panels, quarters, concessions, 
the whole Rand, etc . .. ). 
The second circumstance was provided by the model with internal self
similarity elaborated by DE Wus [79], which allowed to recover this 
logarithmic function of the variance. 



5 Regionalized Variable and 

Random Function 

"It could be said, 
as in The Emperor o[ the Moon, 

that all is everywhere and always like here, 
up to a degree of magnitude and perfection." 

GW LEIBNIZ 

The data provide information about regionalized variables, which are simply functions 
z(x) whose behavior we would like to characterize in a given region of a spatial or 
time continuum. In applications the regionalized variables are usually not identical 
with simple deterministic functions and it is therefore of advantage to place them into 
a probabilistic framework. 

In the probabilistic model, a regionalized variable z(x) is considered to be a re
alization of a random function Z(x) (i.e. an infinite family of random variables con
structed at all points x of a given region 1)). The advantage of this approach is that 
we shall only try to characterize simple features of the random function Z(x) and not 
those of particular realizations z(x). 

In such a setting the data values are sampIes from one particular realization z(x) of 
Z(x). The epistemological implications of an investigation of a single realization of 
a phenomenon by probabilistic methods have been discussed in full detail by MATH

ERON [220] and shall not be reported in the present book. In particular, questions 
of ergodicity shall not be debated here. We provide an intuitive description of the 
probabilistic formalization, but we shall not attempt to justify it rigorously. The main 
reason for the success of the probabilistic approach is that it offers a convenient way 
of formulating methods which could also be viewed in a deterministic setting, albeit 
with less elegance. 

Multivariate time/space data 

In many fields of science data arises which is either time or space dependent--or both. 
Such data is often multivariate, i.e. several quantities have been measured and need to 
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be examined. The data array, in its most general form, may have the following shape: 

Coordinates Variables 

t l Xl 
1 x2 

I x3 
1 

Zl 
I 

Zi 
I 

ZN 
I 

(5.1) 
Samples ta Xl 

a x2 
a X 3 

a 
Zl 

a 
Zi 

a 
ZN 

a 

tn Xl 
n X 2 

n X 3 
n 

Zl 
n 

Zi 
n 

ZN 
n 

In this array the sampies are numbered using an index a and the total number of 
sampies is symbolized by the letter n, thus a = 1,2,3, ... , n. 

The different variables are labeled by an index i and the number of variables is N, 
so i = 1,2,3, ... , N. 

The sam pies could be pieces of rock of same volume taken by a geologist or they 
could be plots containing different plants a biologist is interested in. The variables 
would then be chemical or physical measurements performed on the rocks, or counts 
of the abundance of different species of plants within the plots. 

The sampies may have been taken at different moments t a and at different points 
X a , where X a is typicallyl the vector of up to three spatial coordinates (x~, x~, x!) E 
]R3. 

So far the numbers contained in the data set have been arranged into a rectangular 
table and symbols have been used to describe this table. There is a need for viewing 
the data in a more general setting. 

Regionalized variable 

Let us consider that only one property has been measured on different spatial objects 
(so N = 1) and that the time at which the measurements have been made has not been 
recorded. In this case the index i and the time coordinate ta are of no use and can be 
omitted. The analysis of multivariate phenomena will be taken up in other parts of the 
book, while examples of time series analysis using geostatistics will be discussed in 
later chapters. 

We have n observations symbolized by 

with a = 1, ... , n, (5.2) 

taken at locations X a . The sampled objects in a region V can be considered as a frag
ment of a larger collection of objects. Many more observations than the few collected 
could be made, but perhaps because of the cost and effort involved this has not (or 
cannot) been done. If the objects are points, even infinitely many observations are 
possible in the region. This possibility of infinitely many observations of the same 

IThere are now applications of geostatistics where x E ffi.k with an integer k > 3, e.g. see [285, 
181, 28], and where ffi.k is not anymore a geographical space, but an arbitrary parameter or empirical 
orthogonal functions space. 
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Randomness 

( Random variable) 

/ ~ 
( Sampies ) (,-------~J Random Function 

\,------_~I 
Regionalized Variable 

Regionalization 

Figure 5.1: The random function model. 

kind is introduced by dropping the index Cl: and defining the regionalized variable (for 
short: RjjV) as 

z(x) for all xE V. (5.3) 

The data set {z (xa ), Cl: = 1, ... , n} is now viewed as a collection of a few values 
ofthe RjjV. 

The study of a regionalized variable will usually involve at least two geometrical 
aspects: the domain V in which the RjjV is defined and the geometrical support for 
which each sam pIe of the RjjV is defined. The latter can for example be a portion of 
soil that has been analyzed or the integration time of a time-dependent measurement. 
Let us for now assurne point support and defer the question of non-pointwise support 
to Chapter 10. 

Random variable and regionalized value 

Each measured value in the data set has a loeation in the domain V and we eall it a 
regionalized value. A new viewpoint is introduced by considering a regionalized value 
as the outcome of some random mechanism. Formally this meehanism will be called 
a random variable and a sampled value z(x",) represents one draw from the random 
variable Z(x",). At each point X a the mechanism responsible for generating a value 
z(xa ) may be different, thus Z(x",) could apriori have different properties at each 
point of a region. 

Random function 

Considering the regionalized values at all points in a given region, the assoeiated func
tion z(x) for x E V is a regionalized variable. The set of values 

{Z(x), x E V} (5.4) 
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Z(x) ------t Z ( xo ) The Random Variable's 

realization is a 

z(x) Regionalized Value 

Figure 5.2: The regionalized variable as a realization of a random function. 

ean be viewed as one draw from an infinite set of random variables (one random 
variable at eaeh point of the domain). The family of random variables 

{Z(x), x E V} (5.5) 

is called the random function (RAP). 
Figure 5.1 shows how the random function model has been set up by viewing 

the data under two different angles. One aspect is that the data values stern from a 
physical environment (time, 1-2-3D spaee) and are in some way dependent on their 
location in the region: they are regionalized. The second aspect is that the regional
ized sampie values z(xa ) cannot, generally, be modeled with a simple deterministic 
function z(x). Looking at the values that were sampled, the behavior of z(x) appears 
to be very complex. Like in many situations where the parameters of a data generating 
mechanism cannot be determined, a probabilistic approach is chosen, i.e. the mecha
nism is considered as random. The data values are viewed as outcornes of the randorn 
rneehanism. 

Joining together these two aspects of regionalization and randomness yields the 
concept of a RAP. 

In probabilistic jargon, see Figure 5.2, the REV z(x) is one realization of the RAP 
Z(x). A regionalized value z(xo) at a specifie loeation Xo is a realization of a random 
variable Z(xo) whieh is itself a member of an infinite farnily of random variables, the 
RAP Z(x). Capital 'Z' is used to denote random variables while srnall 'z' is used for 
their realizations. The point Xo is an arbitrary point of the region which rnay or rnay 
not have been sampled. 

Probability distributions 

In this model the randorn mechanism Z(xo) acting at a given point Xo of the region 
generates realizations following a probability distribution F 

P(Z(xo) :::; z) = Fxo(z), (5.6) 
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where P is the probability that an outcome of Z at the point Xo is lower than a fixed 
value z. 

A bivariate distribution function for two random variables Z(Xl) and Z(X2) at two 
different locations is 

(5.7) 

where P is the probability that simultaneously an outcome of Z(xd is lower than Zl 

and an outcome of Z(X2) is lower than Z2. 
In the same way a multiple distribution function for n random variables located at 

n different points can be defined 

Built up in this manner we have an extraordinarily general model which is able 
to describe any process in nature or technology. In practice, however, we possess 
only few data from one or several realizations of the IW' and it will be impossible 
to infer all the mono- and multivariate distribution functions for any set of points. 
Simplification is needed and it is provided by the idea of stationarity. 

Strict stationarity 

Stationarity means that characteristics of a IW' stay the same when shifting a given set 
of n points from one part of the region to another. This is called translation invariance. 

To be more specific, a RN' Z(x) is said to be strictly stationary if for any set of n 
points Xl, ... , X n (where n is an arbitrary positive integer) and for any vector h 

(5.9) 

i.e. a translation of a point configuration in a given direction does not change the 
multiple distribution. 

The new situation created by restraining Z (x) to be strictly stationary with all its n
variate distribution functions being shift invariant, can be summarized by a statement 
of Arlequino (coming back from a trip to the moon): "Everything is everywhere and 
always the same as here ... up to a certain degree of magnitude and perfection"2. This 
position of Arlequino explains best the idea of strict stationarity: things do not change 
fundamentally when one moves from one part of the universe to another part of it! 
Naturally, we cannot fuHy agree with Arlequino's blase indifference to everything. 
But there is a restriction "up to a certain degree" in Arlequino's statement and we 
shaH, in an analogous way, loosen the concept of strict stationarity and define several 
types and degrees of stationarity. These lie in the wide range between the concept 

2"C'est partout et toujours comme ici, c'est partout et toujours comme chez nous, aux degres de 
grandeur et de perfection pres." [M SERRES (1968) Le Systeme de Leibniz et ses Modeles Mathema
tiques. Presses Universitaires de France, Paris.] 
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of a non-stationary (and non-homogeneous) RAP, whose characteristics change at any 
time and at any location, and the concept of a strictly stationary random function 
whose distribution functions are everywhere and always the same. 

It should be noted that stationarity is a property of the random function model 
and not of the regionalized variable. In practice we might say that a given "REV is 
stationary", but this is of course always meant as a shorthand for "this REV can be 
considered as a realization of a stationary RAP". 

Stationarity of first two moments 

Strict stationarity requires the specification of the multipoint distribution (5.9) for any 
set of points {Xl, ... , X n }. A lighter strategy will be to consider only pairs of points 
{Xl,X2} in the domain and try to characterize only the first two moments, not a fuIl 
distribution. NaturaIly such a strategy is ideal in the case of the Gaussian distribution 
where the first two moments entirely characterize the distribution. In general, however, 
this approach still works weIl in practice when the data histogram does not have too 
heavy tails. 

One possibility is to assurne the stationarity of the first two moments of the vari
able: this is second-order stationarity. A second possibility is to assurne the station
arity of the first two moments of the difference of a pair of values at two points: this 
receives the name of intrinsic stationarity and leads to the notion of variogram. 



6 Variogram Cloud 

Pairs of sam pIe values are evaluated by computing the squared difference between the 
values. The resulting dissimilarities are plotted against the separation of sam pIe pairs 
in geographical space and form the variogram c1oud. The c10ud is sliced into c1asses 
according to separation in space and the average dissimilarities in each c1ass form the 
sequence of values of the experimental variogram. 

Dissimilarity versus separation 

We measure the variability of a regionalized variable z(x) at different scales by com
puting the dissimilarity between pairs of data values, Za and zß say, located at points 
X a and xß in a spatial domain D. The measure for the dissimilarity of two values, 
labeled "(*, is 

(6.1) 

i.e. half of the square of the difference between the two values. 
The two points x'" xß in geographical space can be linked by a vector h = xß-xa 

as shown on Figure 6.1. 

Figure 6.1: A vector linking two points in 2D space. 

We let the dissimilarity "(* depend on the spacing and on the orientation of the 
point pair described by the vector h, 

"(*(h) = ~ ( z(xa+h) - z(xa ) r. (6.2) 
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I z(t+b) - z(t) I 2 

2 
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Figure 6.2: Plot of the dissimilarities ry* against the spatial separation h of sampIe 
pairs: a variogram cloud. 

As the dissimilarity is a squared quantity, the sign of the vector h, i.e. the order in 
which the points Xl> and xß are considered does not enter into play. The dissirnilarity 
is symmetric with respect to h: 

ry*( -h) = ry*( +h). (6.3) 

Thus on graphical representations the dissimilarities will be plotted against the abso
lute values of the vectors h. Using all sampIe pairs in a data set (up to a distance 
of half the diameter of the region), a plot of the dissimilarities ry* against the spatial 
separation h is produced which is called the variogram cloud. A schematic example 
is given on Figure 6.2. 

The dissimilarity often increases with distance as near sampIes tend to be alike. 

The variogram cloud by itself is a powerful tool for exploring features of spatial 
data. On a graphical computer screen the values of the variogram cloud can be linked 
to the position of sampIe pairs on a map representation. The analysis of subsets of 
the variogram cloud can help in understanding the distribution of the sampIe values 
in geographical space. Anomalies, inhomogeneities can be detected by looking at 
high dissimilarities at short distances. In some cases the variogram cloud consists of 
two distinct clouds due to the presence of outIiers. HASLETT et a1. [139] have first 
developed the use of the variogram cloud in combination with other views on the data 
using linked windows on a graphic computer screen and they provide many examples 
showing the power of this exploratory too1. 

Actually a variogram cloud seldom looks like what is suggested on Figure 6.2: 
the variogram cloud usually is dominated by many pairs with low dissimilarity at all 
scales h (DIGGLE et a1. [90] pSI discuss this question). 
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Y*(hki 
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Figure 6.3: The experimental variogram is obtained by averaging the dissimilarities "(* 

for given classes S)k. 

Experimental variogram 

An average of dissimilarities "(*(h) can be formed for a given dass of vectors S) by 
grouping all nc point pairs that can be linked by a vector h belonging to S). Such a dass 
S) groups vectors whose lengths are within a specified interval of lengths and whose 
orientation is the same up to a given tolerance on angle. Generally non overlapping 
vector dasses S) are chosen. The average dissimilarity with respect to a vector dass 
S)k is a value of what is termed the experimental variogram 

with hE S)k. (6.4) 

In practice the experimental variogram is usually computed using vectors h of a 
length inferior to half the diameter of the region. For pairs of sampies with vectors 
h of a length almost equal to the diameter of the region, the corresponding sampies 
are located near the border. Vector dasses S) formed with such pairs will have no 
contribution from sam pies at the center of the region and are thus not representative 
of the whole data set. 

An example of an experimental variogram obtained for a sequence of dasses S)k is 
sketched on Figure 6.3. The experimental variogram is obtained from the variogram 
c10ud by subdiving it into c1asses and computing an average for each c1ass. 

Usually we can observe that the average dissimilarity between values increases 
when the spacing between the pairs of sampie points is increased. For large spac
ings the experimental variogram sometimes reaches a sill which can be equal to the 
variance of the data. 
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Y (h) 

~ ..... 

Figure 6.4: The sequence of average dissimilarities is fitted with a theoretical variogram 
function. 

If the slope of the dissimilarity function changes abruptly at a specific scale, this 
suggests that an intermediate level of the variation has been reached at this scale. 

The behavior at very small scales, near the origin of the variogram, is of impor
tance, as it indicates the type of continuity of the regionalized variable: differentiable, 
continuous but not differentiable, or discontinuous. In this last case, when the vari
ogram is discontinuous at the origin, this is a symptom of a nugget-effect, which means 
that the values of the variable change abruptly at a very small scale, like gold grades 
when a few gold nuggets are contained in some sampies. 

When the average dissimilarity of the values is constant for all spacings h, there 
is no spatial structure in the data. Conversely, a non zero slope of the variogram 
near the origin indicates structure. An abrupt change in slope indicates the passage 
to a different structuration of the values in space. We shalilearn how to model such 
transitions with nested theoretical variograms and how to visualize the different types 
of spatial associations of the values separately as maps by kriging spatial components. 

Replacing the experimental by a theoretical variogram 

The experimental variogram is replaced by a theoretical variogram function essen
tially for the reason that the variogram model should have a physical meaning (a ran
dom function with the given type of variogram can exist). The use of a theoretical 
variogram guarantees (using weights subject to a certain constraint) that the variance 
of any linear combination of sam pIe values is positive. 

If the values of the experimental variogram were taken to set up a kriging system, 
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this could lead to negative kriging variances, in a way similar to the Example 3.1 (on 
page 22) where a problem of multiple regression with missing values was discussed. 

A theoretical variogram function is fitted to the sequence of average dissimilari
ties, as suggested on Figure 6.4. It is important to understand that this fit implies an 
interpretation of both the behavior at the origin and the behavior at large distances, 
beyond the range of the experimental variogram. The fit is done by eye because it is 
generally not so relevant how well the variogram function fits the sequence of points. 
What counts is the type of continuity assumed for the regionalized variable and the 
stationarity hypothesis associated to the random function. These assumptions will 
guide the selection of an appropriate variogram function and this has many more im
plications than the way the theoretical function is fitted to the experimental variogram. 
A thorough discussion is found in MATHERON [220]. 

The different types of behavior at the origin of the variogram model and their 
impact on kriging are discussed in Chapter 16 and in the Ebro estuary case study 
(Chapter 27). A weighted least squares fitting algorithm for variograms (and cross 
variograms) will be presented in Chapter 26. References discussing the automatic 
inference of generalized covariance functions (of which the variogram functions are a 
subclass) will be given in Chapter 39. 



7 Variogram and Covariance Function 

The experimental variogram is a convenient tool for the analysis of spatial data as it 
is based on a simple measure of dissimilarity. Its theoretical counterpart reveals that 
a broad c1ass of phenomena are adequately described by it, inc1uding phenomena of 
unbounded variation. When the variation is bounded, the variogram is equivalent to a 
covariance function. 

Regional variogram 

The experimental variogram of sampies z(x,,) is the sequence of averages of dissim
ilarities for different distance c1asses fJk. If we had sampies for the whole domain D 
we could compute the variogram for every possible pair in the domain. The set D(h), 
defined as the intersection of the domain D with a translation D_h of itself, describes 
all the points x having a counterpart x+h in D. The regional variogram gR(h) is the 
integral over the squared differences of a regionalized variable z(x) for a given lag h 

I! 2 gR(h) = 2\D(h)\ (z(x+h) - z(x)) dx, (7.1) 

V(h) 

where \D(h) \ is the area (or volume) of the intersection D(h). 
We know the regionalized variable z(x) only at a few locations and it is generally 

not possible to approximate z(x) by a simple deterministic function. Thus it is con
venient to consider z(x) as a realization of a random function Z(x). The associated 
regional variogram 

1 ! 2 GR(h) = 2\D(h)\ (Z(x+h) - Z(x)) dx (7.2) 

V(h) 

is a randomized version of gR(h). Its expectation defines the theoretical variogram 
'Y(h) of the random function model Z(x) over the domain D 

'Y(h) = E[ G R(h)]. (7.3) 

Theoretical variogram 

The variation in space of a random function Z(x) can be described by taking the 
differences between values at pairs of points x and x+h: 

Z(x+h) - Z(x), 



Variogram and Covariance Function 51 

which are called increments. 
The theoretical variogram ')'(h) is defined by the intrinsic hypothesis, which is a 

short form for "a hypothesis of intrinsic stationarity of order two". This hypothesis, 
which is rnerely a statement about the type of stationarity characterizing the randorn 
function, is forrned by two assurnptions about the incrernents: 

• the rnean m(h) of the incrernents, called the drift, is invariant for any translation 
of a given vector h within the dornain. Moreover, the drift is supposed to be 
zero whatsoever the position of h in the dornain. 

• the variance of the incrernents 

has a finite value 2')'(h) depending on the length and the orientation of a given 
vector h, but not on the position of h in the dornain. 

That is to say, for any pair of points x, x + h E D we have 

E[ Z(x+h) - Z(x) ] = m(h) 

var[Z(x+h) - Z(x)] 

0, 

2')'(h). 

(7.4) 

(7.5) 

These two properties of an intrinsically stationary randorn function yield the defi
nition for the theoretical variograrn 

(7.6) 

The existence of expectation and variance of the incrernents does not irnply the 
existence of the first two moments of the randorn function itself: an intrinsic randorn 
function can have an infinite variance although the variance of its incrernents is finite 
for any vector h. An intrinsically stationary randorn function does not need to have a 
constant rnean or a constant variance. 

The value of the variogram at the origin is zero by definition 

')'(0) = 0. 

The values of the variograrn are positive 

')'(h) > 0, 

and the variogram is an even function 

The variogram grows slower than Ih1 2, i.e. 

. ')'(h) 
hm Ih l2 = 0, Ihl>-+oo 

(as otherwise the drift m(h) could not be assurned zero). 

(7.7) 

(7.8) 

(7.9) 

(7.10) 
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Covariance function 

The covariance function 0 (h) is defined on tbe basis of a bypotbesis of stationarity of 
the first two moments (mean and covariance) of tbe random function 

{ 
E[Z(x)] = m 

E[ Z(x) . Z(x+h) ] - m 2 = O(h) 

for all x E V 

for all x, x+h E V. 
(7.11) 

The covariance function is bounded and its absolute value does not exceed tbe 
variance 

10(h)1 s 0(0) = var(Z(x)). (7.12) 

Uke tbe variogram, it is an even function: 0 ( - h) = C( +h). But unlike the 
variogram, it can take negative values. 

The covariance function divided by tbe variance is called tbe correlation function 

whicb is obviously bounded by 

O(h) 
p(h) = 0(0)' 

-1 S p(h) S 1. 

(7.13) 

(7.14) 

A variogram function can be deduced from a covariance function by the formula 

'}'(h) = 0(0) - O(h), (7.15) 

but in general tbe reverse is not true, because tbe variogram is not necessarily bounded. 
Thus tbe bypotbesis of second-order stationarity is less general tban tbe intrinsic 
bypotbesis (in tbe monovariate case) and unbounded variogram models do not bave a 
covariance function counterpart. 

EXAMPLE 7.1 For example, the power variogram shown on Figure 7.1 

'}'(h) = b IhlP with 0 < P < 2 and b > 0 (7.16) 

cannot be obtained from a covariance function as it grows without bounds. Clearly it 
outgrows the framework fixed by second-order stationarity. 

Actua1ly the dass of self-similar processes with stationary increments ca1led frac
tional Brownian motion has a variogram of the type (7.16) (see [362], p406, for de
tails). 
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Figure 7.1: Power variograms for different values of the power p (with b = 1). 

Positive definite function 

A covariance function is a positive definite function1• This means that the use of a 
covariance function C(h) for the computation of the variance of a linear combination 
of n+ 1 random variables Z(xo:) (any subset sampled from a second-order stationary 
random function) must be positive. It is necessarily linked to a positive semi-definite 
matrix C of covariances 

n n 

L L Wo: wß C(xo:-xß) = wT C W 

",=0 ß=O 

> 0 (7.17) 

for any set of points x'" and any set of weights w'" (assembled into a vector w). 
The continuous covariance functions are characterized by Bochner's theorem as 

the Fourier transforms of positive measures. This topic is treated in more detail in 
Chapter 20. 

Conditionally negative definite function 

The variogram is a conditionally negative definite function. The condition to guarantee 
the positivity of the variance of any linear combination of n+ 1 random variables, 

1 For functions, in opposition to matrices, no distinction is usually made between "definite" and 
"semi-definite". 
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subset of an intrinsic randorn function, is that the n+ 1 weights W a surn up to zero. 
The variance of a linear cornbination of intrinsically stationary randorn variables is 
defined as 

n 

> 0, if LWa = 0, (7.18) 
a=O 

i.e. any matrix r of variogram values is conditionally negative definite 

n 

for LW" = 0. (7.19) 
,,=0 

To understand the rneaning (sufficiency) of the condition on the surn of the 
weights, it is necessary to cornpute explicitly the variance of the linear cornbination. 

As the randorn function Z(x) is intrinsically stationary, only the expectation of 
its incrernents has a rneaning. A trick enabling to construct increments is to insert an 
additional randorn variable Z(O), placed arbitrarily at the origin 0 (assurning 0 E 'D), 
multiplied by the zero surn weights 

n n 

var( -Z(O)· LW"+ LW"Z(xa)) 

n n 

a=O ,,=0 
'-v-" 

o 

L L w" wß E[ (Z(x,,)-Z(O)). (Z(xß)-Z(O))] 
a=O ß=O 

n n 

L L Wa wß CI (X"' Xß), (7.20) 
,,=0 ß=O 

where CI (X"' Xß) is the covariance of incrernents formed using the additional variable 
Z(O). 

We also introduce the additional variable Z (0) into the expression of the variograrn 

'Y(Xa-Xß) = ~ E[ (Z(xa)+Z(O) - Z(xß)-Z(O))2] 

1 
2" (2 'Y(xa) + 2 'Y(xß) - 2 CI(xa, xß)), (7.21) 

so that 

CI(x",xß) 'Y(xa ) + 'Y(xß) - 'Y(xa-xß), (7.22) 
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which incorporates two non-stationary terms ')'(x,,) and ')'(xß). 
Coming back to the computation of the variance of the linear combination, we see 

that the two non stationary terms are cancelled by the condition on the weights 

n n n n 

- L L w" wß ')'(x,,-xß) for LW" = LWß = o. (7.23) 
,,=0 ß=O ß=O 

When handling linear combinations of random variables, the variogram can only 
be used together with a condition on the weights guaranteeing its existence. In par
ticular, the variogram cannot in general be used in a simple kriging. Other forms of 
kriging, with constraints on the weights, are required to use this tool that covers a 
wider range of phenomena than the covariance function. 

Variograms can be characterized on the basis of continuous covariance functions: 
a function ')'(h) is a variogram, if the exponential of -')'(h) is a covariance function 

G(h) = e -')'(h). (7.24) 

This remarquable relation, based on a theorem by SCHOENBERG [292], links 
(through the defining kernel of the Laplace transform ) the conditionall y negative func
tions with the positive definite functions (see also CHOQUET [53]). 

COMMENT 7.2 The covariance function 

G(h) = exp (_I~IP) with 0 < p ~ 2 and a > 0, (7.25) 

which is related by Schoenberg's relation to the power variogram model, detines the 
family of stable covariance functions. The case p = 2 (Gaussian covariance func
tion) is pathologica1: it corresponds to a deterministic random function (MATH

ERON [202]), which is contradictory with randomness. The case p = 1 detines the 
exponential covariance function. 

Fitting the variogram with a covariance function 

If the variogram is bounded by a finite value ')'( 00), a covariance function can be found 
such as 

G(h) (7.26) 
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The experimental variogram can have a shape which suggests to use a bounded 
variogram function to fit it. The lowest upper bound of the variogram function is 
described as the sill. 

When the experimental variogram exhibits a sill, it is possible to fit it with a the
oretical variogram that is actually a covariance function C(h) on the basis of the for
mula for bounded variograms 

')'(h) = b - C(h), (7.27) 

where b = C(O) is the value at the origin of the covariance function. 



8 Examples of Covariance Functions 

We present a few models of covariance functions. They are defined for isotropie (i.e. 
rotation invariant) random functions. On the graphical representations the covariance 
functions are plotted as variograms using the relation ')'(h) = C(O) - C(h). 

N ugget-effect model 

The covariance function C(h) that models a discontinuity at the origin is the nugget
effect model 

{ 
b for Ihl = 0 

Cnug(h) = 
o for Ihl > 0, 

where b is a positive value. 

(8.1) 

Its variogram counterpart is zero at the origin and has the value b for h -=f:. O. It is 
shown on Figure 8.l. 

The nugget-effect is used to model a discontinuity at the origin of the variogram, 
i.e. when 

lim ')'(h) = b. 
Ihl>40 

(8.2) 

The nugget-effect is equivalent to the concept of white noise in signal processing. 

Exponential covariance function 

The exponential covariance function model falls off exponentially with increasing dis
tance 

( Ihl) Cexp(h) = b exp -~ with a, b > o. (8.3) 

The parameter adetermines how quickly the covariance falls off. For a value of 
h = 3a the covariance function has decreased by 95% of its value at the origin, so that 
this distance has been termed the practical range of the exponential model. 

The exponential model is continuous but not differentiable at the origin. It drops 
asymptotically towards zero for Ihll-t 00. 

The variogram equivalent of the exponential covariance function is shown on Fig
ure 8.2. 
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Figure 8.1: A nugget-effect variogram: its value is zero at the origin and b 1 
elsewhere. 

Spherical model 

A commonly used covariance function is the spherical model 

forO S Ihl S a 

for Ihl > a. 

(8.4) 

The parameter a indicates the range of the spherical covariance: the covariance 
vanishes when the range is reached. The parameter b represents the maximal value 
of the covariance: the spherical covariance steadily decreases, starting from the maxi
mum b at the origin, until it vanishes when the range is reached. 

The nugget-effect model can be considered as a particular case of a spherical 
covariance function with an infinitely small range. Nevertheless there is an important 
difference between the two models: Cnug(h) describes a discontinuous phenomenon, 
whose values change abruptly from one location to the other, while Csph(h) represents 
a phenomenon which is continuous, but not differentiable: it would feel rough, could 
one touch it. 

A corresponding spherical variogram is shown on Figure 8.3. It reaches the sill 
(b = 1) at a range of a = 3. 

Derivation of the spherical covariance 

Imagine a universe with Poisson points, i.e. a 3D-space with points Xp scattered 
randomly following a uniform distribution along each coordinate and summing up to 
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Exponential model 

4 
DISTANCE 

6 

Figure 8.2: An exponential variogram: it rises asymptotically towards a sill b = l. 
The range parameter is set to a = 1. At a practical range of Ihl = 3 the exponential 
model has approached the sill to 95%. 

() points per volume unit on average. A counting function N (V) is defined which 
counts the number of Poisson points contained in a volume V. 

Consider the random function Z(x) = N(Bx ) which is the count of the number 
of Poisson points contained in a ball B centered on a point x. Clearly Bx represents 
the volume of inftuenee of diameter d around a point x which determines the value 
of Z(x). The problem at hand is to caleulate the eovarianee function of the random 
funetion Z(x). 

An indicator funetion 1 B(X/) is eonstrueted indicating whether a loeation x' is 
inside a ball centered at x 

{
I, ifx' E Bx 

I B (x/) = 
0, if x' cf. Bx . 

(8.5) 

A funetion Jt(h), the geometrie eovariogram, measures the volume of the inter
seetion of a ball B with a eopy Bh of it translated by a veetor h 

00 00 00 

Jt(h) = ! ! ! I B (x/) I B (x' + h) dx' = !!! I B (x/) I Bh (x') dx' (8.6) 
-00 -00-00 

(8.7) 

Conversely, it is worth noting that the interseetion B n B_h of the ball with a eopy 
of itself translated by - h represents the set of points x' E B which have a neighbor 
x' + h within the ball, as shown on Figure 8.4, 



60 Geostatistics 

0 
,....; 

00 
ci 

~ '0 
ci 

9 

~ 
..,. 
ci 

N 
ci 

0 
ci 

0 2 4 6 

DISTANCE 

Figure 8.3: A spherical variogram with a sill b = 1 and a range a = 3. 

~(h) f dx' = IB n B-hl· (8.8) 

x'EBnB_h 

The covariance of Z (x) can now be expressed as 

C(h) = E[ N(B)N(Bh ) ] - E[ N(B)] E[ N(Bh )], (8.9) 

and as the counts N(V) are independent in any subvolume, 

C(h) E[ N(B n Bh )2 ]- E2 [N(B n Bh )] 

°IBnBhl 
° ~(h). (8.10) 

Calculating explicitly the volume of the intersection of two spheres of equal size 
whose centers are separated by a vector h yields the formula for the spherical covari
ance 

{ ( 31hl 1 Ih13 ) 0IBI 1 - -- + -- for 0< Ihl < d 
C(h) = 2 d 2 d3 - -, 

o for Ihl > d, 

(8.11) 

where 0IBI = 07rd3 /6 = C(O) represents the variance of Z(x) and IBI is the volume 
of the spheres. 

Tbe diameter d of the spheres is equal to the range of the covariance function as 
it indicates the distance at which the covariance vanishes. The range of the spherical 
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Figure 8.4: The intersection B n B_h describes the set of points x' E B which have a 
neighbor x/+h inside B. 

covariance function is the maximal distance at which the volumes of influence of two 
random variables Z(x) and Z(x+h) can overlap and share information. 

In applications large objects (as compared to the scale of the investigation) can 
condition the spatial structure of the data. The maximal size of these morphological 
objects in a given direction can often be read from the experimental variogram and 
interpreted as the range of a spherical model. 

The shape of objects conditioning the morphology of a regionalized variable may 
not be spherical in many applications. This will result in anisotropical behavior of the 
variogram. 



9 Anisotropy 

Experimental ealeulations can reveal a very different behavior of the experimental 
variogram in different direetions. This is ealled an anisotropie behavior. As variogram 
models are defined for the isotropie ease, we need to examine transformations of the 
coordinates whieh allow to obtain anisotropie random funetions from the isotropie 
models. In praetice anisotropies are deteeted by inspeeting experimental variograms 
in different direetions and are induded into the model by tuning predefined anisotropy 
parameters. 

Geometrie Anisotropy 

In 2D-space a representation of the behavior of the experimental variogram can be 
made by drawing a map of iso-variogram lines as a funetion of a veetor h. Ideally if 
the iso-variogram lines are cireular around the origin, the variogram obviously only 
depends on the length of the vector hand the phenomenon is isotropie. 

If not, the iso-variogram lines ean in many applieations be approximated by con
centrie ellipses defined along a set of perpendieular main axes of anisotropy. This 
type of anisotropy, ealled the geometrie anisotropy, ean be obtained by a linear trans
formation of the spatial coordinates of a corresponding isotropie model. It allows 
to relate the dass of ellipsoidally anisotropie random funetions to a eorresponding 
isotropie random funetion. This is essential because variogram models are defined for 
the isotropie ease. The linear transformation extends in a simple way a given isotropie 
variogram to a whole dass of ellipsoidally anisotropie variograms. 

Rotating and dilating an ellipsoid 

We have a coordinate system for h = (hl, . .. , hn ) with n coordinates. In this coordi
nate system the surfaces of _constant variogram deseribe an ellipsoid and we seareh a 
new eoordinate system for h in whieh the iso-variogram lines are spherieal. 

As a first step a rotation matrix Q is sought whieh rotates the eoordinate system h 
into a coordinate system h' = Qh that is parallel to the principal axes of the ellipsoid, 
as shown on Figure 9.1 in the 2D ease. The direetions of the principal axes should be 
known from experimental variogram ealculations. 
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h' 1 

Figure 9.1: The coordinate system for h = (h l , h2 ) is rotated into the system h' 
parallel to the main axes of the concentric ellipses. 

In 2D the rotation is given by the matrix 

Q ( cos () sin ()) , 
- - sin () cos () 

(9.1) 

where () is the rotation angle. 
In 3D the rotation is obtained by a composition of elementary rotations. The con

vention is to use Euler's angles and the corresponding rotation matrix is 

o 
Q 

o 

The angle ()l defines a rotation of the plane hl h2 around h3 such that h l is brought 
into the plane h~ h~. With ()2 a rotation is performed around the intersection of the 
planes hl h2 and h~ h~ bringing h3 in the position of h;. The third rotation with an 
angle ()3 rotates everything around h; in its final position. 

The second step in the transformation is to operate a shrinking or dilation of the 
principal axes of the ellipsoid using a diagonal matrix 

(9.2) 

which transforms the system h' into a new system h in which the ellipsoids become 
spheres 

h VAh'. (9.3) 
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Conversely, if r is the radius of a sphere around the origin in the coordinate system 
of the isotropie variogram, it is obtained by ca1culating the length of any vector h 
pointing on the surface of the sphere 

r = (9.4) 

This yields the equation of an ellipsoid in the h' coordinate system 

(9.5) 

The diameters dp (principal axes) of the ellipsoid along the principal directions are 
thus 

2r 
dp = ..;xp 

and the principal directions are the vectors qp of the rotation matrix. 

(9.6) 

Finally once the ellipsoid is determined the anisotropie variogram is specified on 
the basis of an isotropie variogram by 

(9.7) 

where B = QT AQ. 

Exploring 3D space for anisotropy 

In 3D applications the anisotropy of the experimental variogram can be explored tak
ing advantage of the geometry of a regular ieosahedron (20 faces, 30 edges) centered 
at the origin. The 15 lines joining opposite edges through the origin are used as lead
ing directions for the experimental ca1culations. The lines are evenly distributed in 
space and can be grouped into 5 systems of Cartesian coordinates forming the basis 
of trirectangular trieders. 

The range of a geometrically anisotropie variogram describes an ellipsoid whose 
principal directions are given by a set of Cartesian coordinates. Five possible ellip
soids for describing the range can now be tested by composing up to four times a 
rotation R yielding the rotation matrix 

Q = (R)k 

G)' (9;1 -(g + 1) 
g 
1 

g 
-1 

g+1 

)

k 

where g = (v'5 - 1) /2 S:! 0.618 is the golden mean. 

with k = 1, ... ,4, (9.8) 
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Zonal anisotropy 

It can happen that experimental variograms ca1culated in different directions suggest 
a different value for the sill. This is termed a zonal anisotropy. 

For example, in 2D tt.e sill along the X2 coordinate might be much larger than 
along Xl. In such a situation a common strategy is to fit first to an isotropie model 
')'l(h) to the experimental variogram along the Xl direction. Second, to add a geo
metrically anisotropie variogram ')'2(h), whieh is designed to be without effect along 
the Xl coordinate by providing it with a very large range in that direction through an 
anisotropy coefficient. The final variogram model is then 

(9.9) 

in which the main axis of the anisotropy ellipse for ')'2 (h) is very large in the direction 
Xl· 

The underlying random function model overlays two uncorrelated processes Zl (x) 
and Z2(X) 

(9.10) 

From the point of view of the regionalized variable, the anisotropy of ')'2(h) can 
be due to morphologieal objects whieh are extremely elongated in the direction of Xl, 

crossing the borders of the domain. These units slice up the domain along Xl thus 
creating a zonation along X2, which explains the additional variability to be read on 
the variogram in that direction. 

N onlinear deformations of space 

In air pollution and climatological studies it is frequent that data is available for several 
replications Nt in time at stations in 2D space. For every pair of locations (xa , xß) in 
geographieal space a variogram value ')'*(xa , xß) can be computed by averaging the 
dissimilarities ')'~ß between the two stations for the Nt replications in time. It is often 
the case for pairs of stations at locations (xa , xß) and (x<>" XßI) with separation vectors 
h ~ h' approximately of the same length and orientation that the values ')'*(xa , xß) 
and ')'*(Xal, XßI) are nevertheless very different! 

To cope with this problem spatial correlation mapping has been developed, in
spired by techniques used in morphometrics. SAMPSON & GUTTORP [286] and 
MONESTIEZ & SWITZER [229] have proposed smooth nonlinear deformations of 
space f(x) for which the variogram ')'(r) = ')'(Ihl), with h = f(x) - f(x'), is 
isotropie. The deformation of the geographieal space for which the ')'*(xa , xß) val
ues best fit a given theoretieal model is obtained by multidimensional scaling. The 
resulting somewhat grotesque looking maps showing the deformed geographieal space 
turn out to be a valuable exploratory tool for understanding the covariance structure 
of the stations, especially when this can be done for different time periods. 



10 Extension and Dispersion Variance 

Measurements can represent averages over volumes, surfaces or intervals, called their 
support. The computation of variances depends intimatelyon the supports that are 
involved as weIl as on a theoretical variogram associated to a pointwise support. This 
is illustrated with an application fram industrial hygienics. Furthermore, three simple 
sampling designs are examined fram a geostatistical perspective. 

Support 

In the investigation of regionalized variables the variances are a function of the size 
of the domain. On Table 10.1 the results of computations of means and variances in 
nested 2D domains V n are shown. 

Size Mean Variance 
m(Vn ) a2 ('IVn ) 

VI 32x32 20.5 7.4 
V 2 64x64 20.1 13.8 
V 3 128x128 20.1 23.6 
V 4 256x256 20.8 34.6 
V 5 512x512 18.8 45.0 

Table 10.1: Nested 2D domains V n for which the variance increases with the size of 
the domain (fram a simulation of an intrinsic random function by C LAJAUNIE) 

In this example the variance a2 ('IVn ) of point sampies in a domain V n , increases 
steadily with the size of the domain whereas the mean does not vary following a 
distinctive pattern. This illustrates the inftuence that a change in the size of a support 
(here the domain V n ) can have on a statistic like the variance. 

In applications generally two or more supports are involved as illustrated by the 
Figure 10.1. In mining the sampies are collected on a support that can be consid
ered pointwise (only a few cm3); subsequently small blocs v (m3) or larger panels V 
(100m3 ) have to be estimated within deposits V. In soil pollution small surface units 
s are distinguished from larger portions S. In industrial hygiene the problem may be 
set in terms of time supports: with average measurements on short time intervals fit 
the excess over a limit value defined for a work day T should be estimated. 



Extension and Dispersion Variance 67 

[ Mining 1 
3D 

v 

Volumes v 

Industrial hygienics 
10 

At T 

Time intervals 

Soil pollution 
2D 

o 
s 

Surfaces 

s 

Figure 10.1: Supports in 1, 2, 3D in different applications. 

Extension variance 

With regionalized variables it is neeessary to take aeeount of the spatial disposal of 
points, surfaees or volumes for whieh the varianee of a quantity should be computed. 

The extension variance of a point x with respeet to another point x' is defined as 
twiee the variogram 

a~(x,x') = var(Z(x) - Z(x')) = 2')'(x-x'). (10.1) 

It represents the square of theoretieal erroT eommitted when a value at a point x is 
"extended" to a point x'. 

The extension varianee of a small volume v to a larger volume V at a different 10-
eation (see Figure 10.2) is obtained by averaging the differences between all positions 
of a point x in the volume v and a point x' in V 

a~(v, V) var( Z(v) - Z(V)) (10.2) 

21vl~VI! ! ')'(x-x') dxdx' 
x Ev x'EV 
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Figure 10.2: Points x E v and x' E V. 
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Ivl~VI J J ,(x-x') dxdx', 
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(J~(v, V) = 2 'V(v, V) - 'V(v, v) - 'V(V, V). 

(10.3) 

(10.4) 

(10.5) 

The extension variance depends on variogram integrals 'V( v, V), whose values can 
either be read in charts (see JOURNEL & HUIJBREGTS [156], chap. 11) or integrated 
numerically on a computer. 

Dispersion variance 

Suppose a large volume V is partitioned into n smaller units v of equal size. The 
experimental dispersion variance of the values z~ of the small volumes Va building 
up V is given by the formula 

(10.6) 

where 

1 n 

Zv = - ~z~. 
n 

a=l 

(10.7) 
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Considering all possible realizations of a random function we write 

(10.8) 

The theoretical formula for the dispersion variance is obtained by taking the ex
pectation 

E[ S2(vlV) 1 

~ t E [ (Z~ - ZV)2], 
<>=1 

(10.9) 

in which we recognize the extension variances 

(10.10) 

Expressing the extension variances in terms of variogram integrals 

1 n 

a2(vlV) = - ~)2'Y(v, V) - 'Y(v, v) - 'Y(V, V)) 
n 

<>=1 

-'Y(V, v) - 'Y(V,v) + ~ t IVa~1V1 ! ! "((x-x') dxdx' 
- x EVa x'EV 

2 
-'Y(v, v) - 'Y(V, V) + nlvllVl 

n 

~! ! 
- X EVa: x'EV 

---------xEV 

-'Y( V, V) - 'Y(V, V) + 2 'Y(V, V), 

so that we end up with the simple formula 

"((x-x') dx dx' 

(10.11) 

(10.12) 

The theoretical determination of the dispersion variance reduces to the computa
tion of the variogram integrals 'Y( v, v) and 'Y(V, V) associated to the two supports v 
and V. 

Krige's relation 

Starting from the formula of the dispersion variance, first we see that for the case of 
the point values (denoted by a dot) the dispersion formula reduces to one term 

(10.13) 
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v 
D 

v 

/ 
v 

Figure 10.3: A domain D partitioned into volumes V which are themselves partitioned 
into smaller volumes v. 

Second, we notice that a2 (v IV) is the difference between the dispersion variances 
of point values in V and in v 

(10.14) 

Third, it becomes apparent that the dispersion variance of point values in V can be 
decomposed into 

(10.15) 

This decomposition can be genentlized to non point supports. Let 'D be a domain 
partitioned into large volumes V which are themselves partitioned into small units v 
as represented on Figure 10.3. Then the relation between the three supports v, V and 
D can be expressed theoretically by what is called Krige's relation 

(10.16) 

As the dispersion variances are basically differences of variogram averages over 
given supports, the sole knowledge of the pointwise theoretical variogram model 
makes dispersion variance computations possible for any supports of interest. 

Change of support effect 

In the early days of ore reserve estimation, mining engineers used a method called the 
polygon method. It consists in defining a polygon around each sampie, representing 
the area of infiuence of the sampie value, in such a way that the ore deposit is par
titioned by the polygons. The reserves are estimated as a linear combination of the 
grades with the corresponding areas of infiuence. In the polygon method each sam
pIe value is extended to its area of infiuence, neglecting the fact that the sam pIes are 
obtained from pointwise measurements while the polygons represent a much larger 
support. 
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Figure 10.4: The distribution of block values is narrower than the distribution of values 
at the sampie points. 

In the case of a square grid the polygons are square blocks v which partition the 
exploration area. The value at each grid node is extended to each area of influence v. 
The method implies that the distribution of average values of the blocks is the same 
as the distribution of the values at the sampie points. From Krige's relation we know 
that this cannot be true: the distribution of the values for a support v is narrower than 
the distribution of point values (as represented on Figure 10.4) because the variance 
(]"2(·lv) of the points in v generally is not negligible. 

In mining, the cut-off value defines a grade above which a mining block should 
be sent to production. Mining engineers are interested in the proportion of the values 
above the cut-off value which represent the part of a geological body which is of 
economical interest. If the cut-off grade is a value substantially above the mean, the 
polygon method will lead to a systematic overestimation of the ore reserves as shown 
on Figure 10.5. To avoid systematic over- or underestimation the support effect needs 
to be taken into account. 

Change of support: affine model 

In this section we consider a stationary random function Z(x) with a mean m and a 
variance (]"2. The mean m is not changed by a change of support and, whatever the 
distribution, we have the physical fact, 

E[Z(x)] = E[Zv(x)]=m, (10.17) 

i.e. the mean ofthe point variable Z(x) is the same as that ofthe block variable Zv(x). 
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overestimation! 

threshold 

Figure 10.5: The proportion of sampie values above the cut-off value is greater than the 
proportion of block values: the polygon method leads to a systematic overestimation 
in this case. 

The affine model is based on the assumption that the standardized point variable 
follows the same distribution as the standardized block variable. This model is suitable 
for a Gaussian random function as the distribution of block grades is also Gaussian, 
i.e. if Z(x) r-..J N(m, a 2),then Zv(x) r-..J N(m, a;) and 

Z(x) - m C Zv(x) - m '" N(O, 1), (10.18) 
a av 

where G:: means that the two quantities are identically distributed. 
The distribution of the block values is therefore simply obtained from the distribu

tion of the point values by an affine transformation, 

C Zv(x) = m + r (Z(x) - m) '" N(m, a~), (10.19) 

where r = av / a is the change of support coefficient. 
In practice if the point variance a 2 and the variogram ')'(h) are known, the bloc 

variance is computed by the formula (10.12) of the dispersion variance, 

a~ = C(v, v) = a 2 - 7(V, v) (10.20) 

as, assuming a large domain in comparison to the range of the variogram, 
a 2= 7(00,00). The change of support coefficient can then readily be computed. The 
affine change of support model is appropriate only if the data comply with the Gaus
sian distributional assumption. Otherwise the affine model should only be used for v 
relatively small as compared to the range. 
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Circular saw 

400 600 
TIME (205 units) 

Figure 10.6: Measurements of maximal noise level L max (dots) and average noise L eq 

(plain) on time intervals of 20 seconds during 3 hours and 40 minutes. They represent 
the exposure of a worker to the noise of a circular saw. 

Application: acoustic data 

Aseries of 659 measurements of equivalent noise levels L eq (expressed in dB A) aver
aged over 20 seconds were performed on a worker operating with a circular saw. The 
problem is to evaluate whether a shorter or larger time integration interval would be 
of interest. 

The Leq(t) are not an additive variable and need to be transformed back to the 
sound exposure y"q(t). The average sound exposure Veq(t) is defined as the inte
gral (over time interval ßt) of the squared ratio of the instant acoustic pressures p(x) 
against the reference acoustic pressure Po 

Ht!..t/2 

10-9 ! (p(X))2 dx 
ßt Po 

(10.21) 

t-t!..t/2 

exp(a Leq(t) - ß), (10.22) 

where a = (ln 10)/10 and ß = In 109 • 

The measurements were taken continuously during aperiod of 3 hours and 40 
minutes. The Figure 10.6 shows with a continuous !ine the time series (in dB A) of 
the equivalent noise levels L eq integrated over intervals of 20 seconds. The maximal 
noise levels Lmax within these time intervals are plotted with a dotted line (when they 
are above 107 dB). We observe in passing that the averaging over 20 seconds has 
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Figure 10.7: Experimental variogram of the sound. exposure Veq and a regularized 
exponential variogram model for time intervals of b.t = 20s, Imn and 5mn. 

enormously reduced the variation. 
The theoretical variogram of the sound exposure was modeled with a pointwise 

exponential model 

with a, b > O. (10.23) 

The sill is b = .42 and the range parameter is a = 2.4. It corresponds to a practical 
range of 3a = 7.2 time units, i.e. 2.4 minutes, which is the time of a typical repetitive 
working operation. 

The support of the sound exposure, i.e. the integration time, has an impact on 
the shape of the theoretical variogram: it alters the behavior at the origin, reduces the 
value of the sill and increases the range. The exponential variogram regularized over 
time intervals b.t is defined by the formula ([156], p84) 

____ 2e -t:..tja _ 2 + -- + e -hja (2 - e -t:..tja) - e (h-t:..t)ja ba2 (2h ) 
(b.t)2 a 

for 0 :::; h :::; b.t, (10.24) 

ba2 __ (e -t:..tja _ e t:..tja + (e -t:..tja + e t:..t/a - 2) . (1 _ e -hja)) 
(b.t)2 

for h > b.t. 

The Figure 10.7 shows the experimental variogram together with the exponential 
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Figure 10.8: Curve of dispersion variances a2 (D-tIV) as a function of the integration 
time D-t with fixed V. 

model regularized over time lags of 20 seconds, 1 and 5 minutes illustrating the effect 
of a modification of the support on the shape of the theoretical variogram. 

Finally a curve of the dispersion variance of the sound exposure as a function of 
the integration time D-t is represented on Figure 10.8. The dispersion variance for an 
exponential model is calculated with the formula 

where, for L = D-t, V, 

,,/(V, V) - ,,/(D-t, D-t) 
F(V) - F(D-t), 

( 2a (a ) 2a2 (L)) F(L) = b l+ y I-I -V exp -~ . 

(10.25) 

(10.26) 

As the practical range of the variogram is relatively short (2.4 minutes), it can be 
learned from Figure 10.8 that for a time integration support of less than 1/2 hour (90 
time units) a small increase of the support leads to large dropping of the dispersion 
variance. Conversely it does not seem to make much difference if the integration is 
changed from 1 hour to 2 hours. With a short practical range the essential part of the 
variability can only be recovered using an integration time much shorter than 1/2 hour. 
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Comparison of sampling designs 

The concepts of estimation and dispersion variance can be used to compare three 
sampling designs with n sampies 

A - regular grid: the domain V is partitioned into n cubic cells v at the center of 
which a sampie z(xo ) has been taken; 

B - random grid: the n sampies are taken at random within the domain V; 

C - random stratified grid: the domain V is partitioned into n cubic cells v inside 
each of which one sam pie is taken at random. 

For design A, with a regular grid the global estimation variance a~G is computed 
as 

a~G var( Z.; - Zv) 
1 n 1 n 2 

ErL (- )' Z(Xa ) - - )' Z(Va )) 1 
n.L..J n4.....J' J 

0=1 0=1 

(10.27) 

Ifwe consider that the elementary errors Z(xo)-Z(vo) are independent from one 
cell to the other 

(10.28) 

As the points X o are at the centers Xc of cubes of the same size we have fOT design 
A 

(10.29) 

For design B, the sampies are supposed to be located at random in the do
main (poisson points). We shall consider one realization z with random coordinates 
Xl, X 2 , X 3 • The expectation will be taken on the coordinates. The global estimation 
variance is 

Ex [ (z'; - zv)2] 

1 n 2 

Ex [ (;;: L z(Xf, Xf, Xf) - z(V)) ]. 
0=1 

(10.30) 
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Assurning elernentary errors to be independent, we are left with 

(10.31) 

We now write explicitly the expectation over the randorn locations distributed with 
probabilities I/lVI over the dornain 

~2 ~ I~I ! ! ! (z(xf, x~, x~) - z(V) r dX1 dX2 dX3 

Xl X2 X3 

(10.32) 

Generalizing the formula frorn one realization z to the randorn function Z and 
taking the expectation (over Z), we have for design B 

(10.33) 

For design C, each sampie point is located at randorn within a cube Va and the 
global estirnation variance for one realization z is 

S~G Ex [ (z'; - Z1J)2] 

1 n 2 

Ex [ (r;: ~) z(Xf, X~\ Xf) - z(Va ))) ] 

0=1 

Randornizing z to Z and taking the expectation, we have for design C 

2 1 2 
O"EG = - 0" (·Iv). 

n 

(10.34) 

(10.35) 

Cornparing the randorn grid B with the randorn stratified grid C we know frorn 
Krige's relation that 

(10.36) 

and thus design C is a better strategy than design B. 
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To compare the random stratified grid C with the regular grid A we have to com
pare the extension variance of the central point in the cube 

(10.37) 

with the dispersion variance of a point in the cube 

(10.38) 

It turns out that the former is usually lower than the latter (see [51], p136, for a 
numerical example). The regular grid is superior to the random stratified grid from the 
point of view of global dispersion variance as the sampies cover evenly the region. 

However for computing the experimental variogram, an advantage can be seen in 
using unequally spaced data: they will provide more information about sma1l-scale 
variability than evenly placed sampies. This helps in modeling the variogram near the 
origin. 



11 Ordinary Kriging 

Ordinary kriging is the most widely used kriging method. It serves to estimate a value 
at a point of a region for whieh a variogram is known, using data in the neighborhood 
of the estimation loeation. Ordinary kriging ean also be used to estimate a block value. 
With loeal seeond-order stationarity, ordinary kriging implicitly evaluates the mean in 
a moving neighborhood. To see this, first a kriging estimate of the loeal mean is set 
up, then a simple kriging estimator using this kriged mean is examined. 

Ordinary kriging problem 

We wish to estimate a value at Xo as represented on Figure 11.1 using the data values 

• 
• 

0 

• • 
• • • 

• • • • • • 
• • • 

Figure 11.1: A domain with irreguIarly spaeed sampie points (black dots) and a Ioea
tion of interest xo. 

from the n neighboring sam pie points Xc> and combining them linearly with weights 
Wo. 

n 

(11.1) 

Obviously we have to eonstrain the weights to sum up to one beeause in the par
tieular case when all data values are equal to a eonstant, the estimated value should 
also be equal to this eonstant. 
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We assume that the data are part of a realization of an intrinsic randorn function 
Z(x) with a variograrn ')'(h). 

The unbiasedness is warranted with unit surn weights 

n n 

E[ Z*(xo) - Z(xo)] = E [L Wo; Z(xo;) - Z(xo) . L Wo; ] 

n 

0;=1 

0, 

0;=1 0;=1 
~ 

1 

because the expectations of the incrernents are zero. 

(11.2) 

The estirnation variance a~ = var(Z*(xo) - Z(xo)) is the variance of the linear 
cornbination 

n n 

Z*(xo) - Z(xo) L Wo; Z(xo;) - 1 . Z(xo) = L Wo; Z(xo;), (11.3) 
0;=1 0;=0 

with a weight Wo equal to -1 and 

n 

o. (11.4) 

Thus the condition that the weights nurnbered frorn 1 to n surn up to one also irnplies 
that the use of the variograrn is authörized in the cornputation of the variance of the 
estirnation error. 

COMMENT 11.1 The variogram is authorized for ordinary kriging, but not for simple 
kriging, because the latter does not inc1ude any constraint on the weights. The con
dition (11.4) corresponds to the one found in the definition (7.18) of a conditiona1ly 
negative definite function. 

The estirnation variance is 

a~ E[ (Z*(xo) - Z(xO))2] 
n n n 

-,),(xo-xo) - L L Wo; wß ')'(xo;-xß) + 2 L wo;')'(xo;-xo). (11.5) 
=1~1 =1 

By rninirnizing the estirnation variance with the constraint on the weights, we ob
tain the ordinary kriging system (OK) 
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where the w~K are weights to be assigned to the data values and where /-LOK is the 
Lagrange parameter. The left hand side of the system describes the dissimilarities 
between the data points, while the right hand shows the dissimilarities between each 
data point and the estimation point Xo. 

Performing the matrix multiplication, the ordinary kriging system can be rewritten 
in the form 

n 

L W~K ')'(x",-xß) + /-LOK = ,),(x",-xo) for a= 1, ... , n 
ß=l 

The estimation variance of ordinary kriging is 

n 

O"~K = /-LOK - ')'(xo-xo) + L W~K ,),(X",-Xo). 
",=1 

(11.7) 

(11.8) 

Ordinary kriging is an exact interpolator in the sense that if Xo is identical with a 
data location then the estimated value is identical with the data value at that point 

if Xo = x"'. (11.9) 

This can be easily seen. When Xo is one of the sam pie points, the right hand side 
of the kriging system is equal to one column of the left hand side matrix. A weight 
vector w with a weight for that colutnn equal to one and all other weights (including 
/-LOK) equal to zero is a solution of the system. As the left hand matrix is not singular, 
this is the only solution. 

Simple kriging of increments 

We deal with an intrinsically stationary random function Z(x) with a variogram ')'(h). 
We have data at locations XI, ... ,Xn . Taking arbitrarily a random variable Z at the 
data location X n , we can construct an incremental random function 

Y(X) = Z(x) - Z(xn ), (11.10) 

whose (non stationary) covariance function is 

(11.11) 

The simple kriging estimate YS*K(XO) from increments at locations Xl,.·., Xn~l 
yields an estimate 

(11.12) 

which is equivalent to the ordinary kriging ZOK(X). 
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To see this, consider the simple kriging system 

n-l 
L W~K Cy(xo:, xß) = Cy(xo:, xo) 
ß=l 

for a=l, ... ,n-1. (11.13) 

Inserting (11.11) we get for each a = 1, ... , n-1 

n-l n-l n-l 
- L W~K 'Y(xo:-xß) + L w~K 'Y(x,,-xn ) + L W~K 'Y(xß - x n ) 

ß=l ß=l ß=l 
= -'Y(xo:-xo) + 'Y(xo:-xn) + 'Y(xo-xn ), (11.14) 

and renaming the terms which do not depend on a 

n-l 
-L w~K 'Y(x,,-xß) - 'Y(x,,-xn ) 

ß=l 

n-l 
+ L W~K 'Y(xß-xn ) - 'Y(xo-xn ) 

ß=l 
~~----------vr--------~~ 

-J-lOK 

for a = 1, ... , n-1. (11.15) 

This is the system for the ordinary kriging estimator ZOK from expression (11.1). 
We have weights W~K summing to one because W~K is equal to W~K for the first 
n-1 weights, while w~K is precisely the difference between one and the sum of those 
simple kriging weights. The system has n-1 equations because there are actually only 
n-1 unknowns in ordinary kriging: both J-lOK and w~K can be deduced from the n-l 
other weights. 

The equivalence between the ordinary kriging of Z and the simple kriging of its 
increments Y is no real surprise as both estimators minimize the same estimation 
variance 

var(Z - Z*) = var(Y - Y*) (11.16) 

over the same dass of estimators and with the same probabilistic model. As the same 
minimum is achieved, the resulting kriging variances are equal. 

Block kriging 

Ordinary kriging can be used to estimate a block value instead of a point value as 
suggested by the drawing on Figure 11.2. When estimating a block value from point 
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Figure 11.2: A domain with irregularly spaced sampie points (black dots) and a block 
Va for which a value should be estimated. 

values by 

n 

Z~a = L W a Z(xa ) (11.17) 
a=1 

the ordinary kriging is modified in the following way to krige a block 

,(XI-Xn) 

where the right hand side now contains the average variogram l'(xa , va) of each sam
pIe point with the block of interest. 

The corresponding block kriging variance is 

n 

(J"~K = /-lBK -l'(va, va) + L w~K l'(xa , va). (11.19) 
a=1 

For a second-order stationary random function the block kriging variance can be 
written in terms of covariances 

(11.20) 

Assurning the covariance function falls off to zero (like the spherical or exponential 
functions), if we let the volume Va grow very large, the terms C (va, va) and C (xa , va) 
vanish, i.e. 

for IVal H 00. (11.21) 

The same is true for the kriging systems and the estimates. The block kriging tends 
to be equivalent to the kriging of the mean for large blocks Va. 
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Simple kriging with an estimated mean 

We assurne a second-order stationary Z (x) with known covariance function C (h). We 
already have learned how to krige the mean using the linear combination 

n 

m* = L W~M z(x,,) with 
,,=1 

n 

~WKM = 1 
~" , 
a=l 

(11.22) 

where W~M are the weights of a kriging of the mean and z(x,,) are data at locations 

X a · 

Why not insert this estimated mean value into the simple kriging estimator 
n 

ZgKM(XO) = m* + L w~K(Z(xa) - m*), (11.23) 
a=l 

where W~K are the simple kriging weights? Replacing m* by the corresponding linear 
combination gives 

n n n n 

ZgKM(XO) = L W~M Z(xa) + L W~K Z(xa) - L W~K L w~M Z(xß) 
a=l a=l a=l ß=l 

n n n n 

L W~K Z(x,,) + L W~M Z(xa) - L W~M Z(xa) L W~K 
a=l a=l a=l ß=l 

n n 

L [W~K + W~M( 1 - L W~K)] Z(xa). 
,,=1 ß=l 

Introducing a weight 

W 

n 

1- ~wSK 
~ " , 
a=l 

called the weight 0/ the mean, we have 
n n 

ZgKM(xO) = L[w~K+ww~M]Z(Xa) = LW~Z(Xa). 
,,=1 a=l 

This looks like the estimator used for ordinary kriging. 

(11.24) 

(11.25) 

(11.26) 

We check whether the weights w~ in this linear combination sum up to one 
n n n n 

L W~K + w L W~M = L W!K + 1 - L w!K = 1. (11.27) 
a=l a=l ,,=1 

'----v----' 
1 

a=l 

We examine the possibility that the weights w~ might be obtained from an ordinary 
kriging system 

n 

L wß C(x,,-xß) 
ß=l 

n n 

L W~K C(x,,-xß) + W L W~M C(xa-xß) 
ß=l ß=l 

C(xa-xo) + W!-lKM. (11.28) 



Ordinary Kriging 85 

Choosing to ealltl' the produet of the weight of the mean with the varianee of the 
kriging of the mean, and putting the equations for w~ together, we indeed have an 
ordinary kriging system 

n 

L wß C(x,,-xß) = C(x,,-xo) + ,./ for a= 1, ... ,n 
ß=l 

n 
(11.29) 

LWß = 1, 
ß=l 

whieh shows that ordinary kriging is identieal with simple kriging based on the esti
mated mean: Z~KM(XO) = ZOK(XO)' 

The ordinary kriging varianee has the following decomposition 

(11.30) 

The ordinary kriging varianee is the sum of the simple kriging varianee (assuming 
a known mean) plus the varianee due to the uneertainty about the true value of the 
mean. When the weight of the mean is small, the sum of the weights of simple kriging 
is dose to one and ordinary kriging is dose to the simple kriging solution, provided 
the variance of the kriged mean is also small. 

Kriging the residual 

Considering Z(x) to be a second-order stationary random funetion, we ean establish 
the following model 

Z(x) = m + Y(x) 
~~ 

with E[Y(x)] = O. (11.31) 

The mean is uneorrelated with the residual 

E[m· Y(x)] = mE[Y(x)] = 0, (11.32) 

beeause it is a deterministie quantity. 
We know how to estimate Z (x) by ordinary kriging and the mean m by a kriging 

of the mean. Now we would like to krige Y (x) at some loeation Xo with the same type 
of weighted average 

n 

Y*(xo) (11.33) 
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The unbiasedness is obtained by using weights summing up to zero (instead of 
one) 

n 

E[ Y(xo) - Y*(xo) ] E[Y(xo)] - LW" E[Z(x,,)] 
"----v---' "----v---' o ,,=1 m 

n 

-m LW" =0. (11.34) 
,,=1 

'-----v----" 
o 

The eondition on the weights has the effeet of removing the mean. 
The estirnation varianee var(Y*(xo) - Y(xo)) is identical to var(Z*(xo) - Z(Xo)) 

as Y(x) has the same eovarianee funetion C(h) as Z(x). The system ofthe kriging o[ 
the residual (KR) is the same as for ordinary kriging, exeept for the eondition on the 
surn of weights which is zero instead of one. 

It is of interest to note that the ordinary kriging system ean be deeomposed into 
the kriging of the mean and the kriging of the residual: 

The weights of ordinary kriging are eomposed of the weights of the krigings of the 
mean and the residual, and so do the Lagrange multipliers 

and /-lOK = /-lKM + /-lKR· (11.36) 

The estimators are thus eompatible at any loeation of the domain 

Z*(xo) = m* + Y*(xo) for all Xo E D. (11.37) 

The kriging varianees 

n 

and a~R = C(O) - L w!R C(x,,-xo) (11.38) 
,,=1 

however do not add up in an elementary way. 
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Cross validation 

Cross validation is a simple way to compare various assumptions either about the 
model (e.g. the type of variogram and its parameters, the size of the kriging neighbor
hood) or about the data (e.g. values that do not fit their neighborhood like outliers or 
pointwise anomalies). 

In the cross validation procedure each sampie value Z(xa) is removed in turn 
from the data set and a value Z*(X[a]) at that location is estimated using the n-1 
other sampies. The square brackets around the index a symbolize the fact that the 
estimation is performed at location X a excluding the sampled value Za. 

The difference between a data value and the estimated value 

(11.39) 

gives an indication of how weH the data value fits into the neighborhood of the SUf

rounding data values. 
If the average of the cross-validation errors is not far from zero, 

(11.40) 

we can say that there is no apparent bias, while a significant negative (or positive) 
average error can represent systematic overestimation (respectively underestimation). 

The magnitude of the mean squared cross-validation errors is interesting for com
paring different estimations: 

(11.41) 

The kriging standard deviation ara] represents the error predicted by the model 
when kriging at location X a (omitting the sampie at the location x a ). Dividing the 
cross-validation error by ara] allows to compare the magnitudes of both the actual and 
the predicted error: 

Z(xa) - Z*(X[a]) 

ara] 
(11.42) 

If the average of the squared standardized cross-validation errors is about one, 

(11.43) 

the actual estimation error is equal on average to the error predicted by the model. 
This last quantity gives an idea about the adequacy of the model and of its parameters. 
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Kriging with known measurement error variance 

Suppose we measure sampie values Za with a device indicating the preeision 0-a of 
eaeh measurement. 

The model for eaeh sampie loeation is Z(xa ) = Y(xa ) + Cl» where Ca is the 
measurement error, with a known variance var(ca) = a~, which may be different 
for eaeh sampie. The Y(xa ) represents the quantity we aetually wish to measure. 
We assume it is seeond-order stationary and shall suppose that we have aeeess to its 
eovarianee funetion C(h). 

We need also to assume that the measurement error is not spatial, 

cov(Y(Xa), ca) = 0, (11.44) 

and that the errors are independent 

for a =1= ß· (11.45) 

We wish to filter the measurement error by kriging. This amounts to estimate Y (x) 
from the data Z(x,,) with the linear eombination 

n 

Y*(Xo) = LW" Z(x,,). 
a=l 

The eorresponding ordinary kriging system is 

(

I C(X1-~1) + o-i 1 

C(Xn -X1) 

1 

1 C(xn-xn ) + o-~ 1 

1 

(11.46) 

(11.47) 

In this system the error varianees o-~ only show in the diagonal of the left hand 
matrix. 



12 Kriging Weights 

The behavior of kriging weights in 2D space is discussed with respect to the geo
metry of the sample/estimation locations, with isotropy or anisotropy and in view of 
the choice of the type of covariance function. The examples are borrowed from the 
thesis of RIVOIRARD [264] which contains many more. 

Geometry 

The very first aspect to discuss about kriging weights is the geometry of the sampIe 
points and the estimation point. Let us take a lozenge at the corners of which 4 sampIes 
are located. We wish to estimate a value at the center of the lozenge. 

Nugget-effect covariance model 

In the case of a nugget-effect model the ordinary kriging weights are shown on Fig
ure 12.1. All weights are equal to Iln and do not depend on the geometry. 

25% 

• 
25% 25% 

• 
I 

0 • 
L 

25% 

• 
Figure 12.1: Ordinary kriging weights when using a nugget-effect model with sampIes 
located at the corners of a lozenge and the estimation point at its center. The kriging 
variance is a6K= 1.25 a2• 

With a nugget-effect model, when the estimation point does not coincide with a 
data point, the ordinary kriging variance is equal to 

It is larger than the variance a2• 

2 a2 2 
= J.LOK + a = - + a . 

n 
(12.1) 
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40.6% 
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• 
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40.6% 

• 
Figure 12.2: With a spherical model of range aj L = 2 the remote sampies get lower 
weights. The ordinary kriging variance is U&K= .84u2. 

Spherical covariance model 

Taking a spherical model of range aj L = 2 the weights of the sampies at the remote 
corners of the lozenge get lower weights as to be seen on Figure 12.2. The associated 
ordinary kriging variance is U&K= .84 u 2• 

Gaussian covariance model 

Using a Gaussian covariance model with range parameter aj L = 1.5 the remote sam
pIes have almost no influence on the estimated value at the center of the lozenge as 
shown on Figure 12.3. . 

49.8 

• 
0.2% 0.2% 

• 

I 
0 • 

L 
49.8% 

• 
Figure 12.3: Using a Gaussian model with a range parameter aj L = 1.5 the remote 
sampies have very little influence on the estimated value. The ordinary kriging variance 
is U&K= .30 u2. 

The random function associated to the Gaussian model is an analytic function, 
which implies that the data are assumed to stern from an infinitely differentiable re
gionalized variable. Such a model is generally not realistic. 
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Figure 12.4: Comparing a configuration of four sampies at the corners of a square 
using an isotropie model (on the left) and an anisotropie model (on the right). 

33.3% 

o 37.1% o 37.1% 

33.3% 25.9% 

Figure 12.5: Three sampies on a eircle around the estimation loeation (on the left 
o-ÖK= .450-2 and on the right o-ÖK= .480-2 ). 

Geometrie anisotropy 

On Figure 12.4 a configuration of four sam pies at the corners of a square with a central 
estimation point is used, taking alternately an isotropie (on the left) and an anisotropie 
model (on the right). 

On the left, the isotropie model generates equal weights with this configuration 
where all sam pie points are symmetrieally loeated with respeet to the estimation point. 

On the right, a spherieal model with a range of a/ L = 1.5 in the horizontal di
rection and a range of a/ L = .75 in the vertieal direetion is used as the anisotropie 
model. The weights are weaker in the direetion with the shorter range and this matches 
intuition. 

Relative position of sampIes 

This experiment compares the relative position of sampies on a circ1e of radius L 
around the estimation point using an isotropie spherieal model with a range of 3 a/ L. 
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25.7% 25.7% 50% 

o o 

48.7% 50% 

Figure 12.6: On the left, two samples have been set near to each other at the top 
(a&K= .526 a 2). On the right, the two upper samples have been merged into one 
single top sample (a&K= .537 a 2). 

On the left of Figure 12.5 three sam pIes are arranged in asymmetrie way around 
the estimation point. The weights are identieal and the ordinary kriging varianee is 
a&K = .45 a 2. On the right, the two top sarnples have been moved down around 
the eirele. The weights of these two sampies inerease beeause of the gap ereated at 
the top of the cirele. The ordinary kriging varianee is higher than in the symmetrie 
eonfiguration with a&K = .48 a 2. 

On the left of Figure 12.6 On the left of Figure 12.6 the two top sampies have been 
set very near to eaeh other and their total weight is slightly higher than the weight of 
the bottom sampie. The ordinary kriging varianee is a&K = .526 a 2. On the right 
of Figure 12.6 the two upper points have aetually been merged into a single sarnple. 
Symmetry is reestablished: the top and bottom sampie loeations eaeh share half of 
the weight. Merging the two upper sampies into one top sampie has only slightly 
inereased the ordinary kriging varianee to a&K = .537 a 2. 

Screen effect 

A remarkable feature of kriging, which makes it different from other interpolators, 
is that a sampie ean sereen off other sampies loeated behind it with respeet to the 
estimation loeation. An example of this phenomenon is given on Figure 12.7 showing 
two ID sampling eonfigurations. A spherieal model of range parameter aj L= 2 was 
used, where L is the distance from the point A to the estimation loeation. 

At the top of Figure 12.7, two sarnples A and Bare loeated at different distanees 
of the estimation point and get different ordinary kriging weights of 65.6% and 34.4% 
aeeording to their proximity to that point. The kriging varianee is a&K = 1.14 a 2. 

At the bottom of Figure 12.7, a third sampie C has been added to the eonfiguration: 
the weight of B drops down to 2.7% and almost all weight is distributed fairly equally 
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34.4% 

• 
8 

2.7% 

• 8 

Figure 12.7: At the top, we have two sampies at different distances from the esti
mation point (aÖK= 1.14 a2 ). At the bottom, a third sampie has been added to the 
configuration (aÖK= .87 a 2 ). 

between A and C which are at the same distance from the estimation point. The 
ordinary kriging variance is brought down to aÖK = .87 a2 • 

An interpolator based on weights built on the inverse of the distance of a sampie 
to the estimation point does not show screen effects. The weights are shaped without 
taking any account of the varying amount of sampies in different directions around the 
estimation point. 

Factorizable covariance functions 

With the 1D configuration at the bottom of Figure 12.7 a total screen off of B by C 
could be obtained by using an exponential covariance function (instead of the spheri
cal model) and simple kriging (instead of ordinary kriging). This is due to the factor
ization of the exponential function C ( h) = exp ( -I h I) : 

C(Xo, XB) = C(Xo, xc) . C(xc, XB), (12.2) 

which implies the conditional independence of Z(xo) and Z(XB) with respect- to 
Z(xc) for a stationary Gaussian random function Z(x). 

In 2D, with h= (hl, h2)T, the so-called "Gaussian" covariance function (because 
of the analogy with the distribution of the same name), 

C(h) = e -lh I2 , (12.3) 

can be factorized with respect to the two spatial coordinates: 

An example of simple kriging weights with a Gaussian covariance function is 
shown on Figure 12.8. The sampies D, E, F are completely screened off by the 
sam pIes A, B, C. The latter are the orthogonal projections of the former on the abscissa 
of a coordinate system centered on the estimation point. It could be thought that total 
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Figure 12.8: Simple kriging with a Gaussian covariance model: sampies A, B, C screen 
off D, E, F (in simple kriging the weights are unconstrained and do not add up to 100%). 
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Figure 12.9: Simple kriging with a Gaussian covariance model: adding the point G 
radically changes the distribution of weights. 

sereen off will aet on sampies whose projeetion on either one of the eoordinate axes 
(eentered on the estimation loeation) is a sampie loeation. There is no such rule: 
adding a point G above the estimation loeation as on Figure 12.9 ehanges radica1ly 
the overall distribution of weights. 

Negative kriging weights 

It is interesting to note that many points on Figure 12.9 have reeeived a negative 
weight. Negative kriging weights are an interesting feature as they make extrapolation 
possible out of the range of the data values. The counterpart is that when a variable is 
only defined for positive values (like grades of ore), it may happen that kriged values 
are slightly negative and need to be readjusted. 

COMMENT 12.1 A formulation of kriging providing only positive weights was given 
by BARNES & JOHNSON [22}. CHAUVET [43} reviews causes and possible solutions 
to the presence of significant negative weights, while MATHERON [219} examines the 
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question of the existence of covariance, variogram or generalized covariance models 
that ensure positive kriging weights. 



13 Mapping with Kriging 

Kriging can be used as an interpolation method to estimate values on a regular grid 
using irregularly spaced data. Spatial data may be treated locally by defining a neigh
borhood of sampies around each location of interest in the domain. 

Kriging for spatial interpolation 

Kriging is certainly not the quiekest method for spatial interpolation. 
A simpler method, for example, is the inverse distance interpolation, whieh con

sists in weighting each data by the inverse of the distance to the estimation location 
(scaling the weights to be unit sum). One could establish an alternate method by us
ing the inverse squared distance or, more generally, apower p of the inverse distance. 
This raises the question of how to choose the parameter p and there is no simple an
swer. Geostatisties prevents such a problem by starting rightaway with an analysis 
and an interpretation of the data to determine the parameters entering the interpolation 
algorithm, i.e. kriging. 

The advantages of the geostatistical approach to interpolation are thus: 

- kriging is preceded by an analysis of the spatial structure of the data. The rep
resentation of the average spatial variability is integrated into the estimation 
procedure in the form of a variogram model. 

- ordinary kriging interpolates exactly: when a sampie value is available at the 
location of interest, the kriging solution is equal to that value. 

kriging, as a statistieal method, provides an indieation of the estimation error: 
the kriging standard deviation, whieh is the square root of the kriging variance. 

How is kriging actually used for generating a map? 
A regular grid is defined on the computer as shown on Figure 13.1. Each node of 

the grid becomes the point Xo in turn and a value is kriged at that location. The result 
is a map like on Figure 13.2. Here araster representation of the kriged grid was 
chosen. Each shaded square is centered on the node of the grid and is shaded with a 
different grey tone according to the value estimated at that location. 

Figure 13.3 shows araster representation of the corresponding kriging standard 
deviations. This map of the theoretieal kriging estimation errors allows to evaluate 
the precision of the estimation in any part of the region. It is a useful compendium 
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Figure 13.1: To make a map, a regular grid is built for the region of interest and each 
node becomes the node Xo in turn. 

of the map of the kriged values. It should be understood that the kriging varianee is 
primarily a measure of the density of information around the estimation point. 

The white squares on Figure 13.3 eorrespond to nodes whieh eoincide with a sam
pIe loeation: the kriging varianees are zero at these points where exaet interpolation 
takes plaee. 

For a better visual understanding of the spatial strueture of the kriged values the 
grid of regularly spaced values is generally submitted to a seeond interpolation step. 
One possibility is to refine the initial grid and to interpolate linearly the kriged val
ues on the finer grid like on the raster representation on Figure 13.4. The result is a 
smoother version of the raster initially shown on Figure 13.2. 

Another way to represent the results of kriging in a smooth way is to eontour them 
with different sets of isolines as shown on Figure 13.5 (the arsenie data has been 
standardized before kriging: this is why part of the values are negative). 

Neighborhood 

It may be asked whether it is neeessary to involve all sam pIes in the estimation proee
dure. More precisely, with a spherieal eovarianee model in mind, as the eovarianee is 
zero for distanees greater than the range, is it neeessary to involve sampies which are 
far away from a loeation of interest xo? 

It seems appealing to drawa circ1e (sphere) or an ellipse (ellipsoid) around Xo and 
to eonsider only sampies which lie within this area (volume) as neighbors of Z(xo). 
Locations whose covariance with Xo is zero are uneorrelated and the eorresponding 
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Figure 13.2: Raster representation of kriged values of arsenic: a square is centered on 
each node of a .5 km X .5 km grid and shaded proportionally to the kriging result. 

sampIes have no direet influenee on Z(xo). Thus it makes sense to try to define for 
eaeh loeation Xo a loeal neighborhood of sampIes nearest to xo. 

At first sight, with the spherieal eovarianee model in mind, the radius of the neigh
borhood eentered on Xo eould be set equal to the range of the eovarianee funetion and 
sampIes further away eould be excluded as represented on Figure 13.6. However, the 
spherieal eovarianee funetion expresses only the direet eovarianees between points, 
but not the partial eovarianees of the estimation point with a data point eonditionally 
on the other sampIe points. The partial eorrelations are refleeted in the kriging weights, 
whieh are in general not zero for points beyond the range from the estimation location. 

In praetiee, beeause of the generally highly irregular spatial arrangement and den
sity of the data, the definition of the size of a loeal neighborhood is not straightfor
ward. A eriterion in eomrnon use for data on a regular mesh is to eheek for a given 
estimation point if adding more sampIes leads to a signifieant deerease of the kriging 
varianee, i.e. an inerease in the preeision of the estimation. Cross validation eriteria 
ean also be used to eompare different neighborhoods. 
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Figure 13.3: Raster representation of the kriging standard deviations. 

Figure 13.4: Smoothed version of the raster representation of arsenic: a finer grid is 
used and the kriged values are interpolated linearly on it. 
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Figure 13.5: Isoline representation of kriged values of arsenic: the kriged values at the 
grid nodes are contoured with a set ofthin and thick isolines (arsenic data was reduced 
to zero mean and unit variance before kriging) . 
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Figure 13.6: Around a location of interest Xo of the grid a circular neighborhood is 
defined and the sampIes within the circle are selected for kriging. 



14 Linear Model of Regionalization 

A regionalized phenomenon can be thought as being the sum of several independent 
subphenomena acting at different characteristic scales. A linear model is set up which 
splits the random function representing the phenomenon into several uncorrelated ran
dom functions, each with a different variogram or covariance function. In subsequent 
chapters we shall see that it is possible to estimate these spatial components by krig
ing, or to filter them. The linear model of regionalization brings additional insight 
about kriging when the purpose is to create a map using data irregularly scattered in 
space. 

Spatial anomalies 

In geochemical prospecting or in environmental monitoring of soil the aim is to detect 
zones with a high average grade of mineral or pollutant. A spatial anomaly with a 
significant grade and a relevant spatial extension needs to be detected. We now discuss 
the case of geochemical exploration. 

When prospecting for mineral deposits a distinction can be made between geolog
ical, superficial and geochemical anomalies as illustrated on Table 14.l. 

A deposit is a geological anomaly with a significant average content of a given raw 
material and enough spatial extension to have economic value. Buried at a specific 
depth, the geological body may be detectable at the surface by indices, the superjicial 
anomalies, which can be isolated points, linear elements or dispersion haloes. 

Geological and superficial anomalies correspond to avision of the geological phe
nomenon in its full continuity. Yet in prospecting only a discrete perception of the phe
nomenon is possible through sampies spread over the region. A superficial anomaly 
can be apprehended by one or several sam pIes or it can escape the grip of the prospec
tor when it is located between sam pIe points. 

A geochemical anomaly, in the strict sense, only exists at the sampie points and 
we can distinguish between: 

pointwise anomalies defined on single sampIes, and 

groupwise anomalies defined on several neighboring sampies. 

If we think of the pointwise and the groupwise anomalies as having been generated 
by two different uncorrelated spatial processes, we may attribute a nugget-effect to 
the presence of pointwise anomalies, a short range structure to groupwise anomalies, 
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3D 2D Sampies 

GEOLOGICAL 1---+ SUPERFICIAL 1---+ GEOCHEMICAL 
ANOMALY ANOMALY ANOMALY 

isolated spot ---+ point 

/ / 
deposit ---+ fault 

\.t \.t 
aureola ---+ group of points 

Table 14.1: Spatial anomalies in geochernical prospecting. 

while a further large scale structure may be explained by the geochemical background 
variation. 

Such associations between components of a variogram model and potential spatial 
anomalies should be handled in a loose manner, merely as a device to explore the 
spatial arrangement of high and less high values. 

N ested variogram model 

Often several sills can be distinguished on the experimental variogram and related 
to the morphology of the regionalized variable. In a pioneering paper SERRA [299] 
has investigated spatial variation in the Lorraine iron deposit and found up to seven 
sills, each with a geological interpretation, in the multiple transitions between the 
micrometric and the kilometric scales. 

Let us first define the correlation function p(h), obtained by normalizing the co
variance function with its value b = C(O) at the origin, 

p(h) = C~h), so that C(h) = b p(h). (14.1) 

Different sills bu observed on the experimental variogram are numbered with an in
dex u = 0, ... , S. A nested variogram is set up by adding S + 1 elementary variograms 
with different coefficients bu 

s s 
'Y(h) L 'Yu(h) = L bu gu(h), (14.2) 

u=o u=o 

where the gu(h) are normalized variograms, i.e. elementary variogram models with a 
slope, sill (or asymptotic sill) normalized to one. The coefficients bu express explicitly 
the actual value of the nugget-effect, sill or slope. 
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Figure 14.1: Display of the values of arsenic measured on soil sampies in a 35 km X 

25 km region near the Loire river in France. 

If the variograms l'u(h) can be dedueed from eovarianee funetions Cu(h), the 
nested variogram beeomes 

s s s 
l'(h) b- LCu(h) =b- Lbup,,(h), where b = L b", (14.3) 

u=o u=o 

with, in a typical case, a nugget-effect eovarianee funetion Co(h) and several spherical 
covariance functions Cu(h) having different ranges a". 

On Figure 14.1 a map of arsenic sampies taken in soil is shown, covering a region 
near the Loire river. The arsenie sampie locations are represented with circ1es pro
portional to the detected values. The mean experimental variogram of this variable is 
seen on Figure 14.2. The variogram has been fitted with a nested model eonsisting of 
a nugget effect plus two spherieal funetions with a range of 3.5 km and 6.5 km. 

Decomposition of the random function 

The random function Z(x) assoeiated with a nested variogram model is a sum of 
spatial eomponents eharaeterizing different spatial seales, i.e. reaehing different sills 
ofvariation b" at different seales, except maybe for the last eoeffieient bs , which eould 
represent the slope of an unbounded variogram model. 
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Figure 14.2: Variogram of the arsenic measurements fitted with a nested model con
sisting of a nugget-effect plus two spherical models of 3.5 km and 6.5 km range. 

It is clear that a small-scale component can only be identified if the sampling 
grid is sufficiently fine. Equally, a large-scale component will only be visible on the 
variogram if the diameter of the sampled domain is large enough. 

A deterministic component (mean m or drift m(x)) can also be part of the decom
position. 

In the following we present several linear models of regionalization, obtained by 
assembling together spatial components of different types. 

Second-order stationary regionalization 

A second-order stationary random function Z(x) can be built by adding uncorrelated 
zero mean second-order stationary random functions Zu (x) to a constant m represent
ing the expectation of Z (x) 

Z(x) = Zo(x) + ... + Zu (x) + ... + Zs(x) + m, 

where cov(Zu(x) , Zv(x+h)) = 0 for u -=1= v. 
A simple computation shows that the corresponding covariance model is 

C(h) = Co(h) + ... + Cu(h) + ... + Cs(h). 

Take a random function model with two uncorrelated components 

(14.4) 

(14.5) 

(14.6) 
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with E[ Z1 (x) Z2(x+h) ] = 0 and E[ Z1 (x) ] = E[ Z2(X) ] = O. 
Then 

C(h) E[ Z(x+h) Z(x)] - m2 

E[ Z1(x+h) Z1(X)] + E[ Z2(x+h) Z2(X)] + m2 

+ E[ Z1(x+h) Z2(X)] + E[ Z2(x+h) Z1(X)] 
+ E[ Z1(x+h)] m + E[ Z2(x+h)] m 

+mE[Z1(x)] + mE[Z2(x)]- m2 

C1(h) + C2 (h). 

Intrinsic regionalization 

(14.7) 

In the same way an intrinsic regionalization is defined as a sum of S + 1 components, 

Z(x) = Zo(x) + ... + Zu(x) + ... + Zs(x), 

for which the increments are zero on average and uncorrelated. 
For a two component model, 

we have the variogram 

'Y(h) E[ (Z(x+h) - Z(X))2] 

E [ ((Zl(x+h) .:... Zl (x)) + (Z2(x+h) - Z2(X)) r] 
E[ (Zl (x+h) - Z1 (X))2] + E[ (Z2(x+h) - Z2(X))2] 

(14.8) 

(14.9) 

1'1 (h) + 'Y2(h) , (14.10) 

because E[ (Z1(x+h) - Zl(X)) . (Z2(x+h) - Z2(X))] = O. 

Intrinsic regionalization with mostly stationary components 

A particular intrinsic randorn function Z (x) can be constructed by putting together one 
intrinsic randorn function Zs(x) and S second-order stationary functions Zu(x),u = 
0, ... , S -1, having means equal to zero and being uncorrelated amongst thernselves 
as weIl as with the increments of the intrinsic component 

Z(x) = Zo(x) + ... + Zu (x) + ... + Zs(x). (14.11) 

The associated variogram model is composed of S elernentary structures deduced 
from covariance functions plus a purely intrinsic structure. 

For this mixed linear regionalization model with second order stationary and in
trinsically stationary components, we shall develop kriging systems to estimate both 
types of components in the next chapter. 
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Locally stationary regionalization 

A non-stationary random function Z (x) can be obtained by superposing S + 1 uncor
related second-order zero mean random functions Zu(x) and a drift m(x) (the expec
tation of Z(x) at the location x) 

Z(x) = Zo(x) + ... + Zu(x) + ... + Zs(x) + m(x). (14.12) 

By assuming a very smooth function ml(x), which varies slowly from one end 
of the domain to the other end, the drift is locally alm ost constant and the randorn 
function 

Z(x) = Zo(x) + ... + Zu(x) + ... + Zs(x) + ml (x) (14.13) 

can be termed locally stationary (i.e. locally second-order stationary), the expectation 
of Z(x) being approximatively equal to a constant inside any rather small neighbor
hood of the domain. 

The locally stationary regionalization model is the adequate framework for the 
typical application with the following three steps 

1. the experimental variogram is used to describe spatial variation; 

2. only covariance functions (i.e. bounded variogram functions) are fitted to the 
experimental variogram; 

3. a moving neighborhood is used for ordinary kriging. 

In the first step the experimental variogram filters out ml(x) at short distances, be
cause it is approximatively equal to a constant in a local neighborhood. For distances 
up to the radius of the neighborhood the variogram thus estimates well the underlying 
covariance functions, which are fitted in the second step. In the third step the ordinary 
kriging assurnes implicitly the existence of a local mean within a moving neighbor
hood. This local mean corresponds to the constant to which ml(x) is approxirnatively 
equal within not too large a neighborhood. The local mean can be estimated explicitly 
by a kriging of the mean. 



15 Kriging Spatial Components 

The components of regionalization models can be extracted by kriging. The extraction 
of a component of the spatial variation is a complementary operation to the filtering 
out (rejection) of the other components. This is illustrated by an application on geo
chemical data. 

Kriging of the intrinsic component 

For Z(x) defined in the framework of the intrinsic regionalization model with mostly 
stationary components (presented on page 105), we may want to estimate the intrinsic 
component Zs(x) from data about Z(x) in a neighborhood 

n 

ZHxo) = L w~ Z(xa ). (15.1) 
a=1 

The expectation of the estimation error is nil using weights that sum up to one, 

n n 

E[ Z~(xo) - Zs(xo) 1 = E [ L w~ Z(xa) - Zs(xo) . L w~ ] 
a=1 a=1 

n 

a=1 
n S-1 

'---v--"' 
1 

L w~ (L ~ + ~[ZS(Xa) : Zs(xo) lJ 
a=1 u=o 0 0 

= o. (15.2) 

Remember that the constraint of unit sum weights is also needed for the existence 
of a variogram as a conditionally negative definite function as explained in the presen
tation of ordinary kriging. 

The estimation variance a~ is 

a~ var(Z~(xo) - Zs(xo)) 
S-1 n n 2 

E[ (L L w~ Zu (xa ) + L w~ (Zs(xa ) - Zs(xo))) ]. (15.3) 
u=ü a=1 a=1 
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Taking into account the non correlation between components 

S-1 n n 
L L L w~ wg CU(xa-xß) (15.4) 
U=o ",=1 ß=1 

n n n 

- L L w~ Wg-/(x",-Xß) - "/(XO-XO) + 2 L w~ ,,,s(xa-xo). 
a=1 ß=1 a=l 

We can replace the covariances by CU(xo-Xo) - ,U(X"'-Xß) because it is always 
possible to construct a variogram from a covariance function and we get 

(15.5) 
U=o 

n n n 

- ,S(Xo-Xo) - L L w~ wg ,(Xa-Xß) + 2 L w~ 'S(X",-Xo). 
a=1 ß=1 a=l 

Minimizing a~ with the constraint on the weights, we have the system 

n 

L wg ,(xa-xß) + Ms = ,S(xa-xo) for a= 1, ... , n 
ß=l 

n 
(15.6) 

The difference with ordinary kriging is that the terms ,S(xa-xo), which are spe
cific of the component Zs(x), appear in the right hand side. 

COMMENT 15.1 If the variogram of the intrinsie eomponent ,s(h) is bounded we 
ean replaee it with a eovarianee funetion Cs(h) using the relation 

,s(h) = Cs(O) - Cs(h). (15.7) 

The kriging system for extraeting the intrinsie eomponent Zs(x) ean now be 
viewed in the framework of the loeally stationary regionalization model: the system 
estimates a seeond order stationary eomponent together with the loeal mean. 

Kriging of a second-order stationary component 

For the purpose of kriging a particular seeond-order stationary component Zuo (x) in 
the framework of the intrinsic regionalization model with mostly stationary compo
nents (see page 105), we start with the linear combination 

n 

Z:o(xo) = L w~o Z(x",). (15.8) 
a=l 
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270. 

Figure 15.1: Map of the component associated with the short range (3.5 km). 

Unbiasedness is achieved on the basis of zero sum weights (introducing a ficticious 
value Z(O) at the origin, to form increments) 

S n 

E[Z~o(xo)-Zuo(xo)l = E[LLW~OZu(Xa)-Zuo(xo)] 
u=o a=l 
S-l n 

= E[LLW~OZu(Xa)-Zuo(Xo) 
u=O ",=1 

n n 

+ L W~o ZS(Xa) - ZS(O) . L W~o ] 

The estimation variance is 

o. 

a=l a=l 

n 

~ 
o 

+ L W~o ~[ZS(Xa) - Zs(O) 1 
a=l 0" 

n n n 

(15.9) 

(15.10) 

CUO(xo-xo) - L L w~O W,!/ /'(X",-Xß) + 2 L Wa /,UO(xa-xo). 
a=lß=l a=l 
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The kriging system for the component Zuo(xo) is then 

n 

L w'!/ ')'(x,,-xß) + Muo = ')'UO(x,,-xo) for a= 1, ... , n 
ß=1 

n 
(15.11) 

We are thus able to extraet from the data different eomponents of the spatial vari
ation which were identified on the experimental variogram with a nested variogram 
model. 

These eomponent kriging teehniques bear some analogy to the speetral analysis 
methods, which are mueh in use in geophysics. CHILES & GUILLEN [49] have eom
pared the two approaehes on gravimetrie data using eovarianee functions derived from 
a model which represents geologieal bodies as random prisms (see [310], [309]). The 
variogram obtained is a partieular ease of a Cauehy model (see Eq. (111.11), p336) 
with ascale parameter a. The Cauehy model provides variogram models both for 
gravity (a = 1/2) or magnetie data (a = 3/2)in physical applieations [51], like e.g in 
problems of eleetromagnetie eompatibility [181]. The results obtained by CHILES & 
GUILLEN by deeomposing either the variogram or the speetrum matehed well, even 
though the geological bodies were loeated at different average depths by eaeh method. 
An advantage of the geostatistical approach is that the data need not to be interpolated 
on a regular grid for eomputing the experimental variogram, while this is necessary 
for determining the speetrum. The ease study is diseussed in full detail in CHILES & 
DELFINER [51]. 

Filtering 

Instead of extraeting a eomponent of the spatial variation we may wish to rejeet it. 
We ean filter a spatial eomponent Zuo (x) by removing the eorresponding eovarianees 
Cuo (x" - xo) from the right hand side of the ordinary kriging system. 

For example, we might wish to eliminate the eomponent Z1 (x) in the second-order 
stationary model 

Z(x) (15.12) 

and to obtain a filtered version Zf(x) of Z(x). To aehieve this by kriging, we use 
weights w~ in the linear eombination 

n 

L w~Z(x,,) (15.13) 
,,=1 
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l70. 

Figure 15.2: Map of the component associated with the long range (6.5 km) together 
with the estimated mean. 

derived from the system 

n 

L w~ C(x",-xß) - /-Lj = C2 (x",-xo) for a= 1, ... , n 
ß=l 

n 

LW~ = 1, 
ß=l 

(15.14) 

where Cl (h) is absent in the right hand side. We obtain thereby an estimation in which 
the component Zi(x) is removed. 

The filtered estimate can also be computed by subtracting the component from the 
ordinary kriging estimate 

Zj(x) = Z;K(X) - zt(x). (15.15) 

According to the configuration of data around the estimation point, ordinary krig
ing implicitly filters out certain components of the spatial variation. This topic will 
be taken up again in the next chapter when examining why kriging gives a smoothed 
image of reality. 

Application: kriging spatial components of arsenic data 

The data was collected during the national geochemical inventory of France and the 
map of the location of arsenic values in a 35 km x 25 km region near the Loire 
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river has already been shown on Figure 14.1 (page 103). The values of arsenic were 
standardized before analysis. The mean experimental variogram of this variable was 
fitted on Figure 14.2 (page 104) with a nested variogram model, 

I'(h) = bo nug(h) + b1 sph(h, 3.5km) + b2 sph(h, 6.5km) , (15.16) 

eonsisting of a nugget effeet variogram nug(h) and two spherieal variograms 
sph(h, range), multiplied by eonstants bo, b1 and b2 • 

The eorresponding linear regionalization model is made up with three seeond order 
stationary eomponents and a loeal mean 

(15.17) 

Kriging was performed using a moving neighborhood consisting of the 50 nearest 
sampies to the estimation point. Several displays of the map of arsenic by ordinary 
kriging were already presented on Figure 13.2 (page 98), Figure 13.4 (page 99) and 
Figure 13.5 (page 100). The map of the standard deviations of ordinary kriging was 
displayed on Figure 13.3 (page 99). 

The kriged map of the short range component of the arsenic values is seen on 
Figure 15.1. It is worthwhile to examine how agglomerates of high values (large 
circles) on the display of the data about Z(x) on Figure 14.1 (page 103) compare with 
the darkly shaded areas on the map of the short range eomponent Zl(X). It is also 
interesting to inspeet how extrapolation aets in areas with no data. 

A map of the component associated with the long range variation, together with 
the estimated mean, is depieted on Figure 15.2. This simultaneous extraction of the 
long range eomponent Z2(X) and the loeal mean ml(x) is equivalent to filtering out 
(rejeeting) the nugget-effeet and the short range components Zo(x) and Zl(X). Com
parison with Figure 13.4 (page 99) shows that this map is just a smoother version of 
the ordinary kriging map. 

It should be noted that for irregularly spaeed data a map of the nugget-effect com
ponent Zo(x) cannot be established. This eomponent can only be estimated at grid 
nodes which eoincide with a data loeation and is zero elsewhere. It is thus eustomary 
to filter out the nugget-effeet in order to avoid blobs on the map at loeations where 
extreme data values happen to eoincide with estimation nodes (see also a similar dis
eussion on plIS). 

With regularly spaeed data araster representation of the nugget component can be 
made using a grid whose nodes are identical with the sampie locations. 



16 The Smoothness of Kriging 

How smooth are estimated values from kriging with irregularly spaced data in a mov
ing neighborhood? By looking at a few typical eonfigurations of data around nodes 
of the estimation grid and by building on our knowledge of how spatial eomponents 
are kriged, we ean understand the way the estimated values are designed in ordinary 
kriging. 

The sensitivity of kriging to the ehoice of the variogram model is diseussed in 
eonneetion with an applieation on topographie data. 

Kriging with irregularly spaced data 

Let us take a regionalized variable for whieh three eomponents of spatial variation 
have been identified. For the following linear model of regionalization we assume 
loeal stationarity of order two 

(16.1) 

The eovarianee model of the three spatial eomponents is 

(16.2) 

where we let Co(h) be a nugget-effeet eovarianee funetion and Cl (h), C2 (h) be spher
ical models with ranges al and a2, numbered in sueh a way that al < a2. 

Suppose that the sampling grid is highly irregular, entailing a very unequal distri
bution of data in spaee. A grid of estimation points is set up, with nodes as elose as is 
required for the eonstruetion of a map at a given resolution. At eaeh point the opera
tion of ordinary kriging is repeated, pieking up the data in the moving neighborhood. 

Assuming a highly irregular arrangement of the data points, very different eonfig
urations of sampie points around estimation points will arise, four of whieh we shall 
examine in the following. 

1. Xo is more than a2 away irom the data 

This eonfiguration of data points around the estimation point ean arise when Xo is 
loeated amid a zone without data within the range of the two spherieal models, as 
shown on Figure 16.1. Ordinary kriging is then equivalent to the kriging of the mean. 
The right hand side eovarianees of the ordinary kriging system are nil as all distanees 
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Figure 16.1: No data point is within the range of the two spherical models for this 
grid node. 

involved are greater than a2. The information transferred to Xo will be an estimation 
of the local mean in the neighborhood. 

This shows that kriging is very conservative: it will only give an estimate of the 
mean function when data is far away from the estimation point. 

2. Xo is less than a2 and more than al away {rom the nearest data point Xa 

With this spatial arrangement, see Figure 16.2, the ordinary kriging is equivalent to a 
filtering of the components Zo (x) and Z 1 (x), with the equation system 

n 

LAß C(Xa-Xß) - f.l = I C2 (Xa - Xo) I for a= 1, ... , n 
ß=l 

n 
(16.3) 

The covariances Co(h) and Cl (h) are not present in the right hand side for kriging 
at such a grid node. 

3. Xo is less than al away, but does not coincide with the nearest x" 

In this situation, shown on Figure 16.3, ordinary kriging will transfer information not 
only on the long range component Z2(X), but also about the short range component 
Zl (x), which varies more quickly in space. This creates a more detailed description 
of the regionalized variable in areas of the map where data is plenty. Ordinary kriging 
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Figure 16.2: One data point is within the range of the second spherical model for this 
grid node. 

is now equivalent to a system filtering the nugget-effeet eomponent 

n 

LAß C(Xa-Xß) - J.L = I C1(Xa - Xo) + C2 (Xa - Xo) I for a= 1, ... , n 
ß=l 

n 
(16.4) 

I>\ß = l. 
ß=l 

Only the nugget-effeet covarianee Co(h) is absent from the right hand side when 
kriging at sueh a loeation. 

4. Xo eoincides with a da ta IDeation 

In this last ease, when Xo = X a for a particular value of a, ordinary kriging does not 
filter anything and restitutes the data value measured at the loeation x a = xo: it is an 
exaet interpolator! 

This property may be pereeived as a nuisanee when there are only a few loeations 
of eoineidenee between the grid and the data loeations, beeause then the nugget-effeet 
eomponent will generate spikes in the estimated values at these loeations only. To 
avoid having a map with sueh blobs at fortuitous locations, it is often advisable to 
filter systematically the nugget -effeet eomponent Zo (x) in cartographieal applieations 
based on irregularly spaeed data. 

Sensitivity to choice of variogram model 

The most important eharacteristic for the choice of the variogram model is the in
terpretation of the behavior at the origin. The type of eontinuity assumed for the 
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Figure 16.3: One data point is within the range of the two spherical models for this 
node. 

regionalized variable under study has immediate implications for ordinary kriging. 
The behavior at the origin can be of three types 

1. discontinuous, i.e. with a nugget-effect component. The presence of a nugget
effect has the consequence that the kriging estimates will be also discontinuous: 
each data location will be a point of discontinuity of the estimated surface. 

2. continuous, but not differentiable. For example a linear behavior near the origin 
implies that the variogram is not differentiable at the origin. It has the effect 
that the kriging estimator is not differentiable at the data locations and that the 
kriged surface is linear in the immediate neighborhood of the data points. 

3. continuous and differentiable. A quadratic behavior at the origin will generate 
a quadratic behavior of the kriged surface at the data locations. Models that are 
differentiable at the origin have the power to extrapolate outside the range of the 
data in kriging. This implies negative ordinary kriging weights. 

Most variogram models are fairly robust with respect to kriging. There however 
is one pathological model: the so-called "Gaussian" variogram model. This model 
belongs to the family of stable variogram models (that bear this name because oftheir 
analogy with the characteristic function of the stable distributions) 

IhlP 

l'(h) = b (1 - e -~) with 0 < p :S 2 and a, b > O. 

For apower p equal to 2 we have the Gaussian variogram model 

Ih l2 

l'(h) = b ( 1 - e -~ ) , 

(16.5) 

(16.6) 
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Elevation Standard deviation 

Figure 16.4: On the left: map of elevations obtained by ordinary kriging with unique 
neighborhood using a stable variogram (power p = 1.5) (data points are displayed as 
stars of size proportional to the elevation). On the right: map of the corresponding 
standard deviations. 

which is infinitely differentiable at the origin. The implication is that the associated 
random function also has this property. This means that the function is analytic and, 
if known over a small area, it could be predicted just anywhere in the universe as all 
derivatives are known. Clearly this model is unrealistic in most applications (besides 
the fact that it is purely deterministic). Furthermore the use of such an unrealistic 
model has consequences on kriging which are illustrated in the following example. 

Applieation: kriging topographie data 

We use a data set which has become a classic of spatial data analysis since its publi
cation by DAVIS [76]. It consists of 52 measurements of elevation (in feet) in a 300 ft 
x 300 ft region. 

First we fit a stable variogram model with apower of 1.5 and obtain by ordinary 
kriging with unique neighborhood (all samples used for kriging) the isoline map on 
the left of Figure 16.4. This is the map most authors get using different methods, 
models or parameters (see [76], [262], [349], [17], [329]). The map of the kriging 
standard deviations is seen on the right of Figure 16.4. The standard deviations are 
comparable to those obtained with a spherical model of range 100 ft and a sill equal 
to the variance of the data (3770 ft2). They are of the same order of magnitude as the 
standard deviation of the data (61.4 ft). 

Now, if we increase the power of the stable model from 1.5 to 2 we have a dramatic 
change in the behavior at the origin and in the extrapolating power of the variogram 
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Figure 16.5: Maps kriged using a Gaussian variogram in unique neighborhood. 

model. The map of contoured estimates of ordinary kriging using the Gaussian model 
in unique neighborhood is shown on the left of Figure 16.5. We can observe artificial 
hills and valleys between data locations. At the borders of the map the estimates ex
trapolate far outside the range of the data. The kriging standard deviations represented 
on the map on the right of Figure 16.5 are generally near zero: this complies with the 
deterministic type of variogram model, which is supposed to describe exhaustively all 
features of the spatial variation in that region. 

Switching from a unique to a moving neighborhood (32 points) using the Gaussian 
model we get the map to be seen on the left of Figure 16.6. The extrapolation 
effects are weaker than in unique neighborhood. The isolines seem as drawn by a 
trembling hand: the neighborhoods are apparently in conflict because the data do not 
comply with the extreme assumption of continuity built into the model. The standard 
deviations in moving neighborhood are higher than in unique neighborhood as shown 
on the right of Figure 16.6, especially on the borders of the map as extrapolation is 
performed with less data. 

The conclusion from this experiment is that the Gaussian model should not be used 
in practice. A stable variogram model with apower less than 2 will do the job better. 

Another instructive exercise is to add a slight nugget-effect (e.g. 1/1000, 1/100, 
1/10 of the variance) to a Gaussian variogram and to observe how the map of the esti
mated values behaves, how the standard deviations increase. The discontinuity added 
at the origin actually destroys the extreme extrapolative properties of the Gaussian 
model. 
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Elevation Standard deviation 

Figure 16.6: Maps kriged using a Gaussian variogram in moving neighborhood. 
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17 Principal Component Analysis 

Principal component analysis is the most widely used method of multivariate data 
analysis owing to the simplicity of its algebra and to its straightforward interpretation. 

A linear transformation is defined which transforms a set of correlated variables 
into uncorrelated factors. These orthogonal factors can be shown to extract succes
sively a maximal part of the total variance of the variables. A graphical display can 
be produced which shows the position of the variables in the plane spanned by two 
factors. 

Uses ofPCA 

Principal Component Analysis (PCA) can be used for: 

1. data compression, 

2. multivariate outlier detection, 

3. deciphering a correlation matrix, 

4. identifying underlying factors, 

5. detecting intrinsic correlation. 

The first four topics will be discussed in this chapter, while the problem of intrinsic 
correlation will be exposed in Chapter 22. 

An example of data compression by PCA is given in Example 17.2, the use of 
PCA in deciphering the structure of a correlation matrix is shown in Example 17.2, 
multivariate outliers are made visible in Example 17.3 and an application illustrating 
the interpretation of factors in terms of underlying phenomena is provided in Exam
pIe 17.6. 

Transformation into factors 

The basic problem solved by principal component analysis is to transform a set of 
correlated variables into uncorrelated quantities, which could be interpreted in an ideal 
(multi-Gaussian) context as independent factors underlying the phenomenon. This is 
why the uncorrelated quantities are called Jactors, although such an interpretation is 
not always perfectly adequate. 



124 Multivariate Analysis 

Z is the n x N matrix of data from which the means of the variables have already 
been subtracted. The corresponding N x N experimental variance-covariance matrix 
V then is 

1 T 
V = [Sij] = - Z Z. 

n 
(17.1) 

Let Y be an n x N matrix containing in its rows the n sampies of factors Yp 
(p = 1, ... ,N), which are uncorrelated and of zero mean. 

The variance-covariance matrix of the factors is diagonal, owing to the fact that 
the covariances between factors are nil by definition, 

1 (dU 
D = - yTy = 0 

n 0 

o 
o ) o , 

dNN 

(17.2) 
o 

and the diagonal elements dpp are the variances of the factors. 
A matrix A is sought, N x N orthogonal, which linearly transforrns the measured 

variables into synthetic factors 

y = ZA withATA = I. 

Multiplying this equation from the left by 1/n and yT, we have 

~yTy = ~yTZA , 
n n 

and replacing Y by ZA on the right hand side, it follows 

Finally 

D 

that is, 

VA = AD. 

(17.3) 

(17.4) 

(17.5) 

(17.6) 

(17.7) 

It can immediately be seen that the matrix Q of orthonormal eigenvectors of V 
offers a solution to the problem and that the eigenvalues Ap are then simply the vari
ances of the factors Yp- Principal component analysis is nothing else than a statistical 
interpretation of the eigenvalue problem 

VQ = QA withQT Q = I, (17.8) 

defining the factors as 

y ZQ. (17.9) 
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Maximization of the variance of a factor 

Another important aspect of principal component analysis is that it allows to define a 
sequence of orthogonal factors which successively absorb a maximal amount of the 
variance of the data. 

Take a vector Yl corresponding to the first factor obtained by transforming the 
centered data matrix Z with a vector al calibrated to unit length 

with ai al = 1. (17.10) 

The variance of Y 1 is 

(17.11) 

To attribute a maximal part of the variance of the data to Y b we define an objective 
function </>1 with a Lagrange parameter Ab which multiplies the constraint that the 
transformation vector al should be of unit norm 

(17.12) 

Setting the derivative with respect to al to zero, 

(17.13) 

we see that Al is an eigenvalue of the variance-covariance matrix and that al is equal 
to the eigenvector ql associated with this eigenvalue 

(17.14) 

We are interested in a second vector Y2 orthogonal to the first 

(17.15) 

The function </>2 to maximize incorporates two constraints: the fact that a2 should 
be unit norm and the orthogonality between a2 and al. These constraints bring up two 
new Lagrange multipliers A2 and J-l 

Setting the derivative with respect to a2 to zero 

0</>2 = 0 
oa2 

What is the value of J-l ? Multiplying the equation by ai from the left, 

(17.16) 

(17.17) 

(17.18) 
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we see that 11 is nil (the constraint is not active) and thus 

(17.19) 

Again A2 turns out to be an eigenvalue of the variance-covariance matrix and a2 is 
the corresponding eigenvector q2. Continuing in the same way we find the rest of the 
N eigenvalues and eigenvectors of V as an answer to our maximization problem. 

EXAMPLE 17.1 (DATA COMPRESSION) PCA can be seen to as a simple data com
pression algorithm. This is an example trom geophysical exploration following [136]. 

Let Z be an n x N matrix of n seismic profiles and N spatially corre1ated sam
pIes. The principal components matrix Y is of size n x N (like Z). The variance of 
each principal component y p (a column of the matrix Y) is given by the correspond
ing eigenvalue Ap • We assume that the eigenvalues have been ordered by decreasing 
variance. 

The idea for compressing the data is to retain only the principal components having 
the largest variances. Keeping M out of the N principal comp!Jnents, which explain a 
substantial amount of the total variance in an n x M matrix Y, we have the approxi
mation 

(17.20) 

where Q is an N x M matrix of eigenvectors. 
This approximation is interesting for data compression if M is substantially 

smaller than N: we can then save considerable storage by keeping the two matri
ces Y, Q instead of the original data Z. The n x N numbers of the matrix Z are then 
replacecf.. with M (n + N) numbers, which will be used to reconstruct an approximate 

matrix Z. 
Following HAGEN [136], havingoriginallyn = 200 good quality seismic traces in 

an N = 50 sampIe window, if the M = 4 first principal components express 85% of 
the total variance, the original data base of200 x 50 = 10,000 sampIes can be reduced 
to only 4(200 + 50) = 1,000 sampIes. This new data base needs only one tenth ofthe 
storage space, yet preserving a sufticiently accurate description of the main geological 
patterns important for reservoir characterization. 

Interpretation of the factor variances 

Numbering the eigenvalues of V from the largest to the lowest, we obtain a se
quence of N uncorrelated factors which provide an optimal decomposition (in the 
least squares sense) of the total variance as 

N N 

tr(V) LSii = LAp • (17.21) 
i=l p=l 
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The eigenvalues indicate the amount of the total variance associated with each 
factor and the ratio 

variance of the factor 
total variance 

(17.22) 

gives a numerical indication, usually expressed in %, of the importance of the factor. 
Generally it is preferable to standardize the variables (subtracting the means and 

dividing by the standard deviations), so that the principal component analysis is per
formed on the correlation matrix R. In this framework, when an eigenvalue is lower 
than 1, we may consider that the associated factor has less explanatory value than any 
single variable, as its variance is inferior to the unit variance of each variable. 

Correlation of the variables with the factors 

In general it is preferable to work with standardized variables Zai to set them on a 
common scale and make them comparable, 

Zai = (17.23) 

where mi and ..;s;; are the experimental mean and standard deviation of the variable 
Zi· 

The variance-covariance matrix associated to standardized data is the correlation 
matrix 

1 ~T ~ 
R - -Z Z 

- n ' 

which can be decomposed using its eigensystem as 

(17.24) 

(17.25) 

The vectors iii, columns of AT, are remarkable in the sense that they contain the 
correlations r ip between a variable Zi and the factors y p because 

(17.26) 

The vectors ai are of unit length and their cross product is equal to the correlation 
coefficient 

(17.27) 

Owing to their geometry the vectors iii can be used to represent the position of the 
variables on the surface of the unit hypersphere centered at the origin. The eorrela
tion eoefficients rij are the eosines of the angles between the veetors referring to two 
different variables. 
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Figure 17.1: The position of the bonelength variables inside the circle of correlations 
for the first two principal components. Each axis is labeled with the number of the 
factor and the proportion of the total variance (in %) extracted by the factor. 

The position of the variables on the surface of the hypersphere can be projected 
towards a plane defined by a pair ofaxes representing factors, which passes through 
the origin. The coordinates of the projection are given by the correlation coefficients 
rip and the corresponding graphical representation is therefore called the circle 0/ 
correlations. The circle of correlations shows the proximity of the variables inside 
a unit circ1e and is useful to evaluate the afftnities and the antagonisms between the 
variables. Statements can easily be made about variables which are located near the 
circumference of the unit circle because the proximities in 2-dimensional space then 
correspond to proximities in N -dimensional space. For the variables located further 
away from the circumference of the unit circ1e it is necessary to check on other prin
cipal axes whether the proximities really correspond to proximities on the surface of 
the hypersphere. 1\vo variables near each other on the projection plane may have been 
projected, one from the upper hemisphere, the other from the lower hemisphere. 

EXAMPLE 17.2 (DECIPHERING A CORRELATION MATRIX) The corre1ation matrix 
ofthe 1engths of2761eghorn fow1 bones (see MORRISON, 1978, p282) on Tab1e 17.1 
seems trivial to interpret at first look: al1 variables are well corre1ated. Big birds have 
1arge bones and small birds have small bon es. 

Inspection of the plane of the first two factors on Figure 17.1 showing the position 
of the 1ength variables inside the corre1ation drele, reveals two things. The corre1a-
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Humerus 1 
Ulna .940 1 
Tibia .875 .877 1 
Femur .878 .886 .924 1 

11 Humerus Ulna Tibia Femur 

Table 17.1: Correlation matrix between the lengths of bones of fowl. 

tions of all variables with the first factor (92% of the total variance) are all very strong 
and of the same sign as can be seen on Table 17.2. 

PCl PC2 
Humerus .96 -.22 
Ulna .96 -.20 
Tibia .96 .22 
Femur .96 .20 

Component variance 3.69 .17 
Percentage 92% 4% 

Table 17.2: Correlations between bone lengths and the first two principal components. 

This factor represents the difference in size of the fowls, which explains most of 
the variation, and has an obvious impact on all bone lengths. The second factor (4% 
of the variance) splits up the group of the four variables into two distinct subgroups. 
The second factor is due to the difference in shape of the birds: the leg bones (tibia 
and femur) do not grow in the same manner as the wing bones (humerus and ulna). 
Some birds have shorter legs or longer wings than others (and vice-versa). 

Having a second look at the correlation matrix on Table 17.1, it is readily seen 
that the correlations among the wing variables (.94) and among the leg variables (.92) 
are stronger than the rest. Principal component analysis does not extract anything 
new or hidden from the data. It is merely a help to read and decipher the structure 
of a correlation matrix. This feature becomes especially useful for large correlation 
matrices. 

EXAMPLE 17.3 (MULTIVARIATE OUTLIERS) In a study on soil pollution data, the 
seven variables Pb, Cd, Cr, Cu, Ni, Zn, Mo were logarithmically transformed and 
standardized. The principal components calculated on the correlation matrix extracted 
38%, 27%, 15%, 9%, 6%, 3% and 2% of the total variance. So the first two factors 
represent about two thirds (65%) of the total variance. The third factor (15%) hardly 
explains more variance than any ofthe original variables taken alone (1/7 = 14.3%). 

The Figure 17.2 shows the correlations with the first two factors. Clearly the first 
factor exhibits, like in the previous biological example, mainly a size effect. This is 
more appropriately termed a dilution factor because the measured elements constitute 
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Figure 17.2: Unit circle showing the correlation of seven soil pollution variables with 
the first two principal components. 

a very small proportion of the soil and their proportion in a soil sampie is direct1y 
proportional to the overall pollution of the soil. Tbe second factor looks interesting: it 
shows the antagonism between two pairs of elements: Pb, Cd and Ni, er. 

Tbe correlation coefficients between the seven soil pollution elements are listed 
on Table 17.3. Tbe ordering of the variables was chosen to be the same as on the 
second factor: Pb, Cd, Zn, Cu, Mo, Ni and Cr (from left to right on Figure 17.2). Tbis 
exemplines the utility of a PCA as a device to help reading a correlation matrix. 

In this data set of 100 sampies there are three multivariate outliers that could be 
identined with a 3D representation of the sampie c10ud in the coordinate system of the 
nrst three factors (which concentrate 80% of the variance). On a modem computer 
screen the c10ud can easily be rotated into a position that shows best one of its features 
like on Figure 17.3. 

Tbis need for an additional rotation illustrates the fact that PCA only provides an 
optimal projection plane for the sampies if the c10ud is of ellipsoidal shape. 

In the general case of non-standardized data it is possible to build a graph show
ing the correlations between the set of variables and a pair of factors. The variance
covariance matrix V is multiplied from the left and the right with the matrix Ds-l of 
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Pb 1 
Cd .40 1 
Zn .59 .54 1 
Cu .42 .27 .62 1 
Mo .20 .19 .30 -.07 1 
Ni -.04 -.08 .40 .29 .07 1 
Cr -.14 -.11 .29 .11 .13 .86 1 

11 
Pb Cd Zn Cu Mo Ni Cr 

Table 17.3: Correlation matrix between the seven soil pollution elements. 

the inverses of the standard deviations (see Example 1.4) 

D.-l VDs-l DS-l Q A QT D.-l 

D.-l Q JA (Ds-l Q JA? 
(17.28) 

(17.29) 

from what the general formula to calculate the correlation between a variable and a 
factor can be deduced 

(17.30) 

EXERCISE 17.4 Deduce trom 

with cF Q = I (17.31) 

that the correlation coefficient between a vector Zi and a factor y p is 

(17.32) 

From this it can be seen that when a standardized variable is orthogonal to all 
others, it will be identical with a factor of unit variance in the principal component 
analysis. 

EXERCISE 17.5 Let Z be a matrix of standardized data and Y the matrix of corre-
~ ~ ~ 

sponding factors obtained by a principal component analysis Y = Z Q where Q is 
the matrix of orthogonal eigenvectors of the correlation matrix R. 

Show that 

~ ~ T 
R = corr(Z, Y) [ corr(Z, Y) 1 . (17.33) 

EXAMPLE 17.6 (INTERPRETING THE FACTORS) We have 1054 soil sampies from 
lateritic terrain in Mali analysed for 14 elements: Fe, Al, V, P, er, Cu, Nb, As, Mo, 
Si, Ti, Ce, Zr, Y; theyare described in ROQUIN ET AL. [273, 274}. This spatially 
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Figure 17.3: The cloud of 100 sampies in the coordinate system of the first three factors 
after an appropriate rotation on a computer screen ("Pitch", "Roll" and "Yaw" are 
the zones of the computer screen used by the pointer to activate the 3D rotation of 
the cloud). Three outliers (with the corresponding sampie numbers) can be seen. 

autocorrelated data by the way tumed out to be intrinsically correlated [183], a concept 
that will be introduced in Chapter 22. 

The Table 17.4 shows the very simple structure of the correlation matrix: an 
opposition between the duricrust variables (Fe, Al, V, P, Cr, Cu, Nb, As, Mo) and the 
variables of the Bats (Si, Ti, Ce, Zr, Y); the variables are positively correlated within 
each group and negatively correlated between groups. 

The Figure 17.4 is called the circ1e of correlations. It displays the correlations rip 

between the original variables Zi and a pair of principal components (factors). The co
ordinates of the variables on Figure 17.4 are obtained using the values of correlations 
with the first (ordinate) and the second (abscissa) principal component. The first prin
cipal component can be termed a "duricrust factor" as it displays in an obvious way 
the opposition between the variables characteristic of the duricrust variables (Fe, ... ) 
and the Bats (Si, . .. ). 

The Figure 17.5 plots the sampIe c10ud in the coordinate system provided by the 
first (ordinate) and the second (abscissa) principal components. Two subc10uds can 
be seen: white coloured dots represent the sampIes trom the duricrusts and black dots 



Principal Component Analysis 133 

Al .69 
V .97 .69 
P .89 .53 .87 
Cr .94 .72 .95 .82 
Cu .77 .67 .72 .71 .73 
Nb .72 .43 .81 .71 .73 .50 
As .87 .60 .87 .84 .83 .69 .76 
Mo .79 .67 .81 .74 .78 .65 .78 .85 
Si -.97 -.75 -.94 -.87 -.91 -.76 -.73 -.86 -.80 
Ti -.93 -.59 -.90 -.83 -.85 -.66 -.69 -.82 -.72 .94 
Ce -.76 -.44 -.73 -.67 -.73 -.50 -.57 -.64 -.54 .77 .81 
Zr -.89 -.73 -.86 -.78 -.82 -.70 -.65 -.80 -.74 .94 .91 .70 
Y -.92 -.68 -.89 -.80 -.86 -.68 -.68 -.80 -.73 .96 .96 .84 .93 

Fe Al V P Cr Cu Nb As Mo I Si Ti Ce Zr 

Table 17.4: Correlation matrix of the Mali geochemical variables. 

represent the sampies from the flats. 
The Figure 17.6 shows the geographical map of sampie locations. The white 

coloured dots are sampies c1assified as "duricrust" while the black dots are viewed as 

from "flats". Actually this map matches well the geologica1 map displayed in ROQUIN 

ET AL. [273 J. 
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Figure 17.4: Circle of correlations for the first two principal components of the Mali 
geochemical variables: PCl (ordinate) against PC2 (abscissa). 
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• 
• 

2 4 

Figure 17.5: Sampie cloud for the first two principal components of the Mali geochemi
cal variables. PCl (ordinate) against PC2 (abscissa). Duricrusts: white (Fe-AI), Flats: 
black (Si02). 



136 Multivariate Analysis 

0.0 •• 00 ••• 0000000 •••••••••••••• 0 ••••••• 000000000000 

00000000000000000000000 ••••••••••••••• 0000000000000 

0.0000000000000000.0 ••••••••••••••••• 00000000000000 

0000000000000000000 •••• 0000000 •••••••• 0000000000000 
00.000000000000000.00000 ••••••••••••••• 000000000000 

o 0 0 00000 0 0 0 0 0 0 0 0 0 0 0 00 00 0 0 0 0 0 ••••• 00000000.0 

0000000000.0.000.0.0000000000000000 ••••••••• 0 •••• 

00000000.000000000000 •••• 000000000 ••••••••••••••••• 

000000.000000 •••••••••••••••••••••• 000000 •• 0.... • 

00000000 ••••••••••••••••••• 0 •••••• 000000000000 •••• 

00000000000 ••••••••••• 00000000000.00000000000000. 

00000000000000000000 •• 000000000000.00000000000000 

000000.00000000000000000000000 •••••• 000000000000 •• 

00000000000000.0000000000···· •••••••••• 000000000 ••• 

00000000.00000000 00 ••••••••••••••••••••• 00 ••••••• 

00000000000000 ••••••••••••• 0000 ••••••• 0 •••••••••• 

0000000000000 •••••••• 000 000 000 000 •••••••••••••• 0 000 

•••••••••• 00000.00000 •• 0 •••• 0.000 ••••••••••• 000000 

.00000000000000.0000000000000000 0 •• 0 •••••••• 000000 

0000.0000000000000000000000 000 000 000 000 00 00.0 000 000 

000000000000000000. 00000000000.0000000000000000 

Figure 17.6: Geographical map of sampie locations in a 4 X 5 km2 area. Duricrusts: 
white (Fe-Al), Flats: black (Si02) . 



18 Canonical Analysis 

In the previous chapter we have seen how principal component analysis was used to 
determine linear orthogonal factors underlying a set of multivariate measurements. 
Now we turn to the more ambitious problem to compare two groups of variables by 
looking for pairs of orthogonal factors, which successively assess the strongest possi
ble links between the two groups. 

Factorsin two groups of variables 

Canonical analysis proposes to study simultaneously two groups of variables measur
ing various properties on the same set of sampies. Successively pairs of factors are 
established which link best the two groups of variables. The aim being, when inter
preting the factors, to see for each factor underlying one group of properties, if it can 
be connected to a factor underlying another set of properties gained from the same set 
ofsamples. 

The n x N centered data table Z is split into two groups of variables, 

(18.1) 

that is, the matrix Z is formed by putting together the columns of an n x M matrix Zl 

and an n x L matrix Z2 with N = M + L. 
The variance-covariance matrix V associated with Z can be subdivided into four 

blocs 

C12 ) 
V 22 ' 

(18.2) 

where the matrices V 11 of order M x M and V 22 of order L x L are the variance
covariance matrices associated with Zl and Z2. The covariance matrices C l2 (of order 
M xL) et C 21 (of order L x M) contain the covariances between variables of different 
groups 

CT2 = C 21 . (18.3) 

We are see king pairs of factors { up , v p}: 

and (18.4) 

which are uncorrelated within their respective groups, 

and for p -=1= k, (18.5) 

137 
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and for which the correlation corr(up , v p ) is maximal. This correlation, called the 
canonical correlation between two factors u and v is 

corr(u, v) = (18.6) 

Deciding to norm a and b following the metric given by the variance-covariance 
matrices (supposed to be positive definite) of the two groups, 

(18.7) 

the correlation can be simply written as 

corr(u, v) (18.8) 

Intermezzo: singular value decomposition 

It is instructive to follow a little algebraic detour. We pose 

x = ~a and y = V:V;b with xT x = yT Y = 1, (18.9) 

in such a way that 

corr(u, v) xT [ ~ C12 V:V;] y. (18.10) 
, v ' 

G 

For the complete system of vectors x and y we have 

(18.11) 

that is to say the singular value decomposition (see appendix on Matrix Algebra for 
details): 

(18.12) 

where the canonical correlations, which are the only non zero elements of ~, are 
identical with the singular values of the rectangular matrix G. 

Maximization of the correlation 

We are looking for a pair of transformation vectors {a, b} making the correlation 
between the factors {u, v} maximal 

(18.13) 
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The objective function cjJ is 

T 1 Tl, T 
cjJ = a C 12 b - 2. J-l (a V 11 a - 1) - 2. J-l (b V 22 b - 1), 

where J-l and J-l' are Lagrange parameters. 
Setting the partial derivatives with respect to a and b to zero 

ocjJ 
=0 oa 

ocjJ = 0 
ob 

=0, 
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(18.14) 

(18.15) 

(18.16) 

What is the relation between J-l and J-l'? Premultiplying the first equation with aT 

and the second with b T, 

we see that 

aT C 12b - J-laT V 11a = 0 

bT C 21a - J-l'bT V22b = 0 

J-l' = corr(u, v). 

Having found earlier that 

C 12b = J-lV11a and 

we premultiply the first equation with C 21 VIii, 

J-l = aT C 12b, 

J-l' = bT C 21a, 

C 21 VIllC12b = J-lC21a, 

and taking into account the second equation we have 

C21 V Ilc12b = J-l2V 22b. 

Finally this results in two eigenvalue problems, defining A = J-l2, 

(18.17) 

(18.18) 

(18.19) 

(18.20) 

(18.21) 

(18.22) 

V221C21 Vii1C12b = Ab, (18.23) 

vilc12 V221C21a = Aa. (18.24) 

Qnly the smaller one of the two systems needs to be solved. The solution of the 
other one can then easily be obtained on the basis of the following transition formulae 
between the transformation vectors 

1 -1 
a = ~Vll C 12b and 1 -1 

b = ~ V 22 C 21a. (18.25) 

EXERCISE 18.1 Show that two factors in the same group are orthogonal: 

cov(up , Uk) = Öpk. (18.26) 

EXERCISE 18.2 Show that two factors in different groups are orthogonal: 

cov(up , Vk) = J-lÖpk. (18.27) 

EXERCISE 18.3 Show that the vector a in the following equation 

V 11a = A C12V221C21a 

solves a canonical analysis problem. 

(18.28) 



19 Correspondence Analysis 

Canonical analysis investigates, so to speak, the correspondence between the factors 
of two groups of quantitative variables. The same approach applied to two qualitative 
variables, each of which represents a group of mutually exclusive categories, is known 
under the evocative name of "correspondence analysis". 

Disjunctive table 

A qualitative variable z is a system of categories (classes) which are mutually exclu
sive: every sampIe belongs to exactly one category. The membership of a sampIe Za 

to a category Ci can be represented numerically by an indicator function 

1 () {I if Za E Ci 
Ci Za = 0 otherwise. (19.1) 

The matrix recording the memberships of the n sampIes to the N categories of the 
qualitative variable is the disjunctive table H of order n x N 

(19.2) 

Each row of the disjunctive table contains only one element equal to 1 and has 
zeroes elsewhere, as the possibility that a sam pIe belongs simultaneously to more 
than one category is excluded. 

The product of HT with H results in a diagonal matrix whose diagonal elements 
n;i indicate the number of sampIes in the category number i. The division of the n;i 

by n yields the proportion F;i of sampIes contained in a category and we have 

v 
o 

o ) o . 
FNN 

(19.3) 

o 

Contingency table 

Two qualitative variables measured on the same set of sam pIes are represented, re
spectively, by a table H 1 of order n x M and a table H 2 of order n x L. 

The product of these two disjunctive tables has as elements the number of sam pIes 
nij belonging simultaneously to a category i of the first qualitative variable and a 
category j of the second qualitative variable. The elements of this table, which is a 
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contingency table of order Mx L, can be divided by the sampie total n, thus measuring 
the proportion of sampies at the crossing of the categories of two qualitative variables 

(19.4) 

Canonical analysis of disjunctive tables 

Correspondence analysis consists in applying the formalism of canonical analysis to 
the disjunctive tables H 1 and H 2 by forming the matrices 

(19.5) 

Because of the diagonal structure of the matrices V II and V 22, which only inter
vene in the calibration of the transformation vectors, we can say that correspondence 
analysis boils down to the investigation of the links between the rows and the columns 
of the contingency table C 12• 

Coding of a quantitative variable 

A quantitative variable z can be transformed into a qualitative variable by partitioning 
it with a set of non overlapping (disjunct) intervals Ci. Indicator functions of these 
intervals allow to constitute a disjunctive table associated with z 

Je (za) = {I if z'" b~longs to the interval Ci 
, 0 otherwlse. 

(19.6) 

A subdivision is sometimes given apriori, as for example with granulometric frac
tions of a soil sampie. 

The coding of a quantitative variable enables a correspondence analysis which 
explores the links between the intervals of this quantitative variable and the categories 
of a qualitative variable. 

Contingencies between two quantitative variables 

The diagonal matrix V = (l/n) HTH associated with the partition of a quantitative 
variable contains the values of the histogram of the sampies z"', because its diagonal 
elements show the frequencies in the c1asses of values of z. 

The contingency table C 12 = (l/n) HIH2 of two quantitative variables Zl and Z2 

holds the information about a bivariate histogram, for we find in it the frequencies of 
sampies at the crossing of c1asses of Zl and Z2. 
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Continuous correspondence analysis 

The bivariate histogram, that is, the contingency table of two quantitative variables, 
can be modeled with a bivariate distribution function F(dZl, dZ2). If the correspond
ing bivariate density function CP(Zl, Z2) exists, we have 

(19.7) 

where F1(dZ1), F2(dZ2) are the marginal distribution functions of Zl and Z2, used 
to model their respective histograms. Supposing, moreover, the density function cp is 
square integrable, it can be decomposed into a system of eigenvalues Ap = /1; and 
eigenfunctions !p(Zl), gp(Z2) 

00 

2: /1p !p(Zl) gp(Z2)' (19.8) 
p=o 

This decomposition is the continuous analogue of the singular value decomposi
tion. 

EXAMPLE 19.1 When the bivariate law is bi-Gaussian, the decomposition into eigen
values yields coefficients /1p equal to a coefficient p power p, 

with Ipl < 1, (19.9) 

as well as eigenfunctions equal to normalized Hermite polynomials 'f/p, 

'f/ (Z) = Hp(Z). 
p ..;pr (19.10) 

The bivariate Gaussian distribution G (dZ1, dZ2) can then be decomposed into fac
tors 'f/p of decreasing importance pP, 

00 

G(dZ1, dZ2) = 2: pP 'f/p(Zl) 'f/p(Z2) G(dZ1) G(dZ2). (19.11) 
p=o 

EXAMPLE 19.2 In non linear geostatistics, interest is focused on the bivariate distri
bution of two random variables Z(xa) and Z(xß) located at two points X a and xß 
of a spatial domain. The decomposition of this bivariate distribution results, under 
specific assumptions, in a so called isofactorial model. Isofactorial models are used in 
disjunctive kriging for estimating a non linear function of the data in a spatial domain. 

In particular, in the case of the bi-Gaussian isofactorial model, the coefficient p 
will be equal to the value of the correlation function p(xa-xß) between two points 
X a and xß. This topic is pursued in Chapters 32 to 36. 
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20 Direct and Cross Covariances 

The cross covariance between two randorn functions can be cornputed not only at 
locations x but also for pairs of locations separated by a vector h. On the basis of an 
assurnption of joint second-order stationarity a cross covariance function between two 
randorn functions is defined which only depends on the separation vector h. 

The interesting feature of the cross covariance function is that it is generally not 
an even function, i.e. its values for +h and -h rnay be different. This occurs in time 
series when the effect of one variable on another variable is delayed. 

The cross variograrn is an even function, defined in the framework of an intrinsic 
hypothesis. When delay-effects are an irnportant aspect of the coregionalization, the 
cross variograrn is not an appropriate tool to describe the data. 

Cross covariance function 

The direct and cross covariance functions Gij (h) of a set of N randorn functions Zi (x) 
are defined in the frarnework of a joint second order stationarity hypo thesis 

for all x E D; i = 1, ... ,N, 

= Gij(h) (20.1) 

for all x, x+h E D; i, j = 1, ... , N. 

The rnean of each variable Zi (x) at any point of the dornain is equal to a constant 
mi. The covariance of a variable pair depends only on the vector h linking a point pair 
and is invariant for any translation of the point pair in the dornain. 

A set of cross covariance functions is a positive definite function, i.e. the variance 
of any linear cornbination of N variables at n+ 1 points with a set of weights w~ needs 
to be positive. For any set of points X a E D and any set of weights iv~ E IR 

N n N N n n 

var(LLw~Zi(Xa))= LLLLw~w~Gij(Xa-Xß) > O. (20.2) 
i=l a=O i=l j=l a=O ß=O 

Delay effect 

The cross covariance function is not apriori an even or an odd function. Generally for 
i# j, a change in the order of the variables or a change in the sign of the separation 



146 Multivariate Geostatistics 

vector h changes the value of the cross covariance function 

and (20.3) 

If both the sequence and the sign are changed, we are back to the same value 

(20.4) 

In particular, the maximum of the cross covariance function (assuming positive 
correlation between a given variable pair) may be shifted away from the origin of the 
abscissa in a certain direction by a vector r. This shift of the maximal correlation is 
frequent with time series, where one variable can have an effect on another variable 
whieh is not instantaneous. The time for the second variable to reaet to fluctuations of 
the first variable causes a delay in the correlation between the time series. 

EXAMPLE 20.1 Let Zl(X) be a random function obtained by shifting the random 
function Z2(X) with a vectorr, multiplying it with a constant a and adding E(X) 

(20.5) 

where E(X) is an independent measurement error without spatial correlation, i.e. a 
quantity with a zero mean and a nugget-effect covariance function Cnug(h). 

Tbe direct covariance function of Z 1 (x) is proportional to that of Z2 (x), 

(20.6) 

and the cross covariance function is obtained from the even function C22 (h) translated 
byr, 

(20.7) 

It is worth noting that the nugget-effect term is absent from the cross covariance func
tion. 

EXERCISE 20.2 Compute the cross covariance function betwecn Zl(X) and Z2(X) 
for 

(20.8) 

which incorporates two shifts rl and r2. 

Cross variogram 

The direct and cross variograms 'Y;j(h) are defined in the eontext of a joint intrinsic 
hypothesis for N random functions, when for any x, x+h E V and a11 pairs i, j = 
1, ... ,N 

{ 
E[Z;(x+h) - Z;(x)] = 0, 

cov[(Z;(x+h) - Zi(X)), (Zj(x+h) - Zj(x))] = 2'Y;j(h). 
(20.9) 
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The cross variogram is thus defined as half the expectation of the product of the 
increments of two variables 

(20.10) 

The cross variogram is obviously an even function and it satisfies the following 
inequality 

(20.11) 

because the square of the covariance of increments from two variables is bounded by 
the product of the corresponding increment variances. Actually a matrix r(ho) of 
direct and cross variogram values is a positive semi-definite matrix for any fixed h o 
because it is a variance-covariance matrix of increments. 

It is appealing to investigate its relation to the cross covariance function in the 
framework of joint second-order stationarity. The following formula is easily obtained 

1 
l'ij(h) = Cij(O) - 2(Cij ( -h) + Cij ( +h)), (20.12) 

which shows that the cross variogram takes the average of the values for - hand for 
+h of the corresponding cross covariance function. Decomposing the cross covari
ance function into an even and an odd function 

1 1 2 (Cij ( +h) + Cij ( -h)) + 2 (Cij ( +h) - Cij ( -h)), (20.13) 
" ., , " v v 

even term odd term 

we see that the cross variogram only recovers the even term of the cross covariance 
function. It is not adequate for modeling data in which the odd term of the cross 
covariance function plays a significant role. 

The cross covariance function between a random function and its derivative is an 
odd function. Such antisymmetric behavior of the cross covariance function is found 
in hydrogeology, when computing the theoretical cross covariance function between 
water head and transmissivity, where the latter variable is seen as the derivative of the 
former (see for example [68], p68). Several cross covariance function models between 
a random function and its derivative are given in [93], [323]. 

EXAMPLE 20.3 (GAS FURNACE DATA FROM [30]) Two time series, one corre
sponding to the fluctuation of a gas input into a fumace and the other being the output 
of CO2 from the fumace, are measured at the same time. The chemical reaction be
tween the input variable and the output variable takes several tens of seconds and we 
can expect a de1ay effect on measurements taken every 9 seconds. 

Tbe experimental cross covariance function for different distance c1asses fJ gather
ing n c pairs of locations X a , xß according to their separation vectors x" - xß = h E fJ 
is computed as 

(20.14) 
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Figure 20.1: Experimental cross covariance C;j(h) and experimental cross variogram 
-r;j(h). 

The experimental cross covariance function shown on Figure 20.1 reveals a delay 
of 45 seconds between fluctuations in the gas input and a subsequent effect on the rate 
of carbon dioxide measured at the output of the system. 

Figure 20.1 also exhibits the corresponding experimental cross variogram for dif
ferent classes..IJ with h E ..IJ 

(20.15) 

The experimental cross variogram is symmetrie with respect to the ordinate and is 
not suitable for detecting a delay. 

Figure 20.2 displays a plot of the decomposition of the experimental cross covari
ance into an even and an odd term. The even term has the same shape as the cross 
variogram when viewed upside down. The odd term measures the degree of asym
metry of the cross covariance: in case of symmetry the odd term would be identically 
zero. 

In practice the experimental cross covariance function should always be plotted 
(together with its decomposition into even and odd terms) before attempting to use a 
cross variogram. It has to be checked whether there are any important asymmetries in 
the cross covariance functions. For example, if one of the variables in the pair is the 
derivative of the other, the cross covariance will be antisymmetrie, while its even term 
as weH as the cross variogram will be identically zero. In such a case, using directly 
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Figure 20.2: Even and odd terms of the experimental cross covariance. 

the experimental cross variogram would lead the data analyst to miss an important 
non-linear relation between the variables. 

Pseudo cross variogram 

An alternate generalization of the variogram, the pseudo cross variogram 1l"ij(h), has 
been proposed by MYERS [233] and CRESSIE [64] by considering the variance of 
cross increments, 

(20.16) 

instead of the covariance of the direct increments as in the definition (20.9) of the 
cross variogram 'l'ij(h). 

Assuming for the expectation of the cross increments 

(20.17) 

the pseudo cross variogram comes as 

(20.18) 

The function 1fij(h) has the advantage of not being even. The assumption of sta
tionary cross increments is however unrealistic: it usually does not make sense to take 
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the difference between two variables measured in different physical units (even if they 
are rescaled) as the variables often also do not have the same support. PAPRITZ et 
al. [241], PAPRITZ & FLÜHLER [240] have experienced limitations in the usefulness 
of the pseudo cross variogram and they argue that it applies only to second-order sta
tionary functions. Another drawback of the pseudo cross variogram function, which 
takes only positive values, is that it is not adequate for modeling negatively correlated 
variables. For these reasons we shall not consider further this approach and deal only 
with the more classical cross covariance function to which 7fij(h) is related by 

.. (h) - Cii(O) + Cjj(O) _ C··(h) 
7f'J - 2 'J' (20.19) 

assuming second-order stationarity. 
A different viewpoint is found in CRESSIE & WIKLE [66]. 

Difficult characterization of the cross covariance function 

For a pair of second order stationary random functions the following inequality is valid 

(20.20) 

This inequality tells us that a cross covariance function is bounded by the product of 
the values of the direct covariance functions at the origin. 

It should be remembered that there are no inequalities of the following type 

Cij(O) "i 
Cii(h) Cjj(h) "i 

ICij(h)l, 

ICij(hW, 

(20.21) 

(20.22) 

as the quantities on the left hand side of the expressions can in both cases be negative 
(or zero). In particular we do not usually have the inequality 

(20.23) 

because the maximal absolute value of Cij(h) may not be located at the origin. 
The matrix C(h) of direct and cross covariances is in general neither positive 

nor negative definite at any specific lag h. It is hard to describe the properties of a 
covariance function matrix, while it easy to characterize the corresponding matrix of 
spectral densities or distribution functions. 



21 Covariance Function Matrices 

It is actually difficult to characterize directly a covariance function matrix. This be
comes easy in the spectral domain on the basis of Cramer's generalization of the 
Bochner theorem, which is presented in this chapter. We consider complex covari
ance functions. 

Covariance function matrix 

The matrix C(h) of direct and cross covariance functions of a vector of complex 
random functions (with zero means without loss of generality), 

z(x) (Zl' ... , Zi, ... , ZN)T with E[ z(x) 1 = 0, (21.1) 

is defined as 

C(h) = E [ z(x) z(x+h)T]. (21.2) 

The covariance function matrix is a Hermitian positive semi-definite function, that 
is to say, for any set of points we have X o E V and any set of complex weights w~ 

N N n n 

LLLLW~W~Cij(Xa-Xß) ~ O. (21.3) 
i=l j=l 0=0 ß=O 

A Hermitian matrix is the generalization to complex numbers of areal symmetric 
matrix. The diagonal elements of a Hermitian N x N matrix A are real and the off
diagonal elements are equal to the complex conjugates of the corresponding elements 
with transposed indices: aij = aji' 

For the matrix of direct and cross covariance functions of a set of complex vari
ables this means that the direct covariances are real, while the cross covariance func
tions are generally complex. 

Cramer's theorem 

Following a generalization ofBochner's theorem due to CRAMER [61] (see also [109], 
[362]), each element Cij(h) of a matrix C(h) of continuous direct and cross covari
ance functions has the spectral representation 

+00 +00 

Cij(h) = ! ... ! eiWThdF;j(w), (21.4) 

-00 -00 
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where the Fij ( w) are spectral distribution functions and w is a vector of the same di
mension as h. The diagonal terms Fii (w) are real, non decreasing and bounded. The 
off-diagonal terms Fij (w) (ii- j) are in general complex valued and of finite varia
tion. Conversely, any matrix of continuous functions C(h) is a matrix of covariance 
functions, if the matrices of increments Ö.Fij (w) are Hermitian positive semi-definite 
for any block Ö.w (using the terminology of [300]). 

Spectral densities 

If attention is restricted to absolutely integrable covariance functions, we have the 
following representation 

(21.5) 

-00 -00 

This Fourier transform can be inverted and the spectral density functions fij (w) 
can be computed from the cross covariance functions 

+00 +00 

fij(w) = (2~)n!···! e -iwTh Gij(h) dh. (21.6) 

-00 -00 

The matrix of spectral densities of a set of covariance functions is positive semi
definite for any value of w. For any pair of random functions this implies the inequality 

(21.7) 

With functions that have spectral densities it is thus simple to check whether a 
given matrix of functions can be considered as a covariance function matrix. 

EXERCISE 21.1 Compute the spectral density ofthe exponential covariance function 
(in one spatial dimension) G (h) = be -a Ihl, b > 0, a > ° using the formula 

+00 

f(w) = ~! e- iwh G(h) dh. 
21f 

-00 

EXERCISE 21.2 Show (in one dimensional space) that the function 

(21.8) 

(21.9) 

can only be the cross covariance function of two random functions with an exponential 
cross covariance function Gi(h) = e -ai Ihl, ai > 0, if ai = aj. 
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Phase shift 

In one dimensional space, for example along the time axis, phase shifts can easily 
be interpreted. Considering the inverse Fourier transforms (admitting their existence) 
of the even and the odd term of the cross covariance function, which are tradition
ally called the cospectrum Cij(W) and the quadrature spectrum %(w), we have the 
following decomposition of the spectral density 

(21.10) 

The cospectrum represents the covariance between the frequency components of 
the two processes which are in phase, while the quadrature spectrum characterizes the 
covariance of the out of phase components. Further details are found in [251], [362]. 

In polar notation the complex function fij(W) can be expressed as 

(21.11) 

The phase spectrum 'P;j(w) is the average phase shift of the proportion of Z;(x) 
with the frequency W on the proportion of Zj(x) at the same frequency and 

(21.12) 

Absence of phase shift at a frequency W implies a zero imaginary part Im(fij(w)) 
for this frequency. When there is no phase shift at any frequency, the cross spectral 
density J;j (w) is real and its Fourier transform is an even function. 



22 Intrinsic Multivariate Correlation 

Is the multivariate correlation structure of a set of variables independent of the spatial 
correlation? When the answer is positive, the multivariate correlation is said to be 
intrinsic. It is an interesting question in applications to know whether or not a set 
of variables can be considered intrinsically correlated, because the answer may imply 
considerable simplifications for subsequent handling of this data. 

Intrinsic correlation model 

The simplest multivariate covariance model that can be adopted for a covariance func
tion matrix consists in describing the relations between variables by the variance
covariance matrix V and the relations between points in space by a spatial correlation 
function p(h) which is the same for all variables 

C(h) = V p(h). (22.1) 

This model is called the intrinsic correlation model because it has the particular 
property that the correlation Pij between two variables does not depend upon spatial 
scale, 

(}ij p(h) 
(22.2) J (}ii p(h) (}jj p(h) 

In practice the intrinsic correlation model is obtained when direct and cross covari
ance functions are chosen which are all proportional to a same basic spatial correlation 
function, 

(22.3) 

and the coefficients bij are subsequently interpreted as variances {}ii or covariances (}ij, 
depending whether i is equal to j or not. 

EXERCISE 22.1 Show that the intrinsic correlation model is a valid model for covari
ance function matrices. 

The intrinsic correlation model implies even cross covariance functions because 
p(h) is an even function as it is a normalized direct covariance function. 
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An intrinsic correlation model can be formulated for intrinsica11y stationary ran
dom functions (please note the two different uses of the adjective intrinsic). For var
iograms the intrinsic correlation model is defined as the product of a positive semi
definite matrix B of coefficients b;j, ca11ed the coregionalization matrix, multiplied 
with a direct variogram '}'(h) 

r(h) = B '}'(h). (22.4) 

EXERCISE 22.2 Show that the intrinsic correlation model is a valid model for vari
ogram matrices. 

Linear model 

The linear random function model, that can be associated with the intrinsica11y corre
lated multivariate variogram model, consists of a linear combination of coefficients a~ 
with factors Yp(x) 

N 

Z;(x) = L a~ Yp(x). (22.5) 
p=l 

The factors Yp(x) have pairwise uncorrelated increments, 

E[ (Yp(x+h) - Yp(x)) . (Yq(x+h) - Yq(x))] = 0 for Pi- q, (22.6) 

and a11 have the same variogram 

for p = 1, ... ,N. (22.7) 

The variogram of a pair of random functions in this model is proportional to one 
basic model 

1 2 E[ (Z;(x+h) - Z;(x)) . (Zj(x+h) - Zj(x))] 

1 N N 

2E[L L a~a~(Yp(x+h) - Yp(x))· (Yq(x+h) - Yq(x))] 
p=l q=l 

N 

~ L a~ a~ E[ (Yp(x+h) - Yp(X))2] 
p=l 

b;j '}'(h) , (22.8) 

where each coefficient b;j, element of the coregionalization matrix B, is the result of 
the summation over the index p of products of a~ with a~, 

N 

b;j = L a~a~. (22.9) 
p=l 
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Correlated at 
short distances !! 

Figure 22.1: Cross variogram of a pair of principal components. 

One possibility to decompose a given coregionalization matrix B for specifying 
the linear model is to perform a principal component analysis with B playing the role 
of the variance-covariance matrix, 

(22.10) 

where Ap is an eigenvalue and q~ is an element of an eigenvector of B. 

Co dispersion coefficients 

A sensitive question to explore for a given data set is to know whether the intrinsic 
correlation model is adequate. One possibility to approach the problem is to examine 
plots of the ratios of the cross versus the direct variograms, which are called codisper
sion coefficients (MATHERON, 1965) 

(22.11) 

If the codispersion coefficients are constant, the correlation of the variable pair 
does not depend on spatial scale. This is an obvious implication of the intrinsic corre
lation model 

(22.12) 

where Pij is the correlation coefficient between two variables, computed from ele
ments of the coregionalization matrix B. 
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Another possible test for intrinsic correlation is based on the principal components 
of the set of variables. If the cross variograms between the principal components are 
not zero at alllags h, the principal components are not uncorrelated at all spatial scales 
of the study and the intrinsic correlation model is not appropriate. 

EXAMPLE 22.3 (PRINCIPAL COMPONENTS' CROSS VARIOGRAM) Ten chemical el
ements were measured in a region for gold prospection (see [344]). Figure 22.1 shows 
the cross variogram between the third and the fourth principal component computed 
on the basis of the variance-covariance matrix of this geochemical data for which a 
hypothesis of intrinsic correlation is obviously false. Indeed, near the origin of the 
cross variogram the two components are significantly corre1ated although the statis
tical correlation coefticient of the principal components is equal to zero. This is a 
symptom that the correlation structure of the data is different at small scale, an aspect 
that a non-regionalized principal component analysis cannot incorporate. 

We defer to Chapter 26 an explanation on how the ordinate on Figure 22.1 has 
been scaled. The graph has actually been scaled in the same way as Figure 26.2, using 
the so-called hull of perfect correlation defined in expression (26.16) on pl77 - but 
not displaying it. 



23 Heterotopic Cokriging 

The cokriging procedure is a natural extension of kriging when a multivariate vari
ogram or covariance model and multivariate data are available. A variable of interest 
is cokriged at a specific location from data about itself and about auxiliary variables in 
the neighborhood. The data set may not cover all variables at all sam pIe locations. De
pending on how the measurements of the different variables are scattered in space we 
distinguish between isotopic and heterotopic data sets. After defining these situations 
we examine cokriging in the heterotopic case. 

Isotopy and heterotopy 

The measurements available for different variables Zi(X) in a given domain may be 
located either at the same sam pIe points or at different points for each variable as 
illustrated on Figure 23.1. The following situations can be distinguished 

entirely heterotopic data: the variables have been measured on different sets of 
sam pIe points and have no sam pIe locations in common; 

partially heterotopic data: some variables share some sampIe locations; 

isotopy: data is available for each variable at all sampling points. 

Entirely heterotopic data poses a problem for inferring the cross variogram or co
variance model. Experimental cross variograms cannot be computed for entirely het
erotopic data. Experimental cross covariances, though they can be computed, are still 
problematic as the corresponding direct covariance values refer to different sets of 
points (and sometimes subregions). The value at the origin of the cross covariances 
cannot be computed. 

With partially heterotopic data it is advisable, whenever possible, to infer the cross 
variogram or the covariance function model on the basis of the isotopic subset of the 
data. 

Actually heterotopy for spatial data is as much a problem as missing values in 
multivariate statistics (remember the Example 3.1 on p22), even if a model is built in 
between in the case of geostatistics. 

A particular case of partial heterotopy important for cokriging is when the set of 
sampIe points of the variable of interest is included in the sets of sampie points of 
other variables, which serve as auxiliary variables in the estimation procedure. In this 
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Figure 23.1: Isotopic and partially heterotopic data. 

case, when the auxiliary variables are available at more points than the main variable, 
cokriging is typically of advantage. 

In cokriging problems with heterotopic data we can distinguish between sparsely 
and densely sampled auxiliary variables. In the second case, when an auxiliary vari
able is available everywhere in the domain, particular techniques like collocated cok
riging (presented in this chapter) or the external drift method (see Chapter 37) can be 
of interest. 

The question whether cokriging is still interesting in the case of isotopy, when the 
auxiliary variables are available at the same locations as the variable of interest, will 
be examined in the next chapter. 

Ordinary cokriging 

The ordinary cokriging estimator is a linear combination of weights w ~ with data from 
different variables located at sampie points in the neighborhood of a point xo. Each 
variable is defined on a set of sampies of (possibly different) size n; and the estimator 
is defined as 

N ni 

Z~(xo) = LLW~Zi(Xa), (23.1) 
;=1 a=l 

where the index i o refers to a particular variable of the set of N variables. The number 
of sampies ni depends upon the index i of the variables, so as to inc1ude into the 
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notation the possibility of heterotopic data. 
In the framework of a joint intrinsic hypothesis we wish to estimate a particular 

variable of a set of N variables on the basis of an estimation error which should be nil 
on average. This condition is satisfied by choosing weights which sum up to one for 
the variable of interest and which have a zero sum for the auxiliary variables 

{ 
1 if i= io 

= 8iio = 0 otherwise. 
(23.2) 

Expanding the expression for the average estimation error, we get 

N ni 

E[Z~(xo) - Zio(xo)] = E[LL W~Zi(X<» 
i=l <>=1 

nio N ni 

- L W~ Zio(XO) - L L W~ Zi(XO) ] 
<>=1 i=O <>=1 
'--v---" iiio "-v-" 

1 0 

N ni 

L L W~ ~[Zi(X<» - Zi(XO) 1 
v 
o i=l <>=1 

o. (23.3) 

For the variance of the estimation error we thus have 

N ni 2 

(J~ = E[ (LLw~Zi(X<» - ZiO(XO)) ]. (23.4) 
i=l <>=1 

Introducing weights wb defined as 

{ 
-1 

w~ = -8iio = 0 
if i= io, 

if i-l- io, 
(23.5) 

which are included into the sums, we can shorten the expression of the estimation 
variance to 

(23.6) 

Then, inserting fictitious random variables Zi(O) positioned arbitrarily at the ori
gin, increments can be formed 

(23.7) 
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Defining cross covariances of increments CL(Xo.,xß) (which are not translation 
invariant) we have 

N N ni nj 

L L L L w~ w~ C&(Xo., xß)· (23.8) 
i=1 j=1 0.=0 ß=O 

In order to convert the increment covariances to variograms, the additional as
sumption has to be made that the cross covariances of increments are symmetrie. With 
this hypothesis we obtain the translation invariant quantity 

N ni 

a~ 2 L L w~ 'Yiio(Xo.-Xo) - 'Yioio(XO-Xo) 
i=1 0.=1 

N N ni nj 

- LLLLw~w~'Yij(Xo.-Xß)· (23.9) 
i=1 j=1 0.=1 ß=1 

After a minimization in which the constraints on the weights generate N parame
ters of Lagrange Mi, we have the ordinary cokriging system 

N nj 

L L w~ 'Yij(Xo.-Xß) + Mi = 'Yiio(Xo.-Xo) 
j=1 ß=1 

for i = 1, ... N; Cl = 1, ... ni 

ni 

L w~ = eSiio 
ß=1 

fori = 1, ... N, 

and the cokriging variance 

N ni 

L L w~ 'Yiio(Xo.-Xo) + Mio - 'Yioio(XO - xo). 
i=1 0.=1 

Simple cokriging 

(23.10) 

(23.11) 

Ordinary cokriging has no meaning when no data is available for the variable of in
terest in a given neighborhood. On the other hand, simple kriging leans on the knowl
edge of the means of the variables, so that an estimation of a variable can be calibrated 
without having any data value for this variable in the cokriging neighborhood. 

The simple cokriging estimator is made up of the mean of the variable of interest 
plus a linear combination of weights w~ with the residuals of the variables 

N ni 

Z~(Xo) mio + L L w~ (Zi(Xo.) - mi). (23.12) 
i=1 0.=1 
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.~1~O o 

Figure 23.2: Three data values at two locations Xl, X2. 

To this estimator we ean associate a simple eokriging system, written in matrix 
form 

Clio 

C ii Wi (23.13) 

C NI 

where the left hand side matrix is built up with square symmetrie ni x ni bloes C ii on 
the diagonal and with rectangular ni x nj bloes C ij off the diagonal, with 

(23.14) 

The blocks C ij eontain the eovarianees between sam pIe points for a fixed pair 
of variables. The veetors Ciio list the eovarianees with the variable of interest, for a 
specifie variable of the set, between sam pIe points and the estimation loeation. The 
veetors Wi represent the weights attaehed to the sampIes of a fixed variable. 

EXAMPLE 23.1 (HETEROTOPIC BIVARIATE COKRIGING) Let us examine the fol
lowing simple cokriging problem. We are interested in cokriging estimates on the 
basis of 3 data values at two points Xl and X2 as shown on Figure 23.2. In this lD 
neighborhood with two sample points we have one data value for Zl (x) and two data 
values for Z2(X). The direct covariance functions and the cross covariance function 
(which is assumed an even function) are modeled with a spherical structure with a 
range parameter a= 1, 

Gll(h) C22 (h) = Psph(h), 

-1 Psph(h). 

This is by the way an intrinsic correlation model. 

(23.15) 

(23.16) 

EXERCISE 23.2 Is the coregionalization matrix positive definite? What is the value 
of the correlation coefficient? 
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We want to estimate Z 1 (x) using simple cokriging assuming known means ml and 
m2, so the estimator is 

Zr(Xo) = ml + Wl(Zl(Xl) - md 
+ W2(Z2(xd - m2) + W3(Z2(X2) - m2). (23.17) 

Let us write out the simple cokriging system for the isotopic case (as ifwe had a 
measurement for Zl (X2)) 

( 

Cn(Xl - Xl) C11 (Xl - X2) CdXl - Xl) C 12 (Xl - X2) ) 
Cn (X2 - Xl) C11 (X2 - X2) C12 (X2 - Xl) C12 (X2 - X2) 
C 21 (Xl - Xl) C21 (Xl - X2) C22 (Xl - xd C22 (Xl - X2) 
C21 (X2 - Xl) C21 (X2 - X2) C22 (X2 - Xl) C22 (X2 - X2) 

x 

where the blocks are marked by lines. 

(23.18) 

EXERCISE 23.3 How does the system shrink due to the fact that actually no data 
value is available for Z 1 (x) at the point X2 ? 

Computing the numerical vaIues of the covariances we have the following system 
with the three right hand sides for cokriging at x~, x~ and X2, as shown on Figure 23.2, 

( ! 1 ~ 1 ~) (:~) ( ~) ,( ~ ), ( ~ ) . 
o 0 1 W3 0 -5/16 -1 

(23.19) 

EXERCISE 23.4 What are the solutions Wl, W2, W3 ofthe simple cokriging system for 
each target point x~, x~ and X2 ? 

The cokriging estimate zf(x~) is equal to the mean ml because the point x~ is out 
of range wirh respect to both data points Xl and X2. 

For the point x~ the cokriging estimate is equaI to 

zr(x~) = ml - 156 (Z2(X2) - m2) 

as this point is now within the range of the point X2. 
When cokriging at the target point X2 we have 

Zr(X2) = ml + U12 (Z2(X2) - m2)= ml - (Z2(X2) - m2), 
U22 

which is a linear regression equation (compare wirh Eq. 3.21 on p19). 

(23.20) 

(23.21) 

The simple kriging of Z 1 (x) at the three target points (without using the auxiliary 
variable) would have given each time the mean ml as a solution because aIl three 
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points are out of range of Xl. In comparison the cokriging solutions are more inter
esting soon as the target point is within range of the point X2 where a value oE the 
auxiliary variable is available. 

We notice in passing that in the heterotopic case cokriging with an intrinsic corre
lation model does generally not boil down to kriging. 



24 Collocated Cokriging 

A particular heterotopie situation eneountered in praetice is when we have a variable 
of interest known at a few points and an auxiliary variable known everywhere in the 
domain (or at least at all nodes of a given estimation grid and at the data loeations 
of the variable of interest. With plenty of data available for the auxiliary variable the 
question at hand is how to ehoose a parsimonious neighborhood. 

Cokriging neighborhood 

Cokriging with many variables using all data easily generates a very large linear sys
tem to solve. This means that the ehoice of a subset of data around a given estimation 
loeation, eaBed a neighborhood, is a erucial step in eokriging. It is of partieular im
portanee to know when, due to the partieular strueture of a eoregionalization, the full 
eokriging with all data is aetually equivalent to a eokriging using a subset of data, 
so that the neighborhood ean be redueed apriori and the eokriging system simplified 
aeeordingly, thus redueing in the end the numerieal effort to a eonsiderable extent. 
For isotopie data the most important aspeet is to know whether the eoregionalization 
shows direet and cross variograms that are proportional to one direet variogram which 
entails the eokriging to be equivalent to aseparate kriging, leaving out the seeondary 
variables. This topic will be exposed in Chapter 25. Coneerning heterotopie data 
we will foeus on a case that has attraeted most attention reeently as it is inereasingly 
frequently eneountered in applieations: the ease of a dense secondary variable. 

Figure 24.1 sketches three different neighborhoods for a given central estimation 
loeation (denoted by astar), primary data (denoted by full circ1es) as well as three 
alternate subsets of data from a seeondary variable (denoted by squares). The neigh
borhood: 

(A) uses aB data available for the seeondary variable, 

(B) restriets the seeondary information to the sub set of loeations where primary data 
is available as weB as to the estimation loeation, 

(C) merely inc1udes a sampie value of the seeondary variable at the estimation loea
tion. 

Case (A) ean be termed the Juli neighborhood, while ease (C) was ealled a col
located neighborhood by Xu et al. [360] as the seeondary data is eolloeated with the 
estimation loeation. Whereas ease (B) was termed a multicollocated neighborhood 
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Figure 24.1: Three possible neighborhoods with a dense secondary variable. 

by Chiles & Delfiner [51] as additionally thc secondary data is also collocated with 
the primary data. 

Using the full neighborhood (A) with secondary data dense in space will easily 
lead to linear dependencies for neighboring sampies in the cokriging system, causing 
it to be singular. The size of the system can also be numerically challenging. Vargas
Guzman & Yeh [328] suggest a way out of numerical difficulties by starting from a 
small neighborhood and progressively extending the neighborhood in the framework 
of what they call a sequential cokriging. 

Collocated simple cokriging 

The collocated neighborhood (C) is only valid for simple cokriging because using a 
single sampie for the secondary variable in ordinary cokriging leads to a trivial cok
riging weight for that sampie due to the constraint. For simple cokriging the approach 
solely requires the inference of a correlation coefficient instead of a cross-covariance 
function, a simplification that can only be meaningful for coregionalization models 
with proportionalities. However, as shown below the full simple cokriging with such 
a model does not reduce to a collocated simple cokriging. 

With reference to Xv et al. [360] we call collocated simple cokriging a neighbor
hood definition strategy in which the neighborhood of the auxiliary variable is arbi
trarily reduced to only one point: the estimation location. The value S(xo) is said to 
be collocated with the target point of Z (x). The collocated simple cokriging estimator 
is 

n 

Z*(xo) m z + Wo (S(xo) - ms) + LW", (Z(x", ) - mz ). (24.1) 
",= 1 
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The simple cokriging system for such a neighborhood is written 

( C-fz czs) (wz) = 
czs ass Wo ( czz ) , 

azs 
(24.2) 

where C zz is the left hand matrix of the simple kriging system of Z(x) and Czz is the 
corresponding right hand side. The vector Czs contains the cross covariances between 
the n sampie points of Z(x) and the target point Xo with its collocated value S(xo). 

In the case of intrinsic correlation the collocated simple cokriging can be expressed 
as 

( azzl} azsro) (wz) = 
azsro ass Wo 

( azzro ) , 
azs 

(24.3) 

where R is the matrix of spatial correlations p(xa-xß), while ro is the vector of 
spatial correlations p(xa-xo). 

To perform collocated cokriging with intrinsic correlation of the variable pair we 
only needto know the covariance function 

Czz(h) = azz p(h) (24.4) 

and the correlation coefficient Pzs between Z(x) and S(x), as well as the variance 
ass of S(x). 

An interesting question is to know whether simple cokriging reduces to collocated 
cokriging with the intrinsic correlation model. Actually the answer is negative (as 
shown in an exercise below) and we have to conclude that there is no theoretical justi
fication for selecting only one collocated sam pie for cokriging the auxiliary variable. 

EXERCISE 24.1 Suppose that Z(x) and S(x) are intrinsically correlated with unit 
variances. We choose to use as a cokriging neighborhood the data Z (xa ) at n sample 
locations X a and corresponding values S(xa ) at the same locations. We also include 
irrto the cokriging neighborhood the value S(xo) available at the grid node xo. Does 
this cokriging boil down to collocated cokriging? 

Collocated ordinary cokriging 

The collocated neighborhood (C) used for simple cokriging in the previous section 
would yield a trivial result if applied in ordinary cokriging: because of the constraint 
that the weights of the auxiliary variable should sum up to zero, the weight Wo is zero 
and the auxiliary variable does not come into play. 

An ordinary cokriging needs to use more data together with the value S (xo). If the 
values S(xa ) that are collocated with the sampie points of the main variable are also 
included we get a multicollocated neighborhood (B). The ordinary cokriging estimator 
is 

n 

Z*(xo) Wo S(xo) + ~)w~ Z(xa) + w~ S(xa)). (24.5) 
a=l 
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The corresponding cokriging system can be written 

(
CZZ Czs Czs 1 0) (WZ) C sz C ss Css 0 1 Ws 
cis c~s (Tss 0 1 Wo 
IT OT 0 0 0 -/-11 

OT IT 1 0 0 -/-12 

(

C
ZZ

) 
CSZ 

= (Tr . 
(24.6) 

As the weights are constrained, the system can also be expressed on the basis of 
variograms instead of covariance functions (contrarily to simple collocated cokriging). 

Simplification with a particular covariance model 

Cokriging in a multicollocated neighborhood is examined in detail by Rivoirard [271] 
who has shown in the bivariate case that cokriging with a full neighborhood is equiv
alent to cokriging with a multicollocated neighborhood when the covariance structure 
is of the type: 

{ 
Czz(h) 
Css(h) 
Czs(h) 

= p2 C(h) + CR(h), 
= C(h), 
= pC(h), 

(24.7) 

where pis a proportionality coefficient, CR(h) is a covariance structure that is partic
ular to the primary variable and C(h) is common to both variables. Implications of 
this model are that the covariance function Css(h) is more regular than Czz(h), if 
CR(h) is less regular than C(h). 

The corresponding cokriging estimator Z** is then shown to reduce to 

Z**(xo) = Z*(xo) + p (S(xo) - S*(xo)) , (24.8) 

where the two krigings Z* and S* are both obtained using the weights from an ordinary 
kriging system set up with the covariance function CR(h) for the nz sampie locations 
of the primary variable: 

n z n z 

Z*(xo) = LW~Z(xa), S*(xo) = :L w~S(xa). (24.9) 
a=l a=l 

Rivoirard [271] obtained this result for Gaussian random functions with condi
tional independence of Z(xo) and S(x) knowing S(xo). It is straightforward to derive 
it more generally for second-order stationary random functions simplifying the cok
riging system on starting directly from the covariance function model (24.7). 

This result can be generalized to the multivariate case for uncorrelated secondary 
variables (e.g. principal components of remote sensing channels). Let the first variable 
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Zl be the variable of interest, let j = 2, ... ,N be the indices of N -1 principal com
ponents with covariance functions Cjj(h) and assume the coregionalization model, 

for j = 2, ... , N, 
forj-=l=j', 

(24.10) 

where Pj are coefficients. Knowing that remote sensing channels in our experience are 
not sei dom intrinsically correlated [183, 47] it makes sense to compute their principal 
components and this type of coregionalization model could be applied in that context. 

The cokriging estimator is then 

N 

Zt*(xo) = Z;(xo) + L:>j (Zj(xo) - Z;(xo)) , 
j=2 

(24.11) 

reducing the cokriging to a linear combination of coefficients Pj with differences be
tween the known values Zj(xo) and the ordinary krigings Zj(xo) computed from the 
nl sampie locations of Zl using CR(h). 



25 Isotopic Cokriging 

When a set of variables is intrinsically correlated, cokriging is equivalent to kriging 
for each variable, if all variables have been measured at all sampIe locations. For a 
particular variable in a given data set in the isotopic case, cokriging can be equivalent 
to kriging, even if the variable set is not intrinsically correlated. This is examined in 
detail in this chapter. 

Cokriging with isotopic data 

Let us consider the case of isotopic data. With isotopy the cokriging of a set of vari
ables has the important advantage over aseparate kriging of each variable that it pre
serves the coherence of the estimators. This can be seen when estimating a sum S(x) 
of variables 

N 

S(x) = L Zi(X). (25.1) 
i=l 

The cokriging of S (x) is equal to the sum of the cokrigings of the variables Zi (x) 
(using for each cokriging N out of the N + 1 variables) 

N 

SCK(x) = L Z(K(X). (25.2) 
i=l 

However, if we krige each term of the sum and add up the krigings we generally 
do not get the same result as when we krige directly the added up data: the two 
estimations are not coherent. 

EXAMPLE 25.1 The thiekness T(x) of a geologie layer is defined as the differenee 
between its upper and lower limits, 

T(x) 
'-v-' 

thiekness 

Zu(x) ZL(X) 
'-v--" ~ 

upper limit lower limit 

(25.3) 

The eokriging estimators of eaeh term using the information of two out of the three 
variables (the third being redundant) are eoherent, 

T GK (x) = z8K (x) - ZfK (x). (25.4) 
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But if kriging is used, the left hand result is in general different trom the right hand 
difference, 

T K (x) =J Z{f (x) - zf (x), (25.5) 

and there is no criterion to help decide as to which estimate of thickness is the better. 

In some situations isotopic cokriging is equivalent to kriging. The trivial case 
is when all cross variograms or cross covariance functions are zero. A more subtle 
case is when cross variograms or covariances are proportional to a direct variogram or 
covariance function. 

A utokrigeability 

A variable is said to be autokrigeable with respect to a set of variables, if the direct 
kriging of this variable is equivalent to the cokriging. The trivial case is when all 
variables are uncorrelated (at any scale!) and it is easy to see that this implies that all 
kriging weights are zero except for the variable of interest. 

In a situation of isotopy any variable is autokrigeable if it belongs to a set of intrin
sically correlated variables. Assuming that the matrix V of the intrinsic correlation 
model is positive definite, we can rewrite the simple cokriging equations using Kro
necker products 0: 

(V0R)w (25.6) 

where 

and (25.7) 

The nN x nN left hand matrix of the isotopic simple cokriging with intrinsie cor
relation is expressed as the Kronecker product between the N x N variance-covariance 
matrix V and the n x n left hand side matrix R of simple kriging 

(25.8) 

The nN right hand vector is the Kronecker product of the vector of covariances 
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O"iio times the right hand vector ro of simple kriging 

(25.9) 

Now, as Vio is also present in the left hand side of the cokriging system, a solution 
exists for which the weights of the vector Wio are those of the simple kriging of the 
variable of interest and all other weights are zero 

... Vio ® R ... (25.10) 

This is the only solution of the simple cokriging system as V and R are positive 
definite. 

It should be noted that in this demonstration the autokrigeability of the variable of 
interest only depends on the block structure v io ® Rand not on the structure V ® R of 
the whole left hand matrix. Thus for a variable to be autokrigeable we only need that 
the cross variograms or covariances with this variable are proportional to the direct 
variogram or covariance. 

To test on an isotopic data set whether a variable Zio is autokrigeable, we can com
pute autokrigeability coefficients defined as the ratios of the cross variograms against 
the direct variogram 

(h) lioj(h) 
aCioj = --(-) . 

lioio h 
(25.11) 

If the autokrigeability coefficients are constant at any working scale for each vari
able j = 1, ... , N of a variable set, then the variable of interest is autokrigeable with 
respect to this set of variables. 

A set of N variables for which each variable is autokrigeable with respect to the 
N -10ther variables is intrinsically correlated. 

COMMENT 25.2 The property of autokrigeability is used explicitly in nonlinear geo
statistics in the formulation of models with orthogonal indicator residuals (see [267, 
270)). 
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Bivariate ordinary cokriging 

We now examine in detail the ordinary cokriging of a variable of interest Z(x) with 
only one auxiliary variable Y(x). The ordinary cokriging estimator for Z(x) is written 

nl n2 

Z*(xo) = L w~ Z(x,,) + L w~ Y(Xß) 
,,=1 ß=l 

T T 
W l Z+W2 y. 

The unbiasedness conditions are IT Wl = 1 and IT W2 = o. 
The ardinary cokriging system in matrix notation is 

(25.12) 

(25.13) 

(25.14) 

Suppose the two variables are uncorrelated, both in the spatial and in the multi
variate sense, Le. C Zy = C yZ = 0 and cyZ = o. Then the cokriging system has the 
form 

CZZWI -/-LI Czz 

IT Wl 1 

Cyy W 2 -/-L2 0 
(25.15) 

IT W2 O. 

Obviously W2 = 0 and /-L2 = 0, so that Wb /-LI are the solution of the ordinary 
kriging of Z alone, even in the heterotopic case. 

Far the isotopic case, let us look now at ordinary cokriging with the intrinsic cor
relation model. The matrices in the system have the following structure 

C zz = azzR C Zy = azyR Czz = azz ro (25.16) 

C yZ = ayzR C yy = ayyR CYZ = ayZ ro· (25.17) 

Thus the system is 

rZRW

' 

+ aZy RW2 /-LI azz ro 

IT Wl 1 

aYZRWl ayy RW2 

(25.18) 
+ /-L2 ayZ ro 

IT W2 o. 
Setting W2 = 0 and /-LI = azz /-L, /-L2 = ayZ /-L we obtain 

{ 

aZZRwl 

IT Wl 

aYZRWl 

azz /-L azz ro 

1 (25.19) 

ayZ /-L ayZ ro· 
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Dividing out the azz and ayZ in the first and the third set of equations, we see 
that Wl and J.l are solution of the simple direct kriging Z: the variable of interest is 
autokrigeable. 



26 M ultivariate N ested Variogram 

The multivariate regionalization of a set of random functions can be represented with a 
spatial multivariate linear model. The associated multivariate nested variogram model 
is easily fitted to the multivariate data. Several coregionalization matrices describing 
the multivariate correlation structure at different scales of a phenomenon result from 
the variogram fit. The relation between the coregionalization matrices and the classical 
variance-covariance matrix is examined. 

Linear model of coregionalization 

A set of real second-order stationary random functions {Zi (x); i = 1, ... , N} can be 
decomposed into sets {Z~(x); u = 0, ... , S} of spatially uncorrelated components 

s 
Zi(X) = L Z~(x) + mi, 

u=o 

where for all values of the indices i, j, u and v, 

and 

E[ Zi(X) 1 

E[ Z~(x) 1 

cov(Z~(x), Zt(x+h)) 

cov(z~(x), zt(x+h)) 

0, 

E[ Z~(x) Zt(x+h) 1 = Cij(h) , 

° when u =F v. 

(26.1) 

(26.2) 

(26.3) 

(26.4) 

(26.5) 

The cross covariance functions Cij(h) associated with the spatial components are 
composed of real coefficients b'tj and are proportional to real correlation functions 
Pu(h) 

s s 
Cij(h) = LCij(h) = LbijPu(h), (26.6) 

u=o u=o 

which implies that the cross covariance functions are even in this model. 
Coregionalization matrices B u of order N x N can be set up and we have a mul

tivariate nested covariance function model 

s 
C(h) = LBuPu(h) (26.7) 

u=o 
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with positive semi-definite coregionalization matrices B u • 

EXERCISE 26.1 When is the above covariance function model equivalent to the in
trinsic correlation model? 

EXERCISE 26.2 Show that a correlation function Pu(h) having a non zero sill bij 
on a given cross covariance function has necessarily non zero sills b'/; and b'li on the 
corresponding direct covariance functions. 

Conversely, if a sill b'/; is zero for a given structure of a variable, a11 sills of the 
structure on a11 cross covariance functions with this variable are zero. 

Each spatial component Z~(x) can itself be represented as a set of uncorrelated 
factors Y,f(x) with transformation coefficients a~p, 

N 

Z~ (x) = L a~u Y,f(x), (26.8) 
p=l 

where for all values of the indices i, j, U, v, p and q, 

and, 

E[Y,f(x)] = 0, (26.9) 

cov (Y,f (x) , Y,f(x+h)) 

cov(Y,f(x), Y"q(x+h)) 

Pu(h), (26.10) 

o when U =I- v or p =I- q. (26.11) 

Combining the spatial with the multivariate decomposition, we obtain the linear 
model 0/ coregionalization 

S N 

L L a~u Y,f(x). (26.12) 
u=O p=l 

In practice first a set of correlation functions Pu (h) (i.e. normalized variograms 
gu(h» is selected, taking care to keep S reasonably small. Then the coregionalization 
matrices are fitted using a weighted least squares algorithm (described below). The 
weighting coefficients are chosen by the practitioner so as to provide a graphically sat
isfactory fit which downweighs arbitrarily distance c1asses which do not comply with 
the shape suggested by the experimental variograms. Finally the coregionalization 
matrices are decomposed, yielding the transformation coefficients ayp which specify 
the linear coregionalization model 

where Au = [a~u]. (26.13) 

The decomposition of the B u into the product of Au with its transpose is usually 
based on the eigenvalue decomposition of each coregionalization matrix. Several de
compositions for the purpose of a regionalized multivariate data analysis are discussed 
in the next chapter. 
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Bivariate fit of the experimental variograms 

The multivariate nested variogram model assoeiated with a linear model of intrinsi
eaHy stationary random funetions is 

r(h) (26.14) 

where the gu(h) are normalized variograms and the B u are positive semi-definite ma
triees. 

In the ease of two variables it is simple to design a proeedure for fitting the vari
ogram model to the experimental variograms. We start by fitting the two direet vari
ograms using a nested model. At least one strueture gu(h) should be eommon to both 
variograms to obtain a non trivial eoregionalization model. Then we are able to fit the 
sills b'/j of the eross variogram, using the sills of the direet variograms to set bounds 
within which the eoregionalization model is authorized, 

Ibijl ~ Jbt bjj , (26.15) 

beeause the seeond order principal minors of B u are positive. 
Constrained weighted least squares routines exist, whieh aHow integrating these 

eonstraints into an automated fit for a set of predefined struetures. 
The extension of this bivariate proeedure to more than two variables does not guar

antee apriori an authorized model, beeause higher order principal minors of the eore
gionalization matriees are not eonstrained to be positive. 

EXAMPLE 26.3 The inequality relation between sills can be used to provide a graph
ical criterion to judge the goodness of the fit of a variogram model to an experimental 
variogram. A huH of perfeet eorrelation is defined by replacing the sills b'tj of the 
cross variogram by the square root of the product of the sills of the corresponding 
direct variograms (which have to be fitted first) and setting the sign of the total to + 
or -: 

s 
hullbij(h)) = ± L Jbt bjj gu(h). (26.16) 

u=o 

Figure 26.1 shows the cross variogram between nickel and arsenic for the Loire 
geochemical data set. The fit of a nugget-effect plus two spherical models with ranges 
of 3.5km and 6.5km seems inappropriate on this graph. 

The same fit viewed on Figure 26.2 within the hull of perfect (positive or nega
tive) correlation now looks satisfactory. This shows that a cross variogram fit should 
be judged in the context of the spatial correlation between two variables: in this case 
the statistical correlation between the two variables is very poor (the correlation co
efficient is equal to r = .12). The b'/j coefficients of the two spherical structures are 
very small in absolute value and the model is actually dose to a pure nugget-effect, 
indicating that correlation between arsenic and nickel only exists at the microseale. 
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Figure 26.1: Experimental cross variogram of arsenic and nickel with a seemingly badly 
fitted model. 

Multivariate fit 

A multivariate fit is sought for a model r(h) to the matrices r*(SJk) of the experi
mental variograms calculated for nc classes SJk of separation vectors h. An iterative 
algorithm due to GOULARD [125] is based on the least squares criterion 

L tr[ (r*(SJk) - r(SJk) )2], (26.17) 
k=l 

which will be minimized under the constraint that the coregionalization matrices B u 

of the model r(h) have to be positive semi-definite. 
Starting with S arbitrarily chosen positive semi-definite matrices B u , we look for 

an S + 1-th matrix B v which best fills up the gap dr~k between a model with S matri
ces and the experimental matrices r*(SJk) 

s 
dr~k = r*(SJk) - L Bu 9u(SJk). 

u=o 
UoFV 

(26.18) 

The sum of the differences weighted by 9v(SJk) is a symmetrie matrix dr~ which 
is in general not positive semi-definite. Decomposing it into eigenvalues and eigen
vectors, 

nc 

L dr~k 9v(SJk) 
k=l 
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Figure 26.2: The same cross variogram fit is displayed together with the huH of perfect 
positive or negative correlation provided by the previous fitting of the corresponding 
direct variograms. The cross variogram model is defined within the bounds of the huH 
of perfect correlation. 

we can build with the positive eigenvalues a new matrix dr~ which is the positive 
semi-definite matrix nearest to dr~ in the least squares sense 

(26.20) 

where A~ is equal to the diagonal eigenvalues matrix A v except for the negative eigen
values, which have been set to zero. 

Dividing by the square of the variogram 9v (h) of the S + I-th structure, we obtain 
a positive semi-definite matrix B~ which minimizes the fitting criterion 

B* = v (26.21) 

This procedure is applied in turn to each matrix B u and iterated. The algorithm 
converges weH in practice, aIthough convergence is theoreticaHy not ensured. 

In practice weights w(Sh) are inc1uded into the criterion to aHow the user to put 
low weight on distance c1asses which the model should ignore 

nc 

L w(Sh) tr[ (r*(Sh) - r(SJk) )2]. (26.22) 
k=l 



180 Multivariate Geostatistics 

The steps of this weighted least squares algorithm are analogous to the algorithm 
without weights. 

COMMENT 26.4 The heart of Goulard's algorithm is built on the following result 
about eigenvalues (see RAO [254], p63). 

Let A be asymmetrie N x N matrix. The Euc1idean norm of A is 

IIAII 

and its eigenvalue deeomposition 
N 

A = LApqpq; 
p=l 

N N 

LLlaijl2 
i=l j=l 

with QQT = I. 

We shall assume that the eigenvalues Ap are in deereasing order. 

(26.23) 

(26.24) 

We look for asymmetrie N x N matrix B of rank k < N whieh best approximates 
a given matrix ALe. 

inf IIA - BII· 
B 

(26.25) 

Multiplying a matrix byan orthogonal matrix does not modify its length (measured 
with the Euc1idean norm), so we have 

IIA - BI1 2 = II QT AQ - QTBQ 11 2 

'--v---' 
C 

IIA - ClI 2 

N N 

L L(Ap 6pq - Cpq )2, 
p=l q=l 

(26.26) 

where 6pq is one for p= q and zero otherwise. The best ehoiee for C is obviously a 
diagonal matrix as 

N N N 

L(Ap - Cpp )2 + LL (cpq? 
p=l p=l q=l p=l 

'---v---' 
ptq 

(26.27) 

The smallest diagonal matrix C of rank k is the one for whieh the diagonal ele
ments cpp are equal to the eigenvalues Ap for p ::::: k and zero for p > k 

N 

L(Ap - Cpp )2 > (26.28) 
p=l 

This means that 

(26.29) 

where N is the diagonal matrix of eigenvalues of A in whieh the last k-N (lowest) 
eigenvalues have been set to zero. 

The best rank -k approximation of A is B = Q N Q T. 
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Statistical Micro-scale Small scale Large scale 
correlation correlation correlation correlation 

(0--10 m) (10--130 m) (130--2300 m) 
Cu-Pb -.08 0.0 -.04 -.36 
Cu-Zn .42 .57 .31 .42 
Pb-Zn .35 .23 .46 .11 

Table 26.1: Correlations of Brilon geochemical variables. 

The need for an analysis of the coregionalization 

We can use c1assical principal component analysis to define the values of factors at 
sampie locations and then krige the factors over the whole region to make maps. What 
would be the benefit of a spatial multivariate analysis based on the linear model of 
coregionalization and the corresponding multivariate nested variogram? 

To answer this question we restriet the discussion to a second order stationary con
text, to make sure that the variance-covariance matrix V, on which c1assical principal 
component analysis is based, exists from the point of view of the model. 

Ifwe let the lag h go to infinity in a second order stationary context with structures 
gu (h) having unit sills, we notice that the multivariate variogram model is equal to the 
variance-covariance matrix for large h 

r(h) --t V for h --t 00. (26.30) 

In this setting the variance-covariance matrix is simply a sum of coregionalization 
matrices 

(26.31) 

Relation (26.31) teaches us that when the variables are not intrinsica11y correlated, 
it is necessary to analyze separately each coregionalization matrix B u • The variance
covariance matrix V is a mixture of different correlation structures stemming from a11 
scales covered by the sampling grid and this amalgamate is likely to be meaningless 
from the point of view of the linear model of coregionalization. 

Furthermore, it should be noted that coregionalization matrices B u can be obtained 
under any type of stationarity hypothesis, while the variance-covariance matrix V is 
only meaningful with data fitting into a framework of second-order stationarity. 

EXAMPLE 26.5 A multivariate nested variogram has been titted to the direct and 
cross variograms of the three elements copper, lead and zinc sampled in a forest near 
the town of Brilon, Germany (as described in [340, 338]). 
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Regionalized corre1ation eoefticients 

(26.32) 

have been eomputed for eaeh variable pair at three eharaeteristie spatial seales and are 
listed on Table 26.1 together with the c1assieal eorrelation coefticient 

(26.33) 

The three eharaeteristie seales were detined on the basis of the nested variogram 
model in the fo11owing way 

micro-scale: the variation below the minimal sampie spaeing of 10m is summa
rized by a nugget-effeet model; 

small scale: the variation at ascale of 10m to 130m is represented by a spherieal 
model of 130m range; 

large scale: the variation above 130m is eaptured by a spherieal model with a 
range of 23km. 

At the miero-seale, the best correlated pair is copper and zine with a regionalized 
eorrelation of .57: the geochemist to whom these flgures were presented thought this 
was normal, beeause when copper has a high value at a sampie point, zine also tends 
to have a high value at the same loeation. 

At the small seale, lead and zine have a eoefticient of .46 whieh is explained by 
the fact that when there are high values of lead at some sampie points, there are high 
values of zine at points nearby within the same zones. 

Finally, at the large seale, we notiee the negative eoefticient of -.36 between copper 
and lead, while at the two other eharaeteristie seales the correlation is (nearly) zero. 
This is due to the fact that when copper is present in a zone, this exc1udes lead and 
viee-versa. 

Naturally this tentative interpretation does not answer a11 questions. Interpretation 
of eorrelation eoefticients is diftieult beeause they do not obey an equivalence relation: 
if A is correlated with Band B with C, this does not imply that A is eorrelated with C. 

At least we ean draw one eonc1usion from the analysis of this table of eoefticients: 
the set of three variables is c1early not intrinsiea11y eorrelated and eorrelation strongly 
depends on spatial seale. The varianee-eovarianee matrix does not deseribe we11 the 
relations between the variables. Multiple linear regression would be a bad idea and 
eokriging based on the multivariate nested variogram the alternative to go for in a 
regression problem. 



27 Case Study: Ebro Estuary 

The present chapter illustrates the application of cokriging combining in unique neigh
borhood heterotopic data from two different sources in the Ebro river estuary (Spain): 
on the one hand a sounder measuring conductivity, on the other water sampies an
alyzed for chlorophyll and salinity. We also discuss the problem of choosing the 
variogram model by showing conditional simulations obtained with models having a 
different behavior at the origin. 

Kriging conductivity 

The Ebro is the second largest river of Spain. We shall use data collected on the 5th 
October 1999 by the Polytechnic Universities of Barcelona and Valencia. The mea
surements were performed between l1am and 6pm, navigating upstream estuary. De
tails on the campaign and on the interpretation of the data are given in [304, 117,303]. 
We shall use these data only for demonstrative purpose, to discuss some problems in 
the application of kriging, cokriging and conditional simulations. 

Conductivity was measured employing a multiparametric sounding Hydrolab Sur
veyor III with the aim of locating the freshwater-seawater interface. The measure
ments were performed at five locations along the river, sampling vertically with a 10 
centimeter spacing. This resulted in a total of 185 conductivity values. A plot of 
the five profiles is shown on Figure 27.1 using symbols proportional to the value of 
conductivity. Conductivity expresses the salinity of the water. The transition zone be
tween freshwater and seawater is easily identified between 3 and 4 meter depth. The 
abscissa indicates the distance from the mouth of the Ebro river in kilometers. 

The river bed displayed on Figure 27.1 is actually based on bathymetric measure
ments stemming from a previous campaign in the month of July 1999. We can assurne 
that the bottom did not experiment great changes, but obviously, if there are different 
river discharges, the water levels (and as a consequence the depths) will be different. 
We made a fast computation of these differences using the following approach: the av
erage discharge during the July campaign was 129 m3/s while it amounted to 184 m3/s 
in the October campaign (measured at astation upstream in the city of Tortosa). For 
this difference of river discharge, the water level is evaluated as about 20 cm higher 
on average and the bathymetry was corrected accordingly. 

We will consider the problem of interpolating by kriging the conductivity profiles. 
Experimental variograms were computed between and within the profiles, using 60 
lags of lOcm in the vertical and 100m in the horizontal. They are shown on Fig-
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Figure 27.1: The 185 Hydrolab Surveyor III sample locations are plotted with symbols 
proportional to measured conductivity. 

ure 27.2. In the horizontal direction (with a tolerance of ± 45 degrees) the variogram 
is denoted D1, while in the vertical it is denoted D2. Note the difference in scale in 
horizontal (kilometers) and vertical (meters) directions. 

Considering that we know only weH the variogram structure in the vertical direc
tion we can do nothing better than to adopt the same model in the horizontal using 
a geometrical anisotropy. The main axes of the anisotropy ellipse are taken parallel 
to the horizontal and the vertical. The cubic model (M2) fitted in the vertical with a 
range of 7.5m was adjusted to the horizontal with a range of 17km. A nugget-effect 
of 2 (mS/cm)2 was added to reflect measurement uncertainty and the sill of the cubic 
model is 1150 (mS/cm?, about three times the variance which is represented as a hor
izontal dotted line on Figure 27.2. The smooth parabolic behavior at the origin of the 
cubic model may be interpreted as reflecting the averaging over a non-point support 
by the physical measurement device. 

An interpolation grid of 137 x 75 nodes with 100m x lOem ceIls was defined, 
starting from an origin at (-12.9krn, -6.8m). This interpolation grid and a neighbor
hood including aH data (unique neighborhood) will be used in aIl examples. 

The ordinary kriging of conductivity using the cubic model and filtering the nugget 
effect is shown on Figure 27.3. The map represents weIl the two phases, freshwater 
and seawater, suggested by the data on Figure 27.1. This picture of the spatial distri
bution of chlorophyll relies heavily on the geometric anisotropy built into the geosta
tistical model, which emphasizes the horizontal dependence between the profiles. 
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Figure 27.2: Experimental variogram of conductivity in two directions (DI: horizontal, 
D2: vertical). Model variogram in both directions (MI, M2). The abscissa should be 
read as kilometers for the horizontal and as meters for the vertical. 

Cokriging of chlorophyll 

The Hydrolab device has been used to obtain quickly an indication about the depth of 
the freshwaterlseawater interface. Water sampies were obtained using a new device 
called SWIS (Salt Wedge Interface System) developed jointly by the Polytecnic Uni
versities of Barcelona and Valencia. It consists of six tubes connected to a vacuum 
system that can be operated from the surface. Spacing the tubes at lOcm from each 
other, the roughly half a meter wide interface can be sampled with up to six sam pies in 
one go. Additional sampies (at zero, 1.5,3 and 4.5 meter depth) were taken, leading 
to a total of 47 sampies for the five measurement points along the Ebro river. The 
number of locations where both water sampies and Hydrolab sampies are available is 
3l. 

On Figure 27.4 the water sampie locations are plotted using symbols proportional 
to the value of chlorophyll. At the same locations salinity measurements are available. 
The scatter plot of salinity against chlorophyll is shown on Figure 27.5. Nine water 
sampies located in the freshwater are plotted as stars, while the sampies in the salt 
wedge are represented with crosses. While the relationship within both media can be 
assumed linear, this is not the case when considering all data. As cokriging requires 
a linear relationship between the variable of interest and the auxiliary variables, the 
logarithm (basis 10) was taken for both salinity and conductivity. 

Direct and cross variograms were computed for the three variables and were fitted 
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Figure 27.3: Map of conductivity obtained by ordinary kriging, filtering the nugget 
effect component. 

using a nugget effect and a cubic model with a geometrie anisotropy, taking a max
imal of 17km along the horizontal and a minimal range of 7.Sm in the vertical. The 
fitting was done using an improved version of the algorithm of Goulard & Voltz [127], 
running 200 iterations, restraining the fitting to distances less than 3km in the horizon
tal and 3m in the vertical, and taking weights proportional to the number of pairs in 
each direction, divided also by the average distances. The set of fitted direct and cross 
variograms is shown on Figure 27.6. The variogram of conductivity is fitted with a 
more generous nugget effect and a lower sill than it was by hand on Figure 27.2. The 
cross variograms are displayed together with the correlation hulls computed from the 
corresponding direct variograms. 

The cokriging of chlorophyll taking logarithms of salinity and conductivity as aux
iliary variables is displayed on Figure 27.7. The nugget effect, viewed as measurement 
error, was filtered. The use of conductivity as an auxiliary variable perrnits to extrap
olate chlorophyll, quite successfully, at depths greater than where it was measured. 

Extrapolation of chlorophyll in greater depth than where water sampies are avail
able depends much on how the model is forrnulated. Three different cokrigings using 
a nugget effect plus cubic model with ranges as defined above were experimented: 

A the ordinary cokriging of chlorophyll with (untransforrned) salinity and conduc
tivity; 

B the ordinary cokriging of chlorophyll with logarithms of salinity and conductiv
ity (reference case described in detail above); 

C the universal cokriging of chlorophyll with logarithms of salinity and conduc
tivity, adding a linear drift in the vertical direction, to take account explicitly of 
the vertical non stationarity. 
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Figure 27.4: The 47 water sample locations are plotted with symbols proportional to 
chlorophyll. 

The three cokrigings essentially differ in the extrapolation behavior below a depth 
of 5m. The scatter diagrams of cokrigings A and C against Bare plotted on Fig
ure 27.8. The cokriging A (i.e. without taking logarithms, and thus neglecting the non 
linear relation with the auxiliary variables) grossly extrapolates at depths below 5m. 
This generates the c10ud of values for which cokriging A differs much from cokriging 
B. The cokriging C, adding a linear drift in the vertical, also yields higher values than 
case B in areas at greater depth, far from the water sam pIe profiles. 

Conditional simulation of chlorophyll 

The variogram models of chlorophyll and salinity shown on Figure 27.6 cannot de
cendy be qualified as "fitting" the corresponding experimental variograms, because 
the latter exhibit litde structure due to the small amount of data. So let us discuss this 
problem using the 47 chlorophyll data. 

The experimental variogram of chlorophyll is shown on Figure 27.9 together with 
two models differing in their behavior at the origin: 

• a geometrically anisotropic cubic model with a sill of 60 (mglm3)2, with ranges 
17krn in the horizontal and 7.5m in the vertical. 

• a geometrically anisotropic exponentiaL model with a sill of 30 (mglm3)2, with 
ranges 17krn in the horizontal and 7.5m in the vertical. 

A grid set at an origin (-12.9krn,-5.2m) with 137 x 59 nodes using 100m x lOcm 
cells was defined for interpolation and stochastic simulation. 
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Figure 27.5: Scatter diagram between salinity and chlorophyll for the 47 water sampIes. 
Nine sampIes located in freshwater are plotted as stars, the others as crosses. 

Ordinary kriging was perforrned with variogram models and is shown on Fig
ure 27.10 (the greytone scale used is the same as on Figure 27.7). The upper map 
represents the kriging with the cubic model while the lower map was obtained with 
the exponential model. We note that the cubic model with such a large range as com
pared to the dimensions of the domain has an extrapolative behavior, generating a 
maximum at -3km which is not supported by data. 

Tbe exponential model is more conservative: the maxima and minima in the map 
obviously refer to the highest and lowest values in the chlorophyll data. However this 
has also another implication: the kriged value will be more alike the kriged mean of 
the domain the more we move away from data locations. 

It is well known that kriging does not represent an attempt to reconstruct the re
gionalized variable (had we the ability to measure it everywhere in the domain). The 
regionalized variable in the geostatistical model is but one realization of the random 
function. Kriging can be thought of as the average of many realizations that coincide 
with the data at sampie locations. Thus if we are interested in how the regionalized 
variable at hand might look like, we have to employ conditional simulation instead of 
kriging. 

We use the turning bands method [203, 51, 178] for simulating realizations of the 
random function. We shall assurne that the 47 chlorophyll values can be considered 
as a few samples of a realization of a Gaussian random function as the histogram does 
not indicate an asymmetrie distribution. One thousand bands were used for simulation 
- with only 100 bands some bands could be seen with naked eye on the simulated 
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Figure 27.6: Matrix of direct and cross variograms in two directions. The cross vari
ograms additionally represent the hulls of corrclation in both directions. 
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Figure 27.7: Map of chlorophyll obtained by ordinary cokriging, filtering the nugget 
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Figure 27.8: Scatter diagrams of chlorophyll cokriging experiments A and C against 
B. The axes are in the same scale and the first bisector is drawn. 

map of the exponential model [112]. The latter is no surprise when the range of the 
variogram is larger than the size of the domain. The simulation with a thousand bands 
is no big deal on modem computers. 

Two conditional simulations are shown on Figure 27.11 (the greytone scale used 
is the same as on Figure 27.7). The upper map illustrates the fact that a surface cor
responding to the realization of a random function with a cubic variogram is smooth, 
which is related to the parabolic shape of this model at the origin. The lower map 
shows that the realization of a random function with an exponential variogram has a 
rough aspect, due to the non differentiability of that model at the origin. 

In applications the smoothness/roughness of the regionalized variable, when it is 
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Figure 27.9: The variogram of chlorophyll has been "fit ted" with two models having 
a different behavior at the origin. 

known, can be an important criterion for selecting the type of variogram model to be 
employed when the data, like in the present case, are not sufficient to characterize 
properly the behavior at the origin of the variogram. 

From a practical point of view it has to be decided whether reality looks rather like 
the upper or the lower picture ofFigure 27.11. Ifthe biologist is not able to tell, we can 
still rely on the shape of the vertical experimental variogram as seen on Figure 27.9: a 
linear behavior near the origin, as it is expressed by the exponential variogram model 
on the right graph, seems to be the more adequate interpretation. Choosing this option 
would imply that the bottom simulation on Figure 27.11 would be the one retained for 
further use. 

The Ebro estuary case study is continued in Section 37 on p297 where the output 
from a numerical model is used as external drift for further improvement of kriging 
and conditional simulations. 
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28 Coregionalization Analysis 

The geostatistieal analysis of multivariate spatial data ean be subdivided into two steps 

- the analysis of the eoregionalization of a set of variables leading to the definition 
of a linear model of eoregionalization; 

- the eokriging of specifie faetors at eharaeteristic seales. 

These teehniques have originally been ealled factorial kriging analysis (from the 
Freneh analyse krigeante [214]). They allow to isolate and to display sources ofvari
ation aeting at different spatial seales with a different eorrelation strueture. 

Regionalized principal component analysis 

Prineipal eomponent analysis ean be applied to coregionalization matrices, whieh are 
the varianee-covarianee matrices deseribing the eorrelation strueture of a set of vari
ables at eharaeteristic spatial seales. 

Regionalized prineipal eomponent analysis eonsists in deeomposing eaeh matrix 
B u into eigenvalues and eigenveetors 

B u = Au A: with Au = Qu Fu and Qu Q: = I. (28.1) 

The matriees Au speeify the eoeffieients of the linear model of eoregionalization. 
The transformation coefficients 

(28.2) 

are the eovarianees between the original variables Zi (x) and the faetors YJ' (x). They 
ean be used to plot the position of the variables on eorrelation eircles for eaeh ehar
aeteristic spatial seale of interest. These plots are helpful to eompare the eorrelation 
strueture of the variables at the different spatial seales. 

The eorrelation circle plots ean be used to identify intrinsie eorrelation: if the plots 
show the same patterns of correlation, this means that the eigenveetors of the eoregion
alization matrices are similar and the matriees only differ by their eigenvalues. Thus 
the matriees B u are all proportional to a matrix B, the eoregionalization matrix of the 
intrinsic eorrelation model. 

Applieations of regionalized principal eomponent analysis (or faetor analysis) 
have been perforrned in the fields of geoehemieal exploration [337, 129,307, 29, 344, 
20], petroleum exploration [365], soil scienee [346, 126, 119, 127, 256], hydrogeol
ogy [278, 123], plant eeology [227], volcanie tremor intensity time series [151], to 
mention just a few. 
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Generalizing the analysis 

The analysis ean be generalized by ehoosing eigenveetors whieh are orthogonal with 
respeet to a symmetrie matrix M u representing ametrie 

(28.3) 

A possibility is to use the metrie 

(28.4) 
v=o 

whieh is equivalent to the varianee-eovarianee matrix V in a seeond order stationary 
model. This metrie generates a eontrast between the global variation and the variation 
at a specifie seale deseribed by a eoregionalization matrix B u . 

COMMENT 28.1 This type of metric has also been used frequently to decompose the 
matrix r*(fh) of experimental direct and cross variograms for the first distance dass 
5)1 by numerous authors [350, 279, 320, 25, 20, 88], 100king for the eigenvectors of 

r* (5)1) 

V 
(28.5) 

This noise rem oval procedure has been compared to coregiona1ization analysis in 
[346] and [343]. The basic princip1e is illustrated with a simple model which shows 
why the approach can be successfu1 in removing micro-sca1e variation. 

Suppose we have a mu1tivariate nested covariance function model 

C(h) = Bo Pnug(h) + BI Psph(h) , (28.6) 

where Pnug(h) is a nugget-effect and Psph(h) a spherica1 corre1ation function. The 
variance-covariance matrix in this model is 

(28.7) 

Let 5)1 be the distance dass grouping vectors h greater than zero and shorter than 
the range of the spherical corre1ation function. Then 

C(h) = BI Psph(h) 

and the eigenvectors of 

are equiva1ent to those of 

C(5)I) 

V 

for hE 5)1 (28.8) 

(28.9) 

(28.10) 

what reminds the setting of discriminant analysis. Corresponding factors reduce to a 
minimum the influence of noise (micro-sca1e variation), as reflected in the matrix B o. 
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Regionalized canonical and redundancy analysis 

When the set of variables is split into two groups any eoregionalization matrix ean be 
partitioned into 

(28.11) 

where B~1 , B~2 are the within group eoregionalization matrices while B~2 represents 
the between groups coregionalization. 

The formalism of eanonical analysis ean be applied to that specifie spatial seale of 
index u 

B ll = All(All)T u u u , (28.12) 

where 

Qll Mll fAll u u V 11.U- (28.13) 

and 

(28.14) 

with non-singular matriees B~2. 
The results of eanonical analysis are often deeeptive. Prineipal eomponent analysis 

with instrumental variables (RAo [253]), whieh has been reinvented in psyehometrics 
under the name of redundancy analysis (an aeeount is given in [325]), ean be a more 
appropriate alternative. It is based on the metrie 

M ll = B 12 B 21 
u u u· (28.15) 

GOOVAERTS [120] has first applied a regionalized redundaney analysis to examine 
the links between soil properties and ehemieal variables from banana leaves. See also 
[183] for an applieation to remote sensing and geoehemieal ground data, whieh turned 
out to be intrinsically eorrelated, so that redundaney analysis was based on V instead 
ofBu . 

Cokriging regionalized factors 

The linear model of coregionalization defines faetors at partieular spatial seales. We 
wish to estimate a regionalized faetor from data in a loeal neighborhood around eaeh 
estimation loeation xo. 

The estimator of a speeifie faetor Y,;OO(x) at a loeation Xo is a weighted average of 
data from variables in the neighborhood with unknown weights w~ 

N ni 

y;,:uo(xo) = L L w~ Zi(X,,). (28.16) 
i=1 ,,=1 
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In the framework of local second-order stationarity, in which local means mi for 
the neighborhood around Xo are meaningful, an unbiased estimator is buHt for the 
factor (of zero mean, by construction) by using weights summing up to zero for each 
variable 

N n 

L: m; L: w~ = o. 
i=l 0=1 
~ 

o 

(28.17) 

The effect of the constraints on the weights is to filter out the local means of the 
variables Zi(X). 

The estimation variance a~ is 

(28.18) 
N N n n N n 

1 + L: L: L: L: w~ w~ Gij(x,,-xß) - 2 L: L: w~ a~opo Puo(x,,-xo). 
i=l j=l 0=1 ß=l i=l ,,=1 

The minimal estimation variance is realized by the cokriging system 

N nj 

L: L: w~ Gij (x,,-xß) - /-Li = I a~ouo Puo (X,,-Xo) I for i = 1, ... N; 
j=l ß=l 

Cl! = 1, ... n (28.19) 
ni 

L:w~ = 0 for i = 1, ... N. 
ß=l 

We find in the right hand side of this system the transformation coefficients a~ouo 
of the factor of interest. These coefficients are multiplied by values of the spatial 
correlation function Puo (h) which describes the correlation at the scale of interest. 

The factor cokriging is used to estimate a regionalized factor at the nodes of a 
regular grid which serves to draw a map. 

Regionalized multivariate analysis 

Cokriging a factor is more cumbersome and computationally more intensive than krig
ing it. Coregionalization analysis is more lengthy than a traditional analysis which 
ignores spatial scale. When is all this effort necessary and worthwhile? When can it 
be avoided? The answer is based on the notion of intrinsic correlation. 

The steps of both a classical or a regionalized multivariate analysis (MVA) for 
spatial data are summarized on Figure 28.1. The key question to investigate is whether 
the correlation between variables is dependent on spatial scale. Three ways to test for 
scale-dependent correlation have been described 

1. codispersion coefficients cCij(h) can be computed and plotted: if they are not 
constant for each variable pair, the correlation structure of the variable set is 
affected by spatial scale; 
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I Variables Zi(X) I 

{. 

11 
Intrinsic Correlation ? 

11 

No 
Fit r(h) = L Bu gu(h) I --+ 

{. Yes {. 

MVAonV I MVAonBu I 

{. {. 

Transform into Y 1 Cokrige ~:uo from Zi(Xa) 

{. {. 

I Krige y~ from Ypo(xa) I --+ I Map of Factor I 

Figure 28.1: Classical multivariate analysis followed by a kriging of the factors (on the 
left) versus regionalized multivariate analysis (on the right). 

2. cross variograms between principal components of the variables can be com
puted: if they are not zero far each principal component pair at any lag h (like 
on Figure 22.1 on page 156), the c1assical principal components are meaningless 
because the variance-covariance matrix of the variable set is merely a mixture 
of different variance-covariance structures at various spatial scales; 

3. plots of correlation circ1es in a regionalized principal component analysis can be 
examined: if the patterns of association between the variables are not identical 
for the coregionalization matrices, the intrinsic correlation model is not appro
priate for this data set. With only few variables it is possible to look directly at 
a table of regionalized correlation coefficients instead of the regionalized prin
cipal components (like in Example 26.5 on page 181). 

If the data appears to be intrinsically correlated, we can apply any c1assical method 
of multivariate analysis, ca1culate the direct variograms of the factars, krige them on 
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a grid and represent them as maps. But if correlation is affected by spatial scale, we 
need to fit a linear model of coregionalization and to cokrige the factors, as suggested 
by the right hand path of Figure 28.1. 

It is interesting and important to note that the sarnples need not to be without 
autocorrelation (as implied by the usual hypothesis of sampie independence) to allow 
for a c1assical multivariate analysis to be performed independently of the geostatistical 
treatment. For this purpose the multivariate regionalized data need only to comply 
with the intrinsic correlation model, which factorizes the multivariate correlation and 
the autocorrelation. 



29 Kriging a Complex Variable 

The question of how to model and krige a complex variable has been analyzed by 
LAJAUNIE & BEJAOUI [170] and GRZEBYK [130]. The covariance structure can 
be approached in two ways: either by modeling the real and imaginary parts of the 
complex covariance or by modeling the coregionalization of the real and complex 
parts of the random function. This opens several possibilities for (co-)kriging the 
complex random function. 

Coding directional data as a complex variable 

Complex random functions can be useful to model directional data in two spatial di
mensions. For analyzing and mapping a wind field we code the direction 8(x) and 
the intensity R( x) of wind at each location of the field as a complex variable 

Z(x) = R(x) e i8(x). (29.1) 

An alternate representation of Z (x) can be set up using the coordinates of the 
complex plane, 

Z(x) = U(x) + i V(x), (29.2) 

as shown on Figure 29.1. 
We shall use this second representation of the random function. 

Complex covariance function 

We assume that Z (x), U (x) and V (x) are second order stationary and centered. The 
covariance function of Z (x) is defined as 

C(h) = E[ Z(x+h) Z(x) 1 = CRe(h) + i C1ffi(h), (29.3) 

where Z(x) = U(x) - i V(x) is the complex conjugate. 
Let Cuu(h), Cvv(h) and Cuv(h) be the (real) direct and cross covariance func

tions of U(x) and V(x). Then the complex covariance C(h) can be expressed as 

C(h) Cuu(h) + Cvv(h) - i Cuv(h) + i Cvu(h) 

Cuu(h) + Cvv(h) + i (Cuv( -h) - Cuv(h)). (29.4) 
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iV 

z 

u 

Figure 29.1: Coding a wind vector in the complex plane. 

The real part of the eomplex eovarianee, 

CRe(h) = Cuu(h) + Cvv(h) , (29.5) 

is even and a eovarianee funetion, while the imaginary part, 

C1m(h) = Cuv(-h) - Cuv(h), (29.6) 

is odd and not a eovarianee function. 

Complex kriging 

The linear combination for estimating, on the basis of a eomplex eovariance (CC), the 
eentered variable Z(x) at a loeation Xo from data at loeations x a with weights wa E C 
is 

n 

Z~dxo) = L wa Z(xa ). (29.7) 
a==l 

In terms of the real and imaginary parts of Z(x) it ean be written as 

n 

Z~dxo) = L [(w!e U(xa) - w~m V(xa)) 
a==l 

(29.8) 

EXERCISE 29.1 Prom the variance of the linear combination 

n n n 

var( L W a Z(xa )) L L W a wß C(xa-xß) (29.9) 
a=l a=l ß=l 
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the following inequality can be deduced 

n n 

L L (w!ew:e+w~mw1m) CRe(x,,-Xß) 
,,=1 ß=l 

n n 

+ L L (w!eW1m - w:eW~m) C1m(X,,-Xß) > O. (29.10) 
a=l ß=l 

Show that this inequality implies that CRe(h) is a positive definite function. 

EXERCISE 29.2 On the basis of the linear combination (1 + i) Z(O) + (1 - i) Z(h) 
show that 

(29.11) 

Complex kriging consists in computing the complex weights which are solution of 
the simple kriging 

n 

L wß C(x,,-xß) 
ß=l 

fora = 1, ... ,no (29.12) 

This is equivalent to the following system, in which the real and imaginary parts 
of the weights have been separated 

n 

L (w:ecRe(xa-xß) - w1mclm(xa-xß)) 
ß=l 

n 
(29.13) 

L (w~Clm(x,,_xß) + w1mCRe (x,,-xß)) 
ß=l 

In matrix notation we have 

(29.14) 

To implement complex kriging it is necessary to model CRe(h) and C1m(h) in 
a consistent way such that C(h) is a complex covariance function. This question is 
postponed to the end of this chapter. 

Cokriging of the real and imaginary parts 

An alternative approach consists in relying on the coregionalization of the real and 
imaginary parts to make the simple cokriging of Z(x) with the estimator 

(29.15) 
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where 

n 

(29.16) 
<>=1 

n 

V~K(XO) = L (J-t~ U(xa ) + l/~ V(xa )) . (29.17) 
<>=1 

EXERCISE 29.3 Show that the estimation variance of ZCK(XO) is equal to the sum of 
the estimation variances of the real and imaginary parts. 

As the estimators for U(x) and V(x) both have the same structure, we sha11 only 
treat the cokriging of the former. 

EXERCISE 29.4 Compute the estimation variance var(U(xo) - UCK(xo)). 

For cokriging U(x) from the real and imaginary parts of the data Z(xa ) we have 
the system 

( Cuu C uv ) (JL ~ ) = 
C vu Cvv v ( cuu ) 

. Cuv ' 
(29.18) 

where the blocks C uu and Cvv are the left hand sides of the simple kriging systems 
of U(x) and V(x), respectively. The block Cuv= C~u contains the cross covariance 
values between a11 data locations. The vector cuu is the right hand side of the simple 
kriging of U(x) while the vector cuv groups the cross covariances between all data 
points and the estimation location. 

Complex kriging and cokriging versus aseparate kriging 

Considering either the data on the complex variable or the corresponding real and 
imaginary parts, we have three ways of building an estimate of the complex quantity 

- the estimator of complex kriging: 

wT Z (29.19) 

uT w Re _ yT w1m + i (uT w 1m + yT w Re ) , (29.20) 

- the estimator based on the coregionalization of U (x) and V (x): 

(29.21) 

- an estimator obtained by kriging separately U(x) and V(x): 

Z~s(xo) = u T Wk + i yT w~. (29.22) 
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Let us examine the case of intrinsic correlation of U(x) and V(x). The imaginary 
part of the complex covariance is zero and we have the complex kriging system 

o ) (wRe ) = ( cRe ) C Re w 1m 0' 
(29.23) 

and more specifically, 

For the cokriging system of U(x) with intrinsic correlation we write 

( auu R auv R) (IL ~ ) = ( auu r o) . 
avuR avvR v auvro 

(29.25) 

For both estimators the solution is equivalent to the separate simple kriging of the 
real and imaginary parts and we find 

(29.26) 

while all other weights are zero. 
The case of an even cross covariance function is remarkable. With an even cross 

covariance Cuv(h)= Cvu(h) the imaginary part of the complex covariance is zero 
and the imaginary weights of complex kriging vanish. The estimator reduces to 

(29.27) 

The difference between the kriging variance a~c of complex kriging and the kriging 
variance a~s of the separate simple kriging is non negative, so that complex kriging 
provides a poorer solution than the one obtained by aseparate kriging of U(x) and 
V (x) when the cross covariance function is even. 

EXERCISE 29.5 Show that with an even cross covariance function the difference of 
the kriging variances is equal to 

(W~_WRe)T C uu (w~-wRe) 

+ (w~_wRe)T Cvv (w~-wRe), (29.28) 

and thus non negative. 

When the cross covariance function Cuv(h) is not even, complex kriging rep
resents an intermediate solution, from the point of view of precision, between the 
separate kriging and the cokriging of the real and imaginary parts. 
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Complex covariance function modeling 

Knowing the real part of a continuous complex covariance function, its imaginary part 
can be defined (as a consequence of the Radon-Nikodym theorem) by the relation 

(29.29) 

where cI> is a complex distribution whose Fourier transform is areal odd function <p 
with values in the interval [-1, 1]. The dass of clm (h) corresponding to a given real 
continuous covariance function CRe(h), such that 

is a complex covariance function, are called compatible imaginary parts. 
A simple dass of compatible imaginary parts can be obtained using 

i , 
cI> = 2" (11 - 11), 

where 11 is areal bounded measure such that Irp(u)1 < 1 with 

<p(u) = - f sin(uT T) lI(dT). 

The compatible imaginary parts are given by 

(29.30) 

(29.31) 

(29.32) 

(29.33) 

COMMENT 29.6 The imaginary parts from this dass can be viewed as a randomiza
tion 

(29.34) 

where the expectation is taken over the random variable T. 

The dass can be extended (see [130]) by considering real covariance functions 
CC(h) compatible with a given CRe(h) in the sense that the positive measures p,c S 
p,Re. Then 

(29.35) 

is a compatible imaginary part, provided that the real bounded measure 11 satisfies 
I f sin(uT T) lI(dT) I < 1. 

Some properties of the functions CC(h) are 

- the difference CRe(h) -CC(h) is a positive definite function; 
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- when the integral range (see [220], [177]) of CRe(h) exists 

(29.36) 

- CC(h) is more regular at the origin than CRe(h); 

- if CC(h) and CRe(h) have spectral densities then 

for all w. (29.37) 

In practice, a finite sum based on translations Tk is used 

1 K 

C1ffi(h) = "2 LPk (CC(h - Tk) - CC(h + Tk)) (29.38) 
k=l 

with weights Pk 2 0 and L Pk ::::: 1. Instead of only one function CC (h), K functions 
Ck(h) can be introduced which represent a family of covariance functions compatible 
with a given CRe(h). The translations Tk and the models Ck(h) are chosen after 
inspection of the graphs of the imaginary part of the experimental covariance function. 
The coefficients Pk are fitted by least squares. 

LAJAUNIE & BEJAOUI [170] provide a few fitting and complex kriging examples 
using directional data from simulated ocean waves. 



30 Bilinear Coregionalization Model 

The linear model of coregionalization of real variables implies even cross covariance 
functions and it was thus formulated with variograms in the framework of intrinsic 
stationarity. The use of cross variograms however exc1udes deferred correlations 
(due to delay effects or phase shifts). A more general model was set up by GRZE

BYK [130] [131] whieh allows for non even cross covariance functions. 

Complex linear model of coregionalization 

The complex analogue to the intrinsic correlation model is 

C(h) = B p(h) = E X(h) - F K(h) + i (E K(h) + F X(h)), (30.1) 

where p(h) = X(h) + i K(h) is a scalar complex covariance function and B is a 
Hermitian positive semi-definite matrix with 

B = E+iF. (30.2) 

The matrix E is a symmetrie positive semi-definite matrix while F is antisymmet
rie. 

An underlying linear model with complex coefficients a~ and second-order sta
tionary uncorrelated complex random functions Yp(x) can be written as 

N 

Zj(x) = La~ Yp(x), (30.3) 
p=l 

where 

cov(Yp(x+h), Yp(x)) E[ Yp(x+h) Yp(x) 1 = p(h), 

cov(Yp(x+h), Yq(x)) 0 for p -=I- q. (30.4) 

The alternate representation is based on jointly stationary components Up(x) and 
v;, (x) 

N N 

Zj(x) L(c~ Up(x) - d~ v;,(x)) + i L(c~ v;, (x) + d~ Up(x)), (30.5) 
p=l p=l 
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where the coregionalization of Up(x) and Vp(x) is identical for all values of the index 
p and has the form 

cov(Up(x+h), Up(x)) 

cov(Up(x+h), Vp(x)) 

while allother covariances are zero. 

Cuu(h) = Cvv(h), 

Cuv(h), (30.6) 

The coefficients of the factor decomposition and the elements of the complex core
gionalization matrix B are related by 

N 

bij = La~at, (30.7) 
p=l 

whereas the elements of E and F are linked to the linear model by 

N N 

eij = L(c~q,+tf"d~), !;j = L(q, tf" - c~ d~). (30.8) 
p=l p=l 

Naturally we can consider a nested complex multivariate covariance function 
model of the type 

s 
C(h) = LBuPu(h) (30.9) 

u=o 

with the underlying complex linear model of coregionalization 

S N 

LLa~Y,!'(x) (30.10) 
u=O p=l 

and the orthogonality relations 

cov(Y,!'(x+h), Y,?(x)) = 0 for p =I- q or u =I- v, (30.11) 

where u and v are the indices of different characteristic spatial or time scales. 

Bilinear model of coregionalization 

The real linear model of coregionalization is in particular not adequate for multivariate 
time series analysis, where delay effects or phase shifts are common and cannot be 
included in a model with even cross covariances. A model for real random functions 
with non even real cross covariance functions can be derived from the complex linear 
model of coregionalization (as defined in the previous section) by taking its real part. 
In the case of only one spatial scale (the nested case is analog) we can drop the index 
u and have 

N N 

L c~ Up(x) - L ~ Vp(x). (30.12) 
p=l p=l 
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This model, as it is the sum of two linear models, has received the name of bilinear 
model 0/ coregionalization. We get a handy model by imposing the following relations 
between covariance function terms 

Cuu(h) 

Cuv(-h) 

1 
Cvv(h) = 2 x(h), 

1 
-Cuv(h) = 2 K(h). 

(30.13) 

(30.14) 

This implies that the cross covariance function Cuv(h) is odd. The cross covari
anee function between two real variables is 

cov(Z;(x+h), Zj(x)) 
N N 

L c~ cf, Cuu(h) + L c4 d~ Cvv(h) 
p=l p=l 

N N 

- L q; c4 Cvu(h) - L c~ d~ Cuv(h) 
p=l p=l 

The multivariate covariance function model is real, 

1 
C(h) = 2 (E X(h) - F K(h) ), (30.16) 

with matrices E and F stemming from the Hermitian positive semi-definite matrix B, 

B = E+iF, (30.17) 

and p(h) = X(h) + i K(h) being a complex covariance function. 
GRZEBYK [130] has studied different algorithms which combine the approach 

used for fitting the multivariate nested variogram with a fit of K(h) when X(h) is 
given. He provides an example of the fit of a covariance model with non even cross 
covariance functions to the coregionalization of data from three remote sensing chan
nels of a Landsat satellite. 

The bilinear coregionalization model is especially weH adapted for analyzing mul
tiple or multivariate time series, where delay effects at various time scales are com
mon and often are easily interpretable when causal relations between the variables are 
known. 
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31 Thresholds and Selectivity Curves 

We introduce the notion of threshold which leads to selecting subsets of values of a 
randorn function that can be surnrnarized using different types of selectivity curves. 
Incidentally this illustrates the geornetrical rneaning of two rneasures of dispersion: 
the variance and the selectivity. This presentation is based on MATHERON [213][218] 
and LANTUEJOUL [175][176]. The context is rnining econornics, but a parallel to 
analog concerns in the evaluation of time series from environmental monitoring is 
drawn at the end of the chapter. 

Threshold and proportion 

There are a nurnber of problems in which we aim at estimating in a spatial or temporal 
domain what overall proportion of a given quantity is above a fixed threshold. 

The traditional example in geostatistics is mining. For what proportion of a deposit 
is the grade of a given ore above an economic threshold below which mining is not 
profitable? This will determine the decision whether or not to open amine. 

A sirnilar example is found in soil pollution: what proportion of a site is above a 
tolerable pollution level? That will have an impact on its further use and on the cost 
for eventually cleaning it. 

There is often not a unique threshold: the price of the metal to be extracted from a 
mine fluctuates daily and as extraction has to be planned much before the first ounce 
is on the rnarket, several thresholds have to be considered. Similarly apolluted soil 
has to be judged on the basis of different thresholds depending upon its future use. A 
kindergarten will require a lower pollution level and more care in the rehabilitation of 
the terrain than what is tolerated when the objective is building a new industrial plant. 

Tonnage, recovered quantity, investment and profit 

For a mining deposit the concentration of a precious metal is denoted Z, which is a 
positive variable. We call tonnage T(z) the proportion of the deposit (considered of 
unit volume) for which the grade is above a given threshold z. The value z represents 
in this chapter a fixed value, the so-called cut-off, i.e. the grade above which it is 
economically interesting to remove a volume from the deposit and to let it undergo 
chernical and rnechanical processing for extracting the metal. 
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Let F(z) be the distribution function of the grades, then the tonnage T(z) is ex
pressed by the integral 

+00 

T(z) = ! dF(u)=E(lz~z]' (31.1) 

z 

where 1 Z~z is the indicator function testing whether Z is above a given threshold z. 
As F(z) is an increasing function, T(z) is a decreasing function. The tonnage is 

actually complementary to the distribution function 

T(z) = P(Z?: z) = 1 - F(z). (31.2) 

The quantity Q(z) of meta! recovered above a cut-off grade z is given by the 
integral 

+00 

Q(z) = ! udF(u) = E(Z lz~z]' (31.3) 

z 

The function Q(z) is decreasing. The value of Q(z) for z= 0 is the mean because 
the cut-off grade is a positive variable 

+00 

Q(O) = ! udF(u) = E(Z] = m. (31.4) 

o 

The recovered quantity of meta! can be written 

+00 

Q(z) = [-u T(u) [00 + ! T(u) du 
z 

+00 

zT(z) + ! T(u) du 
z 

C(z) + B(z). (31.5) 

The recovered quantity is thus split into two terms, which can be interpreted in the 
following way in mining economics (assuming that the cut-off grade is well adjusted 
to the economical context) 

- the share C(z) of meta! which reflects the investment, i.e. the part of the re
covered meta! that will serve to refund the investment necessary to mine and 
process the ore, 

- the amount B (z) of metal, which represents conventional profit, i.e. the left
over of metal once the quantity necessary for refunding the investment has been 
subtracted. 
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T(z) 

C(z) 

o z 

Figure 31.1: The function T (z) of the extracted tonnage as a function of cut-off 
grade. The shaded surface under T(z) represents the quantity of metal Q(z) which is 
composed of the conventional investment C (z) and the conventional profit B (z). 

These different quantities are all present on the plot of the function T (z) as shown 
on Figure 31.1. The conventional investment (assuming that the cut-off adequately 
reflects the economic situation) is a rectangular surface 

C(z) = zT(z), (31.6) 

while the conventional profit 

+00 

B(z) I T(u) du (31.7) 

is the surface under T (z) on the right of the cut -off z. 
The function B ( z) is convex and decreasing. The integral of B (z) for z= 0 is 

+00 ! B(u) du = ~ (m2 + 0-2 ), (31.8) 

o 

where m is the mean and (T2 is the variance of Z. If we subtract from the surface under 
B(z) the area corresponding to half the square m2 we obtain a surface element whose 
value is half of the variance, as shown on Figure 31.2. 

Note that Q(z) divided by T(z) yields the average of the values above cut-off 

m(z) = E[Z I Z::::z]=Q(z)jT(z). (31.9) 
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mk----------------------------------------------------

o m z 

Figure 31.2: Function B (z) of the conventional profit. The shaded surface under B (z) 
represents half of the variance 0'2. 

Selectivity 

The selectivity S of a distribution F is defined as 

S = ~ E[ JZ - Z'J], (31.10) 

where Z and Z' are two independent random variables with the same distribution F. 
There is an analogy with the following formula for computing the variance under the 
same conditions 

0'2 = ~ E[ (Z - z'f 1 2 . (31.11) 

The selectivity and the variance are both measures of dispersion, but the selectivity 
is more robust than the variance. 

The selectivity divided by the mean is known in econometrics as the Gini coeffi
cient (see e.g. [157], [4]) 

G .. S 
Inl =

m 
(31.12) 

and represents an alternative to the coefficient 0/ variation 0'/ m. As S ~ m the Gini 
coefficient is lower than one 

o ~ Gini ~ 1. (31.13) 

In geostatistics the Gini coefficient is usually called the selectivity, index. 
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The following inequality between the selectivity and the standard deviation can be 
shown 

(5 

S< rq. 
- v3 

(31.14) 

Equality is obtained for the uniform distribution. This provides us with a unifor
mity coejJicient 

U= J3s , 
(5 

where 0 ::::: U ::::: 1. 
For a Gaussian distribution with a standard deviation (5 the selectivity is 

(5 

SGauss = ViF' 

which yields a value near to the limit case of the uniform distribution. 

(31.15) 

(31.16) 

For a lognormally distributed variable Y = m exp((5 Z - (52/2) we have the se
lectivity 

(31.17) 

where G(z) is the standardized Gaussian distribution function. 

Recovered quantity as a f1lllction of tonnage 

The function Q(z) ofmetal with respect to cut-off can be written 

+00 Z +00 

Q(z) = zT(z) + J T(u) du = J T(z) du + ! T(u) du. (31.18) 

z 0 z 

As Q(z) is decreasing, it can be expressed as the integral of the minimum of the 
two values T(z) and T(u) evaluated over all grades u 

+00 

Q(z) = ! min( T(z), T(u)) du. (31.19) 

o 

The function Q(T) of metal depending on the tonnage T is defined as 

+00 

Q(T) (= J min( T, T(u)) du, (31.20) 

o 

for 0::::: T ::::: 1. 
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m r--------------=====~~~ 

Q(T) 

o T 

Figure 31.3: The function Q(T) of the quantity of metal with respect to tonnage. The 
shaded surface between Q(T) and the diagonal line corresponds to half the value of 
the selectivity S. 

The Q(T) curve is equivalent to the Lorenz diagram, which is used in economics 
to represent the concentration of incomes (see e.g. [4]). In the economical context 
the proportion T of income receivers with an income greater than z would be plotted 
against the proportion Q of total income held by these income receivers. In economics, 
however, Q is not plotted against T but against the distribution function F, so that the 
Lorenz diagram is convex, while the Q(T) curve is concave. 

A typical Q(T) curve is shown on Figure 31.3. The area between the curve Q(T) 
and the diagonal mT (between the origin and the point Q(1) = m) is worth half of 
the selectivity S. 

It can indeed be shown that 

1 +00 

J ( Q(T) - mT) dT 
1 J T (z) (1 - T (z)) dz -
2 

0 0 

+00 1 J B(z) dF(z). (31.21) -
2 

0 

It can be seen that the selectivity is zero when the distribution F is eoncentrated at 
one point (a Dirae measure). Finally we have 

1 +00+00 J ( Q(T) - mT) dT ~ J J (u - z) dF(u) dF(z) (31.22) 

o o z 
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Z(I) 

z 

T(z) 

Figure 31.4: Environmental time series Z(t) with a cut-off value z: the shaded part 
corresponds to the quantity of nuisance Q(z) = B(z) + C(z) during the time T(z) 
when the tolerance level is trespassed. 

+00 +00 

~ ! ! lu - zl dF(u) dF(z) = ~ S (31.23) 
o 0 

by definition (31.10). 

Time series in environment al monitoring 

When studying time series in environmental monitoring, interest is generally focused 
on the trespassing periods of a threshold above which a chemical, a dust concentra
tion or a noise level is thought to be dangerous to health. Such thresholds fixed by 
environmental regulations are the analog of cut-off grades in mining. 

In mining economics the level of profitability is subject to permanent change and 
it is appropriate to generate graphs with the values of the economic parameters for a 
whole range of values. Similarly in the environmental sciences the tolerance levels 
also evolve as the consciousness of dangers to health rises and it is suitable not to 
generate computations only for a particular set of thresholds. 

When time series are evaluated we are interested in knowing during how long in 
total a tolerance level has been trespassed as shown on Figure 31.4. The tonnage 
T (z) of mining becomes the fraction of time during which the level was trespassed. 
On a corresponding T(z) curve like on Figure 31.1 the fraction of the total time can 
be read during which Z (t) is above the cut-off for any tolerance level z of interest. 

A curve of Q(z) (not shown) represents the total quantity of nuisance for the frac
tion of time when Z(t) is above the tolerance level z. The curve Q(T) as on Fig
ure 31.3 represents the quantity of nuisance as a function of the fraction of time T, 
which itself depends on the tolerance level. 
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The selectivity S is an important measure of dispersion to compare distributions 
with a same mean 

either as an indicator of change in the distribution of a variable for different 
supports on the same spatial or temporal domain (the me an does not change 
when changing support); 

or as a coefficient to rank the distributions of different sets of measurements 
with a similar mean. 

It is not dear what meaning the curve B(z) can have in environmental problems, 
except for the fact that its graph contains a geometrie representation of (half of) the 
variance 0'2 when plotted together with the line joining the value of the mean m on 
both the abscissa and the ordinate, as suggested on Figure 31.2. 



32 Lognormal Estimation 

"Considerons la variable lognormale, 
qui est tout simplement l'exponentielle d'une variable gaussienne. 

Dans le long terme, ses proprietes sont dominees par le fait que ses moments 
(moyenne, dispersion, etc.) 

sont tous finis et s'obtiennent par des formules facHes; 
donc la variable lognormale parait benigne. 

Dans le court ou le moyen terme, 
tout se gäte, et son comportement parait sauvage. 

On en traite comme si elle ne sentait pas le soufre, 
mais c'est un merveilleux (et dangereux) cameleon."l 

B MANDELBROT 

To motivate the quest for non-linear estimators this chapter starts with a description 
of the effect of having a limited number of sampies when estimating the value of a 
variable: the intensity of this (lack ot) information effect will be different depend
ing on the type of estimator used. The lognormal model is then presented and a few 
non-linear estimators like lognormal simple and ordinary kriging for point or block 
support are discussed. The presentation is mainly based on MATHERON [204] and 
RIVOIRARD [268]. Applications to acoustic data illustrate the performance of lognor
mal estimation without hiding its weaknesses. 

Information effect and quality of estimators 

When operating a selection with a threshold, e.g. a cut-off in mining or an environ
mental regulation limit, we are faced with an information effect if this selection is 
performed on estimated values. When increasing the information, i.e. the number of 
sampies, the dispersion of the estimated values is generally reduced and the effect of 
not having exhaustive information will have a smaller impact. Another aspect of this 
question is that for a fixed number of sam pIes the strength of the information effect 
will depend on the type of estimator used. Let us analyze the information effect in 

l"Let us consider the lognormal variable, which is simply the exponential of a Gaussian variable. 
In the long ron its properties are dominated by the fact that its moments (mean, dispersion, etc.) are all 
finite et can be obtained by easy formulas; thus the lognormal variable seems harmless. On the short or 
the medium ron however everything is spoilt and its behavior looks wild. One deals with it as if it were 
not sulfurous, yet it is a marvelous (but dangerous) chameleon." 
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Figure 32.1: Information effect. 

detail for the case of a Gaussian variable Z, assuming that the bivariate distribution of 
Z and an estimator Z* is bi-Gaussian. 

On Figure 32.1 we have drawn schematically the c10ud of actual and estimated 
values using a shaded ellipse. This plot is based on the idea that after estimation 
and selection we have access to the actual target value and are able to check how the 
estimator has performed (a situation not always given in practice). 

The diagonalline Z*= Z on Figure 32.1 is the first bisector and represents the 
points for which the estimated value is identical with the actual value. If the major 
axis of the ellipse is superposed to the first bisector, the estimator is without bias. 
Otherwise three cases can occur: 

• over-estimation: the major axis of the ellipse is parallel to the first bisector and 
above it. The estimator yields on average a larger value than the actual one and 
thus tends to over-estimate. 

• under-estimation: the major axis of the ellipse is parallel to the first bisector and 
below it.The estimated values are on average lower than the actual ones and we 
have systematic under-estimation. 

• over- and under-estimation: if the major axis of the ellipse crosses the first bi
sector, the estimator is either over-estimating the large actual values and under
estimating the low ones - or the reverse is happening. 

Now suppose we have an estimator without bias so that the major axis of the 
ellipse coincides with the first bisector as drawn on Figure 32.1. When we c1assify 
estimated values according to a reference value we are splitting the c10ud following 
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the horizontalline labeled "zc". Let us convene that we select (keep) points that are 
above the reference value and reject (discard) points that are below it. Whether the 
selected points were actually worth keeping is described by the vertical line labeled 
"zc". 

In this manner the cloud has been divided into the following four areas: 

- area 1: the points of the cloud are estimated above Zc and correspond to actual val
ues above the reference value: the points, se1ected on the basis of their estimated 
value, are actually worth keeping. 

- area 2: the points are estimated below Zc and turn out to be below the reference 
value: rejected points are actually worth discarding. 

- area I: in this region we commit the first type of misclassification: points are se
lected which should have been rejected as they are actually below the threshold. 

- area 11: in that region occurs the second type of error which consists in rejecting 
points which should have been kept. 

The shape and the dispersion of the cloud around the first bisector will depend 
on the type of estimator used. The information effect can be reduced when using 
an estimator that is weIl adapted to the specificities of the regionalized variable from 
which data is collected. This is a motivation for the study of non-linear estimators 
in general and in this chapter we start this review by examining a few lognormal 
estimators. 

Logarithmic Gaussian model 

The lognormal model is based on the assumption that the naturallogarithm of a posi
tive random variable Z follows a Gaussian distribution. More specificaIly, if L(x) is 
a stationary Gaussian random function, 

Z(x) = exp(L(x)) (32.1) 

is said to be lognormal- a contraction of logarithmie and normal. 
The lognormal model has been fashionable in the early times of geostatisties 

[162, 79, 301, 195]. At that time, in the fifties of the twentieth century, computers 
were not available and data sets were rather small in size. So, for exarnple in the case 
of mining sampIes, the distribution generally appeared left-skew and the logarithmie 
transformation seemed an adequate way of bringing the data back to a form that could 
be assumed a realization of a Gaussian random function. MATHERON [195] lists sev
eral other examples of data taking positive values and with an asymmetrie distribution 
having a tail stretched towards the high values, like the distribution of incomes in a 
country, the surface of emerged land as a function of altitude, the granulometry of 
materials (sand, gravels), to name but a few. 
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Let L(x) be of mean v, variance a2 and covariance function a(h). The standard
ized version of L(x) is Y(x) with autocorrelation function p(h), so that 

L(x) 
a(h) 

v+aY(x) 
a 2 p(h). 

The random function Y(x) is related to the lognormal Z(x) by 

Z(x) = exp(v+aY(x)) =eeuY(x). 

Moments of the lognormal variable 

For the computation of the moments the following forrnula is useful: 

E[ exp(a Y) 1 = exp (~2) for Y rv N(O, 1), 

(32.2) 

(32.3) 

(32.4) 

(32.5) 

where a is a constant and N(O, 1) is the Gaussian distribution of mean zero and unit 
variance. 

Applying this formula we can express the mean m of Z(x) in terms ofthe moments 
of L(x), 

m E[ Z(x) 1 = E[ exp(v + a Y(x)) 1 

eil E[ exp(a Y(x)) 1 = eil exp (~2) 
e lI+u2/2. 

We can rewrite Z(x) as 

obtaining the new relation 

(32.6) 

(32.7) 

(32.8) 

(32.9) 

(32.10) 

where, interestingly, the transformation includes a corrective term a 2 /2 depending on 
the variance of L(x). The lognormal model can now be expressed in a way showing 
nicely the multiplicative structure with respect to the mean, 

Z(x) = m exp (R(x)) (32.11) 

with the logarithmicresidual R(x) = 10g(Z(x)) -log(m). 
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With the relation (32.10) we compute the second moment of Z(x), 

The variance of Z (x) is thus 

m2E[ exp (2 ((TY(x) _ ~2))] 
m2E[exp(2(TY(x))] exp(-(T2) 

m2 exp ( 4 ;2) exp( _(T2) 

m2 exp((T2). 

var(Z(x)) = m 2 (e u2 -1). 
In analogous way the covariance function of Z(x) comes as 

C(h) = m 2 (eu(h) -1). 

(32.12) 

(32.13) 

(32.14) 

(32.15) 

(32.16) 

(32.17) 

EXERCISE 32.1 [Distribution ofiron grade] A mining company is operating on sev
eral iron ore deposits in which the grade is modeled as a stationary random function 
Z (x). The model for the grade is expressed in terms of a standard normal variable Y 
with an anamorphosis Z(x) = 'P(Y(x)) where 'P is termed the anamorphosis function. 
The following analytic model is used to describe the anamorphosis: 

Z(x) = a-be-cY(x) with Y(x) '" N(O, 1). (32.18) 

The constant a is known to be 70% Fe because the iron ore cannot be above this 
grade for geochemical reasons. The two constants b and c are positive (b, c > 0) and 
their value is adjusted to each deposit. 

All questions in this exercise refer to one speciflc deposit of the mining company 
which has been explored using several drill holes. The histogram obtained trom the 
sampies taken in the drill hole cores has permitted to flt the parameters speciflcally for 
that deposit, i.e. b = 7.8 and c = 0.5 (while a = 70). 

1. Show that the mean of Z(x) can be written as 

E[Z(x)] = a_be c2 / 2 (32.19) 

and that the variance of Z(x) is: 

var(Z(x)) (32.20) 

Hint: use formula (32.5). 

2. Compute the value of the mean and the variance of the iran ore grade in this 
deposit. 

3. Plot the anamorphosis function for a point support for values ofY(x) between 
-3 and 3, e.g. for Y(x) = -3,-2,-1,0,1,2,3. 
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4. Using a table ofthe standard normal distribution (or a statistical software), com
pute and plot the cumulative histogram of the iron grades in the deposit. 

EXERCISE 32.2 [Reserves: point support] For the iron ore deposit of Exercise 32.1 
we calculate reserves on point support. According to the economic situation there is 
interest in computing global recoverable reserves for a cut-off grade of Zc = 58.0%. 
Let us for now consider an estimation on point support. In that case the tonnage at 
cut-off Zc is deflned as T(zc) = E[ 1 Z(x)~zc] and the quantity of metal as Q(zc) = 
E[ Z(x) lz(x)~zc]' 

1. Show that the tonnage can be computed as 

(32.21) 

where G(y) = P(Y(x) < y) is the standard normal distribution. 

2. What proportion of the deposit is above the cut-off grade Zc = 58.0%? 

3. Show that the quantity of metal is computed as 

(32.22) 

where Zc = <p(Yc). 

Rillt: use the formula E[ e H(x) 1 Y(x)~yc ] = e)..2 /2 (1 - G(yc - >.)). 

4. What is the quantity of metal corresponding to the cut-off grade of Zc = 58%? 

5. What is the average grade m(zc) of the se1ected ore for Zc = 58%? 

Lognormal simple kriging 

A set of n + 1 sampIes Y(xa ) (a= 0, ... , n) of a Gaussian random function Y(x) 
follows a multivariate normal distribution. The conditional expectation 

E[ Y(xo) I Y(xa ); a= 1, ... , n] 

is equivalent in this context to the simple kriging, 

Y*(Xo) 

where the W~K are solution of 

n 

L W~K p(xa-xß) 
ß=l 

n 

Lw~KY(Xa), 
0=1 

for a= 1, ... ,n, 

(32.23) 

(32.24) 

(32.25) 
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with the kriging variance a§K= 1 - 2:::=1 w~K p(xa-xo). 
The conditional variable follows a normal distribution with parameters given by 

the simple kriging, 

[Y(xo) I Y(xa ) = y(xa ); Q:= 1, ... , n] rv N (y*(xo), a§K) , (32.26) 

so that the conditional expectation can be rewritten, 

E[Y(xo) I Y(xa ) = y(xa ), Q:= 1, ... , n] = E[ y*(xo) + aSK U] (32.27) 

with U rv N(O, 1). 
The lognormal simple kriging consists in computing the conditional expectation 

of Z(x), 

z*(xo) E[ Z(xo) I Z(x,,) = z(x,,), Q:= 1, ... , n] 
E[ Z(xo) I Y(xa ) = y(xa ), Q:= 1, ... ,n] 

(32.28) 

(32.29) 

because conditioning z(x,,) is the same as conditioning on y(x,,) as the latter is simply 
a nonlinear transform of the former. 

Applying relation (32.10) and formula (32.5) we get, 

z*(xo) E[me<7Y(xo)-<72 /2 I Y(xa ) = y(x,,), Q:= 1, ... ,n] (32.30) 

mE [ exp (a (y*(xo) + aSK U) _ ~2) ] (32.31) 

( a2 ) (a2 a2 ) m exp a y*(xo) -:2 exp T . (32.32) 

To express the simple kriging estimator in terms of L(x) we just need to rescale, 

Y*(xo) = L*(xo) - l/, 

a 

where alSK is the simple kriging variance associated to L*(xo). 

(32.33) 

Finally the lognormal simple kriging estimator is written in a more compact form, 

Z*(xo) = exp ( L*(xo) + al;K) 

or, in terms of the logarithmic residual, 

Z*(xo) = m exp ( R*(xo) + a~;K ) 

with a~SK = a2 a§K as can be seen from Eq. (32.32). 

(32.34) 

(32.35) 

We take note that the lognormal estimate Z*(xo) is not simply an exponential 
transform ofthe simple kriging estimate L*(xo), but that it also inc1udes a corrective 
term based on the kriging variance. This makes the lognormal kriging very sensitive 
to a parameter which depends on the choice of the type of variogram model and on its 
fit to the experimental variogram. 
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Proportional effect 

In their classical book about the lognormal distribution AITCHISON & BROWN [4] 
define the law of proportional effect as characteristic for a variable subject to a process 
of change in which the change at each step is proportional to the value of the process. 
In other words the variation of a positive quantity z obeying the law of proportional 
effect is more adequatel y described by dz / z than by the onl y differential element dz. 
The addition of a large number of roughly independent effects dz / z will generate a 
variable y with a normal distribution: 

j dZ 
y = ~ = logz (32.36) 

and thus z is lognormal. 
By analogy the term "proportional effect" is used when the variance or the vari

ogram of z are proportional to the square of its mean. This phenomenon is often an 
argument to postulate the lognormality of z. 

The dispersion of grades of small volumes making up a large volume were de
scribed in two apparently contradictory ways in the eady fifties of the twentieth cen
tury in the mining literature. On one hand DE WUS [79] proposed a model in which 
the dispersion variance a random function defined on a support v within a larger vol
urne V is proportional to a function 1 of the ratio of the two volumes, 

(32.37) 

On the other hand KRIGE [162] demonstrated in a general manner that a dispersion 
variance can be expressed as the difference of the values of a function F applied to 
two supports, 

u2 (v I V) = F(V) - F(v). (32.38) 

MATHERON [195] showed that the de Wijsian model implies a similarity principle 
which is independent of the form of the statistical distribution. He argued that solely 
a logarithmic function could satisfy both the equations (32.37) and (32.38), such that 
F = O! I, yielding 

Permanence of lognormality 

V 
O! log-. 

v 
(32.39) 

Coming back to the question of lognormality, a permanence 01 lognormality has 
been reported in various applications over a limited range of spatial or time supports: 
e.g. KRIGE [162] for gold sampies, LARSEN [179] for air pollution concentrations, 
MALCHAIRE & PIETTE [186] for noise exposure measurements, WILD et al. [357] 
for airbome concentrations in exposure data from industrial hygiene, to mention but 
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a few [345]. A self-similarity principle has been set up on the basis of this empirical 
evidence that led various authors to propose formulas of the type of (32.39). It should 
be noted that the de Wijsian formula (32.39) does not imply a lognormal distribution, 
but only a de Wijsian variogram, 

')'(h) = Cl! log Ihl with 0 < Cl! ::::: 1, Ihl > o. (32.40) 

MATHERON [195, 196] stated that the permanence of lognormality observed in 
applications is explained by the lack of independence of the data. Ironically he termed 
the recurrent rediscovery of this phenomenon in different scientific and technical dis
ciplines as a "serpent de mer" (sort of Loch Ness monster). In [204] (P38) an example 
is given that shows that for sma11 integration times (with respect to the scaling coeffi
cient of the autocorrelation model) the permanence is verified, while this deteriorates 
for larger supports. 

The model of permanence of the lognormal distribution assurnes that the random 
function on bloc support has the same form as the point variable in Eq. (32.4), that is 

Zv(x) = exp(Lv(x)) = exp(vv + (Jv Y(x)). (32.41) 

It is based on an affine change of support model for L(x), 

Lv(x) - Vv L(x) - v N( ) 
-'-----'---- = '" 0, 1 

(Jv (J (32.42) 

in which v and Vv take different values. 
The block lognormal model is viewed as a transform of the standard normal distri

bution which differs from the point distribution by the coefficients Vv and (Jv. Actually 
there is merely one new coefficient to be inferred because in the relation, 

Zv = mexP((JvY(x)-~;), (32.43) 

the mean m is the same as in relation (32.10) due to (10.17). 
In analogy with the affine change of support model (presented in Chapter 10 on 

p71) we may view the standard deviation of the block variable as the product of the 
point variance with a change of support coefficient r, with the notable difference how
ever that the two Gaussian variables Land Lv do not have the same mean. In this way 
the relation (32.43) can be rewritten 

(32.44) 

In practice the change of support coefficient r can be computed as 

log(l + var(Zv(x))jm2 ) 
r = 

log(l + var(Z(x))jm2 ) 
(32.45) 

with var(Z(x)) computed from formula (32.16) while var(Zv(x)) is the average value 
Ci (v, v) of the covariance function (32.17) over the support v. 
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In the permanence of lognormality model the expectation of the block lognormal 
variable conditional upon the data is equivalent to lognormal block simple kriging, 

E[ Zv(xo) I Z(x",) = z(x",), a= 1, ... , n] 

exp (L~(xo) + al;SK) 
(32.46) 

(32.47) 

EXERCISE 32.3 [Reserves: block support] The calculations in Exercise 32.2 have 
neglected the fact that the deposit is going to be mined using units v of size 10 x 20 
m 2 • It is thus necessary to take into account this change of support. For constructing 
the change of support model we assume that the grades of the blocks v follow the same 
type of distribution as the sampIes, i.e. we assume a permanence of the distribution 
and have thus, like in relation (32.18), 

(32.48) 

where Y is a standard normal random variable. The value of the constant av is known 
to be av = a = 70% because the grade of a block cannot be larger than 70% like for 
point support. 

To define the distribution of the block grades is is still necessary to compute the 
value of the two unknowns bv and CV ' For this we use the fact that E[ Zv]= E[ Z(x) ] 
and compute the block variance as var(Zv) = var(Z(x)) - f(v, v) where f(v, v) is 
the average over v of the variogram r (h) of Z (x). 

1. The average variogram over v has been computed as f(v, v) = 8.8. Use the 
results obtained in Exercise 32.1 to show that bv = 8.1 and Cv = 0.4. 

2. What value Yc of the standard normal varia te Y corresponds to the cut-off Zc 

when the latter is applied to the block grades Zv? Compute the values of the 
recovered ore Tv(zc), the metal quantityQv(zc) and the average grade m v (zc) = 

Qv(zc)/Tv(zc) for the deposit? 

3. Compare and comment the results obtained for block and point support. 

EXERCISE 32.4 [Conditional expectation] There is an area ofthe iron deposit of Ex
ercise 32.1 (see Figure 32.2) where the exploration drill holes are sufficiently numer
ous to allow for an individual estimation of small blocs. We wish to estimate the 
probability that the grade of a small bloc V3 is above the cut-off Zc = 58% using the 
conditional expectation. The change-of-support is taken into account assuming the 
position of each sampIe is random inside the block that contains it (this is actually the 
discrete Gaussian model that will be presented in Chapter 36). The estimation of the 
bloc V3 is performed with three data values Zl = 49.2, Z2 = 65.1 and Z3 = 56.8. 

The conditional expectation is built on the multi-Gaussian hypothesis of the vector 

(32.49) 



Lognormal Estimation 231 
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Figure 32.2: Three blocks with three sampIe values .. 

where each data value Yn is inside a corresponding bloc Vn. The coefficient of 
change-of-support is r = corr(Yn , Y(vn )) independently of the position of the sam
pIe in its block. The covariance function between blocs is Pv(h) = p( VX , VX+h) = 
cov (Y (vx ), Y (VX+h)), where h is the distance between the centers of disjoint blocks. 
The covariance function between points and blocks is cov (Y(~), Y(Vx+h)) = r Pv(h) 
denoting by ~ the random position of the point. The covariance between two distinct 
points is cov (Y(~), Y(~ + h))) = r 2 Pv(h) while the covariance of a point with itself 
is one. 

1. What are the Gaussian values Y1 , Y2 , Y3 that correspond to the three data values 
Zl,Z2,Z3? 

2. Express the estimator YKS (V3) as a function of the three data values Yn and of 
the mean E[ Y (vn ) ]. Show that the kriging system can be written: 

(32.50) 

3. The structural analysis has shown that the correlation function is composed of a 
nugget effect and an exponential model, 

Pv(h) = .3nug(h) +.7 exp(-lhl/8), (32.51) 

that it is isotropic, and that the change-of-support coefficient is r = 0.8. Solve 
the kriging system. What are the values obtained for YKS (V3) and the corre
sponding simple kriging variance a§K ? 

4. What is the distribution ofthe conditional variable (Y(V3) I Y1, Y2 , Y3) ? 

5. Compute the value of the conditional expectation [1 Z(v3)::O:zcl~E. 
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Figure 32.3: Stable model fitting of the variogram of a noise exposure time series (lower 
graph) and corresponding power variogram model for the logarithm of the series (upper 
graph). 
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Stable variogram model 

A convenient lognormal framework to study regionalized variables are the locally 
stationary lognormal random functions [204]. We are not going to develop this topic 
here, but simply mention the variogram model that naturally arises in this context, 

f(h) = b (1 - exp( -,(h))) with b> 0, (32.52) 

where f(h) is the variograrn of the lognormal random function Z(x) (which has a 
sill b) and ,(h) is the variogram of L(x) (which may be unbounded). This is an 
application of Schoenberg's theorem given on p55. 

A particular model of this kind is the stable variogram, 

(32.53) 

with a > 0, b > ° and 0 < a < 2. 

EXAMPLE 32.5 (NOISE EXPOSURE SERIES [341]) The Figure 32.3 shows thejoint 
modeling of the variograms of a noise exposure time series and of its logarithm by a 
stable theoretical variogram as detined in Eq. (32.53). 

Lognormal point and block ordinary kriging 

We only give the simplest form of ordinary point kriging in the context of a lognormal 
model and present a corresponding block ordinary kriging. 

A lognormal point estimator can be obtained by an ordinary kriging of L(x) and 
it results in the estimator 

(32.54) 

where Ltodxo) is the ordinary kriging of L(x) and alOK is the corresponding kriging 
variance, as defined in Eqs. (11.1), (11.7) and (11.8) in Chapter 11. 

A trivial lognormal block ordinary kriging estimator is obtained by discretizing 
each block into a substantial number of grid points, performing a lognormal point 
ordinary kriging at each of the grid points and averaging the result. 

EXAMPLE 32.6 (NOISE EXPOSURE [342]) Industrial noise data have been collected 
using personal sound exposure meters carried by two operators in different factories. 
Tbe noise exposure series are shown on Figure 32.4. The upper series, regleur2, is 
from a worker taking care of different machines and walking in the workshop to check 
the tuning of the machines. Tbe other series, cyc1041, is from an operator of several 
machines in the same room; breaks took place from 9hlO to 9h30 and trom Ilh40 
to llh50. Whereas both variograms (not shown, see (341]) suggest ranges extending 
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Figure 32.4: Two times series, regleur2 and cyclo41 of Imn noise level measurements 
(expressed in decibel). 

over several bours, it bas to be mentioned tbat tbe reg1eur2 variogram exbibits also a 
marked structure at tbe lOmn-scale. 

Tbe bistograms of tbe two series are represented on Figures 32.5 and 32.6. For 
reg1eur2 tbe assumption of lognormality seems satisfaetory witb a fair1y symmetrie 
bistogram in tbe decibe1 sca1e. Tbe same cannot be said about tbe bistograms of tbe 
eyc1041 series. 

Tbe c1assieal estimator of tbe average noise level, termed L.,q, eonsists in eomput
ing tbe aritbmetic mean of tbe sound exposure (which is the additive quantity) and 
eonverting tbe resu1t into tbe decibe1 2 seale [149]. Tbe 10gnormal kriging is applied 
in tbe same way: tbe 8h-shift mean of sound ex pos ure is eomputed by 10gnormal 
block ordinary kriging as deseribed in tbis seetion and the result is then eonverted into 
deeibe1s. 

For eacb of tbe two series, 1000 sets of 36 samp1es were taken at random. Both 
estimators were applied to eaeb set of samp1es and the histograms of the estimated 
values converted into dB are sbown on Figure 32.7. 

For reg1eur2 (upper graphics on Figure 32.7) the standard error of 10gnormaI krig
ing is downsized aImost by half in comparison with the c1assieaI L.,q. Tbe second 
mode at 90 dB on the c1assica1 L.,q histogram, due to an extreme vaIue (in terms of 

2"In sound we use a logarithmic scale of intensities since the sensitivity of the ear is roughly loga
rithmic." FEYNMAN et al. [100], p47-4. 
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70 80 90 100 

MIN= 65.5 DECIBEL MAX= 103 

regleur2, mean: 0.49, std-dev.: 1.22 

<0 

1-
eS 
CD 
eS .. 
eS 
<'J 
eS 
0 
eS 

0 5 10 15 20 

MIN=O 
SOUND EXPOSURE 

MAX= 20.1 

Figure 32.5: Histogram of regleur2 noise time series expressed in terms of both a 
variable directly proportional to the sound exposure and the logarithm of that variable 
in decibel scale. Thc Leq is 86.9 dB. 

sound ex pos ure), is not present on the histogram of the lognormal Leq, because the 
latter estimator is robust to extreme values in the right tail. 

For cycl041 (lower graphics on Figure 32.7) we see that both histograms are fairly 
symmetrical (with astronger standard error for the lognormal estimator). The striking 
feature is the bias for the lognormal estimator. The mean of the classical Leq estimates 
using 36 sampIes is equal to the Leq of the 348 values of the series. In comparison, the 
histogram of the lognormal Leq estimates is shifted to the right by one dB (the mean 
by .7 dB, the minimum by 1 dB and the maximum by 1.3 dB). 

Lognormal estimators are thus only superior in certain situations and cannot be 
recommended for general use in the statistical treatment of industrial noise data. Geo
statistics provides other non-linear estimators which adapt better to an arbitrary distri
bution of values as we will see in subsequent chapters. However, in present day hear
ing conservation programs, often less than 30 sampIes are used in industry to compute 
8h-shift Leq values, so that it is difficult to try assessing the shape of an underlying 
distribution. This situation is likely to change in a near future with the availability of 
cheap and light personal sound exposure meters, like the one used for measuring the 
regleur2 and cycl041 series. 

The conclusion is that the lognormal kriging can easily give poor results soon as 
the 10gnormaI assumption is inadequate. 
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Figure 32.6: Histogram of cyclo41 expressed in terms of both a variable directly pro
portional to the sound exposure and the logarithm of that variable in decibel scale. 
The Leq is 90.9 dB. 
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regleur2, mean Leq: 86.7 dB, std-error: 1.47 dB 
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Figure 32.7: Comparison for regleur2 and cyclo41 Imn data of the classical and the 
lognormally kriged Leq estimator for 1000 sets of 36 randomly selected sampies. 



33 Gaussian Anamorphosis 

with Hermite Polynomials 

The lognormal model proposes a rather narrow framework for non-linear geostatistical 
estimation. We examine a more flexible approach which uses Hermite polynomials for 
transforming a variable with a skewed distribution into a Gaussian variable. 

In the presentation of Hermite polynomials we follow dosely LANTUEJOUL [176] 
where more mathematical detail can be found. We introduce the fitting of the Gaussian 
anamorphosis in the way of LAJAUNIE [168]. 

Gaussian anamorphosis 

Attempting to generalize the approach of the lognormal model Z = m exp( 0- Y -
0-2 /2) we look for a more flexible model, 

Z = cp(Y) (33.1) 

in which cp is a dass of non-linear functions that establishes a bijective correspon
dence between a random variable Z and a Gaussian random variable Y. The dass of 
functions for which the problem will be solved is the square-integrable functions. 

When applied to a stationary random function, the transformation cp will produce a 
random function with a Gaussian marginal. However higher-dimensional distributions 
will not necessarily be multi-Gaussian. In practice an anamorphosis cp will be fitted to 
the data and a check will have to be made whether at least the bivariate distribution of 
the Gaussian transform is bi-Gaussian for all spatial distance dasses. 

Let F(z) = P(Z > z) be a probability distribution function and G(y) = P(Y < 
y) be the standard normal distribution. If the inverse of F exists, a bijective transfor
mation function cp can be constructed: 

cp(Y) = F-1o G(Y) (33.2) 

Conversely the function cp-l transforms into a normal variable, 

Y = G-1o F(Z) (33.3) 

so that we have a correspondence between the Gaussian variable and the variable of 
interest Z as long as F is invertible, 

G(y) P(Y < y) = p(cp-l(Z) < y) 

P(G-1o F(Z) < y) = P(Z < F-1 0 G(y)). 
(33.4) 

(33.5) 
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A flexible way of setting up a Gaussian anamorphosis function is by using a de
velopment into Hermite polynomials which are now studied in detail. 

Hermite polynomials 

The basic building block for the Hermite polynomials is the Gaussian density function: 

1 x 2 
g(y) = ~ exp(-~) 

V'iir 2 
(33.6) 

The Hermite polynomials are defined as derivatives of the density function, 

kth derivative of Gaussian density 

Gaussian density 
g(k) (y) 

g(y) 
with k = 0, 1, ... 

(33.7) 

(33.8) 

Setting a = 1/V'iir, b = 1/2 and g(y) = a exp(by), we compute for example 

Ho(Y) g(y) = 1 
g(y) , 
g'(y) g(y) . (-2by) 
-- = =-y 
g(y) g(y) , 
g"(y) (-yg(y))' 2 
--= =y -1 
g(y) g(y) . 

There is a recurrence formula: 

for k ~ O. 

We calculate for example 

-y H1(y) - Ho(Y) = y2 - 1, 

-y H2 (y) - H1(y) = y3 + 3y. 

As Hk(y) = -k Hk- 1(y) the recurrence formula can be written 

for k ~ O. 

(33.9) 

(33.10) 

(33.11) 

(33.12) 

(33.13) 

(33.14) 

(33.15) 

The key property of Hermite polynomials is their orthogonality with respect to the 
Gaussian density: 

100 {k! if k = l, 
-00 Hk(y) Hl(y) g(y) dy = 0 if k # l. (33.16) 
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On some occasions normalized Hermite polynomials are used, 

(33.17) 

so that the orthogonality is written 

(33.18) 

but not all expressions are more compact, so that for now we shall stick with non
normalized polynomials. 

Expanding a function into Hermite polynomials 

Any function cP that is square integrable with respect to the Gaussian density, i.e. 

(33.19) 

can be expanded into Hermite polynomials: 

00 

cp(y) = L ~~ Hk(y), 
k=O 

(33.20) 

where the coefficients CPk are given by, 

CPk = I: cp(y) Hk(y) g(y) dy. (33.21) 

The integral (33.19) has the value: 

(33.22) 

and the integral of the cross-product of two functions cp(y) and 'lj;(y) developed into 
Hermite polynomials is equal to: 

I: cp(y) 'ljJ(y) g(y) 

Probabilistic interpretation 

~ CPk'lj;k 
~ k! . 
k=O 

(33.23) 

We turn to probabilistic questions and examine the mathematical expectation of a 
Gaussian random variable Y, 

E[Y] = I: yg(y)dy (33.24) 
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The orthogonality of the Hermite polynomials in relation (33.16) now comes as, 

{ k! if k = l, 
E[ Hk(Y) Hl(y)] = 0 if k -1= l. (33.25) 

Setting l = 0 we can readily compute the first moment of Hermite polynomials of 
a Gaussian variable, 

The variance is 

{ 0 if k = 0, 
var(Hk(Y)) = k! if k > 0, 

because for k > 0, using relation (33.25), we have 

(33.26) 

(33.27) 

(33.28) 

while var( Ho (Y)) = E[ Ho (Y) Ho (Y)] - 1 = O. The fact that the variance of the 
zero-order polynomial is nil is consistent with the fact that it is deterministic. 

The covariance between two Hermite polynomials is therefore 

cov(Hk(Y), HI(Y)) = {k! if k = ~ > 0, 
o otherwlse. 

(33.29) 

COMMENT 33.1 Hermite polynomials exploit an important fact to be aware of: that 
different powers of a random variable are linearly uncorrelated. For example, a Gaus
sian random variable Y and its square y 2 are uncorre1ated as illustrated with 100 
samples on Figure 33.1. Even though the shape of the scatter plot c1early reveals the 
non-linear deterministic dependence, the correlation coefticient, as a measure of linear 
dependence, indicates a value of only 2%. 

Moments of a function of a Gaussian variable 

A function ep of a Gaussian random variable can be expanded into Hermite polynomi
als, provided its second moment is finite: 

(33.30) 

which is the same as relation (33.19). 
The expansion of ep is, like in (33.20), 

00 

ep(Y) = L ~~ Hk(Y), 
k=O 

(33.31) 

with coefficients epk = E[ ep(Y) Hk(Y)]. 
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Figure 33.1: Scatter plot between 100 independent samples of a standard normal 
variable and their squares. The correlation coefficient between H1(Y) and H2(Y) is 
almost zero (value: 0.02). 

The first moment of cP is equal to the constant CPo, 
00 

E[ cp(Y) 1 = L ~~ E[Hk(Y) 1 = CPo, 
k=O 

as E[ Hk(Y) 1 is only non-zero for k = O. 
The variance is 

var(cp(Y)) 
00 00 

LL ~~ ~l cov(Hk(Y),H1(Y)) 
k=O 1=0 
00 2 

" CPk 
L...J k! 
k=l 

where the term for k = 0 is zero due to Eq. (33.29). 

(33.32) 

(33.33) 

(33.34) 

The covariance between two different square integrable functions cP and 'lj; of a 
Gaussian variable is, 

cov(cp(Y),'lj;(Y)) = EE ~~ ~l cov(Hk(Y),HI(Y)) 
k=O l=O 

(33.35) 
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= ~ 'Pk 'ljJk (33.36) 
L k! 
k=l 

Conditional expectation of a function of a Gaussian variable 

The bi-Gaussian density with correlation coefficient p between two randorn variables 
U and Y can be expanded using Hermite polynornials: 

00 k 

gp(u, y) = L ~! Hk(u), Hk(y) g(u) g(y). (33.37) 
k=O 

In the same way the conditional density is written: 

00 k 

gp(u I y) = L ~! Hk(u), Hk(y) g(u). 
k=O 

(33.38) 

Accepting these results the conditional expectation of a Herrnite polynornial of U 
knowing Y is 

because 

I: Hk(u) gp(U I y) du 

00 t 100 ~ 7s Ht(y) -00 Hk(u) Ht(u) g(u) du 

00 k 

L ~! Hk(y) E[Hk(U) Ht(U)] 
k=O 
l Hk(y). 

(33.39) 

(33.40) 

(33.41) 

(33.42) 

(33.43) 

The conditional expectation of a square-integrable function 'P of U knowing Y is 
finally 

E[ 'P(U) I Y] (33.44) 

EXERCISE 33.2 Show that 

cov (ip(U), 'ljJ(Y)) (33.45) 

using Eq. (33.44). 
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Figure 33.2: Schematic representation of an empirical distribution function. 

Empirical Gaussian anamorphosis 

In practice we construct from n sampies the cumulative histogram, which is an empir
ical distribution function 

(33.46) 

that provides a discrete representation of the distribution F(z)= P(z < Z) ofthe vari
able under study. 

Denoting by Zr<»~ the sampies renumbered by increasing value, 

(33.47) 

we can analyze the behavior of the empirical distribution function. In the case all 
values Zr<»~ are different, the value of Fn(z) is zero for z in the interval] - 00, Z(l)], 
the value is (0: - 1) In in the intervals ]Z (0: - 1), Z (0:)] and it is one in the interval 
]Z(o:), 00[. The empirical distribution function is a step-function, as plotted on Fig
ure 33.2. In case that several values, say k, are equal, the step at that level will not be 
I/n (as for distinct values) but kin. 

In the analogous way we construct an empirical Gaussian anamorphosis, 

1 n 

'Pn(Y) = - L Zr<»~ lYEI", , n 
<>=1 

(33.48) 
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Figure 33.3: Schematic representation of an empirical Gaussian anamorphosis. 

where I a are half-open intervals of the abscissa y defined in terms ofthe inverse of the 
Gaussian distribution, 

for a= 1, ... , n. (33.49) 

In the case of distinct sampie values Z(a) the function 'Pn (y) has the value Z(1) in 
the interval h =J - 00, G-1(1/n)J, the value Zen) in the interval JG-1((n -l)/n), oo[ 
and the value Z(a) for the intervals JG- 1 ((a - l)/n), G- 1(a/n)J. The corresponding 
step-function is drawn on Figure 33.3. In the case k subsequent sampies have the same 
value, the step at that level will go to the highest of the k values. 

The empirical anamorphosis is not invertible. This can be seen by flipping the axes 
on Figure 33.3: to each value Z(a) corresponds an interval I a of y-values whereas the 
Z -values between sampie values have no image. 

Smoothing the empirical anamorphosis 

The empirical anamorphosis is inadequate for further use and we need to look for 
a function with better properties. An interesting option for the Gaussian empirical 
anamorphosis function is to replace it by its development into Hermite polynomials 
and to truncate the development at an appropriate order. This amounts to smoothen 
the step function. 

The empirical Gaussian anamorphosis is represented with an infinite series of Her-
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Figure 33.4: Development using 30 Hermite polynomials fitted to the empirical Gaus
sian anamorphosis of laser measurements. 

mite polynomials 

with coefficients 

00 

L ~~ Hk(y) 
k=O 

f: rpn(Y) Hk(y) g(y) dy 

~ Z(a) /, Hk(y) g(y) dy 

n 

L Z(a) (Hk-1(Ya) g(Ya) - Hk-1(Ya-l) g(Ya-l)) 
a=1 

(33.50) 

(33.51) 

(33.52) 

(33.53) 

A smooth approximation of the empirical Gaussian anamorphosis is obtained by 
truncating the development at a fixed value K. This truncated development is what 
we shall call the Gaussian anamorphosis: 

(33.54) 
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Figure 33.5: Histograms of laser measurements (left) and their Gaussian transformed 
values (right). 

This is actually the best Kth-order approximation in the least squares sense and it can 
be viewed as an eigenvalue problem where the Hermite polynomials are the eigen
functions (as explained in Chapter 19 when dealing with continuous correspondence 
analysis). 

In practice the development may be truncated somewhere between the 15th and the 
50th order. A criterion is to compute the ratio between the variance (33.34) of r.p*(y) 
and the variance 8 2 computed from the data. The development is stopped at an order 
for which this ratio is almost equal to one. 

Bijectivity of Gaussian anamorphosis 

The limited development tends to be bijective within the interval defined by the mini
mum and the maximum of the sampie values. 

Yet the Gaussian anamorphosis function with Hermite polynomials is gener
ally not bijective below the minimum Ymin= r.p*-l(Z(l)) or above the maximum 
Ymax= r.p*-l(Z(n)): the development r.p*(y) into polynomials oscillates wildly outside 
the the interval [Ymin, Ymax]. This may be oflittle importance for non-linear estimation 
as the resuIts tend to be within the range of the data. However when simulating a Gaus
sian random function there are a couple ofvalues weH outside the interval [Ymin , Ymax] 
which at some stage need to be converted into the original Z -scale by anamorphosis. 
A simple practical solution is to define two new points Y~in= -10 and Y~ax= 10 for 
which the Gaussian probabilities can be considered as respectively zero and one (at 
least numerically, on a computer) and to define two increasing straight line segments 
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Figure 33.6: Scatter plot between Gaussian anamorphosis values separated by lags of 
100 seconds. 

as areplacement for the limited development outside the interval [Ymin , Ymax]. 

LANTUEJOUL (quoted in [265], p137) proposes to compute a measure oftotal vari
ation to check whether the anamorphosis is slightly decreasing at some points within 
the interval [Ymin, Ymax] for a given order K. This provides an additional constraint 
when selecting the order of the Hermite polynomial: orders K for which this happens 
should be rejected. 

EXAMPLE 33.3 (LASER DATA) In an oceanographic study [98] a set of laser data of 
sea level heights (in decimeter) measured during 20 minutes at the Ekofisk oil platform 
on 1st January 2002 at midnight presented a distribution that was left-skew. 

We perform a Gaussian anamorphosis of this data which is displayed on Fig
ure 33.4. Tbe fit of the empirical anamorphosis with a development into K = 30 
Hermite polynomials provides an increasing function within the interval [-3.6,3.6] 
given by the Gaussian transforms of the minimum Z(l) and the maximum Z(n) of the 
laser data, which are shown as two dashed lines parallel to the abscissa. Outside the 
interval [-3.6,3.6] the anamorphosis function cp*(y) wildly oscillates and is no more 
increasing, so it cannot be used in this form outside that interval as discussed above. 

Tbe histograms of the data before and after anamorphosis are displayed on Fig
ure 33.5. The variogram in this study had shown that the data can be considered as 
stationary within the 20 minute time domain. We display on Figure 33.6 and Fig
ure 33.7 the scatter plots between values separated by lags of 100 seconds and 1 sec
ond. These lagged scatter plots may be used to check the bivariate distributions. It 
turns out that, although the diagram for a lag of 100 seconds (by the way far beyond 
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Figure 33.7: Scatter plot between Gaussian values separated by lags of 1 second. 

the range of the variogram, which is of only a few seconds) is a good example of a 
bi-Gaussian dispersion doud, the scatter plot for a lag of 1 second does not show at 
a11 the ellipsoidal shape of a bi-Gaussian density. 

So this is a nice example illustrating that if a random function Y (x) has a Gaussian 
marginal distribution (like on the histogram of Figure 33.5) this does not necessarily 
imply that the bivariate distribution for pairs Y(x), Y(x+h) is bi-Gaussian. Only the 
reverse is true: bivariate Gaussian distributions imply Gaussian marginal distributions. 

Tbe consequences are twofold. On one hand we need a model to construct bi
varia te distributions that are not bi-Gaussian when the marginal is Gaussian; this will 
be provided by the Hermitian isofactorial model. On the other hand we will study 
models with a marginal distribution having a shape dose to that of the data; this will 
in particular be the case for the gamma distribution with its shape parameter A. For the 
bivariate distribution of two gamma variables we will be able to specify the Laguerre 
isofactorial model which covers a wide dass of bivariate distributions of which the 
bigamma distribution is a special case. 



34 Isofactorial Models 

Isofaetorial models are important for modeling the bivariate distribution between a 
pair of points of a stationary random funetion. They offer a great variety of possible 
eonstruetions for modeling random funetions between the two extremes of diffusive 
type and mosaie type. 

Aeeording to MATHERON [216] isofaetorial models stern from quantum meehan
ies where they have been applied sinee the nineteen-twenties [174]. Hermite poly
nomials for example appear as eigenfunetions of the one dimensional harmonie os
eillator. In statisties, the Hermitian model is already mentioned by CRAMER [62] 
and diserete isofaetorial models have been used in eonneetion with Markov pro
eesses [99, 326]. In geostatisties the work on eorrespondenee analysis by the group 
around IP BENZECRI [234,24], as deseribed in Chapter 19, has given the impulse for 
introdueing isofaetorial models [209]. 

Mter a general presentation of isofaetorial models the partieular eases of the Her
mitian and the Laguerre isofaetorial models will be examined. These models have 
been implemented by Hu [144, 142] and were sueeessfully used for evaluating re
serves of uranium and gold deposits with very skew distributions [142, 143, 182, 52]. 

Isofactorial bivariate distribution 

Let F be asymmetrie bivariate distribution, 

F(du, dv) = F(dv, du) (34.1) 

with marginal distribution F(du) = Iv F(du, dv). 
Asymmetrie bivariate distribution is isofactorial, if a eountable system of or

thonormal real funetions Xk exists, eomplete in {,2(F), sueh that 

J Xk(U) XI(U) F(du) = Ski (34.2) 

and 

J J Xk(U) XI(V) F(du, dv) = Ski Tk, 

where the Tk are real eoeffieients. 
The eoeffieients Tk represent eovariances between faetors Xk, 

Tk = IE[Xk(U)Xk(V)]I::; E[(Xk(U))2] =1 

and are thus bounded by -1 ::; Tk ::; 1. 

(34.3) 

(34.4) 
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Isofactorial decomposition 

We rnay decornpose any function cp that is square integrable with respect to F(du), 

J (cp(U))2 F(du) du< 00, 

into orthogonal functions Xk with coefficients CPk: 
00 

cp(u) = :L CPk Xk(U). 
k=O 

(34.5) 

(34.6) 

To obtain the value of a coefficient CPk we rnultiply both sides of (34.6) by 
XI(U) F(du) and integrate, 

f cp(U)xI(U) F(du) = f CPk f Xk(U) XI(U) F(du) (34.7) 
k=O 

and taking advantage of orthogonality we get, 

CPk = f cp(u) Xk(U) F(du). (34.8) 

For a pair of randorn variables U and V with an isofactorial bivariate distribution 
we have 

(34.9) 

EXERCISE 34.1 Demonstrate the validity of Eq.(34.9) using the fact that the condi
tional expectation is a square integrable function. 

The conditional expectation of a function cP of one of the variables knowing the 
other is 

00 

E[ cp(U) I V 1 = :L CPk Tk Xk(V). (34.10) 
k=O 

Replacing the CPk by their expression (34.8), 

E[cp(U) I Vl = f cp(u) fTkXk(V) Xk(U) F(du), 
k=O 

(34.11) 

it is obvious that the conditional distribution has the form 
00 

Fv(du) = F(du) :LTk Xk(U) Xk(V). (34.12) 
k=O 

By analogy the decornposition of the isofactorial bivariate distribution is obtained 
as: 

00 

F(du, dv) F(du) F(dv) :LTk Xk(U) Xk(V). (34.13) 
k=O 
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COMMENT 34.2 We have already seen the isofactorial decornpositions of the Gaus
sian bivariate and conditional densities in expressions (33.37) and (33.38) on p243. 
The factors Xk in that case are normalized Hermite polynornials 'T/k= Hk/Jkf and the 
covariances Tk are equal to pk. 

Isofactorial models 

In the geostatistical context U rnay be a randorn variable located at one point in the 
dornain V while V is located at another point. We are interested in rnodeling the 
bivariate distribution between any pair of points of the domain for a stationary random 
function Y(x) and set: U= Yx , V= Yx+h • The isolactorial model for the bivariate 
distribution of the random function now comes as 

00 

F(dyx, dYx+h) = F(dyx) F(dYx+h) LTk(h) Xk(Yx) Xk(Yx+h) (34.14) 
k=O 

where Tk (h) is a correlation function between the pair of points. 
A great variety of isofactorial models have been made available to geostatisticians 

by MATHERON, who developed a passion for the subject and whose work is to a large 
extent summarized and listed in [14, 15, 16]. CHILES & DELFINER [51] provide a 
comprehensive overview in their chapter on nonlinear methods. 

Two general patterns of random functions used in geostatistics can be distin
guished [221], 

• on one hand a diffusion type, with almost surely continuous (but not necessarily 
differentiable) realizations, which describe phenomena with a diffusive behav
ior, i.e a gradual change from one location to the other, 

• on the other hand a mosaic type, with jumps located at surfaces of disconti
nuity, which represent a geographical space divided into compartments inside 
which the phenomenon stays constant while it shows sudden change between 
compartments. 

The first type corresponds to the idea of a smooth transition between neighboring 
values while the second type conveys the image of abrupt change when stepping from 
one compartment to another. 

For diffusion type random functions attention has been focused principally on iso
factorial models with polynomiallactors that can be explicitly computed through re
currence relations. They actually provide a full range of models between the extremes 
of pure diffusion type and plain mosaic type random functions. 

We have already reviewed to some extent the Gaussian model with its associated 
Hermite polynomials in Chapter 32. There are two other models with a continuous 
marginal distribution: the gamma model (with Laguerre polynomials) and the beta 
model (with Jacobi polynomials). 

Furthermore, for diffusion type random functions with a discrete marginal dis
tribution, there are five classes of models with polynomial factors [217]. Two of 
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them correspond to processes with an infinite number of states: the Poisson model 
(with Charlier polynomials) and the negative binomial model (with Meixner polyno
mials); the latter is a discrete version of the gamma model. Three classes are derived 
from processes with a finite number of states: the binomial model (with Krawtchouk 
polynomials), the Jacobi and the anti-Jacobi models (with discrete Jacobi/anti-Jacobi 
polynomials ). 

For the specification of a diffusion type isofactorial model with known polynomi
als two ingredients have to be determined: 

• the dass of marginal distribution, which will determine the system of polyno
mial functions Xk, 

• the form of the isofactorial bivariate distribution, which is governed by the 
Tk (h) correlation functions. 

Choice of marginal and of isofactorial bivariate distribution 

The choice of the marginal distribution towards which the data will be transformed 
is guided by the skewness of the data histogram and the possible presence of a large 
amount of equal values (e.g. aspike at the origin because of many zero values). The 
data may be considered as the result of either a continuous process or of a discrete 
process taking a countable finite or infinite number of states. 

The choice of a bivariate distribution type constructed with an isofactorial model 
should be guided by an exploratory analysis of scatter diagrams of pairs of anamor
phosed values for different lags. 

COMMENT 34.3 Hu [142J discusses the example of abigamma isofactorial random 
function (with A= .1) which is submitted to a Gaussian anamorphosis: the graph of 
the bivariate density (for p(h)= .6) ofthe Gaussian transforms is pear-shaped instead 
of ellipsoidal. This shows that if the data are transformed to have a Gaussian marginal 
distribution this does not imply that the bivariate distribution becomes bi-Gaussian. 
The sm aller the value of the parameter A of the gamma distribution, the less the bi
variate density can be considered as bi-Gaussian. 

A different valuable instrument is the first order variogram, defined as the expec
tation of the absolute value of increments: 

1 
'Yl(h) = 2E[ lY(x+h) - Y(x)ll (34.15) 

The ratio between the first order and the usual (second order) variograms may help 
to discriminate between diffusion and mosaic type phenomena, or rather to character
ize an intermediate situation between these two extreme types of random function 
models. Ideally, for a diffusion type the following ratio will take a constant value, 

'Yl (h) 

V'Y(h) 
(34.16) 
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while for the mosaic type we have, 

1'1 (h) 
'Y(h) 

(34.17) 

where Cl is the sill of the first order variogram 1'1 (h) and C is the sill of the usual 
variogram 'Y(h). In practice a plot of the 'Y1(h) against 'Y(h) model variograms will 
yield a parabola for a diffusive phenomenon and a straight line for data compliant with 
the mosaic model. 

In a purely diffusion type isofactorial model we will choose covariance functions 
ofthe form 

(34.18) 

while they will not depend on k in a mosaic model: 

(34.19) 

where for some models the correlation functions p(h) will only be allowed with posi
tive values [51]. 

An important implication is that the two types of random functions have a differ
ent coregionalization of indicator functions of level sets {Z(x) :::: zc}. In the case of 
(34.18) the ranges of the indicator functions will vary with Zc and in particular their 
coregionalization is not compatible with a linear model of coregionalization. For ex
ample, for a left-skew distribution, the ranges of the indicator functions will decrease 
with increasing Zc because there are fewer values for high cut-off: this is a frequntly 
observed destructuration effect. In the case of (34.19), however, indicator functions 
of different level sets all have covariance functions with the same range and follow the 
intrinsic correlation model. 

In practice we are likely to be faced with intermediate cases between diffusion 
type and mosaic type random functions. Specific models will be discussed for the 
Hermitian and Laguerre isofactorial models. 

Hermitian and Laguerre isofactorial distributions 

A random function with a Gaussian marginal distribution and with normalized Her
mite polynomials 'f]k has a Hermitian isofactorial distribution: 

00 

F(dyx, dYx+h) = g(yx) g(Yx+h) L n(h) 'f]k(Yx) 'f]k(Yx+h) (34.20) 
k=O 

In the particular case of a purely diffusive phenomenon the covariance functions 
take the form Tk(h)= (p(hW, with p(h) E [-1,1] and the bivariate distribution is 
bi-Gaussian. Conversely we see that a random function with a Gaussian marginal 
distribution is not necessarily Gaussian because its bivariate distributions may not be 
bi-Gaussian and can have the more general form (34.20). 
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Figure 34.1: Gamma density function for values of A= .1 and A= 10. 

The gamma model is designed for random functions with positive values. The 
density function of the gamma distribution is defined as 

( 1 () ),-1 !A y) = r('\) exp -y y with A > 0, Y > 0, (34.21) 

where r(A) is the classical gamma function and A is a parameter controlling the shape 
of the distribution. This is actually the standard gamma density function, obtained by 
setting the second parameter of the general gamma density function to one. 

COMMENT 34.4 The gamma density funetion is displayed on Figure 34.2 for values 
of A= .1 and A= 10 (both the abscissa and the ordinate have been truneated to foeus 
on the shape). With A ~ 1 the density funetion is steep at the origin and deereasing, 
while for A > 1 a bump appears, and it turns out that for A --+ 00 the gamma density 
tends to the bell shape of the Gaussian density. 

The mean and the variance of a gamma distributed random variable take the same 
value: 

E[Y] A, var(Y) A. (34.22) 
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The Laguerre polynomials are defined as derivatives of the gamma density func
tion 

kth derivative of gamma density 

gamma density 

with k = 0, I, ... 

and the first two polynomials are 

L~(y) = I, f(A) ( Y) 
Ll(y) = f(A+ 1) 1-:,\ . 

A recurrence relation allows to compute the others: 

Normalized Laguerre polynomials are obtained by the relation 

f(A+k) k 

f(A) k! L>.(y). 

(34.23) 

(34.24) 

(34.25) 

(34.26) 

(34.27) 

A random function with a gamma marginal distribution has a Laguerre isofactorial 
distribution: 

00 

h(Yx) h(Yx+h) LTk(h) l>.k(Yx) hk (Yx+h) (34.28) 
k=O 

For a purely diffusive random function the covariance functions take the form 
Tk(h)= (p(h))k, with p(h) E [0,1] and the bivariate distribution is then bigamma. 

As in (33.39) and (34.9), we have 

E [hk(YX +h ) I Yx ] = Tk(h) hk(Yx)' (34.29) 

COMMENT 34.5 On Figure 34.2 abigamma density function for the value A= .1 is 
displayed: its swallow-tail shape is very different from the bell-shape for the case 
A= 10 that is shown on Figure 34.3. In both examples a corre1ation of p(h)= .6 was 
used. 

A gamma anamorphosis cp >. (Y (x)) for data of a random function Z (x) can be de
veloped along the same !ines as for the Gaussian anamorphosis [144]. The parameter 
A will be chosen in such a way that the anamorphosed function most c10sely resembles 
the shape of the data cumulative histogram. As criteria for resemblance the coefficient 
of variation, the selectivity, the median or a normality index may be used. An impor
tant criterion is to check the bivariate distribution between points separated by a vector 
hand to select a value A for the model which implies a bivariate distribution with the 
same shape as that suggested by the data. 
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Figure 34.2: Bivariate gamma density for A= .1 and p(h)= .6. 

EXAMPLE 34.6 (LASER DATA) Tbe Gauss transformed laser data discussed at in 
Chapter 32 had an autocorrelation diagram at a lag of 1 second that was not bi
Gaussian (see Figure 33.7 on p249). As can be seen on the 1 second-lag scatter plot 
of the laser data on Figure 34.4 it seems a better idea to use abigamma model in such 
a situation rather than a bi-Gaussian. 

It should be noted that the philosophy of the Gaussian and of the gamma anamor
phosis are not the same: while in the former case an arbitrary distribution is brought 
more or less brutally into a Gaussian setting, in the latter the parameter A is tuned in 
such a way that we transform to a distribution that is close to some of the features of 
the data. 

We give the formula for reconstructing the variogram "I z (h) of Z (x), which comes 
as 

00 

"Iz(h) L CP~k (1 - Tk(h)). (34.30) 
k=l 

where CP),k are the coefficients of the gamma anamorphosis cP),(Y(x)). This formula 
is useful for fitting the variograms of Z(x) and Y(x) in a coherent manner. 
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Figure 34.3: Bivariate gamma density far A= 10 and p(h)= .6. 

Intermediate types between diffusion and mosaic models 

We examine only Hermitian and Laguerre isofactorial models in presenting interme
diate types between the pure diffusion and the plain mosaic models. In both cases 
bivariate distributions for intermediate types can be obtained from Tk (h) functions 
with the general structure [206, 209], 

Tk(h) = E[ rk ] = / rk p(dr) with k:::: 0, (34.31) 

rEI 

where I = [-1, 1] for Hermitian and I = [0, 1] for Laguerre isofactorial models. 
For a pure diffusion type random function the distribution p( dr) is concentrated at 

a value ra = p(h), 

(34.32) 

For a plain mosaic type random function the distribution p( dr) will be concen
trated at the two values r= 1 and r= 0 with the probabilities, 

P(r= 1) = p(h) and P(r= 0) = (I-p(h)) (34.33) 
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Figure 34.4: Lagged correlation diagram. 

p(dr) p(h) 81(dr) + (l-p(h)) 80 (dr) 

Tk(h) = p(h) 1 rk 8l (dr) + (l-p{h)) 1 rk 80 (dr) 

= p(h) 

(34.34) 

(34.35) 

(34.36) 

Isofactorial models for intermediate types are then almost trivially obtained by 
taking proportions wand 1-w of the two basic types, wh ich is termed the barycentric 
model, 

Tk(h) = w (p(hW + (l-w) p(h) with w E [0,1]. (34.37) 

COMMENT 34.7 In terms ofvanograms, in the barycentric model the normalized first 
order variogram relates to thc normalized variogram in the following way, 

')'l(h) = w V')'(h) + (l-w) ')'(h) 
Cl C C 

with w E [0,1] , (34.38) 

whcre Cl is the siIl of the first order variogram ')'1 (h) and C is the sill of the usuaI 
variogram ')'(h). 
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Figure 34.5: Barycentric model. 

The Figure 34.5 plots the normalized first order variograrn against the normalized 
second-order variogram for different different values ofw. The case w= 0 generates 
a straight line corresponding to a plain mosaic type random function while the case 
w= 1 yields a para bola for a pure diffusion type random function. An intermediate 
case (w= .5) is shown using a dashed curve. 

A family of isofactorial models for intermediate random function types, particu
lady suited for models with r E [0, l]like the gamma model, can be obtained taking a 
beta density function for the density p(dr) in (34.31) as suggested by Ru [142, 144], 

p(dr) = r(JL + v) rl'-l (l-rt- l with JL> 0, v> O. (34.39) 
f(JL) f(v) 

By setting JL= ß p(h) and v= ß (l-p(h)) with a positive parameter ß, thefollow
ing family of correlation functions is obtained 

'T; (h) = f(ß) f(ß p(h) + k) 
k r(ß+k) f(ßp(h)) 

with ß > o. (34.40) 

COMMENT 34.8 In terms of variograms, in this model, the first order variogram can 
be related to the variogram ')'(h)= C(l-p(h)) by 

')'1 (h) f(ß) f(ß ')'(h) /C + 1/2) 

Cl f(ß + 1/2) f(ß ')'(h)/C) 
with ß > 0, (34.41) 
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where Cl is the sill of the first order variogram /'1 (h). 
An different form given by Hu [142] is, 

r(ß + 1/2) r(ßCh(h)) 
r(ß) r(ßCh(h) + 1/2) 

with ß > 0, (34.42) 

which provides, when plotted, a sensibly differently shaped family of intermediate 
curves between the pure diffusion and the plain mosaic cases. 



35 Isofactorial Change of Support 

Considering the position of a sampie as random within a block and making use of 
Cartier's relation, isofactorial change of support support models are gained in the form 
of discrete point-block models [205, 207]. A case study on a lead-silver deposit is 
provided in an exercise (with solution). 

The point-block-panel problem 

The point-block-panel problem arose in mining, but it may easily be encountered in 
other fields. In mining exploration sampies of a few cm3 are taken at hectometric 
spacing and analyzed. Production areas of are termed panels and are typically of hec
tometric size (say 100 X 100x5m3). The panels are subdivided into basic production 
units, the blocks (say 10x10x5m3). These blocks correspond in mining to the quan
tity of material an engine can carry and adecision will be taken whether the engine 
is directed to the plant for processing the material or else to the waste dump. During 
production several sampies are taken in each block and only blocks with an average 
grade superior to a cut-off value zc, above which they are profitable, will be kept. 

The point-block-panel problem consists in anticipating before production, on the 
basis of the initial exploration data, what will be the proportion of profitable blocks 
within each panel, so adecision can be taken whether or not to start extraction of 
a given panel. Isofactorial change-of-support models and corresponding disjunctive 
kriging will make it possible to estimate different block selectivity statistics for indi
vidual panels. 

The Figure 35.1 sketches a typical point-block-panel estimation problem. The 
three different supports involved are points x denoting the exploration sam pies, blocks 
v and panels V. In the model, the sampie points x will be considered as a randomly 
located in the blocks. 

Cartier's relation and point-block correlation 

Suppose :lC. is a point located randomly inside a block v. Then the conditional expec
tation of the randomly located random function value knowing the block value is the 
block value, 

E[ Z(:lC.) I Z(v) 1 = Z(v), (35.1) 

which is known as Cartier's relation. 
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Figure 35.1: Panels V partitioned into blocks v with points x considered as randomly 
located within the blocks that contain them. 

To understand this relation we rewrite the conditional expectation making the two 
sources of randomness more explicit, 

E[ Z(:l'J I Z(V)] E,,-[Ez[Z(K) I Z(v)]] 

I~I J Ez[Z(x) I Z(v)]dx 
xEv 

Now the relation is easily demonstrated: 

E[Z(K) I Z(v)] Ez [I~I J Z(x) dx I Z(v)] 

E[Z(v) I Z(v)] = Z(v). 

(35.2) 

(35.3) 

(35.4) 

(35.5) 

For a point Gaussian anamorphosis Z(x)= rp(Y(x)) and a corresponding block 
anamorphosis Z(v)= rpv(Y(v)) we have by Cartier's relation, 

E[ rp(Y(K)) I Z(v)] = E[ rp(Y(K)) I rpv(Y(v))] = rp,,(Y(v)). (35.6) 
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Using the fact that E[ ip(Y(~)) I Z(v)] is equivalent to E[ ip(Y(~)) I Y(v)] and 
using (34.9) we have for the Hermitian isofactorial model 

00 

ipv(Y(v)) = L ~~ E[Hk(Y(~)) I Yv] 
k=O 
00 

L ~~ p(., v) Hk(Y(v)), 
k=O 

where p(., v) is the correlation coefficient between Hk(Y(~)) and Hk(Y(v). 
In the particular case of a pure diffusion this becomes 

00 

ipv(Y(v)) = L ~~ rk Hk(Y(v)), 
k=O 

and r is called the point-block correlation coefficient. 

(35.7) 

(35.8) 

(35.9) 

The mean of the block variable Z (v) is equal to the mean of the point variable, 

E[ Z(v)] = E[ Z(x)] = ipo (35.10) 

The variance of Z ( v) in terms of the block anamorphosis is 

00 . 2 

var(Z(v)) = var(ipv(Y(v))) = L ~~ r 2k , 
k=l 

(35.11) 

where the point-block correlation coefficient r is yet to be determined. 
The variance of Z(v) can be computed using the variogram, 

var(Z(v)) = C(v, v) = )'(00) - 'Y(v, v), (35.12) 

and then the point-block correlation coefficient is easily computed by inverting rela
tion (35.11). 

EXERCISE 35.1 The development of an exponential function into Hermite polyno
mials is: 

( a2) 00 (-a)k 
exp(ay) = exp 2" L ~Hk(Y)' 

k=O 

1. Show that the coefficients ipk of the anamorphosis function, 

00 

Z = ip(Y) = L ~~ Hk(Y), 
k=O 

ofa lognormal variable Z= exp(v + (J Y) with a mean E[ Z]= mare: 

(35.13) 

(35.14) 

(35.15) 
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Block variance vs Point-Block correlation 
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Figure 35.2: Relation between block variance var(Z(v)) and the point-block corre
lation coefficient r for two lognormal random functions with the same mean, point 
variances var(Z(x)) of 50 (solid line) and of 100 (dashed line). 

2. A lognormal variable Z has a mean m= 10 and a variance var(Z)= 50. At 
which order K is the variance of Z reconstructed up to 99.99%? 

3. Let'Pv(Y)= m exp(arY +a2 r2 /2) be thelognormalblockanamorphosisun
der assumption of permanence of lognormality. Show that the coefficient r 
is identical with the corre1ation coefficient of the discrete Gaussian point-bloc 
model. 

EXAMPLE 35.2 The plot of the relation between the block variance var( Z (v)) and 
the point-block correlation coefficient r is shown for two lognormal random functions 
with a mean m= 10 on Figure 35.2. One has a point variance var(Z(x))= 50 and 
the relation (35.12) is used to display the block variances for different block sizes v 
with asolid line; the other has a point variance ofvar(Z(x))= 100 and the relation 
(35.12) is displayed with a dashed line. In practice the block variance is known from 
the variogram and the coefficient r can be read from the graph. 

The Laguerre isofactorial point-block model involves a point gamma anamorpho
sis 'PA and a block anamorphosis 'Pfl' 

Z(x) = 'PA(Y(x)) Z(v) = ipfl(Y(V)) (35.16) 
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where J.L ~ A as the block distribution is less skew than the point distribution. 
The isofactorial model for the generally asymmetrie point-block density is 

00 

!A,Ayx,Yv) = !A(Yx)J/L(Yv) LPk(X,V) Ck(A,J.L) hk (Yx)l/Lk (Yv) (35.17) 
k=O 

with 

r(A + k) r(J.L) 
r(J.L + k) r(A) 

(35.18) 

The block anamorphosis is linked to the point anamorphosis coefficients '-P >'k by 

00 

Z(v) = L '-P>.k Pk(', v) Ck(A, J.L) l/Lk(Yv) (35.19) 
k=O 

and the point-block correlation coefficients Pk (., v) are determined through the relation 

00 2 

var(Z(v)) = L ~~k P~(-,V)C~(A,J.L)' (35.20) 
k=l 

Discrete Gaussian point-block model 

In a point-block-panel problem we may have a vector of n sampIes Y(~) each ran
domly located inside one of N different blocks v. We are interested in a simple de
scription of the correlation structure of the multi-Gaussian vector of the sampIe and 
the block values, 

(35.21) 

We shall suppose that each sampIe Y(~) in a block v is conditionally independent 
on Y (v) and the conditional distribution has a mean T ",v Yv and a variance 1 - T~v' So 
for two sampIes with ~ and K in distinct blocks we can write -

T",v Y(v) + ~ U1 

T",'v' Y(v') + JI - T~,v' U2 , 

(35.22) 

(35.23) 

where U1 and U2 are two uncorrelated Gaussian variables independent of Y(v). The 
coefficients T ",v and T ",'v express the correlation of the two sampie values with the 
block value Y (v). The conditional independence of the sampIes entails that U1 and U2 

are independent so that we get 

cov(Y(X), Y(x')) = T",,,,' = T",v T",'v' Tvv' (35.24) 

We also have 

r?fV' r~v rvv, (35.25) 
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so that 

r ~?!f == r ~v r ?fV' == r;,v r vv'. (35.26) 

The coefficient r xv is the point-block coefficient r computed from (35.11), so that 

r ?fV' 

(35.27) 

(35.28) 

For specifying the discrete Gaussian point-block model we still need to determine 
the block-block correlations rvv,. This can be done using the relation 

00 2 

C(v, V') = L: ~! (r2 rvv,)k , 
k=l 

(35.29) 

but by solving this equation for each pair of blocks separately the matrix is in general 
not positive definite; the way out is to fit a covariance function to the coefficients r vv'. 

General structure of isofactorial change-of-support 

The structure of isofactorial change of support models has been set up by MATH

ERON [215, 216]. A generally asymmetrie bivariate distribution F( du, dv) with 
marginal distributions F1 (du) and F2 (dv) is isofactorial if there exist two correspond
ing orthonormal systems xL i= 1,2, complete in .c2 (Fi ), 

J X~(u) xi(u) Fi(du) = rSkl , (35.30) 

whose orthogonality extends to the bivariate distribution: 

J Xk(u) X;(v) F(du, dv) = rSkl Tk · (35.31) 

In the context of a stationary random function Z(x)= ip(Y(x)) with anamor
phosed distribution F(dy) and the block variable Zv(x)= ipv(Yv(x)) we have 

00 

ip(Y(x)) (35.32) 
k=O 
00 

ipv(Yv(x)) = L: ipi: xi: (Yv(x)) (35.33) 
k=O 

The point-point and block-block distributions are 

00 

k=O 
00 

Fv (dyv) Fv (dyv') L:Tk (v, v') xi: (Yv) xi: (Yv' ). (35.35) 
k=O 
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The point-block distribution between two locations is 

00 

F(dyx, dYv f ) = F(dyx) Fv(dYv f ) 2: Tk(x, v') Xk(Yx) xk(Yvf ). (35.36) 
k=O 

The inference of the different Tk coefficients for a discrete point-block model is 
analogous to the discrete Gaussian point-block model. The example of the Laguerre 
isofactorial model has received much attention and is treated in detail in [142,182,51]. 

EXERCISE 35.3 [Reserve estimation in a lead/silver depositJ In this 2D bivariate 
study we shall estimate reserves of lead (Pb) and silver (Ag). The exercise is due 
to Jacques RIVOIRARD. The parameters are about those of areal case study per
formed by Peter DOWD on a Pb/Zn/Ag ore body in Broken Hill, Australia (described 
in [156J on p256). 

The ZI variable (Pb) has a mean grade of 13 % with a variance of 50. The vari
ogram consists of a nugget-effect and a spherical model with a range of 60m: 

'Y1(h) = 1O+40sph(60) for Ihl =I- O. (35.37) 

The Z2 variable (Ag) has a mean grade of 4 (expressed in ounces/ton), a variance 
of 3 and the variogram model: 

'Y2(h) = 1.2 + 1.8 sph(60) for Ihl =I- O. (35.38) 

The cross variogram between lead and silver has no nugget-effect: 

'Y12(h) = 5 sph(60). (35.39) 

RECOVERABLE RESERVES OF LEAD 

The histogram of point values of lead has been mode1ed using a Gaussian anamorpho
sis truncated at the second order: 

2 

ZI(X) = <p(Y(x)) = 2: ~~ Hk(Y(x)) 
k=O 

(35.40) 

with coefflcients <Po = 13, <PI = -6.928 and <P2 = 2. Note that the Hermite polyno
mials are not normalized, 

Ho(Y(x)) = 1; HI(Y(x)) = -Y(x); H2(Y(x)) = (Y(X))2 - 1.(35.41) 

The selection mining units are blocks of size 24 x 24 m2 • The grades of these 
blocks are assumed to be perfectly known at the time of the selection (no information 
effect). The cut-off grade used for se1ection on grades ZI (v) is Zic = 15%. 

Knowing the point variogram, the variance of the blocks has been computed as 
var(ZI(v)) = O"fv = 28. 

1. Make a graphical representation ofthe anamorphosis function. What is its do
main of validity? 
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2. In the framework of the discrete Gaussian model the anamorphosis of the block 
values is 

2 

Zl(V) = IPTl(YV) = L ~~ r~ Hk(Yv ) 

k=O 

(35.42) 

Knowing that the variance of the blocks is 

(35.43) 

compute the value of the change-of-support coefficient rl. 

[Hint: to solve this equation, tirst find a solution for (rl)2 and then take its 
square root. Tbis avoids manipulating a fourth order equation.] 

3. Compute the cut-off Yc applied to Yv which corresponds to the cut-off Zlc = 
15%. 

4. Using a table ofG(y) = J~oo g(t) dt compute the tonnage ofrecovered ore: 

(35.44) 

5. Tbe quantity of lead recovered can be written: 

Ql(ZlC) = E[Z(v)lyv>Ycl= roo
IPT1 (YV)g(y)dy (35.45) lyc 

t ~~ r~ 100 
Hk(y) g(y) dy (35.46) 

k=O Yc 

IPo 100 
g(y) dy - t ~~ r~ Hk-l(yc) g(yc) (35.47) 

Yc k=l 

ComputeQl(ZlC) usingtablesofG(y) andg(y). Calculateml(zlc) andcompare 
with overall mean of the deposit. 

ANAMORPHOSIS OF SILVER 

Tbe anamorphosis of the point grades of silver is written 

(35.48) 

with coefficients 'l/Jo = 4, 'l/Jl = -1.71 and 'l/J2 = 0.384. Tbe Gaussian transform of the 
silver values is denoted U(x). 

1. Compute and plot the anamorphosis function. What is its domain of validity? 
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2. The variance of silver on block support is var(Z2(v)) = 1.26. Compute the 
value of the change-of-support coefficient r2. 

[Hint: first solve for (r2)2 and then take the square root ofthe value.] 

RECOVERABLE RESERVES OF SILVER WHEN SELECTING ON LEAD 

The blocks are selected on the basis of the lead values as data about silver grades is 
scarce. We shall therefore attempt to estimate the recovered quantity of silver for a 
selection performed on the basis of lead. The quantity to estimate is thus: 

(35.49) 

The quantity of silver conditioning on the Gaussian transform of lead is, 

(35.50) 

In the last expression we need to compute the conditional expectation of silver 
knowing lead: 

2 

El2: ~~ r~Hk(Uv)IYvl 
k=O 

2 

2: ~~ r~E[Hk(Uv)lYvl 
k=O 

2 

2: ~~ r~ l Hk (Yv) = ~r2P(Yv) 
k=O 

(35.51) 

(35.52) 

(35.53) 

where the anamorphosis ~r2P(Yv) depends on both the silver change-of-support co
efficient r2 and the correlation coefficient p between the Gaussian variables Yv and 
Uv . 

1. Knowing that the value ofthe cross-covariance between Zl(V) and Z2(V) is 

(35.54) 

and using the relation 

2 

COV(Zl(V), Z2(V)) = 2: CP~;k r~ r~ l 
k=l 

(35.55) 

compute the value of the correlation coefficient p. 

2. Compute the recovered quantity of silver 

Q2(Zlc) = E[ ~r2P(Yv) !Yv>Yc 1 = 100 ~r2P(Y) g(y) dy. (35.56) 
Yc 
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LOCAL ESTIMATION OF LEAD 

The aim of this study is to estimate recoverable lead reserves for panels V of size 
72 x 72 m2 , that is: 

• the proportion P of blocks having a grade superior to Zlc = 15%, 

• the quantity Q of lead for these blocks. 

The method used will be a "uniform conditioning" (presented in detail in Sec
tion 36) by the grade Zl (V) of the panel. Prom the variogram of lead we know that 
the variance ofthe panels is Var(ZI(V)) = 12. 

1. Assuming that the anamorphosis is valid at the level of the panels, 

2 

ZI(V) = CPri(Yv)=L~~(r~)kHk(YV) 
k=O 

(35.57) 

compute the value of the panel change-of-support coefficient r~ . 

2. The estimation will be performed for a particular panel with a lead grade of 
Zl (V) = 12.76%. What is the corresponding value Yv? 

3. The notation '!L indicates a block located randomly in the panel V. Assuming 
the pair (Y>c' Yv ) to be bi-Gaussian, the correlation between Y>c and Yv is then 
given by the correlation R = rU rl. What is the expression for the estimator of 
the proportion of blocks above cut-off within a panel with a given value Zl (V): 

(35.58) 

4. What is the value of P*(Zlc) for a panel value of Zl (V) = 12.76%? 

5. The quantity of lead within a block is written: 

2 

with Qp = L ~~ rk Jpk(Yc) (35.59) 
k=O 

where 

Jpk(Yc) = 100 
Hp(Y) Hk(y) g(y) dy. 

Yc 

(35.60) 

A table of precomputed values of Qp coefficients will be given below. 

Give the expression for E[ Hp (Y>c) IYv land the expression for the estimator of 
the quantity of metal, 

(35.61) 
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p Qp Qp Qp RP 
v'v! v'v! 

0 6.074 6.074 6.074 
1 -7.385 -7.385 -4.852 
2 4.887 3.456 1.492 
3 2.828 1.155 0.327 
4 -8.382 -1.711 -0.319 
5 -6.281 -0.573 -0.070 
6 35.275 1.315 0.106 
7 18.079 0.255 0.014 
8 -217.692 -1.084 -0.038 
9 -37.782 -0.063 -0.001 

10 1752.361 0.920 0.014 

Table 35.1: List of coefficients Qp. 

6. In numerical computations it can be preferable to use normalized Hermite poly
nomials, 

to avoid large numbers for the polynomials. 

The expression (35.59) is then 

(35.62) 

(35.63) 

Rewrite the expression obtained in the previous question in terms of normalized 
Hermite polynomials. 

7. On Table 35.1 we list the Qp coefficients up to the order 10. The table also lists 
the coefficients normalized by JPT and furthermore when multiplied by RP. The 
last column of Table 35.1 shows that Q-V should not be computed for a too low 
orderofp. 

Compute Q-V(Zlc) for a panel with grade Zl(V) = 12.76% truncating at the 
order p = 6. Calculate the mean grade of the selected blocs. 

[Hint: use the recurrence formula Hk+l(Y) = -Y Hk(y) - k Hk- 1 (y).] 



36 Kriging with Discrete Point-Bloc 
Models 

Disjunctive kriging is the classical method to estimate non-linear functions of the 
data. Several geostatistical methods for local estimation of non linear functions of 
block variables are presented, including conditional expectation, disjunctive kriging 
and uniform conditioning. 

Non-linear function of a block variable 

In selection problems we are interested in estimating some non-linear function 'l/J of 
Z (v) like for example the indicator function 

(36.1) 

which teIls whether or not a block variable Z(v) is above some prescribed level ZC' 

Having data about the point variable Z(x) the steps are the following for setting 
up a discrete Gaussian point-bloc model: 

1. compute the point anamophosis Z(x)= <p(Y(x)), 

2. knowing the variogram '")'(h) of Z(x), compute the point-block coefficient r of 
the bloc anamorphosis Z (v)= <Pv (Y (v)) in (35.9), by first evaluating the vari
ance of Z(v) with (35.12) and then computing r using (35.11), 

3. again with the variogram '")'(h) of Z(x), compute the block covariances C( v, v') 
and then corresponding Gaussian block covariances p( v, v') using the relation 
(35.29), taking care that the matrix of these covariances is positive definite. 

The anamorphosis of a non-linear function 'l/J can be specified on the basis of the 
anamorphosis of Z ( v ), 

(36.2) 

Thus any non-linear function of Z(v)= <Pv(Y(v) can be represented as a linear func
tion of the orthogonal polynomials Hk(Yv ) just by using specific coefficients 'l/Jk' We 
now present different estimation methods of 'l/J (Z (v)) from data Z (xa ) which build on 
this decomposition. 



274 Selective Geostatistics 

Conditional expectation and disjunctive kriging of a bloc 

A first approach, which requires an assumption of multinormality, is to calculate the 
conditional expectation (CE) in the following steps: 

1. compute Y(xa) = ep-1(Z(Xa)) and identify it with Y(&,), as in the model the 
samples are considered as being randomly located within corresponding blocks 
Va; 

2. perform simple kriging of the block value 

n 

ySK(vo) = L Wa Y(&,) 
a=1 

solving the system 

n 

L wß p(?fa" ~ß) = p(&" vo) 
ß=1 

(36.3) 

for all a, (36.4) 

where P(~a' ~ß)' p(?fa" vo) are obtained by the formulas (35.27) and (35.28). 

The simple block kriging variance is 

n 

(]~K = 1 - L W a p(&" vo) = 1 - 8 2 , (36.5) 
a=1 

where 8 2 represents the variance of ySK (vo); 

3. the estimate of the non-linear function 1/J for a specific block Vo is 

A second approach for estimating 1/J(Z(vo) is by disjunctive kriging (DK) which 
estimates directly the terms of the orthogonal decomposition and thus merely requires 
an assumption of binormality instead of multinormality. It is implemented in the fol
lowing steps: 

1. compute the first K polynomials Hk(Y(xa)) considering again the location of 
each sample as random within the block Va that contains it; 

2. perform for k= 1, ... , K the bloc simple kriging 

n 

H;(Y(vo)) = L Wak Hk(Y(&,)), (36.7) 
a=1 
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where the weights Wak are solution of 

n 

L Wak (p(&" ~ß))k for all Q, (36.8) 
ß=l 

with the kriging variance 

(36.9) 

and with correlations p computed from the discrete Gaussian point-bloc model; 

3. the disjunctive kriging estimate then comes as 

K 

[~(Z(VO))J~K = ~o + L ~~ Ht(Y(vo)) 
k=l 

(36.10) 

and the corresponding disjunctive kriging variance is 

(36.11) 

Disjunctive kriging of a panel 

We come back to the point-block-panel problem exposed in Section 35 (Figure 35.1, 
p263). We now consider the problem of predicting the average of a non-linear func
tion of block values for a given panel Vo as shown on Figure 36.1. The panel Vo is 
partitioned into N blocks v, each of the sampies being located at random in a differ
ent block (inside or outside the panel) and we denote M(Vo) the average of a linear 
function over the panel, 

M(Vo) (36.12) 

(36.13) 

The estimator for the panel is simply the disjunctive kriging, 

K 

M~K(VO) = ~o + L ~~ Mt 
k=l 

(36.14) 
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-

• 

• 
panel VO 

Figure 36.1: Panel Vo partitioned into blocks v and sampies points x considered as 
randomly located within blocks v that contain them. 

with 
n 

M: = LWakHk(Y(&,)), (36.15) 
a = l 

where the kriging weights are obtained from 

n 

L WadP(&"~ß))k for all (x, (36.16) 
ß= l 

with the kriging variance 

(36.17) 

and the disjunctive kriging variance is again 

K (1/J )2 L k~ a~. 
k=l 

(36.18) 
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Uniform conditioning 

In some point-block-panel problems panel averages Z(V) are available. For exam
pIe a general circulation model (GCM) provides values for panels of 100 x 100 km2 

size while astation network provides point sampies xC>. We may be interested in 
a technique that provides estimates of statistics for smaller spatial units obtained by 
partitioning the panels, say blocks of size 5x5 km2 • This is called a downscaling 
problem in statistical climatology [335]. 

The geostatistical analysis of the point data Z(x) provides a variogram 'Y(h), point 
anamorphosis coefficients ifJk and a point-block coefficient r using the relation (35.11). 
In the same way a point-panel correlation coefficient r', 

00 

Z(V) = L ~~ (r')k Hk(Y(V)), 
k=O 

(36.19) 

is computed from 

00 2 

var(Z(V)) = var(ifJv(Y(V))) = L ~~ (r' )2k. (36.20) 
k=l 

and a block-panel coefficient is then obtained as rvv = r' Ir. 
Considering a block 'Q randomly located in V and writing, 

00 

Z(1!) = L ~~ rk Hk (Y('Q)) , 
k=O 

(36.21) 

we have 

00 

E[ Z(y) I Z(V) 1 L ~~ rk E[ Hk(Y('Q)) I Y(V) 1 (36.22) 
k=O 
00 

L ~~ rk (rvv)k Hk(Y(V)) 
k=O 

(36.23) 

The uniform conditioning technique [205, 270] consists in taking the conditional 
expectation of some non-linear function of the blocks with respect to known panel 
values. For example, the proportion of blocks within a panel Vo that are above a 
certain rainfalllevel Zc may be of interest: this is calculated by uniform conditioning 
on the GCM value Z (V) 

E[ l z (!');:,zc I Z(Vo) 1 E[ h(!');:,zc I Y(Vo) 1 

1- G (YC - rvv Y(Vo)) 
Jl- r;v 

(36.24) 

(36.25) 

assumingthat the conditional variable Y(yJ I Y(Vo) is normally distributed with mean 
rvv Y(Vo) and variance 1 - r;v. 
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In many applications the panel value Z (V) is not available and the trick is to 
generate it by ordinary kriging. This has been viewed as a way of introducing a large 
scale non-stationarity in the model and has been applied in mining reserves assessment 
in this manner [258, 188, 259]. 

EXERCISE 36.1 [Iron ore deposit] This is a continuation of Exercise 32.4 on p230 
in which the conditional expectation method was applied in a lognormal framework. 
The discrete Gaussian model for three sampIes and blocs displayed on Figure 32.2 
was discussed there. Now we apply disjunctive kriging. 

Normalized Hermite polynomials are defined as 

() _ Hk(y) 
"Ik Y - Vk (36.26) 

with "11 (y) = -y and "I2(Y) = (y2 - 1)/..J2. 
The development of the indicator function of a block Gaussian variable can be 

written: 

00 

(36.27) 
k=O 

(36.28) 

1. What are the values for the coefflcients 'l/Jo, 'l/J1 and 'l/J2 in this development? 

2. What are the values of the Hermite polynomials "11 (Ya ) and "12 (Ya ) for the three 
sampIe locations? 

3. What is the value of ["11 (Y(v3 ))]:K? 

4. Express the estimator of the second Hermite polynomial ["12 (Y (v3))]:K as a 

function ofthe three data values "12 (Ya ) and ofthe mean E[ 7]2(Y(V3))]. 

Develop its kriging system and solve it. What is the value of ["12 (Y (V3)) ]:K ? 

5. Supposing that the terms ["Ik (Y (V3)) ]:K ~ 0 for k > 2 and can be neglected, 

what is the value of the disjunctive kriging estimate [lZ(V3 l>zc] * ? 
- DK 

EXERCISE 36.2 [Global Miner and Smart Invest] The company Global Miner has 
performed an exploration campaign of a deposit. The production will be based on 
blocs v with a surface of 12 x 12 m2 which will serve as aselection support. The 
evaluation of the deposit was done with a discrete Gaussian point-block model and 
2D disjunctive kriging. 
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The point anamorphosis of the deposit is: 

2 

Z(x) = cp(Y(x)) = L ~~ Hk(Y(x)) 
k=O 

(36.29) 

4.055 
10 - 6.368H1(Y(x)) + -2- H2 (Y(x)) (36.30) 

where H1(Y(x))= -Y(x) et H2 (Y(x))= y 2 (x)-1 are Hermite polynomials. 

• What are the value of the mean and of the variance of Z (x) ? 

The fitted variogram /,(h) was used to compute ;y(v, v) = 22. In a discrete Gaus
sian point-bloc model the block anamorphosis is: 

K 

Zv(x) = CPv(Yv(x)) = L ~~ (r)k Hk(Yv(x)) 
k=O 

(36.31) 

when stopping the development at an order K = 2. 

• Determine the value of the point-bloc coefficient r. 

• What is the value Yc corresponding to a cut-off grade zc=l1 used for selecting 
the blocks? 

During a presentation of the reserves of the deposit by Global Miner for potential 
investors a consultant of Smart luvest took note of the following three parameters: 
m = 10, var(Z) = 50, as well as the value of the point-block correlation r. Tbe 
consultant wants to get quickly a rough idea of global reserves and uses a lognormal 
model with change-of-support under assumption of permanence of lognormality using 
these parameters. 

Global Miner had announced a proportion of 42% of the deposit that could go into 
production: 

• is this figure compatible with the quick assessment of global reserves by Smart 
Invest 's consultant? 



PartF 

N on-Stationary Geostatistics 



37 External Drift 

We start the study of non-stationary methods with a multivariate method that is ap
plicable to auxiliary variables that are densily sampled over the whole domain and 
linearly related to the principal variable. Such auxiliary variables can be incorporated 
into a kriging system as external drift functions. 

Two applications are discussed: one is about kriging temperature using elevation 
as external drift, while the other is a continuation of the Ebro ease study from Chap
ter 27 using the ouput of a numerical model as external drift. 

Depth measured with drillholes and seismic 

It may happen that two variables measured in different ways refleet the same phe
nomenon and that the primary variable is precise, but known only at few loeations, 
while the secondary variable cannot be aecurately measured, but is available every
where in the spatial domain. 

The classical example is found in petroleum exploration, where the top of a reser
voir has to be mapped. The top is typically delimited by a smooth geologie layer 
because petroleum is usually found in sedimentary formations. Data is available from 
two sources 

- the precise measurements of depth stemming from drillholes. They are not 
a great many beeause of the exeessively high eost of drilling. We ehoose to 
model the drillholes with a seeond-order stationary random funetion Z(x) with 
a known covariance function C(h). 

- inaeeurate measurements of depth, deduced from seismic travel times and eov
ering the whole domain at a small scale. The seismic depth data provides a 
smooth image of the shape of the layer with some inaecuraey due to the diffi
eulty of converting seismic reßeetion times into depths. This seeond variable is 
represented as a regionalized variable s(x) and is eonsidered as deterministic. 

As Z(x) and s(x) are two ways of expressing the phenomenon "depth of the layer" 
we assurne that Z(x) is on average equal to s(x) up to a eonstant ao and a eoefficient 
bI, 

E[ Z(x) 1 = ao + b1 s(x). (37.1) 

The deterministie function s(x) deseribes the overall shape of the layer in inae
curate depth units while the data about Z(x) give at a few loeations an information 
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about the exaet depth. The method merging both sourees of information uses s(x) as 
an external drift funetion for the estimation of Z(x). 

Estimating with a shape function 

We eonsider the problem of improving the estimation of a second order stationary 
random funetion Z(x) by taking into aeeount a funetion s(x) describing its average 
shape. The estimator is the linear eombination 

n 

Z*(xo) = L Wa Z(xa) (37.2) 
a=1 

with weights eonstrained to unit sum, so that 

E[Z*(xo) 1 E[ Z(xo], (37.3) 

whieh ean be developed into 

n 

E[ Z*(xo) 1 
a=1 

n 

ao + b1 L W a s(xa ) 

a=1 
(37.4) 

This last equation implies that the weights should be consistent with an exaet in
terpolation of s(x) 

n 

s(xo) = L Wa s(xa). (37.5) 
a=1 

The objeetive funetion to minimize in this problem eonsists of the estimation vari
anee a~ and of two eonstraints 

n n 

</> = a~ - Mo (L W a - 1 ) - MI (L W a s(xa) - s(xo) ). 
a=1 a=1 

The resuIt is the kriging system 

n 

L wß C(xa-xß) - Mo - MI S(Xa) 
ß=1 

n 

1 

n 

S(Xo). 

C(Xa-Xo) for a= 1, ... , n 

(37.6) 

(37.7) 
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The mixing of a second-order stationary random function with a (non stationary) 
mean function looks surprising in this example. There may be situations where this 
makes sense. Stationarity is a concept that depends of scale: the data can suggest 
stationarity at a large scale (for widely spaced data points on Z(x» while at a smaller 
scale things look non-stationary (when inspecting the fine detail provided by a func
tion s(x». 

Estimating external drift coefficients 

The external drift method consists in integrating into the kriging system supplemen
tary universality conditions about one or several external drift variables Si (x) , i = 
1, ... , N measured exhaustively in the spatial domain. ActuaHy the functions Si(X) 
need to be known at all locations X a of the samples as weH as at the nodes of the 
estimation grid. 

The conditions 
n 

L Wa Si(Xa) = Si(XO) i = 1, ... ,N (37.8) 
a=l 

are added to the kriging system independently of the inference of the covariance func
tion, hence the qualificative external. 

The kriging system with multiple external drift is 
n N 

L wß C(xa-xß) - /Lo - L /Li Si(Xa) = C(xa-XO) 
ß=l i=l 

n 

LWß = 1 
ß=l 

n 

L wß Si (Xß) = Si(XO) 
ß=l 

fora= 1, ... ,n 

for i = 1, ... , N. 

(37.9) 

When applying the method with a moving neighborhood it is interesting to map 
the coefficients bi of each external drift to measure the influence of each external 
variable on the principal variable in different areas of the region. An estimate bio of 
a particular coefficient indexed io is obtained by modifying the right hand side of the 
kriging system in the following way 

n N 

L wß C(xa-xß) - /Lo - L /Li Si(Xa) = [QJ 
ß=l i=l 

n 

LWß 
ß=l 

n 

LWßSi(Xß) 
ß=l 

=[QJ 

== I 0;;0 I 

fora= 1, ... ,n 

(37.10) 

for i = 1, ... , N, 
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Figure 37.1: Kriging mean January temperature in Scotland without external drift. 
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Figure 37.2: Estimated values of kriging with external drift plotted against elevation: 
the estimated values above 400m extrapolate out of the range of the data. 

where Oiio is a Kronecker symbol which is one for i= io and zero otherwise. 

EXAMPLE 37.1 (see [146] for the tull details of this ease study) We have data on 
mean January temperature at 146 stations in Seotland whieh are aIlloeated below 
400m altitude, whereas the Seottish mountain ranges rise up to 1344m (Ben Nevis). 
The variogram of this data will be discussed later (Figure 38.2, p306) . 

Figure 37.1 displays a map obtained by kriging without the externaI drift. The 
estimated temperatures stay within the range of the data (0 to 5 degrees Celsius). 
Temperatures below the ones observed ean however be expeeted at aItitudes above 
400m. 

It eould be verified on seatter plots that temperature depends on elevation in a rea
sonably linear way. The aItitude of the stations is known and elevation data, digitized 
from a topographie map, is available at the nodes of the estimation grid. The map 
of mean January temperature on Figure 37.3 was obtained by ineorporating into the 
kriging system the elevation data as an extemaI drift s(x). The kriging was performed 
with a neighborhood of 20 stations and the estimated vaIues now extrapolate outside 
the range of the data at higher altitudes as seen on the diagram of Figure 37.2. 

The map of the estimated eoefticient bt of the external drift is displayed on Fig
ure 37.4. The eoeftieient is more important in absolute vaIue in the west, in areas 
where stations are seareer: the kriging estimator relies more heavily on the seeondary 
variable when few data on the primary variable are available in the vieinity. 
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Figure 37.3: Kriging mean January temperature in Seotland using elevation data from 
a digitized topographie map as external drift. 
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Figure 37.4: Map of the estimated external drift coefficient bt when using elevation as 
the external drift for kriging temperature with a moving neighborhood. 
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Cross validation with external drift 

The subject of cross validation with the external drift method was examined in detail 
by CASTELlER [37, 38] and is presented in the form of three exercises. The random 
function Z(x) is second order stationary and only one drift function s(x) is taken into 
account. 

EXERCISE 37.2 We are interested in pairs ofvalues (z", so,) of a variable of interest 
Z(x) with a covariance function C(h) and an external drift variable s(x) at locations 
x"' a = 1, ... , n in a domain V. The values are arranged into vectors z and 8 of 
dimension n. 

To c1arify notation we write down the systems of simple kriging, ordinary kriging, 
kriging with external drift and kriging of the mean. 

Simple Kriging (SK): 

CWSK = Co and WSK = Rco with R = C-1. 

Ordinary Kriging (OK): 

( ~ 1) ( WOK ) = (co) 
1 0 -/LOK 1 

i.e. K ( WOK ) = ko, 
-/LOK 

and 

'h K-1 (A v) Wlt = vT u . 

Kriging with external drift (KE): 

(37.11) 

(37.12) 

(37.13) 

( ~ 1 8) (WKE ) (co) 1 0 0 -/LKE 1 
81 0 0 -/L~(E So 

( 
WKE) 

i.e. F =/L~E = fo. (37.14) 
/LKE 

Kriging of the mean (KM): 

K ( WKE ) = (0) , 
-/LKE 1 

(37.15) 

and 

n 

m* L W~K z" = (ZT, 0) K-1 (37.16) 
,,=1 

a) Show that the variance of ordinary kriging is 

2 kT K-1k (JOK = Coo - 0 o· (37.17) 
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b) Using the following relations between matrices and vectors of OK, 

CA + 1 vT = I, 
Cv + lu 0, 

ITA OT 

ITv 1, 

show that the kriging of the mean can be expressed as 

* zTRl 
m = ITRl. 

c) We define Castelier's scalar product 

and a corresponding mean and covariance 

< z,l >, 
< z,s >, 

, 

En[z] 
En[z, s] 

covn(z,s) En[z, s] - En[z] En[s]. 

(37.18) 

(37.19) 

(37.20) 

(37.21) 

(37.22) 

(37.23) 

(37.24) 

(37.25) 

(37.26) 

Detining Castelier's pseudo-scalar product using the inverse K-1 of OK (instead 
of the inverse R of SK), 

(37.27) 

show that 

(37.28) 

d) As the extern al drift is linked to the expectation of the variable of interest by a 
linear relation, 

E[Z(x)] = a + bs(x), (37.29) 

and as the coefficient band the constant a of the external drift are estimated by 

and a' ~ (zc, 0, 0) F-' (n, (37.30) 

show that b* and a* are the coefficients of a linear regression in the sense of Castelier's 
scalar product 

b* 
COVn(z, s) 
covn(s, s) 

and a* (37.31) 
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Figure 37.5: Interpolated salinity computed by the MIKE12 numerical model. 

EXERCISE 37.3 Assume, in a first step, that we have an additional data value Zo at 
the point xo. Let us rewrite the left hand matrix of OK with n + 1 infonnations, 

K = (coo k6) o ko K and K-I = (uoo vi;) 
o vo Ao ' 

where Coo = C(xo-xo), K, ko are defined as in the previous exercise. 
As K o Ko 1 = I, we have the relations 

Coo Uoo + k6 vo = 1, 

kouoo + Kvo = 0, 
T + k6 Ao OT Coo vo = , 

kovX + KAo = I. 

a) Show that 

1 
Uoo = -2-

O"OK 

b) Let Z6 = (zo, zT) and S6 = (so, ST) be vectors of dimension n + 1, and 

Kn+l (zo, so) = (zX, 0) KOI ( s~ ) . 

Showthat 

(37.32) 

(37.33) 

(37.34) 

(37.35) 

(37.36) 

(37.37) 

(37.38) 

Kn+l(zo, so) (37.39) 

Kn(z,s) + uoo(zo-(zT,O)K-lko)·(sO-(ST,O)K-lko). 

c) Let 6.(zolz) be the OK error 

(37.40) 
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Figure 37.6: Variogram of residuals between chlorophyll water samples and drift where 
the interpolated MIKE12 salinity intervenes as an external drift. The experimental 
variogram was computed in two directions (Dl: horizontal, D2: vertical), fitted with a 
spherical model using a geometrie anisotropy. The abscissa should be read in kilometers 
for Dl and in meters for D2. 

Show that 

(37.41) 

and that 

(37.42) 

EXERCISE 37.4 In a second step, we are interested in an OK with n-1 points. We 
write ß(za IZ[a]) for the error at a location X a with a kriging using only the n-1 data 
contained in the vector, 

(37.43) 

and we denote ara] the corresponding ordinary kriging variance. 
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Figure 37.7: Kriging of chlorophyll water samples using the interpolated MIKE12 
salinity as an external drift. 

a) Establish the following elegant relation 

m* 

b) As the coefficient of the drift is estimated by 

show that 

b* - ~ 0 _ JCn(z,s) 
- ~ Wb Zo - JC ( ) , 

0=1 n S,S 

Wb = 
~(SoIS[ol) 

a~l JCn(s, sr 

(37.44) 

(37.45) 

(37.46) 

The computation ofthe errors ~(soIS[ol) can be interesting in applications. They 
can serve to explore the influence of the values So on the KE estimator in a given 
neighborhood. 

Regularity of the external drift function 

CASTELIER [37, 38] has used the description of the influence of the external drift 
data on the kriging weights to show that the external drift should preferably be a 
smoother function than realizations of the primary variable Z (x). This question can 
be checked on data by examining the behavior of the experimental variogram of s( x) 
and comparing it with the variogram model adopted for Z(x). The behavior at the 
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Figure 37.8: Three independent conditional simulations of chlorophyll taking account 
of MIKE12 salinity. The greyscale is the same as on Figure 37.7. 
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origin of the experimental variogram of s(x) should be more regular than that of the 
variogram model of Z(x). 

For example, using the same setting as in the previous section, the ratio of the 
squared cross-validation error of the external drift kriging with respect to the variance 
a raJ of ordinary kriging (omitting the sam pie at the location x a ), 

~(Sa IS[aJ)2 
2 

a[aJ 
(37.47) 

could in an ideal situation be constant for all X a • In this particular case s(x) could be 
considered as a realization (up to a constant factor) ofthe random function Z(x) and 
the covariance function of the external drift would be proportional to the covariance 
function of Z(x). This ratio is worth examining in practice as it explains the structure 
of the weights used for estimating the external drift coefficient b* (see Exercise 37.4). 

Cokriging with multiple external drift 

The last problem to consider is how to set up a cokriging with multiple external drift. 
In practice, however, it may be quite tricky to formulate the corresponding coregion
alization model. 

We consider a set of external drifts Sk. k= 1 ... K that are available both at the 
sampie locations and at the prediction locations (typically the nodes of a grid spanned 
over the domain). Assuming the variables Zi(X) are related to the second set of vari
ables Sk by the relations: 

K 

E[Zi(X)] = L a~ + b~ Sk(X) for i = 1, . .. ,N, (37.48) 
k=l 

the samples of the second set can be included into the ordinary cokriging system using 
additional constraints, 

n, 
LW! Sk(Xa ) = 6iio Sk(XO) for all i. (37.49) 
a=l 

The cokriging system with multiple external drift finally comes as 

N ~ K 

L L w~ 'Yij(Xa-Xß) + f..li + L f..lk Sk(Xa ) = 'Yiio(Xa-Xo) for Va, i, 
j=l ß=l k=l 

ni 

L w~ = 6iio 
ß=l 

for Vi, (37.50) 

ni 

L w~ Sk(Xß) = 6iio Sk(XO) for Vi, k, 
ß=l 
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where fJ,i, fJ,k are Lagrange multipliers. 
The external drift variables Sk on one hand need to be linearly related to the dif

ferent variables Zi in conjunction with which they are used. On the other hand the 
different drift variables have to be linearly independent among themselves. A con
stant external drift for example is redundant with the condition that the weights of the 
principal variable should satisfy L w~ = 1 and will thus cause the cokriging system 
to be singular. 

Ebro estuary: numerical model output as external drift 

We pursue the case study of Chapter 27 using the ouput of a hydrodynamical model 
as external drift. The software package MIKE12 [89, 255] provides a two-Iayer model 
which enables computation of the average concentration, average temperature, aver
age salinity and water level for the top and the bottom layers of the estuary. 

We display on Figure 37.5 an interpolated map based on MIKE12 salinity output 
for the Ebro estuary on the 5th October 1999. It is interesting to note that contrarily 
to the kriged map of conductivity on Figure 27.3 on p186 the MIKE12 model output 
suggests that the transition zone between fresh water and salt wedge may not be hor
izontal (as assumed when defining the anisotropy in the different variogram models 
used up to this point). Its inclination reflects an upstream downward slope of the up
per limit of the salt wedge resulting from the dynamics incorporated into the model 
and does not seem incompatible with the Hydrolab data displayed on Figure 27.1 on 
p184. So the model provides a new perspective that can be used in a kriging of the 
chlorophyll values. 

The variogram of residuals between chlorophyll water sampIes and drift (where the 
interpolated MIKE12 salinity intervened as an external drift) is shown on Figure 37.6. 
The extemal drift kriging based on this model is displayed on Figure 37.7. Comparing 
it with the cokriging on Figure 27.7 we can see the effect ofthe MIKE12 model output 
which results in an inclined transition zone throughout the estuary. 

Comparing results of conditional simulations and kriging 

Stochastic conditional simulations using the external drift geostatistical model were 
performed and three independent realizations are displayed on Figure 37.8, which 
are all compatible with the chlorophyll water sampies. To get an idea of how much 
the different estimations of the distribution of chlorophyll within the analyzed cross 
section of the Ebro river differ we summarize the results using selectivity curves T ( z ) 
and m(z) which were presented in Chapter 31. 

On Figure 37.9 we see curves T(z) that represent the proportion of chlorophyll 
above cutoff z (in the Ebro river section). At cutoff 15 mglm3 the four displayed 
curves (starting from the lowest) are: 

• the kriged chlorophyll values using the MIKE12 external drift, as displayed on 
Figure 37.7 (thick curve); 
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Figure 37.9: Proportion T(z) of chlorophyll values above cutoff z. Comparison of 
external drift kriging (thick curve) with different simulations. 

• one of the realizations of a corresponding conditional simulation, as displayed 
on Figure 37.8 (dashed curve); 

• a realization of a conditional simulation using a cubic variogram model, as dis
played on the upper graph ofFigure 27.11 (dotted curve); 

• a realization of a conditional simulation using an exponential variogram model, 
as displayed on the lower graph of Figure 27.11 (dotted curve); 

The proportion of chlorophyll decreases when the cutoff is increased, so all four 
curves decrease. The kriging can be viewed as the average of a great many real
izations: that is why it is smoother as individual realizations. At one end, the cor
responding proportion of values for large values, say above 14 mglm3, is lower for 
kriging than for the conditional simulations; at the other end, say below 3 mglm3, the 
reverse occurs, i.e. the proportion of kriged values above cutoff is larger than for the 
simulations. Among the different realizations the one from a simulation incorporating 
external drift has a lower proportion for cutoffs above 14 mglm3• For problems in 
which the cutoff is equal to the median it does not make a difference whether kriged 
or simulated values are used to compute the proportion of chlorophyll above cutoff. 

The Figure 37.10 plots the curves m(z), representing the mean ofthe values above 
cutoff, for the same four calculations (kriging with external drift, conditional simula-
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Figure 37.10: Mean mez) of chlorophyll values above cutoff z. Comparison of external 
drift kriging (thick curve) with different simulations. 

tions with or without external drift). The kriging is smoother than the simulations 
and yields systematically lower estimates of mean values above 11 mglm3 or below 
4 mglm3 • The simulations that are not constrained by external drift yield larger esti
mated values than the simulation (dashed !ine) incorporating MIKE12 output as ex
ternal drift. 



38 Universal Kriging 

The external drift approach has left questions about the inference of the variogram 
unanswered. The theory of universal kriging, i.e. kriging with several universality 
conditions, will help deepen our understanding. The universal kriging model splits 
the random function into a linear combination of deterministic functions, known at 
any point of the region, and a random component, the residual random function. It 
turns out that this model is in general difficult to implement, because the underlying 
variogram of the random component can only be inferred in exceptional situations. 

Universal kriging system 

On a domain V we have functions fl of the coordinates x, which are considered de
terministic, because they are known at any location of the domain. 

The random function Z(x) is composed of a deterministic component m(x), the 
drift, and a second-order stationary random function Y(x), 

Z(x) = m(x) + Y(x). (38.1) 

Assuming in this section that Y(x) is second-order stationary with a mean zero 
and a covariance function C(h), we have 

E[ Z(x) 1 = m(x). (38.2) 

We suppose that the drift m(x) can be represented as a linear combination of the 
deterministic fl functions with non-zero coefficients at, 

L 

m(x) = Lai fl(x). (38.3) 
1=0 

The function fo(x) is defined as constant 

fo(x) = 1. (38.4) 

For kriging we use the linear combination 

n 

Z*(xo) = L W Oi Z(xOi ). (38.5) 
01=1 
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We want no bias 

E[ Z(xo) - Z*(xo) 1 0, (38.6) 

which yields 

n 

m(xo) - LW" m(x,,) 0, (38.7) 
,,=1 

and 

L n 

Lai (fl(XO) - LW" fl(Xa )) 0. (38.8) 
,,=1 

As the al are non zero, the following set of constraints on the weights w" emerges 

n 

LW" fl(X,,) = ft(xo) for I = 0, ... , L, (38.9) 
,,=1 

which are called universality conditions. 
For the constant function fo(x) this is the usual condition 

n 

LW" = l. (38.10) 
,,=1 

Developing the expression for theestimation variance, introducing the constraints 
into the objective function together with Lagrange parameters MI and minimizing, we 
obtain the universal kriging (UK) system 

n L 

L wß C(x,,-xß) - L MI !l(x,,) = C(x,,-xo) 
ß=1 1=0 

n 

L wß !l(xß) = fl(XO) 
ß=1 

and in matrix notation 

fora=l, ... ,n 

for I = 0, ... , L, 

For this system to have a solution, it is necessary that the matrix 

F = (fo, ... ,fd 

(38.11) 

(38.12) 

(38.13) 

is of full column rank, i.e. the column vectors f1 have to be linearly independent. This 
means in particular that there can be no other constant vector besides the vector fo. 
Thus the functions !l(x) have to be selected with care. 
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Estimation of the drift 

The drift can be considered random if the coefficients multiplying the deterministic 
functions are assumed random 

L 

M(x) = LAI fl(X) with E[Atl = al. (38.14) 
1=0 

A specific coefficient A lo can be estimated from the data using the linear combi
nation 

n 

Ato = L w~ Z(xa ). 

a=l 

In order to have no bias we need the following L constraints 

~ a ( ) {I if I = 10 
~ Wlo ft X a = Ollo = 0 if I -=1= 10. 

(38.15) 

(38.16) 

Computing the estimation variance of the random coefficient and minimizing with 
the constraints we obtain the system 

n L 

L wfo C(xa-xß) - L /-lllo fl(Xa) = 0 fora= 1, ... ,n 
ß=l 1=0 

n 
(38.17) 

L wfo ft(xß) = Ollo for I = 0, ... , L. 
ß=l 

What is the meaning of the Lagrange multipliers /llol, (for two fixed indices 10 and 
h)? We start from 

n n 

cov(At" Ato) = L L w~ wfo C(xa-xß)· (38.18) 
a=l ß=l 

Taking into account the kriging equations, 

n n n L 

L w~ L wfo C(xa-xß) L w~ L /lllo ft(xa) , (38.19) 
a=l ß=l a=l 1=0 

and the constraints on the weights, 

L n 

L /-lilo L w~ fl(Xa) (38.20) 
1=0 a=l 

we see that 

(38.21) 
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Figure 38.1: Scatter diagrams of temperature with longitude and latitude: there is a 
systematic decrease from west to east, while there is no such trend in the north-south 
direction. 

A Lagrange parameter /-lloh represents the covariance between two drift coeffi
cients indexed lo and lI. 

The estimated drift at a specific location is obtained by combining the estimated 
coefficients with the values of the deterministic functions at that location, 

L 

m*(xo) = L a7 !l(xo). (38.22) 
1=0 

It can be shown that the same solution is obtained without explicitly estimating the 
drift coefficients, simply by a kriging of the me an function 

n 

M*(xo) LW~MZ(Xa). (38.23) 
a=I 

The corresponding system is 

n L 

LW~MC(Xa-Xß) - L/-l~Mfl(Xa) = 0 for ct= 1, ... ,n 
ß=I 1=0 

(38.24) 
n 

L W~M fl(Xß) = fl(XO) for l = 0, ... , L. 
ß=I 

Underlying variogram and estimated residuals 

We have studied the case of a known covariance function (which is equivalent to a 
bounded variogram). In practice we need to infer the variogram in the presence of 
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drift. In the decomposition of Z(x) into drift and a residual random function, 

Y(x) = Z(x) - m(x), (38.25) 

we have not discussed how the underlying variogram ,(h) associated with Y ean be 
inferred, knowing that both quantities, drift and residual, need to be estimated. The 
underlying variogram is defined as 

11 2 
,(h) = 2 var(Z(x+h) - Z(x)) = 2 E[ (Y(x+h) - Y(x))]. (38.26) 

Experimentally we have access to an estimated residual R*(x) by forming the 
difference between an estimated drift M*(x) and Z(x) at data loeations x a , 

L 

R*(xa ) = Z(xa ) - M*(xa ) = Z(x,,) - L At ft(xa ). (38.27) 
1=1 

In the drift, the term Aü associated with the 10= 1 monomial has been dropped 
right away as it will vanish in the variogram expressions, because inerements will be 
taken, which are zero for this monomial. By the way the estimation of the term Aü is 
problematie within the framework of an intrinsic hypothesis: this question is dwelled 
at length in [200, 45, 44]. 

The variogram of the estimated residuals between two data loeations is 

~ E[ (R*(xa ) - R*(Xß))2] 

1 
,(xa , xß) + 2 var(M*(xa ) - M*(xß)) (38.28) 

- cov ((Z(xa ) - Z(xß)), (M*(xa ) - M*(xß))). 

The variogram of the estimated residuals is composed of the underlying variogram 
and two terms representing bias. 

If S is the set of sampie points, we can define the geometrie eovariogram of the 
sampie points as 

Sis(h) = J ls(x) ls(x+h) dx, 

V 

(38.29) 

where V is the domain of interest and ls(x) is the indieator funetion of the sampie 
set. 

The experimental regional variogram of the estimated residuals is then computed 
as 

G*(h) 2 Si~(h) J ls(x) ls(x+h) (R*(x+h) - R*(x)) dx. (38.30) 

v 
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Taking the expectation of G* (h) gives a three terms expression, which is however 
not equal to the underlying variogram 

(38.31) 

where 

1 ! 2 2.fts (h) l s (x) ls(x+h) E[ (Z(x+h) - Z(x)) 1 dx, (38.32) 

D 

1 ! L T2 2.fts(h) l s (x) ls(x+h) L(E[A;(Z(x+h) - Z(x)) 1 
D 1=1 

X (fl(x+h) - fz(x))) dx, (38.33) 

1 ! L L 
T3 2.fts (h) l s (x) ls(x+h) L L cov(Ar, A~) 

D 1=1 s=1 

X (fl(x+h) - fl(X)) (fs(x+h) - fs(x)) dx. (38.34) 

The first term is the underlying variogram while the two other terms represent the 
bias, which is generally considerable. If we assume to know the drift, replacing Ar by 
al, the second term vanishes, but not the third, 

(38.35) 

Thus even with known drift we can only hope to obtain the underlying variogram 
from the variogram of the residuals in the vicinity of the origin. Due to its smooth
ness, the increments of the drift have a small value at very short distances, making T 3 

negligible. 
For regularly gridded data two methods exist for inferring the underlying vari

ogram (see [199, 48]). For data irregularly scattered in space, in few exceptional 
situations the underlying variogram is directly accessible: 

- when the drift occurs only in one part of a domain which is assumed homoge
neous, then the variogram model can be inferred in the other, stationary part of 
the domain and transferred to the non stationary part; 

- when the drift is not active in a particular direction of space, the variogram 
inferred in that direction can be extended to the other directions under an as
sumption of isotropie behavior of the underlying variogram. 

To these important exceptions we can add the case of a weak drift, when the vari
ogram can reasonably weH be inferred at short distances, for which the bias is assumed 
not to be strong. This situation is very similar to the case when ordinary kriging is ap
plied in a moving neighborhood with a 10caHy stationary model. The necessity for 
including drift terms into the kriging system may be subject to discussion in that case 
and is usuaHy sorted out by cross-validation. 
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Figure 38.2: Variograms of average January temperature data in the east-west and 
north-south directions: a model is fitted in the direction with no drift. 

EXAMPLE 38.1 The Scottish temperature data [146] provides an example for drift 
being absent in a partieular direetion of spaee. On Figure 38.1 we see the seatter 
diagrams of average January temperature in Scotland plotted against longitude and 
latitude . Clearly there is a systematic decrease of mean temperature from west to east 
(longitudes) due to the effeet of the Gulf stream whieh warms up the western coast of 
Scotland in the winter. Along latitudes there is no trend to be seen. 

The variograms along longitude and latitude are shown on Figure 38.2. The east
west experimental variogram is influenced by the drift and grows without bounds 
while the shape of the north-south variogram suggests a sill: the latter has been mod
eled using three spherieal functions with ranges of 20, 70 and 150km. By assum
ing that the underlying variogram is isotropie, we ean use the north-south variogram 
model also in the east-west direction. The interpretation of the east-west experimental 
variogram is that drift masks off the underlying variogram in that direetion. 

From universal to intrinsie kriging 

In general it is difficult and cumbersome to infer the undedying variogram (assuming 
it existence). Two steps will lead us to a more sound and workable model: 
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1. The dass of deterministic functions is restricted to functions which are 
translation-invariant and pairwise orthogonal, i.e. the dass of exponentials
polynomials. 

2. A specific structural analysis tool is defined, the generalized covariance function 
K(h), which filters these translation-invariant functions. 

As the variogram represents only a particular subc1ass of generalized covariances, 
we understand that the quest for the underlying variograrn was doomed to be vain: the 
residuals may have a structure which is simply not cornpatible with a variogram and 
which can only be captured by a generalized covariance. 

Instead of building a model by pasting together a second-order stationary (or in
trinsic) random function and a given drift which will generate universality conditions 
in the kriging system, we will have a different approach. We take a particular dass 
of deterministic functions and infer genenilized covariance functions filtering them, 
what leads to authorization constraints instead of universality conditions in the krig
ing system. Thus we will speak of intrinsic kriging as its formulation and meaning 
changes within the theory of generalized intrinsic randorn functions. We provide a 
very elementary sketch of that powerful theory of in the next chapter. 
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The characterization of the drift by a linear combination of translation-invariant de
terministic functions opens the gate to the powerful theory of the intrinsie random 
functions of order k. A more general tool of structural analysis than the variogram can 
be defined in this framework: the generalized covariance function. The constraints on 
the weights in the corresponding intrinsie kriging appear as conditions for the positive
definiteness of the generalized covariance. ParaUels between this formulation and the 
spline approach to interpolation can be drawn. 

Exponential-polynomial basis functions 

With estimation problems in mind we consider sets weights Wo: which interpolate 
exactly some basis functions !t(x), 

n 

(39.1) 

for any l = 0, ... , L. 
By introducing a weight Wo = -1 we can rewrite the expression as 

n 

L Wo: fl(Xo:) = 0 for l = 0, ... , L, (39.2) 
0:=0 

and we caU this an authorized linear combination, which filters the functions !t (x) for 
a set of n+ 1 points Xo:. 

The authorized linear combination should be translation-invariant for aUl and for 
any vector h: 

n n 

o L Wo: fl(Xo:+h) o. (39.3) 
0:=0 

To achieve this, the L + 1 basis functions fl(X) should generate a translation
invariant vector space. It can be shown [210] that only sets of functions belonging to 
the dass of exponentials-polynomials fulfiU this condition. Families in this dass are 
polynomials of degree ::; k, trigonometrie functions and exponential functions. 
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COMMENT 39.1 In two spatiaI dimensions with coordinate vectors x = (Xl, X2)T the 
fo11owing monomiaIs are often used 

fo(x) 
h(x) 

I, JI(x) = Xl, h(x) = X2, 

(Xt}2, /4 (x) = Xl· X2, f5(X) = (X2?' (39.4) 

which generate a translation invariant vector space. The actuaI number L+ 1 of basis 
functions of the drift depends on the degree k of the drift in the fo11owing way: 

for k = 0 we have one basis function and L = 0, 
for k = 1 we have three basis functions and L = 2, 
for k = 2 we have six basis functions and L = 5. 

Intrinsic random functions of order k 

Let w be a measure L Wo: öX " which attributes weights Wo: to points Xo: and let us 
denote by 

n 

Z(w) L Wo: Z(xo:) (39.5) 
0:=0 

the linear combination of these weights with random variables at locations Xo: in a 
domain 'D. 

The vector space of authorized linear combinations Wk contains the measures for 
which the corresponding weights filter the basis functions, i.e. w E W k if the Wo: fulfill 
equation (39.2) for any l. 

A non-stationary random function Z(x) is called an intrinsic random function 0/ 
order k (IRF-k) iffor any measure w E W k the linear combination 

n 

L Wo: Z(xo:+h) (39.6) 
0:=1 

is zero-mean second-order stationary for any vector h. 

COMMENT 39.2 We want to mention that a more abstract definition is possible [203]. 
The linear combination (39.6) can be denoted by Z(Th w), where Th is a translation 
operator. We can then ca11 an abstract IRF-k the linear application Z of the space Wk 

into a Hilbert space of random variables of zero-expectation and finite variance, such 
that for any w E Wk the random function Z ( Th w) is second-order stationary in h. The 
abstract Z describes the dass of a11 IRF-k having the same k-order increments as a 
given Z(x), which is caIled a representation of Z. 
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Generalized covariance function 

Asymmetrie funetion, K (h) = K ( - h), is a generalized covariance function of an 
IRF-k Z if 

n n 

var(Z(w)) = LLwo:wßK(xO:-Xß) (39.7) 
0:=1 ß=l 

for any w E Wk • The existenee and uniqueness of K(h) ean be demonstrated, 
see [203]. 

It is interesting to note that in analogy to the property (7.10) of the variogram we 
have 

lim K(h) 
Ihl>-+oo Ih 12k+2 

o. (39.8) 

Aetually a generalized covariance is a k-th order conditionally positive definite 
funetion 

n n 

(39.9) 
0:=0 ß=O 

n 

for L Wo: fl(Xo:) = 0, l = 0, ... ,L. 
0:=0 

From the definition (39.9) we see that the negative of the variogram is the gener
alized covariance of an intrinsic random function of order zero 

K(h) = -'Y(h) for k = O. (39.10) 

The theory of intrinsically stationary random funetions of order k provides a gen
eralization of the random functions with seeond order stationary increments, whieh 
themselves were set in a broader framework than the second order stationary func
tions. 

The inference of the highest order of the drift polynomial to be filtered and the 
selection of a corresponding optimal generalized covariance is performed using auto
matie algorithms, whieh we shall not describe here (see for example [80, 158, 242, 
51]). 

EXAMPLE 39.3 A possible model for a k-th order generalized covariance is 

with 0 < () < 2k+2, (39.11) 

where r(·) is the gamma function. 
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EXAMPLE 39.4 From the preeeding model a generalized eovarianee ean be derived 
whieh has been (unfortunate1y) eal1ed the polynomial model 

k 

Kpol(h) = L bu (-1 )u+l Ihl 2u+l with bu :::: O. (39.12) 
u=o 

The eonditions on the eoeffieients bu are suffident. Looser bounds on these eoeffi
dents are given in MATHERON [203]. 

The po1ynomial generalized eovarianee model is a nested model whieh has the 
striking property that it is buHt up with severa1 struetures having a different behavior 
at the origin. For k= 1 (linear drift) the term for u= 0 is linear at the origin and is 
adequate for the deseription of a regionalized variable whieh is eontinuous but not 
differentiab1e. The term for u= 1 is eubie and thus appropriate for differentiab1e re
gionalized variables. 

If a nugget-effeet component is added to the po1ynomial generalized eovarianee 
model, diseontinuous phenomena are also eovered. This extended po1ynomial gen er
a1ized eovarianee model is flexible with respeet to the behavior at the origin and well 
suited for automatie fitting: inessentia1 struetures get zero weights bu , provided the 
fitting is correet. 

The po1ynomial generalized eovarianee model ean be used with a moving kriging 
neighborhood. 

Intrinsic kriging 

To estimate a value at a loeation xo, using a linear eombination of weights W a with 
data, the error 

n 

(39.13) 
a=1 

should be an authorized linear combination, i.e. the weights should satisfy (39.2). 
The estimation varianee in terms of the generalized eovarianee eomes as 

(39.14) 

n n n 

= K(xo-xo) - 2 L W a K(xo-xa) + L L W a wß K(xa-xß)· 
a=1 a=lß=l 

Minimizing this varianee respeeting the eonstraints (39.2) we get the intrinsic krig
ing system 

n L 

L wß K(xa-xß)ds - L MI fl(Xa) for Q;= 1, ... ,n 
ß=l 1=0 

n 
(39.15) 

for l = 0, ... , L. 
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We have exaetly the same system as for universal kriging, see expression (38.11), 
page 301. The meaning of the eonstraints has ehanged however: they show as au
thorization constraints in intrinsie kriging, being eonditions for the existenee of the 
generalized eovarianee funetion K(h) in the IRF-k model. 

Trigonometrie temporal drift 

To motivate the problem of spaee-time drift let us take the example of earth magnetism 
measured from a traveling ship (see SEGURET & HUCHON [297]). When studying the 
magnetism of the earth near the equator, a strong variation in time is observed which 
is due to the 24 hour rotation of the earth. Measurements taken from a ship whieh 
zigzags during several days in an equatorial zone need to be corrected from the effeet 
of this periodic variation. 

The magnetism is modeled with a space-time random funetion Z(x, t) using two 
uneorrelated intrinsie random funetions of order k, Zk,w(X) and Zk,w(t), as weH as 
spatial polynomial drift mk(x) and temporal periodie drift mw(t) 

(39.16) 

where x is a point of the spatial domain V and t is a time eoordinate. 
The variation in time of earth magnetism is known from stations on the land. Near 

the equator a trigonometrie drift is dominant, 

mw,cp(t) = sin(wt+rp), (39.17) 

with aperiod of w=24 hours and a phase rp. Using a weH-known relation this can be 
rewritten as 

mw(t) = a sin(w t) + b cos(w t), (39.18) 

where a = cos rp and b = sin rp are multiplieative eonstants whieh will be expressed 
implicitly in the weights, so that the phase parameter rp does not need to be provided 
explieitly. 

Filtering trigonometrie temporal drift 

In an equatorial region the time eomponent Zk,w(t) of magnetism is usuaHy present 
as weak noise while the temporal drift dominates the time dimension. Neglecting the 
random variation in time, the model ean be expressed as the approximation 

(39.19) 

For mapping magnetism without the bias of the periodic variation in time, the gen
eralized eovarianee is inferred taking into aecount the spaee-time drift. Subsequently 



Translation Invariant Drift 313 

the temporal drift is filtered by setting the corresponding equations to zero on the right 
hand side of the following intrinsic kriging system 

n 

EWßK(x,,-xß) 
ß=l 

n 

E wß fl(xß) = fl(xo} 
ß=l 

n 

E wß sin(wtß} = @] 
ß=l 

n 

E Wß cos(w tß) = @]. 
ß=l 

L 

- EJ.t1 /!(x,,) - Vl sin(wt,,) - V2 cos(wt,,) 
1=0 

= K(x,,-Xo) fora= 1, ... ,n 

forl = O, ... ,L 
(39.20) 

If however the random component Z k,w ( t) is significant, we need to infer its gen
eralized covariance K(r) and to filter subsequently Z(t) = Zk,w(t) + mw(t) using the 
system 

n L 

E wß I K(x,,-xß, t,,-tß) I -E J.tl fl(x,,) - Vl sin(w t,,) - V2 cos(w t,,) 
ß=l 1=0 

n 

E wß fl(xß) = /!(xo) 
ß=l 

n 

E wß sin(w tß) = 0 
ß=l 

n 

E wß cos(w tß) = 0, 
ß=l 

= K(xa-xo) fora= 1, ... ,n 

forl = O, ... ,L 
(39.21) 

where the terms K(x,,-xß, t,,-tß) are modeled as the sum of the generalized covari
ances K(x,,-xß) and K(ta-tß). 

Dual kriging 

We now examine the question of defining an interpolation function based on the krig
ing system. The interpolator is the product of the vector of sampies z with a vector of 
weights W x which depends on the location in the domain, 

z*(X) = ZT W x . (39.22) 

The weight vector is solution of the kriging system 

(39.23) 
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in which all terms dependent on the estimation loeation have been subseripted with an 
x. In this formulation we need to solve the system eaeh time for eaeh new interpola
tion loeation. As the left hand matrix does not depend on x, let us define its inverse 
(assuming its existenee) as 

(39.24) 

The kriging system is 

(39.25) 

The interpolator ean thus be written 

(39.26) 

Defining b T = Z T T and dT = z T U the interpolator is a funetion of the right hand 
side of the kriging system 

(39.27) 

Contrarily to the weights w x , the weights band d do not depend on the target 
point x. 

Combining the data veetor z with a veetor of zeroes, we ean set up the system 

(39.28) 

whieh, onee inverted, yields the dual system of kriging 

(39.29) 

There is no referenee to any interpolation point x in this system: it needs to be 
solved only onee for a given region. 

It should be noted that when the variable to investigate is equal to one of the deter
ministic funetions, e.g. z(x)= h(x), the interpolator is z*(x)= wT fl. As the weights 
are eonstrained to satisfy wT f l= fl(x) we see that z*(x)= ft(x) = z(x). Thus the 
interpolator is exaet for fl(x). This c1arifies the meaning of the eonstraints in krig
ing: the resulting weights are able to interpolate exaetly eaeh one of the deterministie 
funetions. 

Splines 

The mathematical spline funetion took its name from the draftmen's meehanieal 
spline, which is "a thin reedlike strip that was used to draw eurves needed in the 
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fabrication of cross-sections of ships' hulls" [347]). We shall restrain discussion to 
the case of smoothing thin-plate splines. A general framework for splines (with an an
notated bibliography) is presented in CHAMPION et al. [40]. The equivalence between 
splines and kriging is analyzed in more depth in MATHERON [212] and Wahba [347]). 

The model for the smoothing splines can be written as 

Z(x) = <fJ(x) + 
'-v-" 

smooth 

Y(x) 
~ 

white noise 

where <fJ(x) is estimated by a smooth function g minimizing 

n 

L (<fJ(x,,) - g(X,,))2 + A Jp(g) 
,,=1 

(39.30) 

(39.31) 

with Jp(g) a measure of roughness (in terms of pth degree derivatives) and A > 0 a 
smoothing parameter. 

The g(x) function is written as the sum of two terms 

n L 

g(x) = L b" 7jJ(x - x,,) + Ldtfl(X), (39.32) 
,,=1 1=0 

where 

(39.33) 

is a p-1 conditional positive definite function (in geostatistics this generalized covari
ance is known as the spline covariance model). 

The weights b" and d1 are solution of 

(39.34) 

This system is equivalent to the dual kriging system (39.29). In the randorn func
tion model we can understand the term AI as a nugget-effect (white noise) added to 
the variances at data locations, but not to the variance at the estimation location. So, 
in geostatistical terms, the system (39.34) represents a filtering of the nugget-effect 
component on the basis of a non-stationary linear model of regionalization. 

In the spline approach the parameters are obtained by generalized cross validation 
(GCV), which is a predictive mean square error criterion (leave-one-out technique) to 
estimate the degree p = k+ 1 of the spline and the smoothing parameter A. 

Synthetic examples are discussed in WAHBA [347] on pages 46-47 and 48-50. 
DUBRULE [97] presents an example from oil exploration from the point of view of 
geostatistics. HUTCHINSON & GESSLER [147] have treated the same data set with 
splines and show that they can obtain equivalent results; in particular, they provide 
prediction errors from a Bayesian model which are analogous to the kriging standard 
deviations. 
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Matrix Algebra 

This review consists of a brief exposition of the principal results of matrix algebra, 
scattered with a few exercises and examples. For a more detailed account we recom
mend the book by STRANG [318]. 

Data table 

In multivariate data analysis we handle tables of numbers (matrices) and the one to 
start with is generally the data table Z 

Variables 
(columns) 

Zl,l Zl,i Zl,N 

Samples [Zni] = Z. (1.1) 

(rows) Zn,l Za,i Zo:,N 

Zn,l Zn,i Zn,N 

The element Zni denotes a numerical value placed at the crossing of the row num
ber a (index of the sample) and the column number i (index of the variable). 

Matrix, vector, scalar 

A matrix is a rectangular array of numbers, 

(1.2) 

with indices 

i = 1, ... ,n, j = 1, ... ,m. (1.3) 

We speak of a matrix of order n x m to designate a matrix of n rows and m 
columns. 

A vector (by convention: a column vector) of dimension n is a matrix of order 
n x 1, i.e. a matrix having only one column. 

A scalar is a number (one could say: a matrix of order 1 xl). 
Concerning notation, matrices are symbolized by bold capital letters and vectors 

by bold small caps. 
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Sum 

Two matrices of the same order can be added 

(1.4) 

The sum of the matrices is performed by adding together the elements of the two 
matrices having the same index i and j. 

Multiplication by a scalar 

A matrix can be multiplied equa11y from the right or from the left by a scalar 

(1.5) 

which amounts to multiply a11 elements aij by the scalar A. 

Multiplication of two matrices 

The product AB of two matrices A and B can only be performed if B has as many 
rows as A has columns. Let A be of order n x m and B of order m x [. The 
multiplication of A by B produces a matrix C of order n x [ 

A . B = [ f aij bjk] = [eik] = C , 
(nxm) (mxl) j=1 (nxl) 

(1.6) 

where i = 1, ... , n and k = 1, ... , [. 
The product BA of these matrices is only possible if n is equal to [ and the result 

is then a matrix of order m x m. 

Transposition 

The transpose AT of a matrix A of order n x m is obtained by inverting the sequence 
of the indices, such that the rows of A become the columns of AT 

(1.7) 

The transpose of the product of two matrices is equal to the product of the trans
posed matrices in reverse order 

(1.8) 

EXERCISE 1.1 Let 1 be the vector of dimension n whose elements are a11 equal to 1. 
Carry out the products 1 Tl and 11 T . 
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EXERCISE 1.2 Ca1culate the matrices resulting tram the products 

and (1.9) 

where Z is the n x N matrix oi the data. 

Square matrix 

A square matrix has as many rows as columns. 

Diagonal matrix 

A diagonal matrix D is a square matrix whose only non zero elements are on the 
diagonal 

(
du 

D = 0 
o 

o 
o ) o . 

dnn 

(1.10) 
o 

In particular we mention the identity matrix 

(1.11) 

which does not modify a matrix of the same order when multiplying it from the right 
or from the left 

AI IA=A. (1.12) 

Orthogonal matrix 

A square matrix A is orthogonal if it verifies 

(1.13) 

Symmetrie matrix 

A square matrix A is symmetrie if it is equal to its transpose 

(1.14) 
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EXAMPLE I.3 An example of a symmetrie matrix is the variance-eovariance matrix 
V, containing the experimental variances Sii on the diagonal and the experimental 
eovarianees Sij off the diagonal 

1 T 
V = [Sij] = - (Z - M) (Z - M) , 

n 
(1.15) 

where M is the reetangular n x m matrix of the means (solution of the exercise 1.2), 
whose eolumn elements are equal to the mean of the variable corresponding to a given 
eolumn. 

EXAMPLE 1.4 Another example of a symmetrie matrix is the matrix R of eorrelations 

(1.16) 

where D r1 is a diagonal matrix containing the inverses of the experimental standard 
deviations Si = .jSii of the variables 

1 
0 0 

y'SU 

D.-l 0 0 (1.17) 

0 0 
1 

v'SNN 

Linear independence 

A set of vectors {al,' .. ,a.n} is said to be linearly independent, if there exists no 
trivial set of scalars {Xl, ... , xm } such as 

m 

Lajxj = O. 
j=l 

(1.18) 

In other words, the linear independence of the columns of a matrix A is acquired, 
if only the nul vector x = 0 satisfies the equation Ax = O. 

Rank of a matrix 

A rectangular matrix can be subdivided into the set of column vectors which make it 
up. Similarly, we can also consider a set of "row vectors" of this matrix, which are 
defined as the column vectors of its transpose. 

The rank of the columns of a matrix is the maximum number of linearly inde
pendent column vectors of this matrix. The rank of the rows is defined in an analog 
manner. It can be shown that the rank of the rows is equal to the rank of the columns. 

The rank of a rectangular n x m matrix A is thus lower or equal to the smaller of 
its two dimensions 

rank(A) ~ min(n, m). (1.19) 
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The rank of the matrix A indicates the dimension of the vector spaces 1 M (A) and 
N(A) spanned by the columns and the rows of A 

M(A) = {y: y = Ax}, N(A) = {x: x = yT A}, (L20) 

where x is a vector of dimension m and y is a vector of dimension n. 

Inverse matrix 

A square n x n matrix A is singular, if rank ( A) < n, and non singular, if ranke A) = n. 
If Ais non singular, an inverse matrix A -1 exists, such as 

(L21) 

and A is said to be invertible. 
The inverse Q-l of an orthogonal matrix Q is its transpose QT. 

Determinant of a matrix 

The determinant of a square n x n matrix A is 

n 

det(A) = Z)_1)N(k1 , ••• ,kn ) rr aiki' (L22) 
i=1 

where the sum is taken over all the permutations (k1 , ... , kn ) of the integers (1, ... , n) 
and where N(k1, ... ,kn ) is the number of transpositions of two integers necessary to 
pass from the starting set (1, ... , n) to a given permutation (k 1, ... , kn ) of this set. 

In the case of a 2 x 2 matrix there is the well-known formula 

A = (a b) 
cd' 

det(A) = ad - bc. (L23) 

A non-zero determinant indicates that the corresponding matrix is invertible. 

Trace 

The trace of a square n x n matrix is the sum of its diagonal elements, 

n 

tr(A) Laii' (L24) 
i=l 

Ido not mix up: the dimension of a vector and the dimension of a vector space. 
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Eigenvalues 

Let A be square n x n. The eharaeteristie equation 

det(AI - A) = 0 (1.25) 

has n in general eomplex solutions A ealled the eigenvalues of A. 
The sum of the eigenvalues is equal to the traee of the matrix 

n 

tr(A) = LAp • (1.26) 
p=l 

The produet of the eigenvalues is equal to the determinant of the matrix 
n 

det(A) = rr Ap • (1.27) 
p=l 

If A is symmetrie, all its eigenvalues are real. 

Eigenvectors 

Let A be a square matrix and A an eigenvalue of A. Then veetors x and y exist, whieh 
are not equal to the zero veetor 0, satisfying 

(AI - A)x = 0, (1.28) 

l.e. 

Ax = AX, (1.29) 

The veetors x are the eigenveetors of the eolumns of A and the y are the eigen
veetors of the rows of A. 

When A is symmetrie, it is not neeessary to distinguish between the eigenveetors 
of the eolumns and of the rows. 

EXERCISE I.5 Show that the eigenvaIues of a squared symmetrie matrix A 2 = AA 
are equaI to the square of the eigenvaIues of A. And that any eigenveetor of A is an 
eigenveetor of A 2 • 

Positive definite matrix 

Definition: asymmetrie n x n matrix A is positive definite, iff (if and only it) for any 
non zero veetor x the quadratic form 

xT Ax > O. (1.30) 

Similarly A is said to be positive semi-definite (non negative definite), iff 
x T Ax ~ 0 for any vector x. Furthermore, A is said to be indefinite, iff 
xT Ax > 0 for some x and xT Ax < 0 for other x. 
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We notice that this definition is similar to the definition of a positive definite func
tion, e.g. the covariance function C(h). 

We now list three very useful criteria for positive semi-definite matrices. 

First Criterion: A is positive semi-definite, iff a matrix W exists such as A 
WTW. 

In this context W is sometimes written VA. 

Second Criterion: A is positive semi-definite, iff all its n eigenvalues Ap ~ o. 

Third Criterion: A is positive semi-definite, iff all its principal minors are non neg
ative. 

A principal minor is the determinant of a principal submatrix of A. A principal 
submatrix is obtained by leaving out k columns (k = 0,1, ... ,n - 1) and the corre
sponding rows which cross them at the diagonal elements. The combinatorial of the 
principal minors to be checked makes this criterion less interesting for applications 
with n > 3. . 

EXAMPLE 1.6 Using the first criterion we note that the variance-covariance matrix is 
positive semi-detinite by construction: 

(1.31) 

withW= Jn (Z-M). 

EXAMPLE I. 7 It is easy to check with the third criterion that the left hand (n + 1) x 
(n + 1) matrix of the ordinary kriging system, expressed with covariances, is not 
positive semi-detinite (contrarily to the left hand matrix of simple kriging). 

The principal submatrix S obtained by leaving out all columns and rows crossing 
diagonal elements, except for the last two, 

(1.32) 

has adeterminant equal to -1 for C (xn - xn ) = 1. 

The computation of the eigenvalues of the left hand matrix of OK yields one neg
ative eigenvalue (resulting from the universality condition) and n positive (or zero) 
eigenvalues, on the basis of covariances. Thus built up using a covariance function, 
this matrix is indetinite, while it is negative (semi-)detinite with variogram values. 



326 Appendix 

Decomposition into eigenvalues and eigenvectors 

With a symmetric matrix A the eigenvalues together with eigenvectors normed to 
unity form the system 

AQ = QA with QTQ = I, (1.33) 

where A is the diagonal matrix of eigenvalues and Q is the orthogonal matrix of 
eigenvectors. 

As QT = Q-l, this results in a decomposition of the symmetrie matrix A 

(1.34) 

Singular value decomposition 

Multivariate analysis being the art to decompose tables of numbers, a decomposition 
which can be applied to any rectangular matrix (in the same spirit as the decomposition 
of a symmetrie matrix into eigenvalues and eigenvectors) is to playa central role in 
data analysis. 

The decomposition into singular values /-tp of a rectangular n x m matrix A of 
rank r can be written as: 

A 

(n x m) 

Ql 

(n x n) 
~ 

(n x m) 

Q1 
(m x m) 

(1.35) 

where Ql and Q2 are orthogonal matriees and where ~ is a rectangular matrix with r 
positive values /-tp on the diagonal (the set of elements with equal indiees) and zeroes 
elsewhere. For example, in the case n> m and r= m, the matrix ~ will have the 
following structure 

/-tl 0 0 

o 0 
o 0 /-tr 
000 

000 

(1.36) 

Such a decomposition always exists and can be obtained by computing the eigen
values Ap of AA T and of AT A, which are identieal, and positive or zero. The singular 
values are defined as the square roots of the non zero eigenvalues 

(1.37) 

In this decomposition Ql is the matrix of eigenvectors of AA T, while Q2 is the 
matrix of eigenvectors of AT A. 

EXERCISE 1.8 What is the singular value deeomposition of a symmetrie matrix ? 
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Moore-Penrose generalized inverse 

An inverse matrix exists for any square non singular matrix. It is interesting to gener
alize the concept of an inverse to singular matrices as weIl as to rectangular matrices. 

An m x n matrix X is a Moore-Penrose generalized inverse of a rectangular n x m 
matrix A if it verifies the following four conditions 

AXA 

XAX 

(AX)T 

(XA)T 

Such a matrix X is denoted A +. 

A, 

X, 

AX, 

XA. 

(1.38) 

(1.39) 

(1.40) 

(1.41) 

EXERCISE 1.9 Is the inverse A- 1 ofa square non singular matrix A a Moore-Penrose 
generalized inverse ? 

The Moore-Penrose inverse is obtained from a singular value decomposition, re
versing the order of the two orthogonal matrices, transposing ~ and inverting each 
singular value: 

(1.42) 

The matrix ~+ is of order m x n and has, taking as an example n > m and r = m, 
the structure 

c~' 
0 0 0 

D 
~+ 0 0 

0 /-1:;1 0 

Cil
' 

0 0 0 

D 0 0 (1.43) 

0 >-.:;1/2 0 

EXAMPLE 1.10 (SIMPLE KRIGING WITH A DUPLICATED SAMPLE) Asageostatisti
cal application one might wonder if the Moore-Penrose inverse can be used to solve a 
kriging system whose left hand matrix is singular. We shall not treat the problem in a 
general manner and only solve a very simple exercise. 

A value is to be estimated at Xo using two values located at the same point Xl of 
the domain as represented on Figure 1.1. The simple kriging system for this situation 
is 

( : :) (:~) = (~), (1.44) 
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~ 

~ 

1 
• 0 

~ Xo 

Figure 1.1: Estimation point Xo and two sampies at location Xl. 

where a is the variance of the data and where b is the covanance between the points 
Xl andxo. 

The matrix A being singular we resort to the Moore-Penrose generalized inverse. 
Let 

Wehave 

AA T = AT A = (2a~ 
2a 

2a2
) = (c c) =C. 

2a2 c c 

det(C) = 0 =} A2 = 0, 

tr(C) = 2c =} Al = 2c, 

and a matrix of eigenvectors (normed to one) 

Q = (~ 
vI2 

-~) . 
../2 

The solution of the system, relying on the generalized inverse, is 

With centered data we have in the end the following estimation at Xo 

(1.45) 

(1.46) 

(1.47) 

(1.48) 

(1.49) 

(1.50) 

This solution does make sense as the estimator takes the average of the two sam
pIe values Zl and Z2 measured at the loeation Xl and muItiplies this average with the 
simple kriging weight obtained when only one information is available in the neigh
borhood of xo. 
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These are a few standard results of regression theory in the notation used in the rest of 
the book. 

Best least squares estimator 

The best estirnation, in the least squares sense, of a randorn variable of interest Zo 
on the basis of a function of N randorn variables Zi, i = 1, ... , N is given by the 
conditional expectation of Zo knowing the variables Zi 

E[Zo I Zl,"" ZN] = mo(z), (11.1) 

where z is the vector of the explanative variables 

(1I.2) 

In order to prove that no other function j (z) is better than the conditional rnean 
mo(z), we need to show that the rnean square estirnation error is larger for j(z) 

The rnean square error using the arbitrary function j can be expanded 

The last term is in fact zero: 

E[ (Zo - mo(z) + mo(z) - j(Z))2] 
E[ (Zo - mo(z))2] + E[ (mo(z) - j(Z))2] 

+ 2E[ (Zo - mo(z))· (mo(z) - j(z))]. 

E[ (Zo - mo(z)) . (mo(z) - j(z))] 

= E[ E[ (Zo - mo(z)) . (mo(z) - j(z)) I z]] 
= E[ E[ (Zo - mo(z)) I z] (mo(z) - j(z))] 

, v # 

o 
= O. 

(II.3) 

(1104) 

(11.5) 

Thus the rnean square error related to an arbitrary function j is equal to the rnean 
square error based on the conditional rnean mo plus the rnean square difference be
tween mo and J. 
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Best linear estimator 

The computation of the conditional expectation requires in general the knowledge of 
the joint distribution F(Zo, Zl, ... ,ZN) which can be difficult to infer. An alternative, 
which we know from the previous section to be less effective, is to use a linear function 
b + c T z, where b is a constant and c = (Cl, ... , CN ) T is a vector of coefficients for the 
variables Zi. The question is now to determine the linear function which is best in the 
least squares sense. 

We first expand the mean squared estimation error around the mean mo of Zo: 

E[ (Zo - mo + mo - b - cT Z)2] 
E[ (Zo - mo - cT Z)2] + E[ (mo - b)2] 

+ 2 E[ (Zo - mo - cT z) . (mo - b)]. (11.6) 

As the third term is zero, 

E[ (Zo - mo - cT z) . (mo - b)] E[ (Zo - mo - cT z)] ·(mo - b) 
, # ... 

o 
0, (11.7) 

the mean squared error is equal to 

E[ (Zo - b - cT Z)2] = E[ (Zo - mo - cT Z)2] + (mo - b)2 (11.8) 

and reduces to the first term for the optimal choice of b = mo. 
Previously we have derived Va = Vo as the equations yielding the solution a of 

multiple linear regression problem. We can now show that a is the vector of coef
ficients for the best linear estimator of Zoo Suppose without loss of generality that 
the means are zero for all variables: mi = 0 for i = 0,1, ... , N. The mean squared 
estimation error is expanded again, 

and the third term is zero, 

E[ (Zo - aT z + aT z - cT z)2] 

E[ (Zo - aT zf] + E[ (aT z - cT Z)2] 

+ 2 E[ (Zo - aT z) . (aT z - cT Z)T], 

E[ (Zo - aT z)· (aT z - cT z)T] 

E[ (Zo - aT z) . (ZT a - zT c)] 

E[ Zo Z T a - Zo z T C - aT z z T a + aT z z TC] 

vT a-vT c-aTVa+aTVc o 0 

vJ (a - c) - aT V (a - c) 

o (because Va = vo). 

The mean squared estimation error 

(11.9) 

(11.10) 

(11.11) 
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is clearly lowest for c = a. Thus the multiple regression estimator provides the best 
linear estimation in the least squares sense 

N 

Z~ = mo + Lai (Zi - mi). (11.12) 
i=l 

The estimator Zt is identieal with the eonditional expeetation m1 (z) in the ease of 
a multigaussian distribution funetion. 

Projection 

Let Z be the matrix of N eentered auxiliary variables Zi and Zi be the veetors of n 
sampie values of eaeh variable, zf. The sampie values of the eentered variable of 
interest Zo are not part of Z. The variable of interest is estimated by multiple linear 
regression with the linear eombination of Z a = zoo 

The varianee-eovarianee matrix of the auxiliary variables is 

V = ~ ZT Z. (11.13) 
n 

The veetor of of eovarianees between the variable of interest and the auxiliary 
variables is 

Vo = 

Thus the multiple linear regression is 

Va = Vo 

and assuming that V is invertible, 

1 T 
-Z Zoo 
n 

ZTZ a 

a = (ZT Zr1 ZT Zo, 

z~ = Z (ZT Z)-l ZT Zoo 

(11.14) 

(11.15) 

(11.16) 

(11.17) 

The matrix P = Z (ZT Z)-l ZT is symmetrie and idempotent: P = p 2 • It is 
a projection matrix, whieh projeets orthogonally a veetor of order n onto the spaee 
spanned by the eolumns of Z 

Z~ = Za = PZo. (11.18) 

The veetor of estimated values Zo is the result of this projeetion. The veetor of 
estimation errors, 

e = Zo - z~, (11.19) 

eonneets Zo with its projection and is by construetion orthogonal to zoo We have 

e = Zo - Z a = (I - P) zo, (lL20) 

and the square of the length of the error veetor is given by its Euclidean norm, 

IIel1 2 Z6 Zo - 2 z6 P Zo + z6 P P Zo 
= z6 (I - P) zo. (IL21) 
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Updating the variance-covariance matrix 

The effect on the variance-covariance structure of adding or removing a sampie from 
the data set is interesting to analyze when comparing the multiple regression with the 
data values. 

An updating formula for the inverse in RAo (1973, p33) is useful in this context. 
For a non-singular N x N matrix A, vectors b, c of order N the inverse of A + b cT 

can be computed from the inverse of A by 

A-1bcT A-1 
(A + b CT )-1 = A -1 - ------=::--:-_:_=_ 

1 +cT A-1b' 
(II.22) 

Applying this formula to A = n V = ZTZ, the effect of removing an N-variate 
sampie Za from a row of the centered data matrix Z is computed by 

(11.23) 

where Paa is the element number a of the diagonal of the projection matrix P. 

Cross validation 

The error vector e = Zo - z~ is not a suitable basis for analyzing the goodness of fit of 
the multiple linear regression vector z~. Indeed each estimated value zg* is obtained 
using the same weight vector a. This vector is actually computed from covariances 
set up with the sampie values zg and zf, i = 1, ... ,N. 

Cross-validation consists in computing an estimated value z~[a] leaving the values 
related to the sampie number a out when determining the weights ara] 

* T zO[a] = za ara]' (11.24) 

The notation [al indicates that the sampie values of index a have not been included 
into the calculations for establishing the weights ara]' 

A recursive relation between ara] and 3a exists, 
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where ea = zg - zg*. 
From this a recursive formula for the cross-validation error e[a] is derived, 

1 - Paa 
(lI.26) 

An estimate of the mean squared cross validation error is now easily computed 
from the elements of the vector e and the diagonal elements Paa of the projection 
matrix, 

(11.27) 

which can serve to evaluate the goodness of fit of the multiple linear regression. 



Covariance and Variogram Models 

This is a list of a few isotropie models commonly found in the literature. Unless 
specified otherwise, they are valid for vectors h in at least up to 3D. 

Notation 

• h is the spatial separation vector, 

• b ~ 0 is the linear parameter, 

• a > 0 and 0; are non-linear parameters, 

• Jv are Bessel functions of order ll, 

• K v are Basset functions (modified Bessel of third kind). 

Covariance Models 

N ugget-effect 

{ 
b when Ihl = 0 

Cnug(h) = 0 
when Ihl > o. 

Spherical 

Reference: [198], pS?; [200], p86. 

for 0:::; Ihl :::; a 

for Ihl > a. 

(III.1) 

(III.2) 
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Triangular (only for ID) 

Reference: [362], vol. 1, p13l. 

{ 
b (1-~) 

Ctri(h) = 0 a 

Cuhic 

Reference: [48], p.132; [359], p.290. 

o for Ihl > a. 

Stahle 

Reference: [362], vol. 1, p364. 

( Ihl"') Cexp_",(h) = b exp -~ 

Exponential 

for 0:::; Ihl :::; a 

for Ihl > a. 

for 0:::; Ihl :::; a 

with 0< a:::; 2. 

Cexp(h) = b exp ( _1:1) . 

Gaussian 

( Ih12) Cgaus(h) = b exp --;;: . 

Hole-effect 

Reference: [362], vol. 1, p366. 

'h 1 Wlt a> r.i . 
v3w 

(IIL3) 

(IIL4) 

(111.5) 

(IIL6) 

(IIL7) 

(IIL8) 



336 Appendix 

Whittle-Matern 

Reference: [198], p43; [362], vol. 1, p363; [111], p64. 

with v:::: o. (111.9) 

Bessel 

Reference: [198], p42; [362], vol. 1, p366. 

( Ih l) -(n-2)/2 (Ihl) 
Cbes(h) = b ----;; J(n-2)/2 ----;; (III.10) 

with n equal to the number of spatial dimensions. 

Cauchy 

Reference: [362], vol. 1, p365;[51], p86. 

[ ( lhl)2]-a Ccau(h) = b 1 + ----;; with a > O. (IIl.l1) 

Variogram models 

Power 

Reference: [198], p128; [362], vol. 1, p406. 

with 0< a < 2. (I1I.12) 

De Wijsian-a2 

Reference: [196], vol. 1, p75. 

( 3 2 2 
'Ywijs-a2 h) = 2" b log(lhl + a ) with a -I 0 and 0 ~ b < 1. (III.13) 

De Wijsian 

Reference: [196], vol. 1, p75. 

'Ywijs(h) = 3 b log Ihl for Ihl -I 0 and 0 ~ b < 1, (111.14) 

where b is called the absolute dispersion. 



Additional Exercices 

EXERCISE IV.l (by c. DALY) Simple kriging with an exponential covariance model 
in one dimension. Let Z(o:) be a second-order stationary random function detined 
at points 0: with 0: = 0,1, ... , n located at regular intervals on a line. We wish to 
estimate a value for the next point 0:+ 1 on the line. 
i) Set up the simple kriging equations for an exponential covariance function 

C(h) = b exp ( _1:1) , 
where a is a range parameter. 
ii) The solution of the system is 

W a = 0 for 0: = 0, ... ,n-1, 

Compute the value of c. 
In time series analysis the random function 

Z(n) = pZ(n - 1) + Cn 

W n = c. 

(IY.l) 

(IY.2) 

(IV.3) 

is called an autoregressive process of order one AR(1), where pis a weight and Cn is 
a nugget-effect model 

2 {a2 ifn=m cov(cn, cm) = 6nm a = . o otherwlse. 
(IVA) 

We restriet the exercise to stationary AR(1) processes with 0 < P < 1. 
iii) Show that Z(n) can be expressed as a sum ofvalues Ca where 0: = -00, ... ,n. 
iv) Compute the covariance cov(Z(n), Z(m)) and the correlation coefticient for 
n,mEZ. 
v) Compare the Box & Jenkins AR(1) estimator 

Z*(n + 1) = pZ(n) (IY.5) 

with the simple kriging solution obtained in ii). 

EXERCISE IV.2 Z(x) is a second-order stationary random function with a zero mean, 
split into two uncorre1ated zero mean components, which has the regionalization 
model 

Z(x) = yS(x) + yL(X), (IY.6) 
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where YS(x) is a eomponent with a short range eovariance CS(h) and where yL(X) 
is a eomponent with a long range eovarianee CL(h), 

(IV.7) 

Data is loeated on a regular grid and simple kriging (i.e. without eondition on 
the weights) is performed at the nodes of this grid to estimate short and long range 
eomponents, using a neighborhood ineorporating all data. 

What relation ean be established between the weights ).~ and ).~ of the two com
ponents at eaeh point in the neighborhood ? 

EXERCISE IY.3 Z(x) is a loeally second-order stationary random funetion eomposed 
ofuneorrelated zero mean eomponents YS(x) and yL(x) as well as a drift whieh is 
approximate1y eonstant in any loeal neighborhood of the domain. 

Show that the sum of the krigings of the eomponents and of the kriging of the 
mean is equal to the ordinary kriging of Z (x), 

y';(xo) + Yi(xo) + mt(xo) = Z*(xo). (IV.8) 



Solutions to Exercises 

EXERCISE 2.2 Applying the definition (2.18) of the variance: 

and 

var(a Z) E[(aZ-E[aZ])2] = E[(aZ-am)2] 

E[ a2 (Z - m?] = a2 var(Z), (V. 1) 

var(Z+b) = E[(Z+b-E[Z]-b)2] = var(Z). (V.2) 

EXERCISE 2.3 Applying the definition (2.18) of the variance, rnultiplying out the 
squares and taking the expectations: 

E [ (Zi + Zj - E[ Zi + Zj])2] = E[ (Zi + Zj - mi - mj)2] 

E[ ((Zi - mi) + (Zj - mj))2] 
E[ (Zi-mi)2] + E[ (Zj-mj)2] - 2 E[ (Zi-mi) . (Zrmj)] 

var(Zi) + var(Zj) - 2 COV(Zi, Zj), (V.3) 

which is equal to the surn of the variances only, when the two variables are uncorre
lated. 

EXER~SE ~.~ We have ~ZTy = ~ZTZ Q, because Y = Z Q. 
R Q = Q A is the eigendecornposition of R. 
Therefore cov(Zi, yp) = ~p Q;P and dividing by the standard deviation of YP' which 

is A, we obtain the correlation coefficient between the variable and the factor. 
If the standardized variable is uncorrelated (orthogonal) with all others, an eigen

vector qp exists with all elements zero except for the element qip corresponding to that 
variable. As this element qip is 1 because of normation and the variable is identical 
with the factor, the eigenvalue has also to be l. 

EXERCISE 17.5 

R corr(Z, Z) = Q vA vA QT 

corr(Z, Y) [corr( Z, Y) r 
EXERCISE 18.1 The orthogonality constraints are not active like in PCA. 

(V.4) 



340 Appendix 

EXERCISE 18.2 Non active orthogonality constraints. 

EXERCISE 18.3 Multiply the equation by the inverse of A. 

EXERCISE 20.2 Cdh) = a1 C22 (h + r1) + a2 C22 (h + r2) 

EXERCISE 21.1 

f(w) 
+00 

~ f be -alhl-iwh dh 
27f 

-00 

o 00 

2b7f [f e (a-iw)h dh + J e -(a+iw)h dh] 

-00 0 

2
b
7f [ a ~ i w + a: i w] = ! a2 : w2 

> 0 for any w. 

EXERCISE 21.2 The inequality between the spectral densities, 

> 
ai 1 aj 

( )

2 

is rewritten as 

(ai + w2 ) (aj + w2 ) 

((~r + W2r· 

(Y.5) 

(V.6) 

(Y.7) 

This inequality is false for ai =I- aj when w -+ 00 because the left hand side is a 
constant < 1 while the right hand is dominated for large values of w by a term w4 

appearing both in the numerator and in the denominator. Thus the set of direct and 
cross covariance function is not an authorized covariance function matrix. 

In this exercise the sills were implicitly set to one (which implies a linear correla
tion coefficient equal to one). YAGLOM [362], vol. I, p. 315, gives the example of a 
bivariate exponential covariance function model in which the range parameters aare 

linked to the sill parameters b in such a way that to a given degree of uncorrelatedness 
corresponds an interval of permissible ranges. 

EXERCISE 22.1 

N N n n 

L L Wi Wj bij > 0 and L L w" wß p(x,,-xß) > 0, (Y.8) 
i=l j=l ,,=1 ß=l 
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because B is positive semi-definite and p(h) is a normalized covariance function. 
Thus 

N N n n 

(2: 2: Wiwjbij )· (2: 2: waWßP(Xa-xß)) 
i=l j=l a=l ß=l 

(V.9) 

N N TI n 

= 2: 2: 2: 2: w~ w~ bij p(xa-xß) ~ 0 (V. 10) 
i=l j=l a=l ß=l 

with w~ = Wi Wa . 

EXERCISE 22.2 ')'(h) is a conditionally negative definite function and -')'(h) is condi
tionally positive definite. -B ')'(h) is a conditionally positive definite function matrix. 
The demonstration is in the same spirit as for a covariance function matrix. 

EXERCISE 23.2 
The diagonal elements of the coregionalization matrix are positive and the deter

minant is 

(V. 11) 

The principal minors are positive and the matrix is positive definite. The correlation 
coefficient is p = -1/ V2 = -.71. 

EXERCISE 23.3 As there is no information about Zl(X) at the point X2, the second 
row of the system and the second column of the left hand matrix vanish. 

EXERCISE 23.4 The three vectors of weights for the three target points are 

EXERCISE 24.1 With azz = ass = 1 we have the system 

( 
R 

pzsR 
pzsr~ 

pzsR pzsro) (wz) (ro ) R ro Ws pzsro 
ri; 1 Wo Pzs 

Can the vector (wz, 0, WO)T be a solution? The system would reduce to 

{ 
wzR + wopzsro = ro 

wzpzsR + woro = pzsro 
Wz Pzs r~ + Wo = Pzs· 

(Y.12) 

(Y.13) 

(V. 14) 

For Pzs = 0 we have a trivial reduction to collocated cokriging with Wo = 0 
and W z being the simple kriging weights. For Pzs = ±1 we also are back to it with 
Wo = ±1 and Wz = O. 
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For Pzs -=I- 0, Pzs -=I- ±1 let us multiply the first equation block with Pzs and 
substract it from the second. We get Wo r?zs fO = Wo fO so that Wo would be zero. This 
is not the collocated cokriging solution. 

EXERCISE 26.1 When all coregionalization matrices B u are proportional to one matrix 
B wehave: 

s s 
C(h) = Lau B Pu(h) = BLau Pu(h), (V.15) 

u=o 

where the au are the coefficients of proportionality. 

EXERCISE 26.2 As a matrix B u is positive semi-definite by definition, the positivity 
of its second order minors implies an inequality between direct and cross sills, 

from which the assertions are easily deduced. 

EXERCISE 29.1 For w~e = w~m we have 

n n 

2 L L w~e w;e CRe(xo-xß) ~ ° 
0=1 ß=1 

with any set ofweights w~. Thus CRe(h) is a positive definite function. 

EXERCISE 29.2 

var( (1 + i) Z(O) + (1 - i) Z(h) ) 
var( (1 - i) Z(O) + (1 + i) Z(h) ) 

and we have CRe(O) ~ IC1m(h)l. 

EXERCISE 29.3 The estimation variance is: 

4CRe (O) + 4C1ffi (h) ~ 0, 

4CRe (O) - 4C1ffi (h) ~ 0, 

var(Z(xo) - Z~dxo)) E[ (Z(xo) - Zcdxo))· (Z(xo) - ZCK(XO))] 

(V. 16) 

(v. 17) 

(V. 18) 

(Y.19) 

E [ ((U(xo) - UCK(xo)) + i (V(xo) - VCK(xo))) 

x ((U(xo) - UCK(xo)) - i (V(xo) - VCK(xo))) ] 

var(U(xo) - UCK(xo)) 
+ var(V(xo) - VCK(xo)). (Y.20) 

EXERCISE 29.4 The estimation variance is: 

n n 

var(U(xo) - UCK(xo)) = Cuu(xo - xo) + L LJt~ Jt~Cuu(xo-Xß) 
0=1 ß=l 
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n n 

+ L L I/~ 1/1 CVV(Xa-Xß) 
a=l ß=l 

n n 

+2 LLM~1/1Cuv(Xa-xß) 
a=l ß=l 

n 

-2 L M~ CUU(xa-xo) 
a=l 

n 

-2 L I/~ CUV(xa-xo). (V.21) 
a=l 

EXERCISE 29.5 With an evencross covariance function Cuv(h)= Cvu(h) the kriging 
variance of complex kriging is equal to 

a2 _ C ReT w Re 

2( + )TRe a - cuu cvv w 

a2 - W ReT (Cuu + C VV ) w Re , 

because the weights w Re satisfy the equation system 

(V. 22) 

C ReT w Re = cRe {=} (Cuu + CVV ) w Re cuu + cvv· (V. 23) 

The kriging variance of the separate kriging is 

(V. 24) 

where the weights are solution of the two simple kriging systems 

Cuuw~ = cuu and Cvvw~ w~. (V.25) 

The difference between the two kriging variances is 

(V. 26) 

where Q2 is the sum of two quadratic forms 

Q2 = (w~ _ wRe)T C uu (w~ _ w Re ) 

+ (w~ - WRe)T Cvv (w~ _ wRe), (Y.27) 

which are nonnegative because Cuu and C vv are positive definite. 
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The difference between the two kriging variances reduces to Q2 

2 2 Q2 + ( + ) Re ReT C Re ReT C Re aCC-aKS = CUU CVV W - W UUW - W VVW 

= Q2. (V.28) 

The variance of complex kriging is larger than the variance of the separate kriging 
of the real and imaginary parts when the cross covariance function is even. Equality 
is achieved with intrinsic correlation. 

EXERCISE 33.2 To compute the cross covariance between !p(U) and 'l/J(Y) we first 
compute the second moment: 

E[ !p(U) 'l/J(Y) ] 

and using (33.39) we get 

The cross covariance is 

cov(!p(U), 'l/J(Y)) 

E[ E[ !p(U) 'l/J(Y) I Y]] 
E[ 'l/J(Y) E[ !p(U) I Y]] 

(V.29) 

(V.30) 

(V.31) 

(V.32) 

(V.33) 

(V.34) 

EXERCISE 34.1 Being a square integrable function the conditional expectation can be 
developed into factors Xl 

00 

L Ckl Xl (V) 
1=0 

with coefficients Ckl whose value is 

! E[Xk(U) I V = v] Xl(V) F(dv) 

E[E[Xk(U) I V]Xl(V)] 
E[ Xk(U) Xl (V) ] = Okl Tk by (34.3). 

Inserting the coefficients into the sum we have 

00 

L 0klll Xl (V) = Tk Xk(V), 
1=0 

EXERCISE 35.3 RECOVERABLE RESERVES OF LEAD 

(V.35) 

(V.36) 

(V.37) 

(Y.38) 

(V.39) 
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1. The anamorphosis for lead is 

2 
Zl 13 + (-6.928)(-y) +"2 (y2 -1) = y2 + 6.928y + 12 (VAO) 

(y + 3.464)2 (VAl) 

The anamorphosis function (a parabola) is valid for y > -3.464 as it needs to 
be an increasing function. 

2. The variance of the blocks is 

(VA2) 

so that Tl ~ .755. 

3. The equation for Zlc is 

(Y.43) 

so that yc ~ .47. 

4. The tonnage of lead is Thc) ~ .32. 

5. The quantity of metal is 

Ql (Zlc) 'Po T(Zlc) - 'Pi Tl g(0.47) + ~2 Ti . 0.47· g(0.47) (Y.44) 

~ 6.1. (V.45) 

The mean grade of the selected ore is 

to be compared to the average of 13% for the whole deposit. 

ANAMORPHOSIS OF SILVER 

1. The anamorphosis for silver is 

( ) 0.384 (2 ) 4 - 1.71 -u + -- u - 1 
2 

0.192(u2 + 8.906u + 19.83) = 0.192(u + 4.453)2 

The anamorphosis is only valid for values u > -4.453. 

(Y.46) 

(VA7) 

(VA8) 
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2. Let A = (r2)2. The variance of the blocks is 

So we need to solve 

0.0737 A 2 + 2.924A - 1.26 = 0 

Of the two solutions we can only accept A = 0.4266 so that r2 ~ 0.653. 

RECOVERABLE RESERVES OF SILVER WHEN SELECTING ON LEAD 

1. We need to solve 

1 2 2 
3.5 = 'fh'lh rlr2 P + '2 'P2'I/J2 (rlr2) p 

so that p ~ 0.594 and the product r2P ~ 0.388. 

2. The recovered quantity of silver is 

('XJ 2 'I/J 
Q2(Zlc) = 'l/JO}" g(y) dy - L k~ (r2P)k Hk- 1 (Yc) g(yc) 

Yc k=l 

= 'l/Jo 0.32 - 'l/Jl 0.388g(0.47) + ~2 (0.388? ·0.47g(0.47) 

~ 1.526 

The mean grade of the selected ore is 

() Q2(Zlc) ~ 4.77 
m2 Zlc = () T Zlc 

to be compared to the average of 4 for the whole deposit. 

LOCAL ESTIMATION OF LEAD 

1. The value of the change-of-support coefficient for panels is r~ ~ 0.497. 

2. The development for Zl (V) is 

(VA9) 

(V.50) 

(V.51) 

(Y.S2) 

(Y.S3) 

(Y.S4) 

(V.5S) 

2 
12.76 = 13 + (-6.928) . 0.497( -Yv) + '2 0.247(y~ - 1) (V.56) 

so that Yv = O. 

3. The proportion of blocks is 

E[ lYl{:1Ll>Yc!Yv = Yv 1 
E[ 1 RYv+'I1-R2 W>Yc 1 
1 _ G (Yc - R yv) . 

VI - R2 

(V.57) 

with W rv N(O, 1) (V.S8) 

(Y.S9) 
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p 123 4 5 6 
QV(Zlc) 6.074 6.019 6.019 4.824 4.824 4.765 

15 
4.735 

Table VI: The value of QV(ZlC) truncating at different orders p. 

4. For a panel value of Zl (V) = 12.76% we have a proportion of blocks 

1- G ( Yc ) VI - R2 
(as Yv = 0) 

0.27. 

5. We have 

so that 

6. With normalized Hermite polynomials this is 

7. The value for p = 6 is QV(ZlC) = 4.765. 

(V.60) 

(Y.61) 

(V.62) 

(Y.63) 

(V 64) 

Table VI gives results for different values of p obtained with a computer, show
ing the slow convergence. 

The mean grade of lead above cut-off within that panel is 

EXERCISE 37.2 a) 

b) 

4.765 
= 17.65% 

0.27 

kTK-1k kT ( WOK) coo- 0 o=Coo- 0 
-/LOK 

n 

C(Xo - XO) - L W~K C(Xa - XO) + /LOK· 

a=l 

(Y.65) 

(V66) 
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u -1. v = R 1. A = R _ R 1 (R 1 f . 
ITRl' ITRl' ITRI ' 

T -1 (0) T (v) T zTRl m* = (Z, 0) K 1 = (z ,0) u = z v = IT R 1 . (V.67) 

c) 

d) 

Let z' 

with VF 

Then 

and 

ZT As = ITRI (zTRS _ zTRl . ITRS) 
ITRI ITRI ITRI 

IT R 1 (En[z, s]- En[z] En[s]) 
1 TRI cov n (z, s). 

and 

b' (zT,O,O)F-' (D ~ (ZT,O,O) (:;) ~z,' v, 

Z,T K-1 S' ICn(z, s) 

S,T K-1 S' ICn(s, S) 
COVn(z,s) 
COVn(s,s) , 

z'K-1 (0) _ z'K-1s' .s'K-1 (0) 
1 S' K-l S' 1 

EXERCISE 37.3 a) Vo = - K-1 ko Uoo and 

Coo Uoo - k"); K-1 ko Uoo 1 

Uoo (coo - k"); K-1 ko) 1 

1 
Uoo 

(Y.68) 

(Y.69) 

(V.70) 

(V.71) 

(Y.72) 
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T (UOO VJ) T (zo,z ,0) Vo Ao (so,s ,0) 

with Ao = K-1 + Uoo K-1 ko (K-1 kO)T. (V.73) 

ZOUOOSO+(ZT,O)VOSO+ZOV~ (~) + (zT,O)Ao (~) 

Uoo Zo So - Uoo (z T, 0) K-1 ko So - Uoo Zo K-1 ko (~) 

+ Kn(z, s) + Uoo (ZT, 0) K-1 ko (K-1 kO)T (~) 

Uoo (zo - (zT, 0) K-1 ko) . (so - (ST, 0) K-1 ko) 

+ Kn(z, s). (V.74) 

( ) ( T -1) 6.(sols) Kn+1 ZO, So = Zo - (Z ,0) K ko · 2 + Kn(z, S), 
O"OK 

(V. 75) 

and 

Uoo So + v~ (~) = Uoo So - Uoo K-1 ko (~) 
6.(sols) 

Uoo 6.(sols) = 2 • (V. 76) 
O"OK 

EXERCISE 37.4 a) For a = 1 we have 

(Ull, vi) (~) (V.77) 

and fora = n 

(Y.78) 

as weH as for a -1= 1 and a -1= n: 

(Y.79) 
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b) 

b* 

EXERCISE I.1 

n, 

(; D -------(nxn) 

EXERCISE 1.2 ~ ZT 1 = m is the vector of the means mi of the variables. 

(V.80) 

(V.8I) 

(V.82) 

~ 11 TZ = M is an n x N matrix containing in each row the transpose of the vector 
of means; each column mi of M has N elements equal to the mean mi of the variable 
number i. 

EXERCISE 1.8 The c1assical eigenvalue decomposition. 

EXERCISE IVI 
i) 

ii) 

~ _Ia-ßI _la-(n+l)1 
~ wße a = e a 

ß=l 

la-ni la-(n+l)1 
wne--a- =e- a 

la-(n+l)1 e- a 

la-ni e--a -

Q = 1, ... ,n. 

Q= 1, ... ,n. 

Q = 1, .. . ,n 

(n+l) e--a- 1 
--'n;-- = e -0; = C. 

e-o; 

(V.83) 

(Y.84) 

(V.85) 
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iii) 

Z(n) p Z(n-1) + Cn = P [p Z(n-2) + cn-d + Cn 

p2 Z(n-2) + pCn-l + Cn 

m-l 

pm Z(n-m) + Lpacn-a. 
a=O 

As lim pm Z(n-m) = 0, because Ipl < 1, 
m--+oo 

00 n 

Z(n) = Lpa Cn-a = L pn-acn · 
0=0 0=-00 

iv) It is easy to show that E[ Z(n) 1 = O. Then 

00 00 

cov(Z(n), Z(m)) = E[ Z(n) Z(m) 1 = E [ L Lpa pß Cn-a cn-ß ] 
<>=0 ß=O 

00 00 

a=O ß=O 
00 00 

L pa ( L pß (52 On-a,m- ß) . 
a=O ß=O 

E[ cn-a cn-ß 1 = (52, if n-(}; = m-ß (i.e. if ß = m-n + (};). 
Ifn:::; m: 

00 00 

cov(Z(n), Z(m)) Lpa p(m-nl+a (52 = (52 pm-n Lp2a 

a=O 

and if n > m, we have (}; :::::: n - m, SO: 

00 

cov(Z(n), Z(m)) = L pa p(m-n)+a (52 

Q=n-m 

00 

LP(n-m)+i p(m-n)+(n-m)+i (52 

i=O 
00 

(52 pn-m LP2i 

i=O 

(52 In-mi 
Thus cov(Z(n), Z(m)) = / 2 and Tnm = pln-ml. 

-p 

(V.86) 

(V.87) 

(V.88) 

(V.89) 

(V.90) 

(V.91) 
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v) p = W n , thus the range 

and the sill 

1 
a---

- logp' 

(72 

b = var(Z(n)) = --2. 
I-p 

(V.92) 

(Y.93) 

EXERCISE IV.2 As we have exact interpolation, the kriging weights for Z*(xo) are 
linked by 

W a = 8xa ,xo o 

As the estimators are linear we have 

EXERCISE IV.3 Ordinary kriging can be written as 

withAxp = bp , AXG = bG, AXmo = bmo · 

We thenhave 

*() T T T T( ) T Z Xo =z wp+z wG+z wmo =z wp+wG+wmo =z W, 

(Y.94) 

(Y.95) 

(Y.96) 

(Y.97) 

where Z is the vector of the n data and Wp, WG, w mo , ware the vectors of the n 
corresponding weights. 
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BIBBY [190]; COOK & WEIS BERG [58]; ANDERSON [8]; SEBER [294]; GREENACRE [128]; 
VOLLE [333]; GITTINS [110]; JOLLIFFE [153]; GIFI [108]; SAPORTA [289]; WHIT

TAKER [355]. 

Software 

Many public domain and commercial software products exist nowadays that include geostatis
tics in one form or another. They can easily be found by checking corresponding pages about 
spatial statistics, geostatistics or geographical information systems on the worldwide com
puter web. See, for example: http://www.ai-geostats .org 

We have been mainly using the following software which are all available for Unix/Linux 
workstations and MS Windows: 

• Isatis. A general purpose 3D geostatistical package. Originally developed 
by Centre de Geostatistique and now commercialized by Geovariances. See: 
http://www.geovariances.fr 

• S-Plus. A general purpose statistical language with spatial statistics packages. See: 
http://lib.stat.cmu.edu 

• R. A general purpose statisticallanguage, strongly ressembling S-Plus, yet in the public 
domain. Several contributed packages of geostatistical modules can be downloaded. 
See:http://http://www.r-project.org 
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factor, 194 
factorial kriging, 194 
multiple time series, 209 
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redundancy, 196 
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time series, 337 
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analytic function, 117 
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Gaussian, 246 
Herrnite polynomials, 245 

anamorphosis function, 225 
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authorization constraints, 307 
authorized 
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authorized linear combination, 308 
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bi-Gaussian isofactorial model, 142 
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Bochner's theorem, 53, 151 
Brownian motion, 52 
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Cartier's relation, 262 
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compatible imaginary part, 205 
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modeling, 205 
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complex random function, 151 
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conditional simulation, 188 
conditionally negative definite, 53 
contingency table, 140 
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analysis, 181 
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bilinear model, 207-209 
complex linear model, 207, 208 
linear model, 176, 194 
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mixture of matrices, 181, 198 
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correlation 
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correlation (regionalized), 182, 197, 198 
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correlation coefficient, 182 
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experimental, 16 
point-bloc, 264, 277 
point-panel, 277 
theoretical, 14 

correlation function, 52, 102, 142, 154, 
175 
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correspondence analysis, 140,246 
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covariance 

theoretical, 14 
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experimental, 15 
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partial,98 
covariance function 

absolutely integrable, 152 
bounded,52 
complex, 151, 200, 207 
continuous, 53, 55, 151 
cross, 145, 151 
definition, 52 
direct, 145, 151 
experimental, 147 
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spectral representation, 151 
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intrinsic correlation, 154, 207 
nugget-effect, 57,58, 89, 334 
spherical, 58, 90, 334 
stable, 55, 116-118,335 
triangular, 335 
Whittle-Matem, 336 
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Cramer's theorem, 151 
cross covariance function 

antisymmetric behavior, 147 
characterization, 150 
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continuous, 151 
definition, 145 
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experimental, 147 
intrinsic correlation, 154, 207 
nested complex, 208 
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oddterm, 147, 148 
relation with variogram, 147 
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spectral representation, 151 
with derivative, 147 

cross validation 
error,87 
laiging, 87,98 
multiple linear regression, 332 
with external drift, 290 

cross variogram, 147, 157, 177 
cut-off value, 71, 213 

delayeffect, 145, 147,208,209 
dense secondary variable, 165 
density function, 12, 142 
destructuration effect, 254 
Dirac measure, 218 
discrete Gaussian model, 230 
disjunctive 

laiging, 142 
table, 140 

dispersion variance, 68, 75 
dissimilarity, 45, 81 
distribution 

bi-Gaussian, 254 
bigamma, 256 
bivariate, 43, 142 
empirical, 244 
function, 11,42,214 
Gaussian, 93, 217 
joint, 330 
lognormal, 217 
moments of, 12 
multiple, 43 
multivariate, 43 
uniform, 217 

drift,51,104,283,300,308 
drift estimation, 302 
duallaiging system, 313 
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economics, 218 
effect 
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information, 221 
proportional, 228 
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decomposition, 326 
definition, 324 

interpretation, 124 
problem, 124 

electromagnetic 
compatibility, 110 
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empirical orthogonal functions, 40 
epistemology, 39 
ergodicity, 39 
estimation 

error, 25, 29, 96 
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variance, 25, 28, 30 

estimator 
quality, 221 
unbiased, 28, 29 

Euler's angles, 63 
exact interpolation, 81, 96, 97, 115, 284, 

308,314 
expectation (conditional), 329 
expectation (expected value), 12 
extension variance, 67 
external drift, 159,283,285 
external drift (regularity), 294 
extrapolation, 94, 116, 118 

factor 
dilution, 129 
in multi-Gaussian context, 123 
in two groups, 137 
interpretation, 123 
pairs of, 128 
shape, 129 
size, 129 
variance, 124 

filtering, 107, 110, 114, 115,313,315 
filtering nugget-effect, 115,315 
fitting by eye, 49 

Gaussian variogram/covariance, 55, 90, 
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general circulation model, 277 
generalized covariance 

definition, 310 
growth,310 
polynomial, 311 
spline, 315 

generalized covariance function, 307 
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geographical information systems, 357 
geometrie anisotropy, 62, 91 
geometrie eovariogram, 59, 304 
Gini eoefficient, 216 
golden mean, 64 
Goulard's algorithm, 178 
gravimetrie data, 110 
groupwise anomalies, 101 

heavy tails, 44 
Hermite polynomials 

expansion, 240 
normalized,142,239,252 
orthogonality, 239 

Hermitian matrix, 151 
Hermitian positive semi-definite, 151 
heterotopy, 158, 183 
histogram 

eumulative, 11, 244 
hole-effeet, 335 
hull of perfeet eorrelation, 157, 177 

ieosahedron, 64 
inerements, 51, 81, 160 
indieator eokriging, 2 
indieator funetion, 59, 141,304 
indicator residuals, 172 
infinitely differentiable at origin, 117 
information effeet, 221 
inhomogeneity, 46 
integral range, 206 
intrinsic 

eorrelation, 154, 172, 182, 194, 197-
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random funetion of order-k, 308,310 
regionalization, 105 
stationarity, 51 

invarianee 
rotation, 57 
translation, 43, 51 

inverse distanee interpolator, 93, 96 
investment, 214 
IRF-k 

abstract, 309 
definition, 309 
representation, 309 
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isofactorial 

distribution, 250 
model,252 

isofactorial model, 142 
baryeentrie, 259 
with polynomial faetors, 252 

isolines, 97, 117, 118 
isotopy, 158, 170 
isotropie, 57, 305, 306 

Krige's relation, 70, 71, 77, 228 
kriging 

block (BK), 83 
eomplex (CC), 201, 202 
eonservative, 114 
disjunetive, 142 
dual system, 313 
exaet interpolation, 81 
filtering, 107, 110 
multiple extemal drift, 285 
of drift eoefficients, 285, 302 
of inerements, 81 
of the drift, 302 
of the mean (KM), 31, 83, 84, 113, 

303 
of the residual (KR), 86 
ordinary (OK), 80, 84, 85, 106 
simple, 24, 84, 93, 327, 337 
singular kriging matrix, 327 
spatial eomponents, 107 
standard deviation, 96 
universal (UK), 300, 301, 306 
varianee, 26,31,96,98 
weights,26 
with duplieated sampie, 327 
with known mean, 25 

Kronecker produet, 171 
Kronecker symbol, 287 

lagged seatter plots, 248 
Lagrange 

method,30 
multiplier, 30, 31, 125, 139, 161, 301, 

303 
laser data, 248, 257 
linear interpolation, 97 
linear model 

bilinear, 207, 208 
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spatial multivariate, 175 
universal kriging, 300, 306 

linear regression, 19 
linked windows, 46 
local mean, 106, 108, 112, 114, 197 
local neighborhood, 196 
locally stationary, 106, 305 
lognormal distribution 

permanence, 230 
lognormal model, 223 
Lorenz diagrarn, 218 

magnetic data, 110 
map 

isoline,97 
raster, 96 

matrix 
Euclidean norm, 180 
of correlations, 322 
variance-covariance, 322, 325 

mean, 9,28,214,220 
measurement error, 88 
measures of dispersion, 213 
missing values, 22 
moment, 12 
morphological objects, 61, 65 
morphology, 102 
morphometrics, 65 
multidimensional scaling, 65 
multiple linear regression, 21, 182, 330, 

332 
multivariate outliers, 130 

negative definite 
conditionally, 53, 80 
function, 53 
matrix,54 

negative kriging weights, 94, 116 
neighborhood 

cokriging, 165 
collocated, 165 
full, 165 
local, 98, 106 
moving, 97, 106, 113, 118, 285, 305, 

311 
multicollocated, 166 

radius, 98, 106 
size, 87, 98 
unique, 117, 118 
cokriging, 165 
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dense secondary, 165 
nested covariance function, 208 
nested variogram, 102 
noise removal, 195 
non linear geostatistics, 2, 142 
nonlinear geostatistics, 172 
nugget-effect, 48, 57, 58, 89, 112, 116, 

146,311,334 
nugget-effect filtering, 112, 115 

objective function, 30, 125, 139 
outliers, 46, 87, 130 

panel,262 
perfect correlation hull, 177 
permanence of distribution, 230 
phase shift, 153, 208 
phase spectrum, 153 
point-block-panel problem, 262 
pointwise anomalies, 101 
Poisson points, 58, 76 
polygon method, 70 
positive definite 

k-th order conditionally, 310 
criteria, 325 
function,53,145 
Hermitian, 151 
matrix, 53, 324 

positive semi-definite matrix, 53, 177, 324 
practical range, 57, 74 
principal axes, 62 
probability, 10 
profit, 214, 220 
projection, 331 
proportional effect, 228 
pseudo cross variogram, 149 

quadrature spectrum, 153 
quantity vs tonnage, 217 

random function, 42 
diffusion type, 252 
intrinsie of order-k, 308, 310 
locally stationary lognormal, 233 
mosaic type, 252 
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randomization, 205 
randomness, 42 
range, 58, 61, 98 
range (integral), 206 
raster map, 96 
recovered quantity, 214 
regionalization 

intrinsic, 105 
locally stationary, 106 
mixed model, 105, 107 
multivariate, 175 
second-order stationary, 104 

regionalized 
correlation coefficient, 181, 198 
value,41 
variable, 41 

residual, 15 
resolution of a map, 113 
rotation invariant, 57 

sampling design, 76 
scale-dependent correlation, 197 
scatter diagram, 15 
Schoenberg's theorem, 55 
screen effect, 92, 93 
selectivity 

definition, 216 
Gaussian, 217 
geometric meaning, 218 
index, 216 
lognormal, 217 

selectivity curves, 213 
self-similar,52 
sensitivity of kriging, 115 
shape function, 284 
sill, 47, 56, 58, 65 
simple cokriging, 161 
simple kriging, 24, 81 
simulation, 188, 297 
singular value decomposition, 138, 142, 

326 
size effect, 129 
space-time drift, 312 
spatial 

anomaly, 101 
characteristic scales, 182 
component, 104, 107 

spatial correlation mapping, 65 

spectral analysis, 110 
spherical model, 58 
spherical model (interpretation), 61,98 
spikes, 115 
splines 

equivalence with kriging, 314 
filtering nugget -effect, 315 
generalized cross validation, 315 

standard deviation, 15 
standardized variable, 15 
stationarity 

dependence on scale, 285 
intrinsic, 44, 51, 52, 105 
joint intrinsic, 146 
joint second-order, 145,207 
local second-order, 106, 113, 197, 305 
second-order, 24, 44, 52, 104 
strict,43 

statistical climatology, 277 
stochastics, 5 
support,41,66,220 
support effect, 71 

theorem 
Bochner, 53, 151 
Cramer, 151 
Schoenberg, 55 

threshold, 213 
time series analysis, 209, 337 
tonnage, 213 
translation invariance, 43, 51, 145, 307, 

308 
trembling hand, 118 
turning bands 

method,188 
number of bands, 190 

unbiased, 25, 28, 29, 80 
underlying variogram, 304, 306 
uniform conditioning, 271, 277 
uniformity coefficient, 217 
unique neighborhood, 117,118 
unique realization, 39 
universality conditions, 300, 301, 307 

variance 
cokriging, 161 
decomposition, 126 
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estimation, 25, 30 
estimation error, 28 
experimental, 10 
extension, 67 
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of factor, 127 
of increments, 51 
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variance-covariance matrix, 21, 124, 154, 
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variogram 
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as generalized covariance, 310 
bivariate fit, 177 
bounded,55 
cloud,46 
cross, 146 
direct,146 
even function, 51 
experimental, 47, 61, 78, 148 
fitting, 49, 177, 178 
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multivariate fit, 178 
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near the origin, 48, 57, 58, 78, 116 
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regularized,74 
relation with covariance, 52 
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variogram model 
Whittle-Matern,336 
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Bessel,336 
Cauchy,336 
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hole-effect, 335 
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triangular, 335 
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weight of the mean, 84 
weighted average, 9 
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