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L’analyse des données est “un outil pour dégager de la gangue des don-
nées le pur diamant de la véridique nature”.

JP BENZECRI (according to [333])

Multivariate analysis is “a tool to extract from the gangue of the data the
pure diamond of truthful nature”.



Preface to the 3rd edition

Geostatistics has become an important methodology in environmental, climatological
and ecological studies. So a new chapter demonstrating in a simple manner the ap-
plication of cokriging to conductivity, salinity and chlorophyll measurements as well
as numerical model output has been incorporated. Otherwise some recent material on
collocated cokriging has been added, leading to a separate chapter on this topic. Time
was too short to include further results at the interface between geostatistics and data
assimilation, which is a promising area of future developments (see reference [27]).
The main addition, however, is a detailed treatment of geostatistics for selection
problems, which features five new chapters on non linear methods.
Fontainebleau, September 2002 HW

Preface to the 2nd edition

“Are you a statistician?” I have been asked. “Sort of...” was my answer. A geostatis-
tician is probably as much a statistician as a geophysicist is a physicist. The statisti-
cian grows up, intellectually speaking, in the culture of the iid (independent identically
distributed random variables) model, while the geostatistician is confronted with spa-
tially/temporally correlated data right from the start. This changes radically the basic
attitude when approaching a data set.

The present new edition has benefited from a dozen reviews in statistical, applied
mathematics, earth and life science journals. The following principal changes have
been made. The statistical introductory chapter has been split into three separate chap-
ters for improved clarity. The ordinary kriging and cokriging chapters have been re-
shaped. The part on non-stationary geostatistics was entirely rewritten and rearranged
after fruitful discussions with Dietrich Stoyan. I have also received interesting com-
ments from Vera Pawlowsky, Tim Haas, Gérard Biau and Laurent Bertino. Last but
not least I wish to thank Wolfgang Engel from Springer-Verlag for his editorial advice.

Fontainebleau, May 1998 HwW

Preface to the first edition

Introducing geostatistics from a multivariate perspective is the main aim of this book.
The idea took root while teaching geostatistics at the Centre de Géostatistique (Ecole
des Mines de Paris) over the past ten years in the two postgraduate programs DEA and
CFSG. A first script of lecture notes in French originated from this activity.

A specialized course on Multivariate and Exploratory Geostatistics held in
September 1993 in Paris (organized in collaboration with the Department of Statistics
of Trinity College Dublin) was the occasion to test some of the material on a pluridis-
ciplinary audience. Another important opportunity arose last year when giving a lec-
ture on Spatial Statistics during the summer term at the Department of Statistics of



the University of Washington at Seattle, where part of this manuscript was distributed
in an early version. Short accounts were also given during COMETT and TEMPUS
courses on geostatistics for environmental studies in Fontainebleau, Freiberg, Rome
and Prague, which were sponsored by the European Community.

I wish to thank the participants of these various courses for their stimulating ques-
tions and comments. Among the organizers of these courses, I particularly want to
acknowledge the support received from Georges Matheron, Pierre Chauvet, Margaret
Armstrong, John Haslett and Paul Sampson. Michel Grzebyk has made valuable com-
ments on Chapters 29 and 30, which partly summarize some of his contributions to
the field.

Fontainebleau, May 1995 HW
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1 Introduction

Geostatistics is a rapidly evolving branch of applied mathematics which originated in
the mining industry in the early fifties to help improve ore reserve calculation. The first
steps were taken in South Africa, with the work of the mining engineer DG KRIGE
and the statistician HS SICHEL (see reference number [164] in the bibliography).

The techniques attracted the attention of French mining engineers and in particular
of Georges MATHERON (1930-2000), who put together KRIGE’s innovative concepts
and set them in a single powerful framework with his Theory of Regionalized Variables
[195, 196, 197, 198, 200, 63, 2].

Originally developed for solving ore reserve estimation problems the techniques
spread in the seventies into other areas of the earth sciences with the advent of high-
speed computers. They are nowadays popular in many fields of science and industry
where there is a need for evaluating spatially or temporally correlated data. A first
international meeting on the subject was organized in Rome, Italy in 1975 [132]. Fur-
ther congresses were held at Lake Tahoe, U.S.A. in 1983 [331], at Avignon, France
in 1988 [11], at Troia, Portugal in 1992 [305], at Montréal, Canada in 1994 [92],
at Wollongong, Australia in 1996 [19], at Cape Town, South Africa in 2000 [161].
Three well attended European Conferences on Geostatistics for Environmental Appli-
cations took place at Lisbon in 1996 [306], at Valencia in 1998 [116] and at Avignon
in 2000 [225].

As geostatistics is now incorporating an increasing number of methods, theories
and techniques, it sounds like an impossible task to give a full account of all devel-
opments in a single volume which is not intended to be encyclopedic.! So a selection
of topics had to be made for the sake of convenience and we start by presenting the
contents of the book from the perspective of a few general categories.

The analysis of spatial and temporal phenomena will be discussed keeping three
issues in mind

Data description. The data need to be explored for spatial, temporal and multivari-
ate structure and checked for outlying values which mask structure. Modern
computer technology with its high-power graphic screens displaying multiple,
linkable windows allows for dynamic simultaneous views on the data. A map
of the position of samples in space or representations along time can be linked
with histograms, correlation diagrams, variogram clouds and experimental var-
iograms. First ideas about the spatial, time and multivariate structure emerge

LCHILES & DELFINER [51] have nevertheless managed this four de force and produced a major ref-
erence text that gives a complete picture of the whole range of geostatistical techniques in one volume.
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from a variety of such simple displays.

Interpretation. The graphical displays gained from the numerical information are
evaluated by taking into account past experience on similar data and scientific
facts related to the variables under study. The interpretation of the spatial or
time structure, the associations and the causal relations between variables are
built into a model which is fitted to the data. This model not only describes the
phenomenon at sample locations, but it is usually also valid for the spatial or
time continuum in the sampled region and it thus represents a step beyond the
information contained in the numerical data.

Estimation. Armed with a model of the variation in the spatial or temporal continuum,
the next objective can be to estimate values of the phenomenon under study at
various scales and at locations different from the sample points. The methods
to perform this estimation are based on least squares and need to be adapted
to a wide variety of model formulations in different situations and for different
problems encountered in practice.

We have decided to deal only with these three issues, leaving aside questions of
simulation and control which would have easily doubled the length of the book and
changed its scope. To get an idea of what portion of geostatistics is actually covered
it is convenient to introduce the following common subdivision into

1. Linear stationary geostatistics,
2. Non-linear geostatistics,
3. Non-stationary geostatistics,

4. Geostatistical simulation.

We shall mainly cover the first topic, examining single- and multi-variate methods
based on linear combinations of the sample values and we shall assume that the data
stem from the realization of a set of random functions which are stationary or, at least,
whose spatial or time increments are stationary.

The second topic deals with the estimation of the proportion of values above a
fixed value for distributions that are generally not Gaussian. This requires non linear
techniques based on multivariate models for bivariate distributions and an introduc-
tory treatment has therefore been included. While starting with lognormal kriging it
focuses on isofactorial models which provide a coherent model of the coregionaliza-
tion of indicators and explicit change of support models. The more primitive methods
of indicator cokriging, which give only unsatisfactory solutions to these problems are
exposed in [121, 51] and will not be treated in this book. An important omission is
also the cokriging of orthogonal indicator residuals [267, 270].

A short review of the third topic is given in the last three chapters of the book
with the aim of providing a better understanding of the status of drift functions which
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are not translation invariant. We had no intention of giving an extensive treatment of
non-stationary geostatistics which would justify a monograph on its own.

The fourth topic, i.e. stochastic simulation of regionalized variables, will not at all
be treated in this volume. A monograph entirely devoted to geostatistical simulation
has just been published by LANTUEIJOUL [178].

Multivariate Geostatistics consists of thirty-nine short chapters which each on av-
erage represent the contents of a two hour lecture. The material is subdivided into six
parts.

Part A reviews the basic concepts of mean, variance, covariance, variance-covariance
matrix, mathematical expectation, linear regression, multiple linear regression.
The transposition of multiple linear regression into a spatial context is explained,
where regression receives the name of kriging. The problem of estimating the
mean of spatially or temporally correlated data is then solved by kriging.

Part B offers a detailed introduction to linear geostatistics for a single variable. Af-
ter presenting the random function model and the concept of stationarity, the
display of spatial variation with a variogram cloud is discussed. The necessity
of replacing the experimental variogram, obtained from the variogram cloud,
by a theoretical variogram is explained. The theoretical variogram and the co-
variance function are introduced together with the assumptions of stationarity
they imply. As variogram models are frequently derived from covariance func-
tions, a few basic isotropic covariance models are presented. Stationarity means
translation-invariance of the moments of the random function, while isotropy is
a corresponding rotation-invariance. In the case of geometric anisotropy a lin-
ear transformation of space is defined to adapt the basically isotropic variogram
models to this situation.

An important feature of spatial or temporal data is that a measurement refers to
a given volume of space or an interval of time, which is called the support of the
measurement. Extension and dispersion variances take account of the support of
the regionalized variable and furthermore incorporate the description of spatial
correlation provided by the variogram model.

Spatial regression techniques known as kriging draw on the variogram or the
covariance function for estimating either the mean in a region or values at par-
ticular locations of the region. The weights computed by kriging to estimate
these quantities are distributed around the estimation location in a way that can
be understood by looking at simple sample configurations.

The linear model of regionalization characterizes distinct spatial or time scales
of a phenomenon. Kriging techniques are available to extract the variation per-
taining to a specific scale and to map a corresponding component. As a byprod-
uct the theory around the analysis and filtering of characteristic scales gives a
better understanding of how and why ordinary kriging provides a smoothed im-
age of a regionalized variable which has been sampled with irregularly spaced
data.
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Part C presents three well-known methods of multivariate analysis. Principal com-
ponent analysis is the simplest and most widely used method to define factors
explaining the multivariate correlation structure. Canonical analysis generalizes
the method to the case of two groups of variables. Correspondence analysis is an
application of canonical analysis to two qualitative variables coded into disjunc-
tive tables. The transposition of the latter, by coding a quantitative variable into
disjunctive tables, has yielded models used in disjunctive kriging, a technique
of non-linear geostatistics.

Part D extends linear geostatistics to the multivariate case. The properties of the
cross variogram and the cross covariance function are discussed and compared.
The characterization of matrices of covariance functions is a central problem of
multivariate geostatistics. Two models, the intrinsic correlation model and the
nested multivariate model, are examined in the light of two multivariate random
function models, the linear and the bilinear coregionalization models. Cokrig-
ing of real data is discussed in detail in three separate chapters, depending on
whether or not all variables involved have been sampled at the same locations
and whether the auxiliary variables are densely sampled in space. A detailed
cokriging case study using data from the Ebro estuary in Spain is proposed in
a separate chapter. The cokriging of a complex variable is based on a bivariate
coregionalization model between the real and the imaginary part and its com-
parison with complex kriging provides a rich reservoir of problems for teasing
students. The modeling of the complex covariance function in complex kriging
opens the gate to the bilinear coregionalization model which allows for non-even
cross covariance functions between real random functions.

Part E introduces to non-linear methods of geostatistics. The selection problem
posed by a threshold that serves as basis of a decision is discussed and several
statistics based on thresholds, the selectivity curves, are presented. Lognormal
kriging is a simple entry point to non linear geostatistical methods and permits
with little effort to discuss and exercise the central questions of selective geo-
statistics. The severe limitations of the lognormal model are then resolved in the
following chapters by Gaussian and gamma anamorphosis, isofactorial change
of support and kriging methods based on discrete point-block models.

Part F discusses phenomena involving a non-stationary component called the drift.
When the drift functions are translation-invariant, generalized covariance func-
tions can be defined in the framework of the rich theory of intrinsic random
functions of order k. In multivariate problems auxiliary variables can be incor-
porated into universal kriging as external drift functions which however are not
translation-invariant.

The Appendix contains two additional chapters on matrix algebra and linear re-
gression theory in a notation consistent with the rest of the material. It also contains
a list of common covariance functions and variograms, additional exercises and solu-
tions to the exercises. References classified according to topics of theory and fields
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of applications are found at the end of the book, together with a list of sources of
geostatistical computer software, the bibliography and a subject index.

Geostatistics has become a branch of its own of applied stochastics (Greek:
oToxaoTLkés, the art of aiming, skillful guessing, estimation), which encompasses
probability theory and mathematical statistics. Like in other areas of applied mathe-
matics, three levels can be distinguished: pure theory, sound application of theory and
data cooking. This book is dedicated to the second aspect, keeping at the one end the
mathematics as elementary as possible, but seeking at the other end to avoid simplified
recipes, which anyway may change with the rapidly evolving practice of geostatistics.



Part A

From Statistics to Geostatistics



2 Mean, Variance, Covariance

In this chapter the elementary concepts of mean, variance and covariance are pre-
sented. The expectation operator is introduced, which serves to compute these quan-
tities in the framework of probabilistic models.

The mean: center of mass

To introduce the notion of mean value let us take an example from physics.
Seven weights are hanging on a bar whose own weight is negligible. The locations
z on the bar at which the weights are suspended are denoted by

z = 5,55, 6,65, 7, 75,8,
as shown on Figure 2.1. The mass w(z) of the weights is
w(z) = 3,4,6,3, 4,4, 2.

The location Z where the bar, when suspended, stays in equilibrium is evidently
calculated using a weighted average

z = (Z:(Zk))kilzkw(zk) =§;ka(zk)y 21)

k

where
pa) = ) 22)
()
k
are normed weights with
> opla) = L (23)

k

In this example the weights w(z;) can be disassembled into n= 7 elementary
weights v(z,) of unit mass.
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center of mass

5 6 8
] 1 1
— —_— —
—j elementary weight v
L
\ weight w

Figure 2.1: Bar with suspended weights w, subdivided into elementary weights v.

The normed weights p(z,) corresponding to the elementary weights are equal to
1/n and the location of equilibrium of the bar, its center of mass, is computed as

n

zZ = Zzapza = Zza—64 (2.4)

a=1

Transposing the physical problem at hand into a probabilistic context, we realize
that Z is the mean value m* of data z,,

1 n
= = > 2a, (2.5)
a=1

and that the normed weights p(z) or p(z,) can be interpreted as probabilities, i.c. the
frequency of appearance of the values z;, or z,. The z; represent a grouping of the z,
and have the meaning of classes of values z,. The weights p can be called probabilities
as they fulfill the requirements: 0 < p < land) p=1.

Another characteristic value which can be calculated is the average squared dis-
tance to the center of mass

dist?’(m*) = zn:(za —m*)? p(zq) (2.6)
)
This average squared distance will be called the experimental variance,
2 l¢ 2

s = =) (2o —mY)7, 2.7

which gives an indication about the dispersion of the data around the center of mass
m* of the data.
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[ [T ]

-

mean m*

Figure 2.2: Histogram.

COMMENT 2.1 In the framework of classical statistics based on a hypothesis of in-
dependence (i.e. the samples are considered as realizations of independent identically
distributed random variables) the sample variance would usually be defined as

§* = ! i(za—m*)Q, (2.8)

n—1

dividing by n—1 instead of n. Dealing with spatially or temporally correlated data,
we favour in this text (like e.g. PRIESTLEY [251], p48) the more straightforward
definition (2.7). ’

In fact, what has been introduced here under the cover of a weightless bar with
weights of different size attached to it, can be seen as an upside down histogram, as
represented on Figure 2.2.

An alternate way to represent the frequencies of the values 2 is by cumulating
the frequencies from left to right as on Figure 2.3, where a cumulative histogram is
shown.

Distribution function

Suppose we draw randomly values z from a set of values Z. We call each value z a
realization of a random variable Z. The mathematical idealization of the cumulative
histogram, for a random variable Z that takes values in R, is the probability distribu-
tion function F(z) defined as

F(z) = P(Z<2) with —o00 < 2 < oo. 2.9)

The distribution function indicates the probability P that a value of the random
variable Z is below z. The probability P actually tells the proportion of values of Z
that are below a given value z.
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A
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Figure 2.3: Cumulative histogram.

If we partition 2 into intervals of infinitesimal length dz, the probability that a
realization of Z belongs to such an interval is F'(dz). We shall only consider differen-
tiable distribution functions. The derivative of the frequency distribution is the density
function p(z)

F(dz) = p(2)dz. (2.10)

Expectation

The idealization of the concept of mean value is the mathematical expectation or ex-
pected value. The expected value of Z, also called the first moment of the random
variable, is defined as the integral over the realizations z of Z weighted by the density
function

E[Z] = / zp(z)dz =m. 2.11)
z€R
The expectation is a linear operator, so that computations are easy. Let a and b
be constants; as they are deterministic (i.e. non random) we denote them with small

letters, reserving capitals for random variables. From the definition (2.11) we easily
deduce that

Ela] = a, (212)
E[bZ] = bE[Z], .13)
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and that
|Ela+bZ] = a+bE[Z] |. (2.14)
The second moment of the random variable is the expectation of its squared value
B[ 22] = / 2p(2) dz 2.15)
zeR

and the k-th moment is defined as the expected value of the k-th power of Z

E[ZF] = / 2 p(2) dz. (2.16)
z€R

When Z is a discrete random variable with states z;, the integral in the definition
(2.11) of the mathematical expectation is replaced by a sum

B[Z] = ) upi=m, (2.17)

where p; = P(Z = z;) is the probability that Z takes the value z;. We are back to the
weighted average of expression (2.4).

Variance

The variance o2 of the random variable Z, called the theoretical variance, is defined
as

var(Z) = E[(Z—E[Z]f] = E[(Z-m)?] = oo (2.18)
Multiplying out we get
var(Z) = E[Z%+m®—2mZ]

and, as the expectation is a linear operator,

| var(2) = E[(2?] - (E[2))? |- (2.19)

The variance can thus be expressed as the difference between the second moment
and the squared first moment.

EXERCISE 2.2 Leta and b be constants. Show that
var(a Z) = a*var(Z) (2.20)
and that

var(Z +b) = var(Z). (2.21)
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Covariance

The theoretical covariance o;; between two random variables Z; and Z; is defined as

COV(Z,‘, Z]) = E[ (Zz - E[Zl]) : (Z] - E[ZJ])]
E[(Zi —mi) - (Z; — my)] = o3, (2.22)

where m; and m; are the means of the two random variables.
Note that the covariance of Z; with itself is the variance of Z;,
O = E[ (Zz - m,-)2] = O',iz. (223)
The covariance divided by the square root of the variances is called the theoretical
correlation coefficient
Ois
pii = v__. (2.24)

2
0;0;

S

EXERCISE 2.3 Two random variables whose covariance is zero are said to be uncor-
related. Show that the variance of the sum of two uncorrelated variables is equal to
the sum of the variances, that is

var(Z; + Z;) = var(Z;) + var(Z;), (2.25)

when cov(Z;, Z;) = 0.



3 Linear Regression and Simple Kriging

Linear regression is presented in the case of two variables and then extended to the
multivariate case. Simple kriging is a transposition of multiple regression in a spatial
context. The algebraic problems generated by missing values in the multivariate case
serve as a motivation for introducing a covariance function in the spatial case.

Experimental covariance

In the case of two variables, z; and z, say, the data values can be represented on a
scatter diagram like on Figure 3.1, which shows the cloud of data points in the plane
spanned by two perpendicular axes, one for each variable. The center of mass of the
data cloud is the point defined by the two means (m}, m}). A way to measure the
dispersion of the data cloud around its center of mass is to multiply the difference be-
tween a value of one variable and its mean, called a residual, with the corresponding
residual of the other variable. The average of the products of residuals is the experi-
mental covariance

= -Z —m}) (25 — m}). (3.1)

When the residual of 2; tends to have the same sign as the residual of 2, on aver-
age, the covariance is positive, while when the two residuals are of opposite sign on
average, the covariance is negative. When a large value of one residual is on average
associated with a large value of the residual of the other variable, the covariance has a
large positive or negative value. Thus the covariance measures on one hand the liking
or disliking of two variables through its sign and on the other hand the strength of this
relationship by its absolute value.

We see that when 2; is identical with 25, the covariance is equal to the variance.

It is often desirable to compare the covariances of pairs of variables. When the
units of the variables are not comparable, especially when they are of a different type,
e.g. cm, kg, %, ..., it is preferable to standardize each variable z, centering first its
values around the center of mass by subtracting the mean, and subsequently norming
the distances of the values to the center of mass by dividing them with the standard
deviation, which is the square root of the experimental variance s?. The standardized
variable z

z = 3.2)
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Z4

m

Z3

Figure 3.1: Scatter diagram showing the cloud of sample values and the center of mass

has a variance equal to 1. The covariance of two standardized variables z; and 2; is a
normed quantity r;;, called the experimental correlation coefficient, with bounds

-1 < Tij S 1. (33)

The correlation coefficient r;; can also be calculated directly from 2; and z; divid-
ing their covariance by the product of their standard deviations

Sij
o= 24 3.4
Tij 55 (34

Please note that the experimental variance of z; is also the covariance of z; with
itself

S? = Sii, (35)

so that s; stands for the standard deviation.

Linear regression

Two variables that have a correlation coefficient different from zero are said to be
correlated. It is often reasonable to suppose that some of the information conveyed by
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the measured values is common to two correlated variables. Consequently it seems
interesting to look for a function which, knowing a value of one variable, yields the
best approximation to the unknown value of a second variable.

We shall call “best” or “optimal” a function z* of a given type which minimizes
the mean squared distance dist?(z*) to the samples

dist?(z*) = i—zﬂ: (2 — 25)2. (3.6)
a=1

This is intuitively appealing as using this criterion the best function z* is the one
which passes closest to the data values.

Let us take two variables z;, z; and denote by 27 the function which approximates
best unknown values of z;.

The simplest type of approximation of z; is by a constant c, so let

;= ¢ 3.7)

and this does not involve z,. The average distance between the data and the constant
is

dist’(c) = %i(zf‘ —c)% 3.8)
a=1

The minimum is achieved for a value of ¢ for which the first derivative of the
distance function dist?(c) is zero

d dist?(c)
>\ = 9
5% 0 (3.9
1 '
- a 2 —
= (n ;(zl c) ) 0
1 - )2 2 a
= - () + = 2czy) =0
a=1
1 n
= =Y (2¢ — 220 =0
a=1
1~ o
== 2 =c (3.10)
a=1

The constant ¢ which minimizes the average square distance to the data of z; is the
mean

c = my | (3.11)
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The mean is the point nearest to the data in the least squares sense. Replacing c
by mj in expression (3.8), we see that the minimal distance for the optimal estimator
zy = mj is the experimental variance

| dist2,,(c) = 52 |. (3.12)

A more sophisticated function that can be chosen to approximate z; is a linear
function of 2z,

Zy = azn+b, (3.13)

which defines a straight line through the data cloud with a slope a and an intercept b.
The distance between the data of z; and the straight line depends on the two pa-
rameters a and b:

dist®(a, b)

1 n
~> (e —azg -0y (3.14)
a=1
1 n
= EZ ((28)* + a®(28)2 + b — 2a 28 25 — 2b 27 +2ab2y)
a=1

1 n
= —2bm*+2abmb+ EZ ((28)2 + a®(28)2 + b2 — 2a 28 25) .
a=1
If we shift the data cloud and the straight line to the center of mass, this translation
does not change the slope of the straight line. We can thus consider, without loss of
generality, the special case m} = mj = 0 to determine the slope of the straight line,
introducing a new intercept b'. In the new translated coordinate system the distance is

dist?(a,b’) = s? +a’s3+ (V)* — 2a s, (3.15)

where ' is the intercept of the shifted straight line.
At the minimum, the partial first derivative of the distance function with respect to
a is zero
ddist?(a, b')
da
= 2052285 =0,

=0 (3.16)

so that the slope is

S
SL; . (3.17)
2

As the minimum with respect to ¥’ is reached for

o dist?(a, b')

o =20 =0 b =0, (3.18)
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Z4

zZi=az, +b

Figure 3.2: Data cloud with regression line 27.

we conclude that the optimal straight line passes through the center of mass.

Coming back to the more general case m} # 0, m} # 0, the optimal value of b
(knowing a) is

0 dist?(a, b)

=0 3.19
b (3.19)
1 n
— 2b—2274+2az2y) =0
= n;:l( b—2274+2az25) ,
so that the intercept is
b= mi—amj|. (3.20)

The best straight line approximating the variable z; knowing 25, called the linear
regression of z; on 2, is represented on Figure 3.2.

Rewriting the linear regression, using the values of the coefficients in (3.17) and
(3.20) we have

S
2 = 5 (20 — m3) +m* (3.21)
2

S
m’f + i?‘u (252 — m;)

l
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so that
ZI = m; + 81712 ’sz, (322)

where 7, is a standardized variable as defined in the expression (3.2).

The linear regression is an improvement over the approximation by a constant.
The proportion ;5 of the normed residual z,, rescaled with the standard deviation s,
is added to the mean m¥. The linear regression is constant and equal to mean in the
case of a zero correlation coefficient.

The improvement can be evaluated by computing the minimal squared distance

1 n
dist?; (a,b) = ;Z(zf —m} — 51711 23)> (3.23)
a=1

1 n
E : v So\2
= E (5'1 2y — 81712 2,’2)
a=1

and finally we get

| dist?,iu(a,0) = 87 (1= (r2)?) - (3.24)

The stronger the correlation between two variables, the smaller the distance to the
optimal straight line, the higher the explanative power of this straight line and the
lower the expected average error. The improvement of the linear regression (3.22)
with respect to the approximation by the constant m} alone depends on the strength
of the correlation r12 between the two variables 2; and z,. The higher the squared
correlation, the closer (in the least squares sense) the regression line fits the bivariate
data cloud.

Variance-covariance matrix

Take N different types of measurements z;. Suppose they have been sampled n times,
and arrange them into a rectangular table, the data matrix Z:

Variables
211 ... R4 +-- RIN
) ; (3.25)
Samples
Zal +++ Rai +++ RaN
Zpl -+ Zni --- ZnN

Define a matrix M with the same dimension n x N as Z, replicating n times in its
columns the mean value of each variable

* * *
my ... mf ... my
M = mf ... mf ... my|. (3.26)
* * *
my m; My
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A matrix Z, of centered variables is obtained by subtracting M from the raw data
matrix

Z. = Z - M. (3.27)

The matrix V of experimental variances and covariances is calculated by premulti-
plying Z, with its matrix transpose Z[ (the T indicates matrix transposition, as defined
in the appendix on Matrix Algebra) and dividing by the number of samples

1
V = ~ZZ,
n
var(z;) ... cov(zi,z;) ... cov(zy,zy)
= cov(z;,2z1) ... var(z;) ... cov(z;,zy)
cov(zn,z1) ... cov(zy,z;) ... var(zy)
S11 ce. S5 ... SIN
= Si1 I ... SiN . (328)
SN1 ... SNj ... SNN

The variance-covariance matrix V is symmetric. As it is the result of a product
ATA, where A = ﬁ Z., it is nonnegative definite. The notion of nonnegative defi-
niteness of the variance-covariance matrix plays an important role in theory and also
has practical implications. The definition of nonnegative definiteness together with
three criteria is given in the appendix on Matrix Algebra on p324.

Multiple linear regression

Having a set of N auxiliary variables z;, ¢ = 1,..., N, it is often desirable to estimate
values of a main variable 2, using a linear function of the IV other variables.

A multiple regression plane zj in N +1 dimensional space is given by a linear
combination of the residuals of the IV variables with a set of coefficients a;

N
7 = mp+ Y ailz—m), (3:29)

=1

where m are the respective means of the different variables.
For n samples we have the matrix equation

= mo+(Z-M)a. (3.30)
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The distance between z, and the hyperplane is

1
dist?’(a) = ﬁ(zo —z3) (20 — 7})
= var(zo) +a' Va—2a'v, (3:31)
where v is the vector of covariances between zg and z;, 1 = 1,..., N.
The minimum is found for
ddist*(a)
N = 3.32
% (3.32)
— 2Va—-2vyg =0
= Va = Vy. (3.33)
This system of linear equations
var(z,) ... cov(z1,2zN) a; cov(zo, z1)
: .. : ] o= : (3-34)
cov(zn,2z1) ... var(zy) an cov(zo, Zn)

has exactly one solution if the determinant of the matrix V is different from zero.
The minimal distance resulting from the optimal coefficients is

dist?,,(a) = var(zo) —a' vo. (3.35)

To make sure that this optimal distance is not negative, it has to be checked be-
forehand that the augmented matrix Vp of variances and covariances for all N +1
variables

var(zo) ... cov(zo,zN)
Vo = : : (3.36)
cov(zy,zo) ... var(zy)

is nonnegative definite.

EXAMPLE 3.1 (MISSING VALUES) In the following situation a major problem can
arise. Suppose that for some variables data values are missing for some samples. If
the variances and covariances are naively calculated on the entire set, then the vari-
ances and covariances will have been obtained from subsets of samples with a varying
size. The matrix Vy assembled with these variance-covariance values stemming from
different sample subsets can be indefinite, i.e. not a variance-covariance matrix.

This is illustrated with a simple numerical example involving three samples and
three variables. A data value of zy is missing for the first sample. The eight data values
are

Sample 1 - 3.
Sample 2 3. 2.
Sample 3 1. 4

(3.37)
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The means are m§ = 2, mi = 3, mj = 4. We center the three variables and
obtain the following matrix V of variances and covariances

3
1 -1 -=
2
2
Vo= |-1 3 1|, (3.38)
3
- 1
: 2

which is not nonnegative definite because one of the minors of order two is negative
(following a criterion given on p325)

_ 2 _
11 1 1\ 1 1
det 9 |=—=, det] 3 = -, det =—-.
3 1 3
3

The linear regression equations for z§

g 1 a; -1
Va = 3 = 3] = v (3.39)
1 2/ \® D)

can be solved as the matrix V is not singular. The solution is
* * 3 * *
2 = mp—g (z1 —mY) + 0 (2 — m3). (3.40)

The minimal distance achieved by this “optimal” regression line is however nega-
tive

dist?,, = ~% (3.41)

min
and the whole operation turns out to be meaningless!

The lesson from this is that the experimental variances and covariances for a set
of variables have to be calculated on the same subset of samples. This is the subset of
samples with no values missing for any variable.

Similarly, in a spatial context we wish to estimate values at locations where no
measurement has been made using the data from neighboring locations. We see im-
mediately that there is a need for a covariance function defined in such a way that
the corresponding matrix V; is nonnegative definite. The spatial multiple regression
based on a covariance function model is called simple kriging. We briefly sketch this
in the next section.
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Figure 3.3: Data points X, and the estimation point X; in a spatial domain D.

Simple kriging

Suppose we have data for one type of measurement z at various locations x, of a
spatial domain D. Take the data locations x, and construct at each of the n locations
a random variable Z(x,). Take an additional location x¢ and let Z(x) be a random
variable at xo. Further assume that these random variables are a subset of an infinite
collection of random variables called a random function Z(x) defined at any location
x of the domain D. We assume the random function is second-order stationary. This
means that the expectation and the covariance are both translation invariant over the
domain, i.e. for a vector h linking any two points x and x+h in the domain

E[Z(x+h)] = E[Z(x)], (3.42)
cov[Z(x—i—h),Z(x)] = C(n). (3.43)

The expected value E[ Z(x)] = m is the same at any point x of the domain. The
covariance between any pair of locations depends only on the vector h which separates
them.

The problem of interest is to build a weighted average to make an estimation of a
value at a point x, using information at points x,, @ = 1,...,n, see Figure 3.3. This
estimation procedure should be based on the knowledge of the covariances between
the random variables at the points involved. The answer closely resembles multiple
regression transposed into a spatial context where the Z(x,) play the role of regressors
on a regressand Z(x,). This spatial regression bears the name of simple kriging
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(after the mining engineer DG KRIGE). With a mean m supposed constant over the
whole domain and calculated as the average of the data, simple kriging is used to
estimate residuals from this reference value m given a priori. Therefore simple kriging
is sometimes called kriging with known mean.

In analogy with multiple regression the weighted average for this estimation is
defined as

Z*(x)) = m+ Y walZ(Xa) —m), (3.44)

where w, are weights attached to the residuals Z(x,) —m. Note that unlike in multiple
regression the mean m is the same for all locations due to the stationarity assumption.

The estimation error is the difference between the estimated and the true value at
Xo

Z*(X()) — Z(Xo). (345)

The estimator is said to be unbiased if the estimation error is nil on average

B[ Z*(x0) = Z(x0)] = m+ Y wa(E[Z(xa)] —m) — E[Z(x0)]

Il

m+2wa(m—m)—m

a=1

= 0. (3.46)

The variance of the estimation error, the estimation variance o3, then is simply
expressed as

or = var(Z*(xe) — Z(x0)) = E[(Z*(x0) — Z(x0))*]. (3.47)
Expanding this expression
of = E[(Z*(x0))" +(Z(x0))* ~ 2 Z*(x0) Z(x0) ] (3-48)

n

ZZwa wp C(xq—%g) + C(x0 — Xp) — 2Zwa C(xq—xX0).

a=1 =1 a=1

Il

In computing the last equation we have written:
cov[Z(xqa), Z(xg)] = C(xa—xp), (3.49)

because the spatial covariances depend only on the difference vector between points,
following our stationarity assumptions (3.42) and (3.43).
The estimation variance is minimal where its first derivative is zero

2
Oog

Bw, =0 fora=1,...,n. (3.50)
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Explicitly we have, for eacha=1,...,n,
n
2 " ws C(xa—xp) — 2C(Xa—%0) = 0, (3.51)
p=1

and the equation system for simple kriging is written

Z wgC(xa—xp) = C(xo—Xp) fora=1,...,n. 3.52)
B=1

The left hand side of the equations describes the covariances between the loca-
tions. The right hand side describes the covariance between each data location and the
location where an estimate is sought. The resolution of the system yields the optimal
kriging weights wg,.

The operation of simple kriging can be repeated at regular intervals displacing
each time the location x,. A regular grid of kriging estimates is obtained which can
be contoured for representation as a map.

A second quantity of interest is the optimal variance for each location x,. It is
obtained by substituting the left hand of the kriging system by its right hand side in
the first term of the expression of the estimation variance 0. This is the variance of
simple kriging

ok = Zwa+ C(xo — %Xq) — 2Zwa C(xa—X0)
a=1 -

= C(0) - iwa C(xq—X0). (3.53)

When sample locations are scattered irregularly in space it is worthwhile to pro-
duce a map of the kriging variance as a complement to the map of kriged estimates.
It gives an appreciation of the varying precision of the kriged estimates due to the
irregular disposition of informative points.



4 Kriging the Mean

The mean value of samples from a geographical space can be estimated, either using
the arithmetic mean or by constructing a weighted average integrating the knowledge
of the spatial correlation of the samples. The two approaches are developped and it
turns out that the solution of kriging the mean reduces to the arithmetic mean when
there is no spatial correlation between data locations.

Arithmetic mean and its estimation variance

We denote by z the realization of a random variable Z. Suppose we have n measure-
ments z,, where « is an index numbering the samples from 1 to n. This is our data. We
introduce a probabilistic model by considering that each z, is a realization of a ran-
dom variable Z,, and we further assume that the random variables are independent and
identically distributed (iid). This means that each sample is a realization of a separate
random variable and that all these random variables have the same distribution. The
random variables are assumed independent which implies that they are uncorrelated
(the converse being true only for Gaussian random variables).

Let us assume we know the variance o of the random variables Z,, (they have the
same variance as they all have the same distribution). We do not know the mean m
and wish to estimate it from the data z, using the arithmetic mean as an estimator

1 n
my = EZza. 4.1)
a=1

Imagine we would take many times n samples z, under unchanged conditions. As
we assume some randomness we clearly would not get identical values each time and
the arithmetic mean would each time different. Thus we can consider m}, itself as a
realization of a random variable and write

1 n
M; = EZZQ. (4.2)
a=1

What is the average value of M3? Our probabilistic model allows to compute it
easily as

B[M:] = E[%Zza] - %ZE[ZQ] = m. 43)
a=1 a=1
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So the estimated mean fluctuates around the true mean and is on average equal to
it. If we call Mz —m the estimation error associated with the arithmetic mean, we see
that the error is zero on average

E[M;—m] = 0. (4.4)

The use of the arithmetic mean as an estimator of the true mean does not lead to a
systematic error and the estimator is said to be unbiased.

What is the average fluctuation of the arithmetic mean around the true mean? This
can be characterized by the variance o3 of the estimator

oi = var(M}) =var(%ZZa) = %var(ZZa) 4.5)
a=1 a=1

using relation (2.20). Applying relation (2.25) to the uncorrelated identically dis-
tributed random variables we get

0.2

1 n

2
oy = — var(Zy,) = —. 4.6
A n2 Z ( a) n ( )

a=1
So the distribution of M} has a variance n times smaller than that of the random
variables Z. We can view the variance of the estimator also as an estimation variance
0%, i.e. the variance of the estimation error M} — m, because by relation (2.21) we
have

og = var(Mx —m) = var(M}) = %. 4.7)

Estimating the mean with spatial correlation

When samples have been taken at irregular spacing in a domain D like on Figure 4.1,
a quantity of interest is the value of the mean m. We assume again that each sample
2(x,) is a realization of a random variable Z(x,) and that the random variables are
identically distributed.

A first approach for estimating m is to use the arithmetic mean

1 n
My == . .
A= Z(xa) “8)
a=1
However the samples from a spatial domain cannot in general be assumed inde-
pendent. This implies that the random variables at two different locations are usually

correlated, especially when they are near to each other in space.
A second approach to estimate m is to use a weighted average

M* = Zn: Wa Z(Xq) (4.9)
a=1

with unknown weights w,,.
How best choose the weights w,? We have to specify the problem further.
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Figure 4.1: A domain with irregularly spaced sample points.

No systematic bias

We need to assume that the mean exists at all points of the region

E[Z(x)] = m  forallx € D. (4.10)
We want the estimation error
M* - me (4.11)
estimated value true value
to be zero on average
E[M*-m] = 0, “4.12)

i.e. we do not wish to have a systematic bias in our estimation procedure.
This can be achieved by constraining the weights w,, to sum up to one

i we = 1. (4.13)
a=1

Indeed, if we replace M™* by the weighted average, the unbiasedness condition is
fulfilled

E[M*—m] = E[ZwaZ(xa)—m] = Zwa E[Z(xqa)]—m

n
= m) wa—m = 0. (4.14)
a=1

1
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Variance of the estimation error

We need to assume that Z(x) is second-order stationary and thus has a covariance
function C'(h) which describes the correlation between any pair of points x and x+h
in the spatial domain

C(h) = cov(Z(x),Z(x+h)) = E[Z(x) - Z(x+h)] —m?. 4.15)
The variance of the estimation error in our unbiased procedure is simply the aver-
age of the squared error
var(M* —m) = E[(M* —m)?] - (E[M* —m])’. (4.16)
0

The variance of the estimation error can be expressed in terms of the covariance
function

var(M* —m) = E[ M** —2mM* +m? |
= o w5 B[ Z(%a) Z(x5)] - 2 o B[Z(Xa) ] +m?
= izn:wawﬂC(xa—xﬂ). (4.17)
a=1 =1

The estimation variance is the sum of the cross-products of the weights assigned
to the sample points. Each cross-product is weighted by the covariance between the
corresponding sample points.

Minimal estimation variance

The criterion to define the “best” weights will be that we want the procedure to reduce
as much as possible the variance of the estimation error. Additionally we want to
respect the unbiasedness condition. We are thus looking for the

n
minimum of var(M* —m) subjectto Z We =1 |. (4.18)

a=1

The minimum of a positive quadratic function is found by setting the first order
partial derivatives to zero. The condition on the weights is introduced into the problem
by the method of Lagrange (see, for example, STRANG [319], p96).

An objective function ¢ is defined, consisting of the quadratic function plus a term
containing a Lagrange multiplier p,

O(Wa, ) = var(M*—m)—2u(Zwa—1>. (4.19)

a=1
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The new unknown g is built into the objective function in such a way that the
constraint on the weights is recovered when setting the partial derivative with respect
to p to zero. The Lagrange multiplier is multiplied by a factor —2 only for ease of
subsequent computation.

Kriging equations

To solve the optimization problem the partial derivatives of the objective function
©(wq, p) are set to zero

Op(wa, 1) _ _
—6“}0— =0 for a= 1,...,TL (4.20)
Op(wa, 1)
o — . 21
5 0 4.21)

This yields a linear system of n+ 1 equations. The solution of this system provides
the optimal weights wX™ for the estimation of the mean by a weighted average

( n
Z ’ng C(Xa — Xﬂ) — UKM = 0
B=1
for a=1,...,n 4.22)
KM
\ B=1

This is the system for the kriging of the mean (KM).

The minimal estimation variance o%,, is computed by using the equations for the

optimal weights
~ KM _ —
Z wg™ C(Xe —Xg) = pxm fora=1,...,n. (4.23)
p=1

in the expression of the estimation variance

n n

oy = var(M*—m) = Z Zw;(M wg™ C(xq — Xg)
a=1 g=1
n n
= ZwEM UKM = MHKM ZwEM = HKM- 4.24)
a=1 a=1

1

The variance of the kriging of the mean is thus given by the Lagrange multiplier
HKM-
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Case of no correlation

It may happen that there is no correlation between different points in the spatial do-
main. This is described by the following covariance model

o?  ifx, = xg,
cov(Z(xa), Z(xg)) = (4.25)
0 ifx, # xp.
With this model the system for the kriging of the mean simplifies to
w§M02 BKM for a=1,...,n
n (4.26)
KM  _
Z wg = 1.
p=1
As all weights are equal and sum up to one, we have
1
wM = = 4.27)

n

and the estimator of the kriging of the mean is equivalent to the arithmetic mean

ZwKM Z(x,) = Z Z(Xq) = (4.28)
The estimation variance associated to My, is
2 L o
Okm = HKm = 0 (4.29)

When there is no correlation between points in space, the arithmetic mean is the
best linear unbiased estimator and we recover also the corresponding estimation vari-
ance. The kriging of the mean is thus a generalization of the arithmetic mean estimator
to the case of spatially correlated samples.

EXAMPLE 4.1 Assuming a known population variance and independent identically
normally distributed data, the 95% confidence interval for the true mean m is

o o
P(M —1.96 — <m < M} +1.96 —). 4.30
(M} Jn m ATt \/ﬁ) (4.30)
With autocorrelated data and assuming a multinormal distribution, the 95% confi-
dence interval using the kriged mean estimator becomes

P(Mgy — 1.96 oxm < m < My + 1.96 o). (4.31)

Let us consider a time series of autocorrelated trichloroethylene data, with sam-
ples averaged over 7mn measured during one afternoon near a degreasing machine
(for more details see [342, 332]). The recommended maximum exposure at the time
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of writing is 405 mg/m®. Neglecting autocorrelation, i.e. assuming independence, the
upper bound of the confidence interval is estimated at 145 mg/m®. Taking account of
the autocorrelation in a kriging of the mean we however get a value of 219 mg/m®.
We see that ignoring the autocorrelation could easily lead, in other situations, to un-

derestimate severely the risk of exceeding legal limit values, as well as the associated
health risks for the workers.
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Geostatistics

La chance a voulu que, d’entrée de jeu, deux circonstances imposent a la
géostatistique d’utiliser des variogrammes (plut6t que des covariances),
c’est-a-dire des FA. intrinséques (plutdt que des F.A. stationnaires).

La premiére circonstance, ce sont les résultats expérimentaux de 1’Ecole
d’Afrique du Sud, en particulier cette courbe d’allure logarithmique ou
DG KRIGE (1952) présentait la variance expérimentale d’échantillons de
taille fixée dans des zones de plus en plus grandes du gisement (panneaux,
quartiers, concessions, le Rand tout entier, etc...).

La seconde circonstance, c’était le modele a homothétie interne élaboré
par DE WIS (1951), et qui permettait de retrouver cette loi logarithmique
de la variance.

G MATHERON [208]

Chance has determined that, from the beginning, two circumstances were
responsible for geostatistics to use variograms (instead of covariances),
that is to say intrinsic Random Functions (rather than stationary Random
Functions).

The first circumstance was given by the experimental results of the South
African School, in particular this curve of logarithmic shape where DG
KRIGE [163] presented the experimental variance of samples of fixed size
in increasingly large zones of the deposit (panels, quarters, concessions,
the whole Rand, etc.. .).

The second circumstance was provided by the model with internal self-
similarity elaborated by DE WIS [79], which allowed to recover this
logarithmic function of the variance.

37



5 Regionalized Variable and

Random Function

“It could be said,

as in The Emperor of the Moon,

that all is everywhere and always like here,
up to a degree of magnitude and perfection.”

GW LEIBNIZ

The data provide information about regionalized variables, which are simply functions
z(x) whose behavior we would like to characterize in a given region of a spatial or
time continuum. In applications the regionalized variables are usually not identical
with simple deterministic functions and it is therefore of advantage to place them into
a probabilistic framework.

In the probabilistic model, a regionalized variable z(x) is considered to be a re-
alization of a random function Z(x) (i.e. an infinite family of random variables con-
structed at all points x of a given region D). The advantage of this approach is that
we shall only try to characterize simple features of the random function Z(x) and not
those of particular realizations z(x).

In such a setting the data values are samples from one particular realization z(x) of
Z(x). The epistemological implications of an investigation of a single realization of
a phenomenon by probabilistic methods have been discussed in full detail by MATH-
ERON [220] and shall not be reported in the present book. In particular, questions
of ergodicity shall not be debated here. We provide an intuitive description of the
probabilistic formalization, but we shall not attempt to justify it rigorously. The main
reason for the success of the probabilistic approach is that it offers a convenient way
of formulating methods which could also be viewed in a deterministic setting, albeit
with less elegance.

Multivariate time/space data

In many fields of science data arises which is either time or space dependent—or both.
Such data is often multivariate, i.e. several quantities have been measured and need to
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be examined. The data array, in its most general form, may have the following shape:

Coordinates Variables
ty z} 2?2 o} 2 oA 2y
P : ‘ .1)
Samples to xL 22 22 2L ... 2 2N
t, L 2 o3 2 . 2 2N

In this array the samples are numbered using an index « and the total number of
samples is symbolized by the letter n, thus o = 1,2, 3,...,n.

The different variables are labeled by an index ¢ and the number of variables is NV,
soi=1,2,3,...,N.

The samples could be pieces of rock of same volume taken by a geologist or they
could be plots containing different plants a biologist is interested in. The variables
would then be chemical or physical measurements performed on the rocks, or counts
of the abundance of different species of plants within the plots.

The samples may have been taken at different moments ¢, and at different points
Xq, Where X, is typically! the vector of up to three spatial coordinates (2, z2,z3) €
R3.

So far the numbers contained in the data set have been arranged into a rectangular
table and symbols have been used to describe this table. There is a need for viewing
the data in a more general setting.

Regionalized variable

Let us consider that only one property has been measured on different spatial objects
(so N= 1) and that the time at which the measurements have been made has not been
recorded. In this case the index ¢ and the time coordinate ¢, are of no use and can be
omitted. The analysis of multivariate phenomena will be taken up in other parts of the
book, while examples of time series analysis using geostatistics will be discussed in
later chapters.

We have n observations symbolized by

2(Xq), with a=1,...,n, 5.2)

taken at locations x,. The sampled objects in a region D can be considered as a frag-
ment of a larger collection of objects. Many more observations than the few collected
could be made, but perhaps because of the cost and effort involved this has not (or
cannot) been done. If the objects are points, even infinitely many observations are
possible in the region. This possibility of infinitely many observations of the same

'There are now applications of geostatistics where x € R* with an integer k£ > 3, e.g. see [285,
181, 28], and where RF is not anymore a geographical space, but an arbitrary parameter or empirical
orthogonal functions space.
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Randomness

[ Random Variablej

et N

t‘-landom Function }

[ Regionalized Variable J

Regionalization

Figure 5.1: The random function model.

kind is introduced by dropping the index & and defining the regionalized variable (for

short: REV) as
2(x) forall xeD. (5.3)

The data set {z(x,),a¢ = 1,...,n} is now viewed as a collection of a few values
of the RgV.

The study of a regionalized variable will usually involve at least two geometrical
aspects: the domain D in which the REV is defined and the geometrical support for
which each sample of the REV is defined. The latter can for example be a portion of
soil that has been analyzed or the integration time of a time-dependent measurement.
Let us for now assume point support and defer the question of non-pointwise support
to Chapter 10.

Random variable and regionalized value

Each measured value in the data set has a location in the domain D and we call it a
regionalized value. A new viewpoint is introduced by considering a regionalized value
as the outcome of some random mechanism. Formally this mechanism will be called
a random variable and a sampled value 2(x,) represents one draw from the random
variable Z(x,). At each point x, the mechanism responsible for generating a value
2(xo) may be different, thus Z(x,) could a priori have different properties at each
point of a region.

Random function

Considering the regionalized values at all points in a given region, the associated func-
tion z(x) for x € D is a regionalized variable. The set of values

{2(x), x € D} (5.9)
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RAF Z(x) — Z(x¢) TheRandom Variable’s
[} { d realization is a

RV z(x) —  z(xo) Regionalized Value

Figure 5.2: The regionalized variable as a realization of a random function.

can be viewed as one draw from an infinite set of random variables (one random
variable at each point of the domain). The family of random variables

{Z(x),x € D} (5.5)

is called the random function (RAF).

Figure 5.1 shows how the random function model has been set up by viewing
the data under two different angles. One aspect is that the data values stem from a
physical environment (time, 1-2-3D space) and are in some way dependent on their
location in the region: they are regionalized. The second aspect is that the regional-
ized sample values z(x,) cannot, generally, be modeled with a simple deterministic
function z(x). Looking at the values that were sampled, the behavior of z(x) appears
to be very complex. Like in many situations where the parameters of a data generating
mechanism cannot be determined, a probabilistic approach is chosen, i.e. the mecha-
nism is considered as random. The data values are viewed as outcomes of the random
mechanism.

Joining together these two aspects of regionalization and randomness yields the
concept of a RAF.

In probabilistic jargon, see Figure 5.2, the REV z(x) is one realization of the RAF
Z(x). A regionalized value z(x,) at a specific location x, is a realization of a random
variable Z(x,) which is itself a member of an infinite family of random variables, the
RAF Z(x). Capital Z” is used to denote random variables while small ‘2’ is used for
their realizations. The point x is an arbitrary point of the region which may or may
not have been sampled.

Probability distributions

In this model the random mechanism Z(x;) acting at a given point X, of the region
generates realizations following a probability distribution F’

P(Z(x0) S 2) = Fx(2), (-6)
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where P is the probability that an outcome of Z at the point x, is lower than a fixed
value z.

A bivariate distribution function for two random variables Z(x;) and Z(x3) at two
different locations is

P(Z(x1) <21, Z(x2) < 29) = Fx, x,(21,22), 5.7

where P is the probability that simultaneously an outcome of Z(x;) is lower than z;
and an outcome of Z(x3) is lower than z5.

In the same way a multiple distribution function for n random variables located at
n different points can be defined

Faoxn(Z1y o 2n) = P(Z(x1) < 21,...,2(%p) < 25). (5.8)

Built up in this manner we have an extraordinarily general model which is able
to describe any process in nature or technology. In practice, however, we possess
only few data from one or several realizations of the RAF and it will be impossible
to infer all the mono- and multivariate distribution functions for any set of points.
Simplification is needed and it is provided by the idea of stationarity.

Strict stationarity

Stationarity means that characteristics of a RAF stay the same when shifting a given set
of n points from one part of the region to another. This is called translation invariance.

To be more specific, a RAF Z(x) is said to be strictly stationary if for any set of n
points x, . .., X, (Where n is an arbitrary positive integer) and for any vector h

Fx1,...,x,L (251, ceey zn) = Fx1+h,...,xn+h(zla RN zn)a (59)

i.e. a translation of a point configuration in a given direction does not change the
multiple distribution.

The new situation created by restraining Z (x) to be strictly stationary with all its n-
variate distribution functions being shift invariant, can be summarized by a statement
of Arlequino (coming back from a trip to the moon): “Everything is everywhere and
always the same as here.. . up to a certain degree of magnitude and perfection”?. This
position of Arlequino explains best the idea of strict stationarity: things do not change
fundamentally when one moves from one part of the universe to another part of it!
Naturally, we cannot fully agree with Arlequino’s blasé indifference to everything.
But there is a restriction “up to a certain degree” in Arlequino’s statement and we
shall, in an analogous way, loosen the concept of strict stationarity and define several
types and degrees of stationarity. These lie in the wide range between the concept

2«C’est partout et toujours comme ici, c’est partout et toujours comme chez nous, aux degrés de
grandeur et de perfection prés.” [M SERRES (1968) Le Systeme de Leibniz et ses Modéles Mathéma-
tiques. Presses Universitaires de France, Paris.]
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of a non-stationary (and non-homogeneous) RAF, whose characteristics change at any
time and at any location, and the concept of a strictly stationary random function
whose distribution functions are everywhere and always the same.

It should be noted that stationarity is a property of the random function model
and not of the regionalized variable. In practice we might say that a given “RgV is
stationary”, but this is of course always meant as a shorthand for “this REV can be
considered as a realization of a stationary RAF”.

Stationarity of first two moments

Strict stationarity requires the specification of the multipoint distribution (5.9) for any
set of points {x;,...,X,}. A lighter strategy will be to consider only pairs of points
{x1,%2} in the domain and try to characterize only the first two moments, not a full
distribution. Naturally such a strategy is ideal in the case of the Gaussian distribution
where the first two moments entirely characterize the distribution. In general, however,
this approach still works well in practice when the data histogram does not have too
heavy tails.

One possibility is to assume the stationarity of the first two moments of the vari-
able: this is second-order stationarity. A second possibility is to assume the station-
arity of the first two moments of the difference of a pair of values at two points: this
receives the name of intrinsic stationarity and leads to the notion of variogram.



6 Variogram Cloud

Pairs of sample values are evaluated by computing the squared difference between the
values. The resulting dissimilarities are plotted against the separation of sample pairs
in geographical space and form the variogram cloud. The cloud is sliced into classes
according to separation in space and the average dissimilarities in each class form the
sequence of values of the experimental variogram.

Dissimilarity versus separation

We measure the variability of a regionalized variable z(x) at different scales by com-
puting the dissimilarity between pairs of data values, z, and zg say, located at points
Xq and Xg in a spatial domain D. The measure for the dissimilarity of two values,
labeled ~*, is
(20 — 2p)*
Yop = 5 6.1)

i.e. half of the square of the difference between the two values.

The two points x,, X4 in geographical space can be linked by a vector h = x5—x,
as shown on Figure 6.1.

D

Figure 6.1: A vector linking two points in 2D space.

We let the dissimilarity v* depend on the spacing and on the orientation of the
point pair described by the vector h,

v*(h) = %(z(xa-l—h) - z(xa))Q. 6.2)
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| z(t+h) - z(t) | 2
2

|h|

Figure 6.2: Plot of the dissimilarities 7* against the spatial separation h of sample
pairs: a variogram cloud.

As the dissimilarity is a squared quantity, the sign of the vector h, i.e. the order in
which the points x, and xg are considered does not enter into play. The dissimilarity
is symmetric with respect to h:

7*(=h) = 7*(+h). (6.3)

Thus on graphical representations the dissimilarities will be plotted against the abso-
lute values of the vectors h. Using all sample pairs in a data set (up to a distance
of half the diameter of the region), a plot of the dissimilarities y* against the spatial
separation h is produced which is called the variogram cloud. A schematic example
is given on Figure 6.2.

The dissimilarity often increases with distance as near samples tend to be alike.

The variogram cloud by itself is a powerful tool for exploring features of spatial
data. On a graphical computer screen the values of the variogram cloud can be linked
to the position of sample pairs on a map representation. The analysis of subsets of
the variogram cloud can help in understanding the distribution of the sample values
in geographical space. Anomalies, inhomogeneities can be detected by looking at
high dissimilarities at short distances. In some cases the variogram cloud consists of
two distinct clouds due to the presence of outliers. HASLETT et al. [139] have first
developed the use of the variogram cloud in combination with other views on the data
using linked windows on a graphic computer screen and they provide many examples
showing the power of this exploratory tool.

Actually a variogram cloud seldom looks like what is suggested on Figure 6.2:
the variogram cloud usually is dominated by many pairs with low dissimilarity at all
scales h (DIGGLE et al. [90] p51 discuss this question).
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Figure 6.3: The experimental variogram is obtained by averaging the dissimilarities y*
for given classes $.

Experimental variogram

An average of dissimilarities v*(h) can be formed for a given class of vectors § by
grouping all n. point pairs that can be linked by a vector h belonging to §). Such a class
9 groups vectors whose lengths are within a specified interval of lengths and whose
orientation is the same up to a given tolerance on angle. Generally non overlapping
vector classes §) are chosen. The average dissimilarity with respect to a vector class
$, is a value of what is termed the experimental variogram

N

2; Y (exath) ~2(xs))”  with heS.  (64)
€ a=1

v () =

In practice the experimental variogram is usually computed using vectors h of a
length inferior to half the diameter of the region. For pairs of samples with vectors
h of a length almost equal to the diameter of the region, the corresponding samples
are located near the border. Vector classes §) formed with such pairs will have no
contribution from samples at the center of the region and are thus not representative
of the whole data set.

An example of an experimental variogram obtained for a sequence of classes )y, is
sketched on Figure 6.3. The experimental variogram is obtained from the variogram
cloud by subdiving it into classes and computing an average for each class.

Usually we can observe that the average dissimilarity between values increases
when the spacing between the pairs of sample points is increased. For large spac-
ings the experimental variogram sometimes reaches a sill which can be equal to the
variance of the data.
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Figure 6.4: The sequence of average dissimilarities is fitted with a theoretical variogram
function.

If the slope of the dissimilarity function changes abruptly at a specific scale, this
suggests that an intermediate level of the variation has been reached at this scale.

The behavior at very small scales, near the origin of the variogram, is of impor-
tance, as it indicates the type of continuity of the regionalized variable: differentiable,
continuous but not differentiable, or discontinuous. In this last case, when the vari-
ogram is discontinuous at the origin, this is a symptom of a nugget-effect, which means
that the values of the variable change abruptly at a very small scale, like gold grades
when a few gold nuggets are contained in some samples.

When the average dissimilarity of the values is constant for all spacings h, there
is no spatial structure in the data. Conversely, a non zero slope of the variogram
near the origin indicates structure. An abrupt change in slope indicates the passage
to a different structuration of the values in space. We shall learn how to model such
transitions with nested theoretical variograms and how to visualize the different types
of spatial associations of the values separately as maps by kriging spatial components.

Replacing the experimental by a theoretical variogram

The experimental variogram is replaced by a theoretical variogram function essen-
tially for the reason that the variogram model should have a physical meaning (a ran-
dom function with the given type of variogram can exist). The use of a theoretical
variogram guarantees (using weights subject to a certain constraint) that the variance
of any linear combination of sample values is positive.

If the values of the experimental variogram were taken to set up a kriging system,
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this could lead to negative kriging variances, in a way similar to the Example 3.1 (on
page 22) where a problem of multiple regression with missing values was discussed.

A theoretical variogram function is fitted to the sequence of average dissimilari-
ties, as suggested on Figure 6.4. It is important to understand that this fit implies an
interpretation of both the behavior at the origin and the behavior at large distances,
beyond the range of the experimental variogram. The fit is done by eye because it is
generally not so relevant how well the variogram function fits the sequence of points.
What counts is the type of continuity assumed for the regionalized variable and the
stationarity hypothesis associated to the random function. These assumptions will
guide the selection of an appropriate variogram function and this has many more im-
plications than the way the theoretical function is fitted to the experimental variogram.
A thorough discussion is found in MATHERON [220].

The different types of behavior at the origin of the variogram model and their
impact on kriging are discussed in Chapter 16 and in the Ebro estuary case study
(Chapter 27). A weighted least squares fitting algorithm for variograms (and cross
variograms) will be presented in Chapter 26. References discussing the automatic
inference of generalized covariance functions (of which the variogram functions are a
subclass) will be given in Chapter 39.



7 Variogram and Covariance Function

The experimental variogram is a convenient tool for the analysis of spatial data as it
is based on a simple measure of dissimilarity. Its theoretical counterpart reveals that
a broad class of phenomena are adequately described by it, including phenomena of
unbounded variation. When the variation is bounded, the variogram is equivalent to a
covariance function.

Regional variogram

The experimental variogram of samples z(x,) is the sequence of averages of dissim-
ilarities for different distance classes ). If we had samples for the whole domain D
we could compute the variogram for every possible pair in the domain. The set D(h),
defined as the intersection of the domain D with a translation D_y, of itself, describes
all the points x having a counterpart x+h in D. The regional variogram gg(h) is the
integral over the squared differences of a regionalized variable z(x) for a given lag h

1 2
gr(h) = 2P| / (2(x+h) — 2(x))” dx, (7.1)
D(h)
where |D(h)] is the area (or volume) of the intersection D(h).

We know the regionalized variable z(x) only at a few locations and it is generally
not possible to approximate z(x) by a simple deterministic function. Thus it is con-
venient to consider z(x) as a realization of a random function Z(x). The associated
regional variogram

Gr(b) = 51_1;_(@ (/) (Z(x+h) — Z(x))? dx (72)

is a randomized version of gr(h). Its expectation defines the theoretical variogram
7v(h) of the random function model Z(x) over the domain D

v(h) = E[Ggr(h)] (7.3)

Theoretical variogram

The variation in space of a random function Z(x) can be described by taking the
differences between values at pairs of points x and x+h:

Z(x+h) — Z(x),
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which are called increments.

The theoretical variogram -y(h) is defined by the intrinsic hypothesis, which is a
short form for “a hypothesis of intrinsic stationarity of order two”. This hypothesis,
which is merely a statement about the type of stationarity characterizing the random
function, is formed by two assumptions about the increments:

o the mean m(h) of the increments, called the drift, is invariant for any translation
of a given vector h within the domain. Moreover, the drift is supposed to be
zero whatsoever the position of h in the domain.

o the variance of the increments
has a finite value 2v(h) depending on the length and the orientation of a given
vector h, but not on the position of h in the domain.

That is to say, for any pair of points x, x+h € D we have

E[Z(x+h) — Z(x)] =m(h) = 0, (7.4)
var[Z (x+h) — Z(x)] 2v(h). (7.5)

These two properties of an intrinsically stationary random function yield the defi-
nition for the theoretical variogram

y(h) = %E[(Z(x-l—h)—Z(x))z]. (7.6)

The existence of expectation and variance of the increments does not imply the
existence of the first two moments of the random function itself: an intrinsic random
function can have an infinite variance although the variance of its increments is finite
for any vector h. An intrinsically stationary random function does not need to have a
constant mean or a constant variance.

The value of the variogram at the origin is zero by definition

v(0) = 0. (7.7)
The values of the variogram are positive

v(h) > 0, (7.8)

v(=h) = ~(h). 7.9)
The variogram grows slower than |h|?, i.e.
v(b) _

Jim T =0 (7.10)

(as otherwise the drift m(h) could not be assumed zero).
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Covariance function

The covariance function C'(h) is defined on the basis of a hypothesis of stationarity of
the first two moments (mean and covariance) of the random function

{ E[Z(x)] =m forallx € D (711)

E[Z(x)-Z(x+h)]—m? = C(h) forallx, x+h € D.

The covariance function is bounded and its absolute value does not exceed the
variance

|IC(h)] < C(0) = var(Z(x)). (7.12)
Like the variogram, it is an even function: C(—h) = C(+h). But unlike the

variogram, it can take negative values.
The covariance function divided by the variance is called the correlation function

C(h)
h) = —/= .
which is obviously bounded by
-1 < ph) < 1. (7.14)

v(h) = C(0) - C(h), (7.15)

but in general the reverse is not true, because the variogram is not necessarily bounded.
Thus the hypothesis of second-order stationarity is less general than the intrinsic
hypothesis (in the monovariate case) and unbounded variogram models do not have a
covariance function counterpart.

EXAMPLE 7.1 For example, the power variogram shown on Figure 7.1
v(h) = blhfP with 0 <p<2andb>0 (7.16)

cannot be obtained from a covariance function as it grows without bounds. Clearly it
outgrows the framework fixed by second-order stationarity.

Actually the class of self-similar processes with stationary increments called frac-
tional Brownian motion has a variogram of the type (7.16) (see [362], p406, for de-
tails).
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Power model

VARIOGRAM

DISTANCE

Figure 7.1: Power variograms for different values of the power p (with b = 1).

Positive definite function

A covariance function is a positive definite function!. This means that the use of a
covariance function C'(h) for the computation of the variance of a linear combination
of n+1 random variables Z(x,) (any subset sampled from a second-order stationary
random function) must be positive. It is necessarily linked to a positive semi-definite
matrix C of covariances

var(iwaZ(xa)) = Zn:iwawﬂC(xa—xﬂ):wTCw

a=0 a=0 =0
>0 (7.17)
for any set of points x,, and any set of weights w, (assembled into a vector w).
The continuous covariance functions are characterized by Bochner’s theorem as

the Fourier transforms of positive measures. This topic is treated in more detail in
Chapter 20.

Conditionally negative definite function

The variogram is a conditionally negative definite function. The condition to guarantee
the positivity of the variance of any linear combination of n+1 random variables,

IFor functions, in opposition to matrices, no distinction is usually made between “definite” and
“semi-definite”.
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subset of an intrinsic random function, is that the n+1 weights w, sum up to zero.
The variance of a linear combination of intrinsically stationary random variables is
defined as

var(ZwaZ(xa)) = —ZZwawﬂfy(xa—xB)

a=0 =0
n
> 0, if Y we =0, (7.18)
a=0
i.e. any matrix I of variogram values is conditionally negative definite
n
[wa] [y (Xa—%p)]|[wa] = W Tw < 0 for Zwa =0. (7.19)
=0

To understand the meaning (sufficiency) of the condition on the sum of the
weights, it is necessary to compute explicitly the variance of the linear combination.

As the random function Z(x) is intrinsically stationary, only the expectation of
its increments has a meaning. A trick enabling to construct increments is to insert an
additional random variable Z(0), placed arbitrarily at the origin 0 (assuming 0 € D),
multiplied by the zero sum weights

var(zn:waZ(xa)) = var(—Z(O)-iwa+iwaZ(xa))
a=0 @=0__ a=0

0

= var (Z W, (Z(Xa)—Z(O)))

= DY wawsE[(Z(xa)—Z(0)) - (Z(x5)~Z(0))]

a=0 =0

n n

= YD waws Cr(Xa,Xp), (7.20)

a=0 =0
where C (x4, X) is the covariance of increments formed using the additional variable
Z(0).
We also introduce the additional variable Z(0) into the expression of the variogram

Y(xa=%5) = 5E[(Z(xa)+Z(0) ~ Z(x5)~Z(0))’]

N = N =

(27(xa) +27(xp) — 2 Cr(Xa,Xp)), (7.21)
so that
Cr(Xa;Xg) = 7(Xa) + (%) — ¥(Xa—%35), (7.22)
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which incorporates two non-stationary terms y(x,) and y(xg).
Coming back to the computation of the variance of the linear combination, we see
that the two non stationary terms are cancelled by the condition on the weights

n

var (Zwa Z(xa)) = Z Wo wp Cr(Xq, Xp)

a=0 =0
n n n n n n
= D wp ) wa(Xa) + Y wa D ws(Ks) = DD wawsy(Xa—s)
B=0 a=0 a=0 p=0 a=0 =0
———r
0 0
= - }": z": Wa We Y(Xa—Xp) for Xn: W = Xn: wg =0. (7.23)
a=0 g=0 a=0 B=0

When handling linear combinations of random variables, the variogram can only
be used together with a condition on the weights guaranteeing its existence. In par-
ticular, the variogram cannot in general be used in a simple kriging. Other forms of
kriging, with constraints on the weights, are required to use this tool that covers a
wider range of phenomena than the covariance function.

Variograms can be characterized on the basis of continuous covariance functions:
a function (h) is a variogram, if the exponential of —y(h) is a covariance function

cm) = e (), (7.24)

This remarquable relation, based on a theorem by SCHOENBERG [292], links
(through the defining kernel of the Laplace transform) the conditionally negative func-
tions with the positive definite functions (see also CHOQUET [53]).

COMMENT 7.2 The covariance function

p
C(h) = exp (—%) with 0 <p <2anda >0, (7.25)

which is related by Schoenberg’s relation to the power variogram model, defines the
family of stable covariance functions. The case p = 2 (Gaussian covariance func-
tion) is pathological: it corresponds to a deterministic random function (MATH-
ERON [202]), which is contradictory with randomness. The case p = 1 defines the
exponential covariance function.

Fitting the variogram with a covariance function

If the variogram is bounded by a finite value v(00), a covariance function can be found
such as

C(h) = 7(o0) — y(h). (7.26)
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The experimental variogram can have a shape which suggests to use a bounded
variogram function to fit it. The lowest upper bound of the variogram function is
described as the sill.

When the experimental variogram exhibits a sill, it is possible to fit it with a the-
oretical variogram that is actually a covariance function C'(h) on the basis of the for-
mula for bounded variograms

y(h) = b—C(h), (7.27)

where b = C(0) is the value at the origin of the covariance function.



8 Examples of Covariance Functions

We present a few models of covariance functions. They are defined for isotropic (i.e.
rotation invariant) random functions. On the graphical representations the covariance
functions are plotted as variograms using the relation y(h) = C(0) — C(h).

Nugget-effect model

The covariance function C'(h) that models a discontinuity at the origin is the nugget-
effect model

Con(h) b for|h|=0 ®.1)
"7 1o for |h| >0, '

where b is a positive value.

Its variogram counterpart is zero at the origin and has the value b for h # 0. It is
shown on Figure 8.1.

The nugget-effect is used to model a discontinuity at the origin of the variogram,
i.e. when

Illlilgl0 v(h) = b. 8.2)

The nugget-effect is equivalent to the concept of white noise in signal processing.

Exponential covariance function

The exponential covariance function model falls off exponentially with increasing dis-
tance
Cezp(h) = bexp|— Ll i
ezp = p 4 with a,b > 0. 8.3)
The parameter a determines how quickly the covariance falls off. For a value of
h = 3a the covariance function has decreased by 95% of its value at the origin, so that
this distance has been termed the practical range of the exponential model.
The exponential model is continuous but not differentiable at the origin. It drops
asymptotically towards zero for |h| — oo.
The variogram equivalent of the exponential covariance function is shown on Fig-
ure 8.2.
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Figure 8.1: A nugget-effect variogram: its value is zero at the origin and b = 1
elsewhere.

Spherical model
A commonly used covariance function is the spherical model

b (1 _ 3| 1P
Copn(h) = 2a 2d
0 for |h| > a.

) for0< |h|<a
8.4)

The parameter a indicates the range of the spherical covariance: the covariance
vanishes when the range is reached. The parameter b represents the maximal value
of the covariance: the spherical covariance steadily decreases, starting from the maxi-
mum b at the origin, until it vanishes when the range is reached.

The nugget-effect model can be considered as a particular case of a spherical
covariance function with an infinitely small range. Nevertheless there is an important
difference between the two models: Ch,4(h) describes a discontinuous phenomenon,
whose values change abruptly from one location to the other, while C,,, (h) represents
a phenomenon which is continuous, but not differentiable: it would feel rough, could
one touch it.

A corresponding spherical variogram is shown on Figure 8.3. It reaches the sill
(b=1)atarangeof a = 3.

Derivation of the spherical covariance

Imagine a universe with Poisson points, i.e. a 3D-space with points xp scattered
randomly following a uniform distribution along each coordinate and summing up to
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Exponential model
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Figure 8.2: An exponential variogram: it rises asymptotically towards a sill b = 1.
The range parameter is set to a = 1. At a practical range of |h| = 3 the exponential
model has approached the sill to 95%.

6 points per volume unit on average. A counting function N (V) is defined which
counts the number of Poisson points contained in a volume V.

Consider the random function Z(x) = N(By) which is the count of the number
of Poisson points contained in a ball B centered on a point x. Clearly By represents
the volume of influence of diameter d around a point x which determines the value
of Z(x). The problem at hand is to calculate the covariance function of the random
function Z(x).

An indicator function 15(x’) is constructed indicating whether a location x' is
inside a ball centered at x

IB(XI) =

1, ifx' € By
{ (8.5)

0, ifx' ¢ By.

A function K(h), the geometric covariogram, measures the volume of the inter-
section of a ball B with a copy By, of it translated by a vector h

7]07013(x')13(x’+h) dx’:///lg(x’)lgh(x')dx’ (8.6)

—00 —00 —00

= |BNByl. 8.7)

A(h)

Conversely, it is worth noting that the intersection B N B_j, of the ball with a copy
of itself translated by —h represents the set of points x’ € B which have a neighbor
x' + h within the ball, as shown on Figure 8.4,
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Figure 8.3: A spherical variogram with a sill b = 1 and a range a = 3.

&) = / dx' = [BNB_y|. 8.38)

x'€BNB_p,
The covariance of Z(x) can now be expressed as
C(h) = E[N(B)N(Bn)] - E[N(B)]E[N(B)], ®39)
and as the counts N (V) are independent in any subvolume,

C(h) = E[N(BNBL)?]|-EN(BNBy)]
6|BN By
6 A(h). (8.10)

Calculating explicitly the volume of the intersection of two spheres of equal size
whose centers are separated by a vector h yields the formula for the spherical covari-
ance

3/n| 1[bf

1--—+4+-—1] for0<|h <d
Ch) = 9|B|( 2d+2d3> or 0 < |h| <d,

0 for |h| > d,

(8.11)

where 0|B| = Ond3/6 = C(0) represents the variance of Z(x) and |B]| is the volume
of the spheres.

The diameter d of the spheres is equal to the range of the covariance function as
it indicates the distance at which the covariance vanishes. The range of the spherical
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Figure 8.4: The intersection B N B_j, describes the set of points X’ € B which have a
neighbor x'+h inside B.

covariance function is the maximal distance at which the volumes of influence of two
random variables Z(x) and Z(x-+h) can overlap and share information.

In applications large objects (as compared to the scale of the investigation) can
condition the spatial structure of the data. The maximal size of these morphological
objects in a given direction can often be read from the experimental variogram and
interpreted as the range of a spherical model.

The shape of objects conditioning the morphology of a regionalized variable may
not be spherical in many applications. This will result in anisotropical behavior of the
variogram.



9 Anisotropy

Experimental calculations can reveal a very different behavior of the experimental
variogram in different directions. This is called an anisotropic behavior. As variogram
models are defined for the isotropic case, we need to examine transformations of the
coordinates which allow to obtain anisotropic random functions from the isotropic
models. In practice anisotropies are detected by inspecting experimental variograms
in different directions and are included into the model by tuning predefined anisotropy
parameters.

Geometric Anisotropy

In 2D-space a representation of the behavior of the experimental variogram can be
made by drawing a map of iso-variogram lines as a function of a vector h. Ideally if
the iso-variogram lines are circular around the origin, the variogram obviously only
depends on the length of the vector h and the phenomenon is isotropic.

If not, the iso-variogram lines can in many applications be approximated by con-
centric ellipses defined along a set of perpendicular main axes of anisotropy. This
type of anisotropy, called the geometric anisotropy, can be obtained by a linear trans-
formation of the spatial coordinates of a corresponding isotropic model. It allows
to relate the class of ellipsoidally anisotropic random functions to a corresponding
isotropic random function. This is essential because variogram models are defined for
the isotropic case. The linear transformation extends in a simple way a given isotropic
variogram to a whole class of ellipsoidally anisotropic variograms.

Rotating and dilating an ellipsoid

We have a coordinate system for h = (h4, ..., h,) with n coordinates. In this coordi-
nate system the surfaces of constant variogram describe an ellipsoid and we search a
new coordinate system for h in which the iso-variogram lines are spherical.

As a first step a rotation matrix Q is sought which rotates the coordinate system h
into a coordinate system h' = QM that is parallel to the principal axes of the ellipsoid,
as shown on Figure 9.1 in the 2D case. The directions of the principal axes should be
known from experimental variogram calculations.
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Figure 9.1: The coordinate system for h = (hy, hy) is rotated into the system h’'
parallel to the main axes of the concentric ellipses.

In 2D the rotation is given by the matrix

cosf sinf
Q = ( ) ©.1)

—sinf cos@

where 6 is the rotation angle.
In 3D the rotation is obtained by a composition of elementary rotations. The con-
vention is to use Euler’s angles and the corresponding rotation matrix is

cosfl3 sinf; O 1 0 0 cosf; sinf#; O
Q = —sinf; cosf; O cosf, sinfy O —sinf; cosf; O
0 0 1 —sinf, cosf, O 0 0 1

The angle 6, defines a rotation of the plane h, hy around h3 such that h; is brought
into the plane h{h}. With 6, a rotation is performed around the intersection of the
planes hihy and hih) bringing h; in the position of hj. The third rotation with an
angle 05 rotates everything around Aj in its final position.

The second step in the transformation is to operate a shrinking or dilation of the
principal axes of the ellipsoid using a diagonal matrix

VA 0
VA = : (9.2)
0 Vn

which transforms the system h’ into a new system h in which the ellipsoids become
spheres

h = VAR 9.3)
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Conversely, if r is the radius of a sphere around the origin in the coordinate system
of the isotropic variogram, it is obtained by calculating the length of any vector h
pointing on the surface of the sphere

r = |h| = Vh'h. (9.4)
This yields the equation of an ellipsoid in the h’ coordinate system
(h)TAR = r2 9.5)

The diameters d, (principal axes) of the ellipsoid along the principal directions are
thus
2r

d, = e (9.6)

and the principal directions are the vectors q, of the rotation matrix.
Finally once the ellipsoid is determined the anisotropic variogram is specified on
the basis of an isotropic variogram by

v(r) = ~(vVhTBh), ©.7

where B = Q"AQ.

Exploring 3D space for anisotropy

In 3D applications the anisotropy of the experimental variogram can be explored tak-
ing advantage of the geometry of a regular icosahedron (20 faces, 30 edges) centered
at the origin. The 15 lines joining opposite edges through the origin are used as lead-
ing directions for the experimental calculations. The lines are evenly distributed in
space and can be grouped into 5 systems of Cartesian coordinates forming the basis
of trirectangular trieders.

The range of a geometrically anisotropic variogram describes an ellipsoid whose
principal directions are given by a set of Cartesian coordinates. Five possible ellip-
soids for describing the range can now be tested by composing up to four times a
rotation R yielding the rotation matrix

Q = Rf

k 1 —(g+1) g
— (_> g+1 g 1 withk=1,...,4, (9.8)
g 1 g+1

where g = (v/5 — 1)/2 = 0.618 is the golden mean.
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Zonal anisotropy

It can happen that experimental variograms calculated in different directions suggest
a different value for the sill. This is termed a zonal anisotropy.

For example, in 2D tke sill along the z, coordinate might be much larger than
along z;. In such a situation a common strategy is to fit first to an isotropic model
71 (h) to the experimental variogram along the z, direction. Second, to add a geo-
metrically anisotropic variogram -y, (h), which is designed to be without effect along
the z; coordinate by providing it with a very large range in that direction through an
anisotropy coefficient. The final variogram model is then

y(h) = v(h)+ y(h), 9.9

in which the main axis of the anisotropy ellipse for 2 (h) is very large in the direction
x1.

The underlying random function model overlays two uncorrelated processes Z; (x)
and Z,(x)

Z(x) = Zy(x)+ Zs(x). (9.10)

From the point of view of the regionalized variable, the anisotropy of 7,(h) can
be due to morphological objects which are extremely elongated in the direction of z,
crossing the borders of the domain. These units slice up the domain along z; thus
creating a zonation along x5, which explains the additional variability to be read on
the variogram in that direction.

Nonlinear deformations of space

In air pollution and climatological studies it is frequent that data is available for several
replications [V, in time at stations in 2D space. For every pair of locations (X, X4) in
geographical space a variogram value 7*(x,,Xg) can be computed by averaging the
dissimilarities 5 between the two stations for the IV; replications in time. It is often
the case for pairs of stations at locations (x,, Xg) and (X, Xg) With separation vectors
h = h' approximately of the same length and orientation that the values v*(xq, Xs)
and y*(x, X ) are nevertheless very different!

To cope with this problem spatial correlation mapping has been developed, in-
spired by techniques used in morphometrics. SAMPSON & GUTTORP [286] and
MONESTIEZ & SWITZER [229] have proposed smooth nonlinear deformations of
space f(x) for which the variogram y(r) = ~(|h|), with h = f(x) — f(x), is
isotropic. The deformation of the geographical space for which the v* (x4, x4) val-
ues best fit a given theoretical model is obtained by multidimensional scaling . The
resulting somewhat grotesque looking maps showing the deformed geographical space
turn out to be a valuable exploratory tool for understanding the covariance structure
of the stations, especially when this can be done for different time periods.



10 Extension and Dispersion Variance

Measurements can represent averages over volumes, surfaces or intervals, called their
support. The computation of variances depends intimately on the supports that are
involved as well as on a theoretical variogram associated to a pointwise support. This
is illustrated with an application from industrial hygienics. Furthermore, three simple
sampling designs are examined from a geostatistical perspective.

Support

In the investigation of regionalized variables the variances are a function of the size
of the domain. On Table 10.1 the results of computations of means and variances in
nested 2D domains D,, are shown.

Size Mean | Variance
m(Dr) 02('|Dn)
D: | 32x32 20.5 7.4
Dy, | 64x64 20.1 13.8
Ds | 128x128 | 20.1 23.6
D, | 256x256 | 20.8 34.6
Ds | 512x512 | 18.8 45.0

Table 10.1: Nested 2D domains D,, for which the variance increases with the size of
the domain (from a simulation of an intrinsic random function by C LAJAUNIE)

In this example the variance o2(-|D,,) of point samples in a domain D,,, increases
steadily with the size of the domain whereas the mean does not vary following a
distinctive pattern. This illustrates the influence that a change in the size of a support
(here the domain D,,) can have on a statistic like the variance.

In applications generally two or more supports are involved as illustrated by the
Figure 10.1. In mining the samples are collected on a support that can be consid-
ered pointwise (only a few cm?®); subsequently small blocs v (m?) or larger panels V
(100m3) have to be estimated within deposits D. In soil pollution small surface units
s are distinguished from larger portions S. In industrial hygiene the problem may be
set in terms of time supports: with average measurements on short time intervals At
the excess over a limit value defined for a work day T" should be estimated.
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Figure 10.1: Supports in 1, 2, 3D in different applications.

Extension variance

With regionalized variables it is necessary to take account of the spatial disposal of
points, surfaces or volumes for which the variance of a quantity should be computed.

The extension variance of a point x with respect to another point x’ is defined as
twice the variogram

og(x,x') = var(Z(x) - Z(x)) = 2y(x—x). (10.1)

It represents the square of theoretical error committed when a value at a point x is
“extended” to a point x'.

The extension variance of a small volume v to a larger volume V at a different lo-
cation (see Figure 10.2) is obtained by averaging the differences between all positions
of a point x in the volume v and a point x’ in V

Il

oi(v,V) var( Z(v) ) (10.2)

- Z(V)
= 2|v—|1l—V_ / / v(x—x") dx dx’

x €v X'€V
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Figure 10.2: Points x € v and X' € V..

—I—U1|—2/ /fy(x—x')dxdx’

x €v xX'€v

_ 1 //(—')dd' (10.3)
Ve y(x—x") dx dx'. .
xeV x'eV
Denoting

¥(v,V) = IV |V| / / ") dx dx/, (10.4)

x €v X'€V

we have

O'%(’U,V) = 27(1)7‘/)'_7(”7”)_7(‘/"/)' (105)

The extension variance depends on variogram integrals (v, V'), whose values can
either be read in charts (see JOURNEL & HUIJBREGTS [156], chap. II) or integrated
numerically on a computer.

Dispersion variance

Suppose a large volume V is partitioned into n smaller units v of equal size. The
experimental dispersion variance of the values z of the small volumes v, building
up V is given by the formula

SlV) = —Zz — )’ (10.6)

where

1y (10.7)
n
a=1
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Considering all possible realizations of a random function we write
Slv) = - Z(za Zy)®. (10.8)

The theoretical formula for the dispersion variance is obtained by taking the ex-
pectation

a2wlV) = E[S*(u]V)]
%;E[(Z,‘} - vy, (109)

in which we recognize the extension variances

aAwlV) = %iaﬁ(va,m. (10.10)
a=1

Expressing the extension variances in terms of variogram integrals

o*(v|V)

Il

% 3@, V) = 5(v,v) - 7(V, V)

2 ¢~ 1
= (v, v) =7(V,V) + ” > ol IV / / v(x—x') dx dx’
a=11"2

X €vg X' EV

—¥(v,v) —F(V, IU| 4 Z / / (x—x') dx dx’

= x €vg X'EV
x €V
= —A(v,v) =7V, V) +2%5(V,V), (10.11)
so that we end up with the simple formula
a2(wlV) = F(V,V) —7(v,v). (10.12)

The theoretical determination of the dispersion variance reduces to the computa-
tion of the variogram integrals (v, v) and 7(V, V) associated to the two supports v
and V.

Krige’s relation

Starting from the formula of the dispersion variance, first we see that for the case of
the point values (denoted by a dot) the dispersion formula reduces to one term

a*(|V) = F(V,V). (10.13)
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Figure 10.3: A domain D partitioned into volumes V' which are themselves partitioned
into smaller volumes v.

Second, we notice that o2(v|V) is the difference between the dispersion variances
of point values in V and in v

a2w|V) = o*(|V) - o*(-|v). (10.14)

Third, it becomes apparent that the dispersion variance of point values in V' can be
decomposed into

a2(|V) = o*(-|v) + *(v|V). (10.15)

This decomposition can be generalized to non point supports. Let D be a domain
partitioned into large volumes V' which are themselves partitioned into small units v
as represented on Figure 10.3. Then the relation between the three supports v, V and
D can be expressed theoretically by what is called Krige’s relation

a*(v|D) = a*(v|V) + o*(V|D). (10.16)

As the dispersion variances are basically differences of variogram averages over
given supports, the sole knowledge of the pointwise theoretical variogram model
makes dispersion variance computations possible for any supports of interest.

Change of support effect

In the early days of ore reserve estimation, mining engineers used a method called the
polygon method. 1t consists in defining a polygon around each sample, representing
the area of influence of the sample value, in such a way that the ore deposit is par-
titioned by the polygons. The reserves are estimated as a linear combination of the
grades with the corresponding areas of influence. In the polygon method each sam-
ple value is extended to its area of influence, neglecting the fact that the samples are
obtained from pointwise measurements while the polygons represent a much larger
support.
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Figure 10.4: The distribution of block values is narrower than the distribution of values
at the sample points.

In the case of a square grid the polygons are square blocks v which partition the
exploration area. The value at each grid node is extended to each area of influence v.
The method implies that the distribution of average values of the blocks is the same
as the distribution of the values at the sample points. From Krige’s relation we know
that this cannot be true: the distribution of the values for a support v is narrower than
the distribution of point values (as represented on Figure 10.4) because the variance
0%(-|v) of the points in v generally is not negligible.

In mining, the cut-off value defines a grade above which a mining block should
be sent to production. Mining engineers are interested in the proportion of the values
above the cut-off value which represent the part of a geological body which is of
economical interest. If the cut-off grade is a value substantially above the mean, the
polygon method will lead to a systematic overestimation of the ore reserves as shown
on Figure 10.5. To avoid systematic over- or underestimation the support effect needs
to be taken into account.

Change of support: affine model

In this section we consider a stationary random function Z(x) with a mean m and a
variance 0. The mean m is not changed by a change of support and, whatever the
distribution, we have the physical fact,

E[Z2x)] = E[Z(x)]=m, (10.17)

i.e. the mean of the point variable Z(x) is the same as that of the block variable Z, (x).
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overestimation!

threshold

Figure 10.5: The proportion of sample values above the cut-off value is greater than the
proportion of block values: the polygon method leads to a systematic overestimation
in this case.

The affine model is based on the assumption that the standardized point variable
follows the same distribution as the standardized block variable. This model is suitable
for a Gaussian random function as the distribution of block grades is also Gaussian,
ie. if Z(x) ~ N'(m,0?),then Z,(x) ~ N(m,02) and

Z(x)—m L Zy,(x)—m

o Oy

~ N(0,1), (10.18)

where £ means that the two quantities are identically distributed.
The distribution of the block values is therefore simply obtained from the distribu-
tion of the point values by an affine transformation,

Zyx) £ m4r(Zx)-m) ~ N(m,o?), (10.19)
where r = 0, /o is the change of support coefficient.
In practice if the point variance o2 and the variogram ~(h) are known, the bloc
variance is computed by the formula (10.12) of the dispersion variance,

o2 = C(v,v) =0 —7(v,v) (10.20)

v

as, assuming a large domain in comparison to the range of the variogram,
02= 7(00, 00). The change of support coefficient can then readily be computed. The
affine change of support model is appropriate only if the data comply with the Gaus-
sian distributional assumption. Otherwise the affine model should only be used for v
relatively small as compared to the range.
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Figure 10.6: Measurements of maximal noise level Ly,q, (dots) and average noise L,
(plain) on time intervals of 20 seconds during 3 hours and 40 minutes. They represent
the exposure of a worker to the noise of a circular saw.

Application: acoustic data

A series of 659 measurements of equivalent noise levels L., (expressed in dB4) aver-
aged over 20 seconds were performed on a worker operating with a circular saw. The
problem is to evaluate whether a shorter or larger time integration interval would be
of interest.

The L4(t) are not an additive variable and need to be transformed back to the
sound exposure Ve,(t). The average sound exposure Vg,(t) is defined as the inte-
gral (over time interval At) of the squared ratio of the instant acoustic pressures p(z)
against the reference acoustic pressure pg

109 t+At/2 (@) )
Val) = 7 / <’;—:) do (10.21)
t—At/2
= exp(a Le(t) — B), (10.22)

where a = (In10)/10 and 8 = In 10°.

The measurements were taken continuously during a period of 3 hours and 40
minutes. The Figure 10.6 shows with a continuous line the time series (in dB4) of
the equivalent noise levels L., integrated over intervals of 20 seconds. The maximal
noise levels L,,,; within these time intervals are plotted with a dotted line (when they
are above 107 dB). We observe in passing that the averaging over 20 seconds has
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Figure 10.7: Experimental variogram of the sound.exposure V, and a regularized
exponential variogram model for time intervals of At = 20s, Imn and 5mn.

enormously reduced the variation.
The theoretical variogram of the sound exposure was modeled with a pointwise
exponential model

y(h) = b (1 - e—|h|/a) with a,b > 0. (10.23)

The sill is b = .42 and the range parameter is a = 2.4. It corresponds to a practical
range of 3a = 7.2 time units, i.e. 2.4 minutes, which is the time of a typical repetitive
working operation.

The support of the sound exposure, i.e. the integration time, has an impact on
the shape of the theoretical variogram: it alters the behavior at the origin, reduces the
value of the sill and increases the range. The exponential variogram regularized over
time intervals At is defined by the formula ([156], p84)

2
( ba <2e ~At/a _o | 2h teMa(2 g Aoy _¢g (h—At)/a)
a

(At)?
for 0 < h < At,
arlh) = 4 - or0<h < (10.24)
e (075 — e g (e ey e8—2) (1 - He))
\ for b > At.

The Figure 10.7 shows the experimental variogram together with the exponential
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Figure 10.8: Curve of dispersion variances 02(At|D) as a function of the integration
time At with fixed D.

model regularized over time lags of 20 seconds, 1 and 5 minutes illustrating the effect
of a modification of the support on the shape of the theoretical variogram.

Finally a curve of the dispersion variance of the sound exposure as a function of
the integration time At is represented on Figure 10.8. The dispersion variance for an
exponential model is calculated with the formula

a(At|D) ¥(D, D) — F(At, At)

F(D) — F(At), (10.25)

where, for L = At, D,

F(L) = b <1+2fa(%-1) —2L—a22exp <—§)> (10.26)

As the practical range of the variogram is relatively short (2.4 minutes), it can be
learned from Figure 10.8 that for a time integration support of less than 1/2 hour (90
time units) a small increase of the support leads to large dropping of the dispersion
variance. Conversely it does not seem to make much difference if the integration is
changed from 1 hour to 2 hours. With a short practical range the essential part of the
variability can only be recovered using an integration time much shorter than 1/2 hour.
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Comparison of sampling designs

The concepts of estimation and dispersion variance can be used to compare three
ampling designs with n samples
A - regular grid:

the domain D is partitioned into n cubic cells v at the center of
which a sample z(x,) has been taken

B - random grid:

the n samples are taken at random within the domain D
C - random stratified grid:

the domain D is partitioned into n cubic cells v inside
each of which one sample is taken at random

For design A, with a regular grid the global estimation variance o is computed
as

Ohg = var(Z{)—ZD)

Il

o[ (2 S50 S 70)

n

B[ (5 3 (Z(xa) - 2())) |-

a=1

(10.27)
If we consider that the elementary errors Z(x,)—Z(v,) are independent from one
cell to the other

2
OEG

2 o8] (700
a=1

% Zaé(xa,va).
a=1

2t0)]

(10.28)

As the points x,, are at the centers x. of cubes of the same size we have for design
A

ohg = Ea%(xc,v). (10.29)
For design B, the samples are supposed to be located at random in the do-
main (Poisson points). We shall consider one realization z with random coordinates

X1, X2, X3. The expectation will be taken on the coordinates. The global estimation
variance is

2
SEG

— (D) )2 ] : (10.30)



Extension and Dispersion Variance 77

Assuming elementary errors to be independent, we are left with
1 n
ste = -3 D BEx[(2(XT, X5, X5) — 2(D))’). (10.31)
a=1

We now write explicitly the expectation over the random locations distributed with
probabilities 1/|D| over the domain

1 & 2
Shq = EZ///p(z‘f,xg,zg)(z(x‘l",zg,x‘;)*z(D)) dz, dzy dzs
a=1

T ®m z2 T3

_ ﬁl.iaz:‘; I-%—l///(z(zi’,zg,xg‘)—z(D))zdzldmdxa

1 T2 T3
1 n )
= *22:5('”)

a=1

- %SZ(.W). (1032)

Generalizing the formula from one realization z to the random function Z and
taking the expectation (over Z), we have for design B

1
0ky = ;02(-|V). (10.33)

For design C, each sample point is located at random within a cube v, and the
global estimation variance for one realization z is

spa = Ex[(2h— 20)’]

= b (4 30e0x, X5, X5) - 2(00))’]

n
a=1
1 2
= =s(-]v). (10.34)
n
Randomizing z to Z and taking the expectation, we have for design C
1
org = - o?(-|v). (10.35)

Comparing the random grid B with the random stratified grid C we know from
Krige’s relation that

() < (V) (1036)

and thus design C is a better strategy than design B.
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To compare the random stratified grid C with the regular grid A we have to com-
pare the extension variance of the central point in the cube

0%} (XC, 'U) = 2 _’Y(Xc, 1}) - 7(’0’ ’U), (1037)
with the dispersion variance of a point in the cube
o*() = (v,v). (10.38)

It turns out that the former is usually lower than the latter (see [51], p136, for a
numerical example). The regular grid is superior to the random stratified grid from the
point of view of global dispersion variance as the samples cover evenly the region.

However for computing the experimental variogram, an advantage can be seen in
using unequally spaced data: they will provide more information about small-scale
variability than evenly placed samples. This helps in modeling the variogram near the
origin.



11 Ordinary Kriging

Ordinary kriging is the most widely used kriging method. It serves to estimate a value
at a point of a region for which a variogram is known, using data in the neighborhood
of the estimation location. Ordinary kriging can also be used to estimate a block value.
With local second-order stationarity, ordinary kriging implicitly evaluates the mean in
a moving neighborhood. To see this, first a kriging estimate of the local mean is set
up, then a simple kriging estimator using this kriged mean is examined.

Ordinary kriging problem

We wish to estimate a value at x, as represented on Figure 11.1 using the data values

X)

Figure 11.1: A domain with irregularly spaced sample points (black dots) and a loca-
tion of interest Xg.

from the n neighboring sample points x,, and combining them linearly with weights
Wq

Zhk(x0) = Y waZ(xXa). (11.1)
a=1

Obviously we have to constrain the weights to sum up to one because in the par-
ticular case when all data values are equal to a constant, the estimated value should
also be equal to this constant.
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We assume that the data are part of a realization of an intrinsic random function
Z(x) with a variogram -y(h).
The unbiasedness is warranted with unit sum weights

E[Z*(x0) — Z(x0)] = E[ZwaZ(xa) — Z(xo) 'Zwa]

a=1
N——r
1

= Zwa E[Z(xa) — Z(x0)]
_ 3‘ (11.2)

because the expectations of the increments are zero.
The estimation variance o2 = var(Z*(xo) — Z(xo)) is the variance of the linear
combination

Z*(x0) — Z(xo) Zwa (xo) — 1+ Z(x0) = ZwaZ(xa (11.3)
a=1

with a weight wg equal to -1 and

iwa = 0. (11.4)
a=0

Thus the condition that the weights numbered from 1 to n sum up to one also implies
that the use of the variogram is authorized in the computation of the variance of the
estimation error.

COMMENT 11.1 The variogram is authorized for ordinary kriging, but not for simple
kriging, because the latter does not include any constraint on the weights. The con-
dition (11.4) corresponds to the one found in the definition (7.18) of a conditionally
negative definite function.

The estimation variance is

o = E[(Z2*(x0) — Z(x0))* ]
= —y(xg— Z Wa Wg Y(Xa—Xg) + 2211;,,7 Xa—Xp). (11.5)
a=1 =1

By minimizing the estimation variance with the constraint on the weights, we ob-
tain the ordinary kriging system (OK)

Y(xi—x%x1) ... y(x—x,) 1 wK ¥(x1—Xo)
Y(Xn—%1) .. Y(Xp—x%n) 1 wOX ¥(xn—X0)

1 1 0 HOK 1
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where the wQ¥ are weights to be assigned to the data values and where pok is the
Lagrange parameter. The left hand side of the system describes the dissimilarities
between the data points, while the right hand shows the dissimilarities between each
data point and the estimation point x,.

Performing the matrix multiplication, the ordinary kriging system can be rewritten
in the form

n
Zw?K Y(Xo—x%p) + piok = Y(Xa—%Xg) fora=1,...,n
p=1

" (11.7)
Z wf,)K =1
p=1
The estimation variance of ordinary kriging is
n
ook = Mok — V(Xo—Xo) + ZWSK V(Xa—Xo)- (11.8)

a=1

Ordinary kriging is an exact interpolator in the sense that if x, is identical with a
data location then the estimated value is identical with the data value at that point

Z*(x0) = Z(Xa), if X9 = Xaq. (11.9)

This can be easily seen. When x, is one of the sample points, the right hand side
of the kriging system is equal to one column of the left hand side matrix. A weight
vector w with a weight for that column equal to one and all other weights (including
pox) equal to zero is a solution of the system. As the left hand matrix is not singular,
this is the only solution.

Simple kriging of increments

We deal with an intrinsically stationary random function Z(x) with a variogram ~y(h).
We have data at locations X, . .., X,. Taking arbitrarily a random variable Z at the
data location x,,, we can construct an incremental random function

Y(x) = Z(x)— Z(xn), (11.10)
whose (non stationary) covariance function is
Cy(x,y) = —v(x=y) +7(x—%n) +7(y—%n)- (11.11)

The simple kriging estimate Y (xo) from increments at locations X1, . .., Xnp—1
yields an estimate

Z*(x0) = Y5k (%0) + Z(xn), (11.12)

which is equivalent to the ordinary kriging Zy (x).
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To see this, consider the simple kriging system

n—1
ngKCy(xa,xﬂ) = Cy(Xq,Xo) for a=1,...,n—1. (11.13)
=1

Inserting (11.11) we get foreacha =1,...,n—1
n—1 n—1
— Z wﬂ ¥( xa—xﬂ + Z u)ZK Y(Xo—%p) + Z wzx ’)’(xﬁ — Xp)
p=1 B=1
= —Y(Xa—X0) + Y(Xa—Xn) + ¥(Xo—Xn), (11.14)

and renaming the terms which do not depend on «

n—1 n—1
- Z ng V(Xa—%p) — ¥(Xo—Xy) (1 - Z w/siK)
B=1 B=1

+ Zwﬂ 7(Xg=%n) = ¥(Xo—Xn)

—

— ok
= —y(xq—X0) for a=1,...,n—1. (11.15)

This is the system for the ordinary kriging estimator Zg from expression (11.1).
We have weights w0 summmg to one because wOX is equal to wS¥ for the first
n—1 weights, while wQ¥ is precisely the difference betwecn one and the sum of those
simple kriging weights. The system has n—1 equations because there are actually only
n—1 unknowns in ordinary kriging: both ok and wQ¥ can be deduced from the n—1
other weights.

The equivalence between the ordinary kriging of Z and the simple kriging of its
increments Y is no real surprise as both estimators minimize the same estimation
variance

var(Z — Z*) = var(Y —Y") (11.16)

over the same class of estimators and with the same probabilistic model. As the same
minimum is achieved, the resulting kriging variances are equal.

Block kriging

Ordinary kriging can be used to estimate a block value instead of a point value as
suggested by the drawing on Figure 11.2. When estimating a block value from point
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Vo

Figure 11.2: A domain with irregularly spaced sample points (black dots) and a block
v for which a value should be estimated.

values by
Zyy = Y WaZ(Xa) (11.17)

the ordinary kriging is modified in the following way to krige a block

Y(xi—%x1) ... Y(xi—x,) 1 wBK ¥(x1, vo)
' ' : : = ,(11.18)
Y(Xn—%1) ... Y(Xn—%) 1 wBK ¥(%Xn, v0))

where the right hand side now contains the average variogram 7(x,, vo) of each sam-
ple point with the block of interest.
The corresponding block kriging variance is

0123K = ek — 7(vo, vo) + ZwEK ¥(Xa, Vo)- (11.19)

a=1

For a second-order stationary random function the block kriging variance can be
written in terms of covariances

ohx = sk + C(vo, vo) ZwBKC’(xa,vo) (11.20)

Assuming the covariance function falls off to zero (like the spherical or exponential
functions), if we let the volume vy grow very large, the terms C(vg, vp) and C(xq, vo)
vanish, i.e.

ohx > opy  for |ug| > oo. (11.21)

The same is true for the kriging systems and the estimates. The block kriging tends
to be equivalent to the kriging of the mean for large blocks vg.
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Simple kriging with an estimated mean

We assume a second-order stationary Z (x) with known covariance function C'(h). We
already have learned how to krige the mean using the linear combination

Z wEM 2(x,)  with Z wiM =1, (11.22)

where wXM are the weights of a kriging of the mean and z(x,) are data at locations
Xg-
Why not insert this estimated mean value into the simple kriging estimator

Zgm(%0) = m*+ Xn: wi(Z(xa) — m¥), (11.23)

where wSK are the simple kriging weights? Replacing m* by the corresponding linear
combination gives

T = 3wl ) + 3 20s) = 3wl )

a=1 p=1

ZwSKZ Xq +Z’U}KMZ X,) ZwKMZ(xa Zw
Z{w +wKM(1—Zw “)] zx (11.24)

a=1

I

Introducing a weight

n

o o= 1-Y wk, (11.25)
a=1
called the weight of the mean, we have
Zgkm(x0) = Z [w + wwk ] Z wh, Z(Xq). (11.26)
a=1

This looks like the estimator used for ordinary kriging.
We check whether the weights w!, in this linear combination sum up to one

iwﬁ, ZwSK—l—waKM ZwSK+1 ZwSK—l (11.27)
a=1

a=1
\_\,_./
1

We examine the possibility that the weights w!, might be obtained from an ordinary
kriging system

Z wp C (X —Xp)
p=1

ngK (xa—%p) + W Zw C(x0—x5)
B=1 B=1
= C(xq—Xo) + W pxm- (11.28)
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Choosing to call u' the product of the weight of the mean with the variance of the
kriging of the mean, and putting the equations for w!, together, we indeed have an
ordinary kriging system

Zw}, C(xo—xp) = C(xq—Xg) + ' fora=1,...,n
(11.29)

which shows that ordinary kriging is identical with simple kriging based on the esti-
mated mean: Z§,(xo) = Z§k (x0)-
The ordinary kriging variance has the following decomposition

b = ob+[ TPk | (11.30)

The ordinary kriging variance is the sum of the simple kriging variance (assuming
a known mean) plus the variance due to the uncertainty about the true value of the
mean. When the weight of the mean is small, the sum of the weights of simple kriging
is close to one and ordinary kriging is close to the simple kriging solution, provided
the variance of the kriged mean is also small.

Kriging the residual

Considering Z(x) to be a second-order stationary random function, we can establish
the following model

Z(x) = _m + Y(x) with E[Y(x)]=0. (11.31)
mean residual

The mean is uncorrelated with the residual
E[m-Y(x)] = mE[Y(x)]=0, (11.32)

because it is a deterministic quantity.

We know how to estimate Z(x) by ordinary kriging and the mean m by a kriging
of the mean. Now we would like to krige Y (x) at some location x, with the same type
of weighted average

Y*(xo) = iwa Z(%a). (11.33)
a=1



86 Geostatistics

The unbiasedness is obtained by using weights summing up to zero (instead of
one)

Il

E[Y (x0) — Y*(%0) ] E[Y (x0)] ~ > wa E[Z(xa)]

0 - m

n
= -m Y w, =0 (11.34)
a=1
0

The condition on the weights has the effect of removing the mean.

The estimation variance var(Y™*(xg) — Y (x)) is identical to var(Z*(xo) — Z(xo))
as Y (x) has the same covariance function C'(h) as Z(x). The system of the kriging of
the residual (KR) is the same as for ordinary kriging, except for the condition on the
sum of weights which is zero instead of one.

It is of interest to note that the ordinary kriging system can be decomposed into
the kriging of the mean and the kriging of the residual:

C(x1—x1) ... C(x1—x%,) 1 wiM wiR
: . : Sl Col L]
C(xp—x%1) ... C(xp—x%,) 1 wkM wkR
1 1 0 —HKM — KR
0 C(x1—x0)

=]+ 5 1135

0 C(xn—X0) ( )

1 0

The weights of ordinary kriging are composed of the weights of the krigings of the
mean and the residual, and so do the Lagrange multipliers

wOK = KM 4

o7 [o]

KR
wa

and HOK = MKM t+ UKR- (11.36)
The estimators are thus compatible at any location of the domain
Z*(x0) = m*+Y*(xo) forall xo € D. (11.37)

The kriging variances

Oiem = HKM and ogr = C(0) — ZWSRC(xa_XO) (11.38)

a=1

however do not add up in an elementary way.
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Cross validation

Cross validation is a simple way to compare various assumptions either about the
model (e.g. the type of variogram and its parameters, the size of the kriging neighbor-
hood) or about the data (e.g. values that do not fit their neighborhood like outliers or
pointwise anomalies).

In the cross validation procedure each sample value Z(x,) is removed in turn
from the data set and a value Z*(x(q)) at that location is estimated using the n—1
other samples. The square brackets around the index o symbolize the fact that the
estimation is performed at location x, excluding the sampled value Z,.

The difference between a data value and the estimated value

Z(xa) — Z*(X[a) (11.39)

gives an indication of how well the data value fits into the neighborhood of the sur-
rounding data values.
If the average of the cross-validation errors is not far from zero,

LS (26 - 2 xa)) = 0, (11.40)
a=1

we can say that there is no apparent bias, while a significant negative (or positive)
average error can represent systematic overestimation (respectively underestimation).

The magnitude of the mean squared cross-validation errors is interesting for com-
paring different estimations:

(2 (xa) = 2 ()" (11.41)

The kriging standard deviation o[, represents the error predicted by the model
when kriging at location x, (omitting the sample at the location x,). Dividing the
cross-validation error by o1,) allows to compare the magnitudes of both the actual and
the predicted error:

Z(a) ~ Z*(x(a)) (11.42)
Ofal

If the average of the squared standardized cross-validation errors is about one,

1¢ (Z(Xa)—Z*(X[a]))2

2
n
a=1 Tla)

&~ g, (11.43)

the actual estimation error is equal on average to the error predicted by the model.
This last quantity gives an idea about the adequacy of the model and of its parameters.
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Kriging with known measurement error variance

Suppose we measure sample values z, with a device indicating the precision o, of
each measurement.

The model for each sample location is Z(x,) = Y (x4) + €4, Where &, is the
measurement error, with a known variance var(e,) = o2, which may be different
for each sample. The Y (x,) represents the quantity we actually wish to measure.
We assume it is second-order stationary and shall suppose that we have access to its
covariance function C'(h).

We need also to assume that the measurement error is not spatial,

cov(Y(Xqe),€a) = 0, (11.44)
and that the errors are independent
cov(€a,€8) = 0 for o #p. (11.45)

We wish to filter the measurement error by kriging. This amounts to estimate Y (x)
from the data Z(x,) with the linear combination

Y*(x0) = Y waZ(Xa): (11.46)

The corresponding ordinary kriging system is

C(x;—x1)+o?| ... C(x1—Xp) 1 wy
5 : L 1147
Clxn—x1) - [Clxa—xa) + 02| 1 wn (11.47)
1 e 1 0 —H
C(Xl'—XO)
= | C(xn—x0)

\ 1

In this system the error variances o2 only show in the diagonal of the left hand
matrix.



12 Kriging Weights

The behavior of kriging weights in 2D space is discussed with respect to the geo-
metry of the sample/estimation locations, with isotropy or anisotropy and in view of
the choice of the type of covariance function. The examples are borrowed from the
thesis of RIVOIRARD [264] which contains many more.

Geometry

The very first aspect to discuss about kriging weights is the geometry of the sample
points and the estimation point. Let us take a lozenge at the corners of which 4 samples
are located. We wish to estimate a value at the center of the lozenge.

Nugget-effect covariance model

In the case of a nugget-effect model the ordinary kriging weights are shown on Fig-
ure 12.1. All weights are equal to 1/n and do not depend on the geometry.

25%
[
25% 25%
{ O (
L
25%
{

Figure 12.1: Ordinary kriging weights when using a nugget-effect model with samples
located at the corners of a lozenge and the estimation point at its center. The kriging
variance is 03 = 1.25 02.

With a nugget-effect model, when the estimation point does not coincide with a
data point, the ordinary kriging variance is equal to

2
o
ok = Mok +0°= o + o2 (12.1)

It is larger than the variance 0.
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Figure 12.2: With a spherical model of range a/L = 2 the remote samples get lower
weights. The ordinary kriging variance is 03 = .8402.

Spherical covariance model

Taking a spherical model of range a/L = 2 the weights of the samples at the remote
corners of the lozenge get lower weights as to be seen on Figure 12.2. The associated
ordinary kriging variance is 03, = .84 o2

Gaussian covariance model

Using a Gaussian covariance model with range parameter a/L = 1.5 the remote sam-
ples have almost no influence on the estimated value at the center of the lozenge as
shown on Figure 12.3. '

49.8
[ ]
0.2% 0.2%
([ ] O [ ]
L
49.8%
®

Figure 12.3: Using a Gaussian model with a range parameter a/L = 1.5 the remote
samples have very little influence on the estimated value. The ordinary kriging variance
o2 2
18 Opk= 300°.

The random function associated to the Gaussian model is an analytic function,
which implies that the data are assumed to stem from an infinitely differentiable re-
gionalized variable. Such a model is generally not realistic.
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Figure 12.4: Comparing a configuration of four samples at the corners of a square
using an isotropic model (on the left) and an anisotropic model (on the right).

33.3% 33.3%
37.1% 37.1%

33.3% 25.9%

Figure 12.5: Three samples on a circle around the estimation location (on the left
03x= 4507 and on the right 03 = .48 o).

Geometric anisotropy

On Figure 12.4 a configuration of four samples at the corners of a square with a central
estimation point is used, taking alternately an isotropic (on the left) and an anisotropic
model (on the right).

On the left, the isotropic model generates equal weights with this configuration
where all sample points are symmetrically located with respect to the estimation point.

On the right, a spherical model with a range of a/L = 1.5 in the horizontal di-
rection and a range of a/L = .75 in the vertical direction is used as the anisotropic
model. The weights are weaker in the direction with the shorter range and this matches
intuition.

Relative position of samples

This experiment compares the relative position of samples on a circle of radius L
around the estimation point using an isotropic spherical model with a range of 3a/L.
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Figure 12.6: On the left, two samples have been set near to each other at the top
(03x= -526 02). On the right, the two upper samples have been merged into one
single top sample (0c3x= .537 0?).

On the left of Figure 12.5 three samples are arranged in a symmetric way around
the estimation point. The weights are identical and the ordinary kriging variance is
03k = .450%. On the right, the two top samples have been moved down around
the circle. The weights of these two samples increase because of the gap created at
the top of the circle. The ordinary kriging variance is higher than in the symmetric
configuration with 03, = .48 0.

On the left of Figure 12.6 On the left of Figure 12.6 the two top samples have been
set very near to each other and their total weight is slightly higher than the weight of
the bottom sample. The ordinary kriging variance is 03x = .526 0. On the right
of Figure 12.6 the two upper points have actually been merged into a single sample.
Symmetry is reestablished: the top and bottom sample locations each share half of
the weight. Merging the two upper samples into one top sample has only slightly
increased the ordinary kriging variance to 03 = .537 o2

Screen effect

A remarkable feature of kriging, which makes it different from other interpolators,
is that a sample can screen off other samples located behind it with respect to the
estimation location. An example of this phenomenon is given on Figure 12.7 showing
two 1D sampling configurations. A spherical model of range parameter a/L= 2 was
used, where L is the distance from the point A to the estimation location.

At the top of Figure 12.7, two samples A and B are located at different distances
of the estimation point and get different ordinary kriging weights of 65.6% and 34.4%
according to their proximity to that point. The kriging variance is 03 = 1.14 02

At the bottom of Figure 12.7, a third sample C has been added to the configuration:
the weight of B drops down to 2.7% and almost all weight is distributed fairly equally
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Figure 12.7: At the top, we have two samples at different distances from the esti-
mation point (03x= 1.14 0?). At the bottom, a third sample has been added to the
configuration (03, = .87 0?).

between A and C which are at the same distance from the estimation point. The
ordinary kriging variance is brought down to 0% = .87 0?.

An interpolator based on weights built on the inverse of the distance of a sample
to the estimation point does not show screen effects. The weights are shaped without
taking any account of the varying amount of samples in different directions around the
estimation point.

Factorizable covariance functions

With the 1D configuration at the bottom of Figure 12.7 a total screen off of B by C
could be obtained by using an exponential covariance function (instead of the spheri-
cal model) and simple kriging (instead of ordinary kriging). This is due to the factor-
ization of the exponential function C(h) = exp(—|h|):

C(zg,z8) = C(z0,z¢) - C(zc,zB), (12.2)

which implies the conditional independence of Z(z,) and Z(zg) with respect to
Z(z¢) for a stationary Gaussian random function Z(x).

In 2D, with h= (h;, hz)T, the so-called “Gaussian” covariance function (because
of the analogy with the distribution of the same name),

2
ch) = e~ hl" (12.3)
can be factorized with respect to the two spatial coordinates:
2 2 2 2
om) = e~ (M) = ()" _e=(h)" e =(h2)" = o(n) - C(hy). (12:4)

An example of simple kriging weights with a Gaussian covariance function is
shown on Figure 12.8. The samples D, E, F are completely screened off by the
samples A, B, C. The latter are the orthogonal projections of the former on the abscissa
of a coordinate system centered on the estimation point. It could be thought that total
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Figure 12.8: Simple kriging with a Gaussian covariance model: samples A, B, C screen
off D, E, F (in simple kriging the weights are unconstrained and do not add up to 100%).
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Figure 12.9: Simple kriging with a Gaussian covariance model: adding the point G
radically changes the distribution of weights.

screen off will act on samples whose projection on either one of the coordinate axes
(centered on the estimation location) is a sample location. There is no such rule:
adding a point G above the estimation location as on Figure 12.9 changes radically
the overall distribution of weights.

Negative kriging weights

It is interesting to note that many points on Figure 12.9 have received a negative
weight. Negative kriging weights are an interesting feature as they make extrapolation
possible out of the range of the data values. The counterpart is that when a variable is
only defined for positive values (like grades of ore), it may happen that kriged values
are slightly negative and need to be readjusted.

COMMENT 12.1 A formulation of kriging providing only positive weights was given
by BARNES & JOHNSON [22]. CHAUVET [43] reviews causes and possible solutions
to the presence of significant negative weights, while MATHERON [219] examines the
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question of the existence of covariance, variogram or generalized covariance models
that ensure positive kriging weights.



13 Mapping with Kriging

Kriging can be used as an interpolation method to estimate values on a regular grid
using irregularly spaced data. Spatial data may be treated locally by defining a neigh-
borhood of samples around each location of interest in the domain.

Kriging for spatial interpolation

Kriging is certainly not the quickest method for spatial interpolation.

A simpler method, for example, is the inverse distance interpolation, which con-
sists in weighting each data by the inverse of the distance to the estimation location
(scaling the weights to be unit sum). One could establish an alternate method by us-
ing the inverse squared distance or, more generally, a power p of the inverse distance.
This raises the question of how to choose the parameter p and there is no simple an-
swer. Geostatistics prevents such a problem by starting rightaway with an analysis
and an interpretation of the data to determine the parameters entering the interpolation
algorithm, i.e. kriging.

The advantages of the geostatistical approach to interpolation are thus:

— kriging is preceded by an analysis of the spatial structure of the data. The rep-
resentation of the average spatial variability is integrated into the estimation
procedure in the form of a variogram model.

— ordinary kriging interpolates exactly: when a sample value is available at the
location of interest, the kriging solution is equal to that value.

— kriging, as a statistical method, provides an indication of the estimation error:
the kriging standard deviation, which is the square root of the kriging variance.

How is kriging actually used for generating a map?

A regular grid is defined on the computer as shown on Figure 13.1. Each node of
the grid becomes the point x, in turn and a value is kriged at that location. The result
is a map like on Figure 13.2. Here a raster representation of the kriged grid was
chosen. Each shaded square is centered on the node of the grid and is shaded with a
different grey tone according to the value estimated at that location.

Figure 13.3 shows a raster representation of the corresponding kriging standard
deviations. This map of the theoretical kriging estimation errors allows to evaluate
the precision of the estimation in any part of the region. It is a useful compendium
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Figure 13.1: To make a map, a regular grid is built for the region of interest and each
node becomes the node Xg in turn.

of the map of the kriged values. It should be understood that the kriging variance is
primarily a measure of the density of information around the estimation point.

The white squares on Figure 13.3 correspond to nodes which coincide with a sam-
ple location: the kriging variances are zero at these points where exact interpolation
takes place.

For a better visual understanding of the spatial structure of the kriged values the
grid of regularly spaced values is generally submitted to a second interpolation step.
One possibility is to refine the initial grid and to interpolate linearly the kriged val-
ues on the finer grid like on the raster representation on Figure 13.4. The result is a
smoother version of the raster initially shown on Figure 13.2.

Another way to represent the results of kriging in a smooth way is to contour them
with different sets of isolines as shown on Figure 13.5 (the arsenic data has been
standardized before kriging: this is why part of the values are negative).

Neighborhood

It may be asked whether it is necessary to involve all samples in the estimation proce-
dure. More precisely, with a spherical covariance model in mind, as the covariance is
zero for distances greater than the range, is it necessary to involve samples which are
far away from a location of interest x¢?

It seems appealing to draw a circle (sphere) or an ellipse (ellipsoid) around x, and
to consider only samples which lie within this area (volume) as neighbors of Z(xg).
Locations whose covariance with x, is zero are uncorrelated and the corresponding
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Figure 13.2: Raster representation of kriged values of arsenic: a square is centered on
each node of a .5 km X .5 km grid and shaded proportionally to the kriging result.

samples have no direct influence on Z(x,). Thus it makes sense to try to define for
each location x, a local neighborhood of samples nearest to xg.

At first sight, with the spherical covariance model in mind, the radius of the neigh-
borhood centered on xg could be set equal to the range of the covariance function and
samples further away could be excluded as represented on Figure 13.6. However, the
spherical covariance function expresses only the direct covariances between points,
but not the partial covariances of the estimation point with a data point conditionally
on the other sample points. The partial correlations are reflected in the kriging weights,
which are in general not zero for points beyond the range from the estimation location.

In practice, because of the generally highly irregular spatial arrangement and den-
sity of the data, the definition of the size of a local neighborhood is not straightfor-
ward. A criterion in common use for data on a regular mesh is to check for a given
estimation point if adding more samples leads to a significant decrease of the kriging
variance, i.e. an increase in the precision of the estimation. Cross validation criteria
can also be used to compare different neighborhoods.
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Figure 13.3: Raster representation of the kriging standard deviations.
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Figure 13.4: Smoothed version of the raster representation of arsenic: a finer grid is
used and the kriged values are interpolated linearly on it.
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Figure 13.5: Isoline representation of kriged values of arsenic: the kriged values at the
grid nodes are contoured with a set of thin and thick isolines (arsenic data was reduced
to zero mean and unit variance before kriging).
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Figure 13.6: Around a location of interest X of the grid a circular neighborhood is
defined and the samples within the circle are selected for kriging.



14 Linear Model of Regionalization

A regionalized phenomenon can be thought as being the sum of several independent
subphenomena acting at different characteristic scales. A linear model is set up which
splits the random function representing the phenomenon into several uncorrelated ran-
dom functions, each with a different variogram or covariance function. In subsequent
chapters we shall see that it is possible to estimate these spatial components by krig-
ing, or to filter them. The linear model of regionalization brings additional insight
about kriging when the purpose is to create a map using data irregularly scattered in
space.

Spatial anomalies

In geochemical prospecting or in environmental monitoring of soil the aim is to detect
zones with a high average grade of mineral or pollutant. A spatial anomaly with a
significant grade and a relevant spatial extension needs to be detected. We now discuss
the case of geochemical exploration.

When prospecting for mineral deposits a distinction can be made between geolog-
ical, superficial and geochemical anomalies as illustrated on Table 14.1.

A deposit is a geological anomaly with a significant average content of a given raw
material and enough spatial extension to have economic value. Buried at a specific
depth, the geological body may be detectable at the surface by indices, the superficial
anomalies, which can be isolated points, linear elements or dispersion haloes.

Geological and superficial anomalies correspond to a vision of the geological phe-
nomenon in its full continuity. Yet in prospecting only a discrete perception of the phe-
nomenon is possible through samples spread over the region. A superficial anomaly
can be apprehended by one or several samples or it can escape the grip of the prospec-
tor when it is located between sample points.

A geochemical anomaly, in the strict sense, only exists at the sample points and
we can distinguish between:

— pointwise anomalies defined on single samples, and
— groupwise anomalies defined on several neighboring samples.

If we think of the pointwise and the groupwise anomalies as having been generated
by two different uncorrelated spatial processes, we may attribute a nugget-effect to
the presence of pointwise anomalies, a short range structure to groupwise anomalies,
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| 3D 2D Samples ]
GEOLOGICAL +~— SUPERFICIAL +— GEOCHEMICAL
ANOMALY ANOMALY ANOMALY
isolated spot — point
/ S
deposit — fault
hY hY
aureola — group of points

Table 14.1: Spatial anomalies in geochemical prospecting.

while a further large scale structure may be explained by the geochemical background
variation.

Such associations between components of a variogram model and potential spatial
anomalies should be handled in a loose manner, merely as a device to explore the
spatial arrangement of high and less high values.

Nested variogram model

Often several sills can be distinguished on the experimental variogram and related
to the morphology of the regionalized variable. In a pioneering paper SERRA [299]
has investigated spatial variation in the Lorraine iron deposit and found up to seven
sills, each with a geological interpretation, in the multiple transitions between the
micrometric and the kilometric scales.

Let us first define the correlation function p(h), obtained by normalizing the co-
variance function with its value b = C(0) at the origin,

p(h) = @ sothat C(h) = bp(h). (14.1)

Different sills b, observed on the experimental variogram are numbered with an in-
dexu =0, ..., S. A nested variogram is set up by adding S+1 elementary variograms
with different coefficients b,

S

S
y(h) = > yu(h) =) bugu(h), (14.2)
u=0

u=0

where the g, (h) are normalized variograms, i.e. elementary variogram models with a
slope, sill (or asymptotic sill) normalized to one. The coefficients b, express explicitly
the actual value of the nugget-effect, sill or slope.
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Figure 14.1: Display of the values of arsenic measured on soil samples in a 35 km X
25 km region near the Loire river in France.

If the variograms 7, (h) can be deduced from covariance functions C,(h), the
nested variogram becomes

S

s s
v(h) = b— Z Cy(h) =b— Zbu pu(h), where b= Zbu, (14.3)
u=0

u=0 u=0

with, in a typical case, a nugget-effect covariance function Cy(h) and several spherical
covariance functions C,,(h) having different ranges a,,.

On Figure 14.1 a map of arsenic samples taken in soil is shown, covering a region
near the Loire river. The arsenic sample locations are represented with circles pro-
portional to the detected values. The mean experimental variogram of this variable is
seen on Figure 14.2. The variogram has been fitted with a nested model consisting of
a nugget effect plus two spherical functions with a range of 3.5 km and 6.5 km.

Decomposition of the random function

The random function Z(x) associated with a nested variogram model is a sum of
spatial components characterizing different spatial scales, i.e. reaching different sills
of variation b, at different scales, except maybe for the last coefficient bg, which could
represent the slope of an unbounded variogram model.
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Figure 14.2: Variogram of the arsenic measurements fitted with a nested model con-
sisting of a nugget-effect plus two spherical models of 3.5 km and 6.5 km range.

It is clear that a small-scale component can only be identified if the sampling
grid is sufficiently fine. Equally, a large-scale component will only be visible on the
variogram if the diameter of the sampled domain is large enough.

A deterministic component (mean m or drift m(x)) can also be part of the decom-
position.

In the following we present several linear models of regionalization, obtained by
assembling together spatial components of different types.

Second-order stationary regionalization

A second-order stationary random function Z(x) can be built by adding uncorrelated
zero mean second-order stationary random functions Z,,(x) to a constant m represent-
ing the expectation of Z(x)

Z(x) = Zo(X)+...+ Zy(x)+ ...+ Zs(x) + m, (14.4)

where cov(Z,(x), Z,(x+h)) = 0 for u # v.
A simple computation shows that the corresponding covariance model is

C(h) = Cy(h)+...+Cyu(h)+...4+ Cs(h). (14.5)
Take a random function model with two uncorrelated components

Z(x) = Zi(x)+ Zz(x) + m, (14.6)
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with E[ Z;(x) Zy(x+h) ] = 0 and E[ Z;(x) ] = E[ Z5(x)] = 0.
Then

C(h) E[ Z(x+h) Z(x)] — m?

= E[Z(x+h) Zi(x)] + E[ Zz(x-+h) Z5(x) ] + m’
+E[ Z1(x+h) Z3(x) | + E[ Z2(x+h) Z;(x) ]
+E[ Z1(x+h) | m + E[ Z3(x+h) |m
+mE[Z1(x)] + mE[ Zy(x) ] — m?

Ci(h) + Cy(h). (14.7)

Intrinsic regionalization

In the same way an intrinsic regionalization is defined as a sum of S + 1 components,
Z(x) = Zo(xX)+ ...+ Zu(x) + ...+ Zs(x), (14.8)

for which the increments are zero on average and uncorrelated.
For a two component model,

Z(X) = Zl (X) + Zz(X), (149)
we have the variogram

y(h) = E[(Z(x+h) - Z(x))’]
= E[( (Zy(x-+h) = Z1(x)) + (Zo(x-+h) — Zz(x)))z]
= E[(Zi(x+h) — Z1(x))*] + E[(Zs(x+h) — Z3(x))’]
= m(h) +72(h), (14.10)
because E[(Z)(x+h) — Z;(x)) - (Z2(x+h) — Z»(x))] = 0.

Intrinsic regionalization with mostly stationary components

A particular intrinsic random function Z(x) can be constructed by putting together one
intrinsic random function Zs(x) and S second-order stationary functions Z, (x),u =
0,...,S—1, having means equal to zero and being uncorrelated amongst themselves
as well as with the increments of the intrinsic component

Z(x) = Zo(x)+ ...+ Zy(x) + ...+ Zs(x). (14.11)

The associated variogram model is composed of S elementary structures deduced
from covariance functions plus a purely intrinsic structure.

For this mixed linear regionalization model with second order stationary and in-
trinsically stationary components, we shall develop kriging systems to estimate both
types of components in the next chapter.
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Locally stationary regionalization

A non-stationary random function Z(x) can be obtained by superposing S+1 uncor-
related second-order zero mean random functions Z,(x) and a drift m(x) (the expec-
tation of Z(x) at the location x)

Z(x) = Zo(x)+...+ Zu(x)+ ...+ Zs(x) + m(x). (14.12)

By assuming a very smooth function m;(x), which varies slowly from one end
of the domain to the other end, the drift is locally almost constant and the random
function

Z(x) = Zo(X)+ ...+ Zy(x) +...+ Zs(x) + my(x) (14.13)

can be termed locally stationary (i.e. locally second-order stationary), the expectation
of Z(x) being approximatively equal to a constant inside any rather small neighbor-
hood of the domain.

The locally stationary regionalization model is the adequate framework for the
typical application with the following three steps

1. the experimental variogram is used to describe spatial variation;

2. only covariance functions (i.e. bounded variogram functions) are fitted to the
experimental variogram;

3. a moving neighborhood is used for ordinary kriging.

In the first step the experimental variogram filters out m;(x) at short distances, be-
cause it is approximatively equal to a constant in a local neighborhood. For distances
up to the radius of the neighborhood the variogram thus estimates well the underlying
covariance functions, which are fitted in the second step. In the third step the ordinary
kriging assumes implicitly the existence of a local mean within a moving neighbor-
hood. This local mean corresponds to the constant to which m,(x) is approximatively
equal within not too large a neighborhood. The local mean can be estimated explicitly
by a kriging of the mean.



15 Kriging Spatial Components

The components of regionalization models can be extracted by kriging. The extraction
of a component of the spatial variation is a complementary operation to the filtering
out (rejection) of the other components. This is illustrated by an application on geo-
chemical data.

Kriging of the intrinsic component
For Z(x) defined in the framework of the intrinsic regionalization model with mostly

stationary components (presented on page 105), we may want to estimate the intrinsic
component Zs(x) from data about Z(x) in a neighborhood

> w§ Z(xa). (15.1)
a=1
The expectation of the estimation error is nil using weights that sum up to one,
B[ Z3(x0) — Zs(xo)| = B[ Yl Z(xa) = Zs(xo) - ) wf |
a=1 a=1
1
= Z w3 E[Z — Zs(x0)]
n 5-1
DA a) |+ E[ Zs(xa) = Zs(x)] )
a=1 u:O ‘f T
= 0 (15.2)

Remember that the constraint of unit sum weights is also needed for the existence
of a variogram as a conditionally negative definite function as explained in the presen-
tation of ordinary kriging.

The estimation variance o3 is

ok = var(Z%(xo) — Zs(xo))
S—1 n

B[ (X ud Zutxa +Zw (Zs(xa) ~ Zs(x0)) ) | (15:3)

u=0 a=1
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Taking into account the non correlation between components

S-1 n n
Z Z Z w3 wi C*(Xa—Xg) (15.4)
u=0 a=1 =1
n o n n
=) > wy wh ¥ (xa—xp) — 7 (X0—%0) + 2)_ wy 7 (xa—X0).
a=1 =1 a=1

We can replace the covariances by C*(xg—xp) — 7*(Xo—Xp) because it is always
possible to construct a variogram from a covariance function and we get

S-1
> C*(x0—x%0) (15.5)
u=0

n

n
- Z wj wj Y(Xa—Xg) +22w Xa—X0)-

a=1 B=1 a=1

Minimizing 0% with the constraint on the weights, we have the system

ng Y(Xa—x%g) + s = 7 (Xa—%¢) fora=1,...,n
=1

iwg =1.
B=1

The difference with ordinary kriging is that the terms y°(x,—xo), which are spe-
cific of the component Zs(x), appear in the right hand side.

(15.6)

COMMENT 15.1 If the variogram of the intrinsic component ys(h) is bounded we
can replace it with a covariance function Cs(h) using the relation

vs(h) = Cs(0) — Cs(h). (15.7)

The kriging system for extracting the intrinsic component Zg(x) can now be
viewed in the framework of the locally stationary regionalization model: the system
estimates a second order stationary component together with the local mean.

Kriging of a second-order stationary component
For the purpose of kriging a particular second-order stationary component Z,(x) in

the framework of the intrinsic regionalization model with mostly stationary compo-
nents (see page 105), we start with the linear combination

2": w Z(x,). (15.8)
a=1
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Figure 15.1: Map of the component associated with the short range (3.5 km).

Unbiasedness is achieved on the basis of zero sum weights (introducing a ficticious
value Z(0) at the origin, to form increments)

E[ zs: zn: we? Zy(Xa) = Zug(Xo) ]

u=0 a=1
S§-1 n

= B[ 3 utt Zula) = Zuo(x0)

u=0 a=1

E[ Z,(%0) = Zuo(%0) ]

n n
+ 3w Zs(xa) - Z5(0) - Y wi |
a=1 a=1

0
S-1 n

= Y > uwkE[Z, (xa)]—E[Zuo(xo)]

u=0 a=1 0 0

+ z w:" P[ Zs(xa) - ZS(O)l

a=1 br
= 0. (15.9)
The estimation variance is
var(Zy, (xo) — uu (xo)) (15.10)
= CO"(xp—xXp) — Z Z wy? wg® ¥(Xa—Xp) + 2 Z Wa V" (Xa—Xo)-

a=1 =1 a=1

g
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The kriging system for the component Z,,(x) is then

n
ng" Y(Xa—x%g) + pug = T (Xa—%o) fora=1,...,n
p=1

i wg® = 0.
p=1

(15.11)

We are thus able to extract from the data different components of the spatial vari-
ation which were identified on the experimental variogram with a nested variogram
model.

These component kriging techniques bear some analogy to the spectral analysis
methods, which are much in use in geophysics. CHILES & GUILLEN [49] have com-
pared the two approaches on gravimetric data using covariance functions derived from
a model which represents geological bodies as random prisms (see [310], [309]). The
variogram obtained is a particular case of a Cauchy model (see Eq. (II.11), p336)
with a scale parameter o. The Cauchy model provides variogram models both for
gravity (o = 1/2) or magnetic data (o = 3/2)in physical applications [51], like e.g in
problems of electromagnetic compatibility [181]. The results obtained by CHILES &
GUILLEN by decomposing either the variogram or the spectrum matched well, even
though the geological bodies were located at different average depths by each method.
An advantage of the geostatistical approach is that the data need not to be interpolated
on a regular grid for computing the experimental variogram, while this is necessary
for determining the spectrum. The case study is discussed in full detail in CHILES &
DELFINER [51].

Filtering

Instead of extracting a component of the spatial variation we may wish to reject it.
We can filter a spatial component Z,,,(x) by removing the corresponding covariances
Cluo(Xa—%0) from the right hand side of the ordinary kriging system.

For example, we might wish to eliminate the component Z; (x) in the second-order
stationary model

Z(x) = Zi(x)+ Zo(x) +m (15.12)
e ——
Zy(x)

and to obtain a filtered version Z;(x) of Z(x). To achieve this by kriging, we use
weights w/ in the linear combination

Z}(x0) = Xn:ng(xa) (15.13)
a=1
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Figure 15.2: Map of the component associated with the long range (6.5 km) together
with the estimated mean.

derived from the system

ng C(xa—xg) — py = Ca(xa—%p) fora=1,...,n
B=1

z": wé =1,
B=1

where C; (h) is absent in the right hand side. We obtain thereby an estimation in which
the component Z7(x) is removed.

The filtered estimate can also be computed by subtracting the component from the
ordinary kriging estimate

(15.14)

Z}(x) = Zpk(x)— Z7(x). (15.15)

According to the configuration of data around the estimation point, ordinary krig-
ing implicitly filters out certain components of the spatial variation. This topic will
be taken up again in the next chapter when examining why kriging gives a smoothed
image of reality.

Application: kriging spatial components of arsenic data

The data was collected during the national geochemical inventory of France and the
map of the location of arsenic values in a 35 km x 25 km region near the Loire
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river has already been shown on Figure 14.1 (page 103). The values of arsenic were
standardized before analysis. The mean experimental variogram of this variable was
fitted on Figure 14.2 (page 104) with a nested variogram model,

v(h) = bonug(h) + b, sph(h, 3.5km) + b, sph(h, 6.5km), (15.16)

consisting of a nugget effect variogram nug(h) and two spherical variograms
sph(h, range), multiplied by constants by, b; and b,.

The corresponding linear regionalization model is made up with three second order
stationary components and a local mean

Z(x) = Zp(x)+ Z1(x) + Za(x) + my(x). @15.17)

Kriging was performed using a moving neighborhood consisting of the 50 nearest
samples to the estimation point. Several displays of the map of arsenic by ordinary
kriging were already presented on Figure 13.2 (page 98), Figure 13.4 (page 99) and
Figure 13.5 (page 100). The map of the standard deviations of ordinary kriging was
displayed on Figure 13.3 (page 99).

The kriged map of the short range component of the arsenic values is seen on
Figure 15.1. It is worthwhile to examine how agglomerates of high values (large
circles) on the display of the data about Z(x) on Figure 14.1 (page 103) compare with
the darkly shaded areas on the map of the short range component Z;(x). It is also
interesting to inspect how extrapolation acts in areas with no data.

A map of the component associated with the long range variation, together with
the estimated mean, is depicted on Figure 15.2. This simultaneous extraction of the
long range component Z,(x) and the local mean m;(x) is equivalent to filtering out
(rejecting) the nugget-effect and the short range components Z,(x) and Z;(x). Com-
parison with Figure 13.4 (page 99) shows that this map is just a smoother version of
the ordinary kriging map.

It should be noted that for irregularly spaced data a map of the nugget-effect com-
ponent Zy(x) cannot be established. This component can only be estimated at grid
nodes which coincide with a data location and is zero elsewhere. It is thus customary
to filter out the nugget-effect in order to avoid blobs on the map at locations where
extreme data values happen to coincide with estimation nodes (see also a similar dis-
cussion on p115).

With regularly spaced data a raster representation of the nugget component can be
made using a grid whose nodes are identical with the sample locations.



16 The Smoothness of Kriging

How smooth are estimated values from kriging with irregularly spaced data in a mov-
ing neighborhood? By looking at a few typical configurations of data around nodes
of the estimation grid and by building on our knowledge of how spatial components
are kriged, we can understand the way the estimated values are designed in ordinary
kriging.

The sensitivity of kriging to the choice of the variogram model is discussed in
connection with an application on topographic data.

Kriging with irregularly spaced data

Let us take a regionalized variable for which three components of spatial variation
have been identified. For the following linear model of regionalization we assume
local stationarity of order two

Z(x) = Zy(x) + Z1(x) + Za(x) + my(x). (16.1)
The covariance model of the three spatial components is
C(h) = Cy(h) + Ci(h) + Cs(h), (16.2)

where we let Cy(h) be a nugget-effect covariance function and C; (h), C,(h) be spher-
ical models with ranges a; and as, numbered in such a way that a; < as.

Suppose that the sampling grid is highly irregular, entailing a very unequal distri-
bution of data in space. A grid of estimation points is set up, with nodes as close as is
required for the construction of a map at a given resolution. At each point the opera-
tion of ordinary kriging is repeated, picking up the data in the moving neighborhood.

Assuming a highly irregular arrangement of the data points, very different config-
urations of sample points around estimation points will arise, four of which we shall
examine in the following.

1. xq is more than a, away from the data

This configuration of data points around the estimation point can arise when x; is
located amid a zone without data within the range of the two spherical models, as
shown on Figure 16.1. Ordinary kriging is then equivalent to the kriging of the mean.
The right hand side covariances of the ordinary kriging system are nil as all distances
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Figure 16.1: No data point is within the range of the two spherical models for this
grid node.

involved are greater than a,. The information transferred to x, will be an estimation
of the local mean in the neighborhood.

This shows that kriging is very conservative: it will only give an estimate of the
mean function when data is far away from the estimation point.

2. Xg is less than ay and more than a, away from the nearest data point X,

With this spatial arrangement, see Figure 16.2, the ordinary kriging is equivalent to a
filtering of the components Zy(x) and Z; (x), with the equation system

Z)\/;C(xa—xﬁ) —uzm fora=1,...,n
p=1

d M=l

=1

(16.3)

The covariances Cyp(h) and C (h) are not present in the right hand side for kriging
at such a grid node.

3. xg is less than a; away, but does not coincide with the nearest X,

In this situation, shown on Figure 16.3, ordinary kriging will transfer information not
only on the long range component Z,(x), but also about the short range component
Z,(x), which varies more quickly in space. This creates a more detailed description
of the regionalized variable in areas of the map where data is plenty. Ordinary kriging
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Figure 16.2: One data point is within the range of the second spherical model for this
grid node.

is now equivalent to a system filtering the nugget-effect component

EAﬁ C(xo—%p) — it :ICl(xa — %) + Ca(xq — Xo) ‘ fora=1,...,n
= (16.4)

n

Z,\ﬂzl.

B=1

Only the nugget-effect covariance Cy(h) is absent from the right hand side when
kriging at such a location.

4. x¢ coincides with a data location

In this last case, when xo = x, for a particular value of «, ordinary kriging does not
filter anything and restitutes the data value measured at the location x, = Xg: it is an
exact interpolator!

This property may be perceived as a nuisance when there are only a few locations
of coincidence between the grid and the data locations, because then the nugget-effect
component will generate spikes in the estimated values at these locations only. To
avoid having a map with such blobs at fortuitous locations, it is often advisable to
filter systematically the nugget-effect component Zy(x) in cartographical applications
based on irregularly spaced data.

Sensitivity to choice of variogram model

The most important characteristic for the choice of the variogram model is the in-
terpretation of the behavior at the origin. The type of continuity assumed for the
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Figure 16.3: One data point is within the range of the two spherical models for this
node.

regionalized variable under study has immediate implications for ordinary kriging.
The behavior at the origin can be of three types

1. discontinuous, i.e. with a nugget-effect component. The presence of a nugget-
effect has the consequence that the kriging estimates will be also discontinuous:
each data location will be a point of discontinuity of the estimated surface.

2. continuous, but not differentiable. For example a linear behavior near the origin
implies that the variogram is not differentiable at the origin. It has the effect
that the kriging estimator is not differentiable at the data locations and that the
kriged surface is linear in the immediate neighborhood of the data points.

3. continuous and differentiable. A quadratic behavior at the origin will generate
a quadratic behavior of the kriged surface at the data locations. Models that are
differentiable at the origin have the power to extrapolate outside the range of the
data in kriging. This implies negative ordinary kriging weights.

Most variogram models are fairly robust with respect to kriging. There however
is one pathological model: the so-called “Gaussian” variogram model. This model
belongs to the family of stable variogram models (that bear this name because of their
analogy with the characteristic function of the stable distributions)

L
y(h) = b(l—e a ) with 0<p<2and a,b>0. (165)

For a power p equal to 2 we have the Gaussian variogram model
h|?
y(h) = b(1 —e a ) (16.6)
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Figure 16.4: On the left: map of elevations obtained by ordinary kriging with unique
neighborhood using a stable variogram (power p = 1.5) (data points are displayed as
stars of size proportional to the elevation). On the right: map of the corresponding
standard deviations.

which is infinitely differentiable at the origin. The implication is that the associated
random function also has this property. This means that the function is analytic and,
if known over a small area, it could be predicted just anywhere in the universe as all
derivatives are known. Clearly this model is unrealistic in most applications (besides
the fact that it is purely deterministic). Furthermore the use of such an unrealistic
model has consequences on kriging which are illustrated in the following example.

Application: kriging topographic data

We use a data set which has become a classic of spatial data analysis since its publi-
cation by DAVIS [76]. It consists of 52 measurements of elevation (in feet) in a 300 ft
x 300 ft region.

First we fit a stable variogram model with a power of 1.5 and obtain by ordinary
kriging with unique neighborhood (all samples used for kriging) the isoline map on
the left of Figure 16.4.  This is the map most authors get using different methods,
models or parameters (see [76], [262], [349], [17], [329]). The map of the kriging
standard deviations is seen on the right of Figure 16.4. The standard deviations are
comparable to those obtained with a spherical model of range 100 ft and a sill equal
to the variance of the data (3770 ft2). They are of the same order of magnitude as the
standard deviation of the data (61.4 ft).

Now, if we increase the power of the stable model from 1.5 to 2 we have a dramatic
change in the behavior at the origin and in the extrapolating power of the variogram
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Figure 16.5: Maps kriged using a Gaussian variogram in unique neighborhood.

model. The map of contoured estimates of ordinary kriging using the Gaussian model
in unique neighborhood is shown on the left of Figure 16.5. We can observe artificial
hills and valleys between data locations. At the borders of the map the estimates ex-
trapolate far outside the range of the data. The kriging standard deviations represented
on the map on the right of Figure 16.5 are generally near zero: this complies with the
deterministic type of variogram model, which is supposed to describe exhaustively all
features of the spatial variation in that region.

Switching from a unique to a moving neighborhood (32 points) using the Gaussian
model we get the map to be seen on the left of Figure 16.6. The extrapolation
effects are weaker than in unique neighborhood. The isolines seem as drawn by a
trembling hand: the neighborhoods are apparently in conflict because the data do not
comply with the extreme assumption of continuity built into the model. The standard
deviations in moving neighborhood are higher than in unique neighborhood as shown
on the right of Figure 16.6, especially on the borders of the map as extrapolation is
performed with less data.

The conclusion from this experiment is that the Gaussian model should not be used
in practice. A stable variogram model with a power less than 2 will do the job better.

Another instructive exercise is to add a slight nugget-effect (e.g. 1/1000, 1/100,
1/10 of the variance) to a Gaussian variogram and to observe how the map of the esti-
mated values behaves, how the standard deviations increase. The discontinuity added
at the origin actually destroys the extreme extrapolative properties of the Gaussian
model.
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Figure 16.6: Maps kriged using a Gaussian variogram in moving neighborhood.



Part C

Multivariate Analysis



17 Principal Component Analysis

Principal component analysis is the most widely used method of multivariate data
analysis owing to the simplicity of its algebra and to its straightforward interpretation.

A linear transformation is defined which transforms a set of correlated variables
into uncorrelated factors. These orthogonal factors can be shown to extract succes-
sively a maximal part of the total variance of the variables. A graphical display can
be produced which shows the position of the variables in the plane spanned by two
factors.

Uses of PCA

Principal Component Analysis (PCA) can be used for:
1. data compression,

. multivariate outlier detection,

. deciphering a correlation matrix,

. identifying underlying factors,

[ T S I

. detecting intrinsic correlation.

The first four topics will be discussed in this chapter, while the problem of intrinsic
correlation will be exposed in Chapter 22.

An example of data compression by PCA is given in Example 17.2, the use of
PCA in deciphering the structure of a correlation matrix is shown in Example 17.2,
multivariate outliers are made visible in Example 17.3 and an application illustrating
the interpretation of factors in terms of underlying phenomena is provided in Exam-
ple 17.6.

Transformation into factors

The basic problem solved by principal component analysis is to transform a set of
correlated variables into uncorrelated quantities, which could be interpreted in an ideal
(multi-Gaussian) context as independent factors underlying the phenomenon. This is
why the uncorrelated quantities are called factors, although such an interpretation is
not always perfectly adequate.
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Z is the n X N matrix of data from which the means of the variables have already
been subtracted. The corresponding N x N experimental variance-covariance matrix
V then is

V = [s5] = %zT Z. (17.1)

Let Y be an n x N matrix containing in its rows the n samples of factors Y,
(p=1,...,N), which are uncorrelated and of zero mean.

The variance-covariance matrix of the factors is diagonal, owing to the fact that
the covariances between factors are nil by definition,

. d; 0 0
D= -YY=|o0o . o0 |, 17.2)
n 0 0 dyn

and the diagonal elements dy,, are the variances of the factors.
A matrix A is sought, N x NN orthogonal, which linearly transforms the measured
variables into synthetic factors

Y = ZA  withATA=1. (17.3)

Multiplying this equation from the left by 1/n and Y, we have

1
vy = lyg A, 17.4)
n n
and replacing Y by ZA on the right hand side, it follows
-71; (ZA) (ZA) = % ATZTZA =AT % (Z'Z)A. (17.5)
Finally
D = ATVA, (17.6)
that is,
VA = AD. 17.7)

It can immediately be seen that the matrix Q of orthonormal eigenvectors of V
offers a solution to the problem and that the eigenvalues A, are then simply the vari-
ances of the factors Y},. Principal component analysis is nothing else than a statistical
interpretation of the eigenvalue problem

vVQ = QA withQ'Q=1, (17.8)
defining the factors as

Y = zQ (17.9)
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Maximization of the variance of a factor

Another important aspect of principal component analysis is that it allows to define a
sequence of orthogonal factors which successively absorb a maximal amount of the
variance of the data.

Take a vector y; corresponding to the first factor obtained by transforming the
centered data matrix Z with a vector a; calibrated to unit length

y1 = Za, withala; =1. (17.10)

The variance of y; is
1 1
var(yl) = Enyl = ﬁaIZTZal = aIVal. (1711)

To attribute a maximal part of the variance of the data to y;, we define an objective
function ¢, with a Lagrange parameter A;, which multiplies the constraint that the
transformation vector a; should be of unit norm

¢ = a)Va, — \(aja; —1). (17.12)
Setting the derivative with respect to a; to zero,

9¢:

— 0 = 2Va; — 2)\1a; = 0, (1713)
8a1

we see that \; is an eigenvalue of the variance-covariance matrix and that a; is equal
to the eigenvector q; associated with this eigenvalue

Var = Aiqu. (17.14)
We are interested in a second vector y, orthogonal to the first
cov(ya,y1) = cov(Zay,Za;) = a,Va; = aj\a; = 0. (17.15)

The function ¢, to maximize incorporates two constraints: the fact that a, should
be unit norm and the orthogonality between a, and a,. These constraints bring up two
new Lagrange multipliers A, and

¢y = ayVay, — \y(abay — 1) + paja;. (17.16)
Setting the derivative with respect to a, to zero

0

6;22 =0 R 2Va, — 2)\282 +pa; = 0. (1717)
2

What is the value of y ? Multiplying the equation by a] from the left,

2al Va, —2\,aja, +paja; = 0, (17.18)
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we see that 4 is nil (the constraint is not active) and thus
V32 = )\282. (1719)

Again )\, turns out to be an eigenvalue of the variance-covariance matrix and a, is
the corresponding eigenvector q.. Continuing in the same way we find the rest of the
N eigenvalues and eigenvectors of V as an answer to our maximization problem.

EXAMPLE 17.1 (DATA COMPRESSION) PCA can be seen to as a simple data com-
pression algorithm. This is an example from geophysical exploration following [136].

Let Z be an n x N matrix of n seismic profiles and N spatially correlated sam-
ples. The principal components matrix Y is of size n x N (like Z). The variance of
each principal component y, (a column of the matrix Y ) is given by the correspond-
ing eigenvalue \,. We assume that the eigenvalues have been ordered by decreasing
variance.

The idea for compressing the data is to retain only the principal components having
the largest variances. Keeping M out of the N principal components, which explain a
substantial amount of the total variance in an n x M matrix Y, we have the approxi-
mation

Z =2 YQ' (17.20)

where (~2 is an N X M matrix of eigenvectors.

This approximation is interesting for data compression if M is substantially
smaller than N: we can then save considerable storage by keeping the two matri-
cesY, Q instead of the original data Z. The n x N numbers of the matrix Z are then
replaced with M (n + N) numbers, which will be used to reconstruct an approximate
matrix Z.

Following HAGEN [136], having originally n = 200 good quality seismic traces in
an N = 50 sample window, if the M = 4 first principal components express 85% of
the total variance, the original data base of 200 x 50 = 10, 000 samples can be reduced
to only 4(200 + 50) = 1,000 samples. This new data base needs only one tenth of the
storage space, yet preserving a sufficiently accurate description of the main geological
patterns important for reservoir characterization.

Interpretation of the factor variances

Numbering the eigenvalues of V from the largest to the lowest, we obtain a se-
quence of N uncorrelated factors which provide an optimal decomposition (in the
least squares sense) of the total variance as

N

N
D osi= A (17.21)
=1 p=1
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The eigenvalues indicate the amount of the total variance associated with each
factor and the ratio

variance of the factor Ap
total variance (V)

(17.22)

gives a numerical indication, usually expressed in %, of the importance of the factor.

Generally it is preferable to standardize the variables (subtracting the means and
dividing by the standard deviations), so that the principal component analysis is per-
formed on the correlation matrix R.. In this framework, when an eigenvalue is lower
than 1, we may consider that the associated factor has less explanatory value than any
single variable, as its variance is inferior to the unit variance of each variable.

Correlation of the variables with the factors

In general it is preferable to work with standardized variables Z,; to set them on a
common scale and make them comparable,

Zi = 2t (17.23)

where m} and /s;; are the experimental mean and standard deviation of the variable
Zz;.
The variance-covariance matrix associated to standardized data is the correlation
matrix
1 ~

R = ni Z, (17.24)

which can be decomposed using its eigensystem as
o~~~ ~ =~ N o~ ~
R = QAQT=Q\/X(Q\/X) —AA". (17.25)

The vectors a;, columns of KT, are remarkable in the sense that they contain the
correlations r;, between a variable z; and the factors y, because

Tip = COIT zhyp v sz = azp (1726)

The vectors a; are of unit length and their cross product is equal to the correlation
coefficient

5;[_5] = Tij- (1727)

Owing to their geometry the vectors a; can be used to represent the position of the
variables on the surface of the unit hypersphere centered at the origin. The correla-
tion coefficients r;; are the cosines of the angles between the vectors referring to two
different variables.
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Figure 17.1: The position of the bonelength variables inside the circle of correlations
for the first two principal components. Each axis is labeled with the number of the
factor and the proportion of the total variance (in %) extracted by the factor.

The position of the variables on the surface of the hypersphere can be projected
towards a plane defined by a pair of axes representing factors, which passes through
the origin. The coordinates of the projection are given by the correlation coefficients
r;p and the corresponding graphical representation is therefore called the circle of
correlations. The circle of correlations shows the proximity of the variables inside
a unit circle and is useful to evaluate the affinities and the antagonisms between the
variables. Statements can easily be made about variables which are located near the
circumference of the unit circle because the proximities in 2-dimensional space then
correspond to proximities in N-dimensional space. For the variables located further
away from the circumference of the unit circle it is necessary to check on other prin-
cipal axes whether the proximities really correspond to proximities on the surface of
the hypersphere. Two variables near each other on the projection plane may have been
projected, one from the upper hemisphere, the other from the lower hemisphere.

EXAMPLE 17.2 (DECIPHERING A CORRELATION MATRIX) The correlation matrix
of the lengths of 276 leghorn fowl bones (see MORRISON, 1978, p282) on Table 17.1
seems trivial to interpret at first look: all variables are well correlated. Big birds have
large bones and small birds have small bones.

Inspection of the plane of the first two factors on Figure 17.1 showing the position
of the length variables inside the correlation circle, reveals two things. The correla-
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Humerus 1

Ulna .940 1

Tibia 875 .877 1

Femur 878 .886 .924 1

| Humerus Ulna Tibia Femur

Table 17.1: Correlation matrix between the lengths of bones of fowl.

tions of all variables with the first factor (92% of the total variance) are all very strong
and of the same sign as can be seen on Table 17.2.

PC1 | PC2
Humerus 96 | -22
Ulna 96 | -.20
Tibia 96 | 22
Femur 96 | .20
Component variance | 3.69 | .17
Percentage 92% | 4%

Table 17.2: Correlations between bone lengths and the first two principal components.

This factor represents the difference in size of the fowls, which explains most of
the variation, and has an obvious impact on all bone lengths. The second factor (4%
of the variance) splits up the group of the four variables into two distinct subgroups.
The second factor is due to the difference in shape of the birds: the leg bones (tibia
and femur) do not grow in the same manner as the wing bones (humerus and ulna).
Some birds have shorter legs or longer wings than others (and vice-versa).

Having a second look at the correlation matrix on Table 17.1, it is readily seen
that the correlations among the wing variables (.94) and among the leg variables (.92)
are stronger than the rest. Principal component analysis does not extract anything
new or hidden from the data. It is merely a help to read and decipher the structure
of a correlation matrix. This feature becomes especially useful for large correlation
matrices.

EXAMPLE 17.3 (MULTIVARIATE OUTLIERS) In a study on soil pollution data, the
seven variables Pb, Cd, Cr, Cu, Ni, Zn, Mo were logarithmically transformed and
standardized. The principal components calculated on the correlation matrix extracted
38%, 27%, 15%, 9%, 6%, 3% and 2% of the total variance. So the first two factors
represent about two thirds (65%) of the total variance. The third factor (15%) hardly
explains more variance than any of the original variables taken alone (1/7 = 14.3%).
The Figure 17.2 shows the correlations with the first two factors. Clearly the first
factor exhibits, like in the previous biological example, mainly a size effect. This is
more appropriately termed a dilution factor because the measured elements constitute



130 Multivariate Analysis
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Figure 17.2: Unit circle showing the correlation of seven soil pollution variables with
the first two principal components.

a very small proportion of the soil and their proportion in a soil sample is directly
proportional to the overall pollution of the soil. The second factor looks interesting: it
shows the antagonism between two pairs of elements: Pb, Cd and Ni, Cr.

The correlation coefficients between the seven soil pollution elements are listed
on Table 17.3. The ordering of the variables was chosen to be the same as on the
second factor: Pb, Cd, Zn, Cu, Mo, Ni and Cr (from Ieft to right on Figure 17.2). This
exemplifies the utility of a PCA as a device to help reading a correlation matrix.

In this data set of 100 samples there are three multivariate outliers that could be
identified with a 3D representation of the sample cloud in the coordinate system of the
first three factors (which concentrate 80% of the variance). On a modern computer
screen the cloud can easily be rotated into a position that shows best one of its features
like on Figure 17.3.

This need for an additional rotation illustrates the fact that PCA only provides an
optimal projection plane for the samples if the cloud is of ellipsoidal shape.

In the general case of non-standardized data it is possible to build a graph show-
ing the correlations between the set of variables and a pair of factors. The variance-
covariance matrix V is multiplied from the left and the right with the matrix D,-: of
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Pb 1

Cd || .40 1

Zn | 59 54 1

Cu || 42 27 .62 1

Mo | .20 .19 .30 -.07 1

Ni |-.04 -08 40 29 .07 1
Cr ||-14 -11 29 .11 .13 86 1

HPb Cd Zn Cu Mo Ni Cr

Table 17.3: Correlation matrix between the seven soil pollution elements.

the inverses of the standard deviations (see Example 1.4)

D,VD,:s = D,-iQAQ D, (17.28)
= D1 QVA (D1 QVA)T (17.29)

from what the general formula to calculate the correlation between a variable and a
factor can be deduced

A
corr(z;, yp) = 8—?’_ ip- (17.30)

EXERCISE 17.4 Deduce from
1~ ~ o~~~ ~ o~
EZTY = RQ=QA withQ'Q=1I (17.31)

that the correlation coefficient between a vector z; and a factor y,, is

rp = \ Apip- (17.32)

From this it can be seen that when a standardized variable is orthogonal to all
others, it will be identical with a factor of unit variance in the principal component
analysis.

EXERCISE 17.5 Let Z be a matrix of standardized data and Y the matrix of corre-
sponding factors obtained by a principal component analysis Y = Z Q where Q is
the matrix of orthogonal eigenvectors of the correlation matrix R.

Show that

R = corr(Z,Y)[corr(Z,Y)]". (17.33)
EXAMPLE 17.6 (INTERPRETING THE FACTORS) We have 1054 soil samples from

lateritic terrain in Mali analysed for 14 elements: Fe, Al, V, P, Cr, Cu, Nb, As, Mo,
Si, Ti, Ce, Zr, Y; they are described in ROQUIN ET AL. [273, 274]. This spatially



132 Multivariate Analysis

28

98

O0OPitch OORoll OO Yaw

Figure 17.3: The cloud of 100 samples in the coordinate system of the first three factors
after an appropriate rotation on a computer screen (“Pitch”, “Roll” and “Yaw” are
the zones of the computer screen used by the pointer to activate the 3D rotation of
the cloud). Three outliers (with the corresponding sample numbers) can be seen.

autocorrelated data by the way turned out to be intrinsically correlated [183], a concept
that will be introduced in Chapter 22.

The Table 17.4 shows the very simple structure of the correlation matrix: an
opposition between the duricrust variables (Fe, Al, V, P, Cr, Cu, Nb, As, Mo) and the
variables of the flats (Si, Ti, Ce, Zr, Y); the variables are positively correlated within
each group and negatively correlated between groups.

The Figure 17.4 is called the circle of correlations. It displays the correlations 14,
between the original variables z; and a pair of principal components (factors). The co-
ordinates of the variables on Figure 17.4 are obtained using the values of correlations
with the first (ordinate) and the second (abscissa) principal component. The first prin-
cipal component can be termed a “duricrust factor” as it displays in an obvious way
the opposition between the variables characteristic of the duricrust variables (Fe,...)
and the flats (Si,.. . ).

The Figure 17.5 plots the sample cloud in the coordinate system provided by the
first (ordinate) and the second (abscissa) principal components. Two subclouds can
be seen: white coloured dots represent the samples from the duricrusts and black dots



Principal Component Analysis 133

.69
97 .69
89 53 .87

94 72 95 82

a1 67 7121173

J2 0 43 81 .71 .73 .50

87 60 .87 84 8 .69 .76

79 67 81 .74 78 65 718 .85

Si |[-97 -75 -94 -87 -91 -76 -73 -86 -.80
Ti ||-93 -59 -90 -8 -8 -66 -69 -82 -72|.94

Ce || -76 -44 -73 -67 -73 -50 -57 -64 -54|.77 .81

Zr || -89 -73 -8 -78 -8 -70 -65 -80 -74|.94 91 .70

Y -92 -68 -8 -8 -8 -68 -68 -8 -73|.96 .96 .84 93

[ Fe¢ AL VP Cr Cu Nb As Mo| Si Ti Ce Zr

sr3007 <2

Table 17.4: Correlation matrix of the Mali geochemical variables.

represent the samples from the flats.

The Figure 17.6 shows the geographical map of sample locations. The white
coloured dots are samples classified as “duricrust” while the black dots are viewed as
from “flats”. Actually this map matches well the geological map displayed in ROQUIN
ET AL. [273].
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Figure 17.4: Circle of correlations for the first two principal components of the Mali
geochemical variables: PC1 (ordinate) against PC2 (abscissa).
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Figure 17.5: Sample cloud for the first two principal components of the Mali geochemi-
cal variables. PC1 (ordinate) against PC2 (abscissa). Duricrusts: white (Fe-Al), Flats:
black (SiO3).
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Figure 17.6: Geographical map of sample locations in a 4 X 5 km? area. Duricrusts:
white (Fe-Al), Flats: black (SiOg) .



18 Canonical Analysis

In the previous chapter we have seen how principal component analysis was used to
determine linear orthogonal factors underlying a set of multivariate measurements.
Now we turn to the more ambitious problem to compare two groups of variables by
looking for pairs of orthogonal factors, which successively assess the strongest possi-
ble links between the two groups.

Factors in two groups of variables

Canonical analysis proposes to study simultaneously two groups of variables measur-
ing various properties on the same set of samples. Successively pairs of factors are
established which link best the two groups of variables. The aim being, when inter-
preting the factors, to see for each factor underlying one group of properties, if it can
be connected to a factor underlying another set of properties gained from the same set
of samples.

The n x N centered data table Z is split into two groups of variables,

Z = [71|Zy), (18.1)

that is, the matrix Z is formed by putting together the columns of an n x M matrix Z,
and ann X L matrix Z, with N = M + L.

The variance-covariance matrix V associated with Z can be subdivided into four
blocs

— l T _ Vll C12
Vo= [2,]Z) [z1|z2]_( ch ve ) (18.2)

where the matrices V; of order M x M and V, of order L x L are the variance-
covariance matrices associated with Z; and Z,. The covariance matrices C;, (of order
M x L) et Cyy (of order L x M) contain the covariances between variables of different

groups
Cl, = Ca. (18.3)
We are seeking pairs of factors {u,, v, }:
u, = Za, and Vp = Zsby, (18.4)
which are uncorrelated within their respective groups,

u, luy and vpLvg forp # k, (18.5)

137
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and for which the correlation corr(uy,, vp) is maximal. This correlation, called the
canonical correlation between two factors u and v is

. aTZngb
Va' Z Za - /b Z}Z;b

corr(u, v) (18.6)

Deciding to norm a and b following the metric given by the variance-covariance
matrices (supposed to be positive definite) of the two groups,

a'Vi;a = b'Vyb=1, (18.7)
the correlation can be simply written as

corr(u,v) = a'Cyb. (18.8)

Intermezzo: singular value decomposition
It is instructive to follow a little algebraic detour. We pose

X = Viia and y = ﬁ;b with x'x = yTy =1, (18.9)
in such a way that

corr(u,v) = x' [\/Vu Cis \/sz] y. (18.10)
< L

For the complete system of vectors x and y we have
X'GY = 3 (18.11)

that is to say the singular value decomposition (see appendix on Matrix Algebra for
details):

G = XXY', (18.12)

where the canonical correlations, which are the only non zero elements of X, are
identical with the singular values of the rectangular matrix G.

Maximization of the correlation

We are looking for a pair of transformation vectors {a, b} making the correlation
between the factors {u, v} maximal

corr(u,v) = a' Cpb  with a'Vija=b'Vyb=1.  (18.13)
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The objective function ¢ is
1 1
¢ = a'Cpb-— S (@a'Vyja—1) - 5u’(loTvzzlo - 1), (18.14)

where p and y' are Lagrange parameters.
Setting the partial derivatives with respect to a and b to zero

g—j =0 > Ci2b — ana =0, (1815)
g—i =0 < Cya— M’Vng = 0. (1816)

What is the relation between p and p' ? Premultiplying the first equation with a”
and the second with b",

a'Cpb—pa'Vija =0 = p =a Cpb, (18.17)
b'Cypa—p'b" Vb =0 < ¢ =b'Cya, (18.18)
we see that
u = p' =corr(u,v). (18.19)
Having found earlier that
Cpb = uVpa and Cgia = uVab, (18.20)
we premultiply the first equation with C21Vf11,
Cau V] Cpsb = uCya, (18.21)
and taking into account the second equation we have
CoiV'Cisb = p?Vyb. (18.22)
Finally this results in two eigenvalue problems, defining A = p2,
V5 CoV'Cpyb = b, (18.23)
V]CiVyCuna = Ja. (18.24)

Only the smaller one of the two systems needs to be solved. The solution of the
other one can then easily be obtained on the basis of the following transition formulae
between the transformation vectors

1

a = \/XVﬁICub and b= %V;zlcma. (18.25)
EXERCISE 18.1 Show that two factors in the same group are orthogonal:
cov(up, ug) = Opk. (18.26)
EXERCISE 18.2 Show that two factors in different groups are orthogonal:
cov(up, Vi) = 0pk. (18.27)
EXERCISE 18.3 Show that the vector a in the following equation
Via = ACpV,,Chua (18.28)

solves a canonical analysis problem.



19 Correspondence Analysis

Canonical analysis investigates, so to speak, the correspondence between the factors
of two groups of quantitative variables. The same approach applied to two qualitative
variables, each of which represents a group of mutually exclusive categories, is known
under the evocative name of “correspondence analysis”.

Disjunctive table

A qualitative variable z is a system of categories (classes) which are mutually exclu-
sive: every sample belongs to exactly one category. The membership of a sample z,
to a category C; can be represented numerically by an indicator function

1 ifz,€C;

1. - { a € G 19.1

c(a) 0 otherwise. 9.

The matrix recording the memberships of the n samples to the N categories of the
qualitative variable is the disjunctive table H of order n x N

H = [16,. (z,,)]. (19.2)

Each row of the disjunctive table contains only one element equal to 1 and has
zeroes elsewhere, as the possibility that a sample belongs simultaneously to more
than one category is excluded.

The product of H" with H results in a diagonal matrix whose diagonal elements
n;; indicate the number of samples in the category number i. The division of the n;;
by n yields the proportion F;; of samples contained in a category and we have

) Fn 0 0
vV = EHTH= 0 . 0 |- (19.3)
0 0 Fyy

Contingency table

Two qualitative variables measured on the same set of samples are represented, re-
spectively, by a table H; of order n x M and a table H; of order n x L.

The product of these two disjunctive tables has as elements the number of samples
n;; belonging simultaneously to a category ¢ of the first qualitative variable and a
category j of the second qualitative variable. The elements of this table, which is a
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contingency table of order M x L, can be divided by the sample total , thus measuring
the proportion of samples at the crossing of the categories of two qualitative variables

1
Cpp = EHIHF[FM. (19.4)

Canonical analysis of disjunctive tables

Correspondence analysis consists in applying the formalism of canonical analysis to
the disjunctive tables H; and H; by forming the matrices

1 1
C), = Cu, V11:EHIH1, VZZ:;H;HZ. (19.5)

Because of the diagonal structure of the matrices V; and Vg, which only inter-
vene in the calibration of the transformation vectors, we can say that correspondence
analysis boils down to the investigation of the links between the rows and the columns
of the contingency table Cjs.

Coding of a quantitative variable

A quantitative variable z can be transformed into a qualitative variable by partitioning
it with a set of non overlapping (disjunct) intervals C;. Indicator functions of these
intervals allow to constitute a disjunctive table associated with z

Ie(za) = { 1 if z, belongs to the interval C; (19.6)

0 otherwise.

A subdivision is sometimes given a priori, as for example with granulometric frac-
tions of a soil sample.

The coding of a quantitative variable enables a correspondence analysis which
explores the links between the intervals of this quantitative variable and the categories
of a qualitative variable.

Contingencies between two quantitative variables

The diagonal matrix V = (1/n) H"H associated with the partition of a quantitative
variable contains the values of the histogram of the samples z,, because its diagonal
elements show the frequencies in the classes of values of z.

The contingency table C;, = (1/n) H] H, of two quantitative variables 2; and z,
holds the information about a bivariate histogram, for we find in it the frequencies of
samples at the crossing of classes of z; and z,.
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Continuous correspondence analysis

The bivariate histogram, that is, the contingency table of two quantitative variables,
can be modeled with a bivariate distribution function F'(dZ;, dZ,). If the correspond-
ing bivariate density function p(Z;, Z) exists, we have

F(dZ\,dZy) = F\(dZ,) Fy(dZy) (2, Zs), (19.7)

where F(dZ,), F»(dZ,) are the marginal distribution functions of Z; and Z,, used
to model their respective histograms. Supposing, moreover, the density function ¢ is
square integrable, it can be decomposed into a system of eigenvalues A\, = uﬁ and
eigenfunctions f,(Z1), gp(Z2)

©(Z1,22) = Zupfp(zl)gp(z2)- (19.8)
p=0

This decomposition is the continuous analogue of the singular value decomposi-
tion.

EXAMPLE 19.1 When the bivariate law is bi-Gaussian, the decomposition into eigen-
values yields coefficients (1, equal to a coefficient p power p,

tp = pP with |p| < 1, (19.9)
as well as eigenfunctions equal to normalized Hermite polynomials 7y,

H,(Z)
T

The bivariate Gaussian distribution G(dZ,,dZ5) can then be decomposed into fac-
tors n, of decreasing importance p?,

mw(Z) = (19.10)

G(dZi,dZ,) = ip”np(Zl)n,,(Z2)G(dZ1)G(dZ2). (19.11)

p=0

EXAMPLE 19.2 In non linear geostatistics, interest is focused on the bivariate distri-
bution of two random variables Z(x,) and Z(xg) located at two points x, and xg
of a spatial domain. The decomposition of this bivariate distribution results, under
specific assumptions, in a so called isofactorial model. Isofactorial models are used in
disjunctive kriging for estimating a non linear function of the data in a spatial domain.

In particular, in the case of the bi-Gaussian isofactorial model, the coefficient p
will be equal to the value of the correlation function p(x,—Xg) between two points
Xq and xg. This topic is pursued in Chapters 32 to 36.



Part D

Multivariate GGeostatistics



20 Direct and Cross Covariances

The cross covariance between two random functions can be computed not only at
locations x but also for pairs of locations separated by a vector h. On the basis of an
assumption of joint second-order stationarity a cross covariance function between two
random functions is defined which only depends on the separation vector h.

The interesting feature of the cross covariance function is that it is generally not
an even function, i.e. its values for +h and —h may be different. This occurs in time
series when the effect of one variable on another variable is delayed.

The cross variogram is an even function, defined in the framework of an intrinsic
hypothesis. When delay-effects are an important aspect of the coregionalization, the
cross variogram is not an appropriate tool to describe the data.

Cross covariance function

The direct and cross covariance functions C;;(h) of a set of /N random functions Z;(x)
are defined in the framework of a joint second order stationarity hypothesis
E[Z;(x)] = m; forallx e D;i=1,...,N,
E[(Zi(x)—mi) - (Zj(x+h)—m;)] = Cy;(h) (20.1)
forallx,x+h € D;4,57=1,...,N.

The mean of each variable Z;(x) at any point of the domain is equal to a constant
m;. The covariance of a variable pair depends only on the vector h linking a point pair
and is invariant for any translation of the point pair in the domain.

A set of cross covariance functions is a positive definite function, i.e. the variance

of any linear combination of N variables at n+1 points with a set of weights w’, needs
to be positive. For any set of points x, € D and any set of weights w?, € R

n n

V‘“(ZZ“’ Zi xa)=zzzzwiw§@j(xa—xg) > 0. (20.2)

i=1 a=0 i=1 j=1 a=0 =0

Delay effect

The cross covariance function is not a priori an even or an odd function. Generally for
i# j, a change in the order of the variables or a change in the sign of the separation
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vector h changes the value of the cross covariance function
Cij(h) # Cji(h) and Cij(—h) # C;j(h). (20.3)
If both the sequence and the sign are changed, we are back to the same value
Cij(h) = Cj(—h). (20.4)

In particular, the maximum of the cross covariance function (assuming positive
correlation between a given variable pair) may be shifted away from the origin of the
abscissa in a certain direction by a vector r. This shift of the maximal correlation is
frequent with time series, where one variable can have an effect on another variable
which is not instantaneous. The time for the second variable to react to fluctuations of
the first variable causes a delay in the correlation between the time series.

EXAMPLE 20.1 Let Z;(x) be a random function obtained by shifting the random
function Z,(x) with a vector r, multiplying it with a constant a and adding ¢ (x)

Zy(x) = aZy(x+r) +e(x), (20.5)

where ¢(x) is an independent measurement error without spatial correlation, i.e. a
quantity with a zero mean and a nugget-effect covariance function Cpyg(h).
The direct covariance function of Z,(x) is proportional to that of Z,(x),

Cu(h) = a2 sz (h) + Cnug(h), (206)

and the cross covariance function is obtained from the even function Co,(h) translated
byr,

Cia (h) = a sz(h + 1'). (207)

It is worth noting that the nugget-effect term is absent from the cross covariance func-
tion.

EXERCISE 20.2 Compute the cross covariance function between Z:(x) and Z,(x)
for

Z1 (X) = ZQ(X + 1‘1) + a9 Z;(x + I‘z), (208)

which incorporates two shiftsr, and r;.

Cross variogram

The direct and cross variograms +;;(h) are defined in the context of a joint intrinsic
hypothesis for NV random functions, when for any x,x+h € D and all pairs ¢,j =
1,...,N

E[Z;(x+h) — Z;(x)] =0,

cov[(Z(x+h) - Zi), (2 (cth) - Z,6)] =2050). O
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The cross variogram is thus defined as half the expectation of the product of the
increments of two variables

Yy(h) = %E[(Z,.(Hh)—z,-(x))-(Z]-(x+h)—Z,-(x))]. (20.10)

The cross variogram is obviously an even function and it satisfies the following
inequality

yi(h) v;(h) > |y;(h)[?, (20.11)

because the square of the covariance of increments from two variables is bounded by
the product of the corresponding increment variances. Actually a matrix I'(hg) of
direct and cross variogram values is a positive semi-definite matrix for any fixed hg

because it is a variance-covariance matrix of increments.
It is appealing to investigate its relation to the cross covariance function in the
framework of joint second-order stationarity. The following formula is easily obtained
L (Cu(~B) + Cyy(+h)), (20.12)

yi;(h) = Cy(0) — 2

which shows that the cross variogram takes the average of the values for —h and for
+h of the corresponding cross covariance function. Decomposing the cross covari-
ance function into an even and an odd function
1 1
Cij(h) = 5(Ci(+h) + Cy(=h)) + 5(Cy(+h) - Cij(=h)), (20.13)

~ J e "

even term odd‘trerrn

we see that the cross variogram only recovers the even term of the cross covariance
function. It is not adequate for modeling data in which the odd term of the cross
covariance function plays a significant role.

The cross covariance function between a random function and its derivative is an
odd function. Such antisymmetric behavior of the cross covariance function is found
in hydrogeology, when computing the theoretical cross covariance function between
water head and transmissivity, where the latter variable is seen as the derivative of the
former (see for example [68], p68). Several cross covariance function models between
a random function and its derivative are given in [93], [323].

EXAMPLE 20.3 (GAS FURNACE DATA FROM [30]) Two time series, one corre-
sponding to the fluctuation of a gas input into a furnace and the other being the output
of CO, from the furnace, are measured at the same time. The chemical reaction be-
tween the input variable and the output variable takes several tens of seconds and we
can expect a delay effect on measurements taken every 9 seconds.

The experimental cross covariance function for different distance classes §) gather-
ing n. pairs of locations X, Xg according to their separation vectors x,—%3 = h € §
is computed as

e

C;(®) = nl (2i(xq) — mi) - (2j(Xa+h) — m;). (20.14)
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Figure 20.1: Experimental cross covariance C;;(h) and experimental cross variogram
7 (h).

The experimental cross covariance function shown on Figure 20.1 reveals a delay
of 45 seconds between fluctuations in the gas input and a subsequent effect on the rate
of carbon dioxide measured at the output of the system.

Figure 20.1 also exhibits the corresponding experimental cross variogram for dif-
ferent classes ) withh € §

1 &
o, Z(z,-(xa+h)—zi(xa)) - (2j(xa+h)—2(xq)). (20.15)

a=1

75(H) =

The experimental cross variogram is symmetric with respect to the ordinate and is
not suitable for detecting a delay.

Figure 20.2 displays a plot of the decomposition of the experimental cross covari-
ance into an even and an odd term. The even term has the same shape as the cross
variogram when viewed upside down. The odd term measures the degree of asym-
metry of the cross covariance: in case of symmetry the odd term would be identically
zero.

In practice the experimental cross covariance function should always be plotted
(together with its decomposition into even and odd terms) before attempting to use a
cross variogram. It has to be checked whether there are any important asymmetries in
the cross covariance functions. For example, if one of the variables in the pair is the
derivative of the other, the cross covariance will be antisymmetric, while its even term
as well as the cross variogram will be identically zero. In such a case, using directly
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Figure 20.2: Even and odd terms of the experimental cross covariance.

the experimental cross variogram would lead the data analyst to miss an important
non-linear relation between the variables.
Pseudo cross variogram

An alternate generalization of the variogram, the pseudo cross variogram 7;;(h), has
been proposed by MYERS [233] and CRESSIE [64] by considering the variance of
cross increments,

var [Zi(x-l—h)—Zj(x)] = 2m;(h), (20.16)
instead of the covariance of the direct increments as in the definition (20.9) of the

cross variogram v;;(h).
Assuming for the expectation of the cross increments

E[Zi(x+h) - Z;(x)] = 0 (20.17)
the pseudo cross variogram comes as
1
mij(h) = SE[(Zi(x+h) - Z;(x))* . (20.18)

The function 7;;(h) has the advantage of not being even. The assumption of sta-
tionary cross increments is however unrealistic: it usually does not make sense to take
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the difference between two variables measured in different physical units (even if they
are rescaled) as the variables often also do not have the same support. PAPRITZ et
al. [241], PAPRITZ & FLUHLER [240] have experienced limitations in the usefulness
of the pseudo cross variogram and they argue that it applies only to second-order sta-
tionary functions. Another drawback of the pseudo cross variogram function, which
takes only positive values, is that it is not adequate for modeling negatively correlated
variables. For these reasons we shall not consider further this approach and deal only
with the more classical cross covariance function to which 7;;(h) is related by

Cii(0) + Cy5(0)

mj(h) = 5

— Cy;(h), (20.19)

assuming second-order stationarity.
A different viewpoint is found in CRESSIE & WIKLE [66].

Difficult characterization of the cross covariance function

For a pair of second order stationary random functions the following inequality is valid
Cii(0)Cy(0) > |Cyi(h)[™. (20.20)

This inequality tells us that a cross covariance function is bounded by the product of
the values of the direct covariance functions at the origin.
It should be remembered that there are no inequalities of the following type

Cij(0) #  |Cy(h)], (20.21)
Cii(h) Cj;(h) 2  |Cy(h)[?, (20.22)

as the quantities on the left hand side of the expressions can in both cases be negative
(or zero). In particular we do not usually have the inequality

ICi;(0)] 2 |Cy(h)], (20.23)

because the maximal absolute value of C;;(h) may not be located at the origin.

The matrix C(h) of direct and cross covariances is in general neither positive
nor negative definite at any specific lag h. It is hard to describe the properties of a
covariance function matrix, while it easy to characterize the corresponding matrix of
spectral densities or distribution functions.



21 Covariance Function Matrices

It is actually difficult to characterize directly a covariance function matrix. This be-
comes easy in the spectral domain on the basis of Cramer’s generalization of the
Bochner theorem, which is presented in this chapter. We consider complex covari-
ance functions.

Covariance function matrix

The matrix C(h) of direct and cross covariance functions of a vector of complex
random functions (with zero means without loss of generality),

z(x) = (Z1,...,%i,...,Zy)"  with E[z(x)]=0, (21.1)

is defined as
Cb) = B[2(x)z(c+h) |, (21.2)
The covariance function matrix is a Hermitian positive semi-definite function, that
is to say, for any set of points we have x, € D and any set of complex weights w?,
N N =n n
D3NS Wk w) Cij(xa—x5) > 0. (21.3)
i=1 j=1 a=0 =0
A Hermitian matrix is the generalization to complex numbers of a real symmetric
matrix. The diagonal elements of a Hermitian N x N matrix A are real and the off-
diagonal elements are equal to the complex conjugates of the corresponding elements
with transposed indices: a;; = @j;.
For the matrix of direct and cross covariance functions of a set of complex vari-
ables this means that the direct covariances are real, while the cross covariance func-
tions are generally complex.

Cramer’s theorem

Following a generalization of Bochner’s theorem due to CRAMER [61] (see also [109],
[362]), each element C;;(h) of a matrix C(h) of continuous direct and cross covari-
ance functions has the spectral representation

+o0o +o00

Cyi(h) = / / e1“h 4R, (w), (21.4)

—00 —00
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where the F;;(w) are spectral distribution functions and w is a vector of the same di-
mension as h. The diagonal terms F;(w) are real, non decreasing and bounded. The
off-diagonal terms F;j(w) (i# j) are in general complex valued and of finite varia-
tion. Conversely, any matrix of continuous functions C(h) is a matrix of covariance
functions, if the matrices of increments AF;;(w) are Hermitian positive semi-definite
for any block Aw (using the terminology of [300]).

Spectral densities

If attention is restricted to absolutely integrable covariance functions, we have the
following representation

+00 +o0o
Cij(h) = / / e« fii(w) dw. (21.5)

This Fourier transform can be inverted and the spectral density functions f;j(w)
can be computed from the cross covariance functions

fijw) = (zﬂ)n 70 / e “"m Cy;(h) (21.6)

The matrix of spectral densities of a set of covariance functions is positive semi-
definite for any value of w. For any pair of random functions this implies the inequality

lfij@)> < fii(w) fij(w). (21.7)

With functions that have spectral densities it is thus simple to check whether a
given matrix of functions can be considered as a covariance function matrix.

EXERCISE 21.1 Compute the spectral density of the exponential covariance function
(in one spatial dimension) C'(h) = be %" b > 0, a > 0 using the formula

+o00
flw) = 51; e 'k C(h) dh. (21.8)

—00
EXERCISE 21.2 Show (in one dimensional space) that the function

a,-—l—a]-) VL'

Cii(h) = e_( 2 (21.9)

can only be the cross covariance function of two random functions with an exponential
cross covariance function C;(h) = e %" q; > 0, ifa; = a;.
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Phase shift

In one dimensional space, for example along the time axis, phase shifts can easily
be interpreted. Considering the inverse Fourier transforms (admitting their existence)
of the even and the odd term of the cross covariance function, which are tradition-
ally called the cospectrum c;j(w) and the quadrature spectrum g;;(w), we have the
following decomposition of the spectral density

fiilw) = cij(w) —igi(w). (21.10)

The cospectrum represents the covariance between the frequency components of
the two processes which are in phase, while the quadrature spectrum characterizes the
covariance of the out of phase components. Further details are found in [251], [362].

In polar notation the complex function f;;(w) can be expressed as

figw) = [fy(w)eiea. (21.11)

The phase spectrum ¢;j(w) is the average phase shift of the proportion of Z;(x)
with the frequency w on the proportion of Z;(z) at the same frequency and

Im ( f ij (UJ)
Re( f ij (w)
Absence of phase shift at a frequency w implies a zero imaginary part Im( f;;(w))

for this frequency. When there is no phase shift at any frequency, the cross spectral
density fi;(w) is real and its Fourier transform is an even function.

—ij(w)
cij(w)

tan wij(w) = (2112)

) -
)



22 Intrinsic Multivariate Correlation

Is the multivariate correlation structure of a set of variables independent of the spatial
correlation? When the answer is positive, the multivariate correlation is said to be
intrinsic. It is an interesting question in applications to know whether or not a set
of variables can be considered intrinsically correlated, because the answer may imply
considerable simplifications for subsequent handling of this data.

Intrinsic correlation model

The simplest multivariate covariance model that can be adopted for a covariance func-
tion matrix consists in describing the relations between variables by the variance-
covariance matrix V and the relations between points in space by a spatial correlation
function p(h) which is the same for all variables

Ch) = Vp(h). (22.1)

This model is called the intrinsic correlation model because it has the particular
property that the correlation p;; between two variables does not depend upon spatial
scale,

~o(h .
Jij P ( ) — Oij = pij. (222)
O P(h) Ojj P(h) V0ii 0jj

In practice the intrinsic correlation model is obtained when direct and cross covari-
ance functions are chosen which are all proportional to a same basic spatial correlation
function,

Cij(h) = byp(h), (223)

and the coefficients b;; are subsequently interpreted as variances o;; or covariances o;;,
depending whether ¢ is equal to j or not.

EXERCISE 22.1 Show that the intrinsic correlation model is a valid model for covari-
ance function matrices.

The intrinsic correlation model implies even cross covariance functions because
p(h) is an even function as it is a normalized direct covariance function.
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An intrinsic correlation model can be formulated for intrinsically stationary ran-
dom functions (please note the two different uses of the adjective intrinsic). For var-
iograms the intrinsic correlation model is defined as the product of a positive semi-
definite matrix B of coefficients b;;, called the coregionalization matrix, multiplied
with a direct variogram ~y(h)

I'(h) = Br(h). (22.4)

EXERCISE 22.2 Show that the intrinsic correlation model is a valid model for vari-
ogram matrices.

Linear model

The linear random function model, that can be associated with the intrinsically corre-
lated multivariate variogram model, consists of a linear combination of coefficients a,
with factors Y, (x)

N
Zi(x) = Y a,Y(x). (22.5)
p=1

The factors Y, (x) have pairwise uncorrelated increments,
E[(Yp(x+h) - Yp(x)) - (Yg(x+h) = ¥,(x))] = 0  for p#gq, (22.6)
and all have the same variogram
E[(Y,(x+h) - Y,(x))’] = 2y(h) for p=1,...,N. (22.7)

The variogram of a pair of random functions in this model is proportional to one
basic model

pa(h) = 3 E[(ZGeth) — Zi(x) - (Zy(cth) ~ Z(x))]
= SB[ Y ] (5000h) — ¥,(0) - (Y 0x+) — ¥y
1 Np— g=
= 3 22 B Pl0Gcth) ~ K(x)’]
~ by (h), (228)

where each coefficient b;;, element of the coregionalization matrix B, is the result of
the summation over the index p of products of a;, with a},

N
> dhal. (22.9)
p=1
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Figure 22.1: Cross variogram of a pair of principal components.

One possibility to decompose a given coregionalization matrix B for specifying
the linear model is to perform a principal component analysis with B playing the role
of the variance-covariance matrix,

a = VAd, (22.10)

where ), is an eigenvalue and q,‘; is an element of an eigenvector of B.

Codispersion coefficients

A sensitive question to explore for a given data set is to know whether the intrinsic
correlation model is adequate. One possibility to approach the problem is to examine
plots of the ratios of the cross versus the direct variograms, which are called codisper-
sion coefficients (MATHERON, 1965)
ceii(h) = __w®) (2.11)
ii(h) 7;(h)

If the codispersion coefficients are constant, the correlation of the variable pair
does not depend on spatial scale. This is an obvious implication of the intrinsic corre-
lation model

CC,’j(h) — bu ’Y( ) — b] :pij (22.12)

/bii bj; v(h) ’ bi; bj;

where p;; is the correlation coefficient between two variables, computed from ele-
ments of the coregionalization matrix B.
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Another possible test for intrinsic correlation is based on the principal components
of the set of variables. If the cross variograms between the principal components are
not zero at all lags h, the principal components are not uncorrelated at all spatial scales
of the study and the intrinsic correlation model is not appropriate.

EXAMPLE 22.3 (PRINCIPAL COMPONENTS’ CROSS VARIOGRAM) Ten chemical el-
ements were measured in a region for gold prospection (see [344]). Figure 22.1 shows
the cross variogram between the third and the fourth principal component computed
on the basis of the variance-covariance matrix of this geochemical data for which a
hypothesis of intrinsic correlation is obviously false. Indeed, near the origin of the
cross variogram the two components are significantly correlated although the statis-
tical correlation coefficient of the principal components is equal to zero. This is a
symptom that the correlation structure of the data is different at small scale, an aspect
that a non-regionalized principal component analysis cannot incorporate.

We defer to Chapter 26 an explanation on how the ordinate on Figure 22.1 has
been scaled. The graph has actually been scaled in the same way as Figure 26.2, using
the so-called hull of perfect correlation defined in expression (26.16) on p177 — but
not displaying it.



23 Heterotopic Cokriging

The cokriging procedure is a natural extension of kriging when a multivariate vari-
ogram or covariance model and multivariate data are available. A variable of interest
is cokriged at a specific location from data about itself and about auxiliary variables in
the neighborhood. The data set may not cover all variables at all sample locations. De-
pending on how the measurements of the different variables are scattered in space we
distinguish between isotopic and heterotopic data sets. After defining these situations
we examine cokriging in the heterotopic case.

Isotopy and heterotopy

The measurements available for different variables Z;(x) in a given domain may be
located either at the same sample points or at different points for each variable as
illustrated on Figure 23.1. The following situations can be distinguished

— entirely heterotopic data: the variables have been measured on different sets of
sample points and have no sample locations in common;

— partially heterotopic data: some variables share some sample locations;

— isotopy: data is available for each variable at all sampling points.

Entirely heterotopic data poses a problem for inferring the cross variogram or co-
variance model. Experimental cross variograms cannot be computed for entirely het-
erotopic data. Experimental cross covariances, though they can be computed, are still
problematic as the corresponding direct covariance values refer to different sets of
points (and sometimes subregions). The value at the origin of the cross covariances
cannot be computed.

With partially heterotopic data it is advisable, whenever possible, to infer the cross
variogram or the covariance function model on the basis of the isotopic subset of the
data.

Actually heterotopy for spatial data is as much a problem as missing values in
multivariate statistics (remember the Example 3.1 on p22), even if a model is built in
between in the case of geostatistics.

A particular case of partial heterotopy important for cokriging is when the set of
sample points of the variable of interest is included in the sets of sample points of
other variables, which serve as auxiliary variables in the estimation procedure. In this
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Figure 23.1: Isotopic and partially heterotopic data.

case, when the auxiliary variables are available at more points than the main variable,
cokriging is typically of advantage.

In cokriging problems with heterotopic data we can distinguish between sparsely
and densely sampled auxiliary variables. In the second case, when an auxiliary vari-
able is available everywhere in the domain, particular techniques like collocated cok-
riging (presented in this chapter) or the external drift method (see Chapter 37) can be
of interest.

The question whether cokriging is still interesting in the case of isotopy, when the
auxiliary variables are available at the same locations as the variable of interest, will
be examined in the next chapter.

Ordinary cokriging

The ordinary cokriging estimator is a linear combination of weights w?, with data from
different variables located at sample points in the neighborhood of a point x,. Each
variable is defined on a set of samples of (possibly different) size n; and the estimator
is defined as

N n; )

Zh(xo) = > whZi(%a), (23.1)

i=1 a=1
where the index 4 refers to a particular variable of the set of /V variables. The number
of samples n; depends upon the index ¢ of the variables, so as to include into the



160 Multivariate Geostatistics

notation the possibility of heterotopic data.

In the framework of a joint intrinsic hypothesis we wish to estimate a particular
variable of a set of [V variables on the basis of an estimation error which should be nil
on average. This condition is satisfied by choosing weights which sum up to one for
the variable of interest and which have a zero sum for the auxiliary variables

UL 1 ifi=idg
dowh o= by, = { . (23.2)
a=1

0 otherwise.

Expanding the expression for the average estimation error, we get

B[ Z4(x0) — Zig(x0)] = [zzw Zi(xa)

i=1 a=1
Tig
—Zw Zio(%0) ZZ’UJ Z; xo]
\T/ 1;,?,0\10,_/
N
= 3wk B Ale) Zi(x0) ]
=1 a=1
= 0. (23.3)

For the variance of the estimation error we thus have
2
[(ZZU} Zi(Xa) — ,o(xo)) ] (23.4)
=1 a=1
Introducing weights w) defined as
i 5 { 1 = (23.5)
w, = —04, = .
0 0 i do,
which are included into the sums, we can shorten the expression of the estimation
variance to

ok = E[(égwa Zi(xa))2]. (23.6)

Then, inserting fictitious random variables Z;(0) positioned arbitrarily at the ori-
gin, increments can be formed

E[(E(iwazxxa)—zi(miwi)f]

B[ (3035wt (axo) - z0))' ] @7

i=1 a=0 .
increments

Il
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Defining cross covariances of increments C;(X4, X) (Which are not translation
invariant) we have

N N n; 7nj
op = ZZZZwiwgC{j(xmxﬁ). (23.8)

i=1 j=1 a=0 =0

In order to convert the increment covariances to variograms, the additional as-
sumption has to be made that the cross covariances of increments are symmetric. With
this hypothesis we obtain the translation invariant quantity

N n;
ok = 2D ) wh Vi (Xa—X0) — Vigio (Xo—Xo)
i=1 a=1
n; N

N N
DI IPIAT EACEEDE 23.9)

i=1 j=1 a=1 =1

After a minimization in which the constraints on the weights generate N parame-
ters of Lagrange u;, we have the ordinary cokriging system

N 1y
Zwa/{, Yij(Xa—Xg) + ti = Yiig(Xa—%Xo) fori=1,...N;a=1,...n;
=1 p=1

- (23.10)
wf,:éi,-o forizl,...N,
B=1
and the cokriging variance
N n;
ok = 33 Wi Yiig(Xa—X0) + Hip — YVigio (X0 — Xo). (23.11)
i=1 a=1

Simple cokriging

Ordinary cokriging has no meaning when no data is available for the variable of in-
terest in a given neighborhood. On the other hand, simple kriging leans on the knowl-
edge of the means of the variables, so that an estimation of a variable can be calibrated
without having any data value for this variable in the cokriging neighborhood.

The simple cokriging estimator is made up of the mean of the variable of interest
plus a linear combination of weights w?, with the residuals of the variables

N n;
Zh(xo) = mig+ Y Y wh(Zi(xe) —mi). (23.12)

=1 a=1
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Figure 23.2: Three data values at two locations X;, Xs.

To this estimator we can associate a simple cokriging system, written in matrix
form

Cll . Clj e CIN w1 clio
Ca Ci Cin w; = Ciip ) (2313)
Cyi ... CNj ... Cpyn WN CnNig

where the left hand side matrix is built up with square symmetric n; X n; blocs C;; on
the diagonal and with rectangular n; x n; blocs C;; off the diagonal, with

Cy; = Cj. (23.14)

The blocks C;; contain the covariances between sample points for a fixed pair
of variables. The vectors c;;, list the covariances with the variable of interest, for a
specific variable of the set, between sample points and the estimation location. The
vectors w; represent the weights attached to the samples of a fixed variable.

EXAMPLE 23.1 (HETEROTOPIC BIVARIATE COKRIGING) Let us examine the fol-
lowing simple cokriging problem. We are interested in cokriging estimates on the
basis of 3 data values at two points x; and X as shown on Figure 23.2. In this 1D
neighborhood with two sample points we have one data value for Z; (x) and two data
values for Z,(z). The direct covariance functions and the cross covariance function
(which is assumed an even function) are modeled with a spherical structure with a
range parameter a= 1,

Cu(h) = 2pgn(h), Coa(h) = pspn(h), (23.15)
Cia(h) = —1pgn(h). (23.16)

This is by the way an intrinsic correlation model.

EXERCISE 23.2 Is the coregionalization matrix positive definite? What is the value
of the correlation coefficient?
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We want to estimate Z, () using simple cokriging assuming known means m; and
™My, SO the estimator is

Zi(zo) = my+wi(Zi(z) —my)
+wa(Za(z1) — ma) + ws(Za(z2) — my). (23.17)

Let us write out the simple cokriging system for the isotopic case (as if we had a
measurement for Z1(zs))

Cn(-’ﬁl - 151) Cn(-’El - 372) 012(1171 - 1‘1) 012(331 - xz)
Cu(xz — 931) C11($2 — ﬂB2) 2(252 - 161) C12($2 - 332)
021(1‘1 - z1) 021($1 - 152) 022($1 - ﬂvx) C22($1 - $2)
021(172 - $1) 021(152 - 152) 022(372 - Il) 022(562 - Iz)
’U)i Cn(xl - .'E())
wl Cui(z2 — 7o)

= | 5¥—F""% 23.18

o I Bl e ) R
w3 Ca1 (w2 — 20)

where the blocks are marked by lines.

EXERCISE 23.3 How does the system shrink due to the fact that actually no data
value is available for Z,(z) at the point z,?

Computing the numerical values of the covariances we have the following system
with the three right hand sides for cokriging at zj,, xf and x, as shown on Figure 23.2,

2 -1 0\ [w 0 0 0
11 0)[w |={0], o |, o]. (23.19)
0 0 1) \ws 0 ~5/16 -1

EXERCISE 23.4 What are the solutions w,, we, w3 of the simple cokriging system for
each target point x(, z; and zo?

The cokriging estimate z{(x!) is equal to the mean m, because the point !, is out
of range with respect to both data points xz; and x,.
For the point zjj the cokriging estimate is equal to

as this point is now within the range of the point z,.
When cokriging at the target point o we have

Z(zg) = mi—

[0}
(@) = mut 2 (m(e2) —mo)=m — (22(z2) —ma),  (23.21)
22
which is a linear regression equation (compare with Eq. 3.21 on p19).
The simple kriging of Z,(x) at the three target points (without using the auxiliary
variable) would have given each time the mean m; as a solution because all three
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points are out of range of x;. In comparison the cokriging solutions are more inter-
esting soon as the target point is within range of the point xo where a value of the
auxiliary variable is available.

We notice in passing that in the heterotopic case cokriging with an intrinsic corre-
lation model does generally not boil down to kriging.



24 Collocated Cokriging

A particular heterotopic situation encountered in practice is when we have a variable
of interest known at a few points and an auxiliary variable known everywhere in the
domain (or at least at all nodes of a given estimation grid and at the data locations
of the variable of interest. With plenty of data available for the auxiliary variable the
question at hand is how to choose a parsimonious neighborhood.

Cokriging neighborhood

Cokriging with many variables using all data easily generates a very large linear sys-
tem to solve. This means that the choice of a subset of data around a given estimation
location, called a neighborhood, is a crucial step in cokriging. It is of particular im-
portance to know when, due to the particular structure of a coregionalization, the full
cokriging with all data is actually equivalent to a cokriging using a subset of data,
so that the neighborhood can be reduced a priori and the cokriging system simplified
accordingly, thus reducing in the end the numerical effort to a considerable extent.
For isotopic data the most important aspect is to know whether the coregionalization
shows direct and cross variograms that are proportional to one direct variogram which
entails the cokriging to be equivalent to a separate kriging, leaving out the secondary
variables. This topic will be exposed in Chapter 25. Concerning heterotopic data
we will focus on a case that has attracted most attention recently as it is increasingly
frequently encountered in applications: the case of a dense secondary variable.

Figure 24.1 sketches three different neighborhoods for a given central estimation
location (denoted by a star), primary data (denoted by full circles) as well as three
alternate subsets of data from a secondary variable (denoted by squares). The neigh-
borhood:

(A) uses all data available for the secondary variable,

(B) restricts the secondary information to the subset of locations where primary data
is available as well as to the estimation location,

(©) merely includes a sample value of the secondary variable at the estimation loca-
tion.

Case (A) can be termed the full neighborhood, while case (C) was called a col-
located neighborhood by Xu et al. [360] as the secondary data is collocated with the
estimation location. Whereas case (B) was termed a multicollocated neighborhood
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Figure 24.1: Three possible neighborhoods with a dense secondary variable.

by Chiles & Delfiner [51] as additionally the secondary data is also collocated with
the primary data.

Using the full neighborhood (A) with secondary data dense in space will easily
lead to linear dependencies for neighboring samples in the cokriging system, causing
it to be singular. The size of the system can also be numerically challenging. Vargas-
Guzman & Yeh [328] suggest a way out of numerical difficulties by starting from a
small neighborhood and progressively extending the neighborhood in the framework
of what they call a sequential cokriging.

Collocated simple cokriging

The collocated neighborhood (C) is only valid for simple cokriging because using a
single sample for the secondary variable in ordinary cokriging leads to a trivial cok-
riging weight for that sample due to the constraint. For simple cokriging the approach
solely requires the inference of a correlation coefficient instead of a cross-covariance
function, a simplification that can only be meaningful for coregionalization models
with proportionalities. However, as shown below the full simple cokriging with such
a model does not reduce to a collocated simple cokriging.

With reference to XU et al. [360] we call collocated simple cokriging a neighbor-
hood definition strategy in which the neighborhood of the auxiliary variable is arbi-
trarily reduced to only one point: the estimation location. The value S(xo) is said to
be collocated with the target point of Z(x). The collocated simple cokriging estimator
is

Z*(xp) = my,+ wo (S(x) —ms) + Zwa (Z(x4) — my). (24.1)
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The simple cokriging system for such a neighborhood is written

(sz Czs) (Wz) - (CZZ) (24.2)
c}s Oss Wy ozs )’ .

where C is the left hand matrix of the simple kriging system of Z(x) and czz is the

corresponding right hand side. The vector czs contains the cross covariances between

the n sample points of Z(x) and the target point x, with its collocated value S(xg).
In the case of intrinsic correlation the collocated simple cokriging can be expressed

as
ozzR o0zs19 wz 0zzTo
T = ) (24.3)
0zsTy Jss Wo 0zs
where R is the matrix of spatial correlations p(x,—xg), while ry is the vector of
spatial correlations p(x,—Xp).

To perform collocated cokriging with intrinsic correlation of the variable pair we
only need to know the covariance function

sz(h) = 0zz p(h) (244)

and the correlation coefficient pzg between Z(x) and S(x), as well as the variance
gss of S (X) .

An interesting question is to know whether simple cokriging reduces to collocated
cokriging with the intrinsic correlation model. Actually the answer is negative (as
shown in an exercise below) and we have to conclude that there is no theoretical justi-
fication for selecting only one collocated sample for cokriging the auxiliary variable.

EXERCISE 24.1 Suppose that Z(x) and S(x) are intrinsically correlated with unit
variances. We choose to use as a cokriging neighborhood the data Z (x,) at n sample
locations x,, and corresponding values S(x,) at the same locations. We also include
into the cokriging neighborhood the value S(x,) available at the grid node xo. Does
this cokriging boil down to collocated cokriging?

Collocated ordinary cokriging

The collocated neighborhood (C) used for simple cokriging in the previous section
would yield a trivial result if applied in ordinary cokriging: because of the constraint
that the weights of the auxiliary variable should sum up to zero, the weight wy is zero
and the auxiliary variable does not come into play.

An ordinary cokriging needs to use more data together with the value S(x). If the
values S(x,) that are collocated with the sample points of the main variable are also
included we get a multicollocated neighborhood (B). The ordinary cokriging estimator
is

Z*(xo) = woS(xo) + Y (W Z(Xa) +w§ S(Xa))- (24.5)

a=1
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The corresponding cokriging system can be written

Czz Czs czs 1 0 wz Czz
Csz Css css 0 1 Ws Csz
C}S CTS:S Jss 0 1 Wo = ozs | - (246)
1 o o0 00| -m 1
o0 1" 1 0 0o/ \—p 0

As the weights are constrained, the system can also be expressed on the basis of
variograms instead of covariance functions (contrarily to simple collocated cokriging).

Simplification with a particular covariance model

Cokriging in a multicollocated neighborhood is examined in detail by Rivoirard [271]
who has shown in the bivariate case that cokriging with a full neighborhood is equiv-
alent to cokriging with a multicollocated neighborhood when the covariance structure
is of the type:

sz(h) =p2 C(h) + CR(h),
Css(h) =C(h), (24.7)
Czs(h) =pC(h),

where p is a proportionality coefficient, C%(h) is a covariance structure that is partic-
ular to the primary variable and C'(h) is common to both variables. Implications of
this model are that the covariance function Csg(h) is more regular than Czz(h), if
C%(h) is less regular than C(h).

The corresponding cokriging estimator Z** is then shown to reduce to
Z™(x0) = Z*(x0) +p(S(x0) — §*(x0)), (24.8)

where the two krigings Z* and S* are both obtained using the weights from an ordinary
kriging system set up with the covariance function C%(h) for the n, sample locations
of the primary variable:

20) = 332 (xe),  Sxe) = 3 utS(xa). 249)
a=1 a=1

Rivoirard [271] obtained this result for Gaussian random functions with condi-
tional independence of Z(x,) and S(x) knowing S(xo). It is straightforward to derive
it more generally for second-order stationary random functions simplifying the cok-
riging system on starting directly from the covariance function model (24.7).

This result can be generalized to the multivariate case for uncorrelated secondary
variables (e.g. principal components of remote sensing channels). Let the first variable



Collocated Cokriging 169

Z; be the variable of interest, let j = 2,..., N be the indices of N—1 principal com-
ponents with covariance functions C;;(h) and assume the coregionalization model,

N
Ci(h) = Z ;2 C;j(h) + CR(h),

Clj(h) =DPj Cn(h) f()l'j :2,...,N,
Cjy(h) =0 for j # j',

(24.10)

where p; are coefficients. Knowing that remote sensing channels in our experience are

not seldom intrinsically correlated [183, 47] it makes sense to compute their principal

components and this type of coregionalization model could be applied in that context.
The cokriging estimator is then

N

Z*(x0) = Zi(xo) + ) p; (Zi(x0) = Z;(x0)), (24.11)
=2

reducing the cokriging to a linear combination of coefficients p; with differences be-
tween the known values Z;(xo) and the ordinary krigings Z7(x,) computed from the
ny sample locations of Z; using C®(h).



25 Isotopic Cokriging

When a set of variables is intrinsically correlated, cokriging is equivalent to kriging
for each variable, if all variables have been measured at all sample locations. For a
particular variable in a given data set in the isotopic case, cokriging can be equivalent
to kriging, even if the variable set is not intrinsically correlated. This is examined in
detail in this chapter.

Cokriging with isotopic data

Let us consider the case of isotopic data. With isotopy the cokriging of a set of vari-
ables has the important advantage over a separate kriging of each variable that it pre-
serves the coherence of the estimators. This can be seen when estimating a sum S(x)
of variables

Sx) = > Zix). (25.1)

The cokriging of S(x) is equal to the sum of the cokrigings of the variables Z;(x)
(using for each cokriging N out of the NV + 1 variables)

N

SKx) = Y z%(x). (25.2)

i=1

However, if we krige each term of the sum and add up the krigings we generally
do not get the same result as when we krige directly the added up data: the two
estimations are not coherent.

EXAMPLE 25.1 The thickness T'(x) of a geologic layer is defined as the difference
between its upper and lower limits,

T(x) = Zv(x) - Zi(x) (25.3)
—— ———r N——r
thickness  upper limit lower limit

The cokriging estimators of each term using the information of two out of the three
variables (the third being redundant) are coherent,

T%(x) = z§¥(x) - ZzE¥ (x). (25.4)
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But if kriging is used, the left hand result is in general different from the right hand
difference,

TX(x) # Z§(x) - ZK(x), (25.5)
and there is no criterion to help decide as to which estimate of thickness is the better.

In some situations isotopic cokriging is equivalent to kriging. The trivial case
is when all cross variograms or cross covariance functions are zero. A more subtle
case is when cross variograms or covariances are proportional to a direct variogram or
covariance function.

Autokrigeability

A variable is said to be autokrigeable with respect to a set of variables, if the direct
kriging of this variable is equivalent to the cokriging. The trivial case is when all
variables are uncorrelated (at any scale!) and it is easy to see that this implies that all
kriging weights are zero except for the variable of interest.

In a situation of isotopy any variable is autokrigeable if it belongs to a set of intrin-
sically correlated variables. Assuming that the matrix V of the intrinsic correlation
model is positive definite, we can rewrite the simple cokriging equations using Kro-
necker products ®:

(VOR)w = v; ®ro, (25.6)
where
R = [p(xa—xp)] and ro = (p(xa—%o))- (25.7)

The nN x nN left hand matrix of the isotopic simple cokriging with intrinsic cor-
relation is expressed as the Kronecker product between the N x N variance-covariance
matrix V and the n x n left hand side matrix R of simple kriging

0'11R UlNR

VR = o; R . (25.8)

0N1R O'NNR

The nN right hand vector is the Kronecker product of the vector of covariances
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0iio times the right hand vector ry of simple kriging

O14p To \

Vi, ®To = | TieTo |. (25.9)

\Gmo ro

Now, as v;, is also present in the left hand side of the cokriging system, a solution
exists for which the weights of the vector w;, are those of the simple kriging of the
variable of interest and all other weights are zero

0

Vip ® R ... Wi = V;, ®ry. (2510)

This is the only solution of the simple cokriging system as V and R. are positive
definite.

It should be noted that in this demonstration the autokrigeability of the variable of
interest only depends on the block structure v;, ® R and not on the structure V®R of
the whole left hand matrix. Thus for a variable to be autokrigeable we only need that
the cross variograms or covariances with this variable are proportional to the direct
variogram or covariance.

To test on an isotopic data set whether a variable Z;, is autokrigeable, we can com-
pute autokrigeability coefficients defined as the ratios of the cross variograms against
the direct variogram

Yioj (h)
Yioio (h) ‘

ac;y; (h) = (2511)

If the autokrigeability coefficients are constant at any working scale for each vari-
able j = 1,..., N of a variable set, then the variable of interest is autokrigeable with
respect to this set of variables.

A set of N variables for which each variable is autokrigeable with respect to the
N —1 other variables is intrinsically correlated.

COMMENT 25.2 The property of autokrigeability is used explicitly in nonlinear geo-
statistics in the formulation of models with orthogonal indicator residuals (see [267,
270]).
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Bivariate ordinary cokriging

We now examine in detail the ordinary cokriging of a variable of interest Z(x) with
only one auxiliary variable Y'(x). The ordinary cokriging estimator for Z(x) is written

ny n2

Z*(x0) = > wiZ(xa)+ Y wjY(xp) (25.12)
a=1 B=1

= wiz+wWyy. (25.13)

The unbiasedness conditions are 1" w; = 1 and 17 w, = 0.
The ordinary cokriging system in matrix notation is

Czz Czy 1 O Wi Czz
Cyz Cyy 0 1 Wo _ | cvz
e ool = T (25.14)
OT 1T 0 0 — M2 0

Suppose the two variables are uncorrelated, both in the spatial and in the multi-
variate sense, i.e. Czy = Cyz = 0 and cyz = 0. Then the cokriging system has the
form

CZZ Wy —H1 = Czz
1" wy = 1

Cyywz —p2 = 0 (25.13)
1T Wao = 0.

Obviously wo = 0 and ps = 0, so that wy, u; are the solution of the ordinary
kriging of Z alone, even in the heterotopic case.
For the isotopic case, let us look now at ordinary cokriging with the intrinsic cor-
relation model. The matrices in the system have the following structure
szzozzR CzyzdzyR Czz = 0zz7Xy (2516)
Cyz = OyzR ny =0’ny Cyz = OyzTy. (2517)

Thus the system is

ozzRw, + ozyRwy — = ozzrg
17wy = 1
(25.18)
oyzRwi + oyyRwy — py = oyzrg
1T Wso = 0.
Setting wo = 0 and py = 02z i, 1o = oy z j1 We obtain
ozzRW, — ozzpu = 02zz7
17w, = 1 (25.19)

oyzRw, — oyzpu = oyzr.
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Dividing out the 07z and oy z in the first and the third set of equations, we see
that w; and p are solution of the simple direct kriging Z: the variable of interest is
autokrigeable.



26 Multivariate Nested Variogram

The multivariate regionalization of a set of random functions can be represented with a
spatial multivariate linear model. The associated multivariate nested variogram model
is easily fitted to the multivariate data. Several coregionalization matrices describing
the multivariate correlation structure at different scales of a phenomenon result from
the variogram fit. The relation between the coregionalization matrices and the classical
variance-covariance matrix is examined.

Linear model of coregionalization

A set of real second-order stationary random functions {Z;(x);¢ = 1,..., N} can be
decomposed into sets { Z%(x);u = 0, ..., S} of spatially uncorrelated components
S .
Zi(x) = Y Zix)+m, (26.1)
u=0
where for all values of the indices ¢, j, u and v,
E[Z(x)] = m;, (26.2)
E[Z,(x)] = 0, (26.3)
and
cov(Z,(x), Zi(x+h)) = E[Z,(x) Z](x+h)] = Cjj(h), (26.4)
cov(Zi(x), Zi(x+h)) = 0 when u # v. (26.5)

The cross covariance functions C}; (h) associated with the spatial components are
composed of real coefficients b}; and are proportional to real correlation functions

Pu (h)

s s
Cij(h) = Y Ci(h) = b pu(h), (26.6)
u=0 u=0
which implies that the cross covariance functions are even in this model.

Coregionalization matrices B,, of order N x NN can be set up and we have a mul-
tivariate nested covariance function model

S
C(h) = ) Bupu(h) (26.7)
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with positive semi-definite coregionalization matrices B,,.

EXERCISE 26.1 When is the above covariance function model equivalent to the in-
trinsic correlation model?

EXERCISE 26.2 Show that a correlation function p,(h) having a non zero sill by
on a given cross covariance function has necessarily non zero sills b}; and b%; on the
corresponding direct covariance functions.

Conversely, if a sill b, is zero for a given structure of a variable, all sills of the
structure on all cross covariance functions with this variable are zero.

Each spatial component Z£(x) can itself be represented as a set of uncorrelated
factors Y,P(x) with transformation coefficients a;,,

Z ab, Y2 (x (26.8)

where for all values of the indices 4, j, u, v, p and ¢,

E[YP(x)] = 0, (26.9)
and,

cov(Y;(x), Y (x+h)) = pu(h), (26.10)
cov(YP(x),Yi(x+h)) = 0 when wu#v or p#gq. (26.11)

Combining the spatial with the multivariate decomposition, we obtain the linear
model of coregionalization

Z Z ab, Y2 (x (26.12)

u=0 p=1

In practice first a set of correlation functions p,(h) (i.e. normalized variograms
g.(h)) is selected, taking care to keep S reasonably small. Then the coregionalization
matrices are fitted using a weighted least squares algorithm (described below). The
weighting coefficients are chosen by the practitioner so as to provide a graphically sat-
isfactory fit which downweighs arbitrarily distance classes which do not comply with
the shape suggested by the experimental variograms. Finally the coregionalization
matrices are decomposed, yielding the transformation coefficients af, which specify
the linear coregionalization model

B,=A,A] where A, = [a’ ]. 26.13
u U

The decomposition of the B,, into the product of A, with its transpose is usually
based on the eigenvalue decomposition of each coregionalization matrix. Several de-
compositions for the purpose of a regionalized multivariate data analysis are discussed
in the next chapter.
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Bivariate fit of the experimental variograms

The multivariate nested variogram model associated with a linear model of intrinsi-
cally stationary random functions is

S
3 B, gu(h), (26.14)
=0

where the g, (h) are normalized variograms and the B, are positive semi-definite ma-
trices.

In the case of two variables it is simple to design a procedure for fitting the vari-
ogram model to the experimental variograms. We start by fitting the two direct vari-
ograms using a nested model. At least one structure g, (h) should be common to both
variograms to obtain a non trivial coregionalization model. Then we are able to fit the
sills b}; of the cross variogram, using the sills of the direct variograms to set bounds
w1th1n which the coregionalization model is authorized,

[bi5] < /b5 b, (26.15)

because the second order principal minors of B,, are positive.

Constrained weighted least squares routines exist, which allow integrating these
constraints into an automated fit for a set of predefined structures.

The extension of this bivariate procedure to more than two variables does not guar-
antee a priori an authorized model, because higher order principal minors of the core-
gionalization matrices are not constrained to be positive.

EXAMPLE 26.3 The inequality relation between sills can be used to provide a graph-
ical criterion to judge the goodness of the fit of a variogram model to an experimental
variogram. A hull of perfect correlation is defined by replacing the sills b; of the
cross variogram by the square root of the product of the sills of the corresponding
direct variograms (which have to be fitted first) and setting the sign of the total to +
or—:

hull(v;(h)) = Z b% 5% gu(h). (26.16)

Figure 26.1 shows the cross variogram between nickel and arsenic for the Loire
geochemical data set. The fit of a nugget-effect plus two spherical models with ranges
of 3.5km and 6.5km seems inappropriate on this graph.

The same fit viewed on Figure 26.2 within the hull of perfect (positive or nega-
tive) correlation now looks satisfactory. This shows that a cross variogram fit should
be judged in the context of the spatial correlation between two variables: in this case
the statistical correlation between the two variables is very poor (the correlation co-
efficient is equal to r = .12). The bj; coefficients of the two spherical structures are
very small in absolute value and the model is actually close to a pure nugget-effect,
indicating that correlation between arsenic and nickel only exists at the microscale.
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Figure 26.1: Experimental cross variogram of arsenic and nickel with a seemingly badly
fitted model.

Multivariate fit

A multivariate fit is sought for a model I'(h) to the matrices I'*($);) of the experi-
mental variograms calculated for n. classes §); of separation vectors h. An iterative
algorithm due to GOULARD [125] is based on the least squares criterion

thr[(r*(ﬁk) —T(%))], (26.17)
k=1

which will be minimized under the constraint that the coregionalization matrices B,
of the model I'(h) have to be positive semi-definite.

Starting with S arbitrarily chosen positive semi-definite matrices B,,, we look for
an S-+1-th matrix B, which best fills up the gap dI'}, between a model with S matri-
ces and the experimental matrices I'* ()

S
dTy, = T*(5) — D Bugu(9k)- (26.18)

u=0

uFv

The sum of the differences weighted by g, () is a symmetric matrix dI'* which
is in general not positive semi-definite. Decomposing it into eigenvalues and eigen-
vectors,

3 dTgu(9k) = dTE=Q,A, Q)  with Q]Q, =1, (26.19)

k=1
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Figure 26.2: The same cross variogram fit is displayed together with the hull of perfect
positive or negative correlation provided by the previous fitting of the corresponding
direct variograms. The cross variogram model is defined within the bounds of the hull
of perfect correlation.

we can build with the positive eigenvalues a new matrix dI'} which is the positive
semi-definite matrix nearest to dI'} in the least squares sense

dTy = Q,A%Qy, (26.20)

where A9 is equal to the diagonal eigenvalues matrix A, except for the negative eigen-
values, which have been set to zero.
Dividing by the square of the variogram g, (h) of the S+1-th structure, we obtain
a positive semi-definite matrix B} which minimizes the fitting criterion
*
B = n&—— . (26.21)
kZl(gv(m))?

This procedure is applied in turn to each matrix B,, and iterated. The algorithm
converges well in practice, although convergence is theoretically not ensured.

In practice weights w($);) are included into the criterion to allow the user to put
low weight on distance classes which the model should ignore

Ne

> " w(s) tr[ (T*(%:) — T($Hx) )*]- (26.22)

k=1
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The steps of this weighted least squares algorithm are analogous to the algorithm
without weights.

COMMENT 26.4 The heart of Goulard’s algorithm is built on the following result
about eigenvalues (see RAO [254], p63).
Let A be a symmetric N x N matrix. The Euclidean norm of A is

N N
2D layP

1A (26.23)
=1 j=1
and its eigenvalue decomposition
N
> Mapq, with QQT=L (26.24)

We shall assume that the eigenvalues A, are in decreasing order.
We look for a symmetric N x N matrix B of rank k < N which best approximates
a given matrix A i.e.

inf [|A - BJ|. (26.25)

Multiplying a matrix by an orthogonal matrix does not modify its length (measured
with the Euclidean norm), so we have

laA-B|* = |Q"AQ-Q'BQ’
N———
C
= ||A - C||2
= Z Z (Ao 8pq = cpa)”, (26.26)
p=1 ¢g=1
where 6,, is one for p= q and zero otherwise. The best choice for C is obviously a
diagonal matrix as
N N N N
e —e)?+ DD (@) = D (M —m) (26.27)
p=1 p=1 ¢=1 p=1
——rv
p#q

The smallest diagonal matrix C of rank k is the one for which the diagonal ele-
ments cp, are equal to the eigenvalues A\, for p < k and zero forp > k
N N

D)’ = Y W) (26.28)
p=1 p=k+1
This means that
C = Q'BQ=x, (26.29)

where A° is the diagonal matrix of eigenvalues of A in which the last k—N (lowest)
eigenvalues have been set to zero.
The best rank-k approximation of A isB = QA°Q'.
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Statistical | Micro-scale Small scale  Large scale
correlation | correlation  correlation correlation
(0-10m) (10-130m) (130-2300 m)

CupPb| -08 0.0 04 36
Cu—Zn 42 57 31 42
Pb—Zn 35 23 46 11

Table 26.1: Correlations of Brilon geochemical variables.

The need for an analysis of the coregionalization

We can use classical principal component analysis to define the values of factors at
sample locations and then krige the factors over the whole region to make maps. What
would be the benefit of a spatial multivariate analysis based on the linear model of
coregionalization and the corresponding multivariate nested variogram?

To answer this question we restrict the discussion to a second order stationary con-
text, to make sure that the variance-covariance matrix V, on which classical principal
component analysis is based, exists from the point of view of the model.

If we let the lag h go to infinity in a second order stationary context with structures
g.(h) having unit sills, we notice that the multivariate variogram model is equal to the
variance-covariance matrix for large h

I'(h) - V  for h— oo. (26.30)

In this setting the variance-covariance matrix is simply a sum of coregionalization
matrices

S
V=) B.| (26.31)

u=0

Relation (26.31) teaches us that when the variables are not intrinsically correlated,
it is necessary to analyze separately each coregionalization matrix B,,. The variance-
covariance matrix V is a mixture of different correlation structures stemming from all
scales covered by the sampling grid and this amalgamate is likely to be meaningless
from the point of view of the linear model of coregionalization.

Furthermore, it should be noted that coregionalization matrices B,, can be obtained
under any type of stationarity hypothesis, while the variance-covariance matrix V is
only meaningful with data fitting into a framework of second-order stationarity.

EXAMPLE 26.5 A multivariate nested variogram has been fitted to the direct and
cross variograms of the three elements copper, lead and zinc sampled in a forest near
the town of Brilon, Germany (as described in [340, 338]).
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Regionalized correlation coefficients
U
P = b;]
ij
/b b

have been computed for each variable pair at three characteristic spatial scales and are
listed on Table 26.1 together with the classical correlation coefficient

(26.32)

ry = —9__ (26.33)
V/5ii 8jj
The three characteristic scales were defined on the basis of the nested variogram
model in the following way

— micro-scale: the variation below the minimal sample spacing of 10m is summa-
rized by a nugget-effect model;

— small scale: the variation at a scale of 10m to 130m is represented by a spherical
model of 130m range;

— large scale: the variation above 130m is captured by a spherical model with a
range of 2.3km.

At the micro-scale, the best correlated pair is copper and zinc with a regionalized
correlation of .57: the geochemist to whom these figures were presented thought this
was normal, because when copper has a high value at a sample point, zinc also tends
to have a high value at the same location.

At the small scale, lead and zinc have a coefficient of .46 which is explained by
the fact that when there are high values of lead at some sample points, there are high
values of zinc at points nearby within the same zones.

Finally, at the large scale, we notice the negative coefficient of -.36 between copper
and lead, while at the two other characteristic scales the correlation is (nearly) zero.
This is due to the fact that when copper is present in a zone, this excludes lead and
vice-versa.

Naturally this tentative interpretation does not answer all questions. Interpretation
of correlation coefficients is difficult because they do not obey an equivalence relation:
if A is correlated with B and B with C, this does not imply that A is correlated with C.

At least we can draw one conclusion from the analysis of this table of coefficients:
the set of three variables is clearly not intrinsically correlated and correlation strongly
depends on spatial scale. The variance-covariance matrix does not describe well the
relations between the variables. Multiple linear regression would be a bad idea and
cokriging based on the multivariate nested variogram the alternative to go for in a
regression problem.



27 Case Study: Ebro Estuary

The present chapter illustrates the application of cokriging combining in unique neigh-
borhood heterotopic data from two different sources in the Ebro river estuary (Spain):
on the one hand a sounder measuring conductivity, on the other water samples an-
alyzed for chlorophyll and salinity. We also discuss the problem of choosing the
variogram model by showing conditional simulations obtained with models having a
different behavior at the origin.

Kriging conductivity

The Ebro is the second largest river of Spain. We shall use data collected on the Sth
October 1999 by the Polytechnic Universities of Barcelona and Valencia. The mea-
surements were performed between 11am and 6pm, navigating upstream estuary. De-
tails on the campaign and on the interpretation of the data are given in [304, 117, 303].
We shall use these data only for demonstrative purpose, to discuss some problems in
the application of kriging, cokriging and conditional simulations.

Conductivity was measured employing a multiparametric sounding Hydrolab Sur-
veyor III with the aim of locating the freshwater-seawater interface. The measure-
ments were performed at five locations along the river, sampling vertically with a 10
centimeter spacing. This resulted in a total of 185 conductivity values. A plot of
the five profiles is shown on Figure 27.1 using symbols proportional to the value of
conductivity. Conductivity expresses the salinity of the water. The transition zone be-
tween freshwater and seawater is easily identified between 3 and 4 meter depth. The
abscissa indicates the distance from the mouth of the Ebro river in kilometers.

The river bed displayed on Figure 27.1 is actually based on bathymetric measure-
ments stemming from a previous campaign in the month of July 1999. We can assume
that the bottom did not experiment great changes, but obviously, if there are different
river discharges, the water levels (and as a consequence the depths) will be different.
'We made a fast computation of these differences using the following approach: the av-
erage discharge during the July campaign was 129 m3/s while it amounted to 184 m®/s
in the October campaign (measured at a station upstream in the city of Tortosa). For
this difference of river discharge, the water level is evaluated as about 20 cm higher
on average and the bathymetry was corrected accordingly.

We will consider the problem of interpolating by kriging the conductivity profiles.
Experimental variograms were computed between and within the profiles, using 60
lags of 10cm in the vertical and 100m in the horizontal. They are shown on Fig-
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Figure 27.1: The 185 Hydrolab Surveyor III sample locations are plotted with symbols
proportional to measured conductivity.

ure 27.2. In the horizontal direction (with a tolerance of + 45 degrees) the variogram
is denoted D1, while in the vertical it is denoted D2. Note the difference in scale in
horizontal (kilometers) and vertical (meters) directions.

Considering that we know only well the variogram structure in the vertical direc-
tion we can do nothing better than to adopt the same model in the horizontal using
a geometrical anisotropy. The main axes of the anisotropy ellipse are taken parallel
to the horizontal and the vertical. The cubic model (M2) fitted in the vertical with a
range of 7.5m was adjusted to the horizontal with a range of 17km. A nugget-effect
of 2 (mS/cm)? was added to reflect measurement uncertainty and the sill of the cubic
model is 1150 (mS/cm)?, about three times the variance which is represented as a hor-
izontal dotted line on Figure 27.2. The smooth parabolic behavior at the origin of the
cubic model may be interpreted as reflecting the averaging over a non-point support
by the physical measurement device.

An interpolation grid of 137 x 75 nodes with 100m x 10cm cells was defined,
starting from an origin at (-12.9km, -6.8m). This interpolation grid and a neighbor-
hood including all data (unique neighborhood) will be used in all examples.

The ordinary kriging of conductivity using the cubic model and filtering the nugget
effect is shown on Figure 27.3. The map represents well the two phases, freshwater
and seawater, suggested by the data on Figure 27.1. This picture of the spatial distri-
bution of chlorophyll relies heavily on the geometric anisotropy built into the geosta-
tistical model, which emphasizes the horizontal dependence between the profiles.
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Figure 27.2: Experimental variogram of conductivity in two directions (D1: horizontal,
D2: vertical). Model variogram in both directions (M1, M2). The abscissa should be
read as kilometers for the horizontal and as meters for the vertical.

Cokriging of chlorophyll

The Hydrolab device has been used to obtain quickly an indication about the depth of
the freshwater/seawater interface. Water samples were obtained using a new device
called SWIS (Salt Wedge Interface System) developed jointly by the Polytecnic Uni-
versities of Barcelona and Valencia. It consists of six tubes connected to a vacuum
system that can be operated from the surface. Spacing the tubes at 10cm from each
other, the roughly half a meter wide interface can be sampled with up to six samples in
one go. Additional samples (at zero, 1.5, 3 and 4.5 meter depth) were taken, leading
to a total of 47 samples for the five measurement points along the Ebro river. The
number of locations where both water samples and Hydrolab samples are available is
31.

On Figure 27.4 the water sample locations are plotted using symbols proportional
to the value of chlorophyll. At the same locations salinity measurements are available.
The scatter plot of salinity against chlorophyll is shown on Figure 27.5. Nine water
samples located in the freshwater are plotted as stars, while the samples in the salt
wedge are represented with crosses. While the relationship within both media can be
assumed linear, this is not the case when considering all data. As cokriging requires
a linear relationship between the variable of interest and the auxiliary variables, the
logarithm (basis 10) was taken for both salinity and conductivity.

Direct and cross variograms were computed for the three variables and were fitted
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Figure 27.3: Map of conductivity obtained by ordinary kriging, filtering the nugget
effect component.

using a nugget effect and a cubic model with a geometric anisotropy, taking a max-
imal of 17km along the horizontal and a minimal range of 7.5m in the vertical. The
fitting was done using an improved version of the algorithm of Goulard & Voltz [127],
running 200 iterations, restraining the fitting to distances less than 3km in the horizon-
tal and 3m in the vertical, and taking weights proportional to the number of pairs in
each direction, divided also by the average distances. The set of fitted direct and cross
variograms is shown on Figure 27.6. The variogram of conductivity is fitted with a
more generous nugget effect and a lower sill than it was by hand on Figure 27.2. The
cross variograms are displayed together with the correlation hulls computed from the
corresponding direct variograms.

The cokriging of chlorophyll taking logarithms of salinity and conductivity as aux-
iliary variables is displayed on Figure 27.7. The nugget effect, viewed as measurement
error, was filtered. The use of conductivity as an auxiliary variable permits to extrap-
olate chlorophyll, quite successfully, at depths greater than where it was measured.

Extrapolation of chlorophyll in greater depth than where water samples are avail-
able depends much on how the model is formulated. Three different cokrigings using
a nugget effect plus cubic model with ranges as defined above were experimented:

A the ordinary cokriging of chlorophyll with (untransformed) salinity and conduc-
tivity;
B the ordinary cokriging of chlorophyll with logarithms of salinity and conductiv-

ity (reference case described in detail above);

C the universal cokriging of chlorophyll with logarithms of salinity and conduc-
tivity, adding a linear drift in the vertical direction, to take account explicitly of
the vertical non stationarity.
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Figure 27.4: The 47 water sample locations are plotted with symbols proportional to
chlorophyll.

The three cokrigings essentially differ in the extrapolation behavior below a depth
of Sm. The scatter diagrams of cokrigings A and C against B are plotted on Fig-
ure 27.8. The cokriging A (i.e. without taking logarithms, and thus neglecting the non
linear relation with the auxiliary variables) grossly extrapolates at depths below 5m.
This generates the cloud of values for which cokriging A differs much from cokriging
B. The cokriging C, adding a linear drift in the vertical, also yields higher values than
case B in areas at greater depth, far from the water sample profiles.

Conditional simulation of chlorophyll

The variogram models of chlorophyll and salinity shown on Figure 27.6 cannot de-
cently be qualified as “fitting” the corresponding experimental variograms, because
the latter exhibit little structure due to the small amount of data. So let us discuss this
problem using the 47 chlorophyll data.

The experimental variogram of chlorophyll is shown on Figure 27.9 together with
two models differing in their behavior at the origin:

e a geometrically anisotropic cubic model with a sill of 60 (mg/m?)?, with ranges
17km in the horizontal and 7.5m in the vertical.

e a geometrically anisotropic exponential model with a sill of 30 (mg/m?®)?, with
ranges 17km in the horizontal and 7.5m in the vertical.

A grid set at an origin (-12.9km,-5.2m) with 137 x 59 nodes using 100m x 10cm
cells was defined for interpolation and stochastic simulation.
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Figure 27.5: Scatter diagram between salinity and chlorophyll for the 47 water samples.
Nine samples located in freshwater are plotted as stars, the others as crosses.

Ordinary kriging was performed with variogram models and is shown on Fig-
ure 27.10 (the greytone scale used is the same as on Figure 27.7). The upper map
represents the kriging with the cubic model while the lower map was obtained with
the exponential model. We note that the cubic model with such a large range as com-
pared to the dimensions of the domain has an extrapolative behavior, generating a
maximum at -3km which is not supported by data.

The exponential model is more conservative: the maxima and minima in the map
obviously refer to the highest and lowest values in the chlorophyll data. However this
has also another implication: the kriged value will be more alike the kriged mean of
the domain the more we move away from data locations.

It is well known that kriging does not represent an attempt to reconstruct the re-
gionalized variable (had we the ability to measure it everywhere in the domain). The
regionalized variable in the geostatistical model is but one realization of the random
function. Kriging can be thought of as the average of many realizations that coincide
with the data at sample locations. Thus if we are interested in how the regionalized
variable at hand might look like, we have to employ conditional simulation instead of
kriging.

We use the turning bands method [203, 51, 178] for simulating realizations of the
random function. We shall assume that the 47 chlorophyll values can be considered
as a few samples of a realization of a Gaussian random function as the histogram does
not indicate an asymmetric distribution. One thousand bands were used for simulation
— with only 100 bands some bands could be seen with naked eye on the simulated
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Figure 27.7: Map of chlorophyll obtained by ordinary cokriging, filtering the nugget
effect component, and including the logarithms of salinity and conductivity as covari-
ates.
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Figure 27.8: Scatter diagrams of chlorophyll cokriging experiments A and C against
B. The axes are in the same scale and the first bisector is drawn.

map of the exponential model [112]. The latter is no surprise when the range of the
variogram is larger than the size of the domain. The simulation with a thousand bands
is no big deal on modern computers.

Two conditional simulations are shown on Figure 27.11 (the greytone scale used
is the same as on Figure 27.7). The upper map illustrates the fact that a surface cor-
responding to the realization of a random function with a cubic variogram is smooth,
which is related to the parabolic shape of this model at the origin. The lower map
shows that the realization of a random function with an exponential variogram has a
rough aspect, due to the non differentiability of that model at the origin.

In applications the smoothness/roughness of the regionalized variable, when it is
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Figure 27.9: The variogram of chlorophyll has been “fitted” with two models having
a different behavior at the origin.

known, can be an important criterion for selecting the type of variogram model to be
employed when the data, like in the present case, are not sufficient to characterize
properly the behavior at the origin of the variogram.

From a practical point of view it has to be decided whether reality looks rather like
the upper or the lower picture of Figure 27.11. If the biologist is not able to tell, we can
still rely on the shape of the vertical experimental variogram as seen on Figure 27.9: a
linear behavior near the origin, as it is expressed by the exponential variogram model
on the right graph, seems to be the more adequate interpretation. Choosing this option
would imply that the bottom simulation on Figure 27.11 would be the one retained for
further use.

The Ebro estuary case study is continued in Section 37 on p297 where the output
from a numerical model is used as external drift for further improvement of kriging
and conditional simulations.
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Figure 27.10: Ordinary kriging of chlorophyll using the cubic (upper map) and the
exponential (lower map) variogram models.
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Figure 27.11: Conditional simulations of chlororophyll with the turning bands method
using the cubic (upper map) and the exponential (lower map) variogram models.



28 Coregionalization Analysis

The geostatistical analysis of multivariate spatial data can be subdivided into two steps

- the analysis of the coregionalization of a set of variables leading to the definition
of a linear model of coregionalization;

- the cokriging of specific factors at characteristic scales.

These techniques have originally been called factorial kriging analysis (from the
French analyse krigeante [214]). They allow to isolate and to display sources of vari-
ation acting at different spatial scales with a different correlation structure.

Regionalized principal component analysis

Principal component analysis can be applied to coregionalization matrices, which are
the variance-covariance matrices describing the correlation structure of a set of vari-
ables at characteristic spatial scales.

Regionalized principal component analysis consists in decomposing each matrix
B, into eigenvalues and eigenvectors

B, = A,Al with A, =Q, VA, and Q, Q] =1L (28.1)

The matrices A, specify the coefficients of the linear model of coregionalization.

The transformation coefficients

a, = Vg (28.2)
are the covariances between the original variables Z;(x) and the factors Y?(x). They
can be used to plot the position of the variables on correlation circles for each char-
acteristic spatial scale of interest. These plots are helpful to compare the correlation
structure of the variables at the different spatial scales.

The correlation circle plots can be used to identify intrinsic correlation: if the plots
show the same patterns of correlation, this means that the eigenvectors of the coregion-
alization matrices are similar and the matrices only differ by their eigenvalues. Thus
the matrices B, are all proportional to a matrix B, the coregionalization matrix of the
intrinsic correlation model.

Applications of regionalized principal component analysis (or factor analysis)
have been performed in the fields of geochemical exploration [337, 129, 307, 29, 344,
20], petroleum exploration [365], soil science [346, 126, 119, 127, 256], hydrogeol-
ogy [278, 123], plant ecology [227], volcanic tremor intensity time series [151], to
mention just a few.
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Generalizing the analysis

The analysis can be generalized by choosing eigenvectors which are orthogonal with
respect to a symmetric matrix M, representing a metric

A, = QM VA, with QM,Q) =L (28.3)

A possibility is to use the metric

S
M, = ) B, (28.4)
=0

which is equivalent to the variance-covariance matrix V in a second order stationary
model. This metric generates a contrast between the global variation and the variation
at a specific scale described by a coregionalization matrix B,,.

COMMENT 28.1 This type of metric has also been used frequently to decompose the

matrix T'*($);) of experimental direct and cross variograms for the first distance class

$1 by numerous authors [350, 279, 320, 25, 20, 88], looking for the eigenvectors of
I (91)

—~ (28.5)

This noise removal procedure has been compared to coregionalization analysis in
[346] and [343]. The basic principle is illustrated with a simple model which shows
why the approach can be successful in removing micro-scale variation.

Suppose we have a multivariate nested covariance function model

C(h) = Bopuug(h) + Bi pun(h), (28.6)

where pnyq(h) is a nugget-effect and p,pr(h) a spherical correlation function. The
variance-covariance matrix in this model is

V = By +B,. (28.7)

Let ), be the distance class grouping vectors h greater than zero and shorter than
the range of the spherical correlation function. Then

C(h) = Bipyn(th)  for hehH (28.8)
and the eigenvectors of
C(\?l) (28.9)
are equivalent to those of
B,
B, +B,’ (28.10)

what reminds the setting of discriminant analysis. Corresponding factors reduce to a
minimum the influence of noise (micro-scale variation), as reflected in the matrix B.
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Regionalized canonical and redundancy analysis

When the set of variables is split into two groups any coregionalization matrix can be

partitioned into
Bll B12
B, = ( Y ") (28.11)
B2l B2%

where B!, B22 are the within group coregionalization matrices while B1? represents
the between groups coregionalization.

The formalism of canonical analysis can be applied to that specific spatial scale of
index u

B! = Al'(AIYT (28.12)

where
Al = QU'MIVALl  with QI MIN(QIH =1, (28.13)

and
M, = B}?(BZ)"'BZ, (28.14)

with non-singular matrices B22.

The results of canonical analysis are often deceptive. Principal component analysis
with instrumental variables (RAO [253]), which has been reinvented in psychometrics
under the name of redundancy analysis (an account is given in [325]), can be a more
appropriate alternative. It is based on the metric

M}! = BIZBZ, (28.15)

GOOVAERTS [120] has first applied a regionalized redundancy analysis to examine
the links between soil properties and chemical variables from banana leaves. See also
[183] for an application to remote sensing and geochemical ground data, which turned
out to be intrinsically correlated, so that redundancy analysis was based on V instead
of B,,.

Cokriging regionalized factors

The linear model of coregionalization defines factors at particular spatial scales. We
wish to estimate a regionalized factor from data in a local neighborhood around each
estimation location x,.

The estimator of a specific factor Y°(x) at a location x, is a weighted average of
data from variables in the neighborhood with unknown weights w?,

N n;
Yoo (k0) = ) D wl Zi(xa). (28.16)
1

i=1 a=
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In the framework of local second-order stationarity, in which local means m; for
the neighborhood around x, are meaningful, an unbiased estimator is built for the
factor (of zero mean, by construction) by using weights summing up to zero for each
variable

N n
B[ Yoo () —Y2(x)] = D mi > wi=0. (28.17)
=1 a=1

0

The effect of the constraints on the weights is to filter out the local means of the
variables Z;(x).
The estimation variance o is

o = E[(Ypeu,(x) — Y2(x))* ] (28.18)
N N n =n ] ] N n o
= 1+ Z Z Z Zw; wp Cij(Xa—Xp) — 2 Z Z We, Qo pe Puo (Xa—X0)-
i=1 j=1 a=1 f=1 i=1 a=1

The minimal estimation variance is realized by the cokriging system

(N nj
Z Ew/’s Cij(Xa—Xg) — pti = [a;,au() Puo (xa—xo)J fori =1,...N;
=1 p=1

a=1,...n (2819)
> wp=0 fori=1,...N.
\ =1

We find in the right hand side of this system the transformation coefficients af,ouo

of the factor of interest. These coefficients are multiplied by values of the spatial

correlation function p,,, (h) which describes the correlation at the scale of interest.
The factor cokriging is used to estimate a regionalized factor at the nodes of a

regular grid which serves to draw a map.

Regionalized multivariate analysis

Cokriging a factor is more cumbersome and computationally more intensive than krig-
ing it. Coregionalization analysis is more lengthy than a traditional analysis which
ignores spatial scale. When is all this effort necessary and worthwhile? When can it
be avoided? The answer is based on the notion of intrinsic correlation.

The steps of both a classical or a regionalized multivariate analysis (MVA) for
spatial data are summarized on Figure 28.1. The key question to investigate is whether
the correlation between variables is dependent on spatial scale. Three ways to test for
scale-dependent correlation have been described

1. codispersion coefficients cc;;(h) can be computed and plotted: if they are not
constant for each variable pair, the correlation structure of the variable set is
affected by spatial scale;
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Figure 28.1: Classical multivariate analysis followed by a kriging of the factors (on the
left) versus regionalized multivariate analysis (on the right).

2. cross variograms between principal components of the variables can be com-
puted: if they are not zero for each principal component pair at any lag h (like
on Figure 22.1 on page 156), the classical principal components are meaningless
because the variance-covariance matrix of the variable set is merely a mixture
of different variance-covariance structures at various spatial scales;

3. plots of correlation circles in a regionalized principal component analysis can be
examined: if the patterns of association between the variables are not identical
for the coregionalization matrices, the intrinsic correlation model is not appro-
priate for this data set. With only few variables it is possible to look directly at
a table of regionalized correlation coefficients instead of the regionalized prin-
cipal components (like in Example 26.5 on page 181).

If the data appears to be intrinsically correlated, we can apply any classical method
of multivariate analysis, calculate the direct variograms of the factors, krige them on
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a grid and represent them as maps. But if correlation is affected by spatial scale, we
need to fit a linear model of coregionalization and to cokrige the factors, as suggested
by the right hand path of Figure 28.1.

It is interesting and important to note that the samples need not to be without
autocorrelation (as implied by the usual hypothesis of sample independence) to allow
for a classical multivariate analysis to be performed independently of the geostatistical
treatment. For this purpose the multivariate regionalized data need only to comply
with the intrinsic correlation model, which factorizes the multivariate correlation and
the autocorrelation.



29 Kriging a Complex Variable

The question of how to model and krige a complex variable has been analyzed by
LAJAUNIE & BEJAOUI [170] and GRZEBYK [130]. The covariance structure can
be approached in two ways: either by modeling the real and imaginary parts of the
complex covariance or by modeling the coregionalization of the real and complex
parts of the random function. This opens several possibilities for (co-)kriging the
complex random function.

Coding directional data as a complex variable

Complex random functions can be useful to model directional data in two spatial di-
mensions. For analyzing and mapping a wind field we code the direction ©(x) and
the intensity R(x) of wind at each location of the field as a complex variable

Z(x) = R(x)ei®®, (29.1)

An alternate representation of Z(x) can be set up using the coordinates of the
complex plane,

Z(x) = U(x)+iV(x), (29.2)

as shown on Figure 29.1.
We shall use this second representation of the random function.

Complex covariance function

We assume that Z(x), U(x) and V(x) are second order stationary and centered. The
covariance function of Z(x) is defined as

C(h) = E[Z(x+h)Z(x)] = C®(h) +iC™(h), (29.3)
where Z(x) = U(x) — 1 V/(x) is the complex conjugate.
Let Cyy(h), Cyv(h) and Cyy (h) be the (real) direct and cross covariance func-
tions of U(x) and V(x). Then the complex covariance C'(h) can be expressed as

C(h) = Cyy(h)+ Cyy(h) — iCyy(h) +iCyy(h)
Cuu(h) + Cyy(h) +i(Cov(~h) — Cuv(b)).  (294)

Il
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U

Figure 29.1: Coding a wind vector in the complex plane.

The real part of the complex covariance,
C*(h) = Cyy(h)+Cyv(h), (29.5)
is even and a covariance function, while the imaginary part,
C™(h) = Cyy(~h) - Cuy(h), (29.6)

is odd and not a covariance function.

Complex kriging
The linear combination for estimating, on the basis of a complex covariance (CC), the
centered variable Z(x) at a location x, from data at locations x,, with weights w, € C
is
n
Zgo(x0) = Y WaZ(Xa) (29.7)
a=1

In terms of the real and imaginary parts of Z(x) it can be written as

Zcxo) = D [(wy*U(xa) — wi™ V(xa))
+i(wE V(xa) + W U(xa) ) - (29.8)

EXERCISE 29.1 From the variance of the linear combination

var(iwaZ(xa)) = iiwamgC(xa—XB) (29.9)

a=1 =1
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the following inequality can be deduced

ii (wa® wg*® + wa™ wg™) O™ (xa—xg)

a=1 ﬂ*
+ZZ (whewf® — witwl®) C™(xa—x5) > 0. (29.10)
a=1 =1

Show that this inequality implies that C®¢(h) is a positive definite function.

EXERCISE 29.2 On the basis of the linear combination (1 + i) Z(0) + (1 — i) Z(h)
show that

|C™(h)] < o (29.11)

Complex kriging consists in computing the complex weights which are solution of
the simple kriging

ZUIﬂC(xa_Xﬂ) = C(x0—Xq) fora=1,...,n. (29.12)
B=1

This is equivalent to the following system, in which the real and imaginary parts
of the weights have been separated

Z (wp® CRe(xqa—xp) — wi C™(xq—x%g)) = C™(x0—x%,) for Vo
=1
Z (wp® C™(xa—%p) + wh™ C**(xq—x5)) = C™(x0—x%,) for V.
B=1

(29.13)

In matrix notation we have
CRe CIm wRe cRe
( CImT CRe ) (wlm ) ( CIm ) . (2914)
To implement complex kriging it is necessary to model C**(h) and C™(h) in
a consistent way such that C'(h) is a complex covariance function. This question is
postponed to the end of this chapter.
Cokriging of the real and imaginary parts

An alternative approach consists in relying on the coregionalization of the real and
imaginary parts to make the simple cokriging of Z(x) with the estimator

Zgk(x0) = Ulk(xo) +1Vik(x0), (29.15)
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where
Usk(x0) = D (uhU(xa) + 14 V(%a)), (29.16)
a=1
Sk(x0) = Y (HAUXe) + 72V (Xa)) . (29.17)
a=1

EXERCISE 29.3 Show that the estimation variance of Z¢y (Xo) is equal to the sum of
the estimation variances of the real and imaginary parts.

As the estimators for U(x) and V(x) both have the same structure, we shall only
treat the cokriging of the former.

EXERCISE 29.4 Compute the estimation variance var(U (xo) — U¢k (xo)).

For cokriging U(x) from the real and imaginary parts of the data Z(x,) we have

the system
Cowwv Cuv)(we') _ (cw
(CVU Cyv v -~ \ewv )’ (29.18)

where the blocks Cyy and Cyy are the left hand sides of the simple kriging systems
of U(x) and V (x), respectively. The block Cyy= Cj,;; contains the cross covariance
values between all data locations. The vector cyy is the right hand side of the simple
kriging of U(x) while the vector ¢y groups the cross covariances between all data
points and the estimation location.

Complex kriging and cokriging versus a separate kriging

Considering either the data on the complex variable or the corresponding real and
imaginary parts, we have three ways of building an estimate of the complex quantity

- the estimator of complex kriging:

Zc(x0) = W'z (29.19)
u' wh—vT W i (u" w4 v wRe) (29.20)

- the estimator based on the coregionalization of U (x) and V (x):
ZEe(x0) = u'pl+vi vl +i(u’ p?4 v v?), (29.21)
- an estimator obtained by kriging separately U (x) and V' (x):

Zis(x0) = u' wi +ivi wi. (29.22)
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Let us examine the case of intrinsic correlation of U(x) and V (x). The imaginary
part of the complex covariance is zero and we have the complex kriging system

CRe 0 wRe cRe
( 0 CRe) (wlm) = ( 0 ) , (29.23)
and more specifically,

((UUU +ovv)R 0 > (WE: ) - ("UU + o) "°>. (29.24)

0 (O'UU +va)R w

For the cokriging system of U (x) with intrinsic correlation we write

ovzuR oyvR p'\ _ [owvro
(UVUR UVVR) (Vl  \owvre )’ (2925)
For both estimators the solution is equivalent to the separate simple kriging of the
real and imaginary parts and we find

wte = pl =0 =w =wk, (29.26)

while all other weights are zero.

The case of an even cross covariance function is remarkable. With an even cross
covariance Cyy(h)= Cyy(h) the imaginary part of the complex covariance is zero
and the imaginary weights of complex kriging vanish. The estimator reduces to

ZEo(x0) = 2z’ whe (29.27)

The difference between the kriging variance 02 of complex kriging and the kriging
variance o%g of the separate simple kriging is non negative, so that complex kriging
provides a poorer solution than the one obtained by a separate kriging of U(x) and
V' (x) when the cross covariance function is even.

EXERCISE 29.5 Show that with an even cross covariance function the difference of
the kriging variances is equal to

Uéc - 012<s = (W11<_WRG)T Cuv (Wi—WRe)
+ (wi—wr)T Cyy (Wi —wFe), (29.28)

and thus non negative.

When the cross covariance function Cyy (h) is not even, complex kriging rep-
resents an intermediate solution, from the point of view of precision, between the
separate kriging and the cokriging of the real and imaginary parts.
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Complex covariance function modeling

Knowing the real part of a continuous complex covariance function, its imaginary part
can be defined (as a consequence of the Radon-Nikodym theorem) by the relation

iC™h) = (®x*C®)(h), (29.29)

where @ is a complex distribution whose Fourier transform is a real odd function ¢
with values in the interval [—1, 1]. The class of C'™(h) corresponding to a given real
continuous covariance function C*¢(h), such that

C(h) = C®e(h)+iC™(h) = C*(h) + (@ * C**)(h) (29.30)

is a complex covariance function, are called compatible imaginary parts.
A simple class of compatible imaginary parts can be obtained using
3 = % (v — i), (29.31)

where v is a real bounded measure such that |p(u)| < 1 with

pu) = — / sin(u' 7) v(dr). (29.32)
The compatible imaginary parts are given by
1
C"™(h) = 3 / [C*(h—7) — C*(h + T)] v(dT). (29.33)

COMMENT 29.6 The imaginary parts from this class can be viewed as a randomiza-
tion

c™(h) = % E[CR(h—T) - C*(h +T)], (29.34)

where the expectation is taken over the random variable T'.

The class can be extended (see [130]) by considering real covariance functions
C°(h) compatible with a given C*¢(h) in the sense that the positive measures pu¢ <
uRe, Then

C™(h) = % / [C(h—7) — C°(h + 7)| v(dT) (29.35)

is a compatible imaginary part, provided that the real bounded measure v satisfies
| [sin(u"r) v(dr)| < 1.
Some properties of the functions C°(h) are

— the difference C®¢(h)—C¢(h) is a positive definite function;

~ C°(0) < C*(0);
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— when the integral range (see [220], [177]) of C®¢(h) exists
/ C(h)dh < / C™(h) dh. (29.36)

— C°(h) is more regular at the origin than C®¢(h);

— if C¢(h) and C®*(h) have spectral densities then

ffw) < fRw) forall w. (29.37)

In practice, a finite sum based on translations 7 is used
1 K
C™(h) = 5 > pe (C(h = 7) — C°(h + 7)) (29.38)
k=1

with weights p; > 0 and ) px < 1. Instead of only one function C¢(h), K functions
%(h) can be introduced which represent a family of covariance functions compatible
with a given C®¢(h). The translations 7 and the models C¢(h) are chosen after
inspection of the graphs of the imaginary part of the experimental covariance function.
The coefficients py are fitted by least squares.
LAJAUNIE & BEJAOUI [170] provide a few fitting and complex kriging examples
using directional data from simulated ocean waves.



30 Bilinear Coregionalization Model

The linear model of coregionalization of real variables implies even cross covariance
functions and it was thus formulated with variograms in the framework of intrinsic
stationarity. The use of cross variograms however excludes deferred correlations
(due to delay effects or phase shifts). A more general model was set up by GRZE-
BYK [130] [131] which allows for non even cross covariance functions.

Complex linear model of coregionalization
The complex analogue to the intrinsic correlation model is
C(h) = Bp(h) =Ex(h) - Fx(h) +i(Ex(h) +F x(h)), (30.1)

where p(h) = x(h) + ix(h) is a scalar complex covariance function and B is a
Hermitian positive semi-definite matrix with

B = E+iF. (30.2)

The matrix E is a symmetric positive semi-definite matrix while F is antisymmet-
ric.

An underlying linear model with complex coefficients af, and second-order sta-
tionary uncorrelated complex random functions Y,(x) can be written as

N
Zix) = Y aY(x), (30.3)
p=1

where

cov(Yp(x-+h),Yp(x)) = E[Y,(x+h)Yy(x)] = p(h),
cov(Yp(x+h),Y(x)) = 0  for p#gq. (30.9)

The alternate representation is based on jointly stationary components U, (x) and

N

N
Zix) = Y (G Up(x) —d} Vp(x) +1 Y (ch Vi(x) + dj Up(x)), (30.5)

p=1 p=1
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where the coregionalization of U, (x) and V,(x) is identical for all values of the index
p and has the form

cov(Up(x+h),Uy(x)) = Cyy(h) = Cyy(h),
cov(Up(x+h), Vp(x)) = Cyv(h), (30.6)
while all other covariances are zero.

The coefficients of the factor decomposition and the elements of the complex core-
gionalization matrix B are related by

N —
> da, (30.7)
p=1
whereas the elements of E and F are linked to the linear model by
N
Z( Ipdidl),  fy =Y (dd—dd). (30.8)
p=1

Naturally we can consider a nested complex multivariate covariance function
model of the type

) _
> Bupu(h) (30.9)
u=0

with the underlying complex linear model of coregionalization

Z Z ab, Y2(x (30.10)

u=0 p=1

and the orthogonality relations
cov(YP(x+h),Yi(x)) = 0 forp#q oru#v, (30.11)

where u and v are the indices of different characteristic spatial or time scales.

Bilinear model of coregionalization

The real linear model of coregionalization is in particular not adequate for multivariate
time series analysis, where delay effects or phase shifts are common and cannot be
included in a model with even cross covariances. A model for real random functions
with non even real cross covariance functions can be derived from the complex linear
model of coregionalization (as defined in the previous section) by taking its real part.
In the case of only one spatial scale (the nested case is analog) we can drop the index
u and have

Zi(x) Z ¢ Up(x Z dv, (30.12)
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This model, as it is the sum of two linear models, has received the name of bilinear
model of coregionalization. We get a handy model by imposing the following relations
between covariance function terms

Cyu(h) = Cyv(h) =7 x(h), (30.13)

Cuv(—h) = —CUv(h)= Ii(h) (3014)

This implies that the cross covariance function Cyy (h) is odd. The cross covari-
ance function between two real variables is

Cij(h) = cov(Zi(x+h), Z;(x))
N N
= Y ddCuyh)+) _ didi Cyv(h)

p=1

N
o o h Lo o h
= Y (dd+dd) xth) _ SN (@ d —dd) fm) 3015
The multivariate covariance function model is real,
1
Ch) = 3 (Ex(h)—Fr(h)), (30.16)
with matrices E and F stemming from the Hermitian positive semi-definite matrix B,

B = E+iF, (30.17)

and p(h) = x(h) + i k(h) being a complex covariance function.

GRZEBYK [130] has studied different algorithms which combine the approach
used for fitting the multivariate nested variogram with a fit of x(h) when x(h) is
given. He provides an example of the fit of a covariance model with non even cross
covariance functions to the coregionalization of data from three remote sensing chan-
nels of a Landsat satellite.

The bilinear coregionalization model is especially well adapted for analyzing mul-
tiple or multivariate time series, where delay effects at various time scales are com-
mon and often are easily interpretable when causal relations between the variables are
known.
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31 Thresholds and Selectivity Curves

We introduce the notion of threshold which leads to selecting subsets of values of a
random function that can be summarized using different types of selectivity curves.
Incidentally this illustrates the geometrical meaning of two measures of dispersion:
the variance and the selectivity. This presentation is based on MATHERON [213][218]
and LANTUEJOUL [175][176]. The context is mining economics, but a parallel to
analog concerns in the evaluation of time series from environmental monitoring is
drawn at the end of the chapter.

Threshold and proportion

There are a number of problems in which we aim at estimating in a spatial or temporal
domain what overall proportion of a given quantity is above a fixed threshold.

The traditional example in geostatistics is mining. For what proportion of a deposit
is the grade of a given ore above an economic threshold below which mining is not
profitable? This will determine the decision whether or not to open a mine.

A similar example is found in soil pollution: what proportion of a site is above a
tolerable pollution level? That will have an impact on its further use and on the cost
for eventually cleaning it.

There is often not a unique threshold: the price of the metal to be extracted from a
mine fluctuates daily and as extraction has to be planned much before the first ounce
is on the market, several thresholds have to be considered. Similarly a polluted soil
has to be judged on the basis of different thresholds depending upon its future use. A
kindergarten will require a lower pollution level and more care in the rehabilitation of
the terrain than what is tolerated when the objective is building a new industrial plant.

Tonnage, recovered quantity, investment and profit

For a mining deposit the concentration of a precious metal is denoted Z, which is a
positive variable. We call tonnage T'(z) the proportion of the deposit (considered of
unit volume) for which the grade is above a given threshold 2. The value z represents
in this chapter a fixed value, the so-called cut-off, i.e. the grade above which it is
economically interesting to remove a volume from the deposit and to let it undergo
chemical and mechanical processing for extracting the metal.
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Let F'(z) be the distribution function of the grades, then the tonnage 7°(z) is ex-
pressed by the integral

+00
T() = / dF(u) = E[ 175, ]. (31.1)

where 1 7>, is the indicator function testing whether Z is above a given threshold z.
As F(z) is an increasing function, T'(z) is a decreasing function. The tonnage is
actually complementary to the distribution function

T(z) = P(Z>2)=1-F(2). (31.2)
The quantity Q(z) of metal recovered above a cut-off grade z is given by the
integral

+00

Qz) = / wdF(u) =E[Z1325,]. (31.3)

z

The function Q(z) is decreasing. The value of Q(z) for z= 0 is the mean because
the cut-off grade is a positive variable

+00

Q) = /udF(u):E[Z]:m. (31.4)

0

The recovered quantity of metal can be written

+oo
Q) = [—uT(u)}:w+ / T(u) du

+o00

2T(2) + /T(u) du

z

= C(2) + B(2). (31.5)

The recovered quantity is thus split into two terms, which can be interpreted in the
following way in mining economics (assuming that the cut-off grade is well adjusted
to the economical context)

— the share C(z) of metal which reflects the investment, i.e. the part of the re-
covered metal that will serve to refund the investment necessary to mine and
process the ore,

— the amount B(z) of metal, which represents conventional profit, i.e. the left-
over of metal once the quantity necessary for refunding the investment has been
subtracted.
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T(2)

C(2) B(2)

0 z

Figure 31.1: The function T'(z) of the extracted tonnage as a function of cut-off
grade. The shaded surface under T'(z) represents the quantity of metal Q(z) which is
composed of the conventional investment C'(z) and the conventional profit B(z).

These different quantities are all present on the plot of the function T'(z) as shown
on Figure 31.1. The conventional investment (assuming that the cut-off adequately
reflects the economic situation) is a rectangular surface

C(z) = 2T(2), (31.6)
while the conventional profit
+00
B(z) = / T(u) du (31.7)

is the surface under T'(2) on the right of the cut-off z.
The function B(z) is convex and decreasing. The integral of B(z) for z= 0 is

+o0
/ B(u) du =

where m is the mean and o2 is the variance of Z. If we subtract from the surface under
B(z) the area corresponding to half the square m? we obtain a surface element whose
value is half of the variance, as shown on Figure 31.2.

Note that Q(z) divided by T'(z) yields the average of the values above cut-off

(m? + 0?), (31.8)

N | ==

m(z) = BlZ | Z>z]=Q(2)/T(2). (319)
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0 z

Figure 31.2: Function B(2) of the conventional profit. The shaded surface under B(z)

represents half of the variance o2.

Selectivity

The selectivity S of a distribution F' is defined as
1 !
S = 5E[|Z - 7], (31.10)

where Z and Z' are two independent random variables with the same distribution F.
There is an analogy with the following formula for computing the variance under the
same conditions

o? = %E[ (Z - 7")?). (31.11)

The selectivity and the variance are both measures of dispersion, but the selectivity
is more robust than the variance.

The selectivity divided by the mean is known in econometrics as the Gini coeffi-
cient (see e.g. [157], [4])

Gini = 2 (31.12)
m

and represents an alternative to the coefficient of variation o /m. As S < m the Gini
coefficient is lower than one

0 < Gini < 1. (31.13)

In geostatistics the Gini coefficient is usually called the selectivity, index.
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The following inequality between the selectivity and the standard deviation can be
shown

§<—. (31.14)

Sl

Equality is obtained for the uniform distribution. This provides us with a unifor-
mity coefficient

U= @, (31.15)
o
where 0 < U < 1.
For a Gaussian distribution with a standard deviation o the selectivity is
o
SGauss = ﬁ, (3116)

which yields a value near to the limit case of the uniform distribution.
For a lognormally distributed variable Y = m exp(c Z — 0?/2) we have the se-
lectivity

Stognorm = M (2G (a/\/i) - 1), (1.17)

where G(z) is the standardized Gaussian distribution function.

Recovered quantity as a function of tonnage

The function Q(z) of metal with respect to cut-off can be written

Q(z) = 2T(2)+ +/00T(u) du = /ZT(z) du + 700T(u) du. (31.18)

As Q(2) is decreasing, it can be expressed as the integral of the minimum of the
two values T'(z) and T'(u) evaluated over all grades u

Qz) = /min(T(z),T(u)) du. (31.19)

The function Q(T") of metal depending on the tonnage 7 is defined as

+00

Q(T)¢ = / min(T, T(u)) du, (31.20)

0

for0<T<1.
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m

S/2
Q)

0 T 1

Figure 31.3: The function Q(T) of the quantity of metal with respect to tonnage. The
shaded surface between Q(T") and the diagonal line corresponds to half the value of
the selectivity .S.

The Q(T') curve is equivalent to the Lorenz diagram, which is used in economics
to represent the concentration of incomes (see e.g. [4]). In the economical context
the proportion 7" of income receivers with an income greater than z would be plotted
against the proportion () of total income held by these income receivers. In economics,
however, @ is not plotted against 7" but against the distribution function F', so that the
Lorenz diagram is convex, while the Q(T") curve is concave.

A typical Q(T) curve is shown on Figure 31.3. The area between the curve Q(T')
and the diagonal m T (between the origin and the point Q(1) = m) is worth half of
the selectivity S.

It can indeed be shown that

/(Q(T)-mT) dr = %/T(z) (1-7()) dz
_ %703@) dF (z). (31.21)

0

It can be seen that the selectivity is zero when the distribution F' is concentrated at
one point (a Dirac measure). Finally we have

1

/(Q(T) ~mT)dl =

0

+

00 +00

(u— 2)dF(u) dF(2) (31.22)

NN
o\

z
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-
T(@)

Figure 31.4: Environmental time series Z(t) with a cut-off value z: the shaded part
corresponds to the quantity of nuisance Q(z) = B(z) + C(z) during the time T'(z)
when the tolerance level is trespassed.

+00 +00

1 1
- - lu—z|dF(u)dF(z) = =S (31.23)

by definition (31.10).

Time series in environmental monitoring

When studying time series in environmental monitoring, interest is generally focused
on the trespassing periods of a threshold above which a chemical, a dust concentra-
tion or a noise level is thought to be dangerous to health. Such thresholds fixed by
environmental regulations are the analog of cut-off grades in mining.

In mining economics the level of profitability is subject to permanent change and
it is appropriate to generate graphs with the values of the economic parameters for a
whole range of values. Similarly in the environmental sciences the tolerance levels
also evolve as the consciousness of dangers to health rises and it is suitable not to
generate computations only for a particular set of thresholds.

When time series are evaluated we are interested in knowing during how long in
total a tolerance level has been trespassed as shown on Figure 31.4. The tonnage
T(z) of mining becomes the fraction of time during which the level was trespassed.
On a corresponding T'(z) curve like on Figure 31.1 the fraction of the total time can
be read during which Z(t) is above the cut-off for any tolerance level z of interest.

A curve of Q(z) (not shown) represents the total quantity of nuisance for the frac-
tion of time when Z(t) is above the tolerance level 2. The curve Q(T') as on Fig-
ure 31.3 represents the quantity of nuisance as a function of the fraction of time T,
which itself depends on the tolerance level.
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The selectivity S is an important measure of dispersion to compare distributions
with a same mean

— either as an indicator of change in the distribution of a variable for different
supports on the same spatial or temporal domain (the mean does not change
when changing support);

— or as a coefficient to rank the distributions of different sets of measurements
with a similar mean.

It is not clear what meaning the curve B(z) can have in environmental problems,
except for the fact that its graph contains a geometric representation of (half of) the
variance 02 when plotted together with the line joining the value of the mean m on
both the abscissa and the ordinate, as suggested on Figure 31.2.



32 Lognormal Estimation

“Considérons la variable lognormale,

qui est tout simplement 1’exponentielle d’une variable gaussienne.

Dans le long terme, ses propriétés sont dominées par le fait que ses moments
(moyenne, dispersion, etc.)

sont tous finis et s’obtiennent par des formules faciles;

donc la variable lognormale parait bénigne.

Dans le court ou le moyen terme,

tout se gite, et son comportement parait sauvage.

On en traite comme si elle ne sentait pas le soufre,

mais c’est un merveilleux (et dangereux) caméléon.”!

B MANDELBROT

To motivate the quest for non-linear estimators this chapter starts with a description
of the effect of having a limited number of samples when estimating the value of a
variable: the intensity of this (lack of) information effect will be different depend-
ing on the type of estimator used. The lognormal model is then presented and a few
non-linear estimators like lognormal simple and ordinary kriging for point or block
support are discussed. The presentation is mainly based on MATHERON [204] and
RIVOIRARD [268]. Applications to acoustic data illustrate the performance of lognor-
mal estimation without hiding its weaknesses.

Information effect and quality of estimators

When operating a selection with a threshold, e.g. a cut-off in mining or an environ-
mental regulation limit, we are faced with an information effect if this selection is
performed on estimated values. When increasing the information, i.e. the number of
samples, the dispersion of the estimated values is generally reduced and the effect of
not having exhaustive information will have a smaller impact. Another aspect of this
question is that for a fixed number of samples the strength of the information effect
will depend on the type of estimator used. Let us analyze the information effect in

1«L et us consider the lognormal variable, which is simply the exponential of a Gaussian variable.
In the long run its properties are dominated by the fact that its moments (mean, dispersion, etc.) are all
finite et can be obtained by easy formulas; thus the lognormal variable seems harmless. On the short or
the medium run however everything is spoilt and its behavior looks wild. One deals with it as if it were
not sulfurous, yet it is a marvelous (but dangerous) chameleon.”



222 Selective Geostatistics

estimated value

actual value
Figure 32.1: Information effect.

detail for the case of a Gaussian variable Z, assuming that the bivariate distribution of
Z and an estimator Z* is bi-Gaussian.

On Figure 32.1 we have drawn schematically the cloud of actual and estimated
values using a shaded ellipse. This plot is based on the idea that after estimation
and selection we have access to the actual target value and are able to check how the
estimator has performed (a situation not always given in practice).

The diagonal line Z*= Z on Figure 32.1 is the first bisector and represents the
points for which the estimated value is identical with the actual value. If the major
axis of the ellipse is superposed to the first bisector, the estimator is without bias.
Otherwise three cases can occur:

e over-estimation: the major axis of the ellipse is parallel to the first bisector and
above it. The estimator yields on average a larger value than the actual one and
thus tends to over-estimate.

e under-estimation: the major axis of the ellipse is parallel to the first bisector and
below it.The estimated values are on average lower than the actual ones and we
have systematic under-estimation.

e over- and under-estimation: if the major axis of the ellipse crosses the first bi-
sector, the estimator is either over-estimating the large actual values and under-
estimating the low ones — or the reverse is happening.

Now suppose we have an estimator without bias so that the major axis of the
ellipse coincides with the first bisector as drawn on Figure 32.1. When we classify
estimated values according to a reference value we are splitting the cloud following
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the horizontal line labeled “z.”. Let us convene that we select (keep) points that are
above the reference value and reject (discard) points that are below it. Whether the
selected points were actually worth keeping is described by the vertical line labeled

z:”.
In this manner the cloud has been divided into the following four areas:

- area 1: the points of the cloud are estimated above z. and correspond to actual val-
ues above the reference value: the points, selected on the basis of their estimated
value, are actually worth keeping.

-area 2: the points are estimated below z. and turn out to be below the reference
value: rejected points are actually worth discarding.

-areal: in this region we commit the first type of misclassification: points are se-
lected which should have been rejected as they are actually below the threshold.

- area II: in that region occurs the second type of error which consists in rejecting
points which should have been kept.

The shape and the dispersion of the cloud around the first bisector will depend
on the type of estimator used. The information effect can be reduced when using
an estimator that is well adapted to the specificities of the regionalized variable from
which data is collected. This is a motivation for the study of non-linear estimators
in general and in this chapter we start this review by examining a few lognormal
estimators.

Logarithmic Gaussian model

The lognormal model is based on the assumption that the natural logarithm of a posi-
tive random variable Z follows a Gaussian distribution. More specifically, if L(x) is
a stationary Gaussian random function,

Z(x) = exp(L(x)) (32.1)

is said to be lognormal — a contraction of logarithmic and normal.

The lognormal model has been fashionable in the early times of geostatistics
[162, 79, 301, 195]. At that time, in the fifties of the twentieth century, computers
were not available and data sets were rather small in size. So, for example in the case
of mining samples, the distribution generally appeared left-skew and the logarithmic
transformation seemed an adequate way of bringing the data back to a form that could
be assumed a realization of a Gaussian random function. MATHERON [195] lists sev-
eral other examples of data taking positive values and with an asymmetric distribution
having a tail stretched towards the high values, like the distribution of incomes in a
country, the surface of emerged land as a function of altitude, the granulometry of
materials (sand, gravels), to name but a few.
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Let L(x) be of mean v, variance o2 and covariance function o'(h). The standard-
ized version of L(x) is Y (x) with autocorrelation function p(h), so that

L(x) = v+oY(x) (32.2)
ao(h) = o?p(h). (323)

The random function Y (x) is related to the lognormal Z(x) by

Z(x) = exp(v+oY(x)=e"e V™, (32.4)

Moments of the lognormal variable

For the computation of the moments the following formula is useful:

E[exp(aY)] = exp (%2) for Y ~N(0,1), (32.5)

where a is a constant and N'(0, 1) is the Gaussian distribution of mean zero and unit
variance.

Applying this formula we can express the mean m of Z(x) in terms of the moments
of L(x),

m = E[Z(x)] =E[exp(v+0Y(x))] (32.6)
= e"E[exp(cY(x))]=¢€" exp (%) (32.7)
_ vt (32.8)

We can rewrite Z (x) as
Z(x) = e’e Y =gt /2erY=o/2 (32.9)

obtaining the new relation

Z(x) = mexp (a Y(x) — ”;) , (32.10)

where, interestingly, the transformation includes a corrective term 02/2 depending on
the variance of L(x). The lognormal model can now be expressed in a way showing
nicely the multiplicative structure with respect to the mean,

Z(x) = mexp(R(x)) (32.11)

with the logarithmic residual R(x) = log(Z(x)) — log(m).
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With the relation (32.10) we compute the second moment of Z(x),

E[(Z(x))?] = mZE[exp (2 (ay(x) - f))] (32.12)

2
= m’E[exp(20Y (x))] exp(—0?) (32.13)
40?
= m? exp (—2—) exp(—o?) (32.14)
= m? exp(0?). (32.15)

The variance of Z(x) is thus
var(Z(x)) = m? (e o 1) : (32.16)
In analogous way the covariance function of Z(x) comes as
C(h) = m? (e’™ —1). (32.17)

EXERCISE 32.1 [Distribution of iron grade] A mining company is operating on sev-
eral iron ore deposits in which the grade is modeled as a stationary random function
Z(x). The model for the grade is expressed in terms of a standard normal variable Y
with an anamorphosis Z (x) = ¢(Y (x)) where ¢ is termed the anamorphosis function.
The following analytic model is used to describe the anamorphosis:

Z(x) = a—-be Y™  with Y(x)~ N(0,1). (32.18)

The constant a is known to be 70% Fe because the iron ore cannot be above this
grade for geochemical reasons. The two constants b and c are positive (b,c > 0) and
their value is adjusted to each deposit.

All questions in this exercise refer to one specific deposit of the mining company
which has been explored using several drill holes. The histogram obtained from the
samples taken in the drill hole cores has permitted to fit the parameters specifically for
that deposit, i.e. b= 7.8 and ¢ = 0.5 (while a = 70).

1. Show that the mean of Z(x) can be written as
E[Z(x)] = a—be®/? (32.19)
and that the variance of Z(x) is:
var(Z(x)) = b*(e% —e®). (32.20)

Hint: use formula (32.5).

2. Compute the value of the mean and the variance of the iron ore grade in this
deposit.

3. Plot the anamorphosis function for a point support for values of Y (x) between
-3and 3, e.g. for Y (x) = -3,-2,-1,0,1,2,3.
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4. Using a table of the standard normal distribution (or a statistical software), com-
pute and plot the cumulative histogram of the iron grades in the deposit.

EXERCISE 32.2 [Reserves: point support] For the iron ore deposit of Exercise 32.1
we calculate reserves on point support. According to the economic situation there is
interest in computing global recoverable reserves for a cut-off grade of z, = 58.0%.
Let us for now consider an estimation on point support. In that case the tonnage at
cut-off z. is defined as T'(z.) = E[1z(x)>., ] and the quantity of metal as Q(z.) =
B[ Z(x) 15003 )

1. Show that the tonnage can be computed as

T(z) = G (% log (“ o Z)) , (32.21)

where G(y) = P(Y (x) < y) is the standard normal distribution.

2. What proportion of the deposit is above the cut-off grade z, = 58.0%?

3. Show that the quantity of metal is computed as
Qz) = aT(z)-be*(1 -Gy +¢)), (32.22)

where z. = o(yc).
Hint: use the formula E[€2Y ™ 1y (45, ] = €¥/2 (1 — G(y. — \)).

4. What is the quantity of metal corresponding to the cut-off grade of z, = 58%?

5. What is the average grade m(z.) of the selected ore for z, = 58%?

Lognormal simple kriging

A set of n + 1 samples Y (x,) (@=0,...,n) of a Gaussian random function Y (x)
follows a multivariate normal distribution. The conditional expectation

E[Y(x0) | Y(xq); @=1,...,n] (32.23)

is equivalent in this context to the simple kriging,
n
> wik Y (xa), (32.24)
where the wSK are solution of

Zwﬂ p(Xa—%Xg) = p(xXa—xXo) for a=1,...,n, (32.25)
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with the kriging variance o3,=1— Y _, w3¥ p(xa—xo).

The conditional variable follows a normal distribution with parameters given by
the simple kriging,

[Yx0) | Y(xa) =yxa)s 0= 1,...n] ~ N (3*(x0),0), (3226
so that the conditional expectation can be rewritten,
E[Y(x0) | Y(X4) = y(%Xa), @=1,...,n] = E[y*(x0) +0osx U] (32.27)

with U ~ N (0,1).
The lognormal simple kriging consists in computing the conditional expectation
of Z(x),

2"(x0) = E[Z(x0) | Z(%4) = 2(X4a), @=1,...,7n] (32.28)
E[Z(XO) | Y(xa) = y(xa)a a=1,... 7"] (32.29)

because conditioning z(x, ) is the same as conditioning on y(x,) as the latter is simply
a nonlinear transform of the former.
Applying relation (32.10) and formula (32.5) we get,

2*(x0) = E[me?Y®0=7"/2 | y(x,) = y(x,), a=1,...,n] (32.30)

o?
= mE [exp (0 (y*(xo) + osk U) —7) ] (32.31)
2 2 2

= m exp (a y*(x0) — %) exp ((L;—SK—) . (32.32)

To express the simple kriging estimator in terms of L(x) we just need to rescale,

L*(x¢) —v of

Y* = S Ik = 5K 32.33

(o) pu ) OsK o2 ( )

where ofgy is the simple kriging variance associated to L*(xg).
Finally the lognormal simple kriging estimator is written in a more compact form,

2
Z*(x9) = exp (L*(xo) + UL%) (32.34)
or, in terms of the logarithmic residual,
* " U?{SK
Z*(x9) = mexp| R*(xo) + 5 (32.35)

with o%¢x = 02 03¢ as can be seen from Eq. (32.32).

We take note that the lognormal estimate Z*(x,) is not simply an exponential
transform of the simple kriging estimate L*(x,), but that it also includes a corrective
term based on the kriging variance. This makes the lognormal kriging very sensitive
to a parameter which depends on the choice of the type of variogram model and on its
fit to the experimental variogram.
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Proportional effect

In their classical book about the lognormal distribution AITCHISON & BROWN [4]
define the law of proportional effect as characteristic for a variable subject to a process
of change in which the change at each step is proportional to the value of the process.
In other words the variation of a positive quantity z obeying the law of proportional
effect is more adequately described by dz/z than by the only differential element dz.
The addition of a large number of roughly independent effects dz/z will generate a
variable y with a normal distribution:

y = dz =logz (32.36)
z

and thus z is lognormal.

By analogy the term “proportional effect” is used when the variance or the vari-
ogram of z are proportional to the square of its mean. This phenomenon is often an
argument to postulate the lognormality of z.

The dispersion of grades of small volumes making up a large volume were de-
scribed in two apparently contradictory ways in the early fifties of the twentieth cen-
tury in the mining literature. On one hand DE WIS [79] proposed a model in which
the dispersion variance a random function defined on a support v within a larger vol-
ume V is proportional to a function f of the ratio of the two volumes,

a2 | V) = « f(%) (32.37)

On the other hand KRIGE [162] demonstrated in a general manner that a dispersion
variance can be expressed as the difference of the values of a function F' applied to
two supports,

o*(v | V) = F(V)-F(@). (32.38)

MATHERON [195] showed that the de Wijsian model implies a similarity principle
which is independent of the form of the statistical distribution. He argued that solely
a logarithmic function could satisfy both the equations (32.37) and (32.38), such that
F = o f, yielding

A |V) = a log%. (32.39)

Permanence of lognormality

Coming back to the question of lognormality, a permanence of lognormality has
been reported in various applications over a limited range of spatial or time supports:
e.g. KRIGE [162] for gold samples, LARSEN [179] for air pollution concentrations,
MALCHAIRE & PIETTE [186] for noise exposure measurements, WILD et al. [357]
for airborne concentrations in exposure data from industrial hygiene, to mention but
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a few [345]. A self-similarity principle has been set up on the basis of this empirical
evidence that led various authors to propose formulas of the type of (32.39). It should
be noted that the de Wijsian formula (32.39) does not imply a lognormal distribution,
but only a de Wijsian variogram,

v(h) = aloglh| with 0<a<1,|h|>0. (32.40)

MATHERON [195, 196] stated that the permanence of lognormality observed in
applications is explained by the lack of independence of the data. Ironically he termed
the recurrent rediscovery of this phenomenon in different scientific and technical dis-
ciplines as a “serpent de mer” (sort of Loch Ness monster). In [204] (p38) an example
is given that shows that for small integration times (with respect to the scaling coeffi-
cient of the autocorrelation model) the permanence is verified, while this deteriorates
for larger supports.

The model of permanence of the lognormal distribution assumes that the random
function on bloc support has the same form as the point variable in Eq. (32.4), that is

Zy(x) = exp(Ly(x)) = exp(vy + 0y Y (x)). (32.41)
It is based on an affine change of support model for L(x),

Lix)=w LX) =V rro1) (32.42)

Oy o

in which v and v, take different values.

The block lognormal model is viewed as a transform of the standard normal distri-
bution which differs from the point distribution by the coefficients v, and o,,. Actually
there is merely one new coefficient to be inferred because in the relation,

0.2

Zy = m exp (av Y(x) — ?") , (32.43)
the mean m is the same as in relation (32.10) due to (10.17).

In analogy with the affine change of support model (presented in Chapter 10 on
p71) we may view the standard deviation of the block variable as the product of the
point variance with a change of support coefficient r, with the notable difference how-
ever that the two Gaussian variables L and L,, do not have the same mean. In this way
the relation (32.43) can be rewritten

0.2 T‘2

2

Z, = m exp (a rY(x) — ) with 7 =0,/0. (32.44)

In practice the change of support coefficient r can be computed as

_ log(1 + var(Z,(x))/m?)
"= log(1 + var(Z(x))/m?) (32.45)

with var(Z(x)) computed from formula (32.16) while var(Z,(x)) is the average value

C(v, v) of the covariance function (32.17) over the support v.
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In the permanence of lognormality model the expectation of the block lognormal
variable conditional upon the data is equivalent to lognormal block simple kriging,

Zy(x0) = E[Z,(x0) | Z(%xa) = 2(Xq),@=1,...,n] (32.46)

2
exp (L;(xo) + UL%) (32.47)

Il

EXERCISE 32.3 [Reserves: block support] The calculations in Exercise 32.2 have
neglected the fact that the deposit is going to be mined using units v of size 10 x 20
m?. It is thus necessary to take into account this change of support. For constructing
the change of support model we assume that the grades of the blocks v follow the same
type of distribution as the samples, i.e. we assume a permanence of the distribution
and have thus, like in relation (32.18),

Zy, = ay—b,e =Y, (32.48)

where Y is a standard normal random variable. The value of the constant a,, is known
to be a, = a = 70% because the grade of a block cannot be larger than 70% like for
point support.

To define the distribution of the block grades is is still necessary to compute the
value of the two unknowns b, and c,. For this we use the fact that E[ Z, |= E[ Z(x) ]

and compute the block variance as var(Z,) = var(Z(x)) — I'(v,v) where ['(v,v) is
the average over v of the variogram I'(h) of Z(x).

1. The average variogram over v has been computed as I'(v,v) = 8.8. Use the
results obtained in Exercise 32.1 to show that b, = 8.1 and ¢, = 0.4.

2. What value y,. of the standard normal variate Y corresponds to the cut-off z,
when the latter is applied to the block grades Z,? Compute the values of the
recovered ore T, (2.), the metal quantity (Q,(z.) and the average grade m,,(z,) =
Qu(2.)/T,(z.) for the deposit?

3. Compare and comment the results obtained for block and point support.

EXERCISE 32.4 [Conditional expectation] There is an area of the iron deposit of Ex-
ercise 32.1 (see Figure 32.2) where the exploration drill holes are sufficiently numer-
ous to allow for an individual estimation of small blocs. We wish to estimate the
probability that the grade of a small bloc vs is above the cut-off z, = 58% using the
conditional expectation. The change-of-support is taken into account assuming the
position of each sample is random inside the block that contains it (this is actually the
discrete Gaussian model that will be presented in Chapter 36). The estimation of the
bloc v3 is performed with three data values z; = 49.2, z; = 65.1 and z3 = 56.8.

The conditional expectation is built on the multi-Gaussian hypothesis of the vector

(Y(vl), Y(v2), Y (v3), Y1, Y2, Ys)T (32.49)
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Figure 32.2: Three blocks with three sample values..

where each data value y, is inside a corresponding bloc v,. The coefficient of
change-of-support is r = corr(Y,, Y (v,)) independently of the position of the sam-
ple in its block. The covariance function between blocs is p,(h) = p(vx, Vxn) =
cov (Y (vx), Y (vxtn)), where h is the distance between the centers of disjoint blocks.
The covariance function between points and blocks is cov (Y (x), Y (vx+n)) = 7 py(h)
denoting by x the random position of the point. The covariance between two distinct
points is cov (Y (x), Y (x + h))) = r2 p,(h) while the covariance of a point with itself
is one.

1. What are the Gaussian values Y1, Y, Y3 that correspond to the three data values
Z 1, Z 2 V4 3 ?

2. Express the estimator Y¥s(vs) as a function of the three data values Y,, and of
the mean E[Y (v,) |. Show that the kriging system can be written:

1+712p,(20) 72 p,(10) A T py(10)

( 272 p,(10) 1 A3 r : (32.50)

3. The structural analysis has shown that the correlation function is composed of a
nugget effect and an exponential model,

py(h) = .3nug(h) + .7 exp(—|h|/8), (32.51)

that it is isotropic, and that the change-of-support coefficient is v = 0.8. Solve

the kriging system. What are the values obtained for Yis(vs) and the corre-

sponding simple kriging variance o3y ?

4. What is the distribution of the conditional variable (Y(vg) | Vi, Y, Yg,) ?

5. Compute the value of the conditional expectation (1 z(yy)> .| cp-
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Figure 32.3: Stable model fitting of the variogram of a noise exposure time series (lower
graph) and corresponding power variogram model for the logarithm of the series (upper

graph).
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Stable variogram model

A convenient lognormal framework to study regionalized variables are the locally
stationary lognormal random functions [204]. We are not going to develop this topic
here, but simply mention the variogram model that naturally arises in this context,

I'(h) = b(1 —exp(—y(h))) with b >0, (32.52)

where I'(h) is the variogram of the lognormal random function Z(x) (which has a
sill b) and y(h) is the variogram of L(x) (which may be unbounded). This is an
application of Schoenberg’s theorem given on p55.

A particular model of this kind is the stable variogram,

I'h) = b (l—exp (_112&)) (32.53)

witha > 0,0 >0and 0 < o < 2.

EXAMPLE 32.5 (NOISE EXPOSURE SERIES [341]) The Figure 32.3 shows the joint
modeling of the variograms of a noise exposure time series and of its logarithm by a
stable theoretical variogram as defined in Eq. (32.53).

Lognormal point and block ordinary kriging

We only give the simplest form of ordinary point kriging in the context of a lognormal
model and present a corresponding block ordinary kriging.

A lognormal point estimator can be obtained by an ordinary kriging of L(x) and
it results in the estimator

02
Z*(x9) = exp (L;OK(x0)+ L;K —uox) (32.54)

where L% o (xo) is the ordinary kriging of L(x) and o7 is the corresponding kriging
variance, as defined in Egs. (11.1), (11.7) and (11.8) in Chapter 11.

A trivial lognormal block ordinary kriging estimator is obtained by discretizing
each block into a substantial number of grid points, performing a lognormal point
ordinary kriging at each of the grid points and averaging the result.

EXAMPLE 32.6 (NOISE EXPOSURE [342]) Industrial noise data have been collected
using personal sound exposure meters carried by two operators in different factories.
The noise exposure series are shown on Figure 32.4. The upper series, regleur2, is
from a worker taking care of different machines and walking in the workshop to check
the tuning of the machines. The other series, cyclo41, is from an operator of several
machines in the same room; breaks took place from 9h10 to 9h30 and from 11h40
to 11h50. Whereas both variograms (not shown, see [341]) suggest ranges extending
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Figure 32.4: Two times series, regleur2 and cyclo41l of 1mn noise level measurements
(expressed in decibel).

over several hours, it has to be mentioned that the regleur2 variogram exhibits also a
marked structure at the 10mn-scale.

The histograms of the two series are represented on Figures 32.5 and 32.6. For
regleur2 the assumption of lognormality seems satisfactory with a fairly symmetric
histogram in the decibel scale. The same cannot be said about the histograms of the
cyclo41 series.

The classical estimator of the average noise level, termed L., consists in comput-
ing the arithmetic mean of the sound exposure (which is the additive quantity) and
converting the result into the decibel? scale [149]. The lognormal kriging is applied
in the same way: the 8h-shift mean of sound exposure is computed by lognormal
block ordinary kriging as described in this section and the result is then converted into
decibels.

For each of the two series, 1000 sets of 36 samples were taken at random. Both
estimators were applied to each set of samples and the histograms of the estimated
values converted into dB are shown on Figure 32.7.

For regleur2 (upper graphics on Figure 32.7) the standard error of lognormal krig-
ing is downsized almost by half in comparison with the classical L.q. The second
mode at 90 dB on the classical L., histogram, due to an extreme value (in terms of

2«In sound we use a logarithmic scale of intensities since the sensitivity of the ear is roughly loga-
rithmic.” FEYNMAN et al. [100], p47-4.
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regleur2, mean: 84.3 dB, std-dev.: 4.3 dB
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Figure 32.5: Histogram of regleur2 noise time series expressed in terms of both a
variable directly proportional to the sound exposure and the logarithm of that variable
in decibel scale. The Leq is 86.9 dB.

sound exposure), is not present on the histogram of the lognormal L.y, because the
latter estimator is robust to extreme values in the right tail.

For cyclo41 (lower graphics on Figure 32.7) we see that both histograms are fairly
symmetrical (with a stronger standard error for the lognormal estimator). The striking
feature is the bias for the lognormal estimator. The mean of the classical L., estimates
using 36 samples is equal to the L., of the 348 values of the series. In comparison, the
histogram of the lognormal L., estimates is shifted to the right by one dB (the mean
by .7 dB, the minimum by 1 dB and the maximum by 1.3 dB).

Lognormal estimators are thus only superior in certain situations and cannot be
recommended for general use in the statistical treatment of industrial noise data. Geo-
statistics provides other non-linear estimators which adapt better to an arbitrary distri-
bution of values as we will see in subsequent chapters. However, in present day hear-
ing conservation programs, often less than 30 samples are used in industry to compute
8h-shift Leqvalues, so that it is difficult to try assessing the shape of an underlying
distribution. This situation is likely to change in a near future with the availability of
cheap and light personal sound exposure meters, like the one used for measuring the
regleur2 and cyclo41 series.

The conclusion is that the lognormal kriging can easily give poor results soon as
the lognormal assumption is inadequate.
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cyclo41, mean: 88.4 dB, std-dev.: 6.1 dB
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Figure 32.6: Histogram of cyclo41 expressed in terms of both a variable directly pro-
portional to the sound exposure and the logarithm of that variable in decibel scale.
The Leq is 90.9 dB.
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regleur2, mean Leq: 86.7 dB, std-error: 1.47 dB
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Figure 32.7: Comparison for regleur2 and cyclo4l 1mn data of the classical and the
lognormally kriged Leq estimator for 1000 sets of 36 randomly selected samples.



33 Gaussian Anamorphosis

with Hermite Polynomials

The lognormal model proposes a rather narrow framework for non-linear geostatistical
estimation. We examine a more flexible approach which uses Hermite polynomials for
transforming a variable with a skewed distribution into a Gaussian variable.

In the presentation of Hermite polynomials we follow closely LANTUEJOUL [176]
where more mathematical detail can be found. We introduce the fitting of the Gaussian
anamorphosis in the way of LAJAUNIE [168].

Gaussian anamorphosis

Attempting to generalize the approach of the lognoﬁnal model Z = mexp(cY —
a2 /2) we look for a more flexible model,

Z = ¢(Y) (33.1)

in which ¢ is a class of non-linear functions that establishes a bijective correspon-
dence between a random variable Z and a Gaussian random variable Y. The class of
functions for which the problem will be solved is the square-integrable functions.

When applied to a stationary random function, the transformation ¢ will produce a
random function with a Gaussian marginal. However higher-dimensional distributions
will not necessarily be multi-Gaussian. In practice an anamorphosis ¢ will be fitted to
the data and a check will have to be made whether at least the bivariate distribution of
the Gaussian transform is bi-Gaussian for all spatial distance classes.

Let F(z) = P(Z > z) be a probability distribution function and G(y) = P(Y <
y) be the standard normal distribution. If the inverse of F' exists, a bijective transfor-
mation function ¢ can be constructed:

oY) = FloG(Y) (33.2)
Conversely the function ¢! transforms into a normal variable,

Y = Glo F(2) (33.3)
so that we have a correspondence between the Gaussian variable and the variable of
interest Z as long as F' is invertible,

Gly) = PY <y)=Pp'(2)<y) (33.4)
P(G'o F(Z2)<y)=P(Z< F'oG(y)). (33.5)
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A flexible way of setting up a Gaussian anamorphosis function is by using a de-

velopment into Hermite polynomials which are now studied in detail.

Hermite polynomials

The basic building block for the Hermite polynomials is the Gaussian density function:

$2

1
9(y) = EGXP(—T)

(33.6)

The Hermite polynomials are defined as derivatives of the density function,

k' derivative of Gaussian density

Gaussian density
(k)
=W i k=01,
9(y)

Hy(y) =

(33.7)

(33.8)

Setting a = 1/+/2m, b = 1/2 and g(y) = a exp(by), we compute for example

Hy) = Wy,

g’( gj )) (y) - (2by)
9(y) _ 9ly) - (=2by
i) = 9(v) ) ' -
i = £ O
There is a recurrence formula:
Hin(y) = —yHily)—kHea(y) for k> 0.
We calculate for example
Hy(y) = —yHi(y) - Holy) = v* ~ 1,
Hy(y) = —yH(y)— Hi(y) ="+ 3y.
As Hy(y) = —k Hy_1(y) the recurrence formula can be written
He(y) = —yHe(y)+ Hy(y)  for k>0.

(33.9)
(33.10)

(33.11)

(33.12)

(33.13)
(33.14)

(33.15)

The key property of Hermite polynomials is their orthogonality with respect to the

Gaussian density:

[ awswar = {515

(33.16)
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On some occasions normalized Hermite polynomials are used,

1

= —=H(y), 33.17
so that the orthogonality is written
/ () m(y) 9(y) dy = O (33.18)

but not all expressions are more compact, so that for now we shall stick with non-
normalized polynomials.
Expanding a function into Hermite polynomials

Any function ¢ that is square integrable with respect to the Gaussian density, i.e.

/ N ¢*(y) g9(y)dy < oo, (33.19)

—00

can be expanded into Hermite polynomials:

oo
= Y %n (33.20)
k!
k=0
where the coefficients ¢y are given by,
or = / o(y) Hi(y) 9(y) dy. (33.21)
—00
The integral (33.19) has the value:
00 o (P2
/ FCwel) = Y % (33.22)
—o0 pard

and the integral of the cross-product of two functions ¢(y) and 4(y) developed into
Hermite polynomials is equal to:

/_ N o(y) i

oo k=0

(33.23)

Probabilistic interpretation

We turn to probabilistic questions and examine the mathematical expectation of a
Gaussian random variable Y,

E[Y] = /_ myg(y)dy (33.24)

o]
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The orthogonality of the Hermite polynomials in relation (33.16) now comes as,

s ) = {5 EE2T (3329)

Setting [ = 0 we can readily compute the first moment of Hermite polynomials of
a Gaussian variable,

1 ifk=0,
E[H(Y)] = E[H(Y)H(W)]={ ;2 (33.26)
The variance is
_ Jo ifk=0,
var(Hy(Y)) = {k! itk >0 (33.27)
because for k > 0, using relation (33.25), we have
var(Hi(Y)) = E[Hg(Y)Hi(Y)]—0=Ekl, (33.28)

while var(Hy(Y)) = E[Ho(Y) Ho(Y)] — 1 = 0. The fact that the variance of the
zero-order polynomial is nil is consistent with the fact that it is deterministic.
The covariance between two Hermite polynomials is therefore

{k! ifk=1>0,

cov(Hg(Y), Hi(Y)) 0 otherwise

(33.29)

COMMENT 33.1 Hermite polynomials exploit an important fact to be aware of: that
different powers of a random variable are linearly uncorrelated. For example, a Gaus-
sian random variable Y and its square Y? are uncorrelated as illustrated with 100
samples on Figure 33.1. Even though the shape of the scatter plot clearly reveals the
non-linear deterministic dependence, the correlation coefficient, as a measure of linear
dependence, indicates a value of only 2%.

Moments of a function of a Gaussian variable

A function ¢ of a Gaussian random variable can be expanded into Hermite polynomi-
als, provided its second moment is finite:

E[¢*(Y)] < oo, (33.30)

which is the same as relation (33.19).
The expansion of ¢ is, like in (33.20),

oY) = >
k=0

with coefficients o = E[o(Y) Hi(Y) ].

I'G

’!‘ Hi(Y), (33.31)

o
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Hy(Y) versus H;(Y)

(o]
v 4 O
- -
o]
2 o
s @
R &
(o]
QOQ:
=l % &
\ &
T - le/
I T T I ~T
-2 -1 0 1 2

Figure 33.1: Scatter plot between 100 independent samples of a standard normal
variable and their squares. The correlation coefficient between H;(Y) and H,(Y) is
almost zero (value: 0.02).

The first moment of ¢ is equal to the constant ¢y,

oo

Efo(Y)] = k' "TE[Hi(Y)] = o, (33.32)

as E[ H,(Y) ] is only non-zero for k = 0.
The variance is

var(p(Y)) = g;%%cov(Hk(Y),H,(Y)) (33.33)
o 2
= ;% (33.34)

where the term for k£ = 0 is zero due to Eq. (33.29).
The covariance between two different square integrable functions ¢ and ¢ of a
Gaussian variable is,

cov((¥),»(Y)) = Y ¥ =

k=0 1=0

?v|€

OV Hk ), HI(Y)) (3335)
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_ iwkwk

k=1

(33.36)

Conditional expectation of a function of a Gaussian variable

The bi-Gaussian density with correlation coefficient p between two random variables
U and Y can be expanded using Hermite polynomials:

Z 2— k() 9(u) 9(y). (33.37)

In the same way the conditional density is written:
— o
g(u | 9) = D 7 He(w), Hi(y) 9(u). (33.38)
k=0

Accepting these results the conditional expectation of a Hermite polynomial of U
knowing Y is

E[H(U) | Y] = ¢ H(Y) (33.39)
because

B{H(U) | Y =y] = /°° Hi(u) gp(u | ) du (33.40)

= %Hz / Hy(u) Hy(u) g(u) du  (33.41)
=0

= %Hk E[ H(U) Hi(U) ] (33.42)
=0
= Hk( ). (33.43)

The conditional expectation of a square-integrable function ¢ of U knowing Y is
finally

Y
Ele) | Y] = ) (33.44)
k=0
EXERCISE 33.2 Show that
cov(p(U),p(¥)) = 3 LYk (33.45)

using Eq. (33.44).
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Figure 33.2: Schematic representation of an empirical distribution function.

Empirical Gaussian anamorphosis

In practice we construct from n samples the cumulative histogram, which is an empir-
ical distribution function

1 n
Fa(e) = — 3 1z, (33.46)
a=1

that provides a discrete representation of the distribution F'(2)= P(z < Z) of the vari-
able under study.
Denoting by Z(,) the samples renumbered by increasing value,

Ziy <o S Zy <o £ Zny (33.47)

we can analyze the behavior of the empirical distribution function. In the case all
values Z(q) are different, the value of F7,(2) is zero for z in the interval | — oo, Z(1)],
the value is (o — 1)/n in the intervals |Z(« — 1), Z(«)] and it is one in the interval
1Z (), 0o[. The empirical distribution function is a step-function, as plotted on Fig-
ure 33.2. In case that several values, say k, are equal, the step at that level will not be
1/n (as for distinct values) but & /n.

In the analogous way we construct an empirical Gaussian anamorphosis,

1 n
on() = D Zw lyer, (33.48)
a=1
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Figure 33.3: Schematic representation of an empirical Gaussian anamorphosis.

where I, are half-open intervals of the abscissa y defined in terms of the inverse of the
Gaussian distribution,

I, = ]G‘1<a;1),G'1 (f‘f)} for a=1,...,n. (33.49)

n

In the case of distinct sample values Z,) the function ¢, (y) has the value Z(;) in
the interval I; =] — 0o, G~'(1/n)], the value Z, in the interval |G~!((n — 1)/n), oo|
and the value Z,) for the intervals |G~'((a — 1)/n), G~'(a/n)]. The corresponding
step-function is drawn on Figure 33.3. In the case k subsequent samples have the same
value, the step at that level will go to the highest of the &k values.

The empirical anamorphosis is not invertible. This can be seen by flipping the axes
on Figure 33.3: to each value Z(,, corresponds an interval I, of y-values whereas the
Z-values between sample values have no image.

Smoothing the empirical anamorphosis

The empirical anamorphosis is inadequate for further use and we need to look for
a function with better properties. An interesting option for the Gaussian empirical
anamorphosis function is to replace it by its development into Hermite polynomials
and to truncate the development at an appropriate order. This amounts to smoothen
the step function.

The empirical Gaussian anamorphosis is represented with an infinite series of Her-
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Figure 33.4: Development using 30 Hermite polynomials fitted to the empirical Gaus-
sian anamorphosis of laser measurements.

mite polynomials

i) ki% (33.50)

with coefficients
ok = /_ :spn(y)Hk(y)g(y)dy (33.51)
= XR:Z@ / Hi(y) 9(y) dy (33.52)

o) (Hk-1(Ya) 9(Ya) = Hi-1(Ya-1) 9(¥a-1)) ~ (33.53)

-1
N

A smooth approximation of the empirical Gaussian anamorphosis is obtained by
truncating the development at a fixed value K. This truncated development is what
we shall call the Gaussian anamorphosis:

K
o) =Y i— (33.54)
k=0
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Figure 33.5: Histograms of laser measurements (left) and their Gaussian transformed
values (right).

This is actually the best K*"-order approximation in the least squares sense and it can
be viewed as an eigenvalue problem where the Hermite polynomials are the eigen-
functions (as explained in Chapter 19 when dealing with continuous correspondence
analysis).

In practice the development may be truncated somewhere between the 15" and the
50t order. A criterion is to compute the ratio between the variance (33.34) of ¢*(y)
and the variance s computed from the data. The development is stopped at an order
for which this ratio is almost equal to one.

Bijectivity of Gaussian anamorphosis

The limited development tends to be bijective within the interval defined by the mini-
mum and the maximum of the sample values.

Yet the Gaussian anamorphosis function with Hermite polynomials is gener-
ally not bijective below the minimum Y= ¢*~'(Z)) or above the maximum
Ymax= ©*'(Z(n)): the development ©*(y) into polynomials oscillates wildly outside
the the interval [Yipin, Yimax]. This may be of little importance for non-linear estimation
as the results tend to be within the range of the data. However when simulating a Gaus-
sian random function there are a couple of values well outside the interval [Yinin, Ymax]
which at some stage need to be converted into the original Z-scale by anamorphosis.
A simple practical solution is to define two new points Y,,; = —10 and Y, = 10 for
which the Gaussian probabilities can be considered as respectively zero and one (at
least numerically, on a computer) and to define two increasing straight line segments
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Figure 33.6: Scatter plot between Gaussian anamorphosis values separated by lags of
100 seconds.

as a replacement for the limited development outside the interval [V, Yinax]-

LANTUEJOUL (quoted in [265], p137) proposes to compute a measure of total vari-
ation to check whether the anamorphosis is slightly decreasing at some points within
the interval [Yiyin, Ymax] for a given order K. This provides an additional constraint
when selecting the order of the Hermite polynomial: orders K for which this happens
should be rejected.

EXAMPLE 33.3 (LASER DATA) In an oceanographic study [98] a set of laser data of
sea level heights (in decimeter) measured during 20 minutes at the Ekofisk oil platform
on 1st January 2002 at midnight presented a distribution that was left-skew.

We perform a Gaussian anamorphosis of this data which is displayed on Fig-
ure 33.4. The fit of the empirical anamorphosis with a development into K= 30
Hermite polynomials provides an increasing function within the interval [—3.6, 3.6]
given by the Gaussian transforms of the minimum Z;y and the maximum Z ) of the
laser data, which are shown as two dashed lines parallel to the abscissa. Outside the
interval [—3.6, 3.6) the anamorphosis function ¢*(y) wildly oscillates and is no more
increasing, so it cannot be used in this form outside that interval as discussed above.

The histograms of the data before and after anamorphosis are displayed on Fig-
ure 33.5. The variogram in this study had shown that the data can be considered as
stationary within the 20 minute time domain. We display on Figure 33.6 and Fig-
ure 33.7 the scatter plots between values separated by lags of 100 seconds and 1 sec-
ond. These lagged scatter plots may be used to check the bivariate distributions. It
turns out that, although the diagram for a lag of 100 seconds (by the way far beyond
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Figure 33.7: Scatter plot between Gaussian values separated by lags of 1 second.

the range of the variogram, which is of only a few seconds) is a good example of a
bi-Gaussian dispersion cloud, the scatter plot for a lag of 1 second does not show at
all the ellipsoidal shape of a bi-Gaussian density.

So this is a nice example illustrating that if a random function Y (x) has a Gaussian
marginal distribution (like on the histogram of Figure 33.5) this does not necessarily
imply that the bivariate distribution for pairs Y (x), Y (x+h) is bi-Gaussian. Only the
reverse is true: bivariate Gaussian distributions imply Gaussian marginal distributions.

The consequences are twofold. On one hand we need a model to construct bi-
variate distributions that are not bi-Gaussian when the marginal is Gaussian; this will
be provided by the Hermitian isofactorial model. On the other hand we will study
models with a marginal distribution having a shape close to that of the data; this will
in particular be the case for the gamma distribution with its shape parameter \. For the
bivariate distribution of two gamma variables we will be able to specify the Laguerre
isofactorial model which covers a wide class of bivariate distributions of which the
bigamma distribution is a special case.



34 Isofactorial Models

Isofactorial models are important for modeling the bivariate distribution between a
pair of points of a stationary random function. They offer a great variety of possible
constructions for modeling random functions between the two extremes of diffusive
type and mosaic type.

According to MATHERON [216] isofactorial models stem from quantum mechan-
ics where they have been applied since the nineteen-twenties [174]. Hermite poly-
nomials for example appear as eigenfunctions of the one dimensional harmonic os-
cillator. In statistics, the Hermitian model is already mentioned by CRAMER [62]
and discrete isofactorial models have been used in connection with Markov pro-
cesses [99, 326]. In geostatistics the work on correspondence analysis by the group
around JP BENZECRI [234, 24], as described in Chapter 19, has given the impulse for
introducing isofactorial models [209].

After a general presentation of isofactorial models the particular cases of the Her-
mitian and the Laguerre isofactorial models will be examined. These models have
been implemented by HU [144, 142] and were successfully used for evaluating re-
serves of uranium and gold deposits with very skew distributions [142, 143, 182, 52].

Isofactorial bivariate distribution

Let F' be a symmetric bivariate distribution,
F(du,dv) = F(dv,du) (34.1)

with marginal distribution F'(du) = [, F(du, dv).
A symmetric bivariate distribution is isofactorial, if a countable system of or-
thonormal real functions xj exists, complete in £2(F), such that

/Xk(u) xi(u) Fdu) = 0n (34.2)
and
//Xk(u) Xl(’U) F(du, d’l}) = Jkl Tk, (343)

where the T}, are real coefficients.
The coefficients T} represent covariances between factors x,

T = [ElxxU)xe(V)]l < E[(xx(U))*] =1 (34.4)
and are thus bounded by —1 < T}, < 1.
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Isofactorial decomposition

We may decompose any function ¢ that is square integrable with respect to F'(du),

/ (p(w))? F(du) du < oo, (34.5)

into orthogonal functions x with coefficients ¢:
oo
= ) orxu(w). (34.6)
k=0

To obtain the value of a coefficient ¢; we multiply both sides of (34.6) by
Xi(u) F(du) and integrate,

/‘P(u) xi(u) Z Pk /Xk(u xi(u) F'(du) (34.7)
and taking advantage of orthogonality we get,

o = / () x4 (1) F(du). (34.8)

For a pair of random variables U and V' with an isofactorial bivariate distribution
we have

Elxe(U) | V] = Texx(V). (34.9)

EXERCISE 34.1 Demonstrate the validity of Eq.(34.9) using the fact that the condi-
tional expectation is a square integrable function.

The conditional expectation of a function ¢ of one of the variables knowing the
other is

[e.0]

ElpU) | V] = > e Texe(V). (34.10)

k=0

Replacing the ¢y by their expression (34.8),
E[pU) | V] = / ZTk xi (V) xx () F(du), (34.11)
it is obvious that the conditional distribution has the form
Fy(du) = F(du) Z Ti xx () X (v). (34.12)

By analogy the decomposition of the isofactorial bivariate distribution is obtained
as:

F(du,dv) = F(du)F(dv) Z Tk xk(u) xk(v)- (34.13)
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COMMENT 34.2 We have already seen the isofactorial decompositions of the Gaus-
sian bivariate and conditional densities in expressions (33.37) and (33.38) on p243.
The factors X in that case are normalized Hermite polynomials n= H;/\/k! and the
covariances Ty, are equal to p*.

Isofactorial models

In the geostatistical context U may be a random variable located at one point in the
domain D while V' is located at another point. We are interested in modeling the
bivariate distribution between any pair of points of the domain for a stationary random
function Y (x) and set: U= Yy, V= Y, n. The isofactorial model for the bivariate
distribution of the random function now comes as

o0

F(dyx, dyxin) = F(dyx) F(dysin) D Te(B) xe(th) Xk (¥xin) (34.14)
k=0

where T (h) is a correlation function between the pair of points.

A great variety of isofactorial models have been made available to geostatisticians
by MATHERON, who developed a passion for the subject and whose work is to a large
extent summarized and listed in [14, 15, 16]. CHILES & DELFINER [51] provide a
comprehensive overview in their chapter on nonlinear methods.

Two general patterns of random functions used in geostatistics can be distin-
guished [221],

o on one hand a diffusion type, with almost surely continuous (but not necessarily
differentiable) realizations, which describe phenomena with a diffusive behav-
ior, i.e a gradual change from one location to the other,

e on the other hand a mosaic type, with jumps located at surfaces of disconti-
nuity, which represent a geographical space divided into compartments inside
which the phenomenon stays constant while it shows sudden change between
compartments.

The first type corresponds to the idea of a smooth transition between neighboring
values while the second type conveys the image of abrupt change when stepping from
one compartment to another.

For diffusion type random functions attention has been focused principally on iso-
factorial models with polynomial factors that can be explicitly computed through re-
currence relations. They actually provide a full range of models between the extremes
of pure diffusion type and plain mosaic type random functions.

We have already reviewed to some extent the Gaussian model with its associated
Hermite polynomials in Chapter 32. There are two other models with a continuous
marginal distribution: the gamma model (with Laguerre polynomials) and the beta
model (with Jacobi polynomials).

Furthermore, for diffusion type random functions with a discrete marginal dis-
tribution, there are five classes of models with polynomial factors [217]. Two of
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them correspond to processes with an infinite number of states: the Poisson model
(with Charlier polynomials) and the negative binomial model (with Meixner polyno-
mials); the latter is a discrete version of the gamma model. Three classes are derived
from processes with a finite number of states: the binomial model (with Krawtchouk
polynomials), the Jacobi and the anti-Jacobi models (with discrete Jacobi/anti-Jacobi
polynomials).

For the specification of a diffusion type isofactorial model with known polynomi-
als two ingredients have to be determined:

e the class of marginal distribution, which will determine the system of polyno-
mial functions yy,

e the form of the isofactorial bivariate distribution, which is governed by the
Ty (h) correlation functions.

Choice of marginal and of isofactorial bivariate distribution

The choice of the marginal distribution towards which the data will be transformed
is guided by the skewness of the data histogram and the possible presence of a large
amount of equal values (e.g. a spike at the origin because of many zero values). The
data may be considered as the result of either a continuous process or of a discrete
process taking a countable finite or infinite number of states.

The choice of a bivariate distribution type constructed with an isofactorial model
should be guided by an exploratory analysis of scatter diagrams of pairs of anamor-
phosed values for different lags.

COMMENT 34.3 Hu [142] discusses the example of a bigamma isofactorial random
function (with A= .1) which is submitted to a Gaussian anamorphosis: the graph of
the bivariate density (for p(h)= .6) of the Gaussian transforms is pear-shaped instead
of ellipsoidal. This shows that if the data are transformed to have a Gaussian marginal
distribution this does not imply that the bivariate distribution becomes bi-Gaussian.
The smaller the value of the parameter A of the gamma distribution, the less the bi-
variate density can be considered as bi-Gaussian.

A different valuable instrument is the first order variogram, defined as the expec-
tation of the absolute value of increments:

yvi(h) = %E[lY(x+h)—Y(x)|] (34.15)

The ratio between the first order and the usual (second order) variograms may help
to discriminate between diffusion and mosaic type phenomena, or rather to character-
ize an intermediate situation between these two extreme types of random function
models. Ideally, for a diffusion type the following ratio will take a constant value,

mb) G (34.16)

yh) — VC’
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while for the mosaic type we have,

nb) _ G
7v(h) c’

(34.17)

where C is the sill of the first order variogram ; (h) and C is the sill of the usual
variogram -y(h). In practice a plot of the -y, (h) against v(h) model variograms will
yield a parabola for a diffusive phenomenon and a straight line for data compliant with
the mosaic model.

In a purely diffusion type isofactorial model we will choose covariance functions
of the form

Ti(h) = (p(h))", (34.18)
while they will not depend on £ in a mosaic model:
Te(h) = p(h), (34.19)

where for some models the correlation functions p(h) will only be allowed with posi-
tive values [51].

An important implication is that the two types of random functions have a differ-
ent coregionalization of indicator functions of level sets {Z(x) > z.}. In the case of
(34.18) the ranges of the indicator functions will vary with z. and in particular their
coregionalization is not compatible with a linear model of coregionalization. For ex-
ample, for a left-skew distribution, the ranges of the indicator functions will decrease
with increasing z. because there are fewer values for high cut-off: this is a frequntly
observed destructuration effect. In the case of (34.19), however, indicator functions
of different level sets all have covariance functions with the same range and follow the
intrinsic correlation model.

In practice we are likely to be faced with intermediate cases between diffusion
type and mosaic type random functions. Specific models will be discussed for the
Hermitian and Laguerre isofactorial models.

Hermitian and Laguerre isofactorial distributions

A random function with a Gaussian marginal distribution and with normalized Her-
mite polynomials 7 has a Hermitian isofactorial distribution:

[e o]

F(dys, dypern) = (1) 9(Uxsn) D Te(B) (3) M (ysm)  (34.20)
k=0

In the particular case of a purely diffusive phenomenon the covariance functions
take the form T (h)= (p(h))¥, with p(h) € [—1,1] and the bivariate distribution is
bi-Gaussian. Conversely we see that a random function with a Gaussian marginal
distribution is not necessarily Gaussian because its bivariate distributions may not be
bi-Gaussian and can have the more general form (34.20).
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Figure 34.1: Gamma density function for values of A= .1 and A= 10.

The gamma model is designed for random functions with positive values. The
density function of the gamma distribution is defined as

1 .
Hly) = o) exp(—y) y* with A >0,y >0, (34.21)

where I'()) is the classical gamma function and ) is a parameter controlling the shape
of the distribution. This is actually the standard gamma density function, obtained by
setting the second parameter of the general gamma density function to one.

COMMENT 34.4 The gamma density function is displayed on Figure 34.2 for values
of A= .1 and A= 10 (both the abscissa and the ordinate have been truncated to focus
on the shape). With A < 1 the density function is steep at the origin and decreasing,
while for A > 1 a bump appears, and it turns out that for A\ — oo the gamma density
tends to the bell shape of the Gaussian density.

The mean and the variance of a gamma distributed random variable take the same
value:

E[Y] = A  var(Y) = A\ (34.22)
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The Laguerre polynomials are defined as derivatives of the gamma density func-
tion

k' derivative of gamma density

Lk = .
2() gamma density (34.23)
(k)
L) i k=01, (34.24)
H(y)
and the first two polynomials are
r'() y
Li(y) =1 Liy) =4/ (1-2). 34.
A recurrence relation allows to compute the others:
A+k) L5 (y) = @k+a—y) Li(y) - kLY (y). (34.26)
Normalized Laguerre polynomials are obtained by the relation
FA+Ek) 4
l = ——— L5(y). .

A random function with a gamma marginal distribution has a Laguerre isofactorial
distribution:
o0

F(dy dyxin) = fa(wx) Hr(xin) D Te(h) b (yx) bue(gxin)  (34.28)
k=0

For a purely diffusive random function the covariance functions take the form
Ti.(h)= (p(h))*, with p(h) € [0, 1] and the bivariate distribution is then bigamma.
As in (33.39) and (34.9), we have

E[l,\k(Yx+h) | Yx] = Ti(h) b(Yx)- (34.29)

COMMENT 34.5 On Figure 34.2 a bigamma density function for the value \= .1 is
displayed: its swallow-tail shape is very different from the bell-shape for the case
A= 10 that is shown on Figure 34.3. In both examples a correlation of p(h)= .6 was
used.

A gamma anamorphosis @, (Y (x)) for data of a random function Z(x) can be de-
veloped along the same lines as for the Gaussian anamorphosis [144]. The parameter
A will be chosen in such a way that the anamorphosed function most closely resembles
the shape of the data cumulative histogram. As criteria for resemblance the coefficient
of variation, the selectivity, the median or a normality index may be used. An impor-
tant criterion is to check the bivariate distribution between points separated by a vector
h and to select a value )\ for the model which implies a bivariate distribution with the
same shape as that suggested by the data.
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Figure 34.2: Bivariate gamma density for A= .1 and p(h)= .6.

EXAMPLE 34.6 (LASER DATA) The Gauss transformed laser data discussed at in
Chapter 32 had an autocorrelation diagram at a lag of 1 second that was not bi-
Gaussian (see Figure 33.7 on p249). As can be seen on the 1 second-lag scatter plot
of the laser data on Figure 34.4 it seems a better idea to use a bigamma model in such
a situation rather than a bi-Gaussian.

It should be noted that the philosophy of the Gaussian and of the gamma anamor-
phosis are not the same: while in the former case an arbitrary distribution is brought
more or less brutally into a Gaussian setting, in the latter the parameter A is tuned in
such a way that we transform to a distribution that is close to some of the features of
the data.

We give the formula for reconstructing the variogram 7z (h) of Z(x), which comes
as

1z(h) = Y % (1 - Ti(h)). (34.30)
k=1

where @y, are the coefficients of the gamma anamorphosis ¢ (Y (x)). This formula
is useful for fitting the variograms of Z(x) and Y (x) in a coherent manner.
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Figure 34.3: Bivariate gamma density for A= 10 and p(h)= .6.

Intermediate types between diffusion and mosaic models

We examine only Hermitian and Laguerre isofactorial models in presenting interme-
diate types between the pure diffusion and the plain mosaic models. In both cases
bivariate distributions for intermediate types can be obtained from T} (h) functions
with the general structure [206, 209],

Ti(h) = E[r*]= / r*p(dr)  with k>0, (34.31)

rel

where I = [—1, 1] for Hermitian and I = [0, 1] for Laguerre isofactorial models.
For a pure diffusion type random function the distribution p(dr) is concentrated at
a value ro = p(h),

Ti(h) = /1 % 8, (dr) = rf = (p(h))*. (34.32)

For a plain mosaic type random function the distribution p(dr) will be concen-
trated at the two values 7= 1 and r= 0 with the probabilities,

P(r=1) = p(h) and P(r=0) = (1—p(h)) (34.33)
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Figure 34.4: Lagged correlation diagram.

so that
p(dr) = p(h)éi(dr) + (1-p(h)) do(dr) (34.34)

and

Ti(h) = p(h) /1 %8, (dr) + (1—p(h)) /1 7% 8o (dr) (34.35)
= p(h) (34.36)

Isofactorial models for intermediate types are then almost trivially obtained by
taking proportions w and 1—w of the two basic types, which is termed the barycentric
model,

Ti(h) = w(p(h)) + (1-w)p(h)  with w € [0,1]. (34.37)

COMMENT 34.7 In terms of variograms, in the barycentric model the normalized first
order variogram relates to the normalized variogram in the following way,

71(h) = w Z@ Lh)
C C c

where C| is the sill of the first order variogram +y,(h) and C is the sill of the usual
variogram ~y(h).

+ (1-w) with w € [0, 1], (34.38)
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Figure 34.5: Barycentric model.

The Figure 34.5 plots the normalized first order variogram against the normalized
second-order variogram for different different values of w. The case w= 0 generates
a straight line corresponding to a plain mosaic type random function while the case
w= 1 yields a parabola for a pure diffusion type random function. An intermediate
case (w= .5) is shown using a dashed curve.

A family of isofactorial models for intermediate random function types, particu-
larly suited for models with 7 € [0, 1] like the gamma model, can be obtained taking a
beta density function for the density p(dr) in (34.31) as suggested by Hu [142, 144],

I'(p+v)
p(dr
@) = TwTe)
By setting u= § p(h) and v= 3 (1—p(h)) with a positive parameter j3, the follow-
ing family of correlation functions is obtained

I'(8) T(Bp(h)+k)
(8+Fk) T(Bp(h)

COMMENT 34.8 In terms of variograms, in this model, the first order variogram can
be related to the variogram y(h)= C(1—p(h)) by

nt) T TEyHh)/C+1/2)
G I(B+1/2)  T(By(w)/C)

P (1—-r)*"' with u>0,0>0. (34.39)

with 8> 0. (34.40)

Ti(h) = T

with B>0, (34.41)
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where C is the sill of the first order variogram -y, (h).
An different form given by Hu [142] is,

nM) _ TB+1/2)  T(BC/v(h)
Gy L) Ir(BC/y(h) +1/2)

which provides, when plotted, a sensibly differently shaped family of intermediate
curves between the pure diffusion and the plain mosaic cases.

with 8>0, (34.42)



35 Isofactorial Change of Support

Considering the position of a sample as random within a block and making use of
Cartier’s relation, isofactorial change of support support models are gained in the form
of discrete point-block models [205, 207]. A case study on a lead-silver deposit is
provided in an exercise (with solution).

The point-block-panel problem

The point-block-panel problem arose in mining, but it may easily be encountered in
other fields. In mining exploration samples of a few cm? are taken at hectometric
spacing and analyzed. Production areas of are termed panels and are typically of hec-
tometric size (say 100x100x5m?®). The panels are subdivided into basic production
units, the blocks (say 10x10x5m?®). These blocks correspond in mining to the quan-
tity of material an engine can carry and a decision will be taken whether the engine
is directed to the plant for processing the material or else to the waste dump. During
production several samples are taken in each block and only blocks with an average
grade superior to a cut-off value z., above which they are profitable, will be kept.

The point-block-panel problem consists in anticipating before production, on the
basis of the initial exploration data, what will be the proportion of profitable blocks
within each panel, so a decision can be taken whether or not to start extraction of
a given panel. Isofactorial change-of-support models and corresponding disjunctive
kriging will make it possible to estimate different block selectivity statistics for indi-
vidual panels.

The Figure 35.1 sketches a typical point-block-panel estimation problem. The
three different supports involved are points x denoting the exploration samples, blocks
v and panels V. In the model, the sample points x will be considered as a randomly
located in the blocks.

Cartier’s relation and point-block correlation

Suppose x is a point located randomly inside a block v. Then the conditional expec-
tation of the randomly located random function value knowing the block value is the
block value,

E[Z(x) | Z(v)] = Z(v), (35.1)

which is known as Cartier’s relation.
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panel V

block v sample x

P

Figure 35.1: Panels V partitioned into blocks v with points x considered as randomly
located within the blocks that contain them.

To understand this relation we rewrite the conditional expectation making the two
sources of randomness more explicit,

E[Z(x) | Z(V)] = Ex[Ez[Z(x) | Z(v)]] (35.2)
- |11)—| / By Z(x) | Z(v)] dx (35.3)

Now the relation is easily demonstrated:

6200 | 20)) = B2 |q [ 209dx 1 2] G5
E[Z() | Z(v)] = Z(v). (35.5)

For a point Gaussian anamorphosis Z(x)= ¢(Y (z)) and a corresponding block
anamorphosis Z(v)= ¢,(Y (v)) we have by Cartier’s relation,

Elp(Y(x)) | Z(v)] = Ele(Y(x)) | ¢o(Y(v)] = @u(Y(v)). (35.6)
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Using the fact that E[ ¢(Y'(x)) | Z(v)]is equivalent to E[o(Y (x)) | Y (v)] and
using (34.9) we have for the Hermitian isofactorial model

pu(Y(v) = Y TE[H(Y(X) | Y] (35.7)
= > (v Hu(Y (v), (35.8)

>
Il

0

where p(-, v) is the correlation coefficient between Hy (Y (x)) and Hy (Y (v).
In the particular case of a pure diffusion this becomes

N Pk
k}; o (v)), (35.9)

and r is called the point-block correlation coefficient.
The mean of the block variable Z(v) is equal to the mean of the point variable,

E[Z(v)] = E[Z(z)] =0 (35.10)

The variance of Z(v) in terms of the block anamorphosis is

o0 - 9
SOk
Z = v == 35.1
var(Z(v)) var(p, (Y kg X (35.11)
where the point-block correlation coefficient r is yet to be determined.
The variance of Z(v) can be computed using the variogram,
var(Z(v)) = C(v,v) = vy(00) — F(v,v), (35.12)

and then the point-block correlation coefficient is easily computed by inverting rela-
tion (35.11).

EXERCISE 35.1 The development of an exponential function into Hermite polyno-
mials is:

exp(ay) = exp (%) Z( k') Hi(y). (35.13)

k=0

1. Show that the coefficients oy, of the anamorphosis function,

o Pk
’; o H (35.14)

of a lognormal variable Z= exp(v + o Y') with a mean E[ Z |= m are:

or = (—0)fm. (35.15)
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Block variance vs Point-Block correlation
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Figure 35.2: Relation between block variance var(Z(v)) and the point-block corre-
lation coefficient 7 for two lognormal random functions with the same mean, point
variances var(Z(x)) of 50 (solid line) and of 100 (dashed line).

2. A lognormal variable Z has a mean m= 10 and a variance var(Z)= 50. At
which order K is the variance of Z reconstructed up to 99.99%?

3. Letp,(Y)=m exp(o 7Y + 02 r?%/2) be the lognormal block anamorphosis un-
der assumption of permanence of lognormality. Show that the coefficient r
is identical with the correlation coefficient of the discrete Gaussian point-bloc
model.

EXAMPLE 35.2 The plot of the relation between the block variance var(Z(v)) and
the point-block correlation coefficient r is shown for two lognormal random functions
with a mean m= 10 on Figure 35.2. One has a point variance var(Z(x))= 50 and
the relation (35.12) is used to display the block variances for different block sizes v
with a solid line; the other has a point variance of var(Z(x))= 100 and the relation
(35.12) is displayed with a dashed line. In practice the block variance is known from
the variogram and the coefficient r can be read from the graph.

The Laguerre isofactorial point-block model involves a point gamma anamorpho-
sis ¢ and a block anamorphosis ¢,,,

Z(x) = @Y (%)  Z(v) = pu(Y(v)) (35.16)
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where p > ) as the block distribution is less skew than the point distribution.
The isofactorial model for the generally asymmetric point-block density is

f)\u (yx’ yv) = fA(yx) f,u (yv) Z Pk (x» 'U) Ck()" :u’) lAk(yx) luk(y'u) (35-17)
k=0
with
LA+ k) T(p)
T(p+k)L(N)

The block anamorphosis is linked to the point anamorphosis coefficients ¢, by

Cr(Ap) = (35.18)

ka Pr (-, v) C(A, 1) Lk () (35.19)

and the point-block correlation coefficients py (-, v) are determined through the relation

var(Z E“’*k 2(.,0) C2(\, ). (35.20)
k=1

Discrete Gaussian point-block model

In a point-block-panel problem we may have a vector of n samples Y (x) each ran-
domly located inside one of NV different blocks v. We are interested in a simple de-
scription of the correlation structure of the multi-Gaussian vector of the sample and
the block values,

(Y%, -, Y (%), Y (01),, Y(ow) )- (35.21)

We shall suppose that each sample Y (x) in a block v is conditionally independent
on Y (v) and the conditional distribution has a mean ry, y, and a variance 1 — r2,. So
for two samples with x and x’ in distinct blocks we can write

Y(X) = 7Y (v) +\/1——1~,2(UU1 (35.22)
Y(x) = rewY(V)+4/1=1%, U, (35.23)

where U, and U, are two uncorrelated Gaussian variables independent of Y (v). The
coefficients 7y, and ry, express the correlation of the two sample values with the
block value Y (v). The conditional independence of the samples entails that U; and U,
are independent so that we get

cov(Y(x),Y (X)) = Txx = Txo Txtef Tows (35.24)
We also have

Txv) = Txu Ty (35.25)
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so that

Txx! = TxpTxy/ = r,iv Toul (35.26)

The coefficient 7y, is the point-block coefficient » computed from (35.11), so that

Txx = 1Ty (35.27)
Txy = T Tyy. (35.28)

For specifying the discrete Gaussian point-block model we still need to determine
the block-block correlations r,,,. This can be done using the relation

Z% )" (35.29)
k=1

but by solving this equation for each pair of blocks separately the matrix is in general
not positive definite; the way out is to fit a covariance function to the coefficients 7,,.
General structure of isofactorial change-of-support

The structure of isofactorial change of support models has been set up by MATH-
ERON [215, 216]. A generally asymmetric bivariate distribution F'(du, dv) with
marginal distributions F; (du) and F»(dv) is isofactorial if there exist two correspond-
ing orthonormal systems X, i= 1, 2, complete in £L2(F}),

/ Xk (u) xi(u) Fi(du) = ou, (35.30)
whose orthogonality extends to the bivariate distribution:
[ X)) Fldu o) = 8u T (35.31)

In the context of a stationary random function Z(x)= ¢(Y (x)) with anamor-
phosed distribution F'(dy) and the block variable Z,(x)= ¢, (Y,(x)) we have

o0
Pp(Y(x) = Y eexr(Y(x) (35.32)

oo
eo(Vu(x) = Y ok xi(Ya(x)) (35.33)

k=0

The point-point and block-block distributions are
F(dyx,dyx) = F(dysx) F(dyx) ZTk ) xk(ts) X () (35.34)
=0

F(dys,dys) = Fy(dy) Fo(dyw) Y Th(v,v') Xi(wo) X (wwr).  (35.35)
k=0
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The point-block distribution between two locations is

F(dyx’ dyv’) = F(dyx) F, (dyv’) Z Tk(X, 'U,) Xk(yx) Xz(yv’)~ (35.36)
k=0

The inference of the different T}, coefficients for a discrete point-block model is
analogous to the discrete Gaussian point-block model. The example of the Laguerre
isofactorial model has received much attention and is treated in detail in [142, 182, 51].

EXERCISE 35.3 [Reserve estimation in a lead/silver deposit] In this 2D bivariate
study we shall estimate reserves of lead (Pb) and silver (Ag). The exercise is due
to Jacques RIVOIRARD. The parameters are about those of a real case study per-
formed by Peter DOWD on a Pb/Zn/Ag ore body in Broken Hill, Australia (described
in [156] on p256).

The Z; variable (Pb) has a mean grade of 13 % with a variance of 50. The vari-
ogram consists of a nugget-effect and a spherical model with a range of 60m:

m1(h) = 10+ 40 sph(60) for |h|#0. (35.37)

The Z, variable (Ag) has a mean grade of 4 (expressed in ounces/ton), a variance
of 3 and the variogram model: '

y2(h) = 1.2+ 1.8 sph(60) for |h| #0. (35.38)
The cross variogram between lead and silver has no nugget-effect:
112(h) = 5 5sph(60). (35.39)

RECOVERABLE RESERVES OF LEAD

The histogram of point values of lead has been modeled using a Gaussian anamorpho-
sis truncated at the second order:

Zi(x) = o(Y(x) =Y T H(Y(x)) (35.40)

with coefficients oy = 13, 1 = —6.928 and po = 2. Note that the Hermite polyno-
mials are not normalized,

Hy(Y(x)=1  H{Y(x)=-Yx); H{(x)=((x)*-10(54)

The selection mining units are blocks of size 24 x 24 m®. The grades of these
blocks are assumed to be perfectly known at the time of the selection (no information
effect). The cut-off grade used for selection on grades Z,(v) is 21, = 15%.

Knowing the point variogram, the variance of the blocks has been computed as
var(Z,(v)) = 0%, = 28.

1. Make a graphical representation of the anamorphosis function. What is its do-
main of validity?
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2. In the framework of the discrete Gaussian model the anamorphosis of the block
values is

Zi(v) = en(¥) =Y TErkHy(Y,) (35.42)

2
of, = Z(%) rik, (35.43)

compute the value of the change-of-support coefficient ;.

[Hint: to solve this equation, first find a solution for (r;)? and then take its
square root. This avoids manipulating a fourth order equation.]

3. Compute the cut-off y, applied to Y, which corresponds to the cut-off z;, =
15%.

4. Using a table of G(y) = [*_ g(t) dt compute the tonnage of recovered ore:

T(z21c) = E[ly,sy]=P[Y, > ycl (35.44)

5. The quantity of lead recovered can be written:

Q) = EZ0) o] = [ on()o)dy @549
Ye
2 oo
= kzz:o%r’f /,, Hy(y) 9(y) dy (35.46)

00 2
- / 9wy =3 % r Hi1(ye) 9(ye)  (35.47)
Ye k=1 4

Compute Q1 (z1) using tables of G(y) and g(y). Calculate m,(z,.) and compare
with overall mean of the deposit.

ANAMORPHOSIS OF SILVER
The anamorphosis of the point grades of silver is written

Z(x) = $UE) = 1 He(U(x)) (35.48)

with coefficients 1y = 4, ¥; = —1.71 and 13 = 0.384. The Gaussian transform of the
silver values is denoted U (x).

1. Compute and plot the anamorphosis function. What is its domain of validity?
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2. The variance of silver on block support is var(Z,(v)) = 1.26. Compute the
value of the change-of-support coefficient r.

[Hint: first solve for (r)? and then take the square root of the value.]

RECOVERABLE RESERVES OF SILVER WHEN SELECTING ON LEAD

The blocks are selected on the basis of the lead values as data about silver grades is
scarce. We shall therefore attempt to estimate the recovered quantity of silver for a
selection performed on the basis of lead. The quantity to estimate is thus:

Q2(21c) = E[Z2(v) 1z,0)>2. |- (35.49)
The quantity of silver conditioning on the Gaussian transform of lead is,
Q2(21c) = E[Z5(v) 1y,5y. ] = B[ E[Z2(0)|Ys] 1y, |- (35.50)

In the last expression we need to compute the conditional expectation of silver
knowing lead:

2
Bl 2] = B3 % rkHw)v,) (35.51)
zk;
ST PAUANS (35.52)
k=0
= 3k g HL(Y) = Uy (V) (35.53)
k=0

where the anamorphosis ,,,(Y,) depends on both the silver change-of-support co-
efficient T and the correlation coefficient p between the Gaussian variables Y, and
U,.

1. Knowing that the value of the cross-covariance between Z,(v) and Z,(v) is

cov(Z1(v), Zo(v)) = 3.5 (35.549)
and using the relation
oY)
cov(Zi(v), Zo(v)) = Y k'krfrgp’“ (35.55)
k=1 :

compute the value of the correlation coefficient p.

2. Compute the recovered quantity of silver

Qe = BV 1] = [ @) 9y (556

Ye

Calculate my(z1.).
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LOCAL ESTIMATION OF LEAD

The aim of this study is to estimate recoverable lead reserves for panels V of size
72 x 72 m?, that is:

e the proportion P of blocks having a grade superior to z,. = 15%,
e the quantity () of lead for these blocks.

The method used will be a “uniform conditioning” (presented in detail in Sec-
tion 36) by the grade Z,(V') of the panel. From the variogram of lead we know that
the variance of the panels is var(Z,(V)) = 12.

1. Assuming that the anamorphosis is valid at the level of the panels,

2

Zi(V) = pu(¥y) =Y T ()F He(vy) (35.57)
k=0

compute the value of the panel change-of-support coefficient r} .

2. The estimation will be performed for a particular panel with a lead grade of
21 (V) = 12.76%. What is the corresponding value yy ?

3. The notation v indicates a block located randomly in the panel V. Assuming
the pair (Y,,Yy) to be bi-Gaussian, the correlation between Y, and Yy is then
given by the correlation R = r}/r,. What is the expression for the estimator of
the proportion of blocks above cut-off within a panel with a given value z;(V):

P*(zie) = E[lzw>uls(V)=2(V)] ? (35.58)

4. What is the value of P*(z,.) for a panel value of 2, (V') = 12.76%?

5. The quantity of lead within a block is written:

o(710) Z Q” Hy(Y,) with Q,=

p—O k=0

o Pk ok 7 e(ye) (35.59)

where

A table of precomputed values of Q,, coefficients will be given below.

Give the expression for E[ H,(Y,)|Yy | and the expression for the estimator of
the quantity of metal,

Qv(z1c) = E[Qu(21c)[Yv ] (35.61)
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p

0 6.074 6.074 6.074
1 -7.385 -7.385 -4.852
2 4.887 3.456 1.492
3 2.828 1.155 0.327
4 -8.382 -1.711 -0.319
5 -6.281 -0.573 -0.070
6 35.275 1315 0.106
7 18.079  0.255 0.014
8 -217.692 -1.084 -0.038
9 -37.782 -0.063 -0.001
0 1752361 0.920 0.014

Table 35.1: List of coefficients Q.

6. In numerical computations it can be preferable to use normalized Hermite poly-
nomials,

nYy) = H’:%/!V) (35.62)

to avoid large numbers for the polynomials.
The expression (35.59) is then

o(21c) Z Wi (Y (35.63)

Rewrite the expression obtained in the previous question in terms of normalized
Hermite polynomials.

7. On Table 35.1 we list the (), coefficients up to the order 10. The table also lists
the coefficients normalized by \/p! and furthermore when multiplied by RP. The
last column of Table 35.1 shows that (3, should not be computed for a too low
order of p.

Compute Q% (z1.) for a panel with grade z;(V) = 12.76% truncating at the
order p = 6. Calculate the mean grade of the selected blocs.

[Hint: use the recurrence formula Hy1(y) = —y Hx(y) — k Hr—1(y).]



36 Kriging with Discrete Point-Bloc
Models

Disjunctive kriging is the classical method to estimate non-linear functions of the
data. Several geostatistical methods for local estimation of non linear functions of
block variables are presented, including conditional expectation, disjunctive kriging
and uniform conditioning.

Non-linear function of a block variable

In selection problems we are interested in estlmatmg some non-linear function v of
Z(v) like for example the indicator function

170>z, (36.1)

which tells whether or not a block variable Z(v) is above some prescribed level z.
Having data about the point variable Z(x) the steps are the following for setting
up a discrete Gaussian point-bloc model:

1. compute the point anamophosis Z(x

p(Y (x),

)= |
2. knowing the variogram y(h) of Z(x), compute the point-block coefficient 7 of
the bloc anamorphosis Z(v)= ¢,(Y (v)) in (35.9), by first evaluating the vari-
ance of Z(v) with (35.12) and then computing r using (35.11),

3. again with the variogram ~y(h) of Z(x), compute the block covariances C(v, v")
and then corresponding Gaussian block covariances p(v, v') using the relation
(35.29), taking care that the matrix of these covariances is positive definite.

The anamorphosis of a non-linear function v can be specified on the basis of the
anamorphosis of Z(v),

?r]*"\

Y(Z() = Yop, (Y Z (36.2)
k=0

Thus any non-linear function of Z(v)= ¢, (Y (v) can be represented as a linear func-
tion of the orthogonal polynomials Hy(Y,) just by using specific coefficients 1. We
now present different estimation methods of ¢(Z(v)) from data Z(x,) which build on
this decomposition.
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Conditional expectation and disjunctive kriging of a bloc

A first approach, which requires an assumption of multinormality, is to calculate the
conditional expectation (CE) in the following steps:

1. compute Y (x,) = ¢~ (Z(x4)) and identify it with Y (x,), as in the model the
samples are considered as being randomly located within corresponding blocks

Vas

2. perform simple kriging of the block value
YK () Z we Y (36.3)

solving the system
> wpp(XerX5) = p(Xaw)  foralle, (36.4)

where p(x,,,X3), p(X4, o) are obtained by the formulas (35.27) and (35.28).

The simple block kriging variance is
oy = 1- Zw,, p(x,,v0) =1 — 8%, (36.5)

where s? represents the variance of Y% (vy);

3. the estimate of the non-linear function v for a specific block v is
Vi 5% (vo)
[b(Z(wo))eg = Z s* Hy, TO . (36.6)

A second approach for estimating 1)(Z (vy) is by disjunctive kriging (DK) which
estimates directly the terms of the orthogonal decomposition and thus merely requires
an assumption of binormality instead of multinormality. It is implemented in the fol-
lowing steps:

1. compute the first K polynomials Hy(Y (x,)) considering again the location of
each sample as random within the block v, that contains it;

2. perform for k=1, ..., K the bloc simple kriging

Hy (Y () = Y wak He(Y(x,)), (36.7)
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where the weights w, are solution of
Z Wak (0(Xa,X5))* = (p(X4,v0))*  forall e, (36.8)

with the kriging variance

o= (1= Y s (ol 1) (36.9)

and with correlations p computed from the discrete Gaussian point-bloc model;

3. the disjunctive kriging estimate then comes as

[W(Zwo)px = %o+ Z T Hi (Y (vo)) (36.10)

and the corresponding disjunctive kriging variance is

K ¢ 2
i = Z(Ff) ol (36.11)

k=1

Disjunctive kriging of a panel

We come back to the point-block-panel problem exposed in Section 35 (Figure 35.1,
p263). We now consider the problem of predicting the average of a non-linear func-
tion of block values for a given panel V; as shown on Figure 36.1. The panel V} is
partitioned into N blocks v, each of the samples being located at random in a differ-
ent block (inside or outside the panel) and we denote M (V;) the average of a linear
function over the panel,

N
M(V,) = NZ (36.12)
oou,l:/)1 N
= ZF Z (36.13)
k=0 u=1
M

The estimator for the panel is simply the disjunctive kriging,

Mpx(Vo) = 1/)0+Z (36.14)
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]

Figure 36.1: Panel V} partitioned into blocks v and samples points X considered as

randomly located within blocks v that contain them.
with
n
Ml’: = Z Wak Hk(y(za))a
a=1

where the kriging weights are obtained from

n 1 N
> wak (P, Xp)* = 5D (p(xerww))"  foralla,
B=1 u=1
with the kriging variance
AL
013 = N2 Z Z(p(vua 'Uu'))
u=1 u'=1
k' N n .
_N Z Z Wak (p(laa vu))
u=1 a=1

(36.15)

(36.16)

(36.17)

(36.18)
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Uniform conditioning

In some point-block-panel problems panel averages Z (V) are available. For exam-
ple a general circulation model (GCM) provides values for panels of 100x100 km?
size while a station network provides point samples x,. We may be interested in
a technique that provides estimates of statistics for smaller spatial units obtained by
partitioning the panels, say blocks of size 5x5 km?2. This is called a downscaling
problem in statistical climatology [335].

The geostatistical analysis of the point data Z(x) provides a variogram «y(h), point
anamorphosis coefficients ¢, and a point-block coefficient r using the relation (35.11).
In the same way a point-panel correlation coefficient 7',

= Y HY (1)), (36.19)
k=0
is computed from
[o o] <p2
var(Z(V)) = var(py(Y Z ]Tk (36.20)
k=1

and a block-panel coefficient is then obtained as r,yy = r'/r.
Considering a block v randomly located in V' and writing,

Z() = g%rm(ng)), (36.21)
we have
BZ(v) | 2V)] = Y S rEH(Y@) | Y(V)]  (3622)
k=0
= > Pt () Hu(Y (V) (36.23)
k=0

The uniform conditioning technique [205, 270] consists in taking the conditional
expectation of some non-linear function of the blocks with respect to known panel
values. For example, the proportion of blocks within a panel Vj that are above a
certain rainfall level z. may be of interest: this is calculated by uniform conditioning
on the GCM value Z(V)

El1z0)2z | ZV)] = Ellywsa | Y(Vo)] (36.24)
_ _ Ye — Twv Y(‘/O)
= 1-G (—————m ) (36.25)

assuming that the conditional variable Y (v) | Y'(V;) is normally distributed with mean
Tov Y (V) and variance 1 — r2,,.
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In many applications the panel value Z (V') is not available and the trick is to
generate it by ordinary kriging. This has been viewed as a way of introducing a large
scale non-stationarity in the model and has been applied in mining reserves assessment
in this manner [258, 188, 259].

EXERCISE 36.1 [Iron ore deposit] This is a continuation of Exercise 32.4 on p230
in which the conditional expectation method was applied in a lognormal framework.
The discrete Gaussian model for three samples and blocs displayed on Figure 32.2
was discussed there. Now we apply disjunctive kriging.

Normalized Hermite polynomials are defined as

_ Hi(y)
mw(y) = Tk

with m (y) = —y and 12 (y) = (y* — 1)/V/2.
The development of the indicator function of a block Gaussian variable can be
written:

(36.26)

Iywoswe = O %eme(Y(vs)) (36.27)
k=0

I

Ny Mi’/‘%@%(y(uﬁ,)). (36.28)

1. What are the values for the coefficients 1, 1; and 1), in this development?

2. What are the values of the Hermite polynomials 1, (Y,) and no(Y,) for the three
sample locations?

*
3. What is the value of [m (Y(’l)3))] o ?
4. Express the estimator of the second Hermite polynomial [le( (vs))]
function of the three data values 1(Y,) and of the mean E[no(Y (v3)) |-
Develop its kriging system and solve it. What is the value of [ 2(Y(v3))]

*
5. Supposing that the terms [nk(Y(v3))] oK = 0 for k > 2 and can be neglected,

*
what is the value of the disjunctive kriging estimate [1 Z(u3)>zc] ?
="Ipk

EXERCISE 36.2 [Global Miner and Smart Invest] The company Global Miner has
performed an exploration campaign of a deposit. The production will be based on
blocs v with a surface of 12 x 12 m? which will serve as a selection support. The
evaluation of the deposit was done with a discrete Gaussian point-block model and
2D disjunctive kriging.
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The point anamorphosis of the deposit is:

2
Z(x) = ¢(Y(x) =Y L H(Y () (36.29)
k=0
— 10— 6.368 Hy(Y(x)) + 40% Hy(Y (x)) (36.30)

where H,(Y (x))= —Y (x) et Hy(Y (x))= Y?(x)—1 are Hermite polynomials.
o What are the value of the mean and of the variance of Z(x)?

The fitted variogram ~(h) was used to compute (v, v) = 22. In a discrete Gaus-
sian point-bloc model the block anamorphosis is:

AS]

Z,6) = p%x)=3"

P (1) Hi(Y,()) (36.31)
k=0

x~

when stopping the development at an order K = 2.
o Determine the value of the point-bloc coefficient r.

e What is the value y. corresponding to a cut-off grade z.=11 used for selecting
the blocks?

During a presentation of the reserves of the deposit by Global Miner for potential
investors a consultant of Smart Invest took note of the following three parameters:
m = 10, var(Z) = 50, as well as the value of the point-block correlation r. The
consultant wants to get quickly a rough idea of global reserves and uses a lognormal
model with change-of-support under assumption of permanence of lognormality using
these parameters.

Global Miner had announced a proportion of 42% of the deposit that could go into
production:

e is this figure compatible with the quick assessment of global reserves by Smart
Invest’s consultant?
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37 External Drift

We start the study of non-stationary methods with a multivariate method that is ap-
plicable to auxiliary variables that are densily sampled over the whole domain and
linearly related to the principal variable. Such auxiliary variables can be incorporated
into a kriging system as external drift functions.

Two applications are discussed: one is about kriging temperature using elevation
as external drift, while the other is a continuation of the Ebro case study from Chap-
ter 27 using the ouput of a numerical model as external drift.

Depth measured with drillholes and seismic

It may happen that two variables measured in différent ways reflect the same phe-
nomenon and that the primary variable is precise, but known only at few locations,
while the secondary variable cannot be accurately measured, but is available every-
where in the spatial domain.

The classical example is found in petroleum exploration, where the top of a reser-
voir has to be mapped. The top is typically delimited by a smooth geologic layer
because petroleum is usually found in sedimentary formations. Data is available from
two sources

— the precise measurements of depth stemming from drillholes. They are not
a great many because of the excessively high cost of drilling. We choose to
model the drillholes with a second-order stationary random function Z(x) with
a known covariance function C(h).

— inaccurate measurements of depth, deduced from seismic travel times and cov-
ering the whole domain at a small scale. The seismic depth data provides a
smooth image of the shape of the layer with some inaccuracy due to the diffi-
culty of converting seismic reflection times into depths. This second variable is
represented as a regionalized variable s(x) and is considered as deterministic.

As Z(x) and s(x) are two ways of expressing the phenomenon “depth of the layer”
we assume that Z(x) is on average equal to s(x) up to a constant ay and a coefficient
bl s

E[Z(x)] = ao+bis(x). 37.1)

The deterministic function s(x) describes the overall shape of the layer in inac-
curate depth units while the data about Z(x) give at a few locations an information
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about the exact depth. The method merging both sources of information uses s(x) as
an external drift function for the estimation of Z(x).
Estimating with a shape function

We consider the problem of improving the estimation of a second order stationary
random function Z(x) by taking into account a function s(x) describing its average
shape. The estimator is the linear combination

Z*(xg) = i Wa Z(Xa) (37.2)
a=1

with weights constrained to unit sum, so that
E[ Z*(Xo)] = E[Z(Xo], (373)

which can be developed into
E[Z*(x0)] = ) waE[Z(xa)]
a=1

n
= aqo+bh Zwa 5(Xq)
a=1

= ag+ bl S(Xo). (374)

This last equation implies that the weights should be consistent with an exact in-
terpolation of s(x)

s(xg) = iwa 8(Xq)- 37.5)
a=1

The objective function to minimize in this problem consists of the estimation vari-
ance o and of two constraints

¢ = Ué—ﬂo(iwa—l)—m(iwas(xa)—s(xo)). (37.6)

The result is the kriging system

( n
Zwﬂ C(xa—%g) — pho — 11 5(Xa) = C(xa—X0) fora=1,...,n
B=1

(D wp =1 (37.7)
=1

ng s(xg) = s(xo)-

\ =1
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The mixing of a second-order stationary random function with a (non stationary)
mean function looks surprising in this example. There may be situations where this
makes sense. Stationarity is a concept that depends of scale: the data can suggest
stationarity at a large scale (for widely spaced data points on Z(x)) while at a smaller
scale things look non-stationary (when inspecting the fine detail provided by a func-
tion s(x)).

Estimating external drift coefficients

The external drift method consists in integrating into the kriging system supplemen-
tary universality conditions about one or several external drift variables s;(x), i =

1,..., N measured exhaustively in the spatial domain. Actually the functions s;(x)
need to be known at all locations x, of the samples as well as at the nodes of the
estimation grid.

The conditions
n
Zwa si(xa) = si(x0) i=1,...,N (37.8)
a=1

are added to the kriging system independently of the inference of the covariance func-
tion, hence the qualificative external.
The kriging system with multiple external drift is

( n N
Zwﬂ C(xa—xp) — po — Zﬂi si(Xa) = C(xa—x0)
p=1 i=1
fora=1,...,n
1 <& (37.9)
Zwﬂ =1
B=1
ZwﬂSi(Xﬂ) = s;(xo) fori=1,...,N.

\ A=1

When applying the method with a moving neighborhood it is interesting to map
the coefficients b; of each external drift to measure the influence of each external
variable on the principal variable in different areas of the region. An estimate b} of
a particular coefficient indexed i, is obtained by modifying the right hand side of the
kriging system in the following way

( n N
ZwﬂC(xa—xﬁ)—uo—Zuisi(xa) =@ fora=1,...,n
p=1 i=1

1) ws = (37.10)
B=1

En:wgsi(xﬂ) = fort=1,...,N,

\ 8=1
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100 200 300 400km

Min  0.00 1.00 2.00 3.00 4.00 5.00
Max 1.00 2.00 3.00 4.00 5.00 6.00 °C

Figure 37.1: Kriging mean January temperature in Scotland without external drift.
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Figure 37.2: Estimated values of kriging with external drift plotted against elevation:
the estimated values above 400m extrapolate out of the range of the data.

where d;;, is a Kronecker symbol which is one for i= iy and zero otherwise.

EXAMPLE 37.1 (see [146] for the full details of this case study) We have data on
mean January temperature at 146 stations in Scotland which are all located below
400m altitude, whereas the Scottish mountain ranges rise up to 1344m (Ben Nevis).
The variogram of this data will be discussed later (Figure 38.2, p306) .

Figure 37.1 displays a map obtained by kriging without the external drift. The
estimated temperatures stay within the range of the data (0 to 5 degrees Celsius).
Temperatures below the ones observed can however be expected at altitudes above
400m.

It could be verified on scatter plots that temperature depends on elevation in a rea-
sonably linear way. The altitude of the stations is known and elevation data, digitized
from a topographic map, is available at the nodes of the estimation grid. The map
of mean January temperature on Figure 37.3 was obtained by incorporating into the
kriging system the elevation data as an external drift s(x). The kriging was performed
with a neighborhood of 20 stations and the estimated values now extrapolate outside
the range of the data at higher altitudes as seen on the diagram of Figure 37.2.

The map of the estimated coefficient b} of the external drift is displayed on Fig-
ure 37.4. The coefficient is more important in absolute value in the west, in areas
where stations are scarcer: the kriging estimator relies more heavily on the secondary
variable when few data on the primary variable are available in the vicinity.
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100 200 300 400
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800

700

600

Min  —5.00 -250 3.00 4,00 500
Max =250 300 4.00 5.00 6.00 °C

Figure 37.3: Kriging mean January temperature in Scotland using elevation data from
a digitized topographic map as external drift.
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Min -0.020  -0.015 —-0.012 —0.009 —0.006 -0.003 0.
Max  —0.015 -0.012 —0.009 -0.006  —0.003 0. 0.001

Figure 37.4: Map of the estimated external drift coefficient b7 when using elevation as
the external drift for kriging temperature with a moving neighborhood.
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Cross validation with external drift

The subject of cross validation with the external drift method was examined in detail
by CASTELIER [37, 38] and is presented in the form of three exercises. The random
function Z(x) is second order stationary and only one drift function s(x) is taken into
account.

EXERCISE 37.2 We are interested in pairs of values (z,, so) of a variable of interest
Z(x) with a covariance function C'(h) and an external drift variable s(x) at locations
Xq, @ = 1,...,n in a domain D. The values are arranged into vectors z and s of
dimension n.

To clarify notation we write down the systems of simple kriging, ordinary kriging,
kriging with external drift and kriging of the mean.

Simple Kriging (SK):
CWSK = Cp and WsK = RC() with R = C_l. (3711)
Ordinary Kriging (OK):
C 1 WOK Co .. ( WokK )
= .e. K = ko, 37.12
(f 0) (—uox) (1) R o ) TR G712
and
( wWox ) =K'k, with K'= (Ar v) . (37.13)
—Hok v.oou
Kriging with external drift (KE):
C 1 s WKE Co WKE
1" 0 0 —pxe | =1 1 ie.F | —uke | =f. (37.14)
s’ 00 —HKE S0 — kg

Kriging of the mean (KM):

WKE . o
()= (9). S

m* = Y wkz =(2,0)K! (‘1’) (37.16)

and

a) Show that the variance of ordinary kriging is

odx = coo—kj K k. (37.17)



External Drift 291

b) Using the following relations between matrices and vectors of OK,

CA + 1vl =1, (37.18)
Cv + 1lu =0, (37.19)
1TA =0, (37.20)
1Tv = 1, (37.21)

show that the kriging of the mean can be expressed as

N z' R1

c) We define Castelier’s scalar product
x'Ry
= 2
<x,y > TR1 (37.23)
and a corresponding mean and covariance
E.lz] = <z,1>, (37.24)
Enlz,s] = <z,s>, (37.25)
cov,(z,8) = E,[z,s] — Ey[z] Eyls]. (37.26)

Defining Castelier’s pseudo-scalar product using the inverse K~! of OK (instead
of the inverse R of SK),

Kn(z,s) = (z',0)K™! (g) , (37.27)
show that
Kn(z,8) = z' As=1"R1cov,(z,s). (37.28)

d) As the external drift is linked to the expectation of the variable of interest by a
linear relation,

E[Z(x)] = a+bs(x), (37.29)

and as the coefficient b and the constant a of the external drift are estimated by

0 0
b =(z",0,00F! [0 and o*=(2',0,00F' 1], (37.30)
1 0

show that b* and a* are the coefficients of a linear regression in the sense of Castelier’s
scalar product
covy,(z,s)

* — on\™E) * _ _ . . .
iy e S En[z] — b En]s] (37.31)
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Figure 37.5: Interpolated salinity computed by the MIKE12 numerical model.

EXERCISE 37.3 Assume, in a first step, that we have an additional data value z;, at
the point x,. Let us rewrite the left hand matrix of OK with n + 1 informations,

— Coo k-(l;- -1 _ [ Uoo V-(')—
K, = (ko K) and Ky = (Vo Ay )’ (37.32)

where cgy = C(x¢—xo), K, ko are defined as in the previous exercise.
As Ko K;' = I, we have the relations

Coo Ugo + kgvo =1, (37.33)
kouge + Kvy =0, (37.34)
covy + kjA, =0, (37.35)
kevg + KAy =1 (37.36)
a) Show that
1
Upp = 5 - (3737)
0ok

b) Letz} = (z,2") ands] = (so,s") be vectors of dimensionn + 1, and
0 0

Icn+1(20, So) = (Z-(I;, 0) Kal (S(;) ) . (3738)
Show that

Kn+1(20,50) = (37.39)
lCn(z,s) +  Ugo (Zo - (ZT, 0) :K_'1 ko) . (80 - (ST,O) K—l ko)

c) Let A(z]|z) be the OK error
Azlz) = z—25=2— (2,00 K k. (37.40)
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Variogram of Residuals

Distance (D1l: km; D2: m)

Figure 37.6: Variogram of residuals between chlorophyll water samples and drift where
the interpolated MIKE12 salinity intervenes as an external drift. The experimental
variogram was computed in two directions (D1: horizontal, D2: vertical), fitted with a
spherical model using a geometric anisotropy. The abscissa should be read in kilometers
for D1 and in meters for D2.

Show that
A A
Ko (20,50) = 20 2l _ (7 0)K1heo 28008) | e mg), (37.41)
I0K 00k
and that

A(spls
(2°| ) _ (w0, V1) - (S(;’) (37.42)
IoK

EXERCISE 37.4 In a second step, we are interested in an OK with n—1 points. We
write A(24|2()) for the error at a location x,, with a kriging using only the n—1 data
contained in the vector,

Z[a] = (zl? cevsZa—15R%a+1y -0y zn)Ta (37.43)

and we denote aE"a] the corresponding ordinary kriging variance.



294 Non-Stationary Geostatistics

Depth (m)

-5.
Ebro river (km)

Figure 37.7: Kriging of chlorophyll water samples using the interpolated MIKE12
salinity as an external drift.

a) Establish the following elegant relation

A(salsia)
K1 (S) - Ol . (37.44)

m*

b) As the coefficient of the drift is estimated by

o= S uwfze= ”g"z:; (37.45)
a=1 n )
show that
o« _ A(sals[a])
wy, = Em. (3746)

The computation of the errors A(sq|s()) can be interesting in applications. They
can serve to explore the influence of the values s, on the KE estimator in a given
neighborhood.

Regularity of the external drift function

CASTELIER [37, 38] has used the description of the influence of the external drift
data on the kriging weights to show that the external drift should preferably be a
smoother function than realizations of the primary variable Z(x). This question can
be checked on data by examining the behavior of the experimental variogram of s(x)
and comparing it with the variogram model adopted for Z(x). The behavior at the
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Depth (m)

Depth (m)

Depth (m)

Ebro river (km)

Figure 37.8: Three independent conditional simulations of chlorophyll taking account
of MIKE12 salinity. The greyscale is the same as on Figure 37.7.
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origin of the experimental variogram of s(x) should be more regular than that of the
variogram model of Z(x).

For example, using the same setting as in the previous section, the ratio of the
squared cross-validation error of the external drift kriging with respect to the variance
a[za] of ordinary kriging (omitting the sample at the location x,),

A(3qlsq))?

2 ’

- (37.47)

a]

could in an ideal situation be constant for all x,. In this particular case s(x) could be
considered as a realization (up to a constant factor) of the random function Z(x) and
the covariance function of the external drift would be proportional to the covariance
function of Z(x). This ratio is worth examining in practice as it explains the structure
of the weights used for estimating the external drift coefficient b* (see Exercise 37.4).

Cokriging with multiple external drift

The last problem to consider is how to set up a cokriging with multiple external drift.
In practice, however, it may be quite tricky to formulate the corresponding coregion-
alization model.

We consider a set of external drifts s;, k= 1... K that are available both at the
sample locations and at the prediction locations (typically the nodes of a grid spanned
over the domain). Assuming the variables Z;(x) are related to the second set of vari-
ables sy, by the relations:

K
ElZi(x)] = Y aj+bisi(x) for i=1,...,N, (37.48)
k=1

the samples of the second set can be included into the ordinary cokriging system using
additional constraints,

g
Z wﬁ Sk (Xa) = 5iio Sk (Xo) for all 4. (3749)
a=1

The cokriging system with multiple external drift finally comes as

( N 7 K
Z Z W} Yij(Xa—Xp) + pi + Z Pk 5k(Xa) = Yiig(Xa—X0) for Vo, i,
i=1 =1 k=1
ng .
J > " wh = b, for Vi, (37.50)
p=1
n; .
Z ’U)/Z3 Sk (Xﬂ) = 61‘1'0 Sk (X()) for VZ, k’,
\ f=1
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where 1;, 1ux are Lagrange multipliers.

The external drift variables s, on one hand need to be linearly related to the dif-
ferent variables Z; in conjunction with which they are used. On the other hand the
different drift variables have to be linearly independent among themselves. A con-
stant external drift for example is redundant with the condition that the weights of the
principal variable should satisfy Y wi= 1 and will thus cause the cokriging system
to be singular.

Ebro estuary: numerical model output as external drift

We pursue the case study of Chapter 27 using the ouput of a hydrodynamical model
as external drift. The software package MIKE12 [89, 255] provides a two-layer model
which enables computation of the average concentration, average temperature, aver-
age salinity and water level for the top and the bottom layers of the estuary.

We display on Figure 37.5 an interpolated map based on MIKE12 salinity output
for the Ebro estuary on the Sth October 1999. It is interesting to note that contrarily
to the kriged map of conductivity on Figure 27.3 on p186 the MIKE12 model output
suggests that the transition zone between fresh water and salt wedge may not be hor-
izontal (as assumed when defining the anisotropy in the different variogram models
used up to this point). Its inclination reflects an upstream downward slope of the up-
per limit of the salt wedge resulting from the dynamics incorporated into the model
and does not seem incompatible with the Hydrolab data displayed on Figure 27.1 on
p184. So the model provides a new perspective that can be used in a kriging of the
chlorophyll values.

The variogram of residuals between chlorophyll water samples and drift (where the
interpolated MIKE12 salinity intervened as an external drift) is shown on Figure 37.6.
The external drift kriging based on this model is displayed on Figure 37.7. Comparing
it with the cokriging on Figure 27.7 we can see the effect of the MIKE12 model output
which results in an inclined transition zone throughout the estuary.

Comparing results of conditional simulations and kriging

Stochastic conditional simulations using the external drift geostatistical model were
performed and three independent realizations are displayed on Figure 37.8, which
are all compatible with the chlorophyll water samples. To get an idea of how much
the different estimations of the distribution of chlorophyll within the analyzed cross
section of the Ebro river differ we summarize the results using selectivity curves T'(z)
and m(z) which were presented in Chapter 31.

On Figure 37.9 we see curves T'(z) that represent the proportion of chlorophyll
above cutoff z (in the Ebro river section). At cutoff 15 mg/m3 the four displayed
curves (starting from the lowest) are:

o the kriged chlorophyll values using the MIKE12 external drift, as displayed on
Figure 37.7 (thick curve);
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Figure 37.9: Proportion T'(z) of chlorophyll values above cutoff z. Comparison of
external drift kriging (thick curve) with different simulations.

e one of the realizations of a corresponding conditional simulation, as displayed
on Figure 37.8 (dashed curve);

o a realization of a conditional simulation using a cubic variogram model, as dis-
played on the upper graph of Figure 27.11 (dotted curve);

o arealization of a conditional simulation using an exponential variogram model,
as displayed on the lower graph of Figure 27.11 (dotted curve);

The proportion of chlorophyll decreases when the cutoff is increased, so all four
curves decrease. The kriging can be viewed as the average of a great many real-
izations: that is why it is smoother as individual realizations. At one end, the cor-
responding proportion of values for large values, say above 14 mg/m3, is lower for
kriging than for the conditional simulations; at the other end, say below 3 mg/m3, the
reverse occurs, i.e. the proportion of kriged values above cutoff is larger than for the
simulations. Among the different realizations the one from a simulation incorporating
external drift has a lower proportion for cutoffs above 14 mg/m3. For problems in
which the cutoff is equal to the median it does not make a difference whether kriged
or simulated values are used to compute the proportion of chlorophyll above cutoff.

The Figure 37.10 plots the curves m(z), representing the mean of the values above
cutoff, for the same four calculations (kriging with external drift, conditional simula-
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Figure 37.10: Mean m(2) of chlorophyll values above cutoff z. Comparison of external
drift kriging (thick curve) with different simulations.

tions with or without external drift). The kriging is smoother than the simulations
and yields systematically lower estimates of mean values above 11 mg/m? or below
4 mg/m®, The simulations that are not constrained by external drift yield larger esti-

mated values than the simulation (dashed line) incorporating MIKE12 output as ex-
ternal drift.



38 Universal Kriging

The external drift approach has left questions about the inference of the variogram
unanswered. The theory of universal kriging, i.e. kriging with several universality
conditions, will help deepen our understanding. The universal kriging model splits
the random function into a linear combination of deterministic functions, known at
any point of the region, and a random component, the residual random function. It
turns out that this model is in general difficult to implement, because the underlying
variogram of the random component can only be inferred in exceptional situations.

Universal kriging system

On a domain D we have functions f; of the coordinates x, which are considered de-
terministic, because they are known at any location of the domain.

The random function Z(x) is composed of a deterministic component m(x), the
drift, and a second-order stationary random function Y (x),

Z(x) = m(x)+Y(x). (38.1)

Assuming in this section that Y'(x) is second-order stationary with a mean zero
and a covariance function C'(h), we have

E[Z(x)] = m(x). (38.2)

We suppose that the drift m(x) can be represented as a linear combination of the
deterministic f; functions with non-zero coefficients a;,

L
m(x) = Y afi(x). (38.3)
=0

The function fy(x) is defined as constant
folx) = 1. (38.4)

For kriging we use the linear combination

Z*(xg) = iwaZ(xa). (38.5)
a=1
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We want no bias

E[Z(x0) — Z*(x0)] = O, (38.6)
which yields
o) = 3 wam(xa) = 0, (38.)
and
lf;aufl(xo)—ilwaf,(xa)) Y 38.8)

As the g, are non zero, the following set of constraints on the weights w, emerges

zn: Wq fl(xa) = fl(X()) for [ = 0, ey L, (389)
a=1

which are called universality conditions.
For the constant function fy(x) this is the usual condition

n
d we = 1. (38.10)
a=1

Developing the expression for the estimation variance, introducing the constraints
into the objective function together with Lagrange parameters y; and minimizing, we
obtain the universal kriging (UK) system

n L
ZWﬂC(XQ—Xﬂ) _Z“’l fl(xa) = C(xa~x0) for a= 17"'7’”’
- = (38.11)
Zwﬁ filxs) = fi(xo) forl =0,...,L,
p=1

(# 0) (%) - (B) 6512

For this system to have a solution, it is necessary that the matrix

and in matrix notation

F = (f,....,f) (38.13)

is of full column rank, i.e. the column vectors f; have to be linearly independent. This
means in particular that there can be no other constant vector besides the vector f;.
Thus the functions f;(x) have to be selected with care.
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Estimation of the drift

The drift can be considered random if the coefficients multiplying the deterministic
functions are assumed random

L
Mx) = > Afilx) with E[A]=a. (38.14)
=0

A specific coefficient A;, can be estimated from the data using the linear combi-
nation

ho= D wi Z(xa). (38.15)
a=1

In order to have no bias we need the following L constraints
~ . 1 ifl=1
Z wy, fi(Xe) = Oy = 0 il # . (38.16)
a=1

Computing the estimation variance of the random coefficient and minimizing with
the constraints we obtain the system

n L
Zw{z C(xa—x%p) — Z,u”o filxa) =0 fora=1,...,n
1=0

=l (38.17)

Zwi fi(xp) = du, forl=0,...,L.
p=1

What is the meaning of the Lagrange multipliers y,;, (for two fixed indices lo and
[1)? We start from

cov(4j, Ay) = ZZU){’; wf) C(xo—xg). (38.18)
a=1 =1
Taking into account the kriging equations,
n n n L
Z ’LUlC: Z wf} C(xa—xﬂ) = Z ’U)f: Z“llo f[(xa), (3819)
a=1 p=1 a=1 1=0

and the constraints on the weights,

L n L
> e Y wf filxa) =Y gty Ou,, (38.20)
=0 a=1 1=0
we see that
COV(A?W ?1 ) = Lol (38.21)
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Figure 38.1: Scatter diagrams of temperature with longitude and latitude: there is a
systematic decrease from west to east, while there is no such trend in the north-south
direction.

A Lagrange parameter pi,;, represents the covariance between two drift coeffi-
cients indexed [y and ;.

The estimated drift at a specific location is obtained by combining the estimated
coefficients with the values of the deterministic functions at that location,

L
m*(xg) = Za}‘f;(xo). (38.22)
=0

It can be shown that the same solution is obtained without explicitly estimating the
drift coefficients, simply by a kriging of the mean function

M*(xo) = ) wkMZ(x,). (38.23)
a=1
The corresponding system is
n L
ZwEMC(xa—xfg)—Zu{(Mﬁ(xa) =0 fora=1,...,n
B=1 =0

(38.24)

> wi™ fi(xs) = filxo) forl=0,... L.
B=1

Underlying variogram and estimated residuals

We have studied the case of a known covariance function (which is equivalent to a
bounded variogram). In practice we need to infer the variogram in the presence of
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drift. In the decomposition of Z(x) into drift and a residual random function,
Y(x) = Z(x)— m(x), (38.25)

we have not discussed how the underlying variogram y(h) associated with Y can be
inferred, knowing that both quantities, drift and residual, need to be estimated. The
underlying variogram is defined as

v(h) = %var(Z(x—l—h) - Z(x)) = %E[ (Y(x+h) — Y (x))?]. (38.26)

Experimentally we have access to an estimated residual R*(x) by forming the
difference between an estimated drift M*(x) and Z(x) at data locations X,

R*(Xa) = Z(Xa) — M*(xa) = Z(Xa) — Y A} filxa). (3827
=1

In the drift, the term Aj associated with the fy= 1 monomial has been dropped
right away as it will vanish in the variogram expressions, because increments will be
taken, which are zero for this monomial. By the way the estimation of the term Aj is
problematic within the framework of an intrinsic hypothesis: this question is dwelled
at length in [200, 45, 44].

The variogram of the estimated residuals between two data locations is

T0arxs) = 3 BL(R (k) — R*(xg))’]
= 7(Xa,Xg) + —;—var(M*(xa) — M*(x3)) (38.28)
—cov((Z(xa) = Z(xs)), (M*(xa) ~ M*(x5)))-

The variogram of the estimated residuals is composed of the underlying variogram
and two terms representing bias.

If S is the set of sample points, we can define the geometric covariogram of the
sample points as

Rs(h) = / 15(x) 15(x+h) dx, (38.29)
D

where D is the domain of interest and 1s(x) is the indicator function of the sample
set.
The experimental regional variogram of the estimated residuals is then computed
as
1

') = e / 15(x) 1s(x-+h) (R*(x+h) — R*(x))dx. (38.30)
D



Universal Kriging 305

Taking the expectation of G*(h) gives a three terms expression, which is however
not equal to the underlying variogram

E[G*(h)] = T,-2T;+Ts % ~(h), (38.31)
where

T, = / 15(x) 1s(x+h) B[ (Z(x+h) — Z(x))?]dx,  (38.32)
! 28s(h) J s\ s ’ '

1 L
T, = W(h)p/ls x) 15(x-+h) §( Z(x+h) — Z(x))]

X (filx+h) — fix)) ) dx, (38.33)
T3 = ﬁ/l‘g(x ) 15(x+h) ZZCOV ¥, A

D =1 s=1
X (filx+h) — fi(x)) (fs(x+h) — fi5(x)) dx. (38.34)

The first term is the underlying variogram while the two other terms represent the
bias, which is generally considerable. If we assume to know the drift, replacing A} by
a;, the second term vanishes, but not the third,

E[G*(h)] = T, —Ts+#~(h). (38.35)

Thus even with known drift we can only hope to obtain the underlying variogram
from the variogram of the residuals in the vicinity of the origin. Due to its smooth-
ness, the increments of the drift have a small value at very short distances, making T3
negligible.

For regularly gridded data two methods exist for inferring the underlying vari-
ogram (see [199, 48]). For data irregularly scattered in space, in few exceptional
situations the underlying variogram is directly accessible:

- when the drift occurs only in one part of a domain which is assumed homoge-
neous, then the variogram model can be inferred in the other, stationary part of
the domain and transferred to the non stationary part;

- when the drift is not active in a particular direction of space, the variogram
inferred in that direction can be extended to the other directions under an as-
sumption of isotropic behavior of the underlying variogram.

To these important exceptions we can add the case of a weak drift, when the vari-
ogram can reasonably well be inferred at short distances, for which the bias is assumed
not to be strong. This situation is very similar to the case when ordinary kriging is ap-
plied in a moving neighborhood with a locally stationary model. The necessity for
including drift terms into the kriging system may be subject to discussion in that case
and is usually sorted out by cross-validation.
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Figure 38.2: Variograms of average January temperature data in the east-west and
north-south directions: a model is fitted in the direction with no drift.

EXAMPLE 38.1 The Scottish temperature data [146] provides an example for drift
being absent in a particular direction of space. On Figure 38.1 we see the scatter
diagrams of average January temperature in Scotland plotted against longitude and
latitude . Clearly there is a systematic decrease of mean temperature from west to east
(longitudes) due to the effect of the Gulf stream which warms up the western coast of
Scotland in the winter. Along latitudes there is no trend to be seen.

The variograms along longitude and latitude are shown on Figure 38.2. The east-
west experimental variogram is influenced by the drift and grows without bounds
while the shape of the north-south variogram suggests a sill: the latter has been mod-
eled using three spherical functions with ranges of 20, 70 and 150km. By assum-
ing that the underlying variogram is isotropic, we can use the north-south variogram
model also in the east-west direction. The interpretation of the east-west experimental
variogram is that drift masks off the underlying variogram in that direction.

From universal to intrinsic kriging

In general it is difficult and cumbersome to infer the underlying variogram (assuming
it existence). Two steps will lead us to a more sound and workable model:
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1. The class of deterministic functions is restricted to functions which are
translation-invariant and pairwise orthogonal, i.e. the class of exponentials-
polynomials.

2. Aspecific structural analysis tool is defined, the generalized covariance function
K (h), which filters these translation-invariant functions.

As the variogram represents only a particular subclass of generalized covariances,
we understand that the quest for the underlying variogram was doomed to be vain: the
residuals may have a structure which is simply not compatible with a variogram and
which can only be captured by a generalized covariance.

Instead of building a model by pasting together a second-order stationary (or in-
trinsic) random function and a given drift which will generate universality conditions
in the kriging system, we will have a different approach. We take a particular class
of deterministic functions and infer generalized covariance functions filtering them,
what leads to authorization constraints instead of universality conditions in the krig-
ing system. Thus we will speak of intrinsic kriging as its formulation and meaning
changes within the theory of generalized intrinsic random functions. We provide a
very elementary sketch of that powerful theory of in the next chapter.
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The characterization of the drift by a linear combination of translation-invariant de-
terministic functions opens the gate to the powerful theory of the intrinsic random
functions of order k. A more general tool of structural analysis than the variogram can
be defined in this framework: the generalized covariance function. The constraints on
the weights in the corresponding intrinsic kriging appear as conditions for the positive-
definiteness of the generalized covariance. Parallels between this formulation and the
spline approach to interpolation can be drawn.

Exponential-polynomial basis functions

With estimation problems in mind we consider sets weights w, which interpolate
exactly some basis functions f;(x),

n
3w filxa) = filxo), (39.1)
a=1
forany ! =0,..., L.
By introducing a weight wy = —1 we can rewrite the expression as
D wafilxa) = 0 for 1=0,...,L (39.2)
a=0

and we call this an authorized linear combination, which filters the functions f;(x) for
a set of n+1 points x,.

The authorized linear combination should be translation-invariant for all [ and for
any vector h:

Ywafilxa) = 0 = D wafilkath) = 0. (393
a=0

a=0

To achieve this, the L + 1 basis functions f;(x) should generate a translation-
invariant vector space. It can be shown [210] that only sets of functions belonging to
the class of exponentials-polynomials fulfill this condition. Families in this class are
polynomials of degree < k, trigonometric functions and exponential functions.
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COMMENT 39.1 In two spatial dimensions with coordinate vectors x = (z,x,)" the
following monomials are often used

fox) = 1, filx) = 21, fa(x) = o,
fi(®) = (@), fix) = 21 72, f5(x) = (z2)% (394)

which generate a translation invariant vector space. The actual number L+1 of basis
functions of the drift depends on the degree k of the drift in the following way:

for k = 0 we have one basis function and L = 0,
for k = 1 we have three basis functions and L = 2,
for k = 2 we have six basis functions and L = 5.

Intrinsic random functions of order k

Let w be a measure ) w, dx, which attributes weights w,, to points x, and let us
denote by

Zw) = ) waZ(xa) (39.5)

the linear combination of these weights with random variables at locations x, in a
domain D.

The vector space of authorized linear combinations W}, contains the measures for
which the corresponding weights filter the basis functions, i.e. w € Wy, if the w, fulfill
equation (39.2) for any /.

A non-stationary random function Z(x) is called an intrinsic random function of
order k (IRF-k) if for any measure w € Wy, the linear combination

2": W Z(Xa+h) (39.6)

is zero-mean second-order stationary for any vector h.

COMMENT 39.2 We want to mention that a more abstract definition is possible [203].
The linear combination (39.6) can be denoted by Z (1, w), where Ty, is a translation
operator. We can then call an abstract IRF-k the linear application Z of the space W),
into a Hilbert space of random variables of zero-expectation and finite variance, such
that for any w € W, the random function Z (1, w) is second-order stationary inh. The
abstract Z describes the class of all IRF-k having the same k-order increments as a
given Z(x), which is called a representation of Z.
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Generalized covariance function

A symmetric function, K'(h) = K(—h), is a generalized covariance function of an
IRF-k Z if

var(Z(w)) = Z Z wo wg K (Xq—xp) (39.7)

a=1 =1
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