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Preface to the Second Edition

Twelve years after publication of the first edition in 1999, ideas have matured
and new perspectives have emerged. It has become possible to sort out material
that has lost relevance from core methods which are here to stay. Many new
developments have been made to the field, a number of pending problems have
been solved, and bridges with other approaches have been established. At the
same time there has been an explosion in the applications of geostatistical
methods, including in new territories unrelated to geosciences—who would
have thought that one day engineers would krige aircraft wings? All these
factors called for a thoroughly revised and updated second edition.

Our intent was to integrate the newmaterial without increasing the size of the
book. To this end we removed Chapter 8 (Scale effects and inverse problems)
which covered stochastic hydrogeology but was too detailed for the casual
reader and too incomplete for the specialist. We decided to keep only the specific
contributions of geostatistics to hydrogeology and to distribute the material
throughout the relevant chapters. The following is an overview of the main
changes from the first edition and their justification.

Chapter 2 (Structural analysis) gives complements on practical questions
such as spatial declustering and declustered statistics, variogram map calcula-
tion for data on a regular grid, variogram in a non-Euclidean coordinate system
(transformation to a geochronological coordinate system). The Cauchy model
is extended to the Cauchy class whose two shape parameters can account for a
variety of behaviors at short as well as at large distances. The Matérn model
and the logarithmic (de Wijsian) model are related to Gaussian Markov ran-
dom fields (GMRF). New references are given on variogram fitting and sam-
pling design. New sections propose covariance models on the sphere or on a
river network. The chapter also includes new points on random function the-
ory, such as a reference to the recent proof of a conjecture of Matheron on the
characterization of an indicator function by its covariogram. The introductory
example of variography in presence of a drift was removed to gain space.

The external drift model which was presented with multivariate methods is
now introduced in Chapter 3 (Kriging) as a variant of the universal kriging
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model with polynomial drift. The special case of a constant unknown mean
(ordinary kriging) is treated explicitly and in detail as it is the most common in
applications. Dual kriging receives more attention because of its kinship with
radial basis function interpolation (RBF), and its wide use in the design and
analysis of computer experiments (DACE) to solve engineering problems.
Three solutions are proposed to address the longstanding problem of the
spurious discontinuities created by the use of moving neighborhoods in the case
of a large dataset, namely covariance tapering, Gaussian Markov random field
approximation, and continuous moving neighborhoods. Another important
kriging issue, how to deal with outliers, is discussed and a new, relatively
simple, truncation model developed for gold and uranium mines is presented.
Finally a new form of kriging, Poisson kriging, in which observations derive
from a Poisson time process, is introduced.

Few changes were made to Chapter 4 (Intrinsic model of order k). The
main one is the addition of Micchelli’s theorem providing a simple character-
ization of isotropic generalized covariances of order k. Another addition is
an analysis of the structure of the inverse of the intrinsic kriging matrix.
The Poisson differential equation ΔZ5Y previously in the deleted chapter 8
survives in this chapter.

Chapter 5 (Multivariate methods) was largely rewritten and augmented.
The main changes concern collocated cokriging and space–time models. The
chapter now includes a thorough review of different forms of collocated cok-
riging, with a clear picture of which underlying models support the approach
without loss of information and which use it just as a convenient simplification.
Collocated cokriging is also systematically compared with its common alter-
native, kriging with an external drift. As for space–time models, they were a real
threat for the size of the book because of the surge of activity in the subject. To
deal with situations where a physical model is available to describe the time
evolution of the system, we chose to present sequential data assimilation
and ensemble Kalman filtering (EnKF) in some detail, highlighting their links
with geostatistics. For the alternative case where no dynamic model is available,
the focus is on new classes of nonseparable space–time covariances that
enable kriging in a space–time domain. The chapter contains numerous other
additions such as potential field interpolation of orientation data, extraction of
the common part of two surveys using automatic factorial cokriging, maximum
autocorrelation factors, multivariate Matérn cross-covariance model, layer-cake
estimation including seismic information, compositional data with geometry
on the simplex.

Nonlinear methods and conditional simulations generally require a prelim-
inary transformation of the variable of interest into a variable with a specified
marginal distribution, usually a normal one. As this step is critical for the
quality of the results, it has been expanded and updated and now forms a
specific section of chapter 6 (Nonlinear methods). More elaborate methods than
the simple normal score transform are proposed. The presentation of the change
of support has been restructured. We now present each model at the global scale

fpref 28 January 2012; 13:3:53

x PREFACE TO THE SECOND EDITION



and then immediately continue with the local scale. Conditional expectation is
more detailed and accounts for a locally variable mean. The most widely used
change-of-support model, the discrete Gaussian model, is discussed in depth,
including the variant that appeared in the 2000s. Practical implementation
questions are examined: locally variable mean, selection on the basis of
future information (indirect resources), uniform conditioning. Finally this
chapter features a section on the change of support by the maximum, a topic
whose development in a spatial context is still in infancy but is important for
extreme-value studies.

Chapter 7 incorporates the numerous advances made in conditional simu-
lations in the last decade. The simulation of the fractional Brownian motion
and its extension to IRF–k’s, which was possible only in specific cases (regular
1D grid, or at the cost of an approximation) is now possible exactly. A new
insight into the Gibbs sampler enables the definition of a Gibbs propagation
algorithm that does not require inversion of the covariance matrix. Pluri-
Gaussian simulations are explained in detail and their use is illustrated in the
Brent cliff case study, which has been completely reworked to reflect current
practice (separable covariance models are no longer required). New simulation
methods are presented: stochastic process-based simulation, multi-point sim-
ulation, gradual deformation. The use of simulated annealing for building
conditional simulations has been completely revised. Stochastic seismic inver-
sion and Bayesian approaches are up-to-date. Upscaling is also discussed in
the chapter.

ACKNOWLEDGMENTS

Special acknowledgement is due to Christian Lantuéjoul for his meticulous
reading of Chapters 6 and 7, numerous helpful comments and suggestions, and
for writing the section on change of support by the maximum. We are also
greatly indebted to Jacques Rivoirard for many contributions and insights.
Thierry Coléou helped us with seismic applications and Henning Omre with
Bayesian methods. Xavier Freulon provided the top-cut gold grades example
and Hélène Beucher the revised simulation of the Brent cliff. Didier Renard
carried out calculations for new figures and Philippe Le Caër redrew the cover
figure. This second edition also benefits from fine remarks of some readers of
the first edition, notably Tilmann Gneiting, and from many informal discus-
sions with our colleagues of the Geostatistics group of MINES ParisTech.

We remain, of course, grateful to the individuals acknowledged in the
Preface to the first edition, and especially to Georges Matheron, who left us in
2000, but continues to be a source of inspiration.

Fontainebleau JEAN-PAUL CHILÈS

October 23, 2011 PIERRE DELFINER
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Preface to the First Edition

This book covers a relatively specialized subject matter, geostatistics, as it was
defined by Georges Matheron in 1962, when he coined this term to designate
his own methodology of ore reserve evaluation. Yet it addresses a larger audi-
ence, because the applications of geostatistics now extend to many fields in the
earth sciences, including not only the subsurface but also the land, the atmo-
sphere, and the oceans.

The reader may wonder why such a narrow subject should occupy so many
pages. Our intent was to write a short book. But this would have required us to
sacrifice either the theory or the applications. We felt that neither of these
options was satisfactory—there is no need for yet another introductory book,
and geostatistics is definitely an applied subject. We have attempted to reconcile
theory and practice by including application examples, which are discussed
with due care, and about 160 figures. This results in a somewhat weighty
volume, although hopefully more readable.

This book gathers in a single place a number of results that were either
scattered, not easily accessible, or unpublished. Our ambition is to provide the
reader with a unified view of geostatistics, with an emphasis on methodology.
To this end we detail simple proofs when their understanding is deemed
essential for geostatisticians, and we omit complex proofs that are too tech-
nical. Although some theoretical arguments may fall beyond the mathematical
and statistical background of practitioners, they have been included for the
sake of a complete and consistent development that the more theoretically
inclined reader will appreciate. These sections, as well as ancillary or advanced
topics, are set in smaller type.

Many references in this book point to the works of Matheron and the Center
for Geostatistics in Fontainebleau, which he founded at the Paris School of
Mines in 1967 and headed until his retirement in 1996. Without overlooking the
contribution of Gandin, Matérn, Yaglom, Krige, de Wijs, and many others, it
is from Matheron that geostatistics emerged as a discipline in its own right—a
body of concepts and methods, a theory, and a practice—for the study of
spatial phenomena. Of course this initial group spawned others, notably in
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Europe and North America, under the impetus of Michel David and André
Journel, followed by numerous researchers trained in Fontainebleau first, and
then elsewhere. This books pays tribute to all those who participated in the
development of geostatistics, and our large list of references attempts to give
credit to the various contributions in a complete and fair manner.

This book is the outcome of a long maturing process nourished by experi-
ence. We hope that it will communicate to the reader our enthusiasm for this
discipline at the intersection between probability theory, physics, and earth
sciences.

ACKNOWLEDGMENTS

This book owes more than we can say to Georges Matheron. Much of the
theory presented here is his work, and we had the privilege of seeing it in the
making during the years that we spent at the Center for Geostatistics. In later
years he always generously opened his door to us when we asked for advice on
fine points. It was a great comfort to have access to him for insight and support.
We are also indebted to the late Geoffrey S. Watson, who showed an early
interest in geostatistics and introduced it to the statistical community. He was
kind enough to invite one of the authors to Princeton University and, as an
advisory editor of the Wiley Interscience Series, made this book possible. We
wish he had been with us to see the finished product.

The manuscript of this book greatly benefited from the meticulous reading
and quest for perfection of Christian Lantuéjoul, who suggested many valuable
improvements. We also owe much to discussions with Paul Switzer, whose
views are always enlightening and helped us relate our presentation to main-
stream statistics. We have borrowed some original ideas from Jean-Pierre
Delhomme, who shared the beginnings of this adventure with us. Bernard
Bourgine contributed to the illustrations. This book could not have been
completed without the research funds of Bureau de Recherches Géologiques et
Minières, whose support is gratefully acknowledged.

We would like to express our thanks to John Wiley & Sons for their
encouragement and exceptional patience during a project which has spanned
many years, and especially to Bea Shube, the Wiley-Interscience Editor when
we started, and her successors Kate Roach and Steve Quigley.

Finally, we owe our families, and especially our dear wives Chantal and
Edith, apologies for all the time we stole from them, and we thank them for
their understanding and forebearance.

La Villetertre JEAN-PAUL CHILÈS

July 12, 1998 PIERRE DELFINER

fpref 28 January 2012; 13:3:53

xiv PREFACE TO THE FIRST EDITION



Abbreviations

ALC�k allowable linear combination of order k

c.d.f. cumulative density function

CK cokriging

DFT discrete Fourier transform

DGM1, DGM2 discrete Gaussian model 1, 2

DK disjunctive kriging

GC�k generalized covariance of order k

GLS generalized least squares

GV generalized variogram

i.i.d. independent and identically distributed

IRF intrinsic random function

IRF�k intrinsic random function of order k

KED kriging with external drift

MM1, MM2 Markov model 1, 2

m.s. mean square

m.s.e. mean square error

OK ordinary kriging

PCA principal component analysis

p.d.f. probability density function

RF random function

SK simple kriging

SRF stationary random function

UK universal kriging
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FIGURE 3.18 Continuous kriging neighborhood: (a) ordinary kriging surface obtained using a

standard moving neighborhood with radius R¼ 10; (b) ordinary kriging surface obtained using

a continuous moving neighborhood with radii r¼ 7.5 and R¼ 12.5. [From Rivoirard and Romary

(2011), with kind permission of the International Association for Mathematical Geosciences.]
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FIGURE 3.21 Vertical cross section through the block model along a gold vein. (a) Top view of

the deposit showing the trace of the cross-section and the position of the blast holes (drilling mesh

of 2.5 m perpendicular to the section and 5 m along the section); (b) Map of the indicator associated

with Z(x)$ 5 g/t, estimated by ordinary cokriging from truncated and indicator data; (c) Map of

truncated grade below a 5 g/t cutoff, estimated by ordinary cokriging from truncated and indicator

data; (d) Map of the final cokriging estimates obtained by recombining the indicator and the tru-

ncated grades by (3.71); (e) Map of direct ordinary kriging estimates of grades. Notice that the scale

of (c) ranges from 0 to 5 whereas that of (d) and (e) ranges from 0 to 10. [From Rivoirard et al.

(2012), with kind permission of the International Association for Mathematical Geosciences.]
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FIGURE 5.6 Potential field interpolation. Top: points at interfaces and structural data, sampled

on the topographic surface; bottom: vertical cross section through the 3D model. [From Courrioux

et al. (1998).]
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FIGURE 5.14 The common part S (center) of the two maps Z1 and Z2 (left) is extracted

by cokriging. Residuals (right) display noise and stripes due to acquisition footprints. [From

Coléou (2002).]
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FIGURE 5.16 Kriging of layer thicknesses constrained by a seismic total thickness map.

(a) Unconstrained ordinary kriging: total thickness is not reproduced; (b) constrained kriging

with uncertainty on total thickness: total thickness is partly reproduced; (c) constrained kriging with

no uncertainty on total thickness: total thickness is reproduced exactly. [From Haas et al. (1998).]
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(a)

(b) (c)

FIGURE 7.28 Simulation of a substitution RF by Markov coding of an RF with discontinuities

equal to 61: (a) stationary isotropic RF; (b) stationary anisotropic RF; (c) nonstationary RF.

[From C. Lantuéjoul, personal communication.]

FIGURE 7.32 Realizations of mosaic random functions derived from dead-leaves models:

(a) single-dead-leaves model (black poplar) with independent assignment of a value to each leaf;

(b) multi-dead-leaves model with value assignment depending on leaf species (alder, elm, oak,

poplar).
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FIGURE 7.47 Identification of the parameters of the pluri-Gaussian simulation model:

(a) vertical proportion curves; (b) facies substitution diagram; (c) sample variograms of facies

indicators and fits derived from the variograms of the two Gaussian SRFs. [Output from Isatiss.

From H. Beucher, personal communication.]
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Introduction

Geostatistics aims at providing quantitative descriptions of natural variables
distributed in space or in time and space. Examples of such variables are

� Ore grades in a mineral deposit

� Depth and thickness of a geological layer

� Porosity and permeability in a porous medium

� Density of trees of a certain species in a forest

� Soil properties in a region

� Rainfall over a catchment area

� Pressure, temperature, and wind velocity in the atmosphere

� Concentrations of pollutants in a contaminated site

These variables exhibit an immense complexity of detail that precludes a
description by simplistic models such as constant values within polygons, or
even by standard well-behaved mathematical functions. Furthermore, for eco-
nomic reasons, these variables are often sampled very sparsely. In the petroleum
industry, for example, the volume of rock sampled typically represents a minute
fraction of the total volume of a hydrocarbon reservoir. The following figures,
from the Brent field in the North Sea, illustrate the orders of magnitude of the
volume fractions investigated by each type of data (“cuttings” are drilling debris,
and “logging” data are geophysical measurements in a wellbore):

Cores 0.000 000 001

Cuttings 0.000 000 007

Logging 0.000 001

By comparison, if we used the same proportions for an opinion poll of the
100 million US households (to take a round number), we would interview only

Geostatistics: Modeling Spatial Uncertainty, Second Edition. J.P. Chilès and P. Delfiner.

r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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between 0.1 and 100 households, while 1500 is standard. Yet the economic
implications of sampling for natural resources development projects can be
significant. The cost of a deep offshore development is of the order of 10 billion
dollars. Similarly, in the mining industry “the decision to invest up to 1�2
billion dollars to bring amajor newmineral deposit on line is ultimately based on
a very judicious assessment of a set of assays from a hopefully very carefully
chosen and prepared group of samples which can weigh in aggregate less than
5 to 10 kilograms” (Parker, 1984).

Naturally, these examples are extreme. Such investment decisions are based
on studies involving many disciplines besides geostatistics, but they illustrate the
notion of spatial uncertainty and how it affects development decisions. The fact
that our descriptions of spatial phenomena are subject to uncertainty is now
generally accepted, but for a time it met with much resistance, especially from
engineers who are trained to work deterministically. In the oil industry there
are anecdotes of managers who did not want to see uncertainty attached to
resources estimates because it did not look good—it meant incompetence. For
job protection, it was better to systematically underestimate resources. (Ordered
by his boss to get rid of uncertainty, an engineer once gave an estimate of
proven oil resources equal to the volume of oil contained in the borehole!)
Such conservative attitude led to the abandonment of valuable prospects. In
oil exploration, profit comes with risk.

Geostatistics provides the practitioner with amethodology to quantify spatial
uncertainty. Statistics come into play because probability distributions are the
meaningful way to represent the range of possible values of a parameter of
interest. In addition, a statisticalmodel is well-suited to the apparent randomness
of spatial variations. The prefix “geo” emphasizes the spatial aspect of the
problem. Spatial variables are not completely random but usually exhibit some
form of structure, in an average sense, reflecting the fact that points close in space
tend to assume close values. G. Matheron (1965) coined the term regionalized
variable to designate a numerical function z(x) depending on a continuous space
index x and combining high irregularity of detail with spatial correlation.
Geostatistics can then be defined as “the application of probabilistic methods
to regionalized variables.” This is different from the vague usage of the word in
the sense “statistics in the geosciences.” In this book, geostatistics refers to a
specific set of models and techniques, largely developed by G. Matheron, in the
lineage of the works of L. S. Gandin inmeteorology, B.Matérn in forestry, D.G.
Krige and H. J. de Wijs in mining, and A. Y. Khinchin, A. N. Kolmogorov,
P. Lévy, N. Wiener, A. M. Yaglom, among others, in the theory of stochastic
processes and random fields. We will now give an overview of the various
geostatistical methods and the types of problems they address and conclude by
elaborating on the important difference between description and interpretation.

TYPES OF PROBLEMS CONSIDERED

The presentation follows the order of the chapters. For specificity, the problems
presented refer to the authors’ own background in earth sciences applications,
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but newcomers with different backgrounds and interests will surely find
equivalent formulations of the problems in their own disciplines. Geostatistical
terms will be introduced and highlighted by italics.

Epistemology

The quantification of spatial uncertainty requires a model specifying the
mechanism by which spatial randomness is generated. The simplest approach is
to treat the regionalized variable as deterministic and the positions of the
samples as random, assuming for example that they are selected uniformly and
independently over a reference area, in which case standard statistical rules for
independent random variables apply, such as that for the variance of the mean.
If the samples are collected on a systematic grid, they are not independent and
things become more complicated, but a theory is possible by randomizing the
grid origin.

Geostatistics takes the bold step of associating randomness with the region-
alized variable itself, by using a stochastic model in which the regionalized var-
iable is regarded as one among many possible realizations of a random function.
Some practitioners dispute the validity of such probabilistic approach on the
grounds that the objects we deal with—a mineral deposit or a petroleum
reservoir—are uniquely deterministic. Probabilities and their experimental
foundation in the famous “law of large numbers” require the possibility of
repetitions, which are impossible with objects that exist unambiguously in
space and time. The objective meaning and relevance of a stochastic model
under such circumstances is a fundamental question of epistemology that
needs to be resolved. The clue is to carefully distinguish the model from the
reality it attempts to capture. Probabilities do not exist in Nature but only in
our models. We do not choose to use a stochastic model because we believe
Nature to be random (whatever that may mean), but simply because it is ana-
lytically useful. The probabilistic content of our models reflects our imperfect
knowledge of a deterministic reality. We should also keep in mind that models
have their limits and represent reality only up to a certain point. And finally, no
matter what we do and how carefully we work, there is always a possibility that
our predictions and our assessments of uncertainty turn out to be completely
wrong, because for no foreseeable reason the phenomenon at unknown places
is radically different than anything observed (what Matheron calls the risk of
a “radical error”).

Structural Analysis

Having observed that spatial variability is a source of spatial uncertainty, we
have to quantify and model spatial variability. What does an observation at
a point tell us about the values at neighboring points? Can we expect continuity
in a mathematical sense, or in a statistical sense, or no continuity at all? What
is the signal-to-noise ratio? Are variations similar in all directions or is there
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anisotropy? Do the data exhibit any spatial trend? Are there characteristic
scales and what do they represent? Is the histogram symmetric or skewed?

Answering these questions, among others, is known in geostatistics as
structural analysis. One key tool is a structure function, the variogram, which
describes statistically how the values at two points become different as the
separation between these points increases. The variogram is the simplest way to
relate uncertainty with distance from an observation. Other two-point structure
functions can be defined that, when considered together, provide further
clues for modeling. If the phenomenon is spatially homogeneous and densely
sampled, it is even possible to go beyond structure functions and determine
the complete bivariate distributions of measurements at pairs of points. In
applications there is rarely enough data to allow empirical determination of
multiple-point statistics beyond two points, a notable exception being when the
data are borrowed from training images.

Survey Optimization

In resources estimation problems the question arises as to which sampling
pattern ensures the best precision. The variogram alone permits a comparison
between random, random stratified, and systematic sampling patterns. Opti-
mizing variogram estimation may actually be a goal in itself. In practice the
design is often constrained by operational and economic considerations, and
the real question is how to optimize the parameters of the survey. Which grid
mesh should be used to achieve a required precision? What is the optimal
spacing between survey lines? What is the best placement for an additional
appraisal well? Does the information expected from acquiring or processing
more data justify the extra cost and delay? What makes life interesting is that
these questions must be answered, of course, prior to acquiring the data.

Interpolation

We often need to estimate the values of a regionalized variable at places where
it has not been measured. Typically, these places are the nodes of a regular grid
laid out on the studied domain, the interpolation process being then sometimes
known as “gridding.” Once grids are established, they are often used as the
representation of reality, without reference to the original data. They are the
basis for new grids obtained by algebraic or Boolean operations, contour maps,
volumetric calculations, and the like. Thus the computation of grids deserves
care and cannot rely on simplistic interpolation methods.

The estimated quantity is not necessarily the value at a point; in many cases
a grid node is meant to represent the grid cell surrounding it. This is typical for
inventory estimation or for numerical modeling. Then we estimate the mean
value over a cell, or a block, and more generally some weighted average.

In all cases we wish our estimates to be “accurate.” This means, first, that on
the average our estimates are correct; they are not systematically too high or
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too low. This property is captured statistically by the notion of unbiasedness. It
is especially critical for inventory estimation and was the original motivation
for the invention of kriging. The other objective is precision, and it is quantified
by the notion of error variance, or its square root the standard error, which is
expressed in the same units as the data.

The geostatistical interpolation technique of kriging comes in different fla-
vors qualified by an adjective: simple kriging, ordinary kriging, universal kriging,
intrinsic kriging, and so on, depending on the underlying model. The general
approach is to consider a class of unbiased estimators, usually linear in the
observations, and to find the one with minimum uncertainty, as measured by
the error variance. This optimization involves the statistical model established
during the structural analysis phase, and there lies the fundamental difference
with standard interpolation methods: These focus on modeling the interpo-
lating surface, whereas geostatistics focuses on modeling the phenomenon
itself.

Polynomial Drift

Unexpected difficulties arise when the data exhibit a spatial trend, which in
geostatistical theory is modeled as a space-varying mean called drift. The
determination of the variogram in the presence of a drift is often problematic
due to the unclear separation between global and local scales. The problem
disappears by considering a new structural tool, the generalized covariance,
which is associated with increments of order k that filter out polynomial drifts,
just like ordinary increments filter out a constant mean. When a polynomial
drift is present, the generalized covariance is the minimum parametric infor-
mation required for kriging. An insightful bridge with radial basis function
interpolation, including thin plate splines, can be established.

Intrinsic random functions of order k (IRF�k), which are associated with
generalized covariances, also provide a class of nonstationary models that are
useful to represent the nonstationary solutions of stochastic partial differential
equations such as found in hydrogeology.

Integration of Multiparameter Information

In applications the greatest challenge is often to “integrate” (i.e., combine)
information from various sources. To take a specific example, a petroleum
geologist must integrate into a coherent geological model information from
cores, cuttings, open-hole well logs, dip and azimuth computations, electrical
and acoustic images, surface and borehole seismic, and well tests. The rule of
the game is: “Don’t offend anything that is already known.” Geostatistics and
multivariate statistical techniques provide the framework and the tools to build
a consistent model.

The technique of cokriging generalizes kriging to multivariate interpolation.
It exploits the relationships between the different variables as well as the spatial
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structure of the data. An important particular case is the use of slope infor-
mation in conjunction with the variable itself. When the implementation of
cokriging requires a statistical inference beyond reach, shortcuts can be used.
The most popular ones are the external drift method and collocated cokriging,
which use a densely sampled auxiliary field to compensate for the scarcity of
observations of the variable of interest.

Spatiotemporal Problems

Aside from geological processes which are so slow that time is not a factor,
most phenomena have both a space and a time component. Typical examples
are meteorological variables or pollutant concentrations, measured at different
time points and space locations. We may wish to predict these variables at a
new location at a future time.

One possibility is to perform kriging in a space�time domain using
spatiotemporal covariance models. New classes of nonseparable stationary
covariance functions have been developed in the recent years that allow
space�time interaction.

Alternatively, if a physical model is available to describe the time evolution
of the system, the techniques of data assimilation can be used—and in particular
the ensemble Kalman filter (EnKF), which has received much attention.

Indicator Estimation

We are interested in the event: “at a given point x the value z(x) exceeds the
level z0.” We can think of z0 as a pollution alert threshold, or a cutoff grade in
mining. The event can be represented by a binary function, the indicator
function, valued 1 if the event is true, and zero if it is false, whose expected value
is the probability of the event “z(x) exceeds z0.” Note that the indicator is a
nonlinear function of the observation z(x). The mean value of the indicator
over a domain V represents the fraction of V where the threshold is exceeded.
When we vary the threshold, it appears that indicator estimation amounts to
the determination of the histogram or the cumulative distribution function of
the values of z(x) within V. The interesting application is to estimate this locally
over a subdomain v to obtain a local distribution function reflecting the values
observed in the vicinity of v.Disjunctive kriging, a nonlinear technique based on
a careful modeling of bivariate distributions, provides a solution to this difficult
problem.

Selection and Change-of-Support Problems

The support of a regionalized variable is the averaging volume over which the
data are measured or defined. Typically, there are point values and block values,
or high-resolution and low-resolution measurements. As the size of the sup-
port changes, the histogram of the variable is deformed, but there is no
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straightforward relationship between the distributions of values measured over
two different supports, except under very stringent Gaussian assumptions. For
example, ore sample grades and blocks grades cannot both be exactly log-
normally distributed—although they might as approximations. Predicting the
change of distribution when passing from one size of support to another,
generally point to block, is the change of support problem. Specific isofactorial
models are proposed to solve this problem.

Change of support is central in inventory estimation problems in which the
resource is subject to selection. Historically, the most important application has
been in mining, where the decision to process the ore or send it to waste,
depending on its mineral content, is made at the level of a block, say a cube of
10-m side, rather than, say, a teaspoon. The recoverable resources then depend
on the local distributions of block values. Modeling the effect of selection may
be a useful concept in other applications, such as the delineation of producing
beds in a petroleum reservoir, the remediation of contaminated areas, or the
definition of pollution alert thresholds.

Simulation

Kriging, as any reasonable interpolation method, has a smoothing effect. It does
not reproduce spatial heterogeneity. In the world of images we would say that it
is not true to the “texture” of the image. This can cause significant biases when
nonlinear effects are involved. To take a simple example, compare the length of
an interpolated curve with the length of the true curve: It is much shorter—the
true curve may not even have a finite length! Similarly, for the same average
permeability, a porous medium has a very different flow behavior if it is
homogeneous or heterogeneous.

This is where the stochastic nature of the model really comes into play. The
formalism of random functions involves a family of alternative realizations
similar in their spatial variability to the reality observed but different other-
wise. By simulation techniques it is possible to generate some of these “virtual
realities” and produce pictures that are true to the fluctuations of the phe-
nomenon. A further step toward realism is to constrain the realizations to
pass through the observed data, thus producing conditional simulations. By
generating several of these digital models, we are able to materialize spatial
uncertainty. Then if we are interested in some quantity that depends on the
spatial field in a complex manner, such as modeling fluid flow in a porous
medium, we can compute a result for each simulation and study the statis-
tical distribution of the results. A typical application is the determination of
scaling laws.

Iterative methods based on Markov chain Monte Carlo enable conditioning
non-Gaussian random functions and constraining simulations on auxiliary
information such as seismic data and production data in reservoir engineer-
ing. These methods provide an essential contribution to stochastic inverse
modeling.
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Problems Omitted

A wide class of spatial problems concerns the processing and analysis of ima-
ges. This is a world by itself, and we will not enter it, even though there will be
occasional points of contact. An image analysis approach very much in line
with geostatistics, and developed in fact by the same group of researchers, is
Mathematical Morphology [see Serra (1982)]. Variables regionalized in time
only will also be left out. Even though geostatistical methods apply, the types of
problems considered are often of an electrical engineering nature and are better
handled by digital signal processing techniques.

Finally, the study of point patterns (e.g., the distribution of trees in a forest)
and the modeling of data on a lattice or on a graph are intentionally omitted
from this book. The reader is referred to Cressie (1991) for a comprehensive
overview of the first two approaches, to Guyon (1995) for a presentation of
Markov fields on a lattice, and to Jordan (1998, 2004) for graphical models.

DESCRIPTION OR INTERPRETATION?

Geostatistical methods are goal-oriented. Their purpose is not to build an
explanatory model of the world but to solve specific problems using the min-
imal prerequisites required, following the principle of parsimony. They are
descriptive rather than interpretive models. We illustrate this important point
with an example borrowed from contour mapping.

Mathematically inclined people—including the present authors—have long
thought that computer mapping was the definitive, clean, and objective
replacement of hand contouring. Hand-drawn maps are subjective; they can be
biased consciously or unconsciously. Even when drafted honestly, they seem
suspect: If two competent and experienced interpreters can produce different
maps from the same data, why should one believe any of them? And of course
there is always the possibility of a gross clerical error such as overlooking or
misreading some data points. By contrast, computer maps have all the attri-
butes of respectability: They don’t make clerical mistakes, they are “objective,”
reproducible, and fast. Yet this comparison misses an important point: It
neglects the semantic content of a map. For a geologist, or a meteorologist, a
map is far more than a set of contours: It represents the state of an interpre-
tation. It reflects the attempt of its author to build a coherent picture of the
geological object, or the meteorological situation, of interest.

This is demonstrated in a striking manner by a synthetic sedimentological
example constructed by O. Serra, a pioneer in the geological interpretation of
well logs. He considered a regular array of wells (the favorable case) and
assigned them sand thickness values, without any special design, in fact using
only the round numbers 0, 10, 20, 30. From this data set he derived four very
different isopach maps. Figure 0.1a pictures the sand body as a meandering
channel; Figure 0.1b as an infill channel with an abrupt bank to the east;
Figure 0.1c as a transgressive sand filling paleo-valleys; and Figure 0.1d as a
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FIGURE 0.1 Four interpretations of the same synthetic data (hand-drawn isopach maps):

(a) meandering channel; (b) infill channel; (c) transgressive sand filling paleo-valleys; (d) barrier

bar eroded by a tidal channel. (From O. Serra, personal communication.)
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barrier bar eroded by a tidal channel. Each of these maps reflects a different
depositional environment model, which was on the interpreter’s mind at the
time and guided his hand.

Geostatistical models have no such explanatory goals. They model mathe-
matical objects, a two-dimensional isopach surface, for example, not geological
objects. The complex mental process by which a geologist draws one of the
above maps can better be described as pattern recognition than as interpolation.
Compared with this complexity, interpolation algorithms look pathetically
crude, and this is why geological maps are still drawn by hand. To the geos-
tatistician’s comfort, the fact that widely different interpretations are consistent
with the same data makes them questionable. For one brilliant interpretation
(the correct one), how many “geofantasies” are produced?

Another way to qualify description versus interpretation is to oppose
data-driven and model-driven techniques. Traditionally, geostatistics has been
data-driven rather than model-driven: It captures the main structural features
from the data, and knowledge of the subject matter does not have much impact
beyond the selection of a variogram model. Therefore it cannot discriminate
between several plausible interpretations. We can, however, be less demanding
and simply require geostatistics to take external knowledge into account, and in
particular an interpretation proposed by a physicist or a geologist. The current
trend in geostatistics is precisely an attempt to include physical equations and
model-specific constraints.

Hydrogeologists, who sought ways of introducing spatial randomness in
aquifer models, have pioneered the research to incorporate physical equations
in geostatistical models. Petroleum applications where data are scarce initially
have motivated the development of object-based models. For example, channel
sands are simulated directly as sinusoidal strips with an elliptic or rectangular
cross section. This is still crude, but the goal is clear: Import geological concepts
to the mapping or simulation processes. We can dream of a system that would
find “the best” meandering channel consistent with a set of observations.
Stochastic process-based models work in this direction.

To summarize, the essence of the geostatistical approach is to (a) recognize
the inherent variability of natural spatial phenomena and the fragmentary
character of our data and (b) incorporate these notions in a model of a sto-
chastic nature. It identifies the structural relationships in the data and uses
them to solve specific problems. It does not attempt any physical or genetic
interpretations but uses them as much as possible when they are available.
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C H A P T E R 1

Preliminaries

1.1 RANDOM FUNCTIONS

G. de Marsily started the defense of his hydrogeology thesis by showing the
audience a jar filled with fine sand and announced “here is a porous medium.”
Then he shook the jar and announced “and here is another,” shook it again and
said “and yet another.” Indeed, at the microscopic scale the geometry is defined
by the arrangement of thousands of individual grains with different shapes and
dimensions, and it changes as the grains settle differently each time. Yet at the
macroscopic scale we tend to regard it as the same porous medium because its
physical properties do not change. This is an ingenious illustration of the
notion of a random function in three-dimensional space.

Random functions are useful models for regionalized variables.

1.1.1 Definitions

Notations

Throughout this book the condensed notation x is used to denote a point in the
n-dimensional space considered. For example, in 3D x stands for the coordi-
nates (x1, x2, x3) (usually called x, y, z). The notation f(x) represents a function
of x as well as its value at x. The notation f is used for short, and sometimes the
notation f(�) is employed to emphasize that we consider the function taken as a
whole and not its value at a single point. Since x is a point in Rn, dx stands for
an element of length (n¼ 1), of surface (n¼ 2), or volume (n¼ 3) and

R
V
f ðxÞdx

represents the integral of f(x) over a domain V�Rn. For example, if n¼ 2 and
V is the rectangle [a1, b1]� [a2, b2], we obtain

Z
V

f ðxÞdx ¼
Z b1

a1

dx1

Z b2

a2

f ðx1; x2Þdx2

Geostatistics: Modeling Spatial Uncertainty, Second Edition. J.P. Chilès and P. Delfiner.

r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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We will seldom need an explicit notation for the coordinates of a point; thus
from now on, except when stated otherwise, x1, x2, . . . , will represent distinct
points in Rn rather than the coordinates of a single point.

Coming back to the sand jar, we can describe the porous medium by the
indicator function of the grains, namely the function I(x)¼ 1 if the point x (in
3D space) is in a grain and I(x)¼ 0 if x is in a void (the pores). Each exper-
iment (shaking the jar) determines at once a whole function {I(x) : x2V} as
opposed to, say, throwing a die that only determines a single value (random
variable). In probability theory it is customary to denote the outcome of an
experiment by the letter ω and the set of all elementary outcomes, or events, by
Ω. To make the dependence on the experiment explicit, a random variable is
denoted by X(ω), and likewise our random indicator function is I(x,ω). For a
fixed ω¼ω0, I(x, ω0) is an ordinary function of x, called a realization (or
sample function); any particular outcome of the jar-shaking experiment is a
realization of the random function I(x, ω). On the other hand, for a fixed point
x¼ x0 the function I(x0, ω) is an ordinary random variable. Thus mathemat-
ically a random function can be regarded as an infinite family of random
variables indexed by x.

We can now give a formal definition of a random function [from Neveu
(1970), some details omitted; see also Appendix, Section A.1]:

Random Function

Given a domain D�Rn (with a positive volume) and a probability space (Ω, A,
P), a random function (abbreviation: RF) is a function of two variables Z(x, ω)
such that for each x2D the section Z(x, �) is a random variable on (Ω, A, P).
Each of the functions Z(�,ω) defined on D as the section of the RF at ω2Ω is
a realization of the RF. For short the RF is simply denoted by Z(x), and a
realization is represented by the lowercase z(x).

In the literature a random function is also called a stochastic process when x
varies in a 1D space, and can be interpreted as time, and it is called a random
field when x varies in a space of more than one dimension.

In geostatistics we act as though the regionalized variable under study z(x) is a
realization of a parent random function Z(x). Most of the time we will not be
able tomaintain the notational distinction betweenZ(x) and z(x), andwewill get
away with it by saying that the context should tell what is meant. The same is
true for the distinction between an estimator (random) and an estimate (fixed).

Spatial Distribution

A random function is described by its finite-dimensional distributions, namely
the set of all multidimensional distributions of k-tuples (Z(x1),Z(x2), . . . ,
Z(xk)) for all finite values of k and all configurations of the points x1, x2, . . . , xk.
For short we will call this the spatial distribution.

In theory, the spatial distribution is not sufficient to calculate the probability
of events involving an infinite noncountable number of points, such as the
following important probabilities:
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Prfsup½ZðxÞ : x 2 V�, z0g the maximum value inV is less than z0
Prf9x 2 V : ZðxÞ ¼ 0g a zero crossing occurs in domain V
Prfevery realization of Zð�Þ is continuous over Vg

This difficulty is overcome by adding the assumption of separability of the
random function. A random function is separable if all probabilities involving a
noncountable number of points can be uniquely determined from probabilities
on countable sets of points (e.g., all points in Rn with rational coordinates), and
hence from the spatial distribution. A fundamental result established by Doob
(1953, Section 2.2) states that for any random function there always exists a
separable random function with the same spatial distribution. In other words,
among random functions that are indistinguishable from the point of view of
their spatial distribution, we pick and work with the smoothest possible version
(see footnote 3 in Section 2.3.1). For completeness let us also mention that tools
more powerful than the spatial distribution are required to represent random
sets [e.g., Matheron (1975a)] but will not be needed in this book.

Moments

The mean of the RF is the expected value m(x)¼E [Z(x)] of the random var-
iable Z(x) at the point x. It is also called the drift of Z, especially when m(x)
varies with location. The (centered) covariance σ(x, y) is the covariance of the
random variables Z(x) and Z(y):

σðx; yÞ ¼ E½ZðxÞ �mðxÞ�½ZðyÞ �mðyÞ�
In general, this function depends on both x and y. When x¼ y, σ(x, x)¼
Var Z(x) is the variance ofZ(x). Higher-ordermoments can be defined similarly.

Naturally, in theory, these moments may not exist. As usual in probability
theory, the mean is defined only if E |Z(x)|,N. If E [Z(x)]2 is finite at every
point, Z(x) is said to be a second-order random function: It has a finite vari-
ance, and the covariance exists everywhere.

Convergence in the Mean Square

A sequence of random variables Xn is said to converge in the mean square (m.s.)
sense to a random variable X if

lim
n-N

EjXn � X j2 ¼ 0

Taking Xn¼Z(xn) and X¼Z(x), we say that an RF Z(x) on Rn is m.s. con-
tinuous if xn- x in Rn implies that Z(xn)-Z(x) in the mean square. This
definition generalizes the continuity of ordinary functions.

1.1.2 Hilbert Space of Random Variables

It is interesting to cast the study of random functions in the geometric frame-
work of Hilbert spaces. To this end, consider for maximum generality a family
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of complex-valued random variables X defined on a probability space (Ω, A, P)
and having finite second-order moments

EjX j2 ¼
Z

jXðωÞj2PðdωÞ,N

These random variables constitute a vector space denoted L2(Ω, A, P) which
can be equipped with the scalar product hX ;Yi ¼ E½XY � defining a norm1 (or
distance) kXk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
EjX j2

p
(the upper bar denotes complex conjugation). In this

sense we can say that two random variables are orthogonal when they are
uncorrelated. Then L2(Ω, A, P) is a Hilbert space (every Cauchy sequence
converges for the norm). An example is the infinite-dimensional Hilbert space
of random variables {Z(x) : x2D} defined by the RF Z.

A fundamental property of a Hilbert space is the possibility of defining the
orthogonal projection of X onto a closed linear subspace K as the unique point
X0 in the subspace nearest to X. This is expressed by the so-called projection
theorem [e.g., Halmos (1951)]:

X0 ¼ arg min
Y2K

:X � Y: 3 hX � X0;Yi ¼ 0 for all Y 2 K ð1:1Þ

Since X02K, it satisfies hX�X0, X0i¼ 0 so that

:X � X0:
2 ¼ :X:2 � :X0:

2 ð1:2Þ

This approximation property is the mathematical basis of kriging theory.

1.1.3 Conditional Expectation

Consider a pair of random variables (X, Y), and let f (y | x) be the density of the
conditional distribution of Y given that X¼ x. The conditional expectation of Y
given X¼ x is the mean of that conditional distribution

EðY jX ¼ xÞ ¼
Z þN

�N
y f ðy j xÞ dy

E (Y |X¼ x)¼φ(x) is a function of x only, even though Y appears in the
expression. It is also known as the regression function of Y on X. When (X, Y)
are jointly Gaussian,2 this function is a straight line. If the argument of φ(�) is
the random variable X, φ(X) is itself a random variable denoted by E (Y |X).
This definition carries over to the case where there are several conditioning
variables X1, . . . ,XN.

1 Strictly speaking, :X:¼ 0 implies that X¼ 0 only up to a set of probability zero, but as usual,

equivalence classes of random variables are considered.
2 “Gaussian” and “normal” will be used as synonyms.
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It is possible to develop a theory of conditional expectations without ref-
erence to conditional distributions, and this is mathematically better and
provides more insight. The idea is to find the best approximation of Y by a
function of X. Specifically, we assume X and Y to have finite means and var-
iances and pose the following problem: Find a function φ(X) such that
E[Y�φ(X)]2 is a minimum. The solution is the conditional expectation E(Y|X).

This solution is unique (up to an equivalence between random variables) and
is characterized by the following property:

Ef½Y � EðY j XÞ�HðXÞg ¼ 0 for all measurable Hð�Þ ð1:3Þ

In words, the error Y�E (Y |X) is uncorrelated3 with any finite-variance ran-
dom variable of the form H(X). Notice that this is a particular application of
the projection formula (1.1).

In particular, when H(X) � 1, we get

E½EðY jXÞ� ¼ EðYÞ ð1:4Þ

The conditional variance is defined by

VarðY jXÞ ¼ EðY2 jXÞ � ½EðY jXÞ�2

from which we deduce the well-known total variance formula

VarðYÞ ¼ Var½EðY jXÞ� þ E½VarðY jXÞ� ð1:5Þ

The variance about the mean equals the variance due to regression plus the
mean variance about regression.

For H(X)¼E(Y |X) we have

Ef½Y � EðY jXÞ�EðY jXÞg ¼ 0

so that

CovðY ;EðY jXÞÞ ¼ VarðEðY jXÞÞ

which shows that Y and E (Y |X) are always positively correlated with

ρ2 ¼ VarðEðY jXÞÞ
VarðYÞ ð1:6Þ

From (1.5) the residual variance takes the familiar form

3This does not imply independence between the error and X; if X¼Y2, Y symmetric about 0,

E(Y |X)¼ 0, but Y is not independent of X.
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E½VarðY jXÞ� ¼ ð1� ρ2ÞVarðYÞ ð1:7Þ

(note that here ρ is not the correlation between Y and X but between Y and its
regression on X ).

In addition to the unbiasedness property, let us mention the property of
conditional unbiasedness, which we will often invoke in this book in relation to
kriging:

φðXÞ ¼ EðY jXÞ . EðY j φðXÞÞ ¼ φðXÞ

The proof follows immediately from the characteristic property (1.3), since

Ef½Y � φðXÞ�HðXÞg ¼ 0 for all measurable Hð�Þ

entails that φ(X) also satisfies

Ef½Y � φðXÞ�HðφðXÞÞg ¼ 0 for all measurable Hð�Þ

Some Properties of Conditional Expectation

The following results can be derived directly from the characteristic formula
and are valid almost surely (a.s.):

Linearity E (aY1þ bY2 |X )¼ aE (Y1 |X )þ bE (Y2 |X )

Positivity Y$ 0 a.s. . E (Y |X )$ 0 a.s.

Independence X and Y are independent.E (Y |X )¼E(Y )

Invariance E(Y f (X ) |X )¼ f (X ) E(Y |X )

Successive projections E (Y |X1)¼E[E (Y |X1, X2) |X1]

1.1.4 Stationary Random Functions

Strict Stationarity

A particular case of great practical importance is when the finite-dimensional
distributions are invariant under an arbitrary translation of the points by a
vector h:

PrfZðx1Þ, z1; : : : ;ZðxkÞ, zkg ¼ PrfZðx1 þ hÞ, z1; : : : ;Zðxk þ hÞ, zkg

Such RF is called stationary. Physically, this means that the phenomenon is
homogeneous in space and, so to speak, repeats itself in the whole space. The
sand in the jar is a good image of a stationary random function in three
dimensions, at least if the sand is well sorted (otherwise, if the jar vibrates,
the finer grains will eventually seep to the bottom, creating nonstationarity
in the vertical dimension).
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Second-Order Stationarity

When the random function is stationary, its moments, if they exist, are obvi-
ously invariant under translations. If we consider the first two moments only,
we have for points x and xþ h of Rn

E½ZðxÞ� ¼ m;

E½ZðxÞ �m�½Zðxþ hÞ �m� ¼ CðhÞ

The mean is constant and the covariance function only depends on the sepa-
ration h. We will see in Section 2.3.2 that a covariance must be a positive definite
function.

By definition, a random function satisfying the above conditions is second-
order stationary (or weakly stationary, or wide-sense stationary). In this book,
unless specified otherwise, stationarity will always be considered at order 2, and
the abbreviation SRFwill designate a second-order stationary random function.

An SRF is isotropic if its covariance function only depends on the length | h |
of the vector h and not on its orientation.

Intrinsic Hypothesis

A milder hypothesis is to assume that for every vector h the increment Yh(x)¼
Z(xþ h)�Z(x) is an SRF in x. Then Z(x) is called an intrinsic random function
(abbreviation: IRF) and is characterized by the following relationships:

E½Zðxþ hÞ � ZðxÞ� ¼ ha; hi;
Var½Zðxþ hÞ � ZðxÞ� ¼ 2γðhÞ

ha, hi is the linear drift of the IRF (drift of the increment) and γ(h) is its
variogram function, studied at length in Chapter 2.

If the linear drift is zero—that is, if the mean is constant—we have the usual
form of the intrinsic model:

E½Zðxþ hÞ � ZðxÞ� ¼ 0;

E½Zðxþ hÞ � ZðxÞ�2 ¼ 2γðhÞ

Gaussian Random Functions

A random function is Gaussian if all its finite-dimensional distributions are
multivariate Gaussian. Since a Gaussian distribution is completely defined by
its first two moments, knowledge of the mean and the covariance function
suffices to determine the spatial distribution of a Gaussian RF. In particular,
second-order stationarity is equivalent to full stationarity.

A Gaussian IRF is an IRF whose increments are multivariate Gaussian.
A weaker form of Gaussian behavior is when all bivariate distributions of the

RFareGaussian; theRF is then sometimes called bi-Gaussian. A yetweaker form
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is whenonly themarginal distribution ofZ(x) isGaussian.This bynoway implies
that Z(x) is a Gaussian RF, but this leap of faith is sometimes made.

1.1.5 Spectral Representation

The spectral representation of SRFs plays a key role in the analysis of time signals. It states
that a stationary signal is a mixture of statistically independent sinusoidal components at
different frequencies. These basic harmonic constituents can be identified physically by means
of filters that pass oscillations in a given frequency interval and stop others. This can also be
done digitally using the discrete Fourier transform.

In the case of spatial processes the physical meaning of frequency components is generally
less clear, but the spectral representation remains a useful theoretical tool, especially for
simulations. For generality and in view of future reference we will state the main results in Rn,
which entails some unavoidable mathematical complication.

Theorem. A real, continuous, zero-mean RF defined on Rn is stationary (of order 2) if and
only if it has the spectral representation

ZðxÞ ¼
Z

e2πihu;xiYðduÞ ð1:8Þ

for some unique orthogonal random spectral measure Y(du) (see Appendix, Section A.1). Here
i is the unit pure imaginary number, u¼ (u1, . . . , un) denotes an n-dimensional frequency
vector, du is an element of volume in Rn, x¼(x1, . . . ,xn) is a point of Rn, and hu, xi¼
u1x1þ � � � þ un xn is the scalar product of x and u.

For any Borel sets B and B 0 of Rn, the measure Y satisfies

E½YðBÞ� ¼ 0

E½YðBÞYðB 0Þ� ¼ 0 if B-B 0 ¼ [

YðB,B 0Þ ¼ YðBÞ þ YðB 0Þ if B-B 0 ¼ [

Z(x) being real, we have in addition the symmetry relation Yð�BÞ ¼ YðBÞ, where�B denotes
the symmetric of B with respect to the origin. Note that the random variables associated with
disjoint sets B and B 0 are uncorrelated, hence the name orthogonal measure.

Now define F(B)¼E|Y(B)|2. F is a positive bounded symmetric measure called the spectral
measure. We have in particular

FðB,B 0Þ ¼ FðBÞ þ FðB 0Þ if B-B 0 ¼ [

E½YðBÞYðB 0Þ� ¼ FðB-B 0Þ

It follows readily from (1.8) and the symmetry of F that the covariance of Z(x) has the
spectral representation

CðhÞ ¼ E½ZðxÞZðxþ hÞ� ¼
Z

e2πihu;hiFðduÞ

For time signals, the power of the RF Z(x), which is the energy dissipated per unit time, is
generally proportional toZ(x)2. If the SRFhas zeromean,C(0) is equal toE [Z(x)2] and plays the
role of an average power, and the measure F represents the decomposition of this power into
the different frequencies. Note that the integral

R
FðduÞ of the spectral measure is equal to the

total power C(0).
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Real Spectral Representation

It is interesting to separate the real and imaginary parts of the random spectral measure Y
in the form

YðBÞ ¼ UðBÞ � i VðBÞ
where U and V are two real random measures (notice the �i in the definition of V ). From the
properties of Y, we can deduce the following properties that will be useful for simulations:

Uð�BÞ ¼ UðBÞ Vð�BÞ ¼ �VðBÞ
E½UðBÞUðB 0Þ� ¼ E½VðBÞVðB 0Þ� ¼ 0 if B-B 0 ¼ B-ð�B 0Þ ¼ [

E½UðBÞVðB 0Þ� ¼ 0 ’B;B 0

E
�
UðBÞ2� ¼ E

�
VðBÞ2� ¼ FðBÞ=2 if f0g =2 B

E
�jUðf0gÞj2� ¼ Fðf0gÞ Vðf0gÞ ¼ 0

ð1:9Þ

Also, Z(x) has the representation

ZðxÞ ¼
Z

cosð2πhu;xiÞUðduÞ þ
Z

sinð2πhu;xiÞVðduÞ

1.1.6 Ergodicity

Ergodicity is an intimidating concept. The practitioner has heard that the RF
should be ergodic, since “this is what makes statistical inference possible,” but
he or she is not sure how to check this fact and proceeds anyway, feeling
vaguely guilty of having perhaps overlooked something very important. We
will attempt here to clarify the issues. In practice, ergodicity is never a problem.
When no replication is possible, as with purely spatial phenomena, we can
safely choose an ergodic model. If the phenomenon is repeatable, typically
time-dependent fields or simulations, averages are computed over the different
realizations, and the only issue (more a physical than a mathematical one) is to
make sure that we are not mixing essentially different functions.

A detailed discussion of ergodicity can be found in Yaglom (1987, Vol. I,
Chapter 3), and an analysis of its meaning in the context of unique phenomena
in Matheron (1978). We have summarized the most important results so that
practitioners can pay their respects to ergodicity once for all and move on.

Ergodic Property

In order to carefully distinguish a random function from its realizations, we will
revert, in this section only, to the full notation Z(x, ω), where ω is the random
event indexing the realization. By definition, a stationary random function
Z(x, ω) is ergodic (in the mean) if the spatial average of Z(x, ω) over a domain
V�Rn converges to the expected value m¼E [Z(x, ω)] when V tends to infinity:

lim
V-N

1

jV j
Z
V

Zðx;ωÞdx ¼ m ð1:10Þ
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In this expression the norming factor |V| denotes the volume of the domain V,
and the limit is understood, as we will always do, in the mean square sense. In
Rn it is important to specify how V tends to infinity, since we may imagine that
V becomes infinitely long in some directions only, but we exclude this and
assume that V grows in all directions. For example, V may be the cube [0, t]n,
where t-N. Of course the limit does not depend on the particular shape of V.

To gain insight into the meaning of this property, it is interesting to revisit
the sand jar a last time and do a little thought experiment. We consider a point
x at a fixed location relative to the jar and shake the jar repeatedly, recording
each time a 1 if x falls in a grain and a 0 otherwise. From this we can evaluate the
mean of I(x, ω), namely the probability that x is in a grain, which should not
depend on x. It is intuitively obvious that wewill get the same result if we keep the
jar fixed and select the point x at randomwithin the jar, the probability of landing
in a grain being equal to the proportion of the space occupied by the grains.

The ergodic property can be extremely important for applications, since it
allows the determination of the mean from a single realization of the stationary
random function, and precisely most of the time we only have one realization to
work with. Not all stationary random functions are ergodic. The classic
counterexample is the RF Z(x, ω) � A(ω) whose realizations are constants
drawn from the random variable A. Clearly for each realization the space
integral (1.10) is equal to the constant level A(ω) but not to the mean of A.
Another, more realistic example of nonergodic RF is to consider a family of
different stationary and ergodic RFs and select one of them according to
the outcome of some random variable A, thus defining the composite RF
Z(x, ω; A). On each realization the space integral converges to the mean m(a)¼
E(Z(x, ω; A) |A¼ a) of the particular RF Z(x, ω; a), but this is different from
the overall mean E [m(A)]. Here we have the most common source of stationary
but nonergodic random functions arising in practice. As has been pointed out
in the literature, nonergodicity usually means that the random function com-
prises an artificial union of a number of distinct ergodic stationary functions.

Ergodic Theorem

This theorem states that if Z(x, ω) is a stationary random function (of order 2),
the space integral (1.10) always converges to some value m(ω), but this value in
general depends on the realization ω: it is a random variable, not a constant:

lim
V-N

1

jV j
Z
V

Zðx;ωÞdx ¼ mðωÞ ð1:11Þ

This result is a direct consequence of the stationarity of Z(x, ω) and again
requires V to grow in all directions. The random variable m(ω) has mean m and
a fluctuation equal to the atom at the origin of the random spectral measure
associated with the RF Z(x, ω):

mðωÞ ¼ mþ Yðf0g;ωÞ
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Since E|Y({0},ω)|2¼F({0}), it appears that Z(x, ω) possesses the ergodic
property if and only if its spectral measure F has no atom at the origin.

An equivalent condition, known as Slutsky’s ergodic theorem, is

lim
V-N

1

jV j
Z
V

CðhÞdh ¼ 0 ð1:12Þ

This is always satisfied if C(h) - 0 as h -N, as is usually the case, but the
condition is not necessary. Moreover, if the integral of the covariance in Rn is
finite, when V is very large the left-hand side of (1.12) is an approximation to
the variance of the space integral (1.11), and we will revisit this in Section 2.3.5
with the notion of integral range.

Ergodicity in the Covariance

In the above we have only considered first-order ergodicity, or ergodicity in the
mean. It is also important to be able to determine the covariance from a single
realization. This implies second-order ergodicity, or ergodicity in the covariance.
To establish the ergodicity of the covariance, the same theory can be applied to
the product variable Qh(x)¼Z(x) Z(xþ h) considered as a second-order sta-
tionary random function of x with h fixed. This involves the stationarity of
fourth-order moments. For Gaussian RFs the fourth-order moments depend on
the second-order moments, and simple results can be obtained. The analogue of
Slutsky’s condition for the convergence of covariance estimates is then

lim
V-N

1

jV j
Z
V

½CðhÞ�2dh ¼ 0 ð1:13Þ

This condition is more restrictive than (1.12). Its equivalent spectral formula-
tion is that the spectral measure F has no atom anywhere. In other words, the
covariance has no sinusoidal component. Again the convergence C(h)- 0 as
h-N suffices to fulfill (1.13), but the proof is only valid for Gaussian RFs.

Now What?

In the case of a unique phenomenon, there is no way of knowing if the space
integral would have converged to a different value on another realization, since
there is, and can be, only one. As will be seen in a moment, ergodicity is not an
objective property in the sense that it cannot be falsified. Therefore we choose to
model Z(x, ω) as an ergodic random function whose mean is the limit of the
space integral (1.10). Likewise, we take the limit of the regional covariance
(a space integral) as the definition of the covariance of the parent RF. Any other
choice would have no relevance to the situation considered.

Strictly speaking, there still is a problem. Recall that in practice, we work in
a bounded domain and cannot let it tend to infinity. This is a matter of scale. If
the domain is large enough for the integral (1.12) to be small, the mean can be
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estimated reliably. But if the variance is still large, due to a slow fall-off of the
covariance, the estimation of the mean is difficult, and it is preferable to avoid
using it at all and only consider increments. This is the justification for using the
variogram instead of the covariance. The possibility of statistical inference of
the variogram is discussed in Section 2.9.

When dealing with space�time phenomena observed at a fixed set of moni-
toring stations, we typically consider spatially nonstationarymodels and compute
time-averaged estimates of spatial means and covariances. We are thus treating
the data as a collection of (correlated) stationary and ergodic random functions
of time (multiple time series). These assumptions have to be checked carefully.

Micro-Ergodicity

As we have noted earlier, it is impossible to extend the domain to infinity.
Matheron (1978) introduced the notion of micro-ergodicity, also called infill
asymptotics (Cressie, 1991), concerned with the convergence of space integrals
when the domainD remains fixed but the sampling density becomes infinite. This
concept is distinct from standard ergodicity. For example, neither the mean nor
the variance of a stationary and ergodic RF is micro-ergodic, but the slope of the
variogram at the origin is micro-ergodic if the variable is not too smooth (Section
2.9.2). Micro-ergodic parameters represent physically meaningful properties.

1.2 ON THE OBJECTIVITY OF PROBABILISTIC STATEMENTS

What sense does it make to speak of the probability of a unique event? When
we are told that “there is a 60% chance of rain tomorrow,” we know the next
day if it rains or not, but how can we check that the probability of rain was
indeed 60% on that day at a specific place? We can’t. The only probabilistic
statement that can be disproved is “there is a zero chance of rain tomorrow“: If
it does rain the next day, then clearly the forecast was wrong. The same
problem essentially arises for spatial “prediction.” What is the physical
meaning of a statement such as “there is a 0.95 probability that the average
porosity of this block is between 20% and 25%” ? Potentially we could measure
the porosity and check if it lies in the interval, but we will never know if the 0.95
was correct. Yet despite their unclear meaning, we tend to find probabilistic
statements useful in giving us an appreciation of uncertainty.

In reality we establish the credibility of weather forecasts not from a single
prediction but over time. Someone with enough motivation could check if out
of 100 days associated with a forecast of a 60% chance of rain about 60 days
were indeed rainy, and do this for all % chance classes. A successful track
record, without proving the correctness of the forecast on any given day, proves
at least that it is correct on the average. It validates the forecasting methodology.

One may object that since we introduced repetitions we are no longer really
dealing with a unique phenomenon. But the distinction between unique and
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repeatable situations is not as clear-cut as it seems. Strictly speaking, it is
impossible to repeat the “same” experiment: They always differ in some
aspects; we simply judge those unimportant. On the other hand, even though
every petroleum reservoir, every mine, and every forest is unique, they all
belong to classes of situations, shaly sand reservoirs, copper deposits, or
tropical woods that are similar enough to give rise to specific methodologies
that over time can be validated objectively. This is “external” objectivity.

The practitioner who is interested in the evaluation of this specific deposit or
that specific forest would rather have criteria for “internal” objectivity that are
based on those unique situations. If we cannot pin down the meaning of a
probabilistic statement on a singular event, then the question becomes, Which
concepts, statements, and parameters have an objective, observable, measur-
able counterpart in reality? Matheron (1978) devotes a fascinating essay enti-
tled “Estimating and Choosing” to this quest for objectivity. The central idea
is this: The only objective quantities are those that may be calculated from the
values of a single realization over a bounded domain D. Indeed, in the absence of
repetitions, the maximum information we can ever get is the complete set
of values {z(x) : x2D}. Objective quantities are essentially space integrals of
functions of z(x), referred to as regionals: all the values of z(x) itself, block
averages, mean values above thresholds, and so on, along with the regional
mean, variogram, or histogram. On the contrary, the expected value m, the
(true) variogram γ, or the marginal distribution of Z(x) are conventional
parameters. To emphasize the difference, Matheron says that we estimate a
regional whose exact value is unknown but nevertheless exists independently of
us, namely is potentially observable, but we choose the value of a conventional
parameter.4

These considerations lead to a striking reversal of point of view where
regionals cease to be mere estimates of “true” parameters to become the
physical reality itself, while their theoretical counterparts turn into conven-
tional parameters. For example, the regional variogram γR should not be
regarded as the regional version of γ but rather γ as being the theoretical
version of γR. Likewise, the fluctuation variance (in the probabilistic model) of
a regional is not indicative of the difficulty of the statistical inference of its
expected value but rather of the lack of objective meaning of this parameter.

The objectivity of statements can be defined by two criteria. The stronger
one is to regard a statement as objective if it is decidable, which means that it
can be declared true or false once we know z(x) for all x2D. The weaker form
of objectivity is K. Popper’s demarcation criterion for scientific hypotheses: It
must be possible to design experiments whose outcomes are liable to falsify
predictions derived from these hypotheses, that is, events with probabilities
(nearly) equal to 0 or 1 (in the model). If such attempts are successful, the

4 In the statistical literature, to predictmeans to estimate in Matheron’s sense and to estimate means

to choose. In this book we will estimate observables in Matheron’s sense but fit model parameters

rather than choose them.
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hypothesis is falsified. If it withstands testing, we may not conclude that it is
true but only that it is corroborated (not refuted).

The statement “z(x) is a realization of a random function Z(x)” or even “of a
stationary random function” has no objective meaning. Indeed, since D is
bounded, it is always possible by periodic repetitions and randomization of the
origin to construct a stationary random function having a realization that
coincides over D with the observed z(x). Therefore no statistical test can dis-
prove stationarity in general. We choose to consider z(x) as a realization of Z(x)
over D. It does not mean that this decision is arbitrary—in practice, it is sug-
gested by the spatial homogeneity of the data—but simply that it cannot be
refuted. As stated earlier, ergodicity is also not an objective property.

If repetitions are the objective foundation of probabilities and if only
regionals are physically meaningful, then in the case of a unique phenomenon
the objectivity of our measures of uncertainty must be based on spatial repe-
titions. These are obtained by moving the configuration involved—for example,
a block and its estimating data points—throughout a domain D0. Denoting by
Zv the block value and by Z* its estimator, the estimation variance of such
block is interpreted as the spatial average of the squared error (Z*�Zv)

2 over
D0. By construction, this variance is not localized (i.e., is constant) within D0,
but neither is the kriging variance calculated in the stationary model (since it
only depends on the geometry and on the variogram). Of course the domain D0

can itself be local and correspond to a homogeneous subzone of the total
domain D. However, D0 should not be too small; otherwise, we will lack
repetitions. We are tempted to say that there is a trade-off between objectivity
and spatial resolution.5

1.3 TRANSITIVE THEORY

To avoid the epistemological problems associated with the uniqueness of
phenomena, Matheron (1965) first developed an estimation theory in purely
spatial terms which he named transitive theory. In this approach the regional-
ized variable z(x) is deterministic and only assumed to be identically zero
outside a bounded domain D; it represents a so-called transition phenomenon,
a spatial equivalent of a transient phenomenon in time. We will focus here on
the global estimation problem, namely the evaluation of the integral of z(x)
which typically represents the total amount of some resource. Initially applied
to mineral resources, the transitive approach has received a renewed interest in
the last two decades for the estimation of fish abundance when the areas of fish
presence have diffuse limits (Petitgas, 1993; Bez, 2002).

5 The image of “dithering” comes to mind. This is a binarization technique to transform a halftone

image into a black-and-white image. A gray level is obtained by judiciously distributing black and

white dots in the cells of a matrix: A 4� 4 matrix allows 16 gray levels, and a 16� 16 matrix is

required to render 256 gray levels. Thus there is a trade-off between the representation of gray level

amplitude and the spatial resolution.
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In this model, randomness is introduced through sampling. The easiest
would be to use the classic Monte Carlo method and select N samples randomly
and independently, leading to an unbiased estimator with a variance equal to
σ2/N, where σ2 is the spatial variance of z(x). However, systematic sampling is
usually more efficient. We will present the theory in this case, mainly for
background, but also to justify a neat formula for surface estimation. The
transitive theory can also be developed for local estimation, but it has no
advantage over the more elegant random function approach. Transitive theory
will not be used elsewhere in the book.

1.3.1 Global Estimation by Systematic Sampling

Consider the estimation of the integral

Q ¼
Z

zðxÞdx

which is finite since z(x) is zero outside the domain D. If z(x) is a mineral grade (in g/ton) and
if the ore density d is a constant, Qd is the quantity of metal in the deposit; if z(x) is an
indicator function, Q is the volume of D. We assume that the domain D is sampled on a
rectangular grid that extends as far as needed beyond the boundaries of D.

As usual, we reason in Rn and denote by a the elementary grid spacing (a1, a2, . . . , an) and
by |a| its volume (i.e., the product a1 a2 . . . an). The origin of the grid, which is one of its
points, is denoted by x0, and k denotes the set of positive or negative integers k¼ (k1, k2, . . . ,
kn). The simplest estimate of Q is

Q�ðx0Þ ¼ jaj
X
k2Zn

zðx0 þ kaÞ

where Z is the set of relative integers. If we select the origin x0 at random and uniformly
within the parallelepiped Π¼ [0, a1]� [0, a2]� � � �� [0, an], then Q* becomes a random
variable whose expected value is

E Q�� � ¼ 1

jaj
Z
Π
Q�ðx0Þdx0 ¼ 1

jaj
Z
Π
dx0jaj

X
k

zðx0 þ kaÞ ¼
Z

zðxÞdx ¼ Q

It is unbiased. When we define the transitive covariogram g(h) by

gðhÞ ¼
Z

zðxÞzðxþ hÞ dx
similar calculations show that

EðQ�Þ2 ¼ jaj
X
k

gðkaÞ and Q2 ¼
Z

gðhÞ dh

so that the variance of the error Q* � Q, or estimation variance, is given by the formula

EðQ� �QÞ2 ¼ jaj
X
k

gðkaÞ �
Z

gðhÞ dh ð1:14Þ

This estimation variance, denoted σ2(a), appears as the error incurred by approximating the
integral

R
gðhÞ dh by a discrete sum over the grid. It decreases as the grid becomes finer and as

the function z(�) becomes smoother.
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This variance is always nonnegative provided that the covariogram g(h) is modeled as a
positive definite function (g(h) is the convolution of z(x) by z(�x)). The transitive covariogram
plays the role of the covariance in an RF model, and in fact they are related, since the regional
noncentered covariance overD is given by

CRðhÞ ¼ 1

KðhÞ
Z
D-D�h

zðxÞzðxþ hÞdx; where KðhÞ ¼ jD-D�hj

so that g(h)¼K(h) CR(h).
An expansion of formula (1.14) as a Euler�MacLaurin series leads, for small a, to a

decomposition of the variance σ2(a) into two terms:

σ2ðaÞ ¼ T1ðaÞ þ T2ðaÞ
The first term, T1(a), is related to the behavior of g(h) near the origin; the second one, T2(a),
depends on its behavior near the range (the distance b beyond which g(h) becomes identically
zero). T2(a) is the fluctuating term, also called Zitterbewegung (the German for jittery motion).
It is a periodic function of the remainder ε of the integer division b/a and cannot be evaluated
from the grid data; since it has a zero mean, it is simply ignored.

The regular termT1(a) can be approximated from the expansion of g(h). For example, in 2D
and for an isotropic covariogram with a linear behavior near the origin, the explicit result is

σ2ðaÞ ¼ σ2ða1; a2Þ � �g0ðþ0Þ 1

6
a21a2 þ 0:0609a32

� �
; a1 # a2 ð1:15Þ

where g0(þ0) is the slope of g(h) at the origin and is, 0.

1.3.2 Estimation of a Surface Area

If z(x) is the indicator function of a geometric object, its covariogram is necessarily linear at
the origin. More precisely, for a vector h in a direction α, we have g(h)¼ g(0)�Dα|h |þ � � �,
where Dα is the “total diameter” in the direction α. If the object is convex, Dα is simply the so-
called tangent diameter (or caliper diameter); otherwise, 2Dα is the total length of the contour
of the object projected orthogonally along the direction α (see Section 2.3.4). Here we con-
sider an object with surface area A and a total diameter D that is approximately the same in
all directions. Replacing A by its estimate A*¼N a1 a2, where N is the number of positive
samples, we can express the variance (1.15) in the dimensionless form σ2

A=A
2:

σ2
A

A2
� Dffiffiffiffi

A
p 1

N3=2

1

6

ffiffiffi
λ

p
þ 0:0609λ�3=2

� �
; λ ¼ a1=a2 # 1 ð1:16Þ

Note that the variance decreases like 1/N 3/2 rather than 1/N. We can evaluate D from the
contour of the object by counting the number of boundary segments 2N1 and 2N2 respec-
tively, parallel to a1 and a2, including possible holes in the contour (the total perimeter
comprises 2 (N1þN2) segments):

D ¼ N1a1 ¼ N2a2

and upon replacement in (1.16), we get

σ2
A

A2
� 1

N2

1

6
N2 þ 0:0609

N1
2

N2

� �
; N2 #N1 ð1:17Þ

This formula remains valid if the object is not isotropic but has a main direction of elongation
parallel to one of the grid axes, which is the natural orientation for the grid. Indeed we can

c01 28 January 2012; 12:44:45

26 PRELIMINARIES



then restore isotropy, at least approximately, by an affine transformation parallel to one of
the grid axes; this changes a1 or a2 as well as A and D1 or D2 but not N, N1, N2, or σ2

A=A
2,

which are dimensionless. Thus (1.17) is a simple, self-contained (no calculation and modeling
of g(h) needed), and yet theoretically founded formula for evaluating the error in the esti-
mation of a surface area.

To illustrate its use, consider the example shown in Figure 1.1. We read from the figure:

N ¼ 10
2N1 ¼ 12
2N2 ¼ 8

so that
σ2
A

A2
¼ 1

100

4

6
þ 0:0609

36

4

� �
¼ 1:21

100

The relative error standard deviation on the surface area is therefore 11%.
An interesting indication can be derived concerning the optimal grid mesh. In case of an

isotropic object the variance in (1.16) is minimized for λ¼ 1, that is, a1¼ a2. If the object is
not isotropic an affine transformation is applied to restore isotropy, for example multiplying
lengths along D2 by D1/D2. The new grid spacings become a01¼ a1 and a02¼ (D1/D2 )a2, and in
this isotropic case the optimal grid mesh satisfies a01¼ a02 . Therefore optimum sampling is
achieved when D1/a1¼D2/a2, or equivalently N1¼N2, that is, when the grid mesh is adapted
to the anisotropy of the object. Formula (1.17) also shows that for the optimal grid mesh
(N1¼N2) the estimation variance increases with the perimeter of the object.

FIGURE 1.1 Estimation of a surface area by systematic sampling.
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C H A P T E R 2

Structural Analysis

Au-delà de l’outil, et à travers lui, c’est la vieille nature que nous
retrouvons, celle du jardinier, du navigateur, ou du poète.

Beyond our tools, and through them, it is old mother nature that we
reach, an experience that we share with gardeners, sailors, or poets.

—Saint-Exupéry

2.1 GENERAL PRINCIPLES

2.1.1 Introduction

The theory of stochastic processes and random functions has been in use for a
relatively long time to solve problems of interpolation or filtering. The methods
proposed are based on the first two moments of the random functions. In the
real world, however, these are never known and must be determined first.
The present chapter is devoted to the analysis of the structural characteristics of
spatial phenomena which are generally

� unique, nonreproducible,

� defined in a two- or three-dimensional domain,

� too complex for a precise deterministic description,

� known from samples taken at scattered locations.

These phenomena are regionalized variables {z(x): x2D�Rn}. We decide to
regard them as realizations of random functions.

Geostatistics: Modeling Spatial Uncertainty, Second Edition. J.P. Chilès and P. Delfiner.

r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Arandomfunction (RF) {Z(x):x2Rn} is characterizedby its finite-dimensional
distributions (also called here spatial distribution for short), namely the set of all
multidimensional distributions of k-tuples (Z(x1), Z(x2), . . . , Z(xk)) for all values
ofkandall configurationsof thepointsx1,x2, . . . ,xk. Even if avery largenumberof
realizations of a random function were available, the combinatorial possibilities
are such that, in practice, one could calculate sample multidimensional distribu-
tions only for the simplest k-tuples. When a single realization is available, which
is the common case, these distributions cannot be determined, except under an
assumption of stationarity which introduces repetition in space: Two configura-
tions of points that are identical up to a translation are considered as statistically
equivalent. Since the sample points are unevenly distributed, the only (nearly)
identical configurations that canbe foundarepairs of samplepoints.A largepart of
the book is therefore dedicated to methods involving only the knowledge of two-
point statistics.Multipoint distributions, implicitly or explicitlyusedwhenbuilding
conditional simulations, will be considered in Chapter 7. The complete knowledge
of the bivariate distributions, required for the nonlinear techniques, will be pre-
sented in Chapter 6. For linearmethods, which are themost widely used, it suffices
to know the second-order moments. These are the focus of the present chapter.

The main tool is the variogram. We will distinguish three main definitions:
(1) the variogram of the random function, or theoretical variogram, whose
knowledge is required for kriging; (2) the variogram of the regionalized variable,
or regional variogram, which could be calculated if we knew the value of the
regionalized variable at every point of its domain of study; and (3) the sample
variogram, which can be calculated from the data. Our task can therefore be split
into two phases: (1) Compute a sample variogram that best approximates the
regional variogram and (2) fit a theoretical model to this sample variogram.

In applications, a sample is usually not a point but a volume such as a core,
that is, a piece of rock characterized by its shape, size, and location. Shape and
size define the support of the sample. If it is very small and the same for all the
data we can forget it and regard it as a point. We will adopt that point of view
throughout this chapter and specify the support only when needed, for example
when data relate to different supports.

2.1.2 Covariance Versus Variogram

We will consider two classes of random functions: stationary random functions
and intrinsic random functions. Throughout the book, unless stated otherwise,
stationarity means second-order stationarity.

Covariance of a Stationary Random Function

As we have seen in Section 1.1.4, a stationary random function (SRF) Z(x) is
characterized by its mean

m ¼ E½ZðxÞ�
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and its covariance function (or covariance for short)

CðhÞ ¼ E½ZðxÞ �m�½Zðxþ hÞ �m� ð2:1Þ

A related function is the correlogram ρ(h)¼C(h)/C(0), which is the correlation
coefficient between Z(x) and Z(xþ h). The covariance and the correlogram
show how this correlation evolves with the separation, or lag, h. Note that h is a
vector. These functions therefore depend both on its length, which is the dis-
tance between x and xþ h, and on its direction. When the covariance depends
only on distance, it is said to be isotropic. A covariance is an even function, and
by the Schwarz inequality it is bounded by its value at the origin (i.e., the
variance of the SRF):

CðhÞ ¼ Cð�hÞ; jCðhÞj#Cð0Þ

More precisely, wewill show that a covariance is a positive definite function. Since
the random function has a finite variance, it fluctuates around the mean. Some
phenomena do not show this behavior: If we compute the sample mean and
variance over increasingly large domains, the sample mean does not stabilize,
and the sample variance always increases. This motivates the next model.

Variogram of an Intrinsic Random Function

An intrinsic random function (IRF) is a random function whose increments are
second-order stationary. It is characterized by its linear drift

mðhÞ ¼ E½Zðxþ hÞ � ZðxÞ� ¼ ha; hi

and its variogram

γðhÞ ¼ 1
2 Var½Zðxþ hÞ � ZðxÞ� ð2:2Þ

To prove that the drift is linear, start from the obvious relation

Zðxþ hþ h0Þ � ZðxÞ ¼ ½Zðxþ hÞ � ZðxÞ� þ ½Zðxþ hþ h0Þ � Zðxþ hÞ�
Passing on to the mathematical expectation gives m(hþ h0)¼m(h)þm(h0),
which implies that m is a linear function of the vector h¼ (h1, . . . , hn)

0, namely
m(h)¼ha, hi¼ a1h1þ � � � þ anhn for some gradient vector a¼ (a1, . . . , an)

0.
From now on, unless explicitly stated otherwise, we will consider that the
IRF has no drift, orm(h)� 0. The opposite case will be included in the model of
universal kriging (see the introduction of Section 3.4).

The variogram shows how the dissimilarity between Z(x) and Z(xþ h)
evolves with the separation h. Like the covariance, it is in general anisotropic.
Obviously the variogram is an even, nonnegative function valued 0 at h¼ 0:

γðhÞ ¼ γð�hÞ; γðhÞ$ 0; γð0Þ ¼ 0
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It can be bounded or increase to infinity. Just like a covariance, a variogram
cannot be an arbitrary function. We will show that –γ(h) must be a condi-
tionally positive definite function.

The variogram γ(h) is sometimes called “theoretical” to remind us that it is a
theoretical construct involving neither a particular realization nor a particular
region. Let us mention that γ(h) is also called “semivariogram.” However, the
term “variogram” tends to become established for its simplicity and can be
supported by theoretical arguments (see the definition of the generalized var-
iogram given in Section 4.7.1); it was already used by Jowett (1955a,c), where it
represented the graph of the sample or experimental version of γ(h).

Bounded Variograms and Stationarity

An SRF is obviously also an IRF and therefore has a variogram. In that case
the varioram is linked to the covariance by the relation

γðhÞ ¼ Cð0Þ � CðhÞ ð2:3Þ

Thus the variogram of an SRF is bounded by 2 C(0). Equation (2.3) shows that
if the covariance is known, the variogram is also known. Conversely, if the
variogram of an IRF is bounded by a finite value, γ(h) is of the form (2.3) for a
stationary covariance C(h) and the IRF only differs from an SRF by a random
constant (Matheron, 1973a, pp. 454–457). If the variogram has a sill, the value
of C(0) must be chosen equal to or greater than the sill.1 It is then equivalent to
know γ(h) or C(h).

Variogram and Sample Variance

The theoretical variance of Z(x) is equal to C(0) if Z is an SRF, or does not
exist (i.e., is infinite) if Z is an IRF but not an SRF. However, the sample
variance of a finite number of values always has a finite expectation. Let us
consider a particular realization z(x) of the IRF Z(x). If the N values {z(xα) :
α¼ 1, . . . , N} are known, we can define the sample variance, which char-
acterizes the dispersion of the z(xα) around their mean, as

s2ð0jNÞ ¼ 1

N

XN
α¼1

½zðxαÞ � z�2 with z ¼ 1

N

XN
α¼1

zðxαÞ

The notation s2(0jN) will be generalized in Section 2.8.2 to other dispersion
variances. The 0 means that the unit samples are considered as punctual (zero

1 In the general case of a bounded variogram in Rn, Gneiting et al. (2001) show that A� γ(h) is a
covariance function if and only if

A$ lim
u-N

ð2uÞ�n

Z
½�u; u�n

γðhÞ dh

c02 30 January 2012; 17:22:40

2.1 GENERAL PRINCIPLES 31



volume), and N reminds us that the variance is related to a sampling pattern
{xα : α¼ 1, . . . , N}. This variance can be expresssed in the form

s2ð0 j NÞ ¼ 1

2N2

XN
α¼1

XN
β¼1

½zðxβÞ � zðxαÞ�2 ð2:4Þ

Now, if the values z(xα) are not available, s
2(0 j N) cannot be calculated, but we

can obtain its expected value σ2(0 j N) by randomizing (2.4) with respect to the
realization. It is equal to

σ2ð0 j NÞ ¼ 1

N2

XN
α¼1

XN
β¼1

γðxβ � xαÞ ð2:5Þ

In the case of an SRF, this expression is equivalent to

σ2ð0 jNÞ ¼ Cð0Þ � 1

N2

XN
α¼1

XN
β¼1

Cðxβ � xαÞ ¼ Cð0Þ � Var
1

N

XN
α¼1

ZðxαÞ
" #

The expectation of the sample variance is always less than the theoretical
variance. If the xα are so far apart that the Z(xα) are mutually uncorrelated,
this amounts to

σ2ð0 jNÞ ¼ 1� 1

N

� �
Cð0Þ

The discrepancy between the expectation of the sample variance and the
theoretical variance vanishes as N-N.

Variogram as a Structural Tool

Unless we are considering an SRF with a known mean, an exceptional situa-
tion, the above gives us two reasons to favor the variogram over the covariance.
The first is theoretical: Since the class of IRFs includes the SRFs, the variogram
is a more general tool than the covariance. This is why it was introduced in the
1940s for the study of turbulent flow [e.g., see Kolmogorov (1941a,b), Obukhov
(1949a,b), and Gandin (1963), for applications to meteorology].

The second reason is practical: The variogram does not require the knowl-
edge of the mean, whereas to compute the covariance the mean has to be esti-
mated from the data, which introduces a bias. For example, the covariance
at h¼ 0 will be approximated by the sample variance, which is biased downward
as seen above. This bias cannot be corrected unless the covariance function,
or at least the correlation function, is already known, which is not the case
(unless the data can be considered uncorrelated, but this is a very special case).
A similar bias can also corrupt the behavior of the covariance near the
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origin: Matheron (1970, Chapter 2, exercise 18) shows that in 1D, for a
covariance that is linear over the data domain, the slope at the origin of the
sample covariance is equal to 4/3 the true slope. Use of the sample covariance
when the mean is not known can thus result in erroneous interpretations. The
variogram is not affected by these problems since it automatically filters the
mean. It was precisely for this reason that Jowett (1955a) used the sample
variogram rather than the covariance. For completeness we should mention
that as early as 1926 A. Langsæter had already used the variogram to char-
acterize the variability of data derived from forest surveys [reported in Matérn
(1960, p. 51)].

To summarize, we can say that even if the objective is the covariance, the
structural tool is the variogram. This can justify why, following Obukhov
(1949a,b), Yaglom (1987) calls the variogram the structure function, a phrase to
which we give a more general meaning.

2.2 VARIOGRAM CLOUD AND SAMPLE VARIOGRAM

We now turn to the empirical aspects of variogram analysis.

2.2.1 Preliminary: Exploratory Data Analysis

Geostatistical tools do not replace, but complement, standard statistical tools.
Before computing sample variograms and other spatial statistics, one should
perform an exploratory data analysis (Tukey, 1977), namely compute usual
univariate and bivariate statistics such as posted maps, histograms, scatter-
plots, and box plots. Multivariate techniques such as cluster analysis or prin-
cipal component analysis can also be used to reduce multivariate problems to
univariate ones. Since this book is devoted to geostatistical methods, we will
not develop this point, but the relevance of a geostatistical study largely
depends on the quality of this preliminary phase. At this stage, most incon-
sistencies in the data can be detected (gross errors on data coordinates, for
example), as well as mixing of different populations that should be studied
separately (bimodal histogram), or preferential sampling of particular areas
such as the richest parts of an orebody or the most contaminated zones of a
plume, which should require the use of declustering techniques. In a real study,
it is not uncommon that the task of obtaining clean data and clear objectives is
at least as long as the geostatistical study itself, if not longer. Examples of
exploratory analysis abound in the literature; for example, see Isaaks and
Srivastava (1989) with a synthetic data set, Webster and Oliver (1990) with
applications to soil and land resources, Rossi et al. (1992) with applications
to ecology, and Cressie (1991). The geostatistical tools we present now offer
the opportunity to go further in the analysis by exploring the spatial
relationships between data pairs [e.g., see the applications presented by Bradley
and Haslett (1992)].
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2.2.2 Variogram Cloud

Let us step for a moment outside the probabilistic context and consider a
regionalized variable {z(x): x2D�Rn}, with known values zα¼ z(xα) at N
sample points {xα : α¼ 1, . . . , N}. Physical intuition suggests that two points
that are close assume close values because these values were generated under
similar physical conditions. A geologist would say that the two points have the
same “geological environment.” On the contrary, at long distances the genetic
conditions are different, and greater variations are to be expected. This intui-
tion of variability with distance can be quantified with h-scattergrams (also
known as lagged scatterplots). Instead of describing the relationship between
two variables, which an usual scatterplot does, an h-scattergram describes the
relationship between the variable of interest at some location and the same
variable at a location separated by a vector h representing some distance in a
certain direction. If the h-scattergrams corresponding to a common distance
and to various directions are similar, an h-scattergram based on distance only is
considered. Figure 2.1 shows an example with three scattergrams: For h¼ 1m
the points represent pairs (zα, zαþ1) of neighbouring data, so that all points of
the scattergram are close to the diagonal; for a small h value, the cloud of points
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FIGURE 2.1 h-scattergrams of impedance in boreholes for h¼ 1m, 5m, and 30m. [From

D. Aburto, personal communication.]
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becomes diffuse but with limited scatter from the diagonal; for the largest h value
the scatttergram is highly dispersed and expresses an absence of correlation of
the data at such a distance. h-scattergrams are very useful for a detailed study
of the spatial variability of the regionalized variable (see, e.g., Section 6.4.4). But
modeling spatial variability directly from h-scattergrams is not a simple task
because the various h-scattergrams must be modeled in a consistent manner.

Away to simplify the analysis is to only consider increments zβ� zα rather than
zα and zβ separately, namely one variable instead of two. This makes it possible to
represent the increment with respect to the separation between the two data
points. This is the variogram cloud. This tool, first used by Gandin (1963, p. 47)
for the study of meteorological fields, and reintroduced and systematically
exploited by Chauvet (1982), is a plot of all sample point pairs (α, β) showing

� along the horizontal axis, distance rαβ¼ jxβ� xαj;
� along the vertical axis, halved squared increment 1

2
ðzβ � zαÞ2.

Figure 2.2, from Bastin et al. (1984), shows a nice example of this. It concerns
rainfall data (Figure 2.2a), a time-repeated phenomenon. Each point in
Figure 2.2b is in fact the mean of the 1425 values obtained from 1425 six-hourly
observations. When computed from a single realization, the cloud is of course
much more dispersed.

The variogram cloud can show different behaviors along the different
directions of the separation hαβ¼ xβ� xα, namely display an anisotropy. This
is frequent in 2D, and especially in 3D where vertical variability is rarely of
the same nature as horizontal variability (layered media). The cloud is then
calculated by classes of direction. The main anisotropy directions are often
suspected from geological knowledge, and the variogram cloud computed
along these directions. If this is not the case, it is necessary to compute the cloud
in several directions to detect a possible anisotropy. In 2D, at least four equally
spaced directions are usually considered (the coordinate axes and the diag-
onals). In subhorizontal layered media, the horizontal directions must be
complemented by the vertical and oblique directions, and so on.

Note that the choice to represent halved squared increments is made by
reference to the definition of the variogram of an IRF. It is of course possible,
and even recommended, to similarily display other characteristics of the
increment zβ� zα, for example the increment itself, which makes it possible to
check the absence of drift, especially at the border of the domain of study
(in that case one must be careful not to mix pairs with opposite directions).

2.2.3 Sample Variogram

From the variogram cloud it is possible to extract the following information:

� The Sample Variogram. This is the curve giving the mean of the halved
squared increment as a function of distance; in practice, it is calculated by
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classes of distance, taking in each class the center of gravity of the sample
points of the variogram cloud (Figure 2.2d).

� Any Other Characteristic of the Cloud. This is calculated by classes of
distance (median, quartiles).

� Box Plots. These present several characteristics of the variogram cloud in
a single figure, usually the mean, the median, and some other quantiles of
the halved squared increments for each class of distance (Figure 2.2c).

Like the variogram cloud, the sample variogram can be anisotropic and is
therefore calculated and displayed by classes of direction. The sample
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FIGURE 2.2 Variography of rainfall data (Dyle River Basin, Belgium): (a) locations of the rain

gauges; (b) variogram cloud (each point represents the mean of 1425 values); (c) box plot showing

mean (�),median (�), quartiles, extreme values, andnumberof pairs; and (d) sample variogram (circle

area proportional to number of pairs). [From Bastin et al. (1984),r American Geophysical Union.]
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variogram can also be defined directly: denoting by Nh the count of pairs of
points separated (approximately) by the lag h, it is defined by

γ̂ðhÞ ¼ 1

2Nh

X
xβ�xα	h

½zðxβÞ � zðxαÞ�2 ð2:6Þ

It is, of course, calculated for discrete values of h. Graphically, the sample
variogram can be represented by several curves corresponding to several
directions and, in the 2D case, by a variogram map or variomap figuring out
the variogram value in each angular sector and distance class by a color coding.
The latter representation is well adapted for the detection of anisotropies
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FIGURE 2.2 (Continued)
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whereas the former is better suited to variogram modeling. Note that the
variogram map is symmetric with respect to the origin.

In the case of equally spaced data in 1D, the variogram can be computed for
multiples of the spacing Δx. If N denotes the number of data, the sample
variogram at lag h¼ k Δx is

γ̂ðkΔxÞ ¼ 1

2ðN � kÞ
XN�k

α¼1

½zαþk � zα�2

This definition can be generalized to data on a 2D or 3D grid, thus producing a
sample variogram that is a 2D or 3D array, which can be represented as
a variogram map with square or cubic cells (Figure 2.3). It can be calculated
very efficiently with fast Fourier transforms, even if some data are missing, as
shown by Marcotte (1996): to allow FFT calculations, N zero data are added to
the sequence and missing data are replaced by zeros; the sum of the zα zαþk can
therefore be calculated regardless of the missing data; the number of pairs is
obtained similarily by working with the indicator of the data.

There is a simple relationship between the sample variogram and the sample
variance of the data: the average of all terms γ̂ðhÞ for all possible lags including
the lag h¼ 0, weighted by Nh, is the mean of 1

2
ðzβ � zαÞ2 for all pairs (α, β),

including those for which α¼ β, and it coincides with the sample variance
of the data.

2.2.4 Regional Variogram

When studying a domain D, the ideal sample variogram is that which can be
calculated when the domain D is perfectly known. This variogram, named
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FIGURE 2.3 Variogram map of data on a regular grid.
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the regional variogram, is defined as an areal average of 1
2 ½zðxþ hÞ � zðxÞ�2 by

the formula

γRðhÞ ¼ 1

2jD-D�hj
Z
D-D�h

½zðxþ hÞ � zðxÞ�2dx ð2:7Þ

The actual domain of integration is not D but is, instead, the intersection of D
with its translate by the vector –h, denoted D - D�h. Indeed x and xþ h both
belong toD if and only if x belongs toD-D–h. This intersection usually shrinks
as the modulus of h increases. jD - D–hj is the measure of D - D–h, namely its
length, area, or volume according to the dimensionality of the space. Since in
practice only a limited number of sample points are available, one may wonder
to what extent the sample variogram is representative of the regional variogram.
It is usually considered that a sample variogram value is not reliable if it has been
calculated from less than 50 pairs; this is, however, only a broad indication
which, to be refined, needs to take into consideration the lag, the locations of the
pairs, the shape of the variogram, the histogram of the data, the higher-order
moments, and so on. Section 2.9.1 gives further insight into this question.

At this point, the usual question is: Which of the regional variogram and the
theoretical variogram matters? From a statistical point of view, the theoretical
variogram is more meaningful, since it is a property of the permanent process
underlying the observations rather than a feature of incidental sample fluctua-
tions. It is the essential rather than the anecdote. On the other hand, from an
engineering point of view, the parent process is an abstraction, and what really
matters is the behavior of a specific variable over a specific domain. We will
abandonhere this quasi philosophical discussion to simply note that geostatistical
practice reconciles these points of view. The sample variogams that we calculate
from the data are in fact discrete approximations of regional variograms and thus
inherit their physical significance. But the interpretation of these empirical var-
iograms is performed in reference to properties of theoretical variograms which
alone can provide a common background to analyze diverse particular situations.

2.2.5 Robust Variograms

As is shown in Section 2.9.1, the sample variogram can give a poor estimate of
the regional variogram if the histogram has a long tail. This motivates the
search for other variogram estimators.

Robustness and Resistance

Let us consider a set of data all equal to 0, except one that has a value of 1
(Figure 2.4a). The corresponding sample variogram is of the form

γ̂ðhÞ ¼ 1

2

nh

Nh

where Nh is the total number of pairs of points separated by a lag h and nh is the
number of pairs involving the value 1.
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This is equal, up to the 1/2 factor, to the proportion of pairs of points that
include the value 1. The variogram is therefore only representative of the
geometric configuration of the sample points and of the position of the point
valued 1, and it has a rather erratic look (Figure 2.4b). This may occur, in
reality, in two types of situation:

1. When a data point is corrupted by a gross clerical error (relative to the
dynamic range of the true data), such as an absent value that has been
conventionally set to a large value (typically �9999).

0 0

0

0

0

0

1

0

0

0 0 0 0 0

0 2 4 6 8 10 12
0

2

4

6

8

10

12

0

2

4

6

8

10

12
N

(a)

γ

0 2 4 6 Distance
0

0.05

0.10

0.15

0.20

0.25
N-S

E-W

(b)

FIGURE 2.4 Synthetic example of an anomaly: (a) data; (b) variogram.
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2. When the data do include exceptional values, such as by the presence of a
gold nugget in a sample while all the other samples are waste.

Even in the “ideal” case of a Gaussian RF, the variogram (2.6) defined as a
sample mean of squared increments is not a stable estimator of the theoretical
mean if we do not have a large number of increments. Indeed squared incre-
ments follow a chi-square distribution on one degree of freedom (a gamma
distribution with shape parameter α¼ 1/2), which has a fairly long tail. Hence
the idea of seeking variogram estimators that are more stable than the classic
estimator (2.6).

This type of problem is common in statistics and motivated the develop-
ment of robust and resistant methods (Tukey, 1960; Huber, 1964, 1981;
Mosteller and Tukey, 1977; Maronna et al., 2006). The concept of resistance
appeared in the context of exploratory data analysis and does not involve
distributional assumptions: A procedure is said to be resistant if its result is
insensitive to changes, even large ones, in a few data (erroneous or anomalous
data). For example, the sample median is resistant, whereas the sample mean
is not.

Just like an optimal procedure, a robust procedure is defined in relation to a
statistical model. The optimal procedure is the one that achieves maximum
efficiency when the data conform to the model, but it can lead to erroneous
results when it doesn’t. A robust procedure is a prodedure that is slightly
less efficient in the case where the data conform to the ideal model, but still
gives good efficiency when the data depart slightly from this model, and does
not give absurd results in case of larger deviations. A classic example is the
contamination of a normally distributed batch of “good” observations by a
small proportion of “bad” observations, also normally distributed, with the
same mean but a much larger variance. The sample median is then a robust
estimate of the theoretical mean whereas the sample mean is not. In practice, as
pointed out by Huber (1981), the distinction between resistance and robustness
is largely arbitrary, and from now on we will only refer to robustness.

Robust techniques are not a substitute for conscientiousness and will not
permit a blind processing of any data set. It is always preferable to spot suspect
data and deal with them appropriately. Tools as simple as posted maps, histo-
grams, correlation plots, or variogram clouds are excellent for locating suspect
data. Data proved to be grossly erroneous must then be corrected or eliminated.
However, one must beware of automatically eliminating all extreme data: In
many cases (geochemistry, pollution, bathymetry) it is precisely the anomalous
data that are important, and if they are inconsistent with the model (stationary,
Gaussian, etc.), then it is the model that must be reexamined and not the reality.

Robust Geostatistical Procedures

It is not possible here to give a complete account of all robust variogram
proposals. We will only discuss the main principles and a few examples. But
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first we must point out an ambiguity in the expression “robust variogram”
which can denote:

1. An alternative structure function to the variogram, also based on
increments but lending itself to a more stable estimation.

2. An estimator of the ordinary variogram γ(h), but more stable than the
standard estimator γ̂ðhÞ defined by (2.6).

Most robust variograms rest on one of, or variations of, the following
principles:

� Replacing squared increment by lower-order powers, which are less
dispersed and less sensitive to anomalous data.

� Replacing the average of the squared increments (for a given distance
class) by their median, which is particularly insensitive to extreme values.

� Eliminating or clipping large increments.

From this point of view a typical robust variogram proposed by Dowd (1984) is
the median of the magnitude of increments (for a given distance class). Variants
proposed include the quantile variograms (Armstrong and Delfiner, 1980), the
“Huberized” variogram (ibid.), and the variogram of order 1/2 (Cressie and
Hawkins, 1980). We can also consider the variogram of a transformed variable
and the indicator variograms (see Section 2.5.3).

These variograms are better at revealing the possible structure of the phe-
nomenon. But when we are dealing with a skewed distribution, such as that of
squared increments, the sample mean and the sample median, say, do not
estimate the same parameter. We nevertheless calculate a median variogram, or
any other robust variogram, for its good properties, but the variogram thus
obtained is no longer an estimate of the ordinary variogram γ(h) required for
kriging. Similarly the variogram of an indicator of the variable under study has
usually a different behavior than the variogram of the variable itself. Two
solutions can be considered:

1. To develop a robust geostatistics involving only the robust variogram:
One then leaves the formalism of the L2 norm (minimization of the quadratic
error). This does not lead to tractable ways of constructing estimates and
assessing their uncertainties, though solutions exist. For example, a large
number of mathematical results are known in the scope of the L1 norm
(minimization of the absolute value of the error), in relation with methods of
linear programming (Dantzig, 1963), and particularly in the context of an
exponential distribution, which has a larger spread than a Gaussian distribu-
tion. But change-of-support models are no longer available, although necessary
for many applications. Hawkins and Cressie (1984) and Dowd (1984) discuss
attempts along these lines (cf. Section 3.7.3).
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2. To find a means of passing from the robust variogram to the ordinary
variogram γ(h). This is possible provided that the distribution of the data pairs is
specified. Most robust methods include this step under the assumption of a
contaminated bi-Gaussian RF (one for which all bivariate distributions are
Gaussian). These methods estimate the variogram of the noncontaminated
variable rather than that of the whole (which in general should show an
additional nugget term that needs to be evaluated separately, e.g., from the
global variance of the data). Robustness against extreme data is achieved only
within fairly restrictive hypotheses outside which bias problems persist.

Variogram of Order 1/2

Cressie and Hawkins (1980) have observed that if the RF Z(x) is bi-Gaussian, the distribution
of the increment of order 1/2,

1
2
jZðxþ hÞ � ZðxÞj1=2

is close to a Gaussian distribution, and that approximately

E 1
2
jZðxþ hÞ � ZðxÞj1=2

h i
¼ AγðhÞ1=4

with

A ¼ 1
2
Γ 3

4

� �
=π1=2 ¼ 0:346

where Γ is the Euler gamma function. If Gh denotes the mean of the Nh terms
1
2
jZðxβÞ � ZðxαÞj1=2 such that xβ� xα 	 h, Cressie and Hawkins find that

E G4
h

� � ¼ 1

8
0:457þ 0:494

Nh
þ 0:045

N2
h

 !
γðhÞ

which allows the calculation of an unbiased estimator of γ(h). This result is exact if the Nh

terms are independent, which they are not. Cressie and Hawkins show that the interdepen-
dence among these terms seems to have a negligible impact for problems of practical interest.

The application example presented by Genton (1998a) shows that this variogram estimator
does not perform better than the classical estimator (2.6) in the Gaussian case and is not
really more robust than the classical estimator in the case of the contaminated Gaussian
model. These two variogram estimators belong to a common class of estimators of scale, the
Lq M-estimators (Genton and Rousseeuw, 1995), which are not robust with respect to a
contamination.

Median Variogram and Quantile Variograms

The classic variogram estimator (2.6) is

γ̂ðhÞ ¼ Mean
xβ�xα	h

1
2
½zðxβÞ � zðxαÞ�2

n o
where Mean represents the mean calculated from Nh pairs of points separated by the lag h.
Since the median is more robust than the mean, it is worthwhile considering the median
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variogram taken, for each value of h, as the median of the sample halved squared increments.
Armstrong and Delfiner (1980) define the quantile variogram γ̂pðhÞ more generally as

γ̂pðhÞ ¼ Qp
xβ�xα	h

1
2
½zðxβÞ � zðxαÞ�2

n o

where Qp denotes the quantile associated with the proportion p (0, p, 1). Calculation of
γ̂pðhÞ simply requires us to sort for each value of h, the available halved squared increments by
increasing values so as to construct the cumulative frequency curve.

Assuming that the bivariate distributions of the RF Z(x) associated with the regionalized
variable z(x) are Gaussian, Z(xþ h)�Z(x) follows a Gaussian distribution with mean 0 and
variance 2γ(h). Therefore 1

2
½Zðxþ hÞ � ZðxÞ�2 is distributed as γðhÞχ2

1, where χ2
1 has a chi-

square distribution on one degree of freedom:

1
2
½Zðxþ hÞ � ZðxÞ�2 ¼D γðhÞχ2

1

where D represents equality in distribution. It follows that quantile variograms are all pro-
portional to the variogram γ(h), the proportionality factors being the quantiles of the dis-
tribution of χ2

1; in particular, we have

Q0:25ðχ2
1Þ ¼ 0:101; Q0:50ðχ2

1Þ ¼ 0:455; Q0:75ðχ2
1Þ ¼ 1:324

Similar properties are obtained with quantiles defined on halved absolute increments. Still
assuming Gaussian bivariate distributions, this gives

1
2
jZðxþ hÞ � ZðxÞj ¼D

ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
γðhÞ

q
jUj

where U follows a standard normal distribution. The quantile variograms are thus propor-

tional to
ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
γðhÞ

q
, the proportionality factors being this time the quantiles of the distribution

of jUj. In particular,

Q0:25ðjUjÞ ¼ 0:318; Q0:50ðjUjÞ ¼ 0:674; Q0:75ðjUjÞ ¼ 1:150

Improved variogram estimates may be obtained by linear combinations of quantile
variograms.

Robust Scale Estimator

The sample variogram for a given h is the semi-variance of the incrementsVαβ¼Z(xβ)�Z(xα)
available for that distance. In the context of robust statistics, its estimation falls in the scope
of scale estimation methods. The robust estimator of scale proposed by Rousseeuw and Croux
(1993) leads to an estimator of γ(h) based on the 25% quantile of the absolute value of dif-
ferences between increments for that h value: Renumbering Vi, i¼ 1, . . . , Nh, the increments
Vαβ, the estimator is

γ̂RCðhÞ ¼ 1:11Q0:25
i, j

	jVj � Vij



Genton (1998a) shows, in the framework of the contaminated Gaussian model, that this
estimator is much less sensitive to outliers than the classic variogram estimator (2.6), even if
it remains influenced by these outliers. It usually clearly exhibits the structured part of the
phenomenon but does not provide a fully unbiased estimate of the variogram of the
noncontaminated variable.
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2.2.6 Analysis of Heterogeneous Data

Whichever estimator is used, it must be calculated from a homogeneous pop-
ulation. Therefore it is important to treat cases separately:

1. Domains that exhibit different variabilities or are separated by
discontinuities.

2. Data measured on different supports (which give neither the same
histogram nor the same variogram).

3. Measurements of different qualities (corresponding to measurement
errors with different magnitudes).

4. Pairs of points for which the distance is well known and those for which
an uncertainty exists.

The variograms obtained in these different cases are of course different, but
related, and must be analyzed in a consistent manner (see Section 2.4).

Spatial Declustering

Similarly, one must pay a particular attention to cases of preferential sampling
because they are often in areas of high variability (e.g., one tends to oversample
rich areas, which are often more variable). A variogram computed without care
will be unusable. Two examples illustrate this point.

1. A deposit was investigated by E–W profiles. In the northern part the
profiles were sampled on a 40-m grid, whereas in the southern part, which is
narrower but richer, the grid was tightened to 20 m (Figure 2.5a). The E–W
variograms calculated for each area have the same shape but differ in vertical
scaling, which is indicative of a proportional effect (see the next section). If one
had merely calculated a global E–W variogram of the deposit from all the pro-
files, the resultant curve would have been very poorly structured (Figure 2.5b).

2. A site contaminated by chemicals was investigated using a nearly regular
sampling pattern. Additional samples were then taken in the anomalous areas,
thus forming clusters of points (Figure 2.6a). If an ordinary variogram were
calculated from all the data, these areas would be overrepresented, especially at
short distances, and since they are areas of high variability, the variogram
would be useless (Figure 2.6b).

When a clear-cut subdivision in homogeneous domains is not possible, as is the
case in the second example, the data should be declustered. This consists in
assigning a specific weight wα to each datum zα. Several procedures have been
proposed for assigning these weights. The simplest ones are purely geometrical;
for example, in 2D the weights can be chosen proportional to the area of
influence of the data within the study area, limited to a maximum distance.
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More elaborate procedures are based on kriging. At our stage, where the “true”
variogram is not known, these methods can be used heuristically with a stan-
dard variogram selected by the user. Declustering is also an issue when
modeling the histogram for the nonlinear techniques presented in Chapter 6,
and it will be discussed there in Section 6.2.
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Once the weights are known, declustered statistics can be built. For example,
formulas for the sample mean, variance, and the variogram become

ẑ ¼
P
α
wαzðxaÞP
α
wα

; σ̂2 ¼
P
α
wα zðxαÞ � ẑ½ �2P

α
wα

γ̂ðhÞ ¼ 1

2

P
xβ�xα	h

wαwβ zðxβÞ � zðxαÞ
� �2

P
xβ�xα	h

wαwβ
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FIGURE 2.6 Effect of oversampling anomalous zones: (a) data; (b) variogram of the regular-grid

data and variogram of all the data.
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Using weights assigned to the data has the advantage of maintaining the con-
sistency between the sample variogram and the sample variance. If we accept to
separately evaluate the variance and the variogram, we can assign to each pair
(α,β) aweightwαβ not necessarily of the formwαwβ. Presenting the problem in an
estimation framework,Emery andOrtiz (2005b, 2007) obtain optimalweights for
the pairs involved in the estimation of γ(h) for a given h value by applying kriging
to the random functionQh(x)¼ 1/2[Z(xþ h)�Z(x)]2. This approach requires the
moments of order 4 of Z to be known and its use is limited to Gaussian random
functions, an important special case however (see Section 2.9.1 for the expression
of the variogram ofQh as a function of the variogram ofZ in that case). Variants
of this approach are proposed by Reilly and Gelman (2007) and Emery (2007b).

Declustering, however, does not solve the problem for short distances since
all pairs then come from oversampled areas.

Non-Euclidean Coordinate System

In certain cases the Euclidean distance is inappropriate and should be replaced,
for example, by a “curvilinear” distance for measurements at sea along a very
ragged coastline, or by geological distances “down dip,” “along strike,” and
“across strike” for measurements in folded beds [e.g., see Figure 2.7, Dagbert
et al. (1984), and Boisvert et al. (2009)]. However, it is not easy to develop a
complete workflow consistent with such distances and practitioners first try to
“flatten” the data. A nice situation is when the data can be replaced in a paleo-
coordinate system before folding and/or faulting occurred. Mallet (2004, 2008)
proposes a 3D geological modeling method (called “GeoChron”) to put the data
back in a geochronological coordinate system (u, v, t), where (u, v) are the geo-
graphical coordinates of the sediment particle when it was deposited and t is the
geological time of deposition (up to an anamorphosis, due to the uncertainties in
the sedimention and compaction rates required to reconstitute the geological
time). The transformation of the present-day (x, y, z) coordinates to the (u, v, t)
paleocoordinate system is called the uvt transform. The whole geostatistical
study can be carried out in that (u, v, t) geochronological coordinate system, and
the results transferred to the present (x, y, z) coordinate system at the end of the
study (Figure 2.8). This assumes, of course, that the rock properties under study
have not been affected by compaction and folding. Otherwise their transfor-
mation must be taken into account, for example in relation to the magnitude of
the deformation (that deformation can be derived from the uvt transform).

2.2.7 Physical Interpretation of the Variogram

The graph of the sample variogram γ̂ðhÞ against jhj, plotted for a given direction
of h or for all directions taken together, generally shows the following behavior:

1. It starts at zero (for h¼ 0, z(xþ h)� z(x)¼ 0).

2. It increases with jhj.
3. It continues to increase, or else stabilizes at a certain level.
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We now review its main features. In practice, the interpretation of a variogram
must be made in relation to the contextual knowledge about the variable of
interest, for example to geology [e.g., see Rendu (1984) and the enlightening
examples presented by Rendu and Readdy (1980)].

Range and Sill

The rate of the variogram increase reflects the degree of dissimilarity of ever
more distant samples. The variogram can increase indefinitely if the variability of
the phenomenon has no limit at large distances [no “recall force“; see Figure 2.9
taken fromKrige (1978), where the variogram is calculated from 3 to 1000m]. If,
conversely, the variogram stabilizes at a value, called the sill, it means that there
is a distance beyond which Z(x) and Z(xþ h) are uncorrelated. This distance is
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called the range (see Figure 2.10). It gives a precise meaning to the conventional
notion of area of influence of a sample.

The variogram can reveal nested structures—that is, hierarchical structures,
each characterized by its own range. Serra (1968), in his study of the Lorraine
iron basin, exhibited up to seven nested structures ranging from the petro-
graphic scale, due to oolites, up to the megastructure scale with a range of
10–20 km, passing by decimeter- to meter-size concretions and 100-m-size
lenses. Figure 2.11 shows a simpler example, from Goovaerts et al. (1993),
concerning environmental data (springwater solute contents): the variogram of
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FIGURE 2.10 Range and sill on the variogram of the thickness of nickel-bearing garnieritic ore.
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FIGURE 2.11 Nested structures on a variogram of environmental data (alkalinity of springwater,

Dyle River Basin, Belgium). [From Goovaerts et al. (1993), r American Geophysical Union.]
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alkalinity which is displayed here reveals two scales of variation: (1) a short-
range component (1 km) corresponding to local sources of contaminants due to
human activities and (2) a long-range component (9 km) interpreted as regional
changes in the geologic characteristics of the aquifer. These interpretations
make it possible to estimate each component through a factorial kriging
analysis (see Section 5.6.7).

Behavior Near the Origin and Nugget Effect

Having just examined the variogram behavior at large distances, it is equally
interesting to examine its behavior near the origin because it reflects the
continuity and the spatial regularity of the regionalized variable. Figure 2.12
shows four typical behaviors:

a. A parabolic behavior. This characterizes a highly regular regionalized
variable that is usually differentiable at least piecewise.

b. A linear behavior. The regionalized variable is continuous, at least piece-
wise, but being no longer differentiable, it is less regular than in the previous case.

c. A discontinuity at 0—nugget effect. γ̂ðhÞ does not seem to tend to zero
when h- 0. This means that the regionalized variable is generally not
continuous and is thus very irregular. The origin of this denomination is as
follows: In gold deposits, gold commonly occurs as nuggets of pure metal that
are much smaller than the size of a sample. This results in strong grade
variability in the samples, even when physically very close and therefore in a
discontinuity of the variogram at the origin. By extension, the term “nugget
effect” (in the wide sense) is applied to all discontinuities at the origin, even if
their cause is different. In general, the nugget effect is due to:

� a microstructure or “geological noise,” namely a component of the
phenomenon with a range shorter than the sampling support (true
nugget effect);

� a structure with a range shorter than the smallest interpoint distance;

� measurement or positioning errors.

The various sources of nugget effect are modeled in Section 2.4. In the absence
of close sampling points, it is impossible to tell from the variogram itself which
cause is applicable, especially since they can be mixed. Knowledge about the
physics of the problem can help in discriminating the various causes.

d. A flat curve—pure nugget effect or white noise. There is no correlation
between the two points, however close they may be. This is the extreme case of
total absence of structure.

From a theoretical point of view, one must qualify the preceding conclusion,
because absence of correlation does not necessarily imply independence and
absence of structure. For example, if X and Y are two independent random
variables valued �1 or þ1 with equal probability, X�Y and XþY have the
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same distribution and can take the values �2, 0, þ2. They are uncorrelated but
not independent because the possible pairs (X�Y, XþY) necessarily include a
zero value and a value equal to 62. Figure 2.13 displays simulations with a flat
variogram obtained by different methods (Matheron, personal communication).
One is pure noise, but the other four exhibit patterns. The patchwork image, for
example, is obtained by simulating 0–1 noise separately on two orthogonal
discrete axes i and j, thus giving two one-dimensional simulations Y1(i) and
Y2( j), and forming Y(i, j) � Y1(i)þY2( j) mod 2. The patterning reflects the lack
of independence of the Y(i, j) (N 2 values are constructed from 2N values). These
are, however, curiosities never found in the usual applications of geostatistics.
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FIGURE 2.13 Realizations of binary random functions with a purely flat variogram. The one

shown in the upper image is random noise, but the others exhibit patterning (grid of 128 � 128

pixels).
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Anisotropy

When the variogram does not vary with direction, it is said to be isotropic. It is
then a function of the modulus of the vector h, namely of the distance between
the points. In the opposite case, the variogram is anisotropic. Two typical cases
of anisotropy are the following:

1. The sill is constant, but the range varies with the direction: The variogram
of a lenticular formation can show a larger range in the direction of lens
elongation than in the other directions. Figure 2.14 shows an example
obtained with gravity data (Simard, 1980).

2. The variogram displays a lower sill in a specific direction. Figure 2.15
shows a 2D example where this is due to a fault: The variability is
stronger in the direction normal to the fault (Champigny and Armstrong,
1989). In 3D the vertical generally plays a particular role: Variations are
greater between strata than within a single stratum.

Hole Effect

The hole effect is characterized by the presence of one or more bumps on
the variogram which correspond to an equivalent number of holes (negative
values) on the covariance. It reflects a tendency for high values to be system-
atically surrounded by low values, and vice versa. One must be cautious,
however, not to interpret mere fluctuations of the variogram as a hole effect. In
general it is advisable to consider the presence of a hole effect only if there is a
reasonable physical explanation. Figure 2.16 shows, as an example, variograms
of the iron, CaO, and SiO2 grades obtained by Serra (1967, pp. 85–91) in his
study of the Lorraine oolitic iron ore; the data were reconstructed from 170
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FIGURE 2.14 Geometric anisotropy (gravity residual). [From Simard (1980).]
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cubic samples, with 4-cm sides, collected at 5-cm intervals in vertical channels.
The vertical variograms show a very clear hole effect over a distance of 10 cm:
It would seem that the migration of carbonates in this moderately reduced ore
gave rise to calcite nodules about 10 cm thick (and 50 cm long). The hole effect
can also arise from competition between plants, although, as noted by Matérn
(1960, p. 62), the effect is commonly masked by strong correlations among soil
properties or by a sampling area that is too large compared to the distances
over which the competition is effective.

Periodicities

A particular case of the hole effect warrants a separate treatment: It is when the
variogram shows a periodic, or at least a pseudoperiodic, behavior. Here again
one must be sure that this behavior is really significant, especially when
studying spatial variables. Time observations are frequently periodic due to the
influence of the basic daily and yearly cycles on natural phenomena and human
activities. Such clear periodicities scarcely exist in space, except in cases where
time is involved indirectly. This is the case for some sedimentary rocks: Sedi-
mentation is influenced by the climate, itself influenced by the distance of the
earth to the sun, which displays Milankovitch cycles of about 100,000, 40,000,
and 20,000 years. If the sedimentation and compaction rates are approximately
constant, these cycles in the geological time are transferred to the sediments in
periodicities of rock properties along the vertical. Figure 2.17 shows an example
of that, where two periodicities can be observed, with a ratio of 5:1. They are
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FIGURE 2.15 Zonal anisotropy (variogram of logarithm of gold grade calculated parallel and

perpendicular to a fault). [From Champigny and Armstrong (1989), with kind permission from

Kluwer Academic Publishers.]
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due to the 100,000- and 20,000-year Milankovitch cycles. This example is part
of a study where periodicities were used to estimate the duration of a geological
series and identify possible hiatuses (Lefranc et al., 2008). Another example,
cited by Matérn (1960), is the effect of waves on a beach. Note also that pro-
blems that are, by nature, clearly oscillatory seem to be better approached by
Fourier methods (in the frequency domain), provided that the data are sampled
on a regular grid.
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FIGURE 2.16 Variograms of Fe, CaO, and SiO2 concentrations: (a) vertical variograms;

(b) horizontal variograms. The vertical variograms show a hole effect resulting from a migration

phenomenon. [From Serra (1967).]
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Proportional Effect

Variability is sometimes higher in areas with high average values than in areas
with low average values. This may corrupt the sample variogram, which may
reflect more the variations in the average value of the data used for each lag

m̂ðhÞ ¼ 1

2Nh

X
xβ�xα	h

�
zðxβÞ þ zðxαÞ

�

than the spatial variability itself [e.g., see the ecological data studied by Rossi
et al. (1992)]. Then one should calculate local variograms. If all computed
variograms look the same and differ only by a multiplicative factor, this is a
case of proportional effect; the most common situation is when the sill is
proportional to the square of the local mean (the local sample variance is then
also proportional to the square of the local mean). This occurs when the
regionalized variable has a lognormal histogram.

Presence of a Drift

Theoretically, the variogram at large distances should increase more slowly
than a parabola (see Section 2.3.1). In practice, however, one can see sample
variograms that increase as fast as jhj2, if not faster. The sample variogram may
also exhibit very strong and very complex variations with direction. In both
cases this indicates the presence of a space-varying mean, or “drift,” repre-
senting a trend in the data; for example, the depth of the seafloor increases with
distance from the coastline. A variogram of the raw data is then of little use:
What is needed is the underlying variogram, that of the phenomenon without
its drift. Models other than IRFs (universal kriging, IRF–k) and other
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FIGURE 2.17 Pseudo-periodicity of the variogram of a geophysical log along a vertical borehole

in argillites. Two periods can be observed. [From Lefranc et al. (2008).]
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structural tools (variogram of residuals, generalized variogram) have to be used
(see Sections 2.7 and 4.7).

2.3 MATHEMATICAL PROPERTIES OF THE VARIOGRAM

To proceed further in the applications, it is necessary to know the variogram γ(h)
for any value of h. We cannot use the regional variogram, and even less the
sample variogram, instead of the theoretical variogram. Indeedwewill show that
�γ(h) must be a conditionally positive definite function and that the regional
variogram as well as the sample variogram do not possess this property in
general, even in the case of regularly spaced data. Therefore, to pass from the
sample variogram to the theoretical variogram, we turn to theoretical models
that are known to be valid variogram functions.Wewill see in Section 2.6 how to
fit a model to a sample variogram. But let us first review the main mathematical
properties of variograms and characterize the class of functions that can rep-
resent variograms. Additional results can be found in Yaglom (1987).

2.3.1 Continuity and Differentiability

The degree of regularity of an SRF or IRF is directly related to the behavior of
its variogram at the origin.

Continuity

The continuity most suited to second-order models is continuity in the mean
square (m.s.): By definition, an RF Z(�) is m.s. continuous at point x if

lim
h-0

E½Zðxþ hÞ � ZðxÞ�2 ¼ 0

It follows immediately that an IRF is m.s. continuous everywhere if and only
if its variogram is continuous at h¼ 0. And it can easily be shown that if the
variogram is continuous at 0, then it is continuous at all h2Rn.

On the other hand, if the variogram has a discontinuity at the origin, it may
also have others elsewhere (Gneiting et al., 2001).2 In practical applications, the
possible discontinuity of the variogram is restricted to the origin: the nugget
effect. Therefore, in this book we only consider that situation. In such a case,
the IRF can be decomposed into the sum of two uncorrelated terms: (1) a
random noise corresponding to the nugget effect and (2) a m.s. continuous IRF

2As an example, consider an SRF Z(x) on Rn whose covariance is continuous except at the origin.

The covariance of the SRF Z1(x)¼Z(x)þZ(xþ a), where a is a given vector of Rn, is discontinuous

at h¼ 0, a, and �a, and so is its variogram. Note that if n. 1, the covariance of Z1 is not isotropic.

According to a conjecture of Schoenberg (1938a), proved by Crum (1956), an isotropic covariance

in Rn, n. 1, cannot have a discontinuity except at the origin. The same is true for an isotropic

variogram (Gneiting et al., 2001).
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corresponding to the continuous variogram. In this section we focus on con-
tinuous variograms.

Since m.s. convergence does not imply almost-sure convergence, the m.s.
continuity of an RF does not imply continuity of its realizations. These reali-
zations can, for example, show discontinuities such as faults, and they can be
continuous only in the compartments delimited by these faults. We will see
numerous examples in the construction of simulations (e.g., random tessella-
tions). For separable Gaussian IRFs, however, m.s. continuity implies conti-
nuity of almost every realization.3 For more information on this subject, see,
for example, Yaglom (1987, Vol. I, p. 65, and Vol. II, Chapter 1, Note 12),
Sobczyk (1991, Section 15), and Adler and Taylor (2007, Chapter 1).

Differentiability

The notion of differentiability associated with second-order models is mean
square differentiability. Let us first consider the case of an IRF defined on
the line. By definition, the random variable Z0(x) is the m.s. derivative of the
random process Z(�) at point x if the finite difference [Z(xþ h)�Z(x)]/h
converges to Z0(x) in the m.s. sense when h- 0:

lim
h-0

E
Zðxþ hÞ � ZðxÞ

h
� Z0ðxÞ

� �2
¼ 0

It is shown in the theory of random processes that Z0(x) exists if and only if the
covariance of [Z(xþ h)�Z(x)]/h and [Z(xþ h0)�Z(x)]/h0 has a limit when h
and h0 tend to zero independently.4

An immediate consequence is that an IRF Z(�) in R is m.s. differentiable
everywhere if and only if γ(h) has a second derivative at 0. That condition
concerns γ considered as a (symmetric) function of h2R and not only of
h2Rþ. It implies a parabolic behavior at the origin.

Furthermore, Z(�) having stationary increments, its derivative Z0(�) is a
stationary random process and has for covariance the second derivative of the
variogram of Z(�):

CovðZ0ðxÞ;Z0ðxþ hÞ� ¼ γ 00 ðhÞ

3 This is true at least for any separable Gaussian IRF whose variogram satisfies γ(h) # c jhjδ when
jhj# r0 for some strictly positive constants c, δ, r0, which is the case for all continuous variograms of

practical use. In the general case, the following theorem due to Kolmogorov applies: If the separable

random function Z is such that EjZ(xþ h)�Z(x)jα # c jhj1þβ for small h for some strictly positive

constants α, β, c, then almost every realization of Z is continuous. In all cases the assumption of

separability is essential—and fully justified in practical applications, since a nonseparable version

of a random function is really a curiosity. As an example, consider an Gaussian SRF Z(x) with

continuous realizations. Now select a random location X from any continuous distribution. The RF

Z1(x) defined as equal to Z(x) if x 6¼ X and Z(x)þ 1 if x¼X has the same finite-dimensional

distributions as Z, but it is not separable and none of its realizations is continuous.
4A more rigorous presentation can be found, for example, in Yaglom (1987, Vol. I, pp. 66–67).
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Thus, if γ(h) has a second derivative at 0, it has a second derivative at all
h2R.

These results are easily extended to the partial m.s. derivatives of an IRF Z(�)
in Rn. If all the partial derivatives exist, Z(�) is said to be m.s. differentiable.
As in the continuity case, the m.s. differentiability of an RF does not imply
differentiability of its realizations. For separable Gaussian IRFs, however, m.s.
differentiability implies differentiability of almost every realization.5

Principal Irregular Term

The behavior of the variogram near the origin can be fully described by its
series expansion about zero (Matheron, 1965). In the isotropic case, this
expansion admits two types of terms: (1) even powers of jhj, called regular
terms because they are infinitely differentiable, and (2) irregular terms of the
form jhjν, ν. 0 and not an even integer, or in jhjν log jhj, ν an even integer.
Approximation formulas for global estimation variances of a domain V from
regularly sampled data only include the irregular terms (Matheron, 1970).
When the data spacing is very small the irregular term with the lowest degree in
jhj plays the dominant role. This term is therefore called the principal irregular
term (Stein, 1999).

Behavior of γ(h)/jhj2

The variogram of an SRF is finite. That of an IRF that is not an SRF can
increase to infinity, but not in an uncontrolled fashion, as is expressed by the
following two properties (e.g., Yaglom, 1987, Vol. I, pp. 397–400):

1. If γ(h) is the variogram of a m.s. continuous IRF, γ(h)/jhj2- 0 as
jhj-N.

2. If γ(h) is the variogramof am.s. differentiable IRF, γ(h) has amajorization
of the form

γðhÞ#A jhj2 ’h 2 Rn

2.3.2 Conditional Positive Definiteness

The properties described above are not sufficient to characterize covariance or
variogram functions. The only truly necessary condition for a function to be a
covariance or a variogram is that all variance calculations lead to a nonnegative
result.

5 Like for continuity (see footnote 3), there are some conditions on the behavior of the variogram at

the origin, which are met by usual m.s. differentiable separable Gaussian IRFs; see Adler and

Taylor (2007, Chapter 1).
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Covariance and Positive Definiteness

In the stationary case, let us consider any linear combination
PN

i¼1 λi ZðxiÞ ofN
terms. Its variance, necessarily positive or zero, can be expressed with the
covariance C(h) as

Var
XN
i¼1

λi ZðxiÞ
" #

¼
XN
i¼1

XN
j¼1

λi λj Cðxj � xiÞ ð2:8Þ

By definition, a function C(h) in Rn for which the right-hand side of relation
(2.8) is always positive (or zero), for any choice of N, xi, and λi, is a positive
definite6 function in Rn. A covariance is thus necessarily a positive definite
function. Conversely, if C(h) is a positive definite function, one can construct a
Gaussian SRF with C(h) as its covariance (the knowledge of the covariance
function is sufficient to define a consistent set of Gaussian finite-dimensional
distributions; see, for example, Doob (1953, Sections II.3 and XI.3); see also the
spectral representation of an SRF in Section 2.3.3). Thus the covariance
functions in Rn and the positive definite functions in Rn are an identical class.

The family of covariance functions in Rn satisfies the following stability
properties:

1. If Ck(h), k2N, are covariances in Rn, then CðhÞ ¼ limk-NCkðhÞ is a
covariance in Rn, provided that this limit exists for all h.

2. If C(h; t) is a covariance in Rn for all values t2A�R of the parameter t,
and if μ(dt) is a positive measure on A, then

R
Cðh; tÞ μðdtÞ is a covariance

in Rn, provided that the integral exists for all h.

3. If C1(h) and C2(h) are two covariances in Rn, then C1(h)C2(h) is a
covariance in Rn.

Properties 1 and 2 result from the definition of positive definiteness. Property 3
is obtained by establishing the covariance of the product of two independent
zero-mean SRFs Z1 and Z2 with covariances C1 and C2, respectively.

It is useful to know if the covariance C(h) ensures that the variance (2.8) is
always strictly positive (except of course when all the λi are zero), since the
simple kriging system (3.2) then always has a unique solution. Such a covari-
ance function will be said strictly positive definite. An example of a covariance
that is not strictly positive definite is the cosine model C(h)¼ cos(hω, h)i), where
ω is a given vector of Rn.

Allowable Linear Combinations

In the stationary case any finite linear combination has a finite variance, given
by (2.8). This is no longer true for random functions that have a variogram but
no covariance. In the intrinsic case the only linear combinations for which one

6 Positive definite is taken synonymously to nonnegative definite. To exclude the value zero, we refer

to strict positive definiteness.
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can calculate the variance are linear combinations of increments. These are
called allowable linear combinations and are characterized by the condition

XN
i¼1

λi ¼ 0 ð2:9Þ

It is clear that all linear combinations of increments satisfy equation (2.9),
since each increment satisfies it. And conversely, any linear combinationPN

i¼1 λi ZðxiÞ satisfying (2.9) is equal to
PN

i¼1 λi½ZðxiÞ � Zðx0Þ�, for any choice
of the origin x0, and is a linear combination of increments.

Conditional Positive Definiteness

The variance of the allowable linear combination
PN

i¼1 λi ZðxiÞ can be
expressed in terms of the variogram by

Var
XN
i¼1

λi ZðxiÞ
" #

¼�
XN
i¼1

XN
j¼1

λi λj γðxj � xiÞ ð2:10Þ

This result is a particular case of equation (2.11) which is proved below.
A function G(h) in Rn, for which an expression of the form

XN
i¼1

XN
j¼1

λi λj Gðxj � xiÞ

is always positive or zero, provided that
PN

i¼1 λi ¼ 0, is said to be a condition-
ally positive definite function in Rn. Thus, if γ(h) is a variogram, then �γ(h) is a
conditionally positive definite function. This necessary condition is also
sufficient, provided that γ(0)¼ 0 (see Section 2.3.3). Moreover, if �γ(h) is a
conditionally positive definite function, one can construct a Gaussian IRF with
γ(h) as its variogram (the reason is similar to that establishing the existence of
Gaussian SRFs with a given covariance function).

Stability properties 1 and 2 of covariances carry over to variograms.

Positive Definiteness of Isotropic Functions

An isotropic covariance or variogram is expressed as a function of r¼ jhj. It is
important, however, to keep in mind the dimension n of the space, since a
positive definite isotropic function (conditionally or not) in Rn of course
satisfies the same property in Rm for m, n but not necessarily for m. n.
Golubov (1981) proves that the truncated power function

CðrÞ ¼

�
1� r

a

�ν

if r# a

0 if r$ a

ða. 0Þ

8><
>:
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is positive definite in Rn if and only if ν$ (nþ 1)/2. So the triangle function,
which corresponds to n¼ 1, is a covariance in R but not in Rn, n $ 2.
Armstrong and Jabin (1981) exhibit a linear combination in R2 for which the
application of (2.8) leads to a negative variance.7

Covariance of Two Allowable Linear Combinations

The variogram also allows the calculation of the covariance of two allowable
linear combinations. In the case of an SRF, the covariance of any two linear
combinations

PN
i¼1 λiZðxiÞ and

PN 0
j¼1 μjZðxjÞ, where the xi do not necessarily

represent the same points as the xj, is expressed in terms of the covariance
function by

Cov
XN
i¼1

λi ZðxiÞ;
XN 0

j¼1

μj ZðxjÞ
 !

¼
XN
i¼1

XN 0

j¼1

λi μj Cðxj � xiÞ

Similarly in the case of an IRF, but considering this time only allowable linear
combinations, this covariance is written in terms of the variogram as

Cov
XN
i¼1

λi ZðxiÞ;
XN 0

j¼1

μj ZðxjÞ
 !

¼ �
XN
i¼1

XN 0

j¼1

λi μj γðxj � xiÞ ð2:11Þ

To see this, it suffices to introduce an arbitrary origin x0. Since
PN

i¼1 λi andPN 0
j¼1 μj are zero, the quantity sought is equal to

XN
i¼1

XN 0

j¼1

λi μj Cov

ZðxiÞ � Zðx0Þ;ZðxjÞ � Zðx0Þ

�

The identity

ðZj � ZiÞ2 ¼ ½ðZj � Z0Þ � ðZi � Z0Þ�2
¼ ðZi � Z0Þ2 � 2ðZi � Z0ÞðZj � Z0Þ þ ðZj � Z0Þ2

7 The restriction to jhj# a of the function C(h)¼ 1� jhj/a is a permissible covariance model in the

2D or 3D ball of radius a, as a locally stationary covariance associated with a linear variogram (see

Example 2 in Section 4.6.2). Gneiting (1999a) showed that this local covariance can be extended to a

covariance in the whole 2D or 3D space, which is quite intriguing since the triangular covariance is

not valid in these spaces. It works because the extended covariance is not equal to 0 when jhj. a but

oscillates around that value. This result derives from an extension theorem due to Rudin (1970) and

from the turning bands operator: Any isotropic function which is positive definite in a ball of Rn can

be extended to an isotropic positive-definite function in the whole space Rn.
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where Zi, Zj, and Z0 stand for Z(xi), Z(xj), and Z(x0), makes it possible to
calculate the product (Zi�Z0) (Zj�Z0) from squared increments and, thus,
to calculate the covariance from the variogram:

Cov

ZðxiÞ � Zðx0Þ;ZðxjÞ � Zðx0Þ

�
¼ γðxi � x0Þ þ γðxj � x0Þ � γðxj � xiÞ

Inserting this into the double sum yields (2.11).
The restriction to allowable linear combinations is not a problem from

the point of view of usual geostatistical applications. For example, if the value
Z(x0) at an unmeasured point x0 is estimated by the mean Z of the N sample
points, Z is not an allowable linear combination but the estimation error
Z � Zðx0Þ is, and thus its variance can be calculated.

The computational gymnastics to express the variance of a linear combi-
nation or the covariance of two linear combinations is generally easier with the
covariance function C(h). If this does not exist, and if one is dealing with an
IRF, it suffices to replace C(h) by �γ(h) in the result, provided, of course, that
only allowable linear combinations are considered.

Stochastic Integrals

The preceding results can be extended to stochastic integrals. The stochastic
integral of the SRF Z(x) associated with a numerical weighting function w(x) in
Rn is defined by

Zw ¼
Z

wðxÞZðxÞ dx

The conditions of its existence are given by the following theorem [e.g., Yaglom
(1987, Vol. I, pp. 67–69)]: The stochastic integral Zw exists, in the mean square
sense, if and only if the integral

RR
wðxÞCðx0 � xÞwðx0Þ dxdx0 is finite, and this

integral is then the (finite) variance8 of Zw

VarðZwÞ ¼
ZZ

wðxÞCðx0 � xÞwðx0Þ dxdx0 ð2:12Þ

If the functions w1(x) and w2(x) define two stochastic integrals Zw1
and Zw2

,
they have the covariance

CovðZw1
;Zw2

Þ ¼
ZZ

w1ðxÞCðx0 � xÞw2ðx0Þ dxdx0 ð2:13Þ

The definition of stochastic integrals can be extended to the case where Z(x) is an
IRF, provided that we only consider allowable weighting functions, namely

8 Positive definiteness of the covariance ensures that this integral is positive or zero.
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satisfying
R
wðxÞ dx ¼ 0. The stochastic integral Zw then exists if and only if the

integral �RR wðxÞγðx0 � xÞwðx0Þ dxdx0 is finite, and this integral is then the vari-

ance of Zw. When the weighting functions are allowable and the corresponding
stochastic integrals exist, it suffices to replace C by �γ in (2.12) and (2.13).

From a practical point of view, the double integral (2.12) can be expressed as
a simple integral using the change of variable h¼ x0 � x (Cauchy algorithm):

ZZ
wðxÞCðx0 � xÞwðx0Þ dx dx0 ¼

Z
gðhÞCðhÞ dh

where gðhÞ ¼ R wðxÞwðxþ hÞ dx is the covariogram of w, whose properties are
examined in Section 2.3.4.

2.3.3 Spectral Representation

Spectral or harmonic analysis is concerned with the decomposition of functions
into Fourier series or integrals. It is widely used in the physical sciences. Fourier
series apply to periodic functions, whereas Fourier integrals apply to functions
that decay to zero rapidly enough at infinity. Many functions, however, belong
to neither of these two categories. From this point of view, SRFs and IRFs
have the advantage over ordinary functions that they always have a spectral
representation, which in addition has a clear physical significance. The main
results have been established by Kolmogorov (1940a) and Cramér (1942) in R

and by Yaglom (1957) in Rn. Here we will just state the results on the repre-
sentation of continuous covariances and variograms, as well as that of the
corresponding random functions, and draw a few conclusions. We refer
the interested reader to the standard references in this field, notably Doob
(1953) in R, Monin and Yaglom (1965, Chapter 6) in R3, and the very complete
book of Yaglom (1987).

Spectral Representation of a Covariance and an SRF

We have seen that there is an identity between the class of continuous
covariance functions in Rn and the class of positive definite functions in Rn.
Bochner’s theorem [e.g., Feller (1971, Chapter XIX)] identifies the character-
istic functions Φ(u) of probability distributions in Rn with the positive definite
continuous functions satisfying Φ(0)¼ 1. Hence we have the following corol-
lary, which has also been proved directly and independently by Khinchin
(1934):

A continuous real function C(h) defined in Rn is a covariance if and only if
it is the (inverse) Fourier transform of a positive bounded symmetric measure
F(du):

CðhÞ ¼
Z
e2πihu; hiFðduÞ ¼

Z
cosð2πhu; hiÞ FðduÞ ð2:14Þ
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with Z
FðduÞ,N ð2:15Þ

where u represents a frequency9 (i is here the unit pure imaginary number). The
integral

R
FðduÞ of the spectral measure is equal to the total power C(0). Note

that the covariance is not necessarily a strictly positive definite function. A
sufficient condition for this is that the support of the spectral measure F includes
an open set of Rn (Dolloff et al., 2006). In the one-dimensional case, this implies
that a valid covariance function is strictly positive definite if its spectral measure
is not limited to a set of discrete points on the frequency axis.10

As we saw in Section 1.1.5, any SRF is also characterized by its spectral
representation: A m.s. continuous RF is an SRF (of order 2) if and only if it is
of the form

ZðxÞ ¼
Z
e2πihu; xiYðduÞ ð2:16Þ

where Y is an orthogonal complex random measure (Y(du) and YðdvÞ have
zero correlation when du and dv are nonoverlapping) such that

EjYðduÞj2 ¼ FðduÞ ð2:17Þ

The above results are valid for complex random functions. In the case where

Z(x) is real-valued, the complex random measure Y satisfies Yð�duÞ ¼ YðduÞ.

Example 1. If

ZðxÞ ¼
Xk
j¼1

½aj cosð2πhuj; xiÞ þ bj sinð2πhuj; xiÞ�

where a1, . . . , ak, b1, . . . , bk are zero-mean uncorrelated random variables such

that Eða2j Þ ¼ Eðb2j Þ ¼ σ2
j . 0 and u1, . . . , uk are distinct vectors, Z(x) is an SRF

with covariance CðhÞ ¼Pk
j¼1 σ

2
j cosð2πhuj ; hiÞ. &

9 Fourier expansions into harmonics exp(i hω,xi) instead of exp(2πi hu,xi) are also used, where ω is

the angular frequency.
10 If the support of the spectral measure is the whole space Rn, any stochastic integral, and not only

any finite linear combination, has a strictly positive variance. A weaker and sufficient criterion for

this is the summability of jC(h)j over Rn, since then the spectral density is absolutely continuous

with respect to the Lebesgue measure. We conjecture that a necessary and sufficient condition for

stochastic integrals and linear combinations to have strictly positive variances is that the spectral

measure is not concentrated on a set whose Lebesgue measure is zero.
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Example 2. If ZðxÞ ¼ a
ffiffiffi
2

p
cosð2πhU; xiþ ΦÞ, where a, U, and Φ are three

independent random variables, a with mean zero and variance σ2¼C(0), U
with distribution F(du)/σ2, and Φ with a uniform probability density on [0, 2π [,
Z(x) is an SRF whose covariance is given by (2.14). The realizations of this RF
with random amplitude, random frequency, and random phase are sinusoids in
R, cylinders with a sinusoidal base in R2, and so on. &

When C(h) falls off sufficiently rapidly to ensure that C(h) is absolutely inte-

grable in Rn, namely
R jCðhÞj dh,N, which is the case for usual covariances,

the measure F is the integral of a bounded continuous function f(u) called the
spectral density (or power spectrum abbreviated as spectrum):

FðduÞ ¼ f ðuÞdu

This spectral density is then the Fourier transform (in the sense of ordinary
functions) of the covariance:

CðhÞ ¼ R e2πihu; hif ðuÞ du ¼ R cosð2πhu; hiÞ f ðuÞdu;
f ðuÞ ¼ R e�2πihu; hiCðhÞdh ¼ R cosð2πhu; hiÞCðhÞdh ð2:18Þ

The condition of absolute integrability of C(h) can be replaced by the less
restrictive condition of square integrability, namely

R jCðhÞj2dh,N, but in
this case the function f(u) will no longer be necessarily continuous and bounded
(Yaglom, 1987, Vol. I, p. 104; in R).

To check that a given absolutely integrable function C(h) is a covariance, it
suffices to calculate its Fourier transform and to verify that it is always non-
negative. Thus in R the triangle function

CðhÞ ¼ 1� jhj
a

if jhj# a

0 if jhj$ a

ða. 0Þ
8<
: ð2:19Þ

is a covariance because its Fourier transform is

f ðuÞ ¼ a
sinðπauÞ
πau

� �2

Conversely, as mentioned earlier this is not a positive definite function in Rn,
n$ 2.

The function (2.19) is, up to a multiplicative factor, the autoconvolution
CðhÞ ¼ ðw 
 �wÞðhÞ of the function wðxÞ ¼ 1jxj# a=2 [�w denotes the function
�w(x)¼w(�x), which is here equal to w(x)]. The autoconvolution of a square
integrable function is always a positive definite function, called a covariogram
(see the next section).
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As a consequence of the stability property 2 applied to the family (2.19), any
function of the form

CðhÞ ¼
Z N

jhj
ð1� jhj=tÞ μðdtÞ ð2:20Þ

where μ is a bounded positive measure on Rþ, is a covariance in R. This
formula generates the class of symmetric functions that are convex over [0,N[,
namely satisfy

C

λ h1 þ ð1� λÞh2

�
#λCðh1Þ þ ð1� λÞCðh2Þ; h1; h2 . 0; 0,λ, 1

and tend to zero as h-þN. Therefore any function of this family is a
covariance in R. This result is often referred to as Pólya’s theorem (Pólya,
1949). For example, exp(�jhj/a), a. 0, is a covariance in R. We can also obtain
this result directly by computing the Fourier transform of this function, which
is f ðuÞ ¼ 2a=ð1þ 4π2a2u2Þ. We will see that exp(�jhj/a) is also a covariance in
Rn for all n.

Spectral Representation of a Variogram and an IRF

The characterization of variograms was established by Schoenberg (1938b) and
von Neumann and Schoenberg (1941):

If γ(h) is a continuous function in Rn, satisfying γ(0)¼ 0, the following three
properties are equivalent:

1. γ(h) is a variogram.

2. e�t γ(h) is a covariance for all t. 0.

3. γ(h) is of the form

γðhÞ ¼
Z

1� cosð2πhu; hiÞ
4π2juj2 χðduÞ þQðhÞ ð2:21Þ

where Q(h) is a positive quadratic form and χ a positive symmetric
measure with no atom at the origin and satisfying

Z
χðduÞ

1þ 4π2juj2 ,N ð2:22Þ

This expression is valid for the general case of an IRF with a random
linear drift m(h)¼ha, hi such that E(a)¼ 0 and for a noncentered
definition of the variogram γðhÞ ¼ 1

2
E½Zðxþ hÞ � ZðxÞ�2. Consequently,

it is possible to have a quadratic term Q(h) that does not appear with the
usual centered definition of γ(h).
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Proof. (1) . (2). Let Z(x) be a Gaussian IRF without drift, or with a zero-mean random
linear drift, and with the (noncentered) variogram γ(h) (such IRFs do exist; see below). The
complex RF XðxÞ ¼ expfiðZðxÞ � Zð0ÞÞ ffiffi

t
p g has for noncentered covariance

E
h
XðxÞXðxþ hÞ

i
¼ E exp


� i

Zðxþ hÞ � ZðxÞ

� ffiffi
t

p �h i
¼ exp


� t γðhÞ

�
e�tγ(h) is thus a covariance function for all t. 0.

(2) . (3). If one considers e�tγ(u) to be a characteristic function, it is the characteristic
functionof an infinitely divisible distribution.The general formof such characteristic functions is
given by P. Lévy’s theorem [e.g., Feller (1971, Chapter XVII)]. Considering only real-valued
functions γ, this theorem states (3).

(3) . (1). When γ(h) is of the form (2.21), �γ(h) is a conditionally positive-definite
function (straightforward proof). &

For example, since exp(�t jhj) is a covariance in Rn for any n for all t. 0 (this
will be shown later), the function γ(h)¼ jhj is a variogram in Rn.

Comparing equations (2.14) and (2.21), we can define the spectral measure
of a variogram as F(du) � χ(du)/(4π2juj2). It is defined in Rn� {0}. Condition
(2.22) on χ is equivalent to the following two conditions on the spectral
measure: Z

juj, ε
juj2FðduÞ,N;

Z
juj. ε

FðduÞ,N

where ε is an arbitrary positive value. One also finds this type of condition for
IRF–k, and the reader is referred to Section 4.5.3 for further discussion. Let us
simply note that the low frequencies can contain an infinite energy since

the condition
R
juj, εFðduÞ,N is not required. We are thus dealing with the

phenomenon known as an infrared catastrophe. When, on the contrary, the
integral of the spectral measure is finite, γ(h) is always of the form C(0)�C(h),

with CðhÞ ¼ R cosð2πhu; hiÞFðduÞ, so that F(du) is the spectral measure of a

covariance. And when the integral of juj2 F(du) over the whole space is finite, then
γ(h) is twice differentiable and Z(x) is an m.s. differentiable IRF.

Pólya’s theorem can be extended easily to variograms [see Matheron (1988)]:
Any positive symmetric function {γ(h): h2R} that satisfies γ(0)¼ 0 and is
concave over [0,N[, namely is such that

γ

λ h1 þ ð1� λÞh2

�
$λ γðh1Þ þ ð1� λÞγðh2Þ; h1; h2 . 0; 0,λ, 1

is a variogram in R.
The spectral characterization of SRFs extends to the IRFs in R and Rn

(Kolmogorov, 1940a; Yaglom, 1957): An RF is an IRF if and only if it has
the form

ZðxÞ ¼ Z0 þ
Z
Rn�f0g

e2πihu; xiYðduÞ
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where Z0 is a random variable (equal to Z(0)) and where Y is an orthogonal
complex random measure such that

EjYðduÞj2 ¼ FðduÞ ¼ χðduÞ
4π2juj2

Spectral Representation of an Isotropic Covariance or Variogram

Let C(h) be a covariance in Rn, which for simplicity we presume to be absolutely integrable.
The covariance and its spectral density f (u) are then Fourier transforms of each other. Because
the Fourier transform of an isotropic function is itself isotropic, if we assume that the
covariance is isotropic, namely of the form C(h)¼Cn(r) with r¼ jhj, the spectral density is of
the form f (u)¼ fn(ρ) with ρ¼ juj. The index n recalls that these functions represent isotropic
functions in Rn, which is important since the Fourier transform F n that relates C and f
depends on n. Considered as relating two functions of a single variableCn and fn,F n represents
the Hankel transform of order n, and (2.18) takes the form

fnðρÞ ¼ 2πρ1�n=2

Z N

0

rn=2Jn=2�1ð2πρrÞCnðrÞ dr;

CnðrÞ ¼ 2πr1�n=2

Z N

0

ρn=2Jn=2�1ð2πρrÞ fnðρÞ dρ
ð2:23Þ

where Jν represents the Bessel function of the first kind of order ν (A.2). Despite this apparent
symmetry, the two functions are usually not interchangeable: In particular, fn is a nonnegative
function, whereas Cn can take negative values.

If we concentrate f (u) on the surface of the hypersphere with radius 1/(2π) and replace

fn(ρ) dρ in (2.23) by A δ1/(2π)(dρ) with A ¼ ð4πÞn=2�1Γðn=2Þ, we obtain the J-Bessel model

κnðrÞ ¼ 2n=2�1Γðn=2Þr1�n=2Jn=2�1ðrÞ

The multiplicative factor A is chosen so that κn(0)¼ 1. The covariance κn(r) exhibits a hole
effect, this effect being less pronounced as n increases (for n¼N, we obtain the Gaussian
model).

The second equation in (2.23) expresses the following characterization: A necessary and
sufficient condition for a function Cn(r) to be an isotropic covariance in Rn is to be of the form

CnðrÞ ¼
Z N

0

κn
r

t

 �
μðdtÞ ð2:24Þ

for a bounded positive measure μ on R+. Therefore

CnðrÞ=Cnð0Þ# inf
s. 0

κnðsÞ

No isotropic covariance in Rn can have a relative hole effect more pronounced than κn.
More explicitly, for n¼ 1, 2, 3, the relations between Cn and fn are

n ¼ 1 : C1ðrÞ ¼ 2

Z N

0

cosð2πρrÞ f1ðρÞ dρ;

n ¼ 2 : C2ðrÞ ¼ 2π
Z N

0

ρJ0ð2πρrÞ f2ðρÞ dρ; ð2:25Þ
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n ¼ 3 : C3ðrÞ ¼ 2π
Z N

0

ρ sinð2πρrÞ f3ðρÞ dρ; ð2:26Þ

Generally speaking, the formula involves trigonometric functions when n is odd and involves
the somewhat intractable Bessel function of integer order when n is even.

As far as the variogram is concerned, if the measure χ is of the form χ(du)¼ϕn(juj) du,
relation (2.21) becomes in the isotropic case

γnðrÞ ¼
πn=2�2

2Γðn=2Þ
Z N

0

½1� Γðn=2ÞðπρrÞ1�n=2Jn=2�1ð2πρrÞ� ρn�3ϕnðρÞ dρ

Recall that a positive definite function (conditionally or not) in Rn is not necessarily so in Rm,
m. n.

It is convenient to have isotropic models that are covariances in Rn for any n. An example
is the Gaussian model

CðrÞ ¼ exp � r2

a2

� �
ða. 0Þ

Indeed the Hankel transform of order n exchanges the functions exp(�πr2) and exp(�πρ2).
This is a classic result. These functions are, respectively, the density and the characteristic
function of the isotropic Gaussian multidimensional distribution with variance σ2¼ 1/(2π).
The Gaussian model is extremely regular, having derivatives of any order.

The following characterization holds in the general case: A necessary and sufficient con-
dition for a function C(r) to be an isotropic covariance in Rn for all n is that C(r) is of the form

CðrÞ ¼
Z N

0

exp � r2

t2

� �
μðdtÞ ð2:27Þ

where μ is an arbitrary bounded positive measure on R+ (randomized scale parameter).
This condition is indeed sufficient, as results from the stability condition (2). It is

also necessary, as shown by Schoenberg (1938a).11 Note that (2.27) generates all types of
behaviors near the origin because the base model is infinitely differentiable: randomization
produces models that can be less regular than the base model but never more regular. For
example, randomizing the scale parameter t in (2.27) by a one-sided Gaussian distribution
leads to the exponential model12

CðrÞ ¼ exp � r

a

 �
ða. 0Þ

which is thus a covariance in Rn for any n. This model is a completely monotone function.13 It
constitutes the base model of isotropic covariances with this property, since any completely
monotone function that is an isotropic covariance in Rn for all n is of the form

CðrÞ ¼
Z N

0

exp � r

t

 �
μðdtÞ ð2:28Þ

11 The proof is based on the fact that κnð
ffiffiffiffiffi
2n

p
rÞ tends to exp(�r2) as n-N.

12 This results from an application of formula (7.4.3) in Gautschi (1972, p. 302):

1

a
ffiffiffi
π

p
Z N

0

exp � t2

4 a2
� r 2

t2

� �
dt ¼ exp � r

a

 �
; r$ 0; a. 0

13A continuous function f on [0,N[ is completely monotone if it possesses derivatives f (n)(t) of all

orders and if (�1)n f (n)(t) $ 0 for n¼ 0, 1, 2, . . . , and t. 0.
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for a bounded positive measure μ onRþ [e.g., see Schoenberg (1938a) andFeller (1971, p. 439)].
The family of completely monotone isotropic covariances includes, for example, the iterated
exponential model exp(exp(�r/a))�1 (a. 0) and the gamma model (1þ r/a)�β (a, β. 0 ; for
β¼ 1 this model is named the hyperbolic model).

Schoenberg also proves that C(r) is a completely monotone isotropic covariance if and
only if C(r2) is an isotropic covariance in Rn for all n. A consequence is for example that the
Cauchy model (1þ r2/a2)�β/2 (a, β. 0) is a covariance whatever the space dimensionality.14

Let us end with a useful result whose proof can be found in Yaglom (1987, Vol. I,
pp. 358–360): since an isotropic covariance in Rn, n. 1, is also a covariance in R, it has an
n-dimensional spectral density fn and a one-dimensional spectral density f1 as well. These
spectral densities are related by

f1ðρ1Þ ¼
2πðn�1Þ=2

Γ

ðn� 1Þ=2

�Z N

ρ1

fnðρÞðρ2 � ρ21Þðn�3Þ=2ρ dρ ð2:29Þ

This relation can be easily inverted when n¼ 2 or 3:

f2ðρÞ ¼ � 1

π

Z N

ρ

df1ðρ1Þ
dρ1

ðρ21 � ρ2Þ�1=2dρ1 f3ðρÞ ¼ � 1

2πρ
df1ðρÞ
dρ

To calculate the spectral density of an isotropic covariance in R2 or R3, it is often simpler to
calculate the spectral density f1(ρ) in R and apply these relations rather than directly use
relations (2.25) and (2.26). Note that the 1D spectral density associated with an isotropic 3D
density is necessarily decreasing. Inverting (2.29) is difficult when n. 3, especially when n is
even (see Yaglom, 1987, Vol. II, Chapter 4, Note 45).

The characterization of isotropic variogram models valid in Rn for all n is a special case of
a theorem presented in Section 4.5.4. To conclude, it may also be interesting to exploit the
turning bands operator of Section 7.4 which establishes a one-to-one mapping between iso-
tropic covariances or variograms in Rn and covariances or variograms in R.

2.3.4 Covariograms

Definition and Properties

Let w(x) be a function in Rn, both integrable and square integrable, and let ϕ(u)
be its Fourier transform. We can define the covariogram g(h), h2Rn, as the
convolution of w(x) by the function �wðxÞ ¼ wð�xÞ:

gðhÞ ¼ ðw 
 �wÞðhÞ ¼
Z

wðxÞ wðxþ hÞ dx ð2:30Þ

Since the Fourier transformation exchanges convolution and multiplication,
the Fourier transform of g(h) is jϕ(u)j2. It is thus always positive and g(h) is a
covariance in Rn.

14 The general result derives from the following relations where C denotes a completely monotone

isotropic covariance and C1 an isotropic covariance in Rn for all n:

Cðr2Þ ¼
Z N

0

exp � r2

t

� �
μðdtÞ ¼

Z N

0

exp � rffiffi
t

p
� �2

 !
μðd ffiffi

t
p Þ ¼

Z N

0

exp � r2

t2

� �
νðdtÞ ¼ C1ðrÞ
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In addition to the properties of covariances, the covariogram satisfies the
equation

Z
gðhÞ dh ¼

Z
wðxÞ dx

� �2
ð2:31Þ

If the support of w is bounded, covariograms have a finite range, in the
sense of the integral range defined in Section 2.3.5 and in the strict sense
(zero value when jhj exceeds a finite limit, which can vary according to the
direction).

The covariogram has a particularly simple interpretation when w(x) is the
indicator function of a bounded domain B (Figure 2.18a):

wðxÞ ¼ 1x2B ¼ 1 if x 2 B
0 if x =2 B

�

The product w(x) w(xþ h) is then equal to 1 if x and xþ h belong to B (i.e., if
x belongs both to B and to the translate B�h of B in the translation �h) and
equal to 0 if not. Thus g(h) is the measure of B- B�h (its volume in R3, its area

h

B−h B−hB

g(h)

B

h

dir. α

g(h) = | B ∩ B–h |

dir. α

D1

D2

Dα

Dα � D1 � D2

g(0) – g(δh)

δh δh

(a)

(b)

FIGURE 2.18 Geometric covariogram of a bounded domain B: (a) geometric interpretation of

g(h); (b) caliper diameter and total diameter in the direction α.
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in R2, its length in R). This measure will be denoted by jB - B�hj. In this case,
g(h) is called the geometric covariogram of B.15

Again letus consider the case of an indicator function.As shown inFigure2.18b,
for a small displacement δh in the direction α, the difference g(0)� g(δh) is the
surface area swept by a vector δh included in B when its end point scans
the boundary of B. For a convex domain B, this area is Dα jδhj, where Dα is the
tangent diameter (caliper diameter) in the direction α, and we can write in R2

gð0Þ � gðδhÞ ¼ Dαjδhj
This formula remains valid for a nonconvex (but nonfractal) B, but Dα now
represents the total diameter in the direction α, namely the total length of the
orthogonal projection along α of the portion of contour scanned by δh, or,
equivalently, one-half the total projected length of the complete contour of B.
In any case the partial derivative of g(h) at 0 in the direction α is g0α (0)¼ –Dα.
The left and right partial derivatives at h¼ 0 are of opposite signs, and g(h) is
therefore not differentiable at h¼ 0. Differentiability of g(h) at 0 is only possible
for functions w(x) that display less abrupt transitions than an indicator func-
tion. These properties are easily transposed to Rn, where the measure of the
total projection of B in Rn�1 replaces the total diameter.

The covariogram is the basic tool of transitive methods, where w(x) is the
studied regionalized variable: In the case of a mineral deposit, it is the indicator
function or the concentration of a constituent present only in the deposit. A
brief presentation of this approach is given in Section 1.3. It will suffice here to
consider the covariogram as a means of creating covariance and variogram
models, and we will take ordinary analytical function for w(x), the simplest
example being the indicator of the sphere of Rn which gives the spherical model
of Rn (see Section 2.5.1). By reference to the transitive theory, the obtained
models are known as transition models.

Radon Transform

Let us explicitly write w(x) as a function wn(x1, x2, . . . , xn�1, xn) of the n coordinates of point
x2Rn. By integration parallel to the xn axis, we define a function wn,1 in Rn–1:

wn; 1ðx1; : : : ;xn�1Þ ¼
Z
R

wnðx1; : : : ;xn�1; xnÞ dxn

The operation allowing one to pass from wn to wn,1 is a Radon transform [cf. Gel’fand et al.
(1962, Section 1.1) and Santaló (1976, Section. IV.19.8)], also known in geostatistics as a
transitive “montée” (upscaling) along the xn axis.16 It represents an accumulation along the

15 The knowledge of B determines g(h). Conversely, does the knowledge of g(h) determine B, up to

translations and reflections? Matheron (1986, p. 20) asked that question within the subset of convex

bodies and conjectured that the answer would be positive in R2. The problem was addressed by

numerous authors, and a complete proof in R2 has been provided by Averkov and Bianchi (2009).

A positive answer was given in R3 for convex polyhedra. Counterexamples are known in Rn, n $ 4.
16 In stereology, and particularly in tomographic imaging, the main concern is the inverse problem,

namely the derivation of wn knowing the value of its integral along any line or any plane.
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direction of integration. By repeating this, we can define the Radon transform or transitive
montée of order m (m, n) in the hyperplane defined by the axes of xn�mþ1, . . . , xn.

Also let gn(h1, h2, . . . , hn–1, hn) denote the covariogram of wn. It is readily seen from the
definition of wn,1 that its covariogram gn,1 takes the form

gn; 1ðh1; : : : ; hn�1Þ ¼
Z
R

gnðh1; : : : ; hn�1; hnÞ dhn

Thus the covariogram of the Radon transform of wn is the Radon transform of gn. Through
iteration this property is generalized to the Radon transform of order m.

If the function wn is isotropic, so are the Radon-transformed variables and all their
covariograms. Let us denote by gn(r), gn,1(r), and gn,2(r) the initial covariogram and the
Radon-transformed covariograms of orders 1 and 2 as functions of the modulus r of a vector
of the Rn, Rn�1, and Rn�2 space, respectively. Elementary calculations show that

gn; 1ðrÞ ¼ 2

Z N

0

gnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ρ2

p
Þ dρ

gn; 2ðrÞ ¼ 2π
Z N

r

u gnðuÞ du ð2:32Þ

Therefore a transform of order 2, and more generally all transforms of even order obtained by
iteration of (2.32), reduce to a very simple integral, whereas a transform of odd order is
generally cumbersome. The same relations also obviously apply between wn and the trans-
formed variables wn,1 and wn,2.

Still in the isotropic case, a Radon-transformed function is differentiable once more than
the original function. Therefore, if we start from a covariogram gn that is not twice differ-
entiable (e.g., a geometric covariogram), gn,2 is then twice differentiable and is a valid model
for a differentiable SRF. More generally the covariogram gn,2q (provided that 2q, n) is 2q
times differentiable and constitutes a covariance model of q times differentiable SRFs. In
applications, one must not forget that the Radon transform of orderm of a covariogram in Rn

produces a model that is only valid in Rn–m. Matheron (1965, Chapter II) presents several
families of Radon-transformed covariograms.

2.3.5 Integral Range

Let Z(x) be an SRF with covariance C(h), and let us consider the spatial
average ZV ¼ ð1=jVjÞRV ZðxÞ dx. According to (2.12), its variance is

VarðZVÞ ¼ 1

jV j2
Z
V

Z
V

Cðx0 � xÞ dx dx0 ð2:33Þ

If C(h) has a finite range and if the support V is very large with respect to the
range, the integral

R
V Cðx0 � xÞ dx is equal to

R
CðhÞ dh, except when x0 is close

to the boundary of V (at a distance less than the range). To a first approxi-
mation the variance of ZV is then of the form

VarðZVÞ 	 A

jV jσ
2 ð2:34Þ

where σ2¼C(0) is the variance of Z(x) and where

A ¼ 1

σ2

Z
CðhÞ dh ð2:35Þ
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Expression (2.34) remains valid for a covariance that reaches zero asymptoti-
cally when jhj-N, provided that (2.35) is finite. We call A the integral range.
In 1D a useful mnemonic is to remember that the integral range is the range of
the triangular covariance having the same value at the origin and the same area
under the curve as C(h). Equivalently A is the integral of the correlogram
ρ(h)¼C(h)/σ2. Alternative names given by Yaglom (1987) are “correlation
time” (in a spatial context we would say “correlation length”) or “integral time
scale” in 1D, “correlation area” or “integral area scale” in 2D space.17 Its
dimension is that of a volume of the space Rn. If, for example, C(h) is the
covariogram of a function w(x) in Rn, in view of (2.30) and (2.31) its integral
range is

A ¼
Z

wðxÞdx
� �2

=
Z

½wðxÞ�2dx

Two special cases deserve mention: (1) If w(x) is the indicator function of a
bounded domain of Rn, A is the measure of this domain; (2) if w(x) is a function
integrating to zero, we obtain A¼ 0, which means that the approximate formula
(2.34) is no longer valid and that the variance of ZV decreases faster than 1/jVj.

If C(h) is a continuous covariance of Rn with C(h)¼ 0 for jhj $ a, then

A# 2�nVn a
n

where Vn is the volume of the unit-radius sphere of Rn, given by (A.5)
(Gorbachev, 2001; Kolountzakis and Révész, 2003). The equality is reached
by the spherical covariance of Rn.

If we write N¼ jVj/A, (2.34) takes the form

VarðZVÞ 	 σ2

N

This is the conventional formula for the variance of the arithmetic mean of N
independent points (i.e., mutually located at distances greater than the range).
In other words, from the point of view of the mean value, the domain V is
equivalent to N independent samples.

The integral range is related to the ergodicity of the SRF: If it is finite, the
SRF is ergodic, since the variance of ZV tends to zero when V tends to infinity.
However, the SRF may be ergodic in cases when the integral range does not
exist. For example, if the integral

R
VCðhÞ dh does not converge when V tends to

infinity but remains bounded, Slutsky0s condition (1.12) is satisfied and Z(x) is
ergodic. This case is exceptional in practice, but it occurs, for example, in R

with the periodic covariance C(h)¼ cos(h/a). Also note that when C(h) is a
covariance in Rn, n. 1, its integral range in a subspace of Rn does not coincide

17Yaglom’s terminology relates to 2�n A, where n is space dimension. In the literature the term

“correlation length” sometimes also means what we call range, and sometimes it refers to what we

call scale parameter.
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with its integral range in Rn. In particular, Z(x) may be ergodic in Rn but not in
a subspace of Rn.

From the above considerations, it appears that the integral range represents
a yardstick by which we can judge how large a domain of study V is with
respect to the scale of the phenomenon. It is an indicator of practical ergodicity.
Lantuéjoul (1991) illustrates this with very demonstrative examples.

2.4 REGULARIZATION AND NUGGET EFFECT

The data usually relate to a sampling support that is not punctual. They are
affected by microstructures and various error sources that are pooled together
into the nugget effect. A delineation of the various components of the nugget
effect is necessary for a sound application of geostatistics; an example, among
others, is provided by Baghdadi et al. (2005), who create a digital elevation
model of a tropical forest area by merging ground data, airborne laser
and radar data, and remote sensing data, which are associated with very dif-
ferent supports, measurement errors and positioning accuracies. In mining,
such delineation permits an improved data collection and sampling control
[e.g., Sinclair and Vallée (1994)].

2.4.1 Change of Support—Regularization

Our data may be measured over different sampling supports (cores, channel
samples, mine blocks, plots of different sizes, etc.) or represent a weighted
average over a volume of investigation (e.g., geophysical tools, remote sensing
data). This averaging process can be modeled as a convolution of a (perhaps
hypothetical) point-support variable. From this it is easy to establish the
relationship between covariances and variograms for different supports.

Let Z(x) be a point-support RF, and define the regularized RF Zp(x) by the
stochastic convolution

Zp ¼ Z 
 �p

where p(u) is a sampling function and �pðuÞ ¼ pð�uÞ, that is, ZpðxÞ ¼R
Zðxþ uÞpðuÞdu. This function could be the indicator function of a sample

v, normalized by its volume jvj, in which case Zp(x), generally denoted by Zv(x),
is simply the mean value over the sample of support v centered at x. It could
also be a more general weighting function that we assume integrable and square
integrable so that Zp(x) exists.

If Z(x) is an SRF with covariance C(h), it follows from (2.13) and the
Cauchy algorithm that Zp(x) is an SRF whose covariance Cp(h) is given by

Cp ¼ C 
 P ð2:36Þ
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that is, CpðhÞ ¼
R
Cðhþ uÞPðuÞ du, where P ¼ p 
 �p is the covariogram of p: Cp

derives from C by regularization by the covariogram P. In particular, the
variance of the SRF Zp is Cpð0Þ ¼

R
CðhÞPðhÞ dh. When Zp(x) is a weighted

moving average, namely when p sums to one, P also sums to one as shown by
(2.31), and Cp(0) is then a weighted average of C(�). The variance of Zp is thus
smaller than C(0).

If Z(x) is not an SRF but an IRF with variogram γ(h), then similarly Zp(x) is
an IRF whose variogram is given by

γpðhÞ ¼ ðγ 
 PÞðhÞ � ðγ 
 PÞð0Þ ð2:37Þ

These transformations generally have little effect on the shape of the variogram
at large distances but impart a more regular behavior at the scale of the support
of the function p(u). This behavior is not isotropic if the function p(u) is not
isotropic. Thus for a linear variogram γ(h)¼ b jhj and a regularization along
segments with the same orientation and same length l (regularization along
cores of a drill hole, for example), we obtain a regularized variogram γl (h) such
that (with r¼ jhj):

� For a vector h with the same direction as the segments, we have

γ==

l ðhÞ ¼
b
jrj2
l2

�
l � jrj

3

�
if jrj# l;

b

�
jrj � l

3

�
if jrj$ l

8>>>><
>>>>:

ð2:38Þ

� For a vector h orthogonal to the cores, we have

γ>l ðhÞ ¼ b
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2 þ r2

p
þ r2

l
log

l þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2 þ r2

p

r
� 2

3

r2

l 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2 þ r2

p
� r

 �
� l

3

" #
ð2:39Þ

� And more complex expressions for the other directions.

In all directions, γl (h) asymptotically reaches the same line b (jhj � l/3) when
jhj-N. We can see from Figure 2.19a that γl(h) has a more regular behavior
than the point variogram γ(h). This behavior is parabolic along the direction of
the cores; its great regularity is due to a partial overlap of the cores for jhj, l;
in practice, the smallest distance for which we calculate a sample variogram is l,
and for jhj $ l the regularized variogram differs from the point variogram only
by a constant value; if we extrapolate it to the origin, we obtain an apparent
negative nugget effect. Note that (2.39) can be used as an isotropic variogram
model for h2Rn for all n because it can be considered as the result of a regu-
larization in Rnþ1.
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If the variogram has a finite range a, the regularization extends the range by l
in the direction of the cores, whereas it reduces the sill by the amount

ðγ 
 PÞð0Þ ¼ 1

l 2

Z l

0

Z l

0

γðx0 � xÞ dx dx0 ¼ 2

l 2

Z l

0

ðl � uÞγðuÞ du

In the case of a spherical variogram, this quantity represents a proportion
l/(2 a)� l3/(20 a3) of the sill if l# a (Figure 2.19b). On the other hand for l.. a
the sill of the regularized variogram is only about 3/4 (a / l ) of the original sill,
thus this sill mainly reflects the contributions to variance of the long-range
components. Regularizations over varying supports are a useful tool to analyze
nested structures [an example with ranges from 12m to 18 km is provided by
Rivoirard et al. (2000, Section 4.3)]. Further results can be found in Journel and
Huijbregts (1978, Section II.D).

Relation (2.37) is usually applied with a known sampling function. It is also
possible to invert it to determine P and, to some extent, p (thus the volume
investigated), knowing the point and regularized variograms (Royer, 1988).

2.4.2 Microstructure

The formalism of regularization provides a representation of the upscaling
mechanism by which a microstructure turns up as a nugget effect at the mac-
roscopic level. Consider a phenomenon made up of microscopic heterogeneities
with some characteristic dimension that is very small in comparison with the
size of the sampling unit. A good example is a piece of sedimentary rock, such
as a core, typically made up of a large number of grains. At the grain level the
phenomenon is characterized by a microstructure with a covariance Cμ(h)

γ

0 2 l rl

γ

γ ⊥
l

γ //
l

1

0 a 2 a r

γ //
l

γ ⊥
l

γ

l = a/2

(a) (b)

FIGURE 2.19 Effect of the regularization by a segment of length l on the variogram along the

direction of segment (γ==

l ) and perpendicular to segment (γ>l ): (a) for a linear variogram; (b) for a

spherical variogram with range a¼ 2 l.
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whose range is of the order of the diameter of the grains. Let us suppose that
the observations are average values over a support v with indicator function
k(u) and geometric covariogram K(h). Equivalently, they are weighted averages
with the sampling function p(u)¼ k(u) / jvj, which has covariogram P(h)¼
K(h) / jvj2. According to (2.36) the microstructure is regularized into a com-
ponent with covariance

C0ð�Þ ¼ 1

jvj2 Cμ 
 K

Since the range of Cμ is small in relation to that of K, we have

C0ðhÞ ¼ 1

jvj2
Z
CμðuÞKðhþ uÞ du 	 1

jvj2
"Z

CμðuÞ du
#
KðhÞ ¼ f0KðhÞ

jvj2

where f0 ¼
R
CμðhÞ dh (the value of the spectral density at zero frequency). This

covariance is equal to f0/jvj at the origin (K(0)¼ jvj) and vanishes as soon as h
exceeds the dimensions of the sampling unit v. Since distances smaller than the
sampling unit are not considered in practice (except of course at h¼ 0), the effect
of themicrostructure is to offset the sample variogramat theoriginby the amount

C0 ¼ f0

jvj ð2:40Þ

Thus the nugget effect is a reminiscence of a microstructure that is no longer
perceptible at the scale of study, and it disappears as the sampling unit becomes
larger. The macrostructure, made of medium- to long-range components, evolves
very slowly at the scale of the sampling unit and remains practically unaffected by
the regularization. Increasing the sample support enhances the contrast between
micro- andmacrostructures. Note that this theory assumes spatially homogeneous
heterogeneities (else a location-dependent nugget effect should be considered).

From the point of view of geostatistical calculations where one considers
supports and distances that are large compared with the range of the micro-
structure, this component appears to be purely random, namely without spatial
correlation. In 1D this corresponds to the so-called white noise process, defined as
a zero-mean process with a constant spectral density over all frequencies (the term
“white” is by analogy with the flat spectrum of white light, as opposed to a pre-
ponderance of low frequencies for red light and of high frequencies for blue light).

Strictly speaking, such process cannot exist in the ordinary sense for its total
power, the variance, is infinite. However, it can be modeled within the scope of
generalized random processes [e.g., Yaglom (1987, Vol. I, pp. 117–120 and
Section 24.1)], which are processes defined not by point values but by the values
obtained by convolution with regular enough weighting functions. In this
model the microstructure can be represented by the macroscopic covariance
f0 δ(h) where δ(h) is the Dirac delta function (Appendix, Section A.1). It is as
though the integral f0 ¼

R
CμðhÞ dh were concentrated at the origin. The benefit
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of this formalism is to be able to standardize the treatment of nugget effect
under change of support by adding a term f0 δ in all formulas involving a
covariance. In formulas involving the variogram the nugget effect is modeled as
f0 [1� δ(h)].

The proportionality of the covariance C0(h) with the geometric covariogram
of the support shows the possibility of modeling the true nugget effect (i.e., due
to microstructures) as a number of points of a Poisson point process with
intensity λ¼ f0/jvj2 (see Section 7.5.2). Such a model fits well with the idea or
actual nuggets (stones) scattered randomly in the rock. It also highlights the
isotropy of the true nugget effect. Indeed, the Poisson point process is isotropic,
and an affine transformation of the space does not introduce any anisotropy
but just changes the intensity of the process.18

2.4.3 Measurement Errors

Experimental data are often affected by measurement errors. Instead of giving
the value Z(xα) at location xα, the measurement gives Zε(xα)¼Z(xα)þ εα,
where εα is a measurement error. The numerical value of this error being
unknown, εα is considered as a random variable. If measurement errors at the
sample points are independent of Z, mutually independent, with mean zero and
the same variance σ2

ε, the variogram γε(h) of Zε is

γεðhÞ ¼ Cε þ γðhÞ ð2:41Þ

where Cε ¼ σ2
ε and γ(h) is the variogram of Z. Formula (2.41) remains valid at

h¼ 0 if one considers replicate measurements at the same location. Otherwise
γε(0)¼ 0 and the variogram of Zε shows an offset at the origin similar to that
produced by a microstructure. Note that formula (2.41) remains valid if the
mean error is not zero: The variogram cannot detect a systematic error.

The reproducibility (or precision) of measurements is often known.
For example, in dividing up a pile of ore to obtain a sample for analysis,
the variance of the sampling error (also known as Gy’s fundamental error)
can be calculated (Gy, 1975, 1979; François-Bongarçon, 1998). For the
relationship between sampling theory and geostatistics, see Deverly (1984a,b)
and François-Bongarçon (2004). Similarly, a chemical analysis technique or an
instrument can be calibrated, and thus its precision can be estimated.

If the measurement errors are not with the same variance, the apparent
nugget effect will be equal to the average variance. Marine or airborne data
collected along profiles often include an error term that is almost constant
along each profile and independent between profiles. It can be analyzed at the

18 Incidentally, the persistence of the Poisson point process under a large variety of transformations

rules out the possibility of detecting strain in a rock by analysis of the position of objects after

deformation if the original object positions are “random” and mutually independent (Fry, 1979).

But such detecion is possible if the objects themselves are deformed; for example, initially spherical

markers become ellipsoids.

c02 30 January 2012; 17:22:52

82 STRUCTURAL ANALYSIS



intersection of profiles, or by comparing the variogram along profiles with
the variogram between profiles. More complex cases (e.g., correlation with Z)
are handled with multivariate models.

2.4.4 Positioning Errors

Positioning uncertainty is typically associated with marine and aerial surveys.
The advent of satellite positioning (GPS) has made this uncertainty very small19

but perhaps still significant in applications where extreme precision is required,
such as marine 3D seismic. The problem is also encountered in remote sensing
applications when massive, irregularly spaced data have been relocated on
regularly spaced grid nodes.

In case of a positioning error, the value believed to be at point xα has in fact
been measured at some other point xαþUα. Instead of studying the data
{Z(xα) : α¼ 1, . . . , N}, we are in fact studying Z1(xα)¼Z(xαþUα), where the
Uα are random vectors. The problem often occurs with data originating from a
dense sampling of profiles, where the errors are correlated. But let us first
consider the case where theUα are uncorrelated and have the same p.d.f. p(u). If
Z(x) is an SRF or an IRF, the variogram of the observations is given by

γ1ðhÞ ¼
1

2

ZZ
E½Zðxþ hþ u0Þ � Zðxþ uÞ�2 pðuÞ pðu0Þ du du0

¼
ZZ

γðhþ u0 � uÞ pðuÞ pðu0Þ du du0 ð2:42Þ

where γ is the variogram of Z, that is,

γ1 ¼ γ 
 P with P ¼ p 
 �p

This formula is valid even for h¼ 0 if we consider pairs of distinct measurement
points supposed to have the same location but subject to two different
positioning errors. Of course, if we are considering twice the same value,
γ1(0)¼ 0. It is thus essential in the analysis of such data to compute the
variogram at h 	 0 from pairs of distinct points only.

A comparison with formula (2.37) shows that positioning errors act as a
regularization plus the addition of a nugget effect

C0 ¼
ZZ

γðu0 � uÞ pðuÞ pðu0Þ du du0 ¼
Z
γðhÞ PðhÞ dh

adding to the possible nugget effect of Z (Figure 2.20a). This discontinuity
reflects the fact that two apparently close data points can in fact be significantly

19The GPS horizontal position is accurate to about 10m and to 1m or less using differential

corrections.
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apart. Formula (2.42) can be easily generalized to correlated errors, provided
that the joint p.d.f. of U and U0 as a function of h¼ x0 � x is known.

These features are exploited in the analysis of data along marine survey lines
(Chilès, 1976, 1977; Figure 2.20b): The sample variogram computed from pairs
of points belonging to the same profile is very little affected by the positioning
errors because they are highly correlated at short distances, whereas the sample
variogram computed from pairs of points on different profiles conforms to the
model of uncorrelated positioning errors and can be used to assess the distri-
bution of this error.

2.5 VARIOGRAM MODELS

2.5.1 Isotropic Covariance or Variogram Models

We begin with isotropic models and present the covariances and variograms
as functions of r¼ jhj and the corresponding spectra, also isotropic, as func-
tions of ρ¼ juj. For variograms associated with a covariance, we give the
analytical form of the covariance, the variogram being deduced from this by
the equation γ(h)¼C(0)�C(h); conversely, all figures display the graph of the
variogram function, which is the structural tool. Models are given in normal-
ized form, namely C(0)¼ 1 for covariances (they are thus correlograms) and
multiplicative coefficient equal to 1 for variograms.

σ

γ1

γ

γ

2σ 3σ 4σ 5σ r0

(a)

Distance (km)0 σ � 6 km

γ

γ
(m²)

18

γ1

12

10000

0

(b)

FIGURE 2.20 Linear variogram corrupted by an isotropic Gaussian positioning uncertainty

U (2D) with mean square E(7U72)¼σ2: (a) model; (b) example in bathymetry (including measure-

ment error and positioning uncertainty). [From Chilès (1976), with kind permission from Kluwer

Academic Publishers.]
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Spherical Models and Derived Models

By autoconvolution of the indicator function of the sphere of Rn with diameter
a, namely in terms of the modulus ξ¼ jxj, of the function

wnðξÞ ¼
1 if ξ# a=2;

0 if ξ. a=2

(
ð2:43Þ

we obtain the spherical covariogram of Rn, which we can consider as a function
of r¼ jhj (Matheron, 1965, pp. 56–57):

gnðrÞ ¼
anvn�1

Z 1

r=a

ð1� u2Þðn�1Þ=2du if r# a;

0 if r$ a

8><
>: ð2:44Þ

In these formulas, vn is the volume of the unit-diameter ball of Rn, which can be
deduced from the volume Vn of the unit-radius ball of R

n, whose expression is
given by (A.5):

vn ¼ Vn

2n
¼ πn=2

2n�1n Γðn=2Þ

For odd n¼ 2pþ 1 the integrand of (2.44) is a polynomial, which gives after
integration

g2pþ1ðrÞ ¼ a2pþ1 v2pþ1 � v2p
Xp
l¼0

ð�1Þl
2l þ 1

p
l

� �
r

a

 �2lþ1
" #

ðr# aÞ

The models used in practice correspond to n¼ 1, 2, 3:

� Triangular model, also called tent covariance, valid in R:

C1ðrÞ ¼
1� r

a
if r# a;

0 if r$ a

8<
: ð2:45Þ

� Circular model, valid in R2:

C2ðrÞ ¼
2

π
arc cos

r

a

0
@
1
A� r

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

a2

vuut
2
4

3
5 if r# a;

0 if r$ a

8>><
>>: ð2:46Þ
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� Spherical model, valid in R3:

C3ðrÞ ¼ 1� 3

2

r

a
þ 1

2

r3

a3
if r# a;

0 if r$ a

8><
>: ð2:47Þ

The corresponding variograms exhibit a linear behavior near the origin and
reach their sill at r¼ a, so that the scale parameter a of the spherical models
coincides with the range. These variograms maintain a quasi-linear behavior
up to the sill,20 which can be related to the following property: Among all
covariances of Rn with support included in the ball of radius a and with unit
value at 0, the spherical covariance of Rn has the largest integral range
A¼ 2�n Vn an. When we speak of a spherical model without specifying n, we
are referring to the model C3(r) (Figure 2.21a). Because of its validity in Rn

for n¼ 1, 2, or 3, its well-marked range, and its ease of calculation, it is very
widely used.

As was shown in Section 2.3.4, more regular models, corresponding to
q-times m.s. differentiable SRFs, are obtained by Radon transform of order 2q
(2q, n). The Radon transform of order 2q of the indicator function (2.43) of
Rn is an isotropic function wn,2q in Rn–2q. Considered as function of ξ¼ jxj
(x2Rn�2q), wn,2q(ξ) represents the volume of the sphere of R2q with radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4
a2 � ξ2

q
. Thus it depends only on q and is given by

wn; 2qðξÞ ¼
(
v2q


a2 � 4ξ2

�q
if ξ# a=2

0 if ξ$ a=2

The corresponding covariograms can be obtained by recursive application of
equation (2.32) to the expression (2.44) of gn. The result is

gn; 2qðrÞ ¼ πq

q!

Xq
l¼0

ð�1Þl q
l

� �
vn�1

vnþ2l�1
a2 � r2
� �q�l

gnþ2lðrÞ ðr# aÞ ð2:48Þ

and of course gn,2q(r)¼ 0 for r $ a. These models are valid in Rn�2q.
Considering only the lowest-degree models valid in R3, we obtain from formula
(2.48) the following two models for q¼ 1, n¼ 5, and q¼ 2, n¼ 7, respectively
(given here in their normalized form):

20We have seen in footnote 7 that a variogram with a perfectly linear behavior up to the sill exists in

R2 and R3, but that model does not stay at the sill for r. a.
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1. The model known as “cubic” because its principal irregular term is in r3. It
corresponds to the Radon transform of order 2 of the spherical covariogram of
R5 (Figure 2.21b):

r

γ

0 1

1

Spherical

(a)
r

γ

0 1

1

(b)

Cubic

γ

0 1 2 3 4 5 r

1

Exponential

(c)

γ

0 1 2 r

 1

Gaussian

(d)

(e)

γ

0 1 2 3 4   r

  1
α = 1/2

α = 3/2

Cauchy

FIGURE 2.21 Variogram models with unit sill and scale parameter—1: (a) spherical; (b) cubic;

(c) exponential; (d) Gaussian; (e) Cauchy.
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CðrÞ ¼ 1� 7
r2

a2
þ 35

4

r3

a3
� 7

2

r5

a5
þ 3

4

r7

a7
if r# a;

0 if r$ a

8><
>: ð2:49Þ

This model is used for differentiable variables such as pressure fields or
geopotential in meteorology (Royer, 1975), as well as potential fields in
geological modeling (Chilès et al., 2005).

2. A model for a twice m.s. differentiable SRF, which could be called the
“pentamodel” because its principal irregular term is in r5. It corresponds to the
Radon transform of order 4 of the spherical covariogram of R7:

CðrÞ ¼ 1� 22

3

r2

a2
þ 33

r4

a4
� 77

2

r5

a5
þ 33

2

r7

a7
� 11

2

r9

a9
þ 5

6

r11

a11
if r# a;

0 if r$ a

8><
>: ð2:50Þ

Its graph differs very little from that of the cubic model, except in the
immediate vicinity of the origin. This model is to be used only if the physical
conditions ensure that the studied variable is twice differentiable, an exception-
al case in the usual applications of geostatistics.

Exponential Model and Derived Models

The exponential model with scale parameter a. 0 is defined by

CðrÞ ¼ exp � r

a

 �
ð2:51Þ

This model is a covariance in Rn for any n, since it corresponds to the positive
spectral density

fnðρÞ ¼
2nπðn�1Þ=2Γ


ðnþ 1Þ=2Þ

�
an

ð1þ 4π2a2ρ2Þðnþ1Þ=2

[e.g., see Yaglom (1987, Vol. I, pp. 362–363)]. As shown by Figure 2.21c, the
variogram reaches its sill only asymptotically when r-N, and its practical
range (95% of the sill, or equivalently a correlation of only 5%) is about 3a.

In R the exponential model is the covariance of continuous-time Markov
processes that possess the property of conditional independence between the
past and the future when the present is known. More generally, the distribution
of Z(x) conditional on Z(x1), . . . ,Z(xi), Z(xiþ1), . . . ,Z(xN), for x1, � � �, xi,
x, xiþ1, � � �, xN, only depends on the two neighbors Z(xi) and Z(xiþ1).
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Since the exponential model is valid in Rn for any n, Radon transforms of
C(r) provide differentiable covariances that are also valid in Rn for all n, and in
particular:

� for the Radon transform of order 2:

C2ðrÞ ¼ 1þ r

a

 �
exp � r

a

 �
ð2:52Þ

� for the Radon transform of order 4:

C4ðrÞ ¼ 1þ r

a
þ 1

3

r2

a2

� �
exp � r

a

 �
ð2:53Þ

Gaussian Model

The Gaussian model with scale parameter a. 0 defined by

CðrÞ ¼ exp � r2

a2

� �
ð2:54Þ

is a covariance in Rn for any n. Its practical range is about 1.73 a, as shown in
Figure 2.21d. This model is associated with an infinitely differentiable SRF and
thus is extremely regular. After a Radon transform of order m, the covariance
remains Gaussian, as can be seen by applying (2.32): It only differs from the
initial model by the multiplicative factor (π a2)m/2. This regularity gives the SRF
a deterministic character, in that knowing the value of the SRF at 0 and
the values of its partial derivatives of all orders at 0 determines the value of the
SRF at any location x. Such regularity is hardly ever encountered in the earth
sciences, and its use, without any other component, can lead to unacceptable
predictions [see the example provided by Stein (1999, Section 6.9)]. This model
has been used in combination with a nugget effect representing a microstruc-
ture, in meteorology for geopotential fields (Delfiner, 1973; Schlatter, 1975;
Chauvet et al., 1976), and in bathymetry in areas where the seafloor surface is
smooth due to water flow, erosion, and sedimentation (Herzfeld, 1989).

Cauchy Model and Cauchy Class

The gravity and magnetic fields are governed by the laws of physics. If the
geometry, density, and magnetism of the sources are known, the corresponding
fields can be determined. However, short of knowing these characteristics
exactly, a statistical model of the main parameters allows the determination, if
not of the fields, at least of their spectra. This has been studied by several
authors—in particular, Spector and Bhattacharyya (1966) and Spector and
Grant (1970). The expression of the spectrum is complex, but simpler expressions
can be derived bymaking specific assumptions about the geometry of the sources.
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A particularly interesting case is that of sources formed of parallelepipeds of
random height, length, width, and orientation located at a random depth but
close to an average depth d¼ a/2. The 2D spectra fG and fM of the gravity and
magnetic fields created at the surface are then approximately of the following
form:

fGðρÞ ¼ α
e�2πaρ

ρ
; fMðρÞ ¼ β e�2πaρ

Through application of (2.25) we can deduce the corresponding covariances:

CGðrÞ ¼ α0
�
1þ r2

a2

��1=2

; CMðrÞ ¼ β0
�
1þ r2

a2

��3=2

We note the remarkable physical significance of the scale parameter a: it is
equal to twice the average depth of the sources. These variogram models enable
us to take into account both the physics and the geology of the problem. They
also enable optimal gravity data transformations (Marcotte and Chouteau,
1993) and an optimal decomposition of the total field into several components,
either by spectral methods or by cokriging (Chilès and Guillen, 1984; see
Section 5.6.7).

These two models are in fact particular cases of the Cauchy model

CðrÞ ¼ 1þ r2

a2

� ��β=2

ða. 0; β$ 0Þ ð2:55Þ

which is a model in Rn for all n because it can be expressed in the form (2.27)
[e.g., see Yaglom (1987, Vol. I, p. 365)]. This type of model is very regular near
the origin, since its Taylor expansion only contains even terms and it reaches its
sill slowly (Figure 2.21e).

The Cauchy class generalizes the Cauchy model to behaviors in rα at the
origin, with a covariance of the form

CðrÞ ¼ 1þ rα

aα

� ��β=α

ða. 0; 0,α# 2; β$ 0Þ

where α is a shape parameter whereas β parametrizes the dependence at large
distances. It is a valid model in Rn for all n [see Gneiting (1997), in R; and
Gneiting and Schlather (2004), in Rn].

Matérn Model

The isotropic function (2.55) is positive and integrable in Rn for all n. Its
n-dimensional Fourier transform is therefore a covariance in Rn. Considering
the case β¼ 2νþ n, ν $ 0, leads to the Matérn model (also known as the
K-Bessel model):
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CðrÞ ¼ 1

2ν�1ΓðνÞ
r
a

 �ν
Kν

r
a

 �
ða. 0; ν$ 0Þ ð2:56Þ

where Kν is the modified Bessel function of the second kind of order ν defined
by (A.4) [Blanc-Lapierre and Fortet (1953), in R; Matérn (1960, p. 18), in Rn].
This model can have any type of behavior near the origin, since its principal
irregular term behaves like r2ν if ν is not an integer and like r2ν log r if ν is an
integer (Figure 2.22a).

A Gaussian SRF Z(x) of Rn with a covariance (2.56) with ν. 0 is a solution
to the linear fractional stochastic partial differential equation

ð1=a2 �ΔÞα=2ZðxÞ ¼ εðxÞ; α ¼ ν þ n=2; ν. 0

where Δ is the Laplacian, (1/a2�Δ)α/2 is a pseudodifferential operator defined
through its spectral properties, and ε(x) is Gaussian white noise with unit
variance (Whittle, 1963). The case ν¼ 1/2 corresponds to the exponential
model, which is the covariance of a Markov process in R but not in R2.
Seeking a 2D Markov SRF model, Whittle (1954) introduced the covariance
(r/a) K1(r/a), namely the special case ν¼ 1. Among its early applications, let us
mention its use by Rodrı́guez-Iturbe and Mejı́a (1974) to describe rainfall
variability in hydrology. More generally the Matérn covariance is that of a
Gaussian Markov random field of Rn when νþ n/2 is integer (Lindgren et al.,
2011) and is therefore a reference model in the theory of these random fields.
A thorough presentation of the emergence of the Matérn model in very
different contexts is given by Guttorp and Gneiting (2006).

jhjα Model

The power-law model

γðrÞ ¼ rα ð2:57Þ

is a variogram, provided that 0,α, 2. This has been shown by Schoenberg
(1938b) and Kolmogorov (1940b) in R, and, for example, by Yaglom (1987,
Vol. I, pp. 406–407) in Rn.

Indeed the function jhjα is obtained through application of (2.21) with

χðduÞ ¼ 4π2�α�n=2 Γ αþn
2

� �
�Γ � α

2

� � juj2�α�n du

where Γ(�) is the Euler gamma function (A.1). The condition 0,α, 2 ensures
that the measure χ is positive and that the condition (2.22) is satisfied.

This model does not have a sill (Figure 2.22b). The extreme cases of α¼ 0
and α¼ 2 correspond, respectively, to a pure nugget effect and to a linear RF
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with a random slope. For α¼ 1 we obtain the much used linear variogram
γ(h)¼ jhj.

The jhjα model satisfies a property of similarity: It is invariant under a
change of the scale of observation. If we go from r to s r, where s. 0 is a scale

(a)

γ

0 1 r

  1
α = 1/2

α = 1

α = 3/2

Power

(b)

γ

0 1 2 3 r

1

α = 1/2

α = 1
α = 3/2

Stable

(c)

γ

0 2 4 6 8 r

1

2

3

Logarithmic

(d)

γ

0 5 10 15   r

1

Cardinal sine

(e)

γ

0 1 2 r

 1

Matérn

1/2
3/4

ν = 1/4

ν = 1

FIGURE 2.22 Variogram models with unit sill and scale parameter—2: (a) Matérn; (b) 7h7α;
(c) stable; (d) regularized logarithmic; (e) cardinal sine.
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factor, we have γ(s r)¼ sαγ(r). Therefore we cannot associate a characteristic
scale to the phenomenon. This model is the only one with such property.21

The jhjα variogram has close ties with fractals. We have all seen spectacular
computer-generated images of fractal landscapes (Mandelbrot, 1975b, 1977,
1982). They are extremely rugged surfaces with a noninteger Hausdorff
dimension comprised between 2 and 2.5 while their topological dimension is 2.
Fractal landscapes are simulations of Gaussian IRFs with variograms of type
jhjα, which Mandelbrot named “fractional Brownian” random functions,
because they generalize the Brownian motion, or Wiener process, obtained in
1D for α¼ 1 [see Mandelbrot and Van Ness (1968)]. They are defined for
0,α, 2, but α. 1 is used for simulating relief (α is related to the standard
Hurst exponentH of fractal theory by α¼ 2H). A fractional Brownian random
function of Rn in Rnþ1 (the space Rn plus the coordinate z) is a surface with
fractal (or Hausdorff) dimension D¼ nþ 1�α/2. The situation may be very
different for non-Gaussian random functions. For example, the RF model
based on Poisson hyperplanes presented at the end of Section 7.5.2 has a linear
variogram, but its realizations are not fractal.22

While on the subject of fractals it may be useful to point out a common
confusion between two different properties: (a) an extreme irregularity of detail
and (b) the property to repeat itself at all scales. Because these properties are
both present with the fractional Brownian random function and with many
nonrandom fractal constructions, they are sometimes assumed to go together
and lead to the erroneous conclusion, for example, that since a phenomenon is
very irregular it ought to be self-similar or self-affine. In fact the fractal char-
acter is mathematically defined by a Hausdorff dimension exceeding the topo-
logical dimension—that is, by the irregular character of the surface. If we add
any other component to a fractal Z(x), be it a smooth SRF or another fractal
with a different α, the result is still fractal but no longer self-affine; on the other
hand, a plane is a self-similar surface that is obviously nonfractal. In the
Gaussian case it is the jhjα behavior near the origin, 0,α, 2, which is related to
the fractal character so that, for example, any realization of a Gaussian SRF
with a spherical or exponential covariance is fractal without being self-affine.
Again the situation is different for non-Gaussian random functions.23

21Note that this property is in fact self-affinity rather than self-similarity (Mandelbrot, 1985): If we

consider the surface defined by Z(x), x2R2, in the Gaussian case (fractional Brownian random

function) the invariance is ensured by performing two different scale changes: a factor s in the

horizontal plane and a factor sα/2 in the vertical plane. Isoline curves, which are horizontal planar

sections, are self-similar. Thus the compass method (also known as the yardstick method) can be

applied to determine the fractal dimension of a fractional Brownian surface from its contours in

horizontal cuts (cf. the well-known example of the length of coastlines) but not from vertical cross

sections.
22 It seems that the madogram, or variogram of order 1, is the right tool to diagnose the fractal

character (then the realizations define fractal surfaces with fractal dimension D¼ nþ 1�H if

γ1(h)¼ b jhjH, 0,H, 1).
23 The criterion should be based on the behavior of the madogram at the origin.
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In 1D the Brownian motion or Wiener process (α¼ 1) is a process with
independent and stationary Gaussian increments. Its discrete-time equivalent is
the random walk (Section 7.2.1). For α 6¼ 1 the successive increments Z(x)�
Z(x� h) and Z(xþ h)�Z(x) have a correlation coefficient ρ¼ 2α�1�1
regardless of the value of h, a remarkable property characterizing this model.
Thus a fractional Brownian motion has long-term memory. For α. 1 the
successive increments are positively correlated, which corresponds to a phe-
nomenon of persistence: As Mandelbrot phrases it, the curve tends “to persist
in any direction upon which it has embarked.” For α, 1, on the contrary, we
have antipersistence (limited to ρ .�0.5): The curve tends to turn back con-
stantly toward the point it came from.

The jhjα model exhibits a large variety of behaviors near the origin, but it has
no range. The application of the theorem characterizing variograms (Section
2.3.3) provides us with a model that has the same behavior near the origin and
reaches a sill (Figure 2.22c). Indeed the powered exponential

CðrÞ ¼ exp � r

a

 �α �
ða. 0; 0,α# 2Þ ð2:58Þ

is a covariance in Rn for all n. Since in R this function is the characteristic
function of a stable random variable, this covariance is also named the
stable model [see Schoenberg (1938b) and Yaglom (1987, Vol. II, Chapter 4,
Note 50)]. The exponential and Gaussian models belong to this family.

The jhjα model and its variant play an important role in the theory of
turbulence and its application to meteorology: Kolmogorov (1941a,b) and
Obukhov (1941, 1949b) have shown from theoretical considerations that in a
fully developed turbulence the velocity components have variograms of type
jhjα with α¼ 2/3 at short and medium distances, which has been confirmed
experimentally [see also Monin and Yaglom (1965, Chapter 8)]. At larger
distances, however, the variogram reaches a sill and the stable model or the
Matérn model with ν¼ 1/3 have been used (Gandin, 1963, p. 51).24 The situ-
ation is similar for the geopotential height of isobaric surfaces, as reported by
Gandin (1963, p. 44), this time with α¼ 5/3 and ν¼ 5/6, but twice-differen-
tiable models are also used. Blanc-Lapierre and Fortet (1953, pp. 453–454) use
the Matérn model for electrical noises.

Logarithmic Model

The logarithmic model

γðrÞ ¼ log r ð2:59Þ

is known under the name of de Wijs model. The function does not vanish at zero
but has a value �N. In reality this model is used for describing not point

24At very short distances the variogram is no longer of type jhj2/3 but is parabolic. This behavior can
be modeled by regularization of an jhj2/3, stable, or Matérn model.
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variables but variables regularized by a sampling support. Since a measurement
is always based on a support which, no matter how small, is not strictly a point,
this restriction is not constraining. By application of (2.37), the variogram γp(h)
associated with such sampling function p(x) is itself an ordinary variogram
satisfying γp(0)¼ 0 and γp(h). 0 when jhj. 0. Figure 2.22d shows the variogram
regularized by a segment of length l¼ 1, calculated along a direction orthogonal
to the segment. As soon as r is sufficiently large (e.g., greater than 2l), this
variogram is approximately

γpðrÞ 	 log
r

l

 �
þ 3

2

From a mathematical point of view, log r is a variogram model for a random
distribution (in the sense of pseudofunctions), but as soon as one passes to
regularized variables, this random distribution becomes a standard RF
(Matheron, 1965, pp. 173, 242).

In R2 the logarithmic model has a Markov property similar to that of the
linear model in R: If the IRF is Gaussian and known over a closed contour C,
there is independence between the inside and outside of C (Matheron, 1970,
Chapter 3, exercise 9). Besag and Mondal (2005) have shown that there is a
close relationship between the de Wijsian Gaussian IRF in R2 and first-order
intrinsic Gaussian Markov random fields on regular lattices in Z2, similar to the
close correspondence between the Brownian motion and first-order random
walks in the one-dimensional case. This property can have important appli-
cations since it enables a close approximation to the de Wijsian Gaussian IRF
on a 2D lattice [also see Rue and Held (2005, p. 107)].

Because of its good analytical properties, the logarithmic model was widely
used by the pioneers of geostatistics (Matheron, 1962; Carlier, 1964; Formery,
1964) in applications to deposits of gold and uranium and also of bauxite and
base metals. This model has one remarkable property: If the variogram of the
RF defined in Rn is

γðrÞ ¼ n α log r

and if v and V are two geometrically similar sets of Rn, the dispersion variance
within V of the grades of samples of size v (see Section 2.8.2) is given by

σ2ðvjVÞ ¼ α log
jV j
jvj

� �
ð2:60Þ

This expresses a property of very strong similarity: The variance of the small
blocks v within the large block V depends only on the ratio jVj/jvj of volumes,
regardless of the scale (de Wijs formula). The parameter α is called the absolute
dispersion, since it characterizes the dispersion of the phenomenon indepen-
dently of the geometry of the domain V and the support v.
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This type of behavior was revealed by Krige (1952) when studying the large
Orange Free State gold deposit which is subdivided into 10 mines: The variance
of borehole grades (or more precisely the variance of the logarithms of the gold
accumulations25) within the groups of boreholes, then within the mines, and
finally within the whole deposit (300 km2) increases as the logarithm of the
surface area of the zone in which the variance is calculated (Figure 2.23). Most
applications of the logarithmic model have been related to the gold deposits of
South Africa (Krige, 1978).

The logarithmic model is called the de Wijsian model in honor of the work of
H. J. de Wijs (1951, 1953) on the distribution of grades in mine deposits.
De Wijs derived formula (2.60) by postulating a principle of similarity by
which, when a block V with grade zV is divided in two equal parts, the two half-
blocks have grades (1� d) zV and (1þ d) zV, and this coefficient d does not
depend on the size of V. When splitting the blocks further up to elementary
blocks of size v, it is shown that the grades follow a logbinomial distribution
and that their logarithms (rather than the grades themselves) have a variance of

FIGURE 2.23 Dispersion variance versus size of domain: example of gold data from the Orange

Free State. The horizontal axis represents the area of the domain in logarithmic scale, from 10�2 to

1010 ft2. [From Krige (1952).]

25 The accumulation along a vertical borehole is the product of the ore thickness and the average

ore grade in the borehole; it represents a quantity of metal per unit surface.
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the form (2.60). Therefore for a point support this model has close ties with the
lognormal distribution (Matheron, 1955; 1962, pp. 308–311; or 1987b). Its
principle of similarity allows it to be considered as a fractal model (Mandelbrot,
1982, pp. 376–377), or more precisely a multifractal model (Evertsz and
Mandelbrot, 1989).

Hole Effect Models

Because the magnitude of a covariance C(h) is bounded by its value at the
origin C(0), the maximum hole effect is reached when the covariance reaches
–C(0). The effect is obtained in R with the periodic covariance

CðhÞ ¼ cosðh=aÞ ðh 2 R; a. 0Þ ð2:61Þ

This model is not strictly positive definite, since the variance of Z(xþ 2πa)�
Z(x), equal to 2 (C(0)�C(2πa)), is here equal to zero. Since this model has no
damping factor, it is often combined with the exponential model, which gives

CðhÞ ¼ expð�jhj=a1Þ cosðh=a2Þ ðh 2 R; a1; a2 . 0Þ ð2:62Þ

In higher dimensions an isotropic covariance cannot give such strong hole
effect as (2.61). As a consequence of (2.24), the maximum hole effect in Rn is
obtained with the J-Bessel model:

CnðrÞ ¼ κnðr=aÞ ¼ 2n=2�1 Γðn=2Þðr=aÞ1�n=2 Jn=2�1ðr=aÞ ða. 0Þ ð2:63Þ

The ratio C(r)/C(0) for an isotropic covariance cannot be less than �0.403 in
R2, �0.218 in R3, and �0.133 in R4 (Matérn, 1960, p. 16).

These covariances are very regular: Their Taylor expansions include only
even terms. Their behavior at infinity is a sine wave multiplied by 1/r(n�1)/2.
Letting n¼ 1 in (2.63) gives back (2.61). For n¼ 3 we obtain the cardinal-sine
model:

CðrÞ ¼ ða=rÞ sinðr=aÞ ðh 2 R3Þ ð2:64Þ

The minimum value (�0.218) is reached for r 	 4.50 a (Figure 2.22e).
Since the model (2.62) is the product of an exponential model, which can be

extended to Rn, and a cosine model, which is valid only in R (as a function of
r¼ jhj), we could imagine that it is valid only in R. This model can nevertheless
be extended to an isotropic model in Rn under a condition on the parameters.
For example,

CðrÞ ¼ expð�r=a1Þ cosðr=a2Þ ð2:65Þ

is a covariance in R2 if and only if a2 $ a1, and it is a covariance in R3 if and
only if a2 $ a1

ffiffiffi
3

p
(Yaglom, 1987, Vol. I, p. 366).

c02 30 January 2012; 17:22:57

2.5 VARIOGRAM MODELS 97



2.5.2 Anisotropic Models

Geometric Anisotropy

Geometric anisotropy is obtained by simple stretching of an isotropic model.
By definition, a variogram in Rn displays a geometric anisotropy if it is of
the form

γðhÞ ¼ γ0ð
ffiffiffiffiffiffiffiffiffiffi
h0Qh

p
Þ ð2:66Þ

where γ0 is an isotropic model and Q a n� n positive definite matrix. For
clarity the n� 1 matrix h represents the components {hi : i¼ 1, . . . , n} of vector
h. The eigenvalues {b2i : i¼ 1, . . . , n} of matrix Q and the eigenvectors define a
new orthogonal coordinate system in which the quadratic form h0Qh can be
expressed as a sum of squares

Pn
i¼1 b

2
i
~h
2

i of the new components {~hi : i¼ 1, . . . ,
n} of vector h. Combining a change of coordinate system with a scaling of ~hi into
ĥi ¼ bi ~hi restores isotropy (bi is chosen positive). The variogram can therefore be
written as

γðhÞ ¼ γ0ðjA hjÞ ð2:67Þ

where the matrix A defines the transformation from the initial space to the
isotropic space. The simplest case is when the anisotropy axes (i.e., the eigenvec-
tors) coincide with the coordinate axes. No rotation is necessary, and thus (2.67)
amounts to

γðhÞ ¼ γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
b2i h

2
i

q� �

or equivalently the matrix A is simply the diagonal matrix of the bi.
The expression of A is more complex when it includes a rotation. In R2,

denoting by θ1 and θ1þπ/2 the main directions of anisotropy, a rotation θ1
defines a new coordinate system with axes parallel to the anisotropy directions.
The matrix A is then

A ¼ b1 0
0 b2

� �
cos θ1 sin θ1

�sin θ1 cos θ1

� �

If γ0(r) is a linear variogram with unit slope, b1 and b2 are the slopes of γ(h)
along directions θ1 and θ1þπ/2, and the graph of the reciprocal 1/b(θ) of the
slope as a function of θ describes an ellipse. Similarly, when γ0(r) is a transition
model with unit range, γ(h) has range a1¼ 1/b1 in the direction θ1 and range
a2¼ 1/b2 in the direction θ1þπ/2, and the graph of the range a(θ) describes an
ellipse. The isovariogram curves are also concentric ellipses, so that this type of
anisotropy is named elliptic anisotropy. Usually the anisotropy is described
by the ranges a1 and a2 rather than by the parameters b1 and b2. θ1 is often taken
as the direction of maximum range, and a1/a2 is named the anisotropy ratio.
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The generalization to R3 is straightforward when one of the main anisotropy
axes is the vertical, which is often the case. In the general case, however,
denoting the coordinate axes by Ox, Oy and Oz, the definition of a coordinate
system involves three successive rotations: (1) a rotation θ1 around the Oz axis,
leading to new Ox 0 and Oy 0 axes; (2) a rotation θ2 around the Ox 0 axis so that the
Oz axis comes to its final position Oz 00; and (3) a rotation θ3 around this Oz 00;
axis to place the other two axes in their final position. In this final system, three
anisotropy parameters b1, b2, and b3 are associated with the main directions.
The matrix A is therefore

A¼
b1 0 0
0 b2 0
0 0 b3

2
4

3
5 cos θ3 sin θ3 0

�sin θ3 cos θ3 0
0 0 1

2
4

3
5 1 0 0

0 cos θ2 sin θ2
0 �sin θ2 cos θ2

2
4

3
5 cos θ1 sin θ1 0

�sin θ1 cos θ1 0
0 0 1

2
4

3
5

Isovariogram surfaces are now ellipsoids, and likewise the range or the inverse
of the slope as a function of direction is represented by an ellipsoid.

Generalizations of this anisotropy model can be defined, but there are
consistency requirements to ensure that these are valid. For example, the slope
of a linear variogram cannot vary arbitrarily with direction, even if continu-
ously. For a power variogram, Matheron (1975a, p. 96), shows that ϕ(h/jhj) jhjα
is a variogram if and only if there exists a necessarily unique symmetric non-
negative measure μ on the unit sphere S0 of R

n such that

ϕðsÞ ¼
Z
S0

jhs; s0ijα μðds0Þ ðs 2 S0Þ

This condition equivalently ensures that exp(�ϕ(h/jhj) jhjα) is a valid covari-
ance, as a consequence of the theorem on the characterization of variograms.

For a linear variogram (α¼ 1) in the 2D space (n¼ 2), ϕ(s) is a symmetric
function b(θ) representing the slope of the variogram in the direction θ, and the
above condition is equivalent to the condition that the graph of the polar
function ρ(θ)¼ 1/b(θ) describes the boundary of a symmetric, closed, and convex
set. This is obviously the case for a geometric anisotropy, where the graph of
1/b(θ) describes an ellipse. For n. 2 the convexity property is no longer suffi-
cient [refer to (Matheron, 1975a, pp. 96–98) for a precise characterization].

Zonal Anisotropy

In this model, also called stratified anisotropy, the variogram depends only on
some components of the vector h (possibly after an appropriate change of
coordinate system). In 3D the simplest case is when the variogram only depends
on the vertical component hz of vector h, namely is of the form γ(h) ¼ γ0(hz).
The variogram in a direction θwith respect to theOz axis is then γθ(r)¼ γ0(r cos θ):
If γθ has sill C and range a, γθ has sill C and range a/cos θ, except in any
direction orthogonal to Oz where the variogram is identically zero. This is the
variogram of a variable that remains constant in any horizontal plane and thus
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has a layered aspect. Another simple case is a variogram that only depends on
the horizontal components hx and hy of h: the variable is constant along any
vertical.

In practice a real phenomenon can very seldom be represented by a pure
zonal model. But we often have several components γj(h), at least one of which
is zonal. In Rn, when the elementary variogram γj(h) is zonal and depends on
only m components of the vector h, it must be a model admissible in Rm, and
not necessarily in Rn. This model can of course have its own geometric
anisotropy in Rm. If the various components have sills Cj, γ(h) has a sill Σ Cj,
except in directions orthogonal to those of the components showing the zonal
anisotropy. For example, if we have in R3

γðhÞ ¼ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2y þ h2z

q �
þ γ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2y

q �
þ γ3ðhzÞ

the sill is C1þC2 in the horizontal directions and is C1þC3 in the vertical
direction, whereas it is equal to C1þC2þC3 in all other directions. This makes
it easy to test the zonal character of an anisotropy.

One must beware of models that partition the coordinates, such as

γðhÞ ¼ γ1ðhxÞ þ γ2ðhyÞ inR2

or

γðhÞ ¼ γ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2y

q �
þ γ2ðhzÞ inR2

The first model is obtained for an RF of the type Z(x, y)¼Z1(x)þZ2(y), where
x and y are the coordinates of point x. For, such an RF, certain linear com-
binations can have a zero variance. Such is the case with

Zðx; yÞ � Zðx; yþ vÞ � Zðxþ u; yÞ þ Zðxþ u; yþ vÞ

because for such an RF the linear combination is itself zero. Thus �γ(h) is not
a strictly conditionally positive definite function. Such a model is used only if it
is imposed by the physics of the problem (here the sum of two 1D structures).

Other Anisotropies

Another variant is the separable covariance, also called factorized covariance,
whose general form in Rn is

CðhÞ ¼ L
n

i¼1

CiðhiÞ ð2:68Þ

where the hi are the n components of vector h and the Ci (hi) are covariances
in R. This is the model obtained with the product of n one-dimensional
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independent zero-mean RFs along the various coordinate axes. It has nice
conditional independence properties (cf. Sections 3.6.1 and 5.8.1).

No model allows the sill to vary continuously with the direction u of the
vector h. If γ0(h) is an isotropic transition model, σ2(u) γ0(h) is a variogram if
and only if the symmetric function σ2(u) is constant almost everywhere (oth-
erwise the stationary covariance C(h)¼C(0)�σ2(u) γ0(h) would not satisfy
Slutsky’s condition (1.12) and thus could not be the covariance of a stationary
and ergodic random function). It may happen that a sample variogram does
not satisfy this property. If the effect exceeds what can be explained by mere
fluctuations, this does not mean that our anisotropy models are not rich
enough but rather that the studied regionalized variable cannot derive from a
stationary model.

2.5.3 Internal Consistency of Models

As soon as one departs from the Gaussian model, it is no longer legitimate to
use just any covariance or variogram function. The proof that a positive defi-
nite function is a covariance is based on the construction of a Gaussian SRF
with this covariance, but it does not establish that an SRF with any other type
of spatial distribution can have this covariance. The same holds true for IRFs.
Although a model is never the reality, it should at least be internally consistent.
This question was studied by Matheron (1987a). We will simply present some
examples often found in practical applications: indicators and lognormal SRFs.
But let us first introduce a new concept that generalizes the variogram and is
useful to characterize internal consistency: the variogram of order α.

Variogram of Order α

If instead of considering the squares of increments, we consider their magni-
tudes, or more generally their magnitudes raised to the power α. 0, we obtain
the variogram of order α (Matheron, 1987a) defined by

γαðhÞ ¼ 1
2
EjZðxþ hÞ � ZðxÞjα ð2:69Þ

For α¼ 2 we have the ordinary variogram, and for α¼ 1 the madogram,
namely the expected value of the magnitude of increments. Matheron (1987a)
shows that any madogram, and more generally any variogram of order α,
0,α, 2, is an ordinary variogram (i.e., �γα is a conditionally positive definite
function). But this cannot be any model. For example, the inequality

jZðxþ hþ h0Þ � ZðxÞj# jZðxþ hþ h0Þ � Zðxþ hÞj þ jZðxþ hÞ � ZðxÞj

entails that the madogram satisfies the triangular inequality

γ1ðhþ h0Þ# γ1ðhÞ þ γ1ðh0Þ ð2:70Þ
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More generally, a variogram of order α, α. 0, should satisfy the necessary (but
not sufficient) condition

½γαðhþ h0Þ�1=α # ½γαðhÞ�1=α þ ½γαðh0Þ�1=α

A sufficient condition is the following: If γ(h) is a variogram of order 2, then
γ(h)α/2, α. 0, is a variogram of order α. In particular,

ffiffiffiffiffiffiffiffiffi
γðhÞp

is a madogram.
In practice, however, the variogram of order α is rarely studied for itself and

is modeled with reference to the associated variogram of order 2, either for a
robust estimation of the latter (see Section 2.2.5) or for modeling the bivariate
distributions (see Section 6.4.4). For example, for a diffusive SRF (e.g., a
Gaussian random function) the variogram of order 1 is, up to a multiplicative
factor, the square root of the variogram of order 2, whereas for a mosaic SRF
(e.g., i.i.d. random values assigned to the cells of a random partition) these two
variograms (and all the variograms of order α, provided that they exist) are
proportional.

Variogram of a Random Set

Let us consider a stationary random set, or equivalently its indicator which will be denoted by
I(x), to remind us that it is a binary SRF. Obviously it satisfies

½Iðxþ hÞ � IðxÞ�2 ¼ jIðxþ hÞ � IðxÞj
so that its variogram is identical to its madogram and must therefore satisfy the triangular
inequality (2.70):

γðhþ h0Þ# γðhÞ þ γðh0Þ ð2:71Þ
If this variogram behaves like jhjα at short distances, then necessarily 0,α # 1—Indeed, for
small jhj (2.71) entails γ(2h)# 2γ(h), hence the result. In particular, an indicator cannot be
m.s. differentiable. The case α¼ 1 corresponds to a set whose boundary has a specific surface
area of finite expectation, whereas for α, 1 the boundary is of fractal type; that is, its
Hausdorff dimension in Rn is greater than n� 1.

Condition (2.71) is necessary but not sufficient. A stricter set of conditions is proved by
Matheron (1993) in a more general setting than the stationary case, the variogram being
considered as a separate function of x and xþ h and not simply of h: A necessary condition
for a function γ(x, x0) to be the variogram of an indicator is that for all m$ 2 and for any
configuration x1, . . . , xm, the values γij¼ (xi, xj) satisfy

Xm
i¼1

Xm
j¼1

εi εj γi j # 0 ’εi 2 f�1; 0; 1g such that
Xm
i¼1

εi ¼ 1

Matheron formulates the conjecture that this condition is also sufficient. These conditions are
nevertheless not easy to use. In practice, the only covariances that are known to be admissible
for indicator functions are those of known random sets.

In 1D a well-known example is obtained by assigning i.i.d. values 0 or 1 to the segments
delimited by a Poisson point process, which yields an exponential covariance whose scale
parameter is the inverse of the intensity of the Poisson point process. It is extended to the
n-dimensional space by assigning i.i.d. values to the Poisson polyhedra delimited by a Poisson
hyperplane process, which yields an isotropic exponential covariance (cf. Section 7.6.5).
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A more subtle example in 1D is the covariance

CðhÞ ¼ σ2 expð�jhj=a1Þ cosðh=a2Þ ð2:72Þ

It cannot be the covariance of a random set if a1. a2, because in this case the corresponding
variogram does not satisfy the triangular inequality (2.70). On the other hand, if a1 # a2, it is
possible to construct a random set with this covariance. Indeed, if a1¼ a2¼ a and σ2¼ 1/4,
(2.72) is the covariance of an alternating process based on a gamma renewal process with shape
parameter α¼ 2 (renewal processes are described in Section 7.6.5).26 Now, if we intersect this
random set with an independent random set having an exponential covariance, the resulting
covariance is the product of covariances and is of the form (2.72) with a1, a2. Note that the
graph of this model is a damped sine wave.

Another example of an unusual model is the covariance of a process used to model the
concentration of minerals in the vicinity of germs and therefore called a migration process
(Haas et al., 1967)27: Denoting by p the proportion of 1’s and by q¼ 1� p the proportion of
0’s, its covariance is

CðhÞ ¼ pq

q� p
q exp � jhj

pa

� �
� p exp � jhj

qa

� �� �
ð2:73Þ

namely the difference of two exponential functions. In the case p¼ q¼ 1/2, this expression is
not valid, and a direct calculation (Lantuéjoul, 1994) gives

CðhÞ ¼ 1

4
1� 2jhj

a

� �
exp � 2jhj

a

� �
ð2:74Þ

These models display a hole effect. A more general family of models, this time in Rn, is
provided by Boolean random sets (Section 7.7.1): their covariances are of the form

CðhÞ ¼ e�2λKð0Þ

eλKðhÞ � 1

�
ð2:75Þ

where λ is a positive intensity and K(h) a geometric covariogram or a mixture of geometric
covariograms. Conversely, a simple covariance model such as the spherical model cannot be
put in that form and therefore cannot be the covariance of a Boolean random set of R3

(Emery, 2010b).

26 Because a gamma random variable with shape parameter α¼ 2 can be considered as the sum of

two independent random variables with the same exponential distribution, this alternating process

can be defined as follows: (1) Start from a Poisson point process with intensity λ¼ 1/a, (2) merge the

segments delimited by these points two by two (choose randomly whether the segment containing

the origin is merged with the preceding or the following segment), and (3) assign the values 0 and 1

alternately to each of these new segments (choose randomly whether the new segment containing

the origin is valued 0 or 1). The covariance of this random set can be obtained by considering that

the bivariate distribution of Z(x) and Z(xþ h) depends on the number of points of the initial

Poisson point process falling between x and xþ h, which is a Poisson random variable with mean

θ¼ jhj.
27 This migration process is defined as follows: (1) Consider a Poisson point process with intensity

λ¼ 1/a, (2) subdivide each interval of this point process into two unequal parts, corresponding to

the proportions p (left) and q¼ 1� p (right) of the initial interval, and (3) assign the value 1 to the

left part and the value 0 to the right part.
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Variogram of an Indicator Variable

Other random set models are obtained from an SRF with a continuous mar-
ginal distribution: for any variable Z(x) we can define the z-level excursion set,
or equivalently the indicator function associated with the threshold z, by

Iðx; zÞ ¼ 1ZðxÞ, z ¼ 1 if ZðxÞ, z;
0 otherwise

�

Indicator variograms have two types of application:

1. Calculation of Robust Variograms. Except in the case of a high threshold,
the indicator is not sensitive to high values. Therefore the variogram of an
indicator—for example, that associated with the median threshold—is some-
times used as robust variogram.

2. Indicator Kriging. Following Journel (1982), numerous authors use
kriging estimates of the indicator I(x; z) to approximate the probability that
Z(x0), z at some point x0 conditionally on the neighboring data.

However, there are caveats:

1. In the case of a long-tailed distribution, the variogram of the median
indicator may be effective at revealing the underlying structure. But for a
distribution with little spread, the gain in robustness often comes with a loss of
structure, as will be seen next in the Gaussian case.

2. The variogram of the indicator usually becomes destructured at extreme
thresholds (Matheron, 1982b). The use of indicator kriging can therefore lack
performance. We will return to this point in Section 6.3.3.

From the point of view of variographic analysis the variogram of an indicator is
not the same as the variogram of Z. For example, as is proved in Section 6.4.3,
the covariance C(h; z) of the indicator I(x; z) of a standard bi-Gaussian SRF
Z(x) is related to the correlogram ρ(h) of Z(x) by

Cðh; zÞ ¼ 1

2π

Z ρðhÞ

0

exp � z2

1þ u

� �
duffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p ð2:76Þ

In particular, for the median threshold z¼ 0 this gives the well-known formula

Cðh; 0Þ ¼ 1

2π
arc sin ρðhÞ ð2:77Þ

Note that the same centered covariances are obtained for the indicator 1� I(x; z)
of the event Z(x) $ z.

The models defined by (2.76) are different from those commonly used.
Figure 2.24 shows graphs of the correlation of indicators as functions of ρ for
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various thresholds (note the destructuring effect as jzj increases). For a given
threshold z, the indicator covariance C(h; z) is an increasing function of ρ and
can therefore be inverted. However, the function ρ(h) obtained by applying
(2.76) to an arbitrary indicator function is not necessarily a covariance because
not all random sets can be obtained by truncation of a Gaussian SRF. Lan-
tuéjoul (2002, p. 216) proved that the function

ρðhÞ ¼ sin
π
2
exp � jhj

a

� �� �

is a valid correlogram in Rn for all n. Thus the exponential covariance
CðhÞ ¼ 1

4
expð�jhj=aÞ can be regarded as the indicator covariance of the

median-level excursion set of a Gaussian SRF. On the contrary, the spherical
covariance cannot be regarded as the covariance of an excursion set of aGaussian
SRF, even in one-dimensional space, irrespective of the threshold z considered
(Emery, 2010b). The same holds for the circular and triangular covariances.

Coming back to (2.76), we note that for ρ close to 1 (i.e., small h and no
nugget effect) we have approximately

γðh; zÞ ¼ Cð0; zÞ � Cðh; zÞ 	 1

π
ffiffiffi
2

p exp � 1

2
z2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρðhÞ

p
Near the origin the indicator variograms of a Gaussian SRF behave likeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρðhÞp
and are thus far less regular than the variogram of Z itself. Typically,

if the variogram of Z is linear near the origin, indicator variograms behave like

�1

�0.5

0

0.5

1

�1 �0.5

0.5 1

ρ(h)

r(h)

z � 0
±1±2

±3
±4

±1

z � ±2

FIGURE 2.24 Graph of correlogram values r(h)¼C(h; z)/C(0; z) of the indicator 1Z(x), z

(or equivalently of 1Z(x)$z) of a standard bi-Gaussian SRF as a function of correlogram values

ρ(h) of the bi-Gaussian SRF, for z¼ 0, 61, 62, 63, 64.
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ffiffiffiffiffiffijhjp
for all thresholds. This explains the apparent nugget effect often observed

with indicator variograms. It would not be consistent, for example, to use the
same variogram model for the Gaussian and for an indicator.

By contrast, for a mosaic RF all indicator variograms are proportional to
the variogram of the RF itself (see Section 6.3.3).

Matheron (1982b) shows in the general case that the indicator variograms
γ(h; z) and the madogram (variogram of order 1) of Z(x), γ1(h), are related by

Z þN

�N
γðh; zÞ dz ¼ γ1ðhÞ

Furthermore, knowledge of the direct and cross-covariances or variograms of
the indicators at all thresholds is equivalent to the knowledge of the bivariate
distributions of the SRF. Indeed

E½Iðx; z1Þ� ¼ Fðz1Þ;
E½Iðx; z1ÞIðxþ h; z2Þ� ¼ Fhðz1; z2Þ

where F denotes the marginal distribution of Z(x) and Fh represent the
bivariate distribution of Z(x) and Z(xþ h). It follows that the centered direct
and cross-covariances for all possible thresholds are related to the centered
covariance of Z by ZZ

Cðh; z1; z2Þ dz1dz2 ¼ CðhÞ

Thus in theory the study of indicators allows a determination of the bivariate
distributions of an SRF. But, in practice, this is not so simple, and we will see
that to get a consistent model it is preferable to model the bivariate distribu-
tions directly (see Section 6.4).

Variogram of a Lognormal Variable

When the marginal distribution is clearly non-Gaussian, we often try to make it
Gaussian by a prior transformation of the variable. If, for example, Z(x) has
a lognormal marginal distribution, we take Y(x)¼ logZ(x), which has a
Gaussian marginal distribution. If the bivariate distributions of the SRF Y(�)
are Gaussian, the means mY and mZ, the variances σ2

Y and σ2
Z, and the cov-

ariances CY(h) and CZ(h) are related by the equations

mZ ¼ exp
�
mY þ 1

2
σ2
Y

�
;

σ2
Z ¼ m2

Z½expðσ2
Y Þ � 1�;

CZðhÞ ¼ m2
Z½exp

�
CYðhÞ

�� 1�

ð2:78Þ
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as shown in the Appendix, Section A.9. Similarly, the variograms γY(h) and
γZ(h) are related by

γZðhÞ ¼ m2
Z expðσ2

Y Þ½1� expð�γY ðhÞÞ�

Because the variogram of a bilognormal SRF is difficult to estimate when the
coefficient of variation of the lognormal distribution is not small, these equa-
tions make it possible to model the variogram of Z from that of Y. However,
they are only valid if Z is bilognormal (i.e., its bivariate distributions and not
only its marginal distribution are lognormal).

Conversely, if we decide to directly model the covariance of Z, it must be of
the specific form (2.78), where the covariance CY can be any positive definite
function since Y(x)¼ log Z(x) is a bi-Gaussian SRF. In other words, not just
CZ(h) but also logð1þ CZðhÞ=m2

ZÞ must be positive definite, which excludes
certain models. Since CY satisfies �CY(h) # CY(0) according to the Schwarz
inequality, it follows that CZ must satisfy

�CZðhÞ# m2
Z CZð0Þ

m2
Z þ CZð0Þ

Matheron (1987a) proves for example that the geostatistician’s best friend, the
spherical model, is not compatible with bilognormality if the relative variance
exceeds a finite (but unknown) threshold, and conjectures that it is not com-
patible with lognormality in any case (i.e., multivariate lognormality, not just a
lognormal marginal distribution).

If now Y is a bi-Gaussian IRF with an unbounded variogram, Matheron
(1974a) shows that the sample variogram of Z is, in expectation, proportional
to 1� exp(�γY(h)), which extends the formula of the stationary case: γZ shows
an apparent range, which is artificial. This calls again for analyzing log Z rather
than Z itself.

2.5.4 Covariance Models in Special Spaces

Covariance on the Sphere

Most applications consider a small portion of the earth, so that we work in the
2D Euclidean space of a planar projection of the data points. Global models,
however, require covariance functions defined on the sphere. Schoenberg
(1942) characterizes continuous isotropic covariances on the sphere of Rn, thus
expressed as continuous functions of the form C(θ) of the spherical or central
angle distance θ2 [0, π]. Considering only the case n¼ 3, a function C(θ) is a
covariance if and only if it is of the form

CðθÞ ¼
XN
k¼0

ck Pkðcos θÞ
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where the coefficients ck$ 0 have a finite sum and Pk is the Legendre
polynomial of order k. For example, P0(u)¼ 1, P1(u)¼ u, P2(u)¼ (3u2� 1)/2.
This formula gives the spectral representation of isotropic covariances on the
sphere. When r is replaced by θ, the spherical model (2.47) and the exponential
model (2.51) as well as its Radon transforms (2.52) and (2.54) are valid
covariances on the sphere (Huang et al., 2009), whereas this is not the case
for the Gaussian model (2.54) (Gneiting, 1999b).

A subclass of valid isotropic models on the sphere is obtained by restricting
isotropic covariances in the 3D Euclidean space (Yaglom, 1987, Vol. I, Section
22.5): indeed, because the Euclidean distance between two points separated by
a central angle θ on the sphere of unit radius is 2 sin(θ/2), if CE(r) is an isotropic
covariance in R3, then the function

CðθÞ ¼ CE


2 sinðθ=2Þ

�

is a valid covariance model on the sphere. In that case, it is equivalent to work
with the covariance C and the central angle distance θ, or with the covariance
CE and the separation distance r in the Euclidean space. Geometric anisotropy
has no equivalent on the sphere, but there is the need for models displaying
nonstationarity in latitude and/or longitude. This is not a simple task and the
reader is referred to Jun and Stein (2008), who present several approaches and
references to other authors.

Covariance on a River Network

The concentration in nutriments along a river can be considered as a one-
dimensional random function indexed by the curvilinear abscissa along the river
instead of the 2D Euclidean coordinates. This is possible as long as the river
receives no affluent. At the confluence of two rivers, the flow rates add and the
resulting concentration is the average of the two input concentrations weighted
by the flow rates (this is an ideal case where we neglect geochemical interac-
tions). Special random function and covariance models have been developed
for such networks. They are usually obtained by a weighted moving average,
also called kernel convolution, of a Gaussian white noise defined along the
rivers. A model with total independence between branches is obtained with a
weighting function acting unilaterally upstream (Ver Hoef et al., 2006; Cressie
et al., 2006). It only allows spatial dependence between two points of the river
network that are upstream of each other. On the contrary, Bailly et al. (2006)
and Monestiez et al. (2005b) propose a model based on conditional indepen-
dence at branching points with respect to what happens downstream. It
amounts to using a weighting function acting unilaterally downstream.
De Fouquet and Bernard-Michel (2006) and Polus-Lefebvre et al. (2008) pro-
pose another point of view on these models and extend them to an intrinsic
hypothesis. Ver Hoef and Peterson (2010) and Garreta et al. (2010) synthetize
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the above models in a hybrid model. These papers also propose special infer-
ence methods.

2.6 FITTING A VARIOGRAM MODEL

To use the geostatistical methods developed in the next chapters, we need
the variogram at any lag value. Since �γ(h) is a conditionally positive
definite function, we cannot simply interpolate linearly between the lags of the
sample variogram. We have to fit a model that is known to be a valid variogram
function. Here we will only consider the key aspects of fitting. Numerous
examples can be found in the geostatistical literature; for example, see
Matheron (1962, 1968a), David (1977), and Journel and Huijbregts (1978).

2.6.1 Manual Fitting

Fitting the Behavior near the Origin

Let us consider the variogram of Figure 2.25. In current practice we extrapolate
the linear behavior of the first few points of the variogram and obtain the fit a
with a nugget effect equal to 1.2. But nothing prevents us from considering
other fits near the origin, the two extremes being:

� a structure with a range smaller than the data interdistance and with no
nugget effect (fit b),

� a very regular behavior near the origin combined with a strong nugget
effect (fit c).

In such a situation the choice of a behavior near the origin is a vulnerable
anticipation in the sense that it can always be confirmed or invalidated by

Distance

γ

0 10 20 30
0

1

2

3

a

b

c

FIGURE 2.25 Sample variogram and three types of fit.
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additional data on a tighter sampling grid. If this choice is not well-founded,
kriging loses its optimality and the order of magnitude of the calculated kriging
variances can be completely wrong. This point is illustrated by Armstrong and
Wackernagel (1988) on a set of 52 topographic data. The consequences are even
more serious for a conditional simulation, which actually claims to reproduce
variability in detail.

Fortunately, the choice of a fit is usually guided by the physics of the problem
or by subject matter knowledge. For example, in the case of Figure 2.25 we may
consider the following situations:

1. If we are dealing with a geophysical potential field (gravity or magnetism)
which is known to have a very regular spatial structure, fit c is called for, and
the nugget effect reflects measurement errors.

2. If we are studying the top of a fairly continuous formation, and if the data
come from boreholes and are free of errors, the apparent nugget effect is a
short-range structure that can be modeled, as in b, for example, by using
a spherical model (the choice of range is then subjective, or is taken from
other data).

3. The fit a is used for variables, such as grades or porosities, that show
strong variations and are measured on small supports, thus revealing the
presence of microstructures.

Measurement errors, microstructures, and short-range components are often
mixed. Sometimes the variance of the measurement errors is known by other
means, which facilitates the fitting; for example, the stated precision of an
equipment gives the standard deviation (or more commonly twice the standard
deviation) of the measurement error. However, in order to accurately determine
the short-range components, there is hardly any solution other than to take
additional samples. In mining exploration, boreholes are first drilled in a fairly
regular pattern. To improve the knowledge of the variogram at short distances,
it is common practice to supplement these data with a cross of about 30
boreholes at a short spacing (about one-fourth of the grid size), located in an
area reflecting the average spatial behavior. An alternative is to scatter the
additional data across the entire study area so as to obtain close pairs giving a
representative variogram at short lags [e.g., see Chilès et al. (1996)]. This can be
measured by the variance of estimation of the variogram, which can be cal-
culated, at least in the Gaussian case, provided that a tentative model has been
selected (see Section 2.9.1). This approach has been systematized to design
sampling schemes optimizing the inference of all variogram parameters. A
reference on this subject is the book of Müller (2007, Chapter 6).

Modeling the Continuous Component

Once the type of behavior near the origin has been chosen (for distances less
than the first lag), there remains to model the variogram at medium and large
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distances. Depending on the case, we can use a single basis model or combine
several elementary components corresponding to different ranges (nested
structures). Figures 2.26 and 2.27 show three examples of such fits. The points
that need to be well reproduced are the slope at the origin, the range, and the sill
(at least for a variogram showing this type of behavior).

The slope at the origin is evaluated from the first points of the variogram.
The sill is placed at the level at which the variogram stabilizes (as we have seen
in Section 2.1.2, the sample variance tends to underestimate the sill). The range
is sometimes found less easily because the point at which it meets the sill is not
always obvious. If a spherical model is considered (very common case in
practice), the range can be derived from the fact that the tangent at the origin
intersects the sill at two-thirds of the range.

In the absence of physical guidelines (as available for gravity or magnetism)
or of internal consistency constraints, the geostatistician has a certain latitude in
the choice of the basis models. Once the behavior near the origin has been set, the
different possible fits will be graphically very similar at the scale of the study
domain and will lead to nearly identical kriging results, as shown for example by
Chilès (1974) with the topographic data from Noirétable (Section 2.7.3). Other
comparisons have also been published; for example, see Diamond and Arm-
strong (1984). In other words, given the behavior near the origin, the fit is robust
with regard to the analytical form of the selected model. For example, Journel
and Huijbregts (1978) show that the graph of an exponential variogram can be
modeled with excellent precision by the sum of two spherical models (p. 234) and
that similarly the graph of a regularized logarithmic variogram can be modeled
by the sum of two spherical models with a nugget effect (p. 168). However, the fit
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FIGURE 2.26 Example of fit by a single elementary model (% oil). In parentheses: number of
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of Mining and Metallurgy; Journel and Huijbregts (1978), with permission of Academic Press
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can lack robustness when the behavior at short distances is parabolic; indeed the
irregular terms of the variogram, which have the main role in variance calcu-
lations, may be masked by the parabolic part; in other terms, the variogram is
not micro-ergodic (Section 2.9.2).

In the case of anisotropy, the variogram has to be fitted along the different
directions by a global model, obviously including the anisotropies, so as to
obtain a consistent model (and not, for example, as a sum of one-dimensional
variograms along the main directions of anisotropy). The fits are more
complex, but also richer, when a more global consistency is required, for
example:

� consistency of variograms with regard to data differing in their measure-
ment supports, measurement precision, and positioning precision;

� consistency of variograms with regard to variables linked by functional
relationships, such as variables for different supports, a variable and one
of its indicators, a differentiable variable and its partial derivatives, or a
lognormal variable and its Gaussian transform.

These cases require a globally consistent fit including the theoretical relation-
ships between the different models. This involves the following procedure:

1. Choice of a variogram model for the reference variable (point support
variable, Gaussian variable, etc.).

2. Calculation of the theoretical form of the different sample variograms.
This calculation takes into account the theoretical relationships between the
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FIGURE 2.27 Examples of fit of nested structures: (a) thickness of nickel-bearing lateritic ore;

(b) thickness of cover. Tiébaghi, New Caledonia. [From Chilès (1984), with kind permission from

Kluwer Academic Publishers.]
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reference variogram and the variograms considered (obtained after regulariza-
tion, differentiation, transformation, etc.).

3. Comparison of the theoretical variograms with the sample variograms,
along with iteration of steps 1 to 3 until satisfactory fits are obtained.

Modeling a Proportional Effect

A proportional effect is usually considered as a departure from stationarity:
The regionalized variable derives from a locally but not globally stationary RF
model. Locally, namely in the neighborhood V0 of point x0, the variance of
Z(xþ h)�Z(x) depends on h and not on x, but it varies from one neighbor-
hood to the other. More precisely the variogram in V0 is modeled as a function
of h and V0 of the form

γV0
ðhÞ ¼ bðmV0

Þ γðhÞ ð2:79Þ

where b is some function of the local mean mV0
and γ(h) is a global model.

However, Matheron (1974a) shows that a proportional effect is not always
incompatible with global stationarity (in which case a global model suffices for
global estimation). The local variogram may be regarded as the variogram of
the random function conditioned on the data that belong to V0. By studying the
form of SRF variograms conditioned on the local mean mV0

, Matheron shows
that if the spatial distribution is lognormal, the local variogram γV0

takes the
form (2.79) with bðmV0

Þ ¼ m2
V0

and γ(h) proportional to the variogram of
the nonconditioned SRF. In this case the value of modeling the proportional
effect is to be able to provide local estimation variances conditioned on the
local mean. These theoretical considerations are confirmed by the example
presented by Clark (1979), which also shows that an improper modeling of a
proportional effect can give worse results than a globally stationary model. An
example of successful modeling of a clear proportional effect is given by Sans
and Blaise (1987): The regression of the local variance on the local mean, in a
bilogarithmic scale, is a perfect straight line with a slope 2.17 (uranium grades).

Expression (2.79) is valid locally, but these local models taken together do
not constitute a valid global model. If the reference model γ(h) is associated
with a correlogram ρ(h), a straighforward global nonstationary model for the
covariance of Z(x) and Z(x0) is

Cðx; x0Þ ¼ σðxÞ σðx0Þ ρðx0 � xÞ

where σ2ðxÞ ¼ bðmVx
Þ is the local variance of Z(x).

Modeling a Nonstationary Covariance

In the above model the local shape of the covariance is always the same and we
only modulate the local variance.Wemay have to also modulate the local range,
anisotropy, or even covariance shape. It is easy to conceive a local model by
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spatially varying the variogram parameters. These can be given by auxiliary
variables (e.g., seismic attributes may define the anisotropy direction) or by local
variogram calculation and fitting (Machuca-Mory, 2010). Care must be taken to
ensure smooth spatial variations of these parameters. A simple global covari-
ance model can be derived by generalization of the covariogram (2.30), defined
by autoconvolution of an integrable and square integrable function w(u):

gðhÞ ¼
Z

wðuÞ wðuþ hÞ dx

If we replace w(u) by a dilution or kernel function w(x; u) also depending on x,
integrable and square integrable in u whatever x, and define

gðx; x 0Þ ¼
Z

wðx; uÞ wðx; u 0Þ du du 0

then g(x, x 0) is a nonstationary covariance [e.g., Higdon et al. (1999)]. Indeed a
random function with that covariance is obtained by the dilution method
presented in Section 7.5.2. (Higdon, 2002). Other models can be developed if
we have replications in time (see Section 5.8).

2.6.2 Automatic Fitting

Least Squares with Predefined Weights

Least squares techniques can provide an automatic fit of the sample variogram.
Generallywewill look for the variogramwithin a familyγ(h ; b),where b represents
a vector of k parameters b1, . . . , bk, belonging to a subset B of Rn (the parameters
are, for example, the nugget effect and the anisotropy directions, ranges, and
sills of several spherical components). Let us denote by {γ̂ðhjÞ: j¼ 1, . . . , J}
the values taken by the sample variogram for J values of the vector h, each
calculated from the N(hj) available pairs. The vector b is selected to minimize

QðbÞ ¼
XJ
j¼1

wj ½γ̂ðhjÞ � γðhj ; bÞ�2

The weights wj are positive and typically equal to the ratio of the number of
pairs N(hj) by the lag value jhjj, in order to give more weight to well-estimated
variogram lags and to short distances. If the variogram has been calculated
along different directions, it is advisable to update these weights so that the
various directions receive the same total weight.

When the variogram is linear in the parameters bk, the function Q is a
quadratic form of the bk and its minimization is easy. Therefore, early imple-
mentations let the user fix anisotropies and ranges andminimized only on nugget
effect and sills. Nonlinearminimization was sometimes carried out but limited to
a few parameters (David, 1977, Section 6.3.2). Nowadays it is possible to effi-
ciently optimize the value of several tens of linear and nonlinear parameters. In
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the implementation proposed by Desassis and Renard (2011) the geostatistician
has only to give the types of the basis models (e.g., a nugget effect and four
spherical components); ranges, sills, and anisotropies are automatically fitted.

A Newton-type algorithm is used to find the vector b
* minimizing Q

(Madsen et al., 1999). This is an iterative procedure that starts from an initial
guess b

(0) (e.g., in the case of a model consisting of three nested anisotropic
spherical variograms, three ranges from a short distance up to the size of the
domain, partial sills equal to one-third of the sample variance, anisotropy
ratios set to 1). At step s, the objective function Q is locally approximated
around the current vector b

(s) by a quadratic form, using a Taylor series
expansion. Then b

(sþ1) is defined as the minimum of the quadratic form.
Newton methods are known to achieve fast convergence around local minima,
but are not robust when starting far from b

*. To circumvent this drawback, the
minimum is searched in a trust region around b

(s). At each iteration, the size of
the trust region is increased or decreased, depending on a quality assessment
of the quadratic approximation at the previous iteration. Parameters with a
negligible influence are eliminated. This results in nearly all cases in a fit close to
an ideal manual fit.

This method can obviously include the fitting of a reference model related to
several sample variograms corresponding, for example, to different supports, to
several indicators of an assumed Gaussian variable, and so on.

Generalized Least Squares

In the above approach, the weights are chosen heuristically and the minimi-
zation does not take into account the correlations between the different lags of
the sample variogram. Generalized least squares (Genton, 1998b) do not have
that drawback: b is selected to minimize

QðbÞ ¼ ½γ̂� γðbÞ�0V�1½γ̂� γðbÞ�

where γ̂ is the vector of the γ̂ðhjÞ, γ(b) is the vector of the γ(hj ; b), and V should
be the covariance matrix of the vector γ̂ (if γ̂ðhjÞ is the traditional sample
variogram (2.6) the variances can be calculated by using the covariance
functions Gh defined in Section 2.9.1; the covariances can be calculated in a
similar manner).

In this last case it is necessary, for the calculation of V, to know γ(h) as well
as the fourth-order moments of the random function. In practice, we work
within the framework of Gaussian RFs and proceed by iteration from an initial
solution (e.g., obtained by weighted least squares): the vector b being fixed, we
calculate V, determine the new value of b minimizing Q, and start over again.
The calculation of the matrix V is not a simple task, and the method is therefore
limited to data on a regular grid.

A suboptimal but simpler algorithm consists in ignoring the correlations
between lags of the sample variogram: The covariance matrix of the γ̂ðhjÞ is
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replaced by the diagonal matrix of the variances (Cressie, 1985). This amounts
to weighted least squares with weights wj equal to the reciprocals of Var½γ̂ðhjÞ�
(these weights are updated during the iterative procedure). In the Gaussian case,
1
2
½Zðxþ hÞ � ZðxÞ�2 is distributed as γðhÞχ2

1, where χ2
1 is a chi-square variable

on one degree of freedom. If the correlations between the N(hj) increments
taken into account by the calculation of γ̂ðhjÞ are negligible, we then have

Var½γ̂ðhjÞ� 	 2γðhj ; bÞ2
NðhjÞ

and the problem reduces to minimizing

QðbÞ ¼ 1

2

XJ
j¼1

NðhjÞ γ̂ðhjÞ
γðhj ; bÞ � 1

� �2

Even when based on a Gaussian assumption, weighted or generalized least
squares are fairly robust: if this assumption is not really valid, the quadratic
form to be minimized will not be optimal, but the result will not be biased.

Maximum Likelihood and Bayesian Method

Some methods work directly from sample data, without requiring the calculation of the sample
variogram. Since these methods are blind, they tend to be used only when the presence of a
strong drift causes the sample variogram to be hopelessly biased. Section 4.8 discusses the use of
optimal quadratic estimators and regression. Let us examine here the maximum likelihood
method and the Bayesian approach which have been applied to stationary and nonstationary
fields.

The maximum likelihood method is widely used in statistics for parameter estimation and
has been proposed as a means of estimating variogram parameters (Kitanidis and Lane,
1985)—some authors would say an objective means. Its principle is the following: Assume
that the N observed data are from a multivariate Gaussian distribution with mean vector
m¼ (E[Z(x1)], . . . , E[Z(xN)])

0 and covariance matrix Σ. The joint probability density of the
sample z¼ (z(x1), . . . , z(xN))

0 is

f ðzÞ ¼ ð2πÞ�N=2jΣj�1=2exp � 1

2
ðz�mÞ0Σ�1ðz�mÞ

� �

If the mean m and the covariance Σ are unknown and depend on parameter vectors β
and b, respectively, one can regard z as fixed and f(z) as a function of β and b, called
the likelihood function L(β, b). Maximizing the likelihood, or equivalently minimizing the
log-likelihood –log L(β, b), yields estimates of the parameters.

In the case of an SRF with known mean, the vector β is absent. But this is not the usual
case. When the mean of the SRF is not known, and more generally when the RF has a drift,
the method has the advantage of allowing a joint determination of drift and covariance
parameters, but it is then prone to biases that may be severe [e.g., see Matheron (1970,
Chapter 4, exercise 16]. A variant of the method, known as restricted maximum likelihood, is
to write the likelihood of the data in terms of the N� 1 increments Z(xαþ1)�Z(xα) or of
more general increments so as to eliminate the mean or the drift from the set of unknowns,
which has the effect of reducing the bias on the variogram parameter estimates (Kitanidis and
Vomvoris, 1983; Kitanidis and Lane, 1985). In practice, this approach relies of course on a
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strict Gaussian assumption, which is questionable, to say the least. Also it lets the selection of
parameters depend on sampling fluctuations.

Handcock and Wallis (1994) present an interesting study of 88 data of a meteorological
field (average temperature over one winter) using a maximum likelihood method. The fitting
was not done blindly but, instead, was done after a careful exploratory spatial data analysis.
The variogram is assumed to be an isotropic Matérn model, and therefore b has three
parameters: the shape parameter ν which controls the behavior jhj2ν near the origin, the scale
parameter, and the sill. They obtain ν¼ 0.55, a value close to 1/2 which would correspond to
an exponential covariance. Indeed a fit of the sample variogram to an exponential model
would seem natural.

The authors further use the Bayesian framework to include uncertainty in the variogram
estimates and derive the joint posterior distribution of the parameters. The shape parameter ν
is found to lie between 0.1 and 1.5 with a sharp mode at about 0.2. Accordingly, the vario-
gram behaves like jhj0.4 near the origin, namely with an infinite slope characterizing an
extremely irregular field, even though meteorological arguments indicate that this average
temperature field is continuous and may even be differentiable. This result is due to the
choice of prior distribution: A probability density proportional to 1/(1þ ν)2 has been used for
ν 2 ]0,N[ because it is supposed to be “noninformative” in the region where the likelihood
has mass and rules out very large values of ν. In reality, this model gives maximum prior
probability to a pure nugget effect, which contradicts the physics of the problem. To produce
sensible results, the method should rather use an informative prior distribution, but of course
the results would then depend on the information introduced by the physicist or the geos-
tatistician [see the example provided by Mostad et al. (1997)]. Tarantola (2005) introduces the
concept of homogeneous distribution for representing the distribution of a parameter when
only fundamental properties such as symmetries or positivity are known. In the absence of
any other information, he suggests to choose the homogeneous probability distribution as a
priori distribution, a choice that is as informative as any other, as he notes, and avoids the use
of the “noninformative” terminology. On the Bayesian approach, the reader is referred to
Chapter 7 of the book of Diggle and Ribeiro (2007), which considers uncertainty on all
variogram parameters and shows its consequence on Bayesian kriging.

Another approach to the determination of the “belt” of the plausible models associated
with a given sample variogram is proposed by Pilz et al. (1997). It assumes Gaussianity of the
random field and is based on the spectral representation of the variogram. The same problem
is addressed by Solow (1985) with the “spatial bootstrap.” The idea is to apply the bootstrap
procedure of sampling from the empirical distribution function (Efron, 1979) to study the
variability of covariance estimates. However, since the bootstrap procedure assumes inde-
pendent samples, Solow starts by orthogonalizing the centered data Z using X¼L

�1
Z, where

S¼L L’ is the empirical covariance, possibly adjusted. The uncorrelated X’s are then boot-
strapped independently and the reverse transformation ~Y ¼ L ~X produces correlated reali-
zations of the Y’s, from which a new empirical covariance is computed. Repeating the
procedure many times leads to approximate confidence intervals for covariances and esti-
mation variances. This approach can be extended to the definition of prediction intervals of Z
at target points (Schelin and Sjöstedt-de Luna, 2010).

Fuzzy Variogram Fitting

Fuzzy logic (Zadeh, 1965; Zimmermann, 2001) provides another means to represent the
uncertainty on variogram parameters, as shown by Bardossy et al. (1990), and Loquin and
Dubois (2010). It is helpful when the sample variogram cannot be easily interpreted and when
a sensible a priori distribution for the variogram parameters cannot be specified but some
experts’ opinion can be formalized. The parameter values are not represented by crisp
numbers or random variables but by fuzzy intervals. The reader interested in the link between
possibility theory and probability theory is referred to Dubois (2006).
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2.6.3 Validation

Statistical Tests

In order to validate the consistency of the data with an assumed model
(a “hypothesis”), the standard statistical approach is to consider some function
of the observations, a test statistic, and derive its probability distribution under
the assumed model. If the observed test statistic is “too large,” namely falls in
the tails of the distribution, the model is rejected. There is a probability α that a
correct hypothesis is rejected, depending on the definition of the tails (typically
α¼ 0.05). When the assumed model depends on some parameter, the set of
values of this parameter for which the model is not rejected constitutes a
confidence interval at level 1�α.

It is very difficult to construct statistical tests in geostatistics because of the
spatial dependence between observations. The successive lags of the sample
variogram are correlated, as already noticed by Jowett (1955b). Moreover, the
sample variogram, like the regional variogram, can exhibit large fuctuations at
large distances compared to the theoretical model, as will be shown in Section
2.9.2. This limits the applicability of statistical tests to the main features of the
variogram, mainly to its behavior near the origin. Switzer (1984) proposes a few
tests for variogram scale and shape parameters and the nugget effect, as well as
for their inversion into confidence regions. For example, he considers the family
σ2 γ(h; a), where γ is a fixed variogram shape, σ2 is the sill, and a is the range.
The idea is to linearly transform the data to uncorrelated quantities of constant
variance and then consider certain rank orderings. A simple application of
these ideas is a test for the range: Select a subset of data points whose interpoint
distances all exceed the range; then test for randomness based on the rank
correlation between jZ(xβ)�Z(xα)j and jxβ� xαj, which is then a standard
statistical problem [e.g., Spearman’s coefficient; cf. Kendall (1970)].

Cross-Validation

A powerful model validation technique is to check the performance of the model
for kriging. Here we have to anticipate on results presented in Chapter 3. Con-
sider N data Z(xα) and a variogram model fitted from the sample variogram
calculated from these data. The principle of cross-validation, also called “leave-
one-out method,” is to estimate Z(x) at each sample point xα from neighboring
data Z(xβ), β 6¼ α, as if Z(xα) were unknown. Thus at every sample point xα we
get a kriging estimate Z


�α and the associated kriging variance σ2
Kα. Because the

true value Zα¼Z(xα) is known, we can compute the kriging error
Eα ¼ Z


�α � Zα and the standardized error eα¼Eα/σKα. If γ(h) is the theoretical
variogram, Eα is a random variable with mean zero and variance σ2

Kα, and eα is a
zero-mean unit-variance random variable. Note that kriging errors are not
independent. The following results are inspected (for example, see Figure 4.12):

� the posted standardized errors eα;

� the histogram of standardized errors eα;
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� the ðZ

�α;ZαÞ scatterplot;

� the ðZ

�α; eαÞ scatterplot.

These plots should be examined in the context of the properties of the kriging
estimator. In the case of simple kriging, we can check the smoothing relation-
ship, the orthogonality of the estimate and the error, and the conditional
unbiasedness in the Gaussian case. In the case of ordinary kriging, these prop-
erties do not necessarily hold. Nevertheless, scatterplots allow us to gauge how
far we are from the ideal case of simple kriging. The histogram of standardized
errors also shows if the kriging error can be considered Gaussian. Moreover,
these plots are the basis for an interactive data analysis. They highlight data that
are poorly “explained” by their neighbors, which can be meaningful anomalies,
as well as erroneous data that ought to be corrected or set aside. Clustered
anomalies can indicate a fault or a discontinuity in their neighborhood, which
must be taken into account. A contour map of standardized errors shows if the
magnitude of the error is homogeneous in space or, on the contrary, points to a
lack of stationarity—for example, a proportional effect. Once these problems
are fixed adequately, one ought to recompute the sample variogram and redo the
cross-validation until acceptable results are obtained. Bradley and Haslett
(1992) show an illustrative example of exploratory data analysis.

Comparing the results of two cross-validations performed under different
conditions can help one decide between two candidate models. However, it is not
a good idea to generalize this validation method to an automatic variogram
fitting procedure—for example, a blind fit by minimization of S ¼ 1

N

PN
α¼1 E

2
α

under the constraint that s ¼ 1
N

PN
α¼1 e

2
α is close to 1. Indeed, if a variogram γ(h)

leads to s 6¼ 1, replacing it by γ0(h)¼ γ(h)/s leaves S unchanged (S0 ¼S) and leads
to s0 ¼ 1 even if the variogram shape has nothing to do with the sample vario-
gram. Obviously the fact that s is close to 1 is an indicator of the quality of the fit
only if this constraint was not included in the fitting procedure. Besides, the
value of S is often essentially due to the contribution of a few points (anomalies
or erroneous data). A blind fit byminimization of Swould give an overwhelming
weight to a few globally or locally extreme points, which is not desirable. Several
robust techniques can attenuate this effect: considering the magnitude of errors
rather than their squares, thresholding the errors (e.g., at 2.5 standard devia-
tions), and comparing two options by their scores (counting how many times
option 1 performs better than option 2 versus how many times option 2 is better
than 1). Such techniques allow a refined comparison between two options.

In practice, the estimation of Z(xα) from its neighbors is usually accom-
plished with a moving neighborhood. However, too close neighbors are elim-
inated if the data form a cluster or are located along profiles, in order to mimic
the subsequent kriging conditions. If the number of points is not too large, a
global neighborhood may also be used. This means solving N linear systems of
size N � N, which may be computationally expensive. A special technique has
been developed to replace these calculations by the inversion of a single matrix
of size (Nþ 1) � (Nþ 1) (see Section 3.6.6).
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2.6.4 Spectral Modeling Approach

So far we have ignored spectral analysis methods, although they are widely used, especially for
the study of time series. A fairly complete account is given byYaglom (1987, Vol. I, Chapter 3 in
R, Section 22.2 of Chapter 4 in Rn), along with many references [in 2D, also see Guyon (1993,
Section 4.5)]. These methods require data sampled on a regular grid forming a parallelepiped in
Rn, which is rarely the case in the applications that we consider. Moreover, if the knowledge of
the spectral measure and of the covariance are theoretically equivalent, passing from one to the
other is not always easy. Signal-processing applications (e.g., the design of filters) essentially
involve the spectrum, whereas geostatistical applications (kriging, change of support) involve
the covariance, which explains why we favor variographicanalysis. Still it is interesting to see how
our signal-processing colleagues, who have given much thought to spectral estimation and
modeling,proceed.For simplicitywewill restrict thepresentation to theone-dimensionalcase.The
transposition to higher dimensions is fairly straightforward.

Because the data are sampled on a one-dimensional regular grid, we will index the data
points by n instead of α. Consider a sequence of N sample values Zn¼Z(nΔx), n¼ 1, . . . ,N,
and to simplify notations, let us assume thatΔx¼ 1. Furthermore, Z(x) is an SRF with mean
zero (in practice, the mean is subtracted initially), covariance C(h), and spectral density f(u).
From the N data Zn it is possible to calculate 2N� 1 values of the sample covariance

Ĉm ¼ 1

N � jmj
XN�jmj

n¼1

Zn Znþjmj; m ¼ 0;61; : : : ;6ðN � 1Þ

Ĉm is an unbiased estimator of the theoretical covariance Cm¼C(mΔx), provided that Z(x)
has indeed a zero mean. Under certain conditions (e.g., met for a Gaussian RF), Ĉm is a
consistent estimator of Cm in the sense that the quadratic mean of Ĉm�Cm tends to zero when
N-N. But for fixed N the quadratic mean of Ĉm�Cm is large for large values of m because
Ĉm is then computed with few pairs of points. Moreover, contrary to the theoretical covar-
iances Cm, the 2N�1 sample covariances Ĉm do not necessarily constitute a discrete positive
definite function. Their inverse Fourier transforms can take negative values. To avoid this,
another estimator is considered, namely

~Cm ¼ 1

N

XN�jmj

n¼1

Zn Znþjmj; m ¼ 0;61; : : : ;6ðN � 1Þ ð2:80Þ

For fixed N, ~Cm is a biased estimator of Cm (except if m¼ 0), but it is asymptotically unbiased
when N-N. Despite this bias, for fixed N, the quadratic mean of ~Cm � Cm is generally less
than or equal to that of Ĉm � Cm (this is obviously the case when Cm¼ 0, i.e., beyond the
range). Furthermore, the 2N� 1 terms ~Cm form a discrete positive definite function. Hence
the spectral density estimator

~f ðuÞ ¼
XN�1

m¼�Nþ1

e�2πi um ~Cm

This (random) function is called the periodogram. It can be computed directly from the
data as

~f ðuÞ ¼ 1

N

XN
n¼1

e�2πi un Zn

�����
�����
2

Since the data and the covariance are known only at discrete points, ~f ðuÞ is a (random)
periodic function with period 1, and it will be considered only in the interval u2 ]�1/2, 1/2].

For fixedN, ~f ðuÞ is a biased estimator of the spectral density f1ðuÞ ¼
PþN

m¼�N e�2πi umCm of the
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infinite random sequence Zn, but it is asymptotically unbiased when N-N. However, even

whenN-N, the quadratic mean of ~f ðuÞ � f1ðuÞ does not tend to zero: ~f ðuÞ is not a consistent
estimator of f1(u). Since ~f ðuÞ and ~f ðu 0Þ are uncorrelated (unless u 0 ¼6u), the periodogram
exhibits erratic fluctuations. To attenuate this effect, the periodogram is convolved with a
weighting function A(u), also periodic with period 1. This leads to the smoothed periodogram

ϕðuÞ ¼
Z 1=2

�1=2

Aðu� u 0Þ ~f ðu 0Þ du 0

The weighting function A(u) has for Fourier transform the sequence

am ¼
Z 1=2

�1=2

e2πi umAðuÞ du; m ¼ 0;61; : : : ;6ðN � 1Þ

The function A(u) is called the spectral window, whereas the sequence am defines the lag
window. As the Fourier transform exchanges convolution and multiplication, one has

ϕðuÞ ¼
XN�1

m¼�Nþ1

e�2πi umam ~Cm

To define A(u) over ]�1/2, 1/2], one chooses a unit-sum function with a maximum at zero and
a rapid fall off with increasing juj (of course there is a great diversity of such functions). The
sequence am is then equal to 1 at zero and decays progressively as jmj increases, which has the
effect of reducing the values of the sample covariance at large lags (those which are in general
poorly estimated).

The calculations can be accomplished by means of three successive discrete Fourier
transforms (DFTs): (1) a DFT of the Zn series, which by squaring gives the periodogram for
u¼ k/N, (2) an inverse DFT of ~f k ¼ ~f ðk=NÞ to get the covariances ~Cm, and lastly (3) a DFT of
the tapered covariances am ~Cm to get the smoothed spectral density ϕ.

In principle, it is not necessary to model ϕ since any nonnegative integrable symmetric
function can be a spectral density. However, parametric methods exist. The most common
one is to start from the first pþ 1 values of the covariance Cm (m¼ 0, . . ., p) and select the
spectral density f(u), u2 ]�1/2, 1/2], maximizing the entropy E defined by28

E ¼
Z 1=2

�1=2

log f ðuÞ du

while still matching the covariance Cm, namely satisfying the conditions

Z 1=2

�1=2

e2πi umf ðuÞ du ¼ Cm; m ¼ 0; 1; : : : ; p ð2:81Þ

It can be shown that the solution is of the form

f ðuÞ ¼ σ2

j1� α1e�2πi u � � � � � αpe�2πi upj2

28Note that this definition is slightly different from that of the entropy of a probability density

function f(z), which is defined by E ¼ � R f ðzÞ log f ðzÞ dz.
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This is the general form for the spectral density of an autoregressive process of order p (these
will be presented in Section 7.5.1; the αi are the coefficients of the autoregression and σ2 is the
variance of the innovations). In practice, the theoretical covariances Cm are not known and
are replaced by the estimates ~Cm. Among all spectral densities satisfying conditions (2.81), the
maximum entropy spectral density has the special property of corresponding to the linearly
most unpredictable random sequence. Indeed the best linear predictor Z


nþ1 of Znþ1 from
the present value Zn and all past data Zn�1, Zn�2, . . . (the best estimator altogether in the
Gaussian case) has the variance

VarðZ

nþ1 � Znþ1Þ ¼ exp

Z 1=2

�1=2

log f ðuÞ du
 !

as shown, for example, by Doob (1953, Section XII 4). Maximizing entropy thus amounts to
maximizing this variance. An illuminating derivation of this result is to note that the
knowledge of the (pþ 1) covariance values Cm allows the determination of the optimal linear
predictor based on the last p values. The autoregressive sequence of order p is precisely
that for which the p-value predictor coincides with the predictor based on the infinite past
and therefore maximizes the innovation brought by the new value Znþ1 (Yaglom, 1987,
Vol. II, p. 104).

The above theory is concerned with random sequences and requires data on a grid. These
can be obtained by sampling a continuous signal. However, the spectrum f1 of the sequence
and the spectrum f of the continuous signal coincide only if frequencies higher than the
Nyquist frequency 1/(2 Δx) either do not exist in the signal, or have been filtered out before
sampling. This is a problem for most geostatistical applications where sampling is very
fragmentary and applying an anti-aliasing filter before sampling is simply impossible.
Covariance estimation does not require the signal to be band-limited. The variogram has the
additional advantage of not requiring a preliminary estimation of the mean, nor the statio-
narity of Z(x), but only of its increments.

2.7 VARIOGRAPHY IN THE PRESENCE OF A DRIFT

When a drift is present one generally turns to the universal kriging (UK) model
of Section 3.4. In this model the RF Z(x) is considered as the sum of a
deterministic drift m(x) (usually a polynomial with unknown coefficients) and
a zero-mean stationary or intrinsic random residual Y(x). We will see that the
presence of a drift poses difficult inference problems. Their definitive solution
requires abandoning the UK model for the broader IRF–k model studied in
Chapter 4, except in some simplified cases that will be presented here.

2.7.1 Impact of a Drift on the Raw Variogram

Let us consider in Rn an RF of the form

ZðxÞ ¼ mðxÞ þ YðxÞ

where the drift m(x) is a deterministic drift and the (“true”) residual Y(x) is an
SRF or an IRF with zero mean and variogram γ(h). The stochastic version
ΓR(h) of the regional variogram (2.7) associated with the domain D,
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ΓRðhÞ ¼ 1

2jD-D�hj
Z
D-D�h

½Zðxþ hÞ � ZðxÞ�2dx

has the expected value

E½ΓRðhÞ� ¼ γðhÞ þ 1

2jD-D�hj
Z
D-D�h

½mðxþ hÞ �mðxÞ�2dx ð2:82Þ

Should the drift have some amplitude, the additional term can mask γ(h). It is
obviously the same for the sample variogram (2.6) calculated from the raw data.

This phenomenon is often reflected in an apparent anisotropy. In the case of
a linear drift with gradient a, the additional term is equal to j,a, h.j2.
Whatever the direction considered, it is a parabola, but its influence is maxi-
mum in the direction of the gradient. This can be seen on the raw variogram of
Figure 2.28, which was constructed from piezometric data of the Crau aquifer
(Delhomme, 1976, 1978). The anisotropic behavior is very marked at large
distances and shows a very rapid increase in the NE–SW direction. The large
amplitude of the deviations in this direction corresponds to the general orien-
tation of the aquifer in which the groundwater flows from NE to SW with an
average hydraulic gradient of 3 to 4 m/km. The anisotropy is related to the
variation of the average gradient of the aquifer with the direction. Different
effects can be seen with other types of drift; for example, a dome-shaped drift
gives a dome-shaped variogram.

In geostatistical calculations, however, it is the variogram γ(h) of Y(x),
known as the underlying variogram, that is used. When dealing with a repetitive
phenomenon, such as meteorology, we may have a large number of similar
situations and thus be able to deduce the drift at a monitoring site by averaging
the observations at this site. We can then subtract this drift from the data and
obtain the “true” residuals directly. This is the approach developed by Gandin
(1963, p. 27) in meteorology. But when the phenomenon considered is unique, as
is generally the case here, we cannot directly separate the drift from the residual.
We still have to find a way of determining the underlying variogram by neu-
tralizing the auxiliary term responsible for the bias in the raw variogram.

2.7.2 Variogram of Residuals

Since the drift introduces a bias in the raw variogram, we subtract the drift and
work on the residuals. Or rather, since the drift m(x) is not known exactly,
we take an unbiased estimate m̂ðxÞ and subtract it from Z(x) to obtain the
(estimated) residuals RðxαÞ ¼ ZðxαÞ � m̂ðxαÞ at the N sample points. Let us
compute the sample variogram of these residuals, more precisely its stochastic
version, defined similarly to (2.6) by

Γ̂ResðhÞ ¼ 1

2Nh

X
xβ�xα	h

RðxβÞ � RðxαÞ
� �2
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Using the notation Zα; m̂α;Rα instead of ZðxαÞ; m̂ðxαÞ;RðxαÞ to simplify, the
contribution of the sample points xα and xβ to the sample variogram of resi-
duals has for expected value

γResðxα; xβÞ ¼ 1
2
EðRβ � RαÞ2 ¼ γðxβ � xαÞ � CovðZβ � Zα; m̂β � m̂αÞ

þ 1
2
Varðm̂β � m̂αÞ ð2:83Þ

When the estimators m̂α and m̂β are linear, (2.83) is expressed with the
variogram γ(h). It depends on xα and xβ separately and not only on xβ� xα.
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FIGURE 2.28 Raw variogram of the piezometry of the Crau aquifer, characteristic of a NE–SW

linear drift. [Reprinted from Delhomme (1976, 1978), with permission from BRGM and Elsevier

Science.]
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Therefore we define the variogram of residuals by γResðhÞ ¼ E½Γ̂ResðhÞ�, namely
an average of terms γRes(xα, xβ). There are obviously as many variograms of
residuals as there are ways of estimating the drift. The expression of γRes(xα, xβ)
is only simplified when the optimal linear drift estimatorm*(x) is used, as shown
in Section 3.4.6 in the framework of the universal kriging model. The central
term of the right-hand side of (2.83) is then twice the third term [cf. (3.30)], so
that (2.83) becomes

γResðxα; xβÞ ¼ γðxβ � xαÞ � 1
2
Varðm


β �m

αÞ

Thus, even if the estimator of the drift is the optimal one, which means that we
already know the underlying variogram γ(h) we are looking for, the variogram
of the residuals is systematically biased downward. This bias is small at short
distances but can be large at medium and large distances. It can lead to the
erroneous conclusion that the residuals are uncorrelated.

To identify the underlying variogram γ(h) an idea is to use relation (2.83) to
calculate the theoretical variogram of residuals γRes(xα, xβ) corresponding to a
tentative γ(h) and compare this with the sample variogram of the residuals. To
this end, we can use for example the ordinary least squares estimator of the
drift, which can be calculated easily (it is the optimal one if the underlying
variogram is a pure nugget effect). This approach has been tried in the case of
regularly spaced data: The variogram of residuals is computed in moving
windows of 11 consecutive points, under the approximation of a locally linear
drift. The average sample variogram of residuals is then compared to theo-
retical variogram of residuals “type curves” obtained by application of relation
(2.83) (Huijbregts and Matheron, 1971; Sabourin, 1976). But the solution is
not unique (Matheron, 1970, Section 4.6), and very different models γ(h) can
produce very similar variogram of residuals γRes(h). This difficulty disappears
with the generalized variogram (Section 4.7).

2.7.3 A Few Favorable Cases

Despite the presence of a drift, it is often possible to find a way of returning to
the standard structural analysis of the stationary case.

Very Mild Drift

In the case of a very mild drift the term added to γ(h) in (2.82) is negligible at
short distances. This allows a good determination of the variogram at this scale,
which is often sufficient for the requirements of kriging.

An example of this is found in a study of the Noirétable area topography
(France) (Chilès and Delfiner, 1975). The aim of the study was to determine the
precision with which one can reconstruct by kriging the topography of a 5-km2

area from a pattern of 573 points. Figure 2.29a shows the sample variogram
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FIGURE 2.29 Topography of the Noirétable area (Massif Central): (a) directional variograms at

large distances; (b) average variogram up to 500 m, and fit by a regularized linear model; (c) average

variogram up to 500 m, and fit by a model of type 7h7α. [From Chilès and Delfiner (1975), with

permission of SFPT (a, b); Journel and Huijbregts (1978), with permission of Academic Press

Limited, London (c).]
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calculated in four directions. Beyond 500 m, the various curves diverge and
exhibit a behavior characteristic of a complex-shaped drift becoming appreci-
able at this scale. But kriging involves neighborhoods that do not exceed 500 m
in diameter. We can thus consider the phenomenon as being drift-free and
isotropic at this scale. There remains to fit a model to the first 500 m of the
average variogram. Several fits were proposed, all of which are suitable and
give very close results—in particular, a regularized linear model given by (2.39)
with l¼ 500 m (the equality of l and the maximum modeling distance of the
variogram has no particular meaning) (op. cit.; Figure 2.29b) or an jhjα model
with α¼ 1.4 (Journel and Huijbregts, 1978; Figure 2.29c).

Unidirectional Drift

Often the drift is not felt in all directions. If so and if the hypothesis of an
isotropic variogram appears reasonable, we can use an isotropic model fitted to
the sample curve obtained for the direction with no drift. We have already seen
an example of this with the piezometry of the Crau aquifer (Figure 2.28).

Another example is provided by Delfiner (1973). It concerns a study of the
500mbar geopotential, roughly the altitude of the 500-mbar atmospheric
pressure surface. Because of the rotation of the earth, the geopotential shows
no E–W drift. There is, however, a very clear decrease from the equator to the
pole; this is a well-known phenomenon reflecting the existence of a zonal wind
(the wind is to a first approximation orthogonal to the gradient of the geo-
potential). The phenomenon is pictured in Figure 2.30a, which shows the
average value of the data in sections of 5 and 10 degrees of latitude and lon-
gitude. It is no surprise that the sample variogram reaches a sill in the E–W
direction and shows a parabolic behavior in the N–S direction (Figure 2.30b).
Because of the physics of the problem, the basic drift functions are necessarily
trigonometric functions depending only on the latitude θ. Here one can con-
sider that, at least locally, it is of the form aþ b cos θ. A model fitted to the
E–W curve is taken as the variogram, namely a Gaussian model with a scale
parameter a¼ 1470 km (the practical range being of the order of 2500 km), a sill
C¼ 25,000 m2, and a nugget effect C0¼ 300 m2 (variance of the uncertainty of
the radiosonde measurements, difficult to calibrate on the variogram but
known by another way).

Notice that in this particular case, the form of the drift is not invariant by
translation, unlike usual drifts (cf. Sections 3.4.6 and 3.4.7). But the spherical
form of the earth is a good reason to favor spherical coordinates.

Global Drift with a Simple Form

Sometimes the drift has a very simple form at the scale of the entire region of
interest, such as linear or polynomial. In such cases we can subtract a global
estimate of the drift from the data and work on the residuals. Generally, the
least squares estimator is chosen because, regardless of the number of data, it
only requires solving a small linear system. The variogram of residuals is
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certainly biased, but since this bias is negligible at short distances, we can
correctly determine the variogram at the scale of the neighborhoods to be used
for subsequent kriging.

To illustrate this, Figure 2.31 shows the raw variogram and variograms
of residuals for civil engineering microgravimetric data (Bouguer anomaly
sampled on a 15-m grid, locally refined) (Chilès, 1979b). The study zone is a
380-m � 350-m rectangle. The average raw variogram is clearly parabolic and
reflects an essentially linear NW–SE global drift which is evident from the
data. The directional raw variograms (not reproduced here) show, however,
that no direction is entirely free of drift. Because the drift has a good overall
shape, the sample variograms of residuals were calculated for polynomial drifts
of degree 1, 2, and 3 determined by ordinary least squares. They show that in
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FIGURE 2.30 500-mb geopotential: (a) profiles of the mean versus longitude and latitude;

(b) E–W and N–S variograms. [From Delfiner (1973), r SMF.]
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order to eliminate the effect of the drift, we must consider a global drift of
degree 2, if not 3. The variogram has a range of 60 m, or about one-sixth of the
length of the domain. In this case the variogram of residuals is practically
unbiased up to half the length of the domain (this is apparent when constructing
simulations without drift using the techniques presented in Chapter 7, and then
comparing, on the simulations, the raw variogram with the variogram of resi-
duals). We obtain a good fit of γ3 (variogram of residuals associated with a drift
of degree 3) by a spherical model with range a¼ 60 m and sill C¼ 430 μgal2. To
this we must add a measurement error variance of 4 μgal2, not perceptible on
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FIGURE 2.31 Microgravimetry in a quarry: (a) raw variogram; and variogram of residuals

obtained after subtracting a global drift of degree k estimated by least squares: (b) k¼ 1; (c) k¼ 2;

(d) k¼ 3. Notice the change in vertical scale between the raw variogram and the variograms of

residuals. [From Chilès (1979b).]
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the sample variogram; geophysicists have told us, however, that the measure-
ments are made with an error of 64 μgal (hence a standard deviation of 2 μgal
and a variance of 4 μgal2). To cross-validate the fit, 146 sample points were
estimated from their neighbors and gave a mean standardized square error of
1.06, which is excellent.

2.8 SIMPLE APPLICATIONS OF THE VARIOGRAM

We conclude this chapter with simple applications of the variogram to variance
calculations and sampling design. Here the form of the estimator is fixed, as
when practically dictated by symmetries. We wish to compute (1) elementary
estimation variances, such as the variance of estimation of a square or rectan-
gular block by a central sample or by four samples located at the vertices, and
(2) a global estimation variance when the data are more or less regularly located
within the domain of study so that the sample mean can be taken as a sensible
estimator of the regional mean. The variogram also enables the calculation of
dispersion variances of small units partitioning larger domains. These results
are very useful to design a sampling scheme. In mining, for example, one may
wish to achieve a given accuracy for a global estimation or to optimize a
pre-exploitation grid and control the local dispersion of the average grade of
elementary mining units. It is assumed here that the phenomenon has no drift.

2.8.1 Estimation Variance

Let us begin with a very simple case, considering only two locations, x and
xþ h, and assuming that we know Z(x) but not Z(xþ h); in the absence of any
other information, we assign location xþ h the known value of location x.
Since 2 γ(h) is equal to the variance of Z(xþ h)�Z(x), 2 γ(h) quantifies the
error incurred when estimating Z(xþ h) by Z(x). More generally, if we estimate
the average value in a domain V

ZV ¼ 1

jV j
Z
V

ZðxÞ dx

by the average of N sample points xα,

Ẑ ¼ 1

N

XN
α¼1

ZðxαÞ

we obtain, by extending (2.10) to the case of stochastic integrals,

Var

Ẑ � ZV

�
¼ � 1

N2

XN
α¼1

XN
β¼1

γðxβ � xαÞ þ 2

NjVj
XN
α¼1

Z
V

γðxα � xÞ dx

� 1

jV j2
Z
V

Z
V

γðx0 � xÞ dx dx0 ð2:84Þ
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This result alternates exact and approximated expressions of the same integral,
with the result that the estimation variance becomes smaller as:

� the network of sample points is tighter and more regular;

� the variogram is more regular, namely the variable itself is smoother in its
spatial variation.

Such a variance is called an estimation variance. It is also referred to as an
extension variance when one extends the value measured at one point, or on a
small volume v, to the volume V. Denoting by

Zv ¼ 1

jvj
Z
v

ZðxÞ dx

the average value of Z(x) in v, (2.84) takes the form

VarðZv � ZVÞ ¼ � 1

jvj2
Z
v

Z
v

γðx0 � xÞ dx dx0 þ 2

jvjjV j
Z
v

Z
V

γðx0 � xÞ dx dx0

� 1

jV j2
Z
V

Z
V

γðx0 � xÞ dx dx0
ð2:85Þ

The arithmetic mean Ẑ is seldom used for local estimation. It is preferable to con-
sider samples in V and its immediate vicinity and apply some weighting (kriging).
For global estimation, however, if the data are evenly distributed so that they have
approximately similar zones of influence, kriging will give approximately equal
weight to all data points, and the estimator Ẑ can be used. The estimation variance
can thenbe calculated by formula (2.84). But ifN is large and/or the domainVhas a
complex shape, which is often the case in real applications, this formula is quite
cumbersome. A variety of approximations have been proposed to handle the most
common cases encountered in the global estimation of an orebody, a forest, or an
agricultural field. Some of them are presented in Section 2.8.3; they allow the
calculation of the estimation variance of the resource in any 2D or 3D volume
from regular or random sampling. Approximation formulas based on the irreg-
ular terms of the variogram are also available. Thanks to other formulas, it is also
possible to deal with line sampling (along boreholes or transects) by cuttingV into
slices centered on the lines and combining errors incurred by estimating the lines
from the samples and estimating the slices from the lines. The interested reader is
referred to Matheron (1965, 1970), David (1977), and Journel and Huijbregts
(1978) for a thorough description of the methods. Applications to the estimation
of fish abundance are presented by Rivoirard et al. (2000).

2.8.2 Dispersion Variance

Let us consider a domain V that can be partitioned into N cells vi which are
identical to a cell v up to a translation. Let us also consider a particular
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realization z(x) of the IRF Z(x). If the mean values z(vi) of z(x) in the cells vi are
all known, the mean of the N values z(vi) is simply the mean value z(V ) in the
domain V. We therefore define the sample variance of vi in V by

s2ðv jVÞ ¼ 1

N

XN
i¼1

h
zðviÞ � zðVÞ

i2
ð2:86Þ

This variance measures the dispersion of the values in the cells vi partitioning V.
It can also be viewed as the variance of the estimation of z(V) by z(vi), with the
cell vi being chosen at random among the N cells partitioning V.

Now, if the values z(vi) are not available, s
2(v jV) cannot be calculated, but

we can obtain its expected value σ2(v j V) by randomizing (2.86) with respect to
the realization. This is equal to the expected value of the extension variance of
Z(vi) to Z(V), with the cell vi being chosen at random, or equal to the mean
of the N extension variances similar to (2.85) (with vi instead of v). Because vi is
a partition of V, the cross term in (2.85) is, on the average, equal to the third
term of the right-hand side, so that the variance of the Z(vi) in V becomes

σ2ðv jVÞ ¼ 1

jV j2
Z
V

Z
V

γðx0 � xÞ dx dx0 � 1

jvj2
Z
v

Z
v

γðx0 � xÞ dx dx0 ð2:87Þ

σ2(v jV) is called the dispersion variance of v within V. For usual variogram
models the second integral in (2.87) increases with the volume v of the support,
hence the commonly observed decreasing-variance-with-volume relationship. In
the case where v is limited to a single point, the preceding expression is reduced to

σ2ð0 jVÞ ¼ 1

jVj2
Z
V

Z
V

γðx0 � xÞ dx dx0 ð2:88Þ

which generalizes the sample variance (2.5). If the variogram γ(h) reaches a sill
and if the domain V is very large with respect to the range, the variance of Z(x)
in V approaches the global point variance γ(N)¼C(0). This does not hold true
for unbounded variograms.

Due to (2.88), the dispersion variance (2.87) can be written

σ2ðv jVÞ ¼ σ2ð0 jVÞ � σ2ð0 j vÞ

When v is not a point and V cannot be partitioned into identical cells vi, this
formula is taken as a definition of the dispersion variance of v within V, but it
no longer has a precise significance. It can even be negative, for example, one
has σ2(V j v)¼�σ2(v jV).

Dispersion variances satisfy the following additivity property: If v�V�V, then

σ2ðv j VÞ ¼ σ2ðv jVÞ þ σ2ðV j VÞ ð2:89Þ
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Equation (2.89) is sometimes called “Krige’s relationship” and is similar to an
analysis of variance formula (note that this property is also valid among
experimental dispersion variances).

From a practical point of view, it should be remembered that the double
integrals over the same domain, which we find in expressions (2.84), (2.85),
(2.87), and (2.88), can be expressed as simple integrals using the Cauchy algo-
rithm. Analytical expressions for the various simple or double integrals can be
obtained in 2D for rectangular cells for simple models such as the spherical one.
In 3D a symbolic calculation of these integrals has been considered byMarbeau
and Marbeau (1989). The value of these integrals can also be read from graphs
[e.g., see Journel and Huijbregts (1978, pp. 125–147), for a spherical or expo-
nential variogram in 2D and 3D].

2.8.3 Sampling Design

The preceding results enable us to design sampling patterns, namely to choose
the locations of N points xi that will be sampled for estimating a given
domain V. This is possible because the estimation variance does not depend
on the unknown values Z(xi) but only on their location and the variogram. Of
course some data are necessary to identify the variogram. But once this is
known, it is possible to predict the estimation variance for any proposed
sampling pattern and thus optimize it to achieve a desired precision. We begin
with an elementary example and then compare three main patterns: random
sampling, stratified random sampling, and regular grid. Naturally in real
applications the design of a sampling strategy is largely constrained by
practical considerations. These can be dealt with, to some extent, by con-
sidering kriging estimators.

A Simple Example

Suppose that one is interested in the mean value of some parameter, say tem-
perature, over a one-hour period. Which of these two estimates is better: the
temperature at half the hour or the average of two consecutive measurements
on the hour?

The problem amounts to the estimation of the average of Z(x) over the
segment [0, L] either by the estimator Ẑ1 ¼ ZðL=2Þ or by Ẑ2 ¼ 1

2
½Zð0Þ þ ZðLÞ�.

The corresponding estimation variances are given by formula (2.84). To express
them in a simple manner, let us introduce two auxiliary functions of the var-
iogram γ(h):

χðhÞ ¼ 1

h

Z h

0

γðuÞ du

FðhÞ ¼ 1

h2

Z h

0

Z h

0

γðx0 � xÞ dx dx0 ¼ 2

h2

Z h

0

u χðuÞ du
ðh. 0Þ
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The two variances of estimation—σ2
1 from a single central sample, σ2

2 from two
extreme samples—are then

σ2
1 ¼ 2χ

L

2

� �
� FðLÞ; σ2

2 ¼ 2χðLÞ � FðLÞ � γðLÞ
2

Let us assume a variogram of type γ(h)¼ b jhjα. The auxiliary functions take
the form

χðhÞ ¼ b hα

αþ 1
; FðhÞ ¼ 2b hα

ðαþ 1Þðαþ 2Þ

which allows the calculation of σ2
1 and σ2

2. The results are given in Table 2.1 for
typical values of α and b¼ 1.

We observe the following:

� For α¼ 0, the limiting case of a pure nugget effect, only the number of
samples matters so that σ2

2 is half σ2
1.

� This advantage decreases when α increases, and for α¼ 1 the two patterns
are equivalent.

� As α increases beyond 1, the variogram becomes more regular, and a
single centrally located sample becomes better than two ill-placed ones.

� For α¼ 2, which would correspond to a linear random function, the
variances are zero.

Coming back to the initial problem, we conclude that in a turbulent environ-
ment (α¼ 2/3) it is better to use the pattern with two measurements, whereas a
centrally located sample is better in the case of smooth temperature variations
(α. 1).

A similar approach is used in mining to determine the final drill hole spacing
ensuring that the average grade of blocks delimited by the drill holes is known
with a prespecified estimation variance.

TABLE 2.1 Estimation Variance of an Interval of

Length L from One Central Sample or Two Extreme

Samples for the Variogram γ(h)¼ jhjα

α σ2
1 σ2

2

0 1 0.5

0.5 0.409L1/2 0.300L1/2

1 0.167L 0.167L

1.5 0.054L3/2 0.071L3/2

2 0 0
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Pure Random Sampling

Consider now the more general problem of the design of a pattern for esti-
mating the average value ZV of Z(x) over a domain V. The survey will include
N samples {Z(xi) : i¼ 1, . . . , N}, and ZV will be estimated by Ẑ ¼ 1

N

PN
i¼1 ZðxiÞ.

How should this pattern be selected?
A first possibility is a random pattern where the samples are randomly

scattered within V. More specifically, the xi are independently located in V with
uniform density 1/jVj. An elegant way to derive the estimation variance is the
following: For a given realization z(x), the values z(Xi) are random through Xi

and are independent. Since Xi is uniformly distributed within V, z(Xi), con-
sidered as an estimator of zV, satisfies

E½zðXiÞ � zV � ¼ 0

E½zðXiÞ � zV �2 ¼ s2ð0 jVÞ

where s2(0 jV) is the variance of z(x) within V. Since the estimator ẑ is the mean
of the z(Xi) and the Xi are independent, ẑ is unbiased and its estimation variance
is 1

N
s2ð0 jVÞ.

Randomizing the realization, we find that

σ2
Rand ¼ EðẐ � ZVÞ2 ¼ 1

N
σ2ð0 jVÞ

Note that this variance is that of the random pattern before the locations of the
samples have been chosen. Once the pattern is fixed, the correct estimation
variance is that of formula (2.84). The preceding result can then be used as an
approximation, since it is equal to the average of the estimation variances
associated with all possible realizations of the set of sampling points.

Stratified Random Sampling

This time, V is divided into N similar disjoint zones of influence vi. Within each
vi a sample is placed at random with uniform density and independently of
other samples. For a given realization z(x), the error is

ẑ� zV ¼ 1

N

XN
i¼1

h
zðXiÞ � zvi

i

The partial errors zðXiÞ � zvi are independent. By a similar argument to that
just seen, we find after randomization of the realization

σ2
Strat ¼ EðẐ � ZVÞ2 ¼ 1

N
σ2ð0 j vÞ

The variance of estimation has the same form as in the purely random case,
except that σ2(0 jV) is replaced by σ2(0 j v), namely the variance of a point
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sample within its zone of influence v. Now by the additivity relationship (2.89)
we have

σ2ð0 jVÞ � σ2ð0 j vÞ ¼ σ2ðv jVÞ$ 0

which proves that the stratified random pattern is always more efficient than
the purely random pattern.

Square Grid

In this pattern the sampling is performed at the nodes of a regular grid with
square or cubic cells if the variogram is isotropic, or on a grid with a direction
and a ratio of elongation adapted to the geometric anisotropy of the variogram.
Since in the latter case isotropy can be restored by means of a linear trans-
formation of the coordinates, we will only consider the isotropic case. The
domain V can therefore be partitioned into square or cubic cells vi with a
sample at the center of each cell. The estimation variance should be computed
by application of formula (2.84), but this is usually too cumbersome. Since the
estimation error is of the form

Ẑ � ZV ¼ 1

N

XN
i¼1

h
ZðxiÞ � Zvi

i

Matheron (1965, Section XII-3) proposes an approximation principle that con-
sists in assuming that these partial errors are uncorrelated. This approximation
has been shown to be quite good for usual isotropic variogram models provided
that we use a square grid. Then

σ2
Grid ¼ EðẐ � ZVÞ2 	 1

N
σ2
Eð0; vÞ

where σ2
Eð0; vÞ is the extension variance of a central sample to a cell v: The

estimation variance is simply computed by dividing the elementary extension
variance of a sample to its zone of influence by the number of samples N.

For the usual variogram models, σ2
Eð0; vÞ is smaller than σ2(0 j v), so that we

finally have

σ2
Grid #σ2

Strat #σ2
Rand

Comparison of the Three Patterns

To get an idea of orders of magnitude, let us consider the 2D case where v is a
square of side l. For the unit square S1¼ [0, 1] � [0, 1] we have

Z
S1

jxj dx ¼
ffiffiffi
2

p þ logð1þ ffiffiffi
2

p Þ
3

¼ 0:765

Z
S1

Z
S1

jx0 � xj dx dx0 ¼ 2þ ffiffiffi
2

p þ 5 logð1þ ffiffiffi
2

p Þ
15

¼ 0:521
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so that by application of (2.88) and (2.84) we obtain for the square of side l and
the linear variogram γ(h)¼ b jhj,

σ2ð0 j vÞ ¼ 0:521b l; σ2
Eð0; vÞ ¼ 0:244 b l

The ratio σ2ð0 j vÞ=σ2
Eð0; vÞ ¼ 2:139 shows that for a linear variogram the

regular grid pattern is twice more efficient than the stratified random pattern,
itself more efficient than the purely random scheme.

In order to have a complete comparison between the sampling patterns, let
us further assume that the domain V is itself a square with side l

ffiffiffiffi
N

p
. Then the

variance of a sample within V is

σ2ð0 jVÞ ¼ 0:521b l
ffiffiffiffi
N

p

We can express the three estimation variances in terms of σ2¼σ2(0 jV) and the
number of samples N, which are two independent parameters:

σ2
Rand ¼ σ2

N
; σ2

Strat ¼
σ2

N3=2
; σ2

Grid 	
σ2

2:139N3=2

We can appreciate the benefit of a sampling pattern exploiting spatial corre-
lations over crude random sampling: The variance is reduced by a factor ofN3/2

instead of N. A slight improvement over a regular square grid can be obtained
with an hexagonal grid, as shown by Matérn (1960). The square grid remains
usually preferred because it is in phase with the request of most applications to
also deliver the local estimations of average values in square or cubic blocks.

The same type of comparison can be made in the case of a bounded variogram.
But the results now depend on an additional parameter: the range a of the vario-
gram. Let us focus on the comparison between the stratified random sampling and
the regular grid for a spherical isotropic variogram. The ratio σ2ð0 j vÞ=σ2

Eð0; vÞ is
always greater than 1, which proves that the regular grid performs always better
thanstratifiedrandomsampling.However, this advantage fades awayas the size lof
the grid cell becomes large with respect to the range a of the variogram: The ratio
decreases from 2.14 for l/a¼ 0 to 1 for l/a¼N, with an intermediate value 1.61 for
l/a¼ 1.The reason is that for a large l/a ratio, the influenceof a sample is purely local
anyway, and the center of the square looses its strategic superiority.

The above considerations address an idealized sampling problem that came up
at the early stages of the development of mining geostatistics, when statisticians,
uninformed of Matérn’s work in forestry (1960), were trying to force random
sampling on mining engineers who preferred systematic grids. In reality the opti-
mum data collection plan is very application-specific. It depends on the objective
pursued, whichmay not just be the reduction of variance. Practical constraints are
also important, such as cost or access (what if there is a large rock where a soil
sample is supposed to be collected?). The optimal sampling further depends on the
estimator selected. In the above comparison we have just used the plain mean, but
we could also consider more sophisticated estimators, such as kriging estimators,
and calculate estimation variances for different sample placements. Instead of
minimizing the global estimation variance, we could also consider minimizing the
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average or the maximum of kriging variances of points or blocks discretizing the
study domain. The interested reader may consult Rodrı́guez-Iturbe and Mejı́a
(1974) for the design of rainfall networks, Bras and Rodrı́guez-Iturbe (1985) for
sampling in hydrogeology, Gilbert (1987) for pollution monitoring, Rivoirard
et al. (2000) for the survey of fish abundance, andCressie (1991, Section 5.6) aswell
as Müller (2007) for an overview of approaches.

Designing the sampling to minimize a global on local estimation variance
does not lead to the same scheme as optimizing the inference of the variogram
(Section 2.6.1 on the behavior of the variogram at the origin; also see below). It
is possible to work with a mixed objective in a Bayesian framework. Marchant
and Lark (2007) consider a total variance that includes the kriging variance and
the uncertainty on variogram parameters and use simulated annealing to
optimize data placement. The reader is referred to the book of Diggle and
Ribeiro (2007) for complementary information.

2.9 COMPLEMENTS: THEORY OF VARIOGRAM ESTIMATION

AND FLUCTUATION

Estimating and modeling the variogram pose problems that pertain more to epistemology
than to mathematical statistics. These problems have attracted the attention of geostatisti-
cians since the beginning (Jowett, 1955b; Matheron, 1965, Chapter 13) and have fostered
extensive studies (see Alfaro, 1979, 1984, and the important methodological work of Math-
eron, 1978). Without going into details that are beyond the scope of this book, we will outline
the main points. We consider here random functions without drift. In the case of a drift,
similar results are obtained with the generalized variogram.

2.9.1 Estimation of the Regional Variogram

Regional Variogram and Sample Variogram

In practice, we consider a regionalized variable z(x) defined over a bounded domain D. By
interpreting z(x) as a realization of an RF Z(x), we have provided a theoretical definition of
the variogram γ(h). Generally, however, the phenomenon under study is unique (e.g., an
orebody), and it is primarily the variogram of the regionalized variable in D that is of interest.
This variogram is the regional variogram defined by (2.7):

γRðhÞ ¼ 1

2jD-D�hj
Z
D-D�h

½zðxþ hÞ � zðxÞ�2dx

whereD�h represents the translate of setD by vector�h,D-D�h is the set of points such that x
and xþ h belong toD, and jD-D�hj is themeasure of this set (i.e., the geometric covariogram of
D for the distanceh).The regional variogram isapurelydeterministic andempiricalquantity. Ifwe
know z(x) at every point of D, γR is completely determined. It constitutes a summary of the
structural characteristics of the regionalized variable and, in this sense, conveys a physical sig-
nificance independently of the probabilistic interpretation that we can construct.

In practice, z(x) is only known at a certain number of sample points {xα : α¼ 1, . . . ,N}. As
the regional variogram cannot be determined directly, we calculate the sample variogram (2.6),

γ̂ðhÞ ¼ 1

2Nh

X
xβ�xα	h

½zðxβÞ � zðxαÞ�2
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where the sum is extended to the Nh pairs (xα, xβ) of sample points separated (approximately)
by the vector h.

Is this sample variogram a good approximation of the regional variogram? In rare cases it
is possible to provide an experimental answer to this question. One such case is Narboni’s
(1979) exhaustive survey of the Ngolo tropical forest. The forest was subdivided into 50-
m� 50-m plots, and the number of trees was counted in each plot. As a result the regional
variogram of the variable “number of trees per plot” can be calculated exactly.

The study area contains about 100 transects, each with 200 plots so that, by considering
only one transect in 10, one obtains a 10% sampling. By varying the position of the first
transect, it is possible to simulate 10 different sampling choices. Figure 2.32a shows the ten
corresponding sample variograms, whose average gives the regional variogram (the vario-
grams are along the direction of the transects). These ten variograms are all similar, even
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FIGURE 2.32 Survey of the Ngolo forest: (a) variograms of 10 sampling choices at a rate of 10%;

(b) examples of variogram for sampling rates of 100% (average of the ten preceding variograms),

10%, 5%, and 1%. [From Narboni (1979), r Bois et Forêts des Tropiques.]
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though their sills deviate by as much as 10% or 15% from the average sill. So with a 10%
sampling one can get a good estimate of the regional variogram.

Figure 2.32b shows sample variograms for different sampling rates: 100% (the regional
variogram, average of the curves from Figure 2.32a), 10%, 5%, and 1%. The deterioration is
obvious at the 1% sampling rate (a single transect sampled). This is also seen from the variance
of the samples: The variance obtained on sampling a single transect can vary, depending on
which transect is selected, between 4.4 and 11.4. With a 10% rate, however, the variance varies
only between 7.2 and 9.0 for the 10 possible sampling choices. Notice that the overall aspect of
the sample variograms is correct, which is themost important: It is only the value of the sill that
is poorly estimated. As we will see in Section 3.4.3, this inaccuracy only affects the kriging
variance and not the estimate itself.

Estimation Variance of the Sample Variogram

Exhaustive sampling situations are exceptional, and we must consider the general case where
the regional variogram γR cannot be determined experimentally. If we fix h and let

qhðxÞ ¼ 1
2
½zðxþ hÞ � zðxÞ�2

we see that γR(h) is simply the average value of qh(x) over D - D�h, and that γ̂ðhÞ is the
average value of the Nh data qh(xi), where the xi constitute a subset of the xα. It is reasonable
to expect that if sufficient data are available and fairly well distributed, γ̂ðhÞ is close to γR(h).
If, for example, the data are on a regular grid, and if h is a multiple of the grid spacing, γ̂ðhÞ is
simply the discrete approximation of the integral defining γR(h).

To go further, we have to determine the behavior of the regionalized variables z(x) and
qh(x). In our models we interpret z(x) as the realization of an RF Z(x), and then qh(x) is a
realization of the RF

QhðxÞ ¼ 1
2
½Zðxþ hÞ � ZðxÞ�2

We assume here that Z(x) is an SRF or an IRF with variogram γ(h) and that the RF Qh(x)
has second-order moments and is stationary. Let Gh(x

0 � x) denote the covariance of Qh(x)
and Qh(x

0). To avoid confusion, ΓR and Γ̂ will now denote the random versions of the
regional variogram and the sample variogram, or explicitly

ΓRðhÞ ¼ 1

2jD-D�hj
Z
D-D�h

½Zðxþ hÞ � ZðxÞ�2dx ¼ 1

jD-D�hj
Z
D-D�h

QhðxÞ dx ð2:90Þ

Γ̂ðhÞ ¼ 1

2Nh

X
xβ�xα	h

½ZðxβÞ � ZðxαÞ�2 ¼ 1

Nh

X
xβ�xα	h

QhðxαÞ ð2:91Þ

Naturally,

E½ΓRðhÞ� ¼ E½Γ̂ðhÞ� ¼ γðhÞ

since Qh(x) has for expectation γ(h). We can thus characterize the error incurred by taking
the sample variogram for the regional variogram by the variance of Γ̂ðhÞ�ΓRðhÞ. Consid-
ering their respective definitions (average of Nh values Qh(xi) for one, average of Qh(x) over
D-D�h for the other) brings us back to a standard calculation of estimation variance to be
carried out with the covariance Gh(x

0�x) of the RF Qh(x).
Gh(x

0�x), however, is a fourth-order moment of the RF Z(x). Determining the preci-
sion of the calculation of the second-order moment thus requires prior knowledge of the
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fourth-order moment. But the latter can generally only be evaluated with mediocre precision,
related to the eighth-order moment, and so on. This way the problem can be displaced
endlessly. We can nevertheless determine orders of magnitude by considering classic cases of
spatial distribution. The Gaussian case will be examined first, and then indications will be
given for random functions with skewed marginal distributions.

Gaussian Case

We know that if U1 and U2 are jointly Gaussian random variables with zero mean and
covariance σ12, the centered covariance of U2

1 and U2
2 is

Cov

U2

1 ;U
2
2

�
¼ 2 σ2

12

From this we can deduce that for an IRF Z(x) with bi-Gaussian increments, the covariance
Gh(x

0 � x) is given by

Ghðx0 � xÞ ¼ 1
2
½γðx0 � xþ hÞ � 2γðx0 � xÞ þ γðx0 � x� hÞ�2 ð2:92Þ

This expression allows us to calculate the estimation variance of the variogram. Matheron
(1965, pp. 229–230) shows that when the data are on a regular grid in n-dimensional space, we
have to a first approximation

Var½Γ̂ðhÞ � ΓRðhÞ� ¼ 4γðhÞσ2
h

where σ2
h denotes the variance of estimation of the mean value of Z(x) inD-D�h from theNh

dataZ(xα) involved in the expression (2.91) of Γ̂ðhÞ. Thus, provided that there are enough pairs
of points to calculate γ̂ðhÞ, we are sure of being able to evaluate γR(h) with good precision: γ̂ is a
consistent estimator of γR. Figure 2.33 shows an example of the relative standard deviation
(coefficient of variation)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Γ̂ðhÞ � ΓRðhÞ�

q
γðhÞ

in the case of 11� 11 data on a regular 2D grid and for a spherical variogram or a variogram
of type jhjα (the figure results from theoretical calculations and not from simulations). It is
seen that:

� The precision improves with the regularity of the variogram (large range or high α).
� The precision is practically of the same order of magnitude for all values of h,L/2.

General Case

To give a glimpse of the precision that one can expect with non-Gaussian RFs, let us consider
three different RFs derived from independent standard Gaussian RFs U(x) and V(x) with the
same correlogram ρ(h):

1. Z1(x)¼U(x)V(x). Its marginal distribution has the probability density function
f ðzÞ ¼ 1

πK0ðjzjÞ, where K0 is the order-0 Bessel function of the second kind; its
covariance is C(h)¼ ρ(h)2.
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FIGURE 2.33 Estimation of the regional variogram: relative standard deviation in the Gaussian

case for a spherical variogram with range a (on the left) and for a variogram of type 7h7α (on the

right). The data are on a square L�L sampled by 11� 11 points.
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2. Z2(x)¼U(x)2. An RF with a gamma marginal distribution with parameters 1/2 and 1/2
(chi-square distribution on one degree of freedom); its covariance is C(h)¼ 2 ρ(h)2 and
its coefficient of variation is

ffiffiffi
2

p ¼ 1:414.

3. Z3(x)¼ eU(x). A lognormal RF with covariance C(h)¼ e [eρ(h)� 1], thus with a fairly
high coefficient of variation (

ffiffiffiffiffiffiffiffiffiffiffi
e� 1

p ¼ 1:311).

These three RFs were selected because it is not too difficult to calculate the covariance
Gh(x

0 � x) from the results relative to the Gaussian RFs [see Alfaro (1979)]. For the first two
cases it is very easy to obtain an exponential covariance (ρ(h) must also be exponential with
twice the scale parameter). As for the lognormal RF, it has been assigned a covariance as
close as possible to the exponential model. Figure 2.34 shows the results for this type of
model. Three conclusions can be drawn:

1. The variogram is less precise than in the Gaussian case.

2. It is acceptable for distributions such as those of Z1 and Z2 which are not too long
tailed.

3. The sample variogram of a variable with a long-tailed distribution, like Z3, bears only a
distant relationship to the regional variogram.

This last result confirms the interest of analyzing the Gaussian-transformed data in com-
plement to the raw data.

2.9.2 Modeling the Regional Variogram

Fluctuation Variance of the Regional Variogram

Even if we knew the value of the regionalized variable z(x) at every point of the studied
domain D and were capable of calculating the regional variogram γR(h) for any vector h, this
would exhibit somany variations of detail that wewould have to simplify it to be able to express
it in a usable form. This amounts to considering that two very similar regional variograms have
the same parent variogram γ(h). This simplification represents exactly a passage to the
mathematical expectation: If one considers the studied regionalized variable as the realization
of an IRF, namely as one realization among a set of similar realizations, the regional variogram
of the regionalized variable is one among a family of regional variograms whose mean, or in
probabilistic terms mathematical expectation, is a theoretical variogram γ(h).

The passage to the IRF model enables us to define criteria for the precision required during
modeling. In the framework of this model, the deviation ΓR(h)� γ(h) is a random variable. Its
expectation is zero, and we can quantify the possible deviations by the fluctuation variance
Var[ΓR(h)� γ(h)]. Let us therefore consider a given value of h and use the notations of the
previous section. In view of definition (2.90) of ΓR(h), the variance of the fluctuation of ΓR(h) is
simply the variance of the fluctuation of the mean of Qh(x) in D - D�h. It can therefore be
expressed in terms of the covariance Gh(x

0 � x) of the RF Qh(x),

Var½ΓRðhÞ � γðhÞ� ¼ 1

jD-D�hj2
Z
D-D�h

Z
D-D�h

Ghðx0 � xÞ dx dx0 ð2:93Þ

Calculating this variance again involves the fourth-order moments of the IRF Z(x). Given the
same remarks as in the preceding section, let us first examine the Gaussian case.

Gaussian Case

In view of the expression (2.92) for Gh(x
0 � x), (2.93) is expressed as a function of γ(h). The

explicit calculation is complex, so for simplification we will consider the case where γ(h) near
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the origin is equivalent to b jhjα. The relative fluctuation variance for small jhj is, to a first
approximation, of the form

Var½ΓRðhÞ � γðhÞ�
γðhÞ2 	 Ajhj4�2α þ Bjhjn

where n is the dimension of the space (1, 2, or 3) [see Matheron (1978, p. 113) and the proof in
R in Matheron (1970, Section 2.10.3)]. This relative variance tends to zero with jhj provided
that α, 2.

Micro-Ergodicity

In the above situation the convergence of ΓR(h)/jhjα to a constant b when h- 0 is ensured,
provided that the RF is not m.s. differentiable. The parameter b then has an objective
meaning: If we increase the number of sample points by refining the sampling grid, we can
estimate it with precision. This is the concept of micro-ergodicity. It differs from conventional
ergodicity, where one extends the data domain to infinity, which is of little interest to us
because we always work in a bounded domainD. Micro-ergodicity refers to the case of a finite
domain where we let the number of sample points tend to infinity by filling in the available
space [Cressie (1991) calls this “infill asymptotics”].

The micro-ergodicity of the variogram in the neighborhood of the origin is therefore
established, provided that it is not too regular (we find ourselves in an inverse situation to that
of the estimation of the variogram). This is easily explained: If α is very close to 2, the
realization z(x) is a very regular function. When choosing a sufficiently small domain D, z(x)
can be assimilated to a linear function of x. But, depending on the location of D, the linear
functions can have extremely variable slopes and thus impart almost any value of the coef-
ficient of the term jhjα of the regional variogram: The parameter b no longer has an objective
meaning. In this case the probabilistic model is poorly adapted, at least at the scale of a small
domain D.

Although it is generally possible to determine γ(h) in the neighborhood of the origin, the
fluctuation variance increases very rapidly with h (except if γ(h) has a very small range with
respect to the domain D). Thus in R, for example, for an RF with a linear variogram known
on [0, 1] [straightforward application of (2.93); see Matheron (1970), Chapter 2, exercise 16],
we have

Var½ΓRðhÞ � γðhÞ�
γðhÞ2 ¼

4

3

h

L� h
� 1

3

h2

ðL� hÞ2 if 0# h#
L

2
;

2� 4

3

L� h

h
þ 1

3

ðL� hÞ2
h2

if
L

2
# h#L

8>>>>><
>>>>>:

At h¼L/2, the relative fluctuation variance already equals one, which is prohibitive.
Figure 2.35 shows the fluctuation standard deviation curves in R2 for the same cases as in

Figure 2.33. Apart from the case of a small range, the theoretical variogram and the regional
variogram may have only a distant relationship if jhj is greater than half the length of the
domain (if not sometimes less). This is, however, not serious insofar as geostatistical esti-
mations depend much more on the behavior of the variogram at small distances than at
large distances. From a practical point of view, we can accept that the variogram generally
has no objective meaning at large distances and that it is pointless to try to refine the asso-
ciated fit.
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FIGURE 2.35 Fluctuation of the regional variogram: relative standard deviation in the Gaussian

case for a spherical variogram with range a (on the left) and for a variogram of type 7h7α (on the

right). The domain is a square L�L.
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FIGURE 2.36 Fluctuation of the regional variogram: relative standard deviation for different
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the right). The domain is a square L�L.
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General Case

The conclusions are less encouraging for RFs that are clearly non-Gaussian, as has been
shown by Alfaro (1979). We can see this from Figure 2.36, which shows the same RFs as
Figure 2.34. Two conclusions can be drawn:

1. The fluctuation variance can be much larger than in the Gaussian case.

2. The relative variance no longer necessarily tends to zero when the lag h tends to zero: In
other words, micro-ergodicity is no longer ensured, and the regional variogram does
not even reproduce the behavior near the origin of the theoretical variogram.

In practice, this is frequently reflected in a proportional effect. If we treat it as such, which
amounts to working on a variable conditioned on its local mean, we end up with a more
satisfactory model. It is generally better to use methods based on prior transformation of the
data into Gaussian variables (lognormal kriging, disjunctive kriging).

Micro-ergodicity is also no longer ensured for an indicator, or more generally for a mosaic
RF (even if the marginal distribution is Gaussian). If the domain of study D is not large, a
realization can very well be constant and thus give a regional variogram that is identically zero.
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C H A P T E R 3

Kriging

Once a map is drawn people tend to accept it as reality
—Bert Friesen

3.1 INTRODUCTION

A central problem in geostatistics is the estimation of a variable of interest
over a domain on the basis of values observed at a limited number of points.
Typically, one may want to build a grid model in view for example of drawing a
contour map or of running some numerical simulator. Or the objective may be
to make an inventory and compute amounts (of ore, trees, contaminants, etc.)
within given areal or volumetric units. More generally, the desired quantity
may be some function of the observed variable, but attention will be restricted
here to linear functions.

From a deterministic viewpoint this is an interpolation problem. The vari-
able of interest is approximated by a parametric function whose form is pos-
tulated in advance, either explicitly (e.g., polynomials) or implicitly (e.g.,
minimum curvature condition). The parameters are selected so as to optimize
some criterion of best fit at the data points. Once the approximating function is
determined, it is a simple matter to evaluate it wherever needed.

We will focus here on a probabilistic approach known as kriging, a term
coined by G. Matheron in 1963 in honor of Danie Krige. It produces an inter-
polation function based on a covariance or variogram model derived from the
data rather than an a priori model of the interpolating function. This is analo-
gous to the prediction problem in time series: Given values of the past, usually at
regular time intervals, predict the value of the signal at some time in the future.
First the signal is analyzed, typically by computing and modeling the spectrum,
and then a filter (¼ a predictor) is designed. Kriging follows a similar approach,
but in a spatial setting where there is no general concept of past and future.

Geostatistics: Modeling Spatial Uncertainty, Second Edition. J.P. Chilès and P. Delfiner.

r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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A remark on terminology is in order here. The word prediction has become
established as the determination of the value of a random quantity, whereas esti-
mation refers to the inference of some fixed but unknown parameter of a model.
This distinction originates from regression where we have the choice to either
estimate the mean value of Y given X, or predict the value of an individual
observation givenX. The results are the same, but their variances are different and
therefore it is necessary todistinguish them.Because spatial interpolation is closely
related to regression, the terminology has followed, but the distinction is no longer
critical. In standard English we predict an earthquake, or any particular event in
the future, andweestimatemineral resources. In this bookwewill generally use the
common language verb “estimate” in lieu of the technically focused “predict,” and
we will likewise use “confidence interval” for “prediction interval.”1

Twoother differences between the spatial processes considered in this book and
time processes must be emphasized. First, the data are usually irregularly spaced,
which rules outmost of themethods commonly used in digital signal processing of
either time signals or images. Second, there are support effects that require, at least
in concept, a continuous rather than a discrete location indexing space.

The present chapter concentrates on solving the estimation problem by use
of linear estimators. The theory is developed within the scope of a second-order
statistical model involving only the mean m(x) and the covariance function
σ(x, y) or the variogram γ(x, y), assumed known. Note that the stationarity of
σ or γ is not required to derive the estimators. In some cases such as space�time
phenomena, it is possible to consider a nonstationary model. In most applica-
tions, however, a stationary covarianceC(h) or variogram γ(h) is used. Table 3.1
summarizes the four main forms of kriging that we will discuss in this chapter
and their underlying models.

The method of kriging has been extended in several directions. One exten-
sion deals with broader forms of nonstationarity than the UKmodel and shows
how the minimal prerequisites for kriging can be reduced: It is the subject of
Chapter 4. Another extension covers the multivariate case, namely when Z(x) is
vector-valued. The method, referred to as cokriging, is developed in Chapter 5,
except for the special problem of filtering a random error in the data which is
treated here. Finally, nonlinear estimators developed to evaluate nonlinear
functions of Z(x) are reviewed in Chapter 6.

TABLE 3.1 The Main Forms of Linear Kriging

Kriging Form Mean Drift Model Prerequisite

Simple kriging (SK) Known None Covariance

Ordinary kriging (OK) Unknown Constant Variogram

Universal kriging (UK) Unknown Function of coordinates Variogram

Kriging with external drift (KED) Unknown External variable Variogram

1A confidence interval is a random interval around a deterministic parameter, whereas with a

prediction interval both the predicted value and the interval are random.
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3.2 NOTATIONS AND ASSUMPTIONS

� We denote by

fZðxÞ : x 2 D � Rng

a random function used as a model for the regionalized variable of interest

fzðxÞ: x 2 D � Rng

representing reality. z(x) is a realization of Z(x). For simplicity we make
no notational distinction between the (uppercase) parent random function
Z(x) and its particular (lowercase) realization z(x), it being clear that all
probabilistic calculations involve the random function and all numerical
estimates involve the realization. The lowercase notation is used occasion-
ally, when we want to emphasize the deterministic character of the
expression (e.g., kriging as an interpolant).

� S denotes the set of points where Z(x) has been sampled. In most cases,
S is finite and consists of N data points denoted with Greek subscripts:

S ¼ fxα : α ¼ 1, : : : ,Ng

Occasionally, S can be infinite such as when data are continuously
recorded along a profile.

� Values of functions at sample points are referenced by the subscripts of
these points, such as

Zα ¼ ZðxαÞ the data,
mα ¼ mðxαÞ mean value of ZðxαÞð¼ EðZαÞÞ,
σαβ ¼ σðxα, xβÞ covariance between ZðxαÞ and ZðxβÞ

� The estimated quantity (the “objective”) is of the general form

Z0 ¼
Z

ZðxÞp0ðdxÞ

for some integrable measure p0. The case of point estimation Z0¼Z(x0)
corresponds to a Dirac measure p0(dx)¼ δ(x� x0) at the target point x0,
usually a gridnode,whereas the estimationof a spatial average over a block v,

Z0 ¼ 1

jvj
Z
v

ZðxÞdx

corresponds to p0(dx)¼ (1/7v7)1v(x) dx, where 1v(�) stands for the indicator
function of the block v centered at the point x0.
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� Following established usage, kriging estimators are marked with an
asterisk (*) superscript. In full explicit notations the kriging estimator of
Z(x0) is of the form

Z*ðx0Þ ¼
XN
α¼1

λαðx0ÞZðxαÞ þ λ0ðx0Þ

where λα(x0) is a weight placed on Z(xα) and λ0(x0) is a constant that
depends on x0. For brevity this expression will be condensed to2

Z* ¼
X
α

λαZα þ λ0

with the understanding that the summation is extended over all α indexes
in S. It must be kept in mind that the weights λα depend on the location x0
where the function is being estimated.

Support

We have said that the data were measured at points xα. In reality the data are
never collected at a single point but always involve a support of finite dimen-
sions. This does not create any particular difficulty as long as all data have
the same support and as long as this support is “compatible” with that
of the objective. We speak of “point kriging” when the objective has exactly the
same support as the samples (Sections 3.3 and 3.4). When the objective has a
larger support, we speak of “block kriging” (Section 3.5). For compatibility the
block must either be very large compared with the samples, which are then
treated as points, or be a finite union of sampling units.

Neighborhoods

The theory is always derived as if all N data points were used in the estimation;
this is the so-called global neighborhood case. In practice, N may be too large
to allow computation and a “moving neighborhood” or “local neighborhood”
has to be used, including only a subset of the data for the estimation of each
grid node. This may alter the relationships between estimates at different grid
nodes and introduce spurious discontinuities. Different methods have been
proposed to handle large data sets and are discussed in Section 3.6.

3.3 KRIGING WITH A KNOWN MEAN

In this section we consider what could be called “the wonderful case of a known
mean” which underlies the theory of Simple Kriging (SK). Indeed, knowing the
mean of a stationary RF is already knowing very much. For some practical

2 To make the presentation more accessible, the convenient and concise tensor notation λαZα used

by Matheron (1969a, 1970) will not be employed here.
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purposes the mean alone may provide enough information. Knowing the mean
also makes the theory very simple and endows the kriging estimator with all the
nice properties. In case of a Gaussian RF, it coincides with the conditional
expectation E(Z07Z1, . . . ,ZN), which is the ideal estimator of Z0 in the mean
square sense. In all circumstances the error Z* � Z0 is uncorrelated with every
Zα and with Z* itself.

In the real world the mean can be known only if there are repetitions of the
phenomenon, as with space�time processes, or when the number of data
becomes so large as to estimate the mean almost to perfection. The properties
established under this condition may thus be regarded as limit properties.

3.3.1 Derivation of the Equations

For simplicity we consider here the case of point estimation. We want to
estimate z0¼ z(x0) from N observations z1, . . . , zN, using the affine estimator

z* ¼
X
α

λαzα þ λ0

interpreted in the model as a realization of the random variable

Z* ¼
X
α

λαZα þ λ0

The constant λ0 and the weights λα are selected so as to minimize in the model
the expected mean square error E(Z*�Z0)

2.
First let us concentrate on λ0. The mean square error (m.s.e.) can be

written as

EðZ*� Z0Þ2 ¼ VarðZ*� Z0Þ þ ½EðZ*� Z0Þ�2

Since variances are insensitive to shifts, only the bias term on the right-hand
side involves λ0. To minimize the m.s.e., it is necessary to choose λ0 so as to
cancel the bias E(Z*�Z0):

λ0 ¼ m0 �
X
α

λαmα

The estimator Z* becomes

Z� ¼ m0 þ
X
α

λαðZα �mαÞ ð3:1Þ

This amounts to estimating the zero-mean variable Y(x)¼Z(x)�m(x) by the
linear estimator

Y* ¼
X
α

λαYα
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and adding the mean afterward. Thus we have established that the case of a
known mean is equivalent to the case of a zero mean with λ0¼ 0, and from now
on in this section we will consider that Z(x) has a zero mean.

The m.s.e.—which now coincides with the variance—can be expanded in
terms of the centered covariance σ(x, y) of Z(x),

EðZ� � Z0Þ2 ¼
X
α

X
β

λαλβσαβ � 2
X
α

λασα0 þ σ00

The minimum of this quadratic function is obtained by canceling its partial
derivatives with respect to the weights λα,

@

@λα
EðZ*� Z0Þ2 ¼ 2

X
β

λβσαβ � 2σα0 ¼ 0

(That this is indeed a minimum is ensured by the positivity property of the
covariance function—the m.s.e. is a convex function). The λα are solutions of
the linear system of N equations

Simple Kriging SystemX
β

λβ σαβ ¼ σα0, α ¼ 1, 2, : : : ,N ð3:2Þ

In matrix notation we have

Σλ ¼ σ0

where Σ¼ [σαβ] is the N�N matrix of data-to-data covariances, σ0¼ [σα0] is
the N-vector of covariances between the data and the target, and λ¼ [λα] is the
N-vector of solutions.

These equations are the “best linear prediction” equations famous since the
work of A. N. Kolmogorov (1941c) and N. Wiener (1942). They also appear as
the “Yule-Walker” equations in time series [e.g., Box and Jenkins, (1976, p. 55)]
and as the “normal equations” in linear regression [e.g., Rao, (1973, p. 266)].

The system (3.2), usually called the simple kriging system (SK), has a unique
solution, provided that the matrix Σ is nonsingular.3 This is always the case if
the covariance function σ(x, y) is strictly positive definite and if all sample points
are distinct, whichwewill always assume (nonunique solutionsmay occur in case
of a pure zonal anisotropy). Solving (3.2) is a routine computational problem.

The estimation variance σ2
SK, called the kriging variance, associated with Z*

is obtained by substituting the solution of (3.2) in the m.s.e. Premultiplying
(3.2) by λα and summing over all α gives

3 If Σ is singular, the Singular Value Decomposition algorithm (SVD) can provide a particular

solution minimizing the sum of squared weights [e.g., Press et al. (2007, Section 2.6)].
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Simple Kriging Variance

σ2
SK ¼ EðZ*� Z0Þ2 ¼ σ00 �

X
α

λασα0 ð3:3Þ

In matrix form we have

σ2
SK ¼ σ00 � λ0σ0

The kriging variance, or rather its square root, the kriging standard deviation,
provides a measure of the error associated with the kriging estimator. Its use is
discussed in Section 3.4.5. Notice that it does not depend on the values of the
data but only on their locations. Notice also that if the covariance is multiplied
by an arbitrary (positive) constant, the kriging weights do not change and the
kriging variance is multiplied by that constant. Therefore in case of a stationary
covariance function, one can scale the covariance by the common variance and
write the system (3.2) in terms of correlation coefficients ραβ and ρα0, but the
kriging variance is then also scaled. Finally, and still in the stationary case, it is
clear that the kriging weights and variance are shift invariant: They do not
change if the whole kriging configuration is shifted by an arbitrary vector h.

Examples

1. Consider the simplest case of only one sample point. Then (3.2) reduces to
a single equation and the kriging estimator is

Z*ðx0Þ ¼ ðσ10=σ11ÞZ1 ¼ ρ10ðσ00=σ11Þ1=2Z1

where ρ10 is the correlation coefficient between Z1 and Z0. One recognizes the
standard linear regression ofZ0 onZ1. As a function of x0,Z*(x0) is proportional
to the covariance function σ10 and assumes the value Z1 when x0¼ x1. As x0
moves away fromx1, the correlation ρ10 usually falls off and sodoes, logically, the
influence ofZ1 on the estimation ofZ0. At large distances from x1, ρ10¼ 0 so that
Z*¼ 0; we can do no better than estimate Z(x) by the mean.

From (3.3) the kriging variance is

σ2
SK ¼ σ00 ð1� ρ210Þ

2. We now complicate the problem and consider two points x1 and x2.
Solving the 2� 2 kriging system (3.2) for λ1 and λ2 and rearranging the terms
lead to the estimator

Z* xð Þ ¼ 1

Δ
½Z1 σ22 � Z2 σ12� σ10 þ 1

Δ
½Z2 σ11 � Z1 σ21� σ20
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with Δ ¼ σ11 σ22 � σ2
12. This solution is represented graphically in Figure 3.1

(left), along the line joining x1 and x2; The stationary covariance function
considered is the “cubic” model (2.49) with range a.

The estimator passes through Z1 and Z2 and tends to the mean zero as x0
moves away from the data points, reaching zero exactly when the distance
exceeds the range a. The three curves in Figure 3.1 illustrate the influence of the
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FIGURE 3.1 Simple kriging estimate and variance for the case of two data points and a cubic

covariance model with C(0)=1. From (a) to (c): the estimator becomes “wigglier” as the range a

decreases.
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range a on the solution: as a decreases, the covariance function falls off more
rapidly and the information carried by the data Z1 and Z2 is considered
more and more local.

The kriging variance is readily obtained from (3.3):

σ2
SK ¼ σ00 � 1

Δ
½σ22 σ2

10 þ σ11 σ2
20 � 2σ12 σ10 σ20�

This function is plotted in Figure 3.1 (right) along the line (x1, x2) for various
values of a. It is seen that σ2

SK is zero at the sample points and reaches the
maximum value of 1 under extrapolation. As could be expected, the variance
reaches a local maximum at the midpoint between x1 and x2. When a is small,
this maximum is equal to 1 because all sites are considered as extrapolated
except in the immediate vicinity of the data.

3.3.2 Interpolation Properties of the Kriging Estimator

We can now generalize some of the properties observed in the above examples.

Consistency with Data Points

The kriging estimator is an exact interpolant. If x0 coincides with a sample
point, say x1, then Z* is equal to Z(x1). This can be verified by checking that the
set of weights λ1¼ 1, λα¼ 0 if α 6¼ 1, satisfies the equations (3.2), and since
the solution is unique, this is it. But it is simpler to note that Z*¼Z(x1) is
certainly the best estimator of Z(x1) in the m.s.e. sense as it makes the error
exactly zero. The kriging variance σ2

SK is naturally also zero.

Smoothing Relationship

Since kriging performs a linear averaging, we expect kriging estimates to be less
dispersed than the data. This can be proved easily by considering the variance
of Z*(x0). From (3.2), we have

VarZ* ¼
X
α

X
β

λαλβσαβ ¼
X
α

λασα0

and using (3.3) together with VarZ0¼σ00, we get the so-called smoothing
relationship

VarZ* ¼ VarZ0 � σ2
SK ð3:4Þ

Var Z* differs from Var Z0 by an amount exactly equal to the kriging variance
σ2
SK (which depends on x0). This effect is illustrated in Figure 3.2: The kriging

estimate wiggles near the data points, where σ2
SK is small, and merges gradually

with the mean as data become sparser.
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Note that despite its name the smoothing relationship does not, by itself,
prove the existence of a spatial smoothing effect in the sense of a preferential
attenuation of high frequencies. (In spectral analysis terms, we have only
proved that the total power is reduced.) However, this spatial smoothing does
usually take place when a global kriging neighborhood is used.

Incidentally we have also shown that σ2
SK #VarZ0. In a stationary model

the estimation variance can never exceed the global variance, even if x0 is very
far from all data points (else the mean would become the estimator).

Kriging as an Interpolant

Though derived in a stochastic model, the function Z*(x)¼ z*(x), once the data
Zα¼ zα are fixed, is a deterministic interpolant. To emphasize this fact, in this
section we switch to lowercase notations for z, and to x instead of x0 for the
interpolated point. In order to identify the explicit form of the kriging inter-
polant we solve (3.2) for λ, and letting z be the N-vector of data, we get

z* ¼ z0Σ�1σx ð3:5Þ

In this expression, only σx depends on the location x. Defining b ¼ Σ�1z,
we have

z*ðxÞ ¼ b0σx ¼
X
α

bα σðxα, xÞ ð3:6Þ

This is a linear combination of N covariance functions centered at the sample
points xα. The weights bα do not depend on x, but they depend on the zα
(cf. Examples 1 and 2).

The interpolation formula (3.6) shows how the covariance function model of
Z(x) determines the continuity and regularity properties of the interpolant
z*(x). If the covariance function is parabolic near the origin, z*(x) is differ-
entiable; if it is linear near the origin, z*(x) is continuous but with cusps at the
data points. If the covariance has a discontinuity at zero, there will be isolated

Kriging estimate
Reality
Data point

FIGURE 3.2 Illustration of the smoothing effect of kriging.
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jumps at the data points. These behaviors are illustrated in Figure 3.3. Notice in
Figure 3.3b that kriging interpolation does not necessarily “look nice.” Kriging
is not designed to optimize the look of the interpolation, but instead its accu-
racy (e.g., as opposed to spline interpolation). The kriged map represents our
real knowledge of reality; it shows details in densely sampled areas and is flat
where data are scarce. By contrast, as we will see in Chapter 7, a simulation
imagines how reality could look.

In fact the interpolation formula (3.5) can be derived directly by considering
an interpolant of the form (3.6) and fitting the coefficients bα so that z*(x)
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FIGURE 3.3 The dependence of the simple kriging estimate on the regularity near the origin of

the covariance function: (a) parabolic behavior; (b) linear behavior; (c) discontinuity.
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passes through all the data points. Indeed, the conditions z*(x)¼ zβ at each xβ
entail that the bα satisfyX

α
bα σαβ ¼ zβ in matrix terms Σ b ¼ z ð3:7Þ

which together with (3.6) entail (3.5). Depending on the order in which we
multiply matrices in (3.5) we obtain the following two equivalent systems:

Σ λ ¼ σx

z� ¼ λ0z

Σ b ¼ z

z� ¼ b0σx

((
ð3:8Þ

The second formulation has the advantage that b can be determined once for all
and used to compute z*(x) by a simple scalar product with σx. This does not
work for the kriging variance, however.

3.3.3 Kriging as a Projection

A simple geometric presentation of kriging can be made within the framework
of Hilbert spaces of random variables (Section 1.1.2). In addition to providing
intuitive insight, this approach permits the only rigorous proof for the case of
continuously sampled data.

We consider here the finite-dimensional vector space HNþ1 generated by all
linear combinations of the Nþ 1 zero mean, finite variance, random variables
Z0¼Z(x0) and {Zα : α¼ 1, . . . ,N}, and all their limits in the mean square sense.
A scalar product ,X, Y.¼E(XY) is defined by the noncentered covariance,

and the associated norm is :X: ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffihX ,Xip
. The kriging problem can be

reformulated as follows: Find X in the subspaceHN generated by the data {Zα :

α¼ 1, . . . ,N} minimizing :Z0�X:. From Hilbert space theory we know that

the minimum is achieved by a single element Z*, called the “projection of Z0

onto HN,” which is the foot of the perpendicular dropped from Z0 on HN. It is
characterized by the orthogonality property (1.1),

hZ*� Z0,Xi ¼ 0 ’X 2 HN ð3:9Þ

As {Zα : α¼ 1, . . . ,N} forms a basis of HN, the above is equivalent to the N
conditions

hZ*,Zαi ¼ hZ0,Zαi, α ¼ 1, : : : ,N ð3:10Þ

which by expansion give the system (3.2). This concise form reveals another
characteristic property of the SK estimator: Z* has the same covariance with
each Zα as Z0 itself.

A particular case of (3.10) is the orthogonality of the kriging error and the
kriging estimator

c03 30 January 2012; 17:27:17

158 KRIGING



hZ*� Z0,Z*i ¼ 0 ð3:11Þ

Furthermore, this orthogonality holds between the kriging error at x0 and the
kriging estimator Z*(x) at any other point, provided that Z*(x) is obtained
from the same data as Z*(x0). This property is the basis of the conditioning
algorithm by kriging (Section 7.3.1).

The kriging variance is easily obtained from

σ2
SK ¼ :Z*� Z0:

2 ¼ hZ*� Z0,Z*i � hZ*� Z0,Z0i

and the application of (3.11). We get

σ2
SK ¼ hZ0,Z0i � hZ*,Z0i

which by expansion is seen to coincide with (3.3).
The smoothing relationship (3.4) has a simple geometric interpretation.

From (1.2), or directly from the orthogonal decomposition Z0¼Z*þ
(Z0�Z*), we have

:Z0:
2 ¼ :Z*:2 þ :Z0 � Z*:2

In the case of zero-mean random variables, this is equivalent to

VarZ0 ¼ VarZ*þ σ2
SK

The smoothing relationship is the Pythagorean theorem!
Notice that (3.11) entails Cov(Z0, Z*)¼Var(Z*) so that

ρ2 ¼ Corr2ðZ0,Z*Þ ¼ VarðZ*Þ=VarðZ0Þ

and the simple kriging variance takes the familiar form of a residual variance
about a regression

σ2
SK ¼ ð1� ρ2ÞVarZ0

These results are similar to (1.6) and (1.7) obtained in the case of the condi-
tional expectation estimator—for a good reason explained in the next section.
The case of a nonzero mean can be dealt with as above by adding an extra
weight λ0 and augmenting the space HN by the constant random variable 1.

We now turn to the case of continuous sampling (Matheron, 1969a). The set
S of data points is now infinite, and we look for an estimator of the form

Z* ¼
Z
S

λðdxÞZðxÞ ð3:12Þ
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where λ(dx) is a weighting function on S (mathematically a measure on S). The
kriging system obtained is analogous to (3.2) but with a continuous index x
instead of a discrete α,Z

S

λðdyÞ σðx, yÞ ¼ σðx, x0Þ ’x 2 S ð3:13Þ

The kriging variance is

σ2
SK ¼ :Z*� Z0:

2 ¼ σ00 �
Z
S

λðdxÞ σðx, x0Þ

However, here some mathematical complications arise due to the infinite-
dimensional nature of the Hilbert spaces considered. The subspaceH generated
by the data {Z(x) : x2S} contains all finite linear combinations of elements of
S as well as their limits in the mean square sense, but these limits are not
necessarily measures (they can be “generalized functions” in L. Schwartz’s
sense; for example, the space may contain the derivatives of Z(x)). The pro-
jection Z* of Z onto H still exists and is unique, but it is not necessarily
of the form (3.12). The only valid statement is to say that if λ(dx) satisfies (3.13),
then (3.12) defines the optimal estimator. This difficulty only occurs when
the covariance function is very regular, the classic example being σ(x, y)¼
exp(�(y� x)2/a2). In this case, knowledge of the process over an arbitrarily
short interval allows perfect extrapolation anywhere into the future (Yaglom,
1962, p. 190). But this solution is based on a Taylor’s series and not on the
system (3.13). One could be tempted to ignore these mathematical difficulties
and just solve the equations numerically by discretizing S, but the problem turns
up as numerical instability.

3.3.4 Gaussian Regression Theory

When Z(x) is a Gaussian RF, the simple kriging estimator Z* coincides
with the conditional expectation E(Z07Z1, . . . ,ZN). This follows immediately
from the linearity of the regression function of the multivariate Gaussian dis-
tribution (see Appendix, Section A.8) and the characteristic property (1.3) of
conditional expectation, since we have in particular

E½ðλ1Z1 þ � � � þ λNZN � Z0Þ Zα� ¼ 0, α ¼ 1, : : : ,N

which are exactly the simple kriging equations (3.2).
The conditional distribution of Z0 given Z*¼ z* is also Gaussian and has for

mean z* and variance σ2
SK (which does not depend on z*). Indeed Z0�Z* and

Z* are jointly Gaussian (as linear combinations of Z values) and uncorrelated.
Therefore they are independent, and the conditional expectation of Z0�Z* and
of (Z0�Z*)2 given Z* are equal to their unconditional expectations:
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E½Z0 � Z* jZ*� ¼ EðZ0 � Z*Þ ¼ 0

E½ðZ0 � Z*Þ2 jZ*� ¼ EðZ0 � Z*Þ2 ¼ σ2
SK

It follows that

E½Z0 jZ*� ¼ Z*

Var½Z0 jZ*� ¼ σ2
SK

ð3:14Þ

The property that E(Z07Z*)¼Z*, called “conditional unbiasedness,” is of
great practical significance in the context of resource assessment problems.4 For
example, in selective mining the decision to process a block as ore or send it to
waste is based on an estimate Z* of the average grade of this block, but the
actual ore recovery depends on Z0. Conditional unbiasedness ensures that, on
the average, we get what we expect. In mining, this property is considered more
essential than minimum variance [Krige himself has always insisted on this
point; e.g., Krige (1951, 1997), David (1977), David et al. (1984), Journel and
Huijbregts (1978)]. We will come back to this question in Chapter 6.

The kriging procedure appears especially suited to Gaussian random
functions. It does the best job in using the data since what remains, the kriging
error, is totally unpredictable from these data. In non-Gaussian cases,
kriging still provides the best linear estimator, but linear estimators may not be
efficient if the regression function is highly nonlinear.

Another strong property of the Gaussian model is homoscedasticity of the
conditional kriging error: its variance does not depend on the conditioning data
values. As a consequence, confidence intervals based on the kriging standard
deviation σSK also constitute conditional confidence intervals. This is very nice
but unfortunately specific to the Gaussian model.

3.4 KRIGING WITH AN UNKNOWN MEAN

In most practical situations the mean m(x) is not known. An obvious approach
would be to estimate it and subtract it from the data and thus recover the zero-
mean case. This approach is commonly used for processing time series, where it is
known as “detrending.” The problem is that estimated residuals are not the same
as true residuals, they depend on how the mean is estimated, and the statistical
properties of the whole procedure are difficult to analyze. The kriging approach
presentednowprovides anoptimal solution that involves onlyone estimation step.

The simplest case is when the mean is a constant m(x)¼m and leads to
ordinary kriging (OK). It was developed by Matheron in the early 1960s and is
the form of kriging used most because it works under simple stationarity
assumptions and does not require knowledge of the mean.

4Conditional unbiasedness has been established here for point estimation but remains valid in the

case of blocks.
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The general model, which Matheron (1969a) named the universal kriging
model for reasons explained below, assumes that the mean function can be
represented as a response surface function

mðxÞ ¼
XL
‘¼0

a‘ f
‘ðxÞ ð3:15Þ

where the f ‘ðxÞ are known basis functions and a‘ are fixed but unknown
coefficients. Usually the first basis function (case ‘ ¼ 0) is the constant function
identically equal to 1, which guarantees that the constant-mean case is included
in the model. The other functions are typically monomials of low degree in the
coordinates of x (in practice, the degree does not exceed two). In the case of
monomials, the superscript ‘, which is an index, has the meaning of a power
(in 1D, f ‘ðxÞ ¼ x‘). Note that (3.15) may be regarded as a local approximation
tom(x); that is, the coefficients a‘ may vary in space but sufficiently slowly to be
considered constant within estimation neighborhoods.

In some applications a simplified physical model can define drift basis
functions that are particularly well suited to the problem. An example is the
interpolation of hydraulic head in the presence of producing wells. Pumping
creates a drawdown cone whose shape is described by the logarithm of the
distance to the well, which can be introduced as a basis function. (Brochu and
Marcotte, 2003). Similarly, in the assessment of noise sources for environ-
mental purposes, an analytical approximation of the acoustic field can be
computed and used as a drift function (Baume et al., 2009).

The universal kriging model is the decomposition of the variable Z(x) into
the sum

ZðxÞ ¼ mðxÞ þ YðxÞ
of a smooth deterministic function m(x), describing the systematic aspect of the
phenomenon, and called the drift, and a zero-mean random functionY(x), called
the residual and capturing its erratic fluctuations.5 Note that the drift refers to a
technically precise notion (themean of the RFZ), whereas trend is a generic term
designating a general tendency, a systematic effect (besides, “trend” may imply
an underlying driving force). Naturally the decomposition into drift and residual
pertains to a certain scale of description. Seen from the road, a mountain
appears as a drift while local accidents of the relief appear as residuals, but seen
from an airplane the mountain itself is a fluctuation in the mountain range.

An important development of the universal kriging model is the use of
external variables to model the drift functionm(x). For example, the depth Z(x)
of a geological horizon may be related to the travel time T(x) of a seismic wave
from the surface to that horizon by a model of the form

ZðxÞ ¼ a0 þ a1TðxÞ þ YðxÞ ð3:16Þ
5 The term “drift” is standard for a stochastic process (e.g., a Brownian motion with a drift). The

residual considered here is the true residual, by contrast with the calculated residual which is what

remains after subtraction of a fit; fluctuation would be a more neutral term.
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The first two terms represent the large-scale variations of depth, and the
residual Y(x) accounts for details that cannot be captured at the resolution of
surface seismic. The coefficient a1 can be interpreted as a velocity, and a0 as a
reference plane depth.6 From a statistical point of view, this is a linear
regression with correlated residuals. Alternative names found in the literature
are spatial regression or geo-regression.

The variable T(x) in (3.16) is treated as a deterministic function assumed
known everywhere in the domain of interest—in practice, sampled densely
enough to make interpolation errors negligible. Formally, it plays the same role
as the f ‘ðxÞ function in (3.15), but there are specific aspects to be discussed. One
of them is smoothness. If T(x) is rough, that roughness will be transferred to
Z*(x), especially in sparsely sampled areas, which is probably not desirable. We
should then perhaps smooth T(x) before using it as an external drift function.

3.4.1 Ordinary Kriging

Let us first see how not knowing the mean affects the estimation problem in the
case of a constant mean m(x)¼ a0. Consider again the affine estimator
Z* ¼Pα λα Zα þ λ0. Its m.s.e. can be written as

EðZ*� Z0Þ2 ¼ Var ðZ*� Z0Þ þ λ0 þ
X
α

λα � 1

 !
a0

" #2

Only the bias term on the right-hand side involves λ0, but this time we cannot
minimize itwithout knowledge of a0.An intuitive solutionwouldbe to replace a0 by
an estimate â0 and solve for λ0, but this estimate would necessarily depend on the
data so thatλ0 would no longer be a constant. The only real solution is to setλ0¼ 0
and impose the condition

P
λα � 1 ¼ 0 on the weights λα. The bias E(Z*�Z0) is

then zero whatever the unknown constant a0. The consequence for not knowing
the mean is to restrict ourselves to a linear estimator with weights adding up to 1.

Subject to this condition the m.s.e. is equal to the variance of the error
Z*�Z0 and depends only on covariances

VarðZ*� Z0Þ ¼
X
α

X
β

λα λβ σαβ � 2
X
α

λα σα0 þ σ00

Our problem can now be reformulated as follows: Find N weights λα summing
to 1 and minimizing Var (Z*�Z0). This is classically solved by the method of
Lagrange multipliers. We consider the function

Q ¼ Var ðZ*� Z0Þ þ 2μ
X
α

λα � 1

 !

6 To simplify, the presentation T in this equation is one-way time. In the usual case where T is two-

way time in milliseconds, the time-to-depth function is Z¼ z0þ v T/2000 with a velocity v in meters

per second and a depth in meters.
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where μ is an additional unknown, the Lagrange multiplier, and determine the
unconstrained minimum of Q by equating its partial derivatives to zero:

@Q

@λα
¼ 2

X
β

λβσαβ � 2σα0 þ 2μ ¼ 0, α ¼ 1, : : : ,N,

@Q

@μ
¼ 2

X
α

λα � 1

 !
¼ 0

(That the extremum is indeed a minimum is again guaranteed by the convexity
of Var (Z*�Z0) as a function of the λα.) This leads to the following set of
Nþ 1 linear equations with Nþ 1 unknowns

Ordinary Kriging System

X
β

λβ σαβ þ μ ¼ σα0, α ¼ 1, : : : ,N

X
α

λα ¼ 1

8>>><
>>>: ð3:17Þ

The kriging variance is obtained by premultiplying the first N equations of
(3.17) by λα, summing over α, and then using the last equation. The result is the
OK variance:

σ2
OK ¼ EðZ� � Z0Þ2 ¼ σ00 �

X
α

λα σα0 � μ ð3:18Þ

The linear system (3.17) has a unique solution if and only if the covariance
matrix Σ¼ [σαβ] is strictly positive definite, which is the case if we use a strictly
positive definite covariance function model and if all data points are distinct.

When Only the Variogram Is Known

The condition that the kriging weights add up to 1 entails that the kriging
error (Z*�Z0) is an allowable linear combination and therefore, according to
Section 2.3.2, that its variance can be calculated with the variogram. The
resulting OK equations are obtained by simply substituting �γ for σ in (3.17).

X
β

λβ γαβ � μ ¼ γα0, α ¼ 1, : : : ,N;

X
α

λα ¼ 1

8>>><
>>>: ð3:19Þ

σ2
OK ¼

X
α

λαγα0 � μ
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Examples

3. Consider again the special case of only one sample point, but assume now
an unknown constant mean. The solution of (3.19) is simply λ1¼ 1 and
μ¼�λ10 so that Z*(x0)¼Z1 and σ2

OKðx0Þ ¼ 2γ10. This is very different from
the SK solution found in example 1.

4. In the case of two sample points at x1 and x2 the kriging equations yield

λ1 ¼ 1

2
1þ γ20 � γ10

γ12

� �
, λ2 ¼ 1

2
1þ γ10 � γ20

γ12

� �
, μ ¼ � 1

2
½γ10 þ γ20 � γ12�

so that

Z* x0ð Þ ¼ Z1 þ Z2

2
þ ðγ10 � γ20ÞðZ2 � Z1Þ

2γ12
;

σ2
OK x0ð Þ ¼ γ10 þ γ20 �

ðγ10 � γ20Þ2
2γ12

� γ12
2

These results are particularized in Figure 3.4 for three variogram models of
type γ(h)¼ 7h7α. The Z* curve always goes through Z1 and Z2 and for
large7x07behaves like7x07

α�1.
For α¼ 1 kriging simply interpolates linearly between Z1 and Z2 in the

interval [x1, x2] (with μ¼ 0) and outside assumes the value of the nearest end
point. The optimal estimator of Z(x) at x0. x2 is just the last value
observed. This property derives fundamentally from the Markov character
of processes with independent increments with which the linear variogram is
closely associated. To show this, we can use a standard (invariance principle)
argument of probability theory which goes as follows: If the solution of a
problem only depends on certain characteristics (e.g., the first two moments)
and if we can find the solution in an easy special case (e.g., Gaussian RF), then
it is the general solution. Here we consider the special case of a Brownian
motion X(t) without drift. It has independent and stationary increments,
with a Gaussian distribution, and enjoys the Markov property of conditional
independence: Once we know the value X(t) reached by the process at time t,
its future does not depend on the path it took to get there. To predict
X(tþ τ) on the basis of past values {X(t0): t0 # t}, the only relevant infor-
mation is X(t). The derivation of the predictor is straightforward starting
from the decomposition

Xðtþ τÞ ¼ XðtÞ þ ½Xðtþ τÞ � XðtÞ�

Since the increment X(tþ τ)�X(t) is independent of X(t), and of any earlier
value, we have
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E½Xðtþ τÞ jXðt 0Þ, t 0 # t � ¼ XðtÞ ðτ$ 0Þ

This predictor is clearly unbiased and optimal, and it happens to be linear. This
is the kriging solution associated with a linear variogram in 1D. Stock prices,
for example, have been modeled by a process with independent increments

α � 1/2

0

1

Z*

�1
0 1 2   x 0 1 2   x

α � 1/2σ2
OK

  2

0

  1

(a)

0
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0
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0 1 2   x 0 1 2   x
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OK
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0
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α � 1

α � 1

α � 3/2

α � 3/2

FIGURE 3.4 Ordinary kriging estimate and variance for the case of two data points and a

variogram model γ(h)¼ 7h7α: (a) α¼ 1/2; (b) α¼ 1; (c) α¼ 3/2.
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[e.g., Box and Jenkins (1976, p. 150)] with the disappointing consequence that
the best forecast of stock price at any time in the future is just the current value
of the stock.7

Observe that for α¼ 1.5 the estimator is not confined to the data range
[Z1, Z2]. When x0. x2, for example, λ2. 1 and λ1, 0. Kriging weights can be
negative or greater than 1, even when the mean is constant. This effect is
associated with high variogram regularity (power α. 1).

Kriging variances are zero at x0¼ x1 and x0¼ x2 and increase rapidly
without limits as x0 departs from the [x1, x2] interval. Extrapolation is risky!

Similar results are sketched in Figure 3.5 for a variogram with a finite sill of 1.
In extrapolation the kriging estimator approaches (Z1þZ2)/2, which is an
unbiased estimator of the mean, while the kriging variance tends to 1.62 σ2 and is
thus larger than the global variance of Z(x) itself. This is the penalty for not
knowing the mean.

C

1

0 1 h
0 0

1

Z*

�1
�1 0 1 2 3 4   x

�1 0 1 2 3 4   x
0

1

σ2
OK

2

FIGURE 3.5 Ordinary kriging estimate (top) and variance (bottom) for the case of two data

points and a variogram model with a sill 1. Compare with simple kriging (Figures 3.1a and 3.3a): At

a distance from the data points the estimator is equal to the mean of the data (rather than the mean

of the random function) and the kriging variance now exceeds the variance C(0) of the RF.

7 The most popular model for the evolution of stock prices, which underlies the derivation of the

famous Black�Scholes formula for options pricing, has the logarithm of stock price as a Brownian

motion with a linear drift [e.g., Jarrow and Rudd (1983)]. But that does not make forecasting easier,

as Example 5 shows.
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3.4.2 Universal Kriging and Kriging with an External Drift

We want to estimate Z0¼Z(x0) using a linear estimator Z* ¼Pα λαZα and
seek to minimize the m.s.e., which, as usual, can be decomposed as

EðZ*� Z0Þ2 ¼ VarðZ*� Z0Þ þ ½EðZ*� Z0Þ�2

Now the mean is no longer constant but of the form (3.15), with the under-
standing that this representation also includes external drifts such as in (3.16).
The bias can be expanded as

EðZ*� Z0Þ ¼
X
α

λα

X
‘

a‘ f
‘
α �

X
‘

a‘ f
‘
0

using the notations

f ‘α ¼ f ‘ðxαÞ, f ‘0 ¼ f ‘ðx0Þ
and the convention that summation on ‘ extends over all possible values
‘ ¼ 0, 1, : : : ,L. By interchanging the order of summations on ‘ and α, we get

EðZ*� Z0Þ ¼
X
‘

a‘
X
α

λα f ‘α � f ‘0

 !

In order to minimize E(Z*�Z0)
2, we have to make [E(Z*�Z0)]

2 zero whatever
the unknown coefficients a‘, which implies annihilating their factors in the
above. This leads to the set of Lþ 1 conditionsX

α
λα f

‘
α ¼ f ‘0 , ‘ ¼ 0, 1, : : : ,L ð3:20Þ

that Matheron (1969a) called universality conditions, hence the name universal
kriging (UK). They express that the estimatorZ* is unbiased for all values of a‘.

Subject to these conditions, the m.s.e. is equal to the variance of the error
Z*�Z0:

VarðZ*� Z0Þ ¼
X
α

X
β

λα λβ σαβ � 2
X
α

λα σα0 þ σ00

Using Lagrange multipliers, we minimize

Q ¼ VarðZ*� Z0Þ þ 2
XL
‘¼0

μ‘

X
α

λα f ‘α � f ‘0

" #

where μ‘, ‘ ¼ 0, : : : ,L, are Lþ 1 additional unknowns, the Lagrange multi-
pliers, and we determine the unconstrained minimum of Q by equating the
partial derivatives of Q to zero:
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@Q

@λα
¼ 2

X
β

λβ σαβ � 2σα0 þ 2
X
‘

μ‘ f
‘
α ¼ 0, α ¼ 1, : : : ,N,

@Q

@μ‘

¼ 2
X
α

λα f ‘α � f ‘0

" #
¼ 0, ‘ ¼ 0, 1, : : : ,L

This leads to the following set of NþLþ 1 linear equations with NþLþ 1
unknowns.

Universal Kriging System

X
β

λβ σαβ þ
X
‘

μ‘ f
‘
α ¼ σα0, α ¼ 1, : : : ,N

X
α

λα f ‘α ¼ f ‘0 , ‘ ¼ 0, : : : ,L

8>>><
>>>: ð3:21Þ

In matrix notation the system (3.21) is of the form Aw¼ b with the following
structure:

Σ F

F0 0

� �
|fflfflfflfflffl{zfflfflfflfflffl}

A

λ
μ

� �
|ffl{zffl}
w

¼ σ0

f0

� �
|fflffl{zfflffl}
b

ð3:22Þ

where Σ, λ, and σ0 are defined as for simple kriging and where

F ¼

1 f 11 : f L1
1 f 12 : f L2
: : : :
: : : :
: : : :
1 f 1N : f LN

2
6666664

3
7777775, μ ¼

μ0

μ1

:
:
:
μL

2
6666664

3
7777775, f0 ¼

1
f 10
:
:
:
f L0

2
6666664

3
7777775

The kriging variance is obtained by premultiplying the first N equations of
(3.21) by λα, summing over α, and then using the last (Lþ 1) equations. The
result is the UK variance:

σ2
UK ¼ EðZ� � Z0Þ2 ¼ σ00 �

X
α

λασα0 �
X
‘

μ‘ f
‘
0 ð3:23Þ

or in matrix form

σ2
UK ¼ σ00 � λ0σ0 � μ0f0 ¼ σ00 � w

0
b

These equations were established independently by several authors, including
Zadeh and Ragazzini (1950) as an extension of Wiener’s prediction theory,
Goldberger (1962) in the scope of a generalized linear regression model, and
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Matheron (1969a) within the framework of infinite-dimensional Hilbert spaces
(continuous sampling).

Conditions for Nonsingularity

The linear system (3.22) has a unique solution if and only if its matrix A is
nonsingular. This holds under the following set of sufficient conditions: (1) that
the submatrix Σ is strictly positive definite, (2) that the submatrix F is of
full rank Lþ 1 (equal to the number of columns). The proof follows from
straightforward matrix algebra.

Strict positive definiteness of Σ is ensured by the use of a strictly positive
definite covariance function and the elimination of duplicate data points. The
condition on F expresses that the Lþ 1 basis functions f ‘ðxÞ are linearly
independent on S:X

‘

c‘ f
‘ðxÞ ¼ 0 ’x 2 S . c‘ ¼ 0, ‘ ¼ 0, : : : ,L

This is a standard condition of “sampling design,” encountered, for example, in
the theory of least squares (F0Fmust be nonsingular). For one thing, there must
be at least as many data points as there are basis functions (thus N$Lþ 1).
Moreover, the arrangement of the points must provide enough constraints to
allow the determination of the coefficients a‘ in the linear model (3.15). A
counterexample in 2D is when m(x) is a plane and all sample points are aligned:
Obviously the plane is not constrained by a single line. Likewise, when m(x)
is a quadratic function, the system is singular if all data points lie along two
lines, a circle, an ellipse, a parabola, or a hyperbola. In view of these remarks,
one must be careful, particularly when using moving neighborhoods, not to
create singular systems by a bad selection of the data points.

Solving the Kriging Equations

When selecting a computer subroutine to solve the equations (3.21), it must be
noted that thematrixA of the system is no longer positive definite as for the simple
kriging system (3.2). This rules out direct use of the symmetric Cholesky decom-
position, “which has all the virtues” (Wilkinson, 1965, p. 244). However, the
problem can be reduced to the solution of two subsystems with positive definite
matrices. The following procedure results directly from the matrix form of (3.21):

1: Solve Σ w1 ¼ F and ΣλK ¼ σ0 for w1 and λK

2: Compute Q ¼ F0w1 and R ¼ F
0λK � f0

3: Solve Qμ ¼ R ðQ is positive definiteÞ
4: Compute λ ¼ λK � w1 μ

ð3:24Þ

Note that the first two systems can be solved in parallel and that the third is a
small system of size Lþ 1. Note also that λK is the solution of the simple kriging
equations (3.2). The kriging estimator in the case of an unknown mean is thus
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equal to the simple kriging estimator ZK
� computed as if the mean were zero plus

a term that will be interpreted as a correction for the mean (cf. Section 3.4.7).

When Only the Variogram Is Known

If the constant function 1 is included in the set of basis drift functions f ‘ðxÞ, the
universal kriging system (3.21) can be rewritten in variogram terms by replacing
σ by �γ.

Universal Kriging System

X
β

λβ γαβ �
X
‘

μ‘ f
‘
α ¼ γα0, α ¼ 1, : : : ,N,

X
α

λα f ‘α ¼ f ‘0 , ‘ ¼ 0, : : : ,L

8>>><
>>>: ð3:25Þ

UK Variance

σ2
UK ¼ EðZ� � Z0Þ2 ¼

X
α

λαγα0 �
X
‘

μ‘ f
‘
0

with the usual notations

γαβ ¼ γðxα, xβÞ, γα0 ¼ γðxα, x0Þ, f ‘α ¼ f ‘ðxαÞ, f ‘0 ¼ f ‘ðx0Þ

The matrix A of the kriging system (3.25) is similar to (3.22) with a variogram
matrix Γ in lieu of the covariance matrix Σ. Use of a variogram function such
that �γ is strictly conditionally positive definite (which common models are)
together with F of full rank and no duplicate data point ensure that A is
nonsingular (see Section 4.6.1). The variogram matrix Γ itself is invertible but
certainly not positive definite (0’s on the diagonal), so that Cholesky’s
decomposition as in (3.24) does not apply. When the variogram is bounded, it is
easier to express the kriging system in covariance terms. If not, the variogram
usually admits a locally equivalent stationary covariance at the scale of the
kriging neighborhood (see Section 4.6.2), which also enables use of the kriging
system (3.21).

3.4.3 Comments on the Kriging Equations

The kriging equations (3.21) or (3.25) capture four aspects of the interpolation
problem:

� The geometry of the sample points, through the σαβ or γαβ terms. These
are functions of the interpoint distances and correct for the redundancy in
the information.
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� The position of the estimated point x0 with respect to the data, through
σα0 or γα0.

� The lateral continuity of the phenomenon, through the covariance or
variogram model.

� The presence of a systematic location-dependent effect (trend), through
the drift model.

The influence of the drift model depends on its complexity in relation with the
data. In the vocabulary of regression analysis, N� (Lþ 1) would represent
the number of degrees of freedom left in the residuals. This interpretation does
not apply here because the data are correlated, but it helps to think in these
terms. At one extreme, when N¼Lþ 1, the solution is completely constrained
by the unbiasedness conditions, and UK reduces to a purely deterministic fit.
As L decreases, there are more and more degrees of freedom left, and the
probabilistic nature of UK increases. Note that in all cases the unbiasedness
conditions (3.20) ensure that the drift function m(x) is interpolated exactly; that
is, if Z(x) coincides with the drift, interpolation is perfect.

The kriging estimator always coincides with the data at the sample points,
and the kriging variance there is zero. This is true even in the presence of a
nugget effect, but the estimate then has a discontinuity at each data point. If
one is interested, rather, in the continuous component of the phenomenon, then
slightly different equations should be used (see Section 3.7.1).

From equations (3.21) and (3.25) it is seen that the kriging weights, and
therefore the kriging estimates, do not change if the covariance or variogram
values are multiplied by a constant factor, while the μ‘ and the kriging variance
are multiplied by that same factor.

When the variogram or the covariance is stationary, the kriging weights and
variance are also invariant with respect to the origin of coordinates provided
that the space generated by the basis drift functions is itself invariant under
shifts (see Section 3.4.6). This is the case for a polynomial (or trigonometric)
basis, but not for an external drift function. An external drift function is tied to
a geographic location; that is, it is localized.

Examples

5. To generalize example 4, we now consider, still in 1D, a random function
with a linear variogram γ(h)¼ b7h7and a linear drift m(x)¼ a0þ a1 x. This time
there are N sample points at arbitrary locations x1, x2, � � �, xN. The solu-
tions of the kriging equations (3.25) are the following, with appropriate (x0-
dependent) values of μ0 and μ1:

x0#x1 Z*ðx0Þ ¼Z1� ½ðZN �Z1Þ=ðxN �x1Þ� ðx1�x0Þ,
xi#x0#xiþ1, Z*ðx0Þ ¼ ½ðxiþ1�x0Þ=ðxiþ1�xiÞ�Zi þ ½ðx0�xiÞ=ðxiþ1�xiÞ�Ziþ1,

x0$xN Z*ðx0Þ ¼ZN þ ½ðZN �Z1Þ=ðxN �x1Þ� ðx0�xNÞ
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When x1# x0# xN, the solution is simply linear interpolation in each subin-
terval. The same would hold true for a constant mean (OK). Notice again that
the two adjacent sample points screen off the influence of all other data. In
extrapolation the estimator is the straight line joining the first and the last data
points (Figure 3.6). Considering x0. xN, for example, the solution may be
regarded as the sum of the OK estimator ZN and a correction â1 (x0� xN) for
the linear drift, in which â1¼ (ZN�Z1)/(xN� x1) is the estimator of the slope.
Since (ZN�Z1) and (Z0�ZN) are uncorrelated increments, the OK variance
2 γ0N is simply augmented by the variance of the drift correction, leading to a
parabolic growth

σ2
UK ¼ EðZ*� Z0Þ2 ¼ 2bðx0 � xNÞ½1þ ðx0 � xNÞ=ðxN � x1Þ� ðx0 . xNÞ

Extrapolation is even more hazardous when there is a drift!

3.4.4 Kriging with Estimated Parameters

So far we have assumed that the variogram is known exactly. In reality it is estimated, and
since this estimation is not perfect, two things happen: (1) The computed kriging estimates
are different from the optimal kriging estimates, and (2) the computed kriging variances are
different from the true error variances associated with the suboptimal estimates. How large
can these differences be?

An answer to point 1 is that the quality of the kriging estimates obtained differs from the
true optimum by an amount that is second order in the precision to which the optimal solution
is determined. In other words, even a fairly crudely determined set of kriging weights can give
excellent results when it is applied to data. A similar observation is made by Press et al. (2007,
p. 651) regarding the determination of the optimal Wiener filter (analogous to kriging with
random errors). The important factor is to make sure that the variogram behavior near the
origin is correctly represented. For example, it matters to know that the behavior is linear, but
the slope itself has no influence on the kriging weights. It takes a gross misspecification of the
variogram model to have a dramatic impact on kriging estimates, such as using a continuous
model when significant noise is present in the data, or the opposite. On the contrary, for
point 2, the computed kriging variance is directly affected by the variogram fit.

x0 2 4 6 8 10 x0 2 4 6 8 10
0

2

4

6

Z*

0

  2

σ2
UK

  1

  3

FIGURE 3.6 Universal kriging estimate and variance for the case of a linear variogram and a

linear drift.
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Since the computed kriging variance is obtained by “plugging-in” an estimated variogram
model assumed known without error, the reported kriging variance does not reflect the total
uncertainty. This effect is ignored in standard geostatistical practice, which makes the kriging
variance optimistic—some authors call it “naı̈ve,” some even call it “wrong.” Assessing the
sensitivity of kriging results to misspecification of the statistical model is a difficult problem.
Cressie (1991, pp. 289�299) distinguishesmathematical stability, what happens when a (not too)
different variogramor covariance function is used inplace of the trueone, and statistical stability,
the effect of krigingwith estimated parameters. Stein (1999, pp. 199�223) looks at the latter issue
in detail and illustrates the dangers of using aGaussian variogramwithout nugget effect tomodel
a differentiable random field.

The Bayesian framework provides an elegant solution for taking into account the
uncertainty on variogram or covariance parameters. Calling θ the vector of unknown
covariance parameters and Z0 the objective, the posterior probability density f (Z0 7Z) of Z0

given the vector of observations Z¼ (Z1, . . . ,ZN)
0 is (Cressie, 1991, p. 171; Stein, 1999, p. 223)

f ðZ0 jZÞ ¼
Z

f ðZ0 jZ, θÞ f ðθ jZÞ dθ

where f (θ 7Z) is the posterior density of θ given Z and is related to the prior density f (θ) by

f ðθ jZÞ ¼ f ðZ j θÞ f ðθÞZ
f ðZ j θ0Þ f ðθ0Þ dθ0

Knowing f (Z0 7Z), estimates and confidence intervals can be derived.
While appealing in concept, this approach, known as Bayesian Kriging, may require much

more information than is actually available. We need to postulate the analytical form of the
conditional distribution of Z0 given Z and θ, and of Z given θ, and choose a prior distribution
for θ, all this simply to estimate one or two covariance parameters! Mathematical difficulties
also arise with “improper priors” that do not give valid posterior distributions [Stein (1999)
reports an example with the Matérn model], and extensive numerical integration is required
[e.g., Handcock and Wallis (1994)]. For these reasons, Bayesian Kriging is rarely used in
practice.

A practical way to account for model uncertainty is to compare the kriging results
obtained under several variogram scenarios, generally differing by the range and the relative
nugget effect. (The variogram sill does not impact kriging estimates, and the behavior at the
origin should be set by physical considerations.) The sensitivity of the kriging results to the
choice of the variant shows to what extent the uncertainty on the variogram is a problem and
in some cases guides the design of additional sampling to improve variogram determination,
usually short distance sampling. This scenario approach is similar in concept to sampling
f (Z 7 θ) for different values of θ.

An alternative approach to deal with model uncertainty is fuzzy logic. For example,
Bardossy et al. (1990) use kriging with “fuzzy” variograms, which produces fuzzy estimates
and fuzzy kriging variances. It separates the spatial uncertainty from the imprecision in the
model parameters: The level of the fuzzy kriging variance reflects the probabilistic uncertainty
of the interpolation, assuming exact variogram parameters, whereas the interval width of the
fuzzy kriged values can be used to measure the effect of the imprecision in the variogram
parameters. A review and discussion of the literature on fuzzy logic in geostatistics can be
found in Loquin and Dubois (2010).

Finally, let us mention an approach proposed by Pilz et al. (1997) which consists in
modeling a whole class of plausible variogram functions, rather than a single one assumed to
be correct, and then using a new kriging method (“minimax kriging”) to minimize the
maximum possible kriging variance in that class.
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3.4.5 Confidence Intervals

If the kriging error has a Gaussian distribution, this distribution is completely
specified by its mean (zero) and its variance σ2

K. Assuming a known variogram,
the kriging variance is determined without error (i.e., is nonrandom), and it is
possible to make a probabilistic statement such as

PrðjZ� � Z0j. 1:96 σKÞ ¼ 0:05

which leads to the traditional 95% confidence interval for Z0 (approximating
1.96 by 2)

½Z*� 2σK,Z*þ 2σK�

When the error is not Gaussian, this interval may not have a 95% coverage
probability but is still used as a nominal (or conventional) confidence interval. A
potential problem is that these bounds may not be consistent with the global
constraints placed on the data. A negative lower bound may be found for an
ore grade, or an upper bound greater than 1 for a variable Z defined as a
proportion. A workaround is to perform a preliminary Gaussian transforma-
tion of the data, do the kriging, and back-transform the confidence interval.
Since the transformation is order-preserving, the coverage probability remains
the same.

Schelin and Sjöstedt-de Luna (2010) propose a semiparametric bootstrap
method to deal with non-Gaussian behavior. Spatially correlated samples are
simulated using the spatial bootstrap (Section 2.6.2), ordinary kriging esti-
mates are formed, and the empirical distribution of kriging errors is obtained,
from which percentiles are picked to construct a confidence interval. This
method requires knowledge of the marginal distribution of the decorrelated
variables.

Den Hertog et al. (2006) rely on the bootstrap for a different reason. They
claim that “the kriging variance formula used in the literature is wrong because
it neglects the fact that certain correlation parameters are estimated.” A
parametric bootstrapping of kriging variances is proposed instead, based on a
simulation of kriging errors under a multivariate Gaussian model whose
covariance model is specified but not its parameters. Simulation results,
obtained in the context of DACE (Section 3.4.9) using Gaussian covariances
and mainly artificial test functions, show that the bootstrapped kriging variance
is generally larger than the classic kriging variance. However, the significance of
these results is questionable. When the covariance model is selected arbitrarily,
the computed kriging variance can only be a crude representation of the true
error variance. Furthermore, for very smooth variables the covariance fit is
critical, and using a pure Gaussian model is known to give unreliable results.
Finally, sound geostatistical practice always includes a cross-validation step
whose goal is precisely to calibrate the covariance on empirical kriging errors.
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A Useful Inequality

Although the Gaussian character, or at least the symmetry, of the kriging error
can be improved by transformation, its real distribution remains unknown.
Then the following question is of interest: What is the real significance level
(coverage probability) of this interval for plausible distributions of the error,
not necessarily Gaussian? An inequality established by Vysochanski�� and Pet-
unin (1980) and discussed by Pukelsheim (1994) gives us the answer. The only
assumption, a very mild one, is that the error distribution is continuous and
unimodal. Because of its general interest, we give the complete result here and
particularize it to our problem.

The inequality states that ifX is a random variable with a probability density f
that is nondecreasing up to a mode ν and nonincreasing thereafter and if d2¼
E(X�α)2 is the expected squared deviation from an arbitrary point α, then

PrðjX � αj$ t dÞ# 4

9t2
for all t$

ffiffiffiffiffiffiffiffi
8=3

p
#

4

3t2
� 1

3
for all t#

ffiffiffiffiffiffiffiffi
8=3

p
When X is the kriging error and α¼ 0, then d 2 ¼ σ2

K and

PrðjZ� � Z0j$ 2σKÞ# 1

9

So under the stated assumptions, the nominal confidence interval has a signifi-
cance levelof 89%. Inorder toget a 95%interval,weneed t¼ 3, since4/81¼ 0.049.
The penalty for not knowing the distribution is a loss of 6% confidence for the
62σK interval, or broadening the 95% interval to63σK instead of62σK.

For t. 1.63 the Vysochanski���Petunin inequality coincides with the
Gauss inequality for deviations from the mode (case α ¼ν) dating back to
1821 [see Cramér (1945, p. 183)]. Note that the bound is less than half the
Bienaymé�Tchebycheff bound 1/t 2. The usefulness of the Gauss inequality in
the context of kriging was pointed out by Alfaro (1993).

Local and Regional Modulations

Another aspect of the kriging variance needs to be discussed. We have seen that
the kriging variance does not directly depend on the data values used for the
estimation: It is an unconditional variance. What this means is illustrated in
Figure 3.7 from Ravenscroft [in Armstrong (1994)]. Two blocks are estimated
from four samples, they have the same kriging variance (since the data layout is
the same) and also the same kriging estimate of 10. Yet clearly the right-hand
case carries a higher uncertainty. The kriging variance is an average of
such cases. If the left-hand scenario is the most frequent one, the uncertainty
will occasionally be underestimated; if the right-hand scenario is the rule, the
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heterogeneity will translate into the variogram, and occasionally the uncer-
tainty will be exaggerated. In this sense the kriging variance has the meaning of
a spatial average as introduced in the discussion on the objectivity of proba-
bilistic parameters for unique phenomena (Section 1.2).

Except in the case of a Gaussian RF with known mean, the kriging variance
is not sufficient to model the conditional distribution of Z0 given Z1, . . . ,ZN.
This fact sometimes comes as a disappointment, but one should not ask too
much from a simple linear approach. Modeling conditional distributions is a
very ambitious goal, and in fact unrealistically ambitious without a specified
theoretical model (see Section 6.3.2).

The kriging variance still has its merits as a precision indicator. Referring to
the terminology used by Switzer (1993), the kriging error reflects two scales of
variability. The first is a “local modulation” related to the spatial configuration
of the data in the kriging neighborhood: Errors are smaller close to the data
points, clustered samples carry less information than isolated ones, and so on.
The other component is a “regional modulation” reflecting variability in the
region of interest. When a global variogram is used over the whole domain,
the kriging variance mainly reflects the local modulation. When data permit,
however, the variogram parameters are adjusted regionally (proportional
effects or other techniques), and the kriging variance, without being condi-
tional, becomes an interesting indicator of uncertainty. Interpolated surfaces
are too easily accepted as reality, especially when displayed and manipulated on
powerful 3D modeling workstations. The kriging variance allows an intelligent
use of these surfaces with consideration of possible errors.

3.4.6 Drift Estimation

We have seen that universal kriging provides an estimator of Z(x0) without
having to estimate the mean. In fact, as intuition suggests, the mean is esti-
mated anyhow, but implicitly. To see how this falls out, let us first consider the
problem of drift estimation by itself.

Suppose that the objective is to estimate m(x0) at some point x0. Following
the approach of kriging, a linear estimator is formed,

m*ðx0Þ ¼
X
α

λαZα

11 2

0

37

19

12

8 ? ?

FIGURE 3.7 Which scenario is a safer bet? [From Armstrong (1994), with kind permission from

Kluwer Academic Publishers.]
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with weights selected so that

E½m*ðx0Þ �mðx0Þ� ¼ 0 all a‘

Var½m*ðx0Þ �mðx0Þ� minimum

In matrix notations where Z is the N-vector of Zα data, λ the N-vector of
weights, and μ the Lþ1-vector of Lagrange multipliers, this leads to the fol-
lowing system:

Drift Estimation System

Σλþ F μ ¼ 0,
F 0 λ ¼ f0

�
ð3:26Þ

and thus

m*ðx0Þ ¼ λ
0
Z¼ f 00ðF0Σ�1FÞ�1

F
0
Σ�1Z

with

Drift Estimation Variance

E½m*ðx0Þ �mðx0Þ�2 ¼ �μ0f0 ¼ f 00ðF0Σ�1FÞ�1
f0

Notice that the drift estimation system (3.26) coincides with a UK system (3.21)
in which all covariances σα0 on the right-hand side are zero. The UK estimator
merges into the drift estimator when the estimated point x0 is at a distance from
all data points greater than the range.

An alternative derivation of these results is as follows: In the finite sample
case the UK model can be regarded as a linear regression model with correlated
“residuals,” whose expression in matrix terms is8

Z ¼ Faþ Y

The optimal estimator of the vector a of a‘ coefficients is classically obtained by
generalized least squares (GLS), namely by minimizing

ðZ� FâÞ0Σ�1ðZ� FâÞ

over all choices of â [e.g., Rao (1973)]. The GLS solution is

a* ¼ ðF0
Σ�1FÞ�1

F
0
Σ�1Z ð3:27Þ

8 In standard least squares notations, F would be X, a would be β, and Y would be ε.
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It is unbiased and has minimum variance. The variance�covariance matrix of
this estimator is

Covða*, a*Þ ¼ ðF0Σ�1FÞ�1 ð3:28Þ

Turning to residuals, for the optimal choice a* the covariance of the estimated
residuals is

EðZ� Fa*ÞðZ� Fa*Þ0 ¼ Σ� F ðF0
Σ�1FÞ�1

F
0

or, explicitly

CovðZα �m�
α ,Zβ �m�

β Þ ¼ σαβ � Covðm�
α ,m

�
β Þ

The covariance of the estimated residuals is a biased estimate of the covariance
of the true residuals Y; in particular, the variances are systematically under-
estimated:

VarðZα �m�
αÞ ¼ VarðZαÞ � Varðm�

αÞ

One property of the GLS regression solution (3.27) worth noticing is its
invariance under a change of coordinates in the linear subspace generated by
the columns of F. If we use a new set of basis functions ϕ‘ðxÞ that are linearly
related to the f ‘ðxÞ by

ϕ‘ðxÞ ¼
X
s

B‘
s f

sðxÞ

the drift coefficients estimates will of course be different but the value of m*(x0)
itself will not change. This is clear from (3.27): If F becomes FB, with B

invertible, then a* becomes B�1
a* so that F a* remains invariant.

When Only the Variogram Is Known

A difficulty appears here. Since an intrinsic RF is defined only through its
increments, the drift coefficient a0 (associated with the constant function f 0� 1)
is fundamentally indeterminate, and it is in principle impossible to estimate
m(x0). In fact we are unable to calculate the variance of m*(x0)�m(x0)
because it is not an allowable linear combination of the data: The weights of the
Z data involved in this error add up to one instead of zero as they do for a
kriging error.

We can work around this difficulty by considering that, over a bounded
domain, the function A� γ(h) is a covariance for some large positive constant
A (this is true for all variogram models of practical interest). Rewriting (3.26),
we get the following equations where μ0

0 ¼ μ0 þ A:
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Estimation of the Drift Value m(x0)X
β

λβγαβ � μ0
0 �
X
‘. 0

μ‘ f
‘
α ¼ 0, α ¼ 1, : : : ,N

X
α

λα f
‘
α ¼ f ‘0 , ‘ ¼ 0, : : : ,L

ð3:29Þ

and the estimation variance is

E½m*ðx0Þ �mðx0Þ� ¼ A� μ0
0 �
X
‘. 0

μ‘ f
‘ðx0Þ

The drift estimator does not depend on the constant A, but its variance does. In
other words, we can derive a drift estimate, but its uncertainty is arbitrarily
large! The problem arises from the fact that an intrinsic RF is defined up to a
constant and this constant remains arbitrary. If we filter it by considering a drift
increment, the problem goes away. Solving (3.29) at the points x0 and y0, we get

Var½m*ðy0Þ �m*ðx0Þ� ¼ �
X
‘. 0

½μ‘ðy0Þ � μ‘ðx0Þ�½ f ‘ðy0Þ � f ‘ðx0Þ�

Applying this result to the data points x0¼ xα and y0¼ xβ, we get the following
interesting result:

CovðZβ � Zα,m
�
β �m�

αÞ ¼ Varðm�
β �m�

αÞ ð3:30Þ

which leads to the formula for the variogram of residuals, as indicated in
Section 2.7.2:

γResðxα, xβÞ ¼ γðxβ � xαÞ � 1
2
Varðm*

β �m*
αÞ

Example

6. We consider the same setup as in example 5—that is, linear variogram,
linear drift, and N þ1 data points in 1D at arbitrary locations x1, x2, . . . ,
xN. What is the optimal estimator of the drift?

It is a well-known property of the Brownian motion that it is the line joining
the end points of the data interval. We can verify that indeed (3.29) admits the
following solution:

λ1 ¼ xN � x

xN � x1
, λN ¼ x� x1

xN � x1
, λi ¼ 0, all i 6¼ 1 or N

We can calculate the variance of the slope estimator with the variogram
γ(h)¼ b7h7,
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Var
ZN � Z1

xN � x1

� �
¼ 2b

xN � x1

and therefore calculate the variance of any drift increment, but not the variance
of the drift estimator at any particular point.

Remarks for an External Drift

The invariance of kriging solutions under a change of coordinates was brought
up on several occasions as a desirable property, which does not hold when
using drift functions defined by a physical model or by external variables. What
difference does it make in practice? To illustrate the point, consider a dome-
shaped geological structure (an anticline). Using a quadratic surface model,
least squares will find a dome somewhere, where it best matches the depth data.
On the other hand, if the drift function is defined from external information,
typically a seismic survey, the position of the dome will be pretty much fixed
and least squares will find the best possible dome at that place. Localized
information is superior to floating information, but only if it is reliable.
Nothing bars us from using a seismic map from South America as an external
drift for a depth map in Asia!

Because KED implicitly fits the drift by generalized least squares, we may
wish to assess the goodness of fit by checking the coefficient of determination
R2. If we compute it with the standard formula

R2 ¼ 1� residual sum of squares=total sum of squares

we obtain a lower R2 than with ordinary least squares because these are
designed to minimize the residual sum of squares. We may then incorrectly
conclude that there is a loss of performance. For one thing, the interpretation
of the above R2 as the fraction of total variance explained only works for
ordinary least squares and would need to be adapted to generalized least
squares (Buse, 1973). More importantly, the quality of KED should not be
gauged by the goodness-of-fit of the drift at the data points but by the accuracy
of estimates at new points, which is measured by the kriging variance.

3.4.7 Additivity Relationship

Coming back to the implicit nature of drift estimation in universal kriging,
consider the UK and the SK systems, in matrix form, the latter being distin-
guished by the subscript K:

Σλþ F μ ¼ σ0 Σ λK ¼ σ0

F
0λ ¼ f0

�

Subtracting the second system from the first and letting λD¼λ�λK yields
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ΣλD þ F μ ¼ 0,
F0 λD ¼ f0 � F0 λK

�
ð3:31Þ

The UK estimator can be decomposed into the sum

Z* ¼ Z�
K þ Z�

D ð3:32Þ

of the SK estimator Z�
K calculated as if the mean were known and subtracted

from the data (λK¼Σ�1σ0 only involves covariances), and a corrective term
Z�

D . Solving (3.31) and taking into account (3.27), it is found that Z�
D is of the

form

Z�D ¼
X
‘

a�‘ f ‘0 �
X
α

λKα f ‘α

 !
¼ m�

0 �
X
α

λKα m
�
α ð3:33Þ

It is a drift correction involving the optimal drift estimates at point x0 and at the
xα. Recombining this result with (3.32) gives

Z�ðx0Þ ¼ m�
0 þ

X
α

λKαðZα �m�
αÞ ð3:34Þ

Formula (3.34) is exactly the same as (3.1) for simple kriging except that the
mean m is replaced by its optimal estimator m*. In other words, universal
kriging is equivalent to optimum drift estimation followed by simple kriging
of the residuals from this drift estimate, as if the mean were estimated per-
fectly. This property only holds when the mean is estimated in a statistically
consistent manner—that is, by generalized least squares and not by ordinary
least squares.

The additivity relationship (3.32) extends to variances as well. The UK
kriging error is

Z� � Z0 ¼ ðZ�
K � Z0Þ þ Z�

D

and by the characteristic orthogonality property of SK the error ðZ�
K � Z0Þ has

zero covariance with all Zα and thus with Z�
D. Hence

σ2
UK ¼ σ2

SK þ VarðZ�
DÞ ð3:35Þ

When only the variogram exists, the SK estimator is not defined. Additivity
relations similar to (3.32) and (3.35) can be written with the OK estimator,
except that the constant drift term a0 cancels out from Z�

D, since OK weights
add up to one (see example 5). In all cases the drift correction variance is the
price to pay for imposing unbiasedness constraints on the UK estimator.
Though implicit, drift estimation is not free.
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Special Case of a Constant Mean

In the case of a constant mean, these results provide insight into the workings
of OK. From (3.33) the drift correction is

Z�
D ¼ 1�

X
α

λKα

 !
m�

and the OK estimator is

Z�
OK ¼ Z�

K þ λm m� with λm ¼ 1�
X
α

λKα ð3:36Þ

It differs from SK by the addition of an extra term carrying the influence of the
overall mean. λm is often called the weight on the mean. The OK variance is

σ2
OK ¼ σ2

SK þ λ2
m Varðm�Þ ð3:37Þ

When the mean is known, or has a very small variance, OK reduces to SK. The
optimal estimatorm* of the mean and its variance are given by (3.27) and (3.28):

m� ¼ ð10Σ�11Þ�1
10Σ�1Z, Varðm�Þ ¼ ð10Σ�11Þ�1 ð3:38Þ

Finally, solving (3.31) gives the Lagrange parameter μ

μ ¼ �λmVarðm�Þ ð3:39Þ

Since λm is generally positive, we conclude that μ is generally negative, a remark
that will be useful for simulations.

Invariance under Linear Transformation of the f ‘

A direct consequence of the additivity relationship (3.32) is the invariance of
the UK estimator and variance under a linear transformation of the basis drift
functions. By definition, Z�

K does not involve the drift at all, and Z�
D is invariant

under a linear transformation of the f ‘ because the GLS estimator of the drift is
itself invariant, as seen above. Now monomials of degree #k satisfy a rela-
tionship of the form (binomial formula)

f ‘ðxþ hÞ ¼
X
s

B‘
sðhÞ f sðxÞ

showing that a shift of the points is equivalent to a linear transformation of the
basis drift functions. Therefore, when the drift is a polynomial function of
degree k, with all monomials included, the UK solution remains invariant
under shifts. Notice, however, that the μ‘ do change.
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The shift invariance property is attached to the limited class of functions that
are closed under translations, namely the exponential polynomials, as will be
seen in the context of IRF�k theory (Section 4.3.4). These are good functions
to use unless there is a reason to tie the drift to a specific geographic location,
which is exactly what an external drift does.

3.4.8 Wonderful Properties Revisited

In the zero mean case, three wonderful properties were established: orthogo-
nality of the error and the data, the smoothing relationship, and conditional
unbiasedness in the Gaussian case. None of these properties holds anymore
when the mean is unknown, but similar results can be stated.

Orthogonality Properties

When unbiasedness constraints are introduced, the kriging estimator is selected
within a restricted class of linear combinations, and Z*�Z0 is no longer
orthogonal to all Zα. Indeed from equation (3.21) we have

,Z� � Z0, Zα . ¼ �
X
‘

μ‘ f
‘
α ð3:40Þ

This is “the curse of the μ0s.” The kriging error is no longer orthogonal to
all linear combinations of Zα but only to a restricted class of linear
combinations, namely those which annihilate the basis drift functions f ‘α.
Specifically,

,Z*� Z0,
X
α

ναZα . ¼ 0 ð3:41Þ

for any set of weights να satisfying,X
α

να f ‘α ¼ 0, ‘ ¼ 0, 1, : : : ,L ð3:42Þ

Formula (3.41) follows from a straightforward reformulation of the kriging
equations (3.21) or (3.25). Like for simple kriging, these equations have a
geometric interpretation in terms of projection in Hilbert spaces (Matheron,
1969a; Journel and Huijbregts, 1978).

The constraints (3.42) generalize the permissibility condition
P

ανα ¼ 0
encountered with the variogram and play a central role in the theory of intrinsic
random functions of order k. Suffice it to say here that any linear unbiased
estimator of a residual Z(y)�m(y) is of the form (3.42) so that, for any linear
unbiased estimator m̂ðxÞ of the mean, one has

,Z� � Z0,Zα � m̂α . ¼ 0, α ¼ 1, : : : ,N
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Smoothing Relationship

When the mean is unknown there is no guarantee that Var Z* # Var Z because Var Z* also
carries the imprecision about the estimation of the mean. But a similar inequality holds
between estimated residuals. By virtue of the above, the decomposition

Z0 � m̂0 ¼ ðZ0 � Z*Þ þ ðZ*� m̂0Þ
is an orthogonal one for any linear unbiased estimator m̂0 of the mean so that

VarðZ� � m̂0Þ ¼ VarðZ0 � m̂0Þ � σ2
UK

which generalizes (3.4). (Incidentally we find that σ2
UK #VarðZ0 � m̂0Þ, which simply means

that Z* is a better estimator of Z0 than m̂0.)

Toward Conditional Unbiasedness

Unfortunately, it is no longer true that E(Z0 7Z*)¼Z* when the mean is
estimated from the data, even in the Gaussian case. However, the following
relation shows that any minimization of mean square error tends also to
minimize the conditional bias:

EðZ0 � Z*Þ2 ¼ E ½VarðZ0 jZ*Þ� þ E ½EðZ0 jZ*Þ � Z*�2 ð3:43Þ

This formula is completely general (no Gaussian assumption) and follows
directly from (1.5) and the fact that E(Z0�Z*)¼ 0. Thus kriging, by design,
tends to reduce conditional bias.

Due to mining applications, conditional unbiasedness has received attention
in the case of OK. The criterion used most is the slope β of the linear regression
of Z0 on Z*, which from (3.39) and (3.40) is found to be

β ¼ CovðZ0,Z
�Þ

VarðZ�Þ ¼ 1� λm
Varðm�Þ
VarðZ�Þ

One solution to achieve β 	 1 is to select a kriging neighborhood that is large
enough for a good (implicit) estimation of the mean, thus making Var(m*)
small. Now Var(m*) # Var(Z*) since m* is by design the minimum-variance
linear combination of the data subject to the constraint that weights add up
to 1. Hence we have the inequalities

1� λm #β# 1 if λm $ 0,

1#β# 1� λm if λm # 0

When the weight on the mean λm is small, the slope β is close to 1, even if the
neighborhood is not large. Thus λm is a criterion for selecting the size of
the kriging neighborhood (Rivoirard, 1987).
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3.4.9 Dual Kriging and Radial Basis Functions

We now revisit the interpolation properties of kriging, this time with UK
instead of SK. Using the matrix notations of (3.22) and switching to lowercase
for z which is now considered deterministic, the UK estimator z�(x) at point x
can be written as

z�ðxÞ ¼ λ0z ¼ ½z0 0� λ
μ

� �
¼ ½z0 0� Σ F

F0 0

� ��1 σx

fx

� �
¼ ½ b0 c0 � σx

fx

� �
ð3:44Þ

This leads to two equivalent formulations of kriging equations and estimates,
depending on whether we start by multiplying the first two or last two matrices
in the above expression.

Σ F

F0 0

" #
λ

μ

" #
¼ σx

fx

" #
Σ F

F
0

0

" #
b

c

" #
¼ z

0

" #

z� ¼ λ0z z� ¼ b0σxþ c0fx

ð3:45Þ

The second system in (3.45), called the dual kriging system, is obtained by
multiplying the first two matrices in (3.44). It can also be written in terms of the
variogram, provided that f 0(x) � 1. The term “dual” originates from an
alternative derivation of these equations by minimization in a functional space,
similar to splines (Matheron, 1981a,c).

From (3.44) and (3.45) z*(x) is of the form

z�ðxÞ ¼
X
α

bα σðxα, xÞ þ
X
‘

c‘ f
‘ðxÞ ð3:46Þ

with X
α

bα f ‘ðxαÞ ¼ 0; ‘ ¼ 0; 1; : : : ;L ð3:47Þ

The coefficients bα and c‘ are linear functions of the data, and in the case of a
global neighborhood they do not change with the location x. It suffices to
compute them once for all, and the estimates z*(x) are obtained using (3.46).
This does not work, however, for the kriging variance.

Formulas (3.46) and (3.47) have taken a new importance due to their con-
nection with radial basis functions [e.g., Buhmann (2003)]. A radial basis
function is an isotropic function whose value only depends on the distance,
usually the Euclidean distance, from some fixed origin xc, called a center:

ϕðx, xcÞ ¼ ϕðjx� xcjÞ

The radial basis function approach takes the data points as centers and builds
interpolants of the form
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ΦðxÞ ¼
X
α

bα ϕðjx� xαjÞ ð3:48Þ

Constraining it to fit the N data points, gives N linear equations for the N
coefficients bα: X

α
bα ϕðjxβ � xαjÞ ¼ zβ, all β

These are exactly the equations (3.8) for the SK estimator, provided that
ϕ(r)¼σ(r) is a stationary and isotropic covariance function (r¼7x7). The
attractive feature of a covariance is that it guarantees that the system can be
solved.

Unfortunately, in applications the function ϕ is not necessarily a covariance.
The following is a selection of commonly used radial basis functions in Rn:

� Gaussian ϕðrÞ ¼ expð�r2=r20Þ
� Multiquadric ϕðrÞ ¼ ðr2 þ r20Þ

1
2

� Inverse multiquadric ϕðrÞ ¼ ðr2 þ r20Þ�
1
2

� Thin plate spline in 2D ϕðrÞ ¼ r2 logðrÞ

The Gaussian is a covariance and so is the inverse multiquadric, as a special
case of the Cauchy model (2.55). The multiquadric itself is not a covariance but
a variogram (up to an additive constant). As for the thin plate spline, it is
neither a covariance nor a variogram but a generalized covariance, as we will see
in Section 4.6.4.

To guarantee that a unique solution exists, the interpolant (3.48) is aug-
mented by a low-degree polynomial and becomes

ΦðxÞ ¼
X
α

bα ϕðjx� xαjÞ þ
X
‘

c‘ f
‘ðxÞ ð3:49Þ

with coefficients subject to the constraints (3.47).
Replacing ϕ by σ in (3.49), writing that Φ(xα)¼ zα at all data points and

appending the side conditions (3.47) leads exactly to the dual kriging system
(3.45). Radial basis functions and dual kriging solutions coincide.

The side conditions (3.47) that appear somewhat artificially added to (3.49)
turn up naturally if we start from standard kriging. When a variogram is used
rather than a covariance, a condition of unit sum must be placed on the
weights, which translates to the condition that the bα sum to zero. Likewise, a
thin plate spline model in 2D requires three polynomial side conditions. Radial
basis functions are conditionally positive (or negative) definite functions of
order k, and these come with side conditions that ensure the nonsingularity
of the interpolation matrix. Micchelli (1986) is a major reference on the subject
(see also Section 4.5.4).
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Design and Analysis of Computer Experiments

Sacks et al. (1989) introduced the use of kriging for the design and analysis of
computer experiments (DACE). This pioneering work opened up a completely
new territory for kriging methods, solving engineering problems in a multi-
dimensional space where the coordinates are no longer geographic but represent
scalar design variables. The idea is to approximate an objective function,
depending on design parameters, by an interpolating function (calledmetamodel)
based on data from a limited number of experiments (costly computer runs) and
then use the metamodel as a surrogate of the objective function to find an opti-
mum. The advantage of kriging over traditional polynomial response surfaces is
an exact fit at known design points and the possibility to tune the response surface
through the covariance model smoothness, range, and nugget effect parameters.
Given the fundamental anisotropy of the design space, the covariance model is
often taken to be the product of one-dimensional covariances, typically expo-
nentials or Gaussians. An alternative could be to split the parameters into two
groups of sizes p and q and use nonseparable covariance models of the Gneiting
class to define a covariance model in Rp�Rq [see Gneiting (2002) and Section
5.8.2]. In high-dimensional space with relatively few data points, the choice of the
covariance has a significant influence on the relevance of the results.

These developments, combined with experimental design techniques to
minimize the number of experiments, have generated a huge number of appli-
cations in such diverse areas as the design of aircrafts [e.g., Chung and Alonso
(2002)], of automobiles, of computer chips, and so on. In the literature we can
refer the reader to the works of Kleijnen, notably van Beers and Kleijnen (2004),
a monograph (Kleijnen, 2008), and a review paper (Kleijnen, 2009).

3.4.10 A Bayesian Bridge Between Simple and Universal Kriging

This title of a paper by Omre and Halvorsen (1989) conveys the idea very
clearly. Simple and universal kriging can be viewed as extreme cases in which
we either know the drift perfectly or else know nothing about it. A Bayesian
model introduced by Omre (1987) assumes that some prior knowledge is
available about the drift and establishes a continuum between these two
approaches. The model is specified at the order 2 and can be translated into
prior and posterior distributions, assuming that all distributions are jointly
Gaussian.

As a background it is interesting to first reconsider a variant of the UK
model, the random drift model, proposed early on by Matheron (1970).
Specifically,

ZðxÞ ¼ YðxÞ þMðxÞ

where E Y(x)¼ 0 and M(x) is now a random function, not necessarily inde-
pendent of Y(x) but much smoother than Y(x). So the dichotomy is physically
meaningful, and M(x) may be expanded in the usual way as
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MðxÞ ¼
X
‘

A‘ f
‘ðxÞ ð3:50Þ

except that now the coefficients are random. Define the first two moments

EðA‘Þ ¼ a‘ and CovðA‘,AsÞ ¼ K‘s

and the noncentered covariances

E½YðxÞYðyÞ� ¼ σðx, yÞ
E½YðxÞMðyÞ� ¼ Rðx, yÞ
E½MðxÞMðyÞ� ¼ Kðx, yÞ þ

X
‘

X
s

a‘ as f
‘ðxÞ f sðyÞ

8>>><
>>>:

The (nonstationary) covariance of M(x) is simply

Kðx, yÞ ¼
X
‘

X
s

K‘s f
‘ðxÞ f sðyÞ ð3:51Þ

and the cross covariance between Y(x) and M(y) is of the form

Rðx, yÞ ¼
X
‘

E½YðxÞA‘� f ‘ðyÞ ¼
X
‘

R‘ðxÞ f ‘ðyÞ

If Y(x) is a stationary RF then R‘ðxÞ ¼ R‘ is a constant, and assuming as usual
that f 0 � 1, we have the expansion

Rðx, yÞ ¼
X
‘

X
s

R‘s f
‘ðxÞ f sðyÞ ð3:52Þ

where R‘s ¼ 0 for s. 0. If the mean is not assumed known, we consider an
estimator of Z0 of the form

Z� ¼
X
α

λαZα ¼
X
α

λαYα þ
X
α

λαMα

whose mean square error, using the foregoing relationships, can be written as

EðZ� � Z0Þ2 ¼ E
X
α

λαYα � Y0

 !2

þ
X
‘

X
s

K‘s þ a‘ as þ 2R‘sð Þ

�
X
α

λα f ‘α � f ‘0

 ! X
β

λβ f sβ � f s0

 !

Here Matheron argues that it is not possible to estimate the terms K‘s þ a‘as
from the data Zα because the noncentered covariance ofM(x) is not stationary,

c03 30 January 2012; 17:27:22

3.4 KRIGING WITH AN UNKNOWN MEAN 189



and even if it were, its inference would be very poor because of a too-high
regularity, as was shown in Section 2.9.2. Therefore the only solution is to
cancel the other terms and setX

α
λα f ‘α � f ‘0 ¼ 0 ‘ ¼ 0; 1; : : : ;L

Minimizing the mean square error under these conditions leads to the usual UK
system.

Omre and Halvorsen (1989) start from a similar model except that they
assume Y andM to be independent RFs (hence R(x, y) � 0) and that the means
a‘ and covariances K‘s of the random drift coefficients are known from prior
knowledge. Thus

E½ZðxÞjA‘ : ‘ ¼ 0, : : : ,L� ¼ MðxÞ ¼
X
‘

A‘ f
‘ðxÞ

Cov½ZðxÞ,ZðyÞjA‘ : ‘ ¼ 0, : : : ,L� ¼ σðx, yÞ
E½ZðxÞ� ¼ E½MðxÞ� ¼ mðxÞ ¼

X
‘

a‘ f
‘ðxÞ

Cov½ZðxÞ,ZðyÞ� ¼ σðx, yÞ þ
X
‘

X
s

K‘s f
‘ðxÞ f sðyÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3:53Þ

Consider the following unbiased estimator of Z0 where prior means are
involved:

Z�
B ¼

X
α

λαðZα �mαÞ þm0

It is optimized by unrestricted minimization of the variance

EðZ�B � Z0Þ2 ¼ E
X
α

λαYα � Y0

 !2

þ
X
‘

X
s

K‘s

X
α

λα f
‘
α � f ‘0

 ! X
β

λβ f
s
β � f s0

 !

This is the bridge between simple and universal kriging. At one end we have
exact prior knowledge of the drift, so K‘s ¼ 0; at the other end we have com-
plete prior ignorance, so K‘s-N and the weights must satisfy the unbiasedness
constraints of UK to keep the expression finite. In between, the “Bayesian
kriging” equations are just those of SK but with the nonstationary covariance
Cov [Z(x), Z(y)] defined by (3.53). As with standard SK, the solution is an exact
interpolant, and no minimum number of points is required; in particular, we
may have N,Lþ 1. Evidently the associated error variance is comprised
between the SK variance and the UK variance.
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Special Case of a Constant Random Mean

In the case of a constant random mean the model (3.53) simplifies to

E ZðxÞjM½ � ¼ M, Cov½ZðxÞ,ZðyÞjM� ¼ σðx, yÞ
E½ZðxÞ� ¼ EðMÞ ¼ m, Cov½ZðxÞ,ZðyÞ� ¼ σðx, yÞ þ VarðMÞ

where m and Var(M) are assumed known from prior knowledge. The Bayesian
kriging equations are those of the SK system (3.3) written with the uncondi-
tional covariance of Z:X

β

λβ½σαβ þ VarðMÞ� ¼ σα0 þ VarðMÞ, α ¼ 1, 2, : : : ,N ð3:54Þ

The optimal estimator M* of the mean is of the form

M� ¼ mþ
X
α

λMαðZα �mÞ

with weights satisfying the equationsX
β

λMβ½σαβ þ VarðMÞ� ¼ VarðMÞ, α ¼ 1, 2, : : : ,N ð3:55Þ

These equations can be established directly or deduced from (3.54) by letting
σα0¼ 0. The variance of the optimal estimator of the mean is

VarðM�Þ ¼ 1�
X
α

λMα

 !
VarðMÞ ð3:56Þ

Since we introduce prior information, we expect this variance to be less than the
variance Var(m*) of the OK estimator of the mean computed by (3.38) with
the covariance Σ¼ [σαβ]. Indeed by solving (3.55) it can be shown that

VarðM�Þ ¼
X
α

λMα

 !
Varðm�Þ ð3:57Þ

which proves the inequality since by (3.56) the sum of weights is less than 1.
Combining (3.56), and (3.57), we can see that the sum of weights is between
0 and 1, the value 0 being reached when Var(M)¼ 0 and the value 1 when
Var(M)-N. Concerning kriging variances, similar to (3.36) it can be estab-
lished that

Z�
B ¼ M� þ

X
α

λKαðZα �M�Þ ¼ Z�
K þ λmM

�, λm ¼ 1�
X
α

λKα
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where Z*
K is the SK estimator and λKα is its weights, hence the additivity

relationship

σB
2 ¼ EðZB

� � Z0Þ2 ¼ σ2
SK þ λ2

mVarðM�Þ

Combining the above with (3.37) and (3.57), we get

σ2
OK � σB

2 ¼ λ2
m½Varðm�Þ � VarðM�Þ� ¼ λ2

m 1�
X
α

λMα

 !
Varðm�Þ

The Bayesian kriging variance is less than the OK variance, as expected. When
Var(M)-N, Bayesian kriging converges to OK; and when Var(M)¼ 0, it
coincides with SK.

Prior Knowledge

The central question now is this: How can one make a “qualified guess” of the
drift—that is, come upwith an estimate and its associated uncertainty before any
Z data become available? In the applications presented, this guess is always
obtained from a different but related data set. Abrahamsen (1993), for example,
builds a comprehensive multilayer reservoir model in which the Z variables are
depths of geological surfaces measured in wellbores and the random drift is a
function of seismic reflection time. The prior means and covariances of the
coefficients of this function are derived from the analysis of velocity information
at the wellbores. This technique uses seismic times and squared times as basis
drift functions and is akin to the external drift method, except that some
knowledge is assumed about the drift coefficients.

Pilz (1994) extends the theory to the case where only partial prior knowledge of
the first twomoments of the drift coefficients is available. This knowledge in effect
restricts the possible prior distributions of the drift coefficients to a subfamily, and
a “Bayes robust” estimator is derived by minimizing the maximum mean square
estimation error over all possible prior distributions in this subfamily. For
example, in the case of ordinary kriging we may know that the expected value of
M, namely the truemean, lies in a given interval [a, b] and that the variance ofM is
less than some valueK0. Then, using the notations of the additivity formula (3.34)
for the UK estimator, the Bayes robust estimator derived by Pilz is

ẐB ¼ Z�
K þ 1�

X
α

λKα

 !
m̂B

where m̂B is related to the optimum estimator of the mean m* given by (3.27),
the interval midpoint m0¼ (aþ b)/2, the uncertainty variance K0, and the
maximum interval variance K1¼ (b� a)2/4 by

m̂B ¼ ðm� þ θm0Þ=ð1þ θÞ with θ ¼ Var ðm�Þ=ðK0 þ K1Þ
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(in the abovem* andVarm*¼ (10Σ�1
1)�1 are conditional onM=m). In general,

m̂B and ẐB are biased estimators, but ẐB achieves a smaller mean square error

σ2
B than the OK estimator. Specifically,9

σ2
OK � σ2

B ¼ 1�
X
α

λKα

 !2

ðVar ðm�ÞÞ2=ðVar ðm�Þ þ K0 þ K1Þ

The Bayesian approach can also be used to study the effect of uncertainty on
the covariance parameters [e.g., Handcock (1994)], but the theory becomes
more complex because of nonlinearities. The noticeable difference is that
incorporating the uncertainty on the covariance tends to increase the uncer-
tainty on the final results, whereas modeling the uncertainty on the drift
through a Bayesian analysis tends to reduce it.

Under the initial impulse of H. Omre, the Bayesian approach in geostatistics
has seen a wave of applications to petroleum problems where data are initially
scarce and replaced by explicit prior guesses (see Section 7.8.4).

3.4.11 Lognormal Kriging and Generalization

The linear estimators considered so far involved no assumption on the finite-
dimensional distribution of the data other than on first and second moments.
We saw that this worked very well in the case of a Gaussian RF with a
known mean because then the simple kriging estimator coincides with the
regression function of Z(x) on the data. If, on the other hand, we know that
the regression function is highly nonlinear, it would not be very smart to use
linear estimators. The classic and important example is the lognormal case,
namely when the logarithm of the random function Z(x)

YðxÞ ¼ log ZðxÞ

is a Gaussian RF with a known mean or an unknown constant mean. Assume
first that the mean is known. The conditional distribution of Y0 given Y1, . . . ,

YN is a Gaussian with mean the simple kriging estimator Y�
SK and variance σ2

SK.

The simple lognormal kriging estimator (SLK) of Z0 ¼ expðY0Þ is the condi-
tional expectation (see Appendix, Section A.9)

Z�
SLK ¼ E eY0 jY1, : : : ,YN

	 
 ¼ exp Y�
SK þ 1

2σ
2
SK

	 
 ð3:58Þ

The conditional estimation variance is

Var Z�SLK �Z0 jZ1, : : : ,ZN

	 
 ¼ Var eY0 jY1, : : : ,YN

	 
 ¼ ðZ�
SLKÞ2 expðσ2

SKÞ � 1
� �

9A misprint in Pilz’s article has been corrected in this formula.
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This conditional variance depends on the data values, but the variance scaled
by ðZ�SLKÞ2 does not.

SLK enjoys the same conditional unbiasedness property as simple linear
kriging:

EðZ0 jZ�
SLKÞ ¼ Z�

SLK

This property results from the fact that Y�
SK and Y0 � Y�

SK are uncorrelated,
and therefore independent, thanks to the Gaussian assumption

EðZ0 jZ�
SLKÞ ¼ E expðY�

SK þ Y0 � Y�
SK jY�

SKÞ
	 


¼ expðY�
SKÞ E


expðY0 � Y�

SKÞ jY�
SK

�
¼ expðY�

SKÞ exp 1
2
σ2
SK

	 

In case of an unknown mean, the problem becomes more complex. It is possible
to construct optimal linear estimators in the logarithmic scale and also devise a
reverse transformation that ensures unbiasedness, but the optimality properties
of such procedures are unclear. Matheron (1974a) discussed this question in
detail in an important report entitled “The return of the sea serpent,” but no
general solution emerges. Considerable simplification occurs if we accept to
work with quantiles rather than moments because they simply follow the
transformation. Since the distribution of the error Y�

OK �Y0 is symmetric
(Gaussian), its median coincides with its mean and is thus zero; therefore
exp(Y�

OK) is a median unbiased estimator of Z0:

PrfexpðY�
OKÞ$Z0g ¼ PrfexpðY�

OKÞ#Z0g ¼ 0:5

Likewise, any confidence interval on Y can be back-transformed. For example,

Pr expðY�
OK � 2 σOKÞ#Z0 # expðY�

OK þ 2 σOKÞ
� �¼ 0:95

However, neither expðY�
OkÞ nor expðY�

OK þ 1
2
σ2
OkÞ is an unbiased estimator of

Z0. Using a constant multiplicative, bias correction, we obtain the ordinary
lognormal kriging estimator

Z�OLK ¼ exp Y� þ 1
2
Var Y0ð Þ � Var Y�

OK

	 
	 
� ð3:59Þ

The correction term Var Y0�Var Y*
OK is computed from the OK system (3.17)

or (3.19) as

VarðY0Þ � Var Y�
OK

	 
 ¼ σ00 �
X
α

X
β

λαλβ σαβ ¼ σ2
OK þ 2μ

¼
X
α

X
β

λαλβγαβ
ð3:60Þ

No general statement can be made on the sign of this correction other than
noting that it is positive if all OK weights are positive.
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The unbiased estimator (3.59) must be used with caution because it is
nonrobust against departures from the lognormal model. Also, contrary to
linear kriging, the variogram sill or slope directly affects the estimator itself,
making the correction formula very sensitive to the variogram model. David
(1988, p. 119) reports “horror stories” on this subject.10 To avoid gross errors,
various schemes are used to “calibrate” the estimates on the untransformed
data. For example, Journel and Huijbregts (1978, p. 572) propose, in the sta-
tionary case, to scale the kriging estimates by a constant factor such that the
arithmetic mean of these estimates equals the estimate of the mean obtained
directly from the Z data. But the new estimates no longer honor the data points
(the technique was suggested for block estimation). To preserve the interpo-
lation property, a modified estimator can be defined as

Z�
OLK ¼ exp Y�

OK þ B 1
2
Var Y0ð Þ � Var Y�

OK

	 
	 
	 

with a calibration factor B to be determined by cross-validation (Delfiner,
1977). This procedure amounts to fine tuning the sill of the variogram of Y.

A common approach is to perform two studies in parallel, one on Z and one
on log Z, and compare the results in light of the properties of the lognormal
model (see end of Section 2.5.3).

The lognormal model is a natural for positive skewed data, such as low
geochemical concentrations, pollution levels, or permeability. In many cases it
suffices to work on log Z instead of Z. In mining, the lognormal model is used
in the context of block estimation (see Section 6.6.2 for change-of-support
issues). Switzer and Parker (1976), Dowd (1982), David (1988), and Rivoirard
(1990) are references on the use of the lognormal model in mining. In principle,
this model requires stationary data as do all models involving distributional
assumptions, since residuals tend to be severely biased. But highly skewed data
may exhibit a strong drift even after logarithmic transformation. For example,
after a nuclear test, plutonium concentrations in the soil range over almost 5
orders of magnitude, with a large maximum at the detonation point and a rapid
falloff in all directions (Delfiner and Gilbert, 1978).

General Transformation

The lognormal kriging approach can be generalized to an arbitrary transformation Z¼
ϕ(Y), where Y is a Gaussian RF. In the stationary case the function ϕ is determined from
the histogram of the data; and if this is continuous (no accumulation of frequency at
discrete values), ϕ has an inverse. We can then work on the Y values for which linear
estimators are well-suited and transform the results back. Of course, assuming that the RF
Y(x) is Gaussian as a whole just because its marginal distribution is Gaussian takes a big
leap of faith, but if we go for it, the wonderful properties of simple kriging provide a
general formula for reducing the bias in the reverse transformation.

10Michel David once described lognormal kriging as “riding a wild horse” [quoted in Snowden

(1994)].
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Borrowing from a standard argument of bias reduction in statistical estimation [e.g., Cox
and Hinkley (1974, p. 260)], suppose that ϕ is regular enough to have a Taylor expansion at
order 2 and that the simple kriging error Y*�Y is relatively small; thus

ϕðYÞ 	 ϕðY�Þ þ ðY � Y�Þϕ0ðY�Þ þ 1
2
ðY � Y�Þ2ϕ00ðY�Þ

Taking the conditional expectation given Y* and applying the results (3.14), we get

E½ϕðYÞjY�� 	 ϕðY�Þ þ 1
2
σ2
SKϕ

00ðY�Þ

So the estimator

Z� ¼ ϕðY�Þ þ 1
2
σ2
SKϕ

00ðY�Þ ð3:61Þ

approximately satisfies the conditional unbiasedness relationship

EðZ� jY�Þ ¼ EðZ jY�Þ

which is stronger than just unbiasedness. The correction formula hinges on the assumption of
small kriging variances and the correct determination of the variogram sill.

In the lognormal case, (3.61) translates into

Z� ¼ expðY�Þ 1þ 1
2
σ2
SK

� �
and does recover the leading term in the series expansion of the exact solution

expðY� þ 1
2
σ2
SKÞ.

3.5 ESTIMATION OF A SPATIAL AVERAGE

Kriging was originally developed not for estimation of point values but of
average grades over mining panels. Its main goal was to avoid the systematic
overestimation that takes place when high-grade panels are selected solely on
the basis of internal samples. To understand this important problem, it is
interesting to look at it in its original form and explain the approach proposed
by Krige (1951), one of the pioneers of geostatistical methods.

3.5.1 Krige’s Regression Effect

When a panel is selected because it contains high-grade samples, the samples
surrounding it tend, by definition, to have lower grades. These data should also
be included in the estimation of the panel or else the sampling is biased, and this
is a cause of severe systematic error (here a constant mean is considered). On
the average, high-grade panels are poorer than their internal samples suggest,
and low-grade panels are richer.

Gold miners in South Africa were aware of this fact and used empirical
correction factors. Krige provided a theoretical justification for these
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corrections in the scope of regression theory. He started from the assumption
that the expected value of the mean grade Zv of samples taken inside a panel is
equal to the panel’s true mean grade. This is an exact property if the samples
are selected at random within the panel, or an approximate one if a subgrid is
used. For the sake of simplicity, let us assume that grades are Gaussian (Krige
considered the lognormal case). Then the regression line giving the conditional
expectation of Zv as a function of the panel grade is simply the first bisector
(Figure 3.8). Necessarily, the other regression line

EðZV jZvÞ ¼ mþ β ðZv �mÞ ð3:62Þ

relating the expected panel grade to the mean sample grade has a slope β less
than one (the product of slopes is the square of the correlation coefficient). This
is the correction formula used by Krige; it pulls the estimate toward the mean.

Now, in practice, the overall mean m is not known and is replaced by the
mean Z of the N samples in the orebody so that (3.62) is evaluated by

ẐV ¼ Z þ β ðZv � ZÞ
This is a linear combination of data of the form

ẐV ¼
X
α

λαZα

that assigns the same weight to each sample inside the panel and assigns another
constant weight (1� β)/N to each outside sample, the weights adding up to one.

Kriging generalizes this approach by personalizing the weight assigned to
each sample.

E [Z�|ZV]

E [ZV|Z�]

ZV

Z�
m

m

FIGURE 3.8 The regression effect. On the average the true panel grade is less than the sample

mean grade for Zv .m and greater for Zv ,m.
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3.5.2 Kriging Equations

We want to estimate the mean value of Z(x) over a block v, using a linear
combination of “point” data Z(xα). We will consider directly the case of an
unknown mean. The theory follows exactly the steps explained in Section 3.4.2,
the only differences arising from the objective which is now

Z0 ¼ 1

jvj
Z
v

ZðxÞdx ð¼ ZvÞ

The derivation involves the mean values of the drift functions over the block,

f ‘0 ¼ 1

jvj
Z
v

f ‘ðxÞdx ð¼ f ‘v Þ

the covariances σα0 between each sample Zα and the block, and the variance
σ00 of the block:

σα0 ¼ 1

jvj
Z
v

σðxα, xÞdx ð¼ σαvÞ and σ00 ¼ 1

jvj2
Z
v

Z
v

σðx, yÞ dx dy ð¼ σvvÞ

With these values for f ‘0 ,σα0, and σ00 the kriging system remains the same as
(3.21), and the kriging variance is (3.23). (In parentheses are the standard
geostatistical notations for block averages.)

As before, these results can be reexpressed in terms of the variogram leading
to the system (3.25) with the appropriate f ‘0 and γα0ð¼ γαvÞ. For the kriging
variance, however, the term �γ00 corresponding to σ00 is no longer zero as in
the case of point kriging but

γ00 ¼
1

jvj2
Z
v

Z
v

γðx, yÞdx dy ð¼ γvvÞ

and the kriging variance is

EðZ� � Z0Þ2 ¼ �γ00 þ
X
α

λαγα0 þ
X
‘

μ‘ f
‘
0

Likewise, the theory can be developed for the estimation of an arbitrary moving
average:

Z0 ¼
Z

p0ðxÞZðxÞdx with

Z
p0ðxÞdx ¼ 1

That just changes the expressions of f ‘0 ,σα0, and σ00, which become

f ‘0 ¼
Z
f ‘ðxÞ p0ðxÞ dx, σα0 ¼

Z
σðxα, xÞ p0ðxÞ dx,

σ00 ¼
ZZ

σðx, yÞ p0ðxÞ p0ðyÞ dx dy

A similar approach enables kriging from data with different supports.
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3.5.3 Piecing Together Local Estimates

If the domain V to be estimated is the union of several nonoverlapping blocks
vi, the mean grade Z0 of V is related to the mean grades Zi of the vi,

Z0 ¼ 1

jV j
X
i

jvijZi with jV j ¼
X
i

jvij

If the estimation of Z0 and the Zi is carried out from the same data, it follows
immediately from the linearity of the kriging system that the estimators are in
the same relationship, namely

Z� ¼ 1

jV j
X
i

jvijZ�
i

This property allows a global estimation by piecing together local kriging
estimates. In practice, the local estimates are not calculated from all the data
but only from those of a neighborhood. If this is well-designed, the result is
close to the optimum that would be obtained if all data were used. Note,
however, that there is no similar relationship between kriging variances (the
covariances between kriging errors would need to be introduced).

3.5.4 A Case Study in Forest Inventory

We consider again the tropical forest example introduced in Section 2.9.1 [from
Narboni (1979)], in which an exhaustive survey of trees of the “gaboon” species
(a variety of mahogany) was conducted over an area of 20,000 ha
(1hectare¼ 10,000 m2¼ 2.471 acres). This involved the analysis of 80,000
sampling units of 50 m� 50 m. Such considerable work was motivated by the
desire to validate the geostatistical approach by comparison with the tradi-
tional estimation method, and most important, with reality.

To ensure stationarity, the area was divided into four approximately equal
zones of 5000 ha (Ngolo I through IV). Inventory estimation was carried out on
500-m� 400-m rectangular tracts using 10% of the data. Tracts are centered
on 50-m-wide strip transects further divided into the basic sampling units
(Figure 3.9). The classic estimate Ẑ1, in number of trees per hectare, is simply
the mean of the sampling units inside the tract. Kriging, on the other hand, also
uses information from outside the tract. Data that are close or symmetric with
respect to the center of the estimated tract play a similar role in the kriging
equations and receive the same weights. For computational simplicity they are
aggregated within rings, and an overall weight is applied to the mean value
within the ring (this is sometimes called random kriging). Using a pattern of five
rings such as depicted in Figure 3.9, we have a loss of precision on variance of
about 1%. In case of systematic sampling, the same kriging configuration can
be used for all tracts, and the weights λ1, . . . ,λ5 assigned to each ring are
calculated once for all.
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Table 3.2 compares the mean estimates over the four zones; multiplication
by the areas gives the total number of trees. Notice that outside samples are
weighted more than inside samples (λ1, 0.5). This is due to the presence of a
large nugget effect (see Figure 2.32).

If we only compare the means of the classic and the kriging estimates, we find
very little difference, except for the third zone where kriging provides a better
estimate. The two methods are nearly equivalent for global estimation. But these
aggregates average out a large disparity of local situations. Figures 3.10 and 3.11
show the difference in a striking manner. The scatterplot of true values (plotted

500 m

5

4

5

4

5

4

5

4

1 33

5

2

5

2

Sampling
unit

50 m Strip transect

Tract

400 m

FIGURE 3.9 Kriging configuration for a tract (shaded area). The numbers define the rings.

[From Narboni (1979), r Bois et Forêts des Tropiques.]

TABLE 3.2 Classic and Kriging Estimates Compared with Reality

NGOLO

Zones

Kriging Weights

Zv Ẑ1 λ1 λ2 λ3 λ4 λ5 Z
� σK

2 2σK=Z
�

I 1.18 1.25 0.38 0.10 0.18 0.08 0.26 1.25 0.20 72%

II 1.26 1.29 0.38 0.08 0.18 0.08 0.28 1.28 0.23 75%

III 1.53 1.58 0.44 0.10 0.16 0.06 0.24 1.53 0.34 76%

IV 1.69 1.61 0.41 0.10 0.17 0.07 0.25 1.62 0.36 74%

Note: Zv, true value; Ẑ1, mean of classic estimates; Z
�
, mean of kriging estimates; σK

2, kriging

variance.

Source: Narboni (1979).
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horizontally) versus kriging estimates is nicely centered about the unit slope
line, with 11 points outside the 95% confidence interval (we expect about
250� 0.05¼ 12.5 points). The local kriging estimator satisfies the conditional
unbiasedness property E(Zv7Z*)¼Z*, even though ordinary kriging rather
than simple kriging is used. Compare this with the classic estimator Ẑ1 in Figure
3.11: Tracts with Ẑ1 .m are overestimated, whereas tracts with Ẑ1 ,m are
underestimated. This is exactly the regression effect discussed earlier.

3.5.5 Estimation over a Variable Support

In a number of applications the property of interest is the product or the ratio of two variables.
This is typically the case for studies carried out in 2D by using vertical integrals of point
properties as operational variables. For example, one of the most influential properties for oil
and gas resources computation is “net-to-gross,” which is the ratio of the cumulative length of
the intervals that contain producible hydrocarbons (‘net pay thickness’) to the gross thickness
of the layer. Another example is the assessment of underground pollution, which involves the
polluted thickness H(x) (x2R2) and the pollutant accumulation A(x), representing the product
of thickness bymean vertical pollutant concentrationZ(x) over this thickness. Denoting byHS

and AS the spatial means of H(x) and A(x) in the domain, and S the area of the domain, the
products T¼ ρSHS and Q¼ ρSAS represent respectively the tonnage of contaminated ground

0 0.5 1 1.5 2 2.5 3 3.5 Z�

0.5

1

1.5

2

2.5

3

3.5

Out of the confidence interval

4

Z*

FIGURE 3.10 Kriging estimates (Y axis) and true values (X axis). Each point represents a 20-ha

tract (10% sampling on Ngolo I). [From Narboni (1979), r Bois et Forêts des Tropiques.]

c03 30 January 2012; 17:27:24

3.5 ESTIMATION OF A SPATIAL AVERAGE 201



that should be removed or treated and the quantity of pollutant it contains (ρ is mass density).
The mean contaminant concentration is then Q/T¼AS/HS.

HS and AS are additive quantities and can be estimated by kriging without special pro-
blems. Estimation of mean areal concentration, however, is tricky because Z(x) values are
defined over different supports (thicknesses). Ignoring this effect and kriging the Z’s directly
would produce volume inconsistent results. An alternative is to estimate AS andHS separately
and take the ratio Z*¼A*/H* as an estimate of AS/HS. However, this procedure carries a risk
of bias which can be mitigated by using the same variogram, up to a multiplicative constant,
for kriging AS and HS. If the same sample points are used for kriging A* and H*, the weights
are then the same and

Z� ¼ A�

H� ¼
P

λαAαP
λβHβ

¼
P

λαHαZαP
λβHβ

¼
X

ναZα with να ¼ λαHαP
λβHβ

The ναhave aunit sum, andZ* is therefore aweighted average,which is not the case ifAS andHS

are estimated using nonproportional variograms. When thickness varies significantly, it is
preferable to use the above non-optimal estimates ofHS andAS and ensure thatZ* is aweighted
average. Such practice concerns positive variables and should not be used, for example, in the
case of a variable with zero mean. The estimation variance of Z* can be calculated exactly or
approximately under certain conditions [e.g., see Journel andHuijbregts (1978), SectionV.C.3].

0 0.5 1 1.5 2 2.5 3 3.5 Z�
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Z1

FIGURE 3.11 Classic estimates (Y-axis) and true values (X-axis). Each point represents a 20-ha

tract (10% sampling on Ngolo I). [From Narboni (1979), r Bois et Forêts des Tropiques.]
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3.5.6 Filling-in the Gaps

In applications such as mining or forestry where data are collected on a regular
grid, considerable saving is achieved by always using the same pattern of data,
since the kriging weights can then be computed once for all (i.e., if weights are
shift invariant). But often the data grid has gaps, which ruins this plan. The
three perpendiculars then come to the rescue: If the gaps are sparse, one can
replace the missing data by their kriging estimates and proceed as if all data were
present. Kriging variances, however, are underestimated by an amount equal to
the variance of the difference between estimators with and without gaps.

The Three Perpendiculars

If

Z�NþM ¼
XNþM

α¼1

λαZα

is the kriging estimator based on NþM data of some quantity Z0, then the kriging estimator
of Z0 based on the first N data points is

Z�N ¼
XN
α¼1

λαZα þ
XNþM

α¼Nþ1

λαZ
�
α

where Z�α is the kriging estimator of Zα from the N data. Kriging variances are related by

VarðZ�N � Z0Þ ¼ VarðZ�NþM � Z0Þ þ VarðZ�N � Z�NþMÞ ð3:63Þ

In the case of a known mean, there is a simple geometric proof illustrated in Figure 3.12: The
projection of Z0 onto the Hilbert space HN�HN+M can be accomplished by first projecting
onto HN+M and then projecting this projection onto HN. A similar proof can be given in the
case of an unknown mean using the orthogonality relationship (3.41).

In our case the NþM data points represent the complete kriging configuration and M the
number of gaps. For the property to apply, the missing data should be reconstructed only
from the N data present in the configuration. Intuitively though, the final results should be
even better if the gaps are filled using the best possible neighborhoods.

Z*
N�M

HN�M

Z*
N

Z0

HN

0

FIGURE 3.12 The three perpendiculars in the case of a known mean (simple kriging).
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3.6 SELECTION OF A KRIGING NEIGHBORHOOD

The selection of data points to be included in the estimation is a key problem in
the application of kriging. In theory, the minimum mean square error is
achieved when all points are included, since any smaller neighborhood can be
viewed as a constrained optimization with weights zero placed on the discarded
points. But a global neighborhood may result in a kriging matrix that is too
large to be inverted numerically. The maximum size of an invertible full matrix
these days is about 5000, while large data sets can exceed one million points.
Another important consideration is the geostatistical model itself, which may
only have local validity.

The solution is to restrict the point selection to a subset of the data, changing
with the estimated point, and is thus called a moving neighborhood. In doing so,
however, we render the results dependent on the particular data selection
algorithm and tend to create spurious discontinuities in regions where control
points are scarce due to the sudden change of sample points from one neigh-
borhood to the next. This difficulty is of course not specific to kriging but is a
feature of all neighborhood methods.

Wewill first discuss special cases where the krigingweights vanish rapidly with
distance away from the estimated point and give practical recommendations for
neighborhood selection. Then we will present three approaches that ensure
continuity. The first two retain a global neighborhood but modify the kriging
matrix, or its inverse, to make it sparse and therefore numerically tractable.
The third method builds continuity in moving neighborhood estimates.
Other approaches not discussed here include fixed-rank kriging (Cressie
and Johannesson, 2008) and Gaussian predictive process models (Banerjee
et al., 2008).

3.6.1 Screening Effect and Relay Effect

Screening Effect

In a mathematical sense the “screening effect” describes a situation in which
nonzero kriging weights are concentrated on a subset of samples in the
immediate vicinity of the estimated point or block. These samples screen off the
influence of all other data. In 1D we have seen that with a linear variogram
the ordinary kriging estimator only depends on the two adjacent samples, or
on the nearest end point (examples 4 and 5). For simple kriging the same
circumstance occurs for the exponential covariance due to its associated
Markov property: If x0, x1, x2, then given Z1, Z0 and Z2 are uncorrelated.

In higher dimensions there are some special covariance models for which any
closed contour acts as a perfect screen between internal and external data. Let us
consider for simplicity the isotropic case (a geometric anisotropy does not alter
the conclusion). For SK these special models, expressed as functions of r¼ 7h7,
are in 2D the Matérn model (2.56) with ν¼ 1, namely C(r)¼ (r/a) K1(r/a)
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(Whittle, 1954), and in 3D the covariance measure C(r)¼ exp(�r/a)/(r/a)
[e.g., Arfken (1985)] (a. 0 in both cases). For OK the solutions are vario-
gram measures: in 2D the de Wijs model γ(r)¼ log r, and in n-D γ(r)¼ 1/rn�2

(Matheron, 1965, p. 252).
In 2D a particular screening effect occurs for simple kriging when the

covariance can be separated along the components hx, hy of the lag vector h as

Cðhx ; hyÞ ¼ C1ðhx Þ C2ðhyÞ

Consider points x1, x2, x3, . . . , aligned along a parallel to one coordinate axis
and x0 on the perpendicular to that line through x1 (Figure 3.13a). Then the SK
estimator of Z0 from Z1, Z2, Z3, . . . , assigns a zero weight to every point other
than Z1. Indeed, if λi¼ 0, i. 1, the SK equations reduce to

x0

x1 x2 x3x5x4 x6

y

x

C(hx,hy) � C1 (hx) C2(hy)

C(hx,hy,hz) � C1(hx,hy) C2(hz)

(a)

x

yz

x0x1

x"3

x'2

x"2
x"1

x'3
x'1

x2

x3

(b)

FIGURE 3.13 Configurations producing a screening effect for simple kriging under a separable

covariance model: (a) points other than x1 receive a zero weight; (b) points other than x1, x2, x3
receive a zero weight.
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λ1 ρ1j ¼ ρ0j ¼ ρ01 ρ1j ’j

and are satisfied when λ1 ¼ ρ01. Similar results hold in 3D. For example, if data
lie in horizontal planes (Figure 3.13b) and if the covariance separates as

Cðhx , hy , hzÞ ¼ C1ðhx , hy Þ C2ðhzÞ
then the plane at the same elevation as the estimated point screens off the other
data planes.

An example of separable model is the Gaussian covariance C(h)¼
exp(�7h72/a2). Another model, widely used for digital image compression, is the
separable exponential covariance

Cðk, ‘Þ ¼ σ2ρv
jkjρh

j‘j

where ρv and ρh, respectively, denote the vertical and horizontal correlation
coefficients between adjacent pixels of an image, and k and ‘ are vertical and
horizontal lags (Rabbani and Jones, 1991). Techniques of linear predictive
coding exploit the high correlation between adjacent pixels of an image (ρv and
ρh typically exceed 0.9) to reduce the quantity of bits transmitted over com-
munication lines. Figure 3.14 illustrates a configuration used in forming the
optimum linear predictor (i.e., the SK estimator) of a pixel Xm based on four
previous pixels A through D. For the above separable model the weights are

λA ¼ ρh, λB ¼ �ρv ρh, λC ¼ ρv, λD ¼ 0

Pixel D receives a weight zero: Its influence is screened off by pixel C.11 Note
that in the absence of pixel A we would be in the situation described in
Figure 3.13a, and only pixel C would receive a nonzero weight equal to ρv.

Aside from special mathematical cases, the screening effect represents a
physical approximation: In the presence of strong spatial autocorrelation, the
data of the first “ring” matter most, and very little additional information is

FIGURE 3.14 Differential pulse code modulation predictor configuration. [From Rabbani and

Jones (1991).]

11On the subject of digital image processing, see the article by Yfantis et al. (1994) and the comment

by P. Delfiner (same reference).
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gained by considering sample points beyond that. To take a specific example,
consider the problem depicted in Figure 3.15: the estimation by ordinary
kriging of a square panel from its 12 nearest samples in a square grid, using a
linear variogram with a nugget affect [from David (1977, p. 258)]. The sym-
metry of the pattern reduces the problem to the determination of a single
weight λ. The variation of λ as Co is progressively increased is shown in the
adjacent chart. The eight samples of the outer ring share this weight λ which
is small when Co is small. In this case the kriging neighborhood can be limited
to the first ring. However, when the nugget effect increases all weights tend to
become equal to 1/12. The nugget effect destroys autocorrelation and in the
limit makes all samples equivalent. Hence the celebrated geostatistical saying:
The nugget effect lifts the screening effect (Matheron, 1968a).

In practice, the screening effect should not be gauged by the weights but
rather by the variance. In a study of the behavior of kriging weights, Rivoirard
(1984) showed that when the neighborhood is enlarged, negative weights
appear, which are not small even for the most common variogram models, but
do not improve precision significantly. Figure 3.16 displays the SK and OK
weights for the spherical model with range twice the grid spacing and the weight
on the mean λm¼ 1�PλKα (see Section 3.4.7). Observe that all variances are
comparable: Very little is gained by extending the kriging neighborhood
beyond the four nearest neighbors. Haslett (1989) proposes a stepwise algo-
rithm for optimizing subset selection.

Relay Effect

It is often believed that when the variogram has a finite range it is not necessary
to include sample points beyond that range in the kriging neighborhood. This
assertion is certainly false when the mean is unknown, since the mean is not

FIGURE 3.15 Variation of kriging weights with C0, computed with the variogram model

γ (h)¼Coþjhj (h 6¼ 0). As Co increases, all weights tend to 1/12. [From David (1977).]
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FIGURE 3.16 Simple and ordinary kriging weights for a spherical covariance with range a ¼ 2‘.

[From Rivoirard (1984).]
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local information, but it is also false in the case of simple kriging, as noted
earlier. The reason is that points beyond the range may exert an influence
through their correlation with points within the range by virtue of the so-called
relay effect. In Figure 3.16, for example, all 16 points of the second ring have
zero correlation with the estimated point, but the first ring acts as a relay.
Similarly in Figure 3.14, pixel B would receive a weight zero in the absence of
pixel A. Notice that relays tend to produce small or negative weights.

In a different setting, the autoregressive and moving average models (ARMA)
of Box and Jenkins (1976) provide another angle at this. Autoregressive models,
which by design depend on a finite number of past values, have correlation
functions that extend to infinity, whereas the prediction of moving average
models, which have a finite range, involves an infinite number of past values.

3.6.2 Practical Implementations of Neighborhood Selection

The additivity relationship (3.34) portrayed universal kriging as a two-stage
procedure: One is the optimum estimation of the drift, and the other is simple
kriging of the residuals. Unfortunately, these two stages raise conflicting
demands on the neighborhood: If simple kriging can benefit from the screening
effect, drift estimation, on the contrary, as we know from least squares theory,
is best accomplished with sample points as far apart and well-scattered as
possible. The obvious solution of estimating the drift (optimally) with a global
neighborhood and subtracting it from the data is often impractical for the same
reasons that preclude the use of a global neighborhood in the first place: too
many data points and/or, more important, the poor validity of a simple drift
model over the whole domain.

Sophisticated neighborhood selection algorithms have been devised to reach
a compromise between near and far sample points. They usually include all
points of the first ring and then more distant points, following a strategy that
attempts to sample all directions as uniformly as possible while keeping the
number of points as low as possible (octant search). Obviously, good azimuthal
coverage is important to avoid the risk of bias. Typically, 16 to 32 points are
retained, from at least five octants or four noncontiguous octants; the search is
accelerated by initially classing the data points in the cells of a coarse grid. For
contour mapping purposes, where continuity is important, larger neighbor-
hoods may be considered to provide more overlap. Another approach is to
divide the gridded domain into overlapping sections, estimate each of them
with a global neighborhood, and splice the resulting subgrids.

A useful technique to improve continuity without spoiling the accuracy of
the estimates is selective low-pass filtering. The idea is to run a smoothing filter
on the kriged grid but modify the estimates only within a confidence interval
defined by the kriging standard deviation so as to modulate the degree of
smoothing by the uncertainty about the estimates. The following low-pass filter
has good spectral properties: a moving average with weights (1/4, 1/2, 1/4)
along the rows and then along the columns of the grid, followed by a moving
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average with weights (�1/4, 3/2, �1/4) to restore some power in the high
frequencies.

Another ad hoc technique is employed to deal with discontinuities such as
geological faults. It is illustrated in Figure 3.17: The fault is considered as a
screen and only the sample points directly “seen” from the estimated point are
included in the kriging neighborhood. This technique is a stopgap solution. It
assumes that fault displacement is only vertical, and it is limited by the avail-
ability of sample points in the “fault blocks.” The correct approach is to model
faults using 3D geomodeling techniques [Mallet (2008) and Section 2.2.6]. (See
also the external drift method).12
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FIGURE 3.17 Kriging with faults: (a) the fault as a screen: the data points located in the shaded

area cannot be seen from the target point marked by a cross; (b) result of kriging without fault;

(c) result of kriging with faults.

12 Structural geologists have developed the general concept of retrodeformability. Let us quote

Suppe (1985, p. 57): “The fact that the rocks were originally deformed may seem trivial to mention,

but it is actually an important key to the solution of many structural problems. It must be

geometrically possible to undeform any valid cross section to an earlier less deformed or

undeformed state; the cross section must be retrodeformable.” Retrodeformable cross sections are

popular in the petroleum industry under the name of balanced cross sections.
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3.6.3 Covariance Tapering

Furrer et al. (2006) propose a global neighborhood approach that they applied
successfully to a large irregularly spaced dataset involving over 5900 observa-
tions and a kriged grid of more than 660,000 points. The principle is to taper
the covariance function to zero beyond a certain range so that the kriging
matrix is sparse and the kriging system can be solved efficiently. Let Kθ be a
covariance function that is identically zero outside a particular range described
by θ. The tapered covariance function is defined by

σtapðx, yÞ ¼ σðx, yÞKθðx, yÞ

As the product of two covariance functions, this is indeed a covariance. The choice
of the taper covariance Kθ is essential and is governed by two requirements: It
should be identically zero beyond a certain distance (and not just asymptotically),
and it should preserve the behavior near the origin of the true covariance σ(x,y),
because this behavior controls the lateral continuity of the interpolant.

The second condition implies that the taper Kθ should be more regular than
the original covariance σ. This can be seen heuristically by considering prin-
cipal irregular terms (Section 2.3.1). Suppose that σ and Kθ are stationary
isotropic covariance functions C(h) and Kθ (h) and admit near the origin an
expansion of the form

CðhÞ 	 σ2ð1� ajhjαÞ and KθðhÞ 	 1� bjhjβ

where α. 0 and β. 0 are the lowest non-even powers. The tapered covariance
is then

CtapðhÞ 	 σ2ð1� ajhjα � bjhjβÞ
In order to preserve the principal irregular term and its coefficient, it is
necessary that α,β.

Furrer et al. (2006) develop the theory for the Matérn covariance model Cα,ν

(2.56). Its principal irregular term is jhj2ν if the smoothness parameter ν is
noninteger and jhj2ν log jhj if ν is an integer. For the tapers they use polynomial
covariance functions that turn out to be members of the spherical models
family. Specifically, as a function of the power α (¼ 2ν) the possible taper
covariance models are the spherical (2.47) for α, 1, the cubic (2.49) for α, 3,
and the penta (2.50) for α, 5.

3.6.4 Gaussian Markov Random Field Approximation

The approach of GaussianMarkov random fields may be seen as the opposite of
that of covariance tapering in the sense that it seeks to make the inverse of the
covariance matrix—and not the covariance matrix itself—sparse. It was first
used to generate simulations (Besag, 1974, 1975) but offers a new approach to
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kriging (Rue and Held, 2005). Consider a Gaussian random vector Z¼ {Zi :
i¼ 1, . . . ,N} with known mean m and covariance matrix C. The conditional
distribution of Zi given the other components {Zj : j 6¼ i} is Gaussian, with
mean and variance being the kriging estimate Z*�i of Zi and the associated
kriging variance. Denoting by B the inverse of C, the kriging weights are found
to be equal to λjðiÞ ¼ �Bij=Bii so that we have

Z��i ¼ mi � 1

Bii

X
j 6¼i

Bij ðZj �mjÞ, σ2
Ki ¼

1

Bii
ð3:64Þ

Since Bii is the inverse of the conditional variance of Zi given {Zj : j 6¼ i} (all
except the ith), B is known as the precision matrix. Its off-diagonal elements are
related to the conditional correlations of Zi and Zj given {Zk : k 6¼ i, j} by

CorrðZi,Zj j Zk: k 6¼ i, jf gÞ ¼ � Bijffiffiffiffiffiffiffiffiffiffiffi
BiiBjj

p
B is a symmetric positive-definite matrix. The pattern of zeroes of B can be used
to define an undirected graph structure in which two nodes are connected by an
edge whenBij 6¼ 0. Let ne(i) denote the neighborhood of node i—that is, the set of
nodes connected to i by an edge. The vectorZ has theMarkov property thatZi is
conditionally independent of {Zk : k =2 ne(i)} given {Zj : j2 ne(i)}. The discretely
indexed Gaussian Z is called a Gaussian Markov random field (GMRF).

Let us divide theNnodes into twogroups, {i¼ 1, . . .N1) and {j¼N1þ 1, . . . ,N},
the latter with N2¼N � N1 nodes. Z can be split accordingly in two vectors Z1

and Z2. The vector Z2 represents data, whereas Z1 is unknown and is to be
estimated. The multivariate probability density function of Z, usually given as
function of m and C, can also be expressed as a function of m and B:

gðzÞ ¼ ð2πÞ�N=2jBj1=2exp � 1
2
ðz�mÞ0 B ðz�mÞ� �

The conditional distribution of Z1 given Z2 is multivariate Gaussian. It is given
in Section A.8 of the Appendix in terms of covariance matrices. The same can
be done in terms of precision matrices: When we partition the matrix B into the
four submatrices {Bpq : p, q¼ 1, 2} associated with the two groups, the con-
ditional mean takes the form

m1j2 ¼ E½Z1 jZ2 ¼ z2� ¼ m1 � B�1
11 B12ðz2 �m2Þ ð3:65Þ

where B11 is the conditional precision matrix of Z1 given Z2. This result
generalizes (3.64). To compute the conditional mean (i.e., perform kriging), we
do not need to invert B11 but only to solve the linear system

B11ðm1j2 �m1Þ ¼ �B12ðz2 �m2Þ
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which can be done efficiently with sparse matrix algorithms. The GMRF model
is very attractive for modeling random variables at the vertices of an undirected
graph.

Suppose now that the Zi represent the values of a Gaussian SRF Z(x) at
discrete points xi over a domain of Rn. Under what conditions can Z be
a GMRF? Rozanov (1982, Sec. 3.1) shows that a Gaussian SRF of Rn has a
Markov property if and only if its spectrum is of the form f(u) ~ 1/P(u) where
P(u) is a nonnegative symmetric polynomial. A case of special interest is the
Matérn covariance (2.56) whose spectrum is (Whittle, 1963)

f ðuÞ ¼ ð2πÞ�n 1

a2
� juj2

� ��ðνþn=2Þ

It satisfies the criterion if and only if νþ n/2 is an integer. This is a severe
limitation, especially in R2 where no model with a linear behavior at the origin
is possible. To overcome this, Rue and Held (2005) provide approximations of
SRFs by GMRFs on a grid. The GMRF is parameterized by the nonzero Bij of
(3.64). The number of distinct parameters is reduced by accounting for sym-
metries, and border effects are avoided through periodic embedding. The
parameters are chosen so that B�1 is close to C in some norm. A difficulty is to
ensure that B is positive definite. A sufficient condition often used in practice
is diagonal dominance, that is, jBiij.

P
j 6¼ijBij j for all i, which amounts toP

j 6¼ijλjðiÞj, 1. Hartman and Hössjer (2008) give a detailed account of the
implementation of GMRFs for kriging, and they propose a way to deal with
data points not on the grid without displacing them to the nearest grid node.
Rue and Held report that a 5� 5 neighborhood is sufficient to reproduce an
exponential covariance, whereas a neighborhood of at least 7� 7 is required for
a Gaussian covariance. Results also depend on the size of the grid mesh relative
to the covariance range.

This approach has several extensions, in particular to models with a poly-
nomial drift and to intrinsic random fields of order k, with prototypes of such
Gaussian Markov fields being the random walk and its integrals.

We have seen in Section 2.5.1 that a Gaussian SRF with a Matérn covari-
ance is the solution of a stochastic partial differential equation. In the case
where it is a GMRF, Lindgren et al. (2011) solve the equation numerically
using a finite element method with Delaunay triangles whose vertices are the
nodes xi. These nodes must include all data locations but otherwise may be
placed at will, typically with a higher density in regions of interest. The solution
provides an interpolation everywhere in the domain, although within triangles
it boils down to a plain linear interpolation of the vertices. In the special case
where all the vertices are points on a regular 2D grid and ν is an integer, the
neighborhood ne(i) is a lozenge inscribed in a square of size (2 νþ 3)� (2 νþ 3)
nodes only (including the node i), which drastically reduces the computational
cost. It remains that this approach deals with very special cases not necessarily
compatible with the application considered.
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3.6.5 Continuous Moving Neighborhoods

Gribov and Krivoruchko (2004) developed an original method to ensure con-
tinuity with moving neighborhoods. The idea is to modify the kriging system so
that data beyond a specified distance from the estimated point receive weights
gradually approaching zero. This way, no discontinuity occurs when data points
enter or exit the kriging neighborhood. Rivoirard and Romary (2011) propose
an equivalent approach from a different perspective. The idea is to introduce a
penalty on the kriging weights by minimizing an objective function of the form

Q ¼ EðZ� � Z0Þ2 þ
X
α

VαðλαÞ2 þ 2μ
X
α

λα � 1

 !
ð3:66Þ

In this expression (written for OK because of the last term) the penalty Vα plays
the role of a noise variance and varies with the target point x0. It is typically
equal to 0 for data points xα within a distance r of the estimated point x0 (no
penalty applied near the target point), and it increases continuously to infinity
as xα approaches the outer boundary of the kriging neighborhood, located at a
distance R. An example of Vα profile is the following:

Vα ¼ σ2 h� r

R� h

� �2

for r# h#R where h ¼jxα � x0j and σ2 ¼ VarZðxÞ

By convention, Vα may be set to infinity when h.R so that, to keep Q finite, all
data points xα on or beyond the neighborhood boundary necessarily receive a
weight λα¼ 0. Likewise, when the penalty is large, the weight must be small.

When the initial structure has no nugget effect, a refinement of the method is
to introduce some correlation between added noises Vα according to a con-
tinuous, short-ranged, spatial covariance. This preserves the continuity of the
kriging estimate at the target point when two data points merge. The resulting
kriging system is given by (3.68) in the case of universal kriging.

Figure 3.18 compares the surfaces obtained with and without the use of
continuous moving neighborhoods. The results speak for themselves. The
beauty of the method lies in its simplicity and flexibility. Because it is solely based
on the addition of a noise that increases with distance, the method works for all
versions of kriging algorithms: OK, UK, and even IRF�k. Generalizations to
more sophisticated neighborhoods (e.g., octant search) is a possibility.

Concerning the computed variance, continuous moving neighborhood
outperforms straight kriging from data within the inner circle only, but
underperforms kriging from all data inside the outer circle due to the con-
straints placed on the weights.

3.6.6 Global Neighborhood Cross-Validation

A special form of kriging neighborhood is involved in model cross-validation
(Section 2.6.3): Each sample point xα is estimated from all others, excluding xα
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itself. Essentially the same global neighborhood is considered, but not quite. In
a configuration with N data points and Lþ 1 drift functions, this involves,
in principle, the resolution of N linear systems of size (NþL)� (NþL),
which may be prohibitive. Dubrule (1983b) shows that all solutions can in fact
be obtained by inversion of a single matrix, the matrix A of system (3.22). If
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FIGURE 3.18 Continuous kriging neighborhood: (a) ordinary kriging surface obtained using

a standard moving neighborhood with radius R¼ 10; (b) ordinary kriging surface obtained using a

continuousmovingneighborhoodwith radii r¼ 7.5 andR¼ 12.5. [FromRivoirardandRomary (2011),

with kind permission of the InternationalAssociation forMathematical Geosciences.] (See color insert)
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B¼ [Bαβ] denotes the inverse of A and if one considers the kriging estimator of
Z(xα) from {Z(xβ) : β 6¼ α}, the kriging weights λβ(α) and the kriging variance
σ2
Kα are given by

λβðαÞ ¼ �Bαβ=Bαα ðβ 6¼ αÞ, σ2
Kα ¼ 1=Bαα ð3:67Þ

These are the same results as in (3.64), but their validity is established for UK
while (3.64) and (3.65) are for SK only. If the kriging matrix is written in
variogram terms, the sign must be changed on the right-hand side of the second
formula. A generalization of the above results allows an estimation of Z(xα)
excluding more than a single observation.

3.7 MEASUREMENT ERRORS AND OUTLIERS

3.7.1 Filtering Nonsystematic Errors

Three types of error can affect the data: uncertainty on the exact positions of
the measurements, systematic errors, and nonsystematic, also called random,
errors. Positioning uncertainty is typically associated with marine and aerial
surveys and can be modeled statistically (Section 2.4.4). The advent of satellite
positioning (GPS) has made this uncertainty very small but perhaps still
significant in applications where extreme precision is required, such as marine
3D seismic.

Systematic errors are the most dangerous. They usually go unnoticed, do not
cancel out, and can ruin a whole analysis. They may have several origins: a drift
of the instrument (as in gravimetric surveys), acquisition problems (tool mal-
function, insufficient dynamic range, quantization error), model inadequacies
with computed data (parameters, e.g., porosity or saturation are computed from
wireline logs by inversion of a petrophysical model), and so on. Systematic
errors, if suspected, can be corrected by multivariate methods and are discussed
with them. We will focus here on random errors.

The simplest case is that of uncorrelated errors with the same amplitude. They
turn up in the variogram as an additional nugget effect equal to the error vari-
ance. But errors may also be unequal (e.g., data from different sources) or even
correlated. For example, in a bathymetric survey, data are acquired along pro-
files, and it can be assumed that errors are the same along a profile and inde-
pendent across two different profiles. Furthermore, the standard deviation of the
error is proportional to the local average depth (Chilès, 1977). If Zε denotes the
measurements and Z represents the underlying RF, a comprehensive model is

ZεðxαÞ ¼ ZðxαÞ þ εα

where εα are random errors defined only at the sample points and are subject to
the following assumptions:
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� Errors are nonsystematic, E[εα]¼ 0 α¼ 1, . . . ,N

� Errors are uncorrelated with
the studied RF E[εα Z(x)]¼ 0 ’x, α¼ 1, . . . ,N

� Errors may be correlated
among themselves E[εα εβ]¼Sαβ α, β¼ 1, . . . ,N

We want to estimate the error-free value Z0¼Z(x0) from observations
Zε(xα) “corrupted” by noise. In time series this is a standard problem known as
filtering (the signal from the noise), and its solution in the frequency domain
relies on the possibility of separating the spectral characteristics of the signal
and of the noise. In the geostatistical terminology we regard this problem as a
special case of cokriging—that is, estimating values of one variable on the basis
of another. But the correlation structure is so simple that the result is only a
slight modification of the standard kriging system. Our estimator is now

Z� ¼
X
α

λαðZα þ εαÞ

Since errors have zero mean, the unbiasedness conditions do not change. The
m.s.e. becomes

EðZ� � Z0Þ2 ¼ E
X
α

λαZα � Z0

 !2

þ
X
α

X
β

λαλβSαβ

Minimizing the complete expression leads to the cokriging system

X
β

λβðσαβ þ SαβÞ þ
X
‘

μ‘ f
‘
α ¼ σα0, α ¼ 1, : : : ,N

X
α

λα f
‘
α ¼ f ‘0 , ‘ ¼ 0, : : : ,L

8>>><
>>>: ð3:68Þ

and the cokriging variance

σ2
CK ¼ EðZ� � Z0Þ2 ¼ σ00 �

X
α

λασα0 �
X
‘

μ‘ f
‘
0

Equations in terms of the variogram remain the same as (3.25) but with γαβ�Sαβ

replacing γαβ (so the first N diagonal terms are no longer zeros but �Sαα).
The cokriging system (3.68) differs from the UK system (3.21) by the

presence of the error covariance terms Sαβ. It relies on the assumption that
the covariances σαβ and Sαβ are known separately. The cokriging estimator is
no longer an exact interpolant: it does its job of filtering measurement errors.

In the special case of uncorrelated errors, the system (3.68) is identical to the
standard kriging system with the covariance σþS except at data points (where
the kriging system has σα0þSα0 on the right-hand side). This shows why
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the kriging estimator also filters errors. It can also be seen directly by noting that
at any point x0 other than a sample point the kriging mean square error

E½Z�� Zεðx0Þ�2 ¼ EðZ�� Z0Þ2 þ Eðε02Þ
differs from the cokriging error only by the addition of a constant term and thus
has the same minimizer. At a sample point this relationship breaks down, and
both the kriging estimate and its variance have a discontinuity (see Figure 3.3c).
For contour mapping purposes it is preferable to grid the continuous component
Z and filter measurement errors and the rest of the nugget effect. As for which
variance should be reported, it makes sense to exclude genuine measurement
error variances (since we are not interested in reconstructing them) but to include
the nugget effect variance due to microstructures.

Figure 3.19 illustrates the effect of filtering error variances in mapping CO2

concentration in soil. Straightforward estimation with a continuous variogram
model produces the typical “fat in the soup” effect in which contour lines circle
around data points because, due to errors, most of them are local extrema
(Figure 3.19a). We know there are indeed uncertainties in the data because gas
emanation is subject to very local variations of soil properties and to large
measurement errors. By contrast, the filtered map shows a physically more
meaningful picture of the CO2 concentration distribution (Figure 3.19b).

Filtering Positioning Errors

We have seen in Section 2.4.4 the effect of positioning errors on the variogram
in the stationary case. Looking now at kriging, the objective is to estimate
Z0¼Z(x0) from observation Z(xαþUα), where Uα are positioning errors.
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FIGURE 3.19 Filtering measurement errors (CO2 concentration in soil): (a) contour map using a

continuous variogram model; (b) contour map with noise filtered.
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If the positioning errors are independent and with the same pdf p(u), they will
impact the ordinary kriging system only by transformation of covariances σαβ

from C(xβ� xα) into CP (xβ� xα) and covariances σα0 from C(x0� xα) into
Cp(x0� xα), where CP is the regularized covariance C*P and P the covariogram
p*p�of the pdf p.

In the case of a random functionwith a linear drift and a stationary or intrinsic
residual, the positioning uncertainty will have no impact on the unbiasedness
conditions provided that the positioning error has zeromean, but the variance to
beminimized will include an additional term depending on the unknown slope of
the drift. Chilès (1977) approximates this term by using an estimate of the slope,
whereas Cressie and Kornak (2003) propose a Monte Carlo integration algo-
rithm. As is the case for marine or aerial surveys, the generalization to correlated
positioning errors is straightforward, provided that the bivariate distribution of
the errors Uα and Uβ is known for all data pairs (Chilès, 1977).

3.7.2 Poisson Kriging

The method presented here is formally equivalent to filtering a random error
except that the added variability in the data is due to the observation process
itself. The method was developed by Monestiez et al. (2005a; 2006) to estimate
the abundance of fin whales in the Pelagos Sanctuary, a marine protected area
in the western Mediterranean stretching between Corsica, the south of main-
land France, and northern Italy. Knowledge of the spatial distribution of an
animal population is essential to better understand the population’s interaction
with its environment. Making maps of animal abundance is difficult when
animals are rare and the observation effort heterogeneous, because the raw
maps reflect the effort as well as the abundance.

The observations are sighting counts recorded along random linear transects
or onboard regular ferries between France and Corsica. Sighting event counts
are preferred because the number of whales reported for a given sighting are
often unreliable. Data from all available years are cumulated in cells of about
90 km2, and the total time spent observing (in hours) is computed.

The number of sightings Z(x) is modeled as a Poisson time process with
intensity parameter Y(x), which measures the sightings expectation at location
x for a unit observation time. Thus Z(x) is distributed as a Poisson with
parameter t(x)Y(x), where t(x) is the observation time. Y(x) is modeled as a
positive SRF with constant unknown mean m and variogram γY (h). Condi-
tionally on Y the random variables Z(x) at different locations are mutually
independent. In classical shorthand notations the properties of the Poisson
distribution entail

EðZxjYxÞ ¼ txYx, EðZxÞ ¼ mtx,

VarðZxjYxÞ ¼ txYx, VarðZxÞ ¼ tx
2 VarðYxÞ þmtx,

EðZxZyjYÞ ¼ txYxδxy þ txtyYxYy, δxy ¼ 1 if x ¼ y; δxy ¼ 0 only otherwise
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Using these relations an improved unbiased variogram estimator is obtained.
For h 6¼ 0 this is

γ�Y ðhÞ ¼
1

2NðhÞ
X

xβ�xα	h

tαtβ

tα þ tβ
ðZβ=tβ � Zα=tαÞ2 �m�

2
4

3
5,

NðhÞ ¼
X

xβ�xα	h

tαtβ

tα þ tβ

wherem* is an estimate of the mean of Y. Compared to the standard variogram
of Z/t, this improved estimator is smoother, reduces the sill to about one-fourth
of its original value, and removes the nugget effect.

The intensity Y0 at x0 can be estimated by a linear combination

Y�
0 ¼PαλαðZα=tαÞ, where the λαs are solution to a modified OK system that

the authors name Poisson Ordinary Kriging:

X
β

λβCαβ þ λα
m

tα
þ μ ¼ Cα0, α ¼ 1, : : : ,NX

α
λα ¼ 1

8>><
>>: ð3:69Þ

Here C is the covariance of Y and is derived from γY. Note that (3.69)
is formally the same as the error filtering system (3.68). The added
diagonal term m/tα represents the expected conditional variance of Zα/tα
given Yα:

E Var½ðZα=tαÞjYα� ¼ EðYα=tαÞ ¼ m=tα

The Poisson kriging variance has the same expression as the standard
OK variance (3.18) but not the same value because the weights λα are different.

The maps obtained by Poisson kriging tend to be smoother than those
obtained by OK of raw data, but overall are similar. The real difference lies in
error variances. The authors report Poisson kriging variances lower by (a) a
factor of 5 to 10 when an observation is present in the cell and (b) a factor of at
least 2 when the cell is farther from available data.

Conversion of the sightings expectation maps, which represent whale
sightings per hour, to whale abundance in animals per square kilometer
requires accurate estimates of the mean area covered per hour of observation,
and the mean size of observed groups of whales.

Poisson kriging has been applied to other rate data such as that found in
epidemiology or criminology. An unpublished application deals with fertility
rates from data aggregated by municipality.
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3.7.3 Outliers

Kriging estimators being linear in the data are sensitive to the presence of a few
unusually large (or sometimes small) values called “outliers”. These were
already a problem for variogram estimation and motivated the development of
robust alternatives to the traditional variogram (Section 2.2.5). Robust versions
of kriging have also been proposed (Hawkins and Cressie, 1984; Cressie 1993,
pp. 144�150). The approach presented here is different. It relies on a fine
tuning of the model of the spatial distribution of high values.

The high values considered here are not bad data. It is assumed, as should be
the case in any geostatistical study, that bad data have been removed or cor-
rected. The data are not extreme values either, in the sense of extreme value
theory (natural disasters), which will be covered in Section 6.11. These high
values typically come from heavy-tailed distributions, such as those of ore grades
in gold or uranium deposits, where a small number of samples can be responsible
for a large proportion of the metal content in the deposit. Parker (1991) reports a
case where 4 out of 34 samples are responsible for 70% of the gold content, and 7
out of 34 for 90% of the gold content. Clearly this is a very uncomfortable
situation because, as Parker notes, “even small changes in the grade near these
assays or the proportion of high-grade material may be responsible for large
differences between estimated and recovered reserves. If on the downside, these
differences could have adverse consequences.” On the other hand, discarding the
high grades completely creates a bias and is an economic nonsense. The value of
the mine may just come from high grades.

In spite of that, high grades may still be deliberately left out with the idea
that it is more rewarding to revise estimates up than down. The problem is that
this may lead to the abandonment of the project if it was a marginal one. The
common practice is rather to exclude the high grades from the computation of
the variogram and perform kriging on truncated data. The truncation logic is
illustrated in Figure 3.20: Grades above a threshold z (called “top-cut” grade in

cutoff z

excess truncated
grade

x

Z(x)

FIGURE 3.20 Truncated grades are defined by setting grades above the threshold z to the value z.

They are considered as “normal” grades. The excess is treated separately and can be interpreted as a

conventional income B(z).

c03 30 January 2012; 17:27:31

3.7 MEASUREMENT ERRORS AND OUTLIERS 221



mining) are replaced by the value z, others are unchanged. The excess is either
simply forgotten or kriged as a pure nugget effect and added to the estimates
from the truncated data. This latter step amounts to scattering high grades all
over the field, which may be adequate for global estimation but certainly not
for local estimation, because high grades cannot be present where the truncated
grades are low.

Truncation Model

Rivoirard et al. (2012) propose a relatively simple nonlinear model to deal with
high values. The truncation described in Figure 3.20 gives the decomposition

ZðxÞ ¼ minðZðxÞ, zÞ þ ½ZðxÞ � z�1ZðxÞ$ z

The first term is the truncated grade; the second term, the excess, is what we
lose by truncation. It is present only where Z(x)$ z. These two quantities are
positively correlated. The excess

BzðxÞ ¼ ½ZðxÞ � z�1ZðxÞ$ z

can be interpreted as the conventional income (see Section 6.5.1) at the cutoff z,
except that here z is not the true economic cutoff but usually a higher value.
The expected values

bz ¼ E½BzðxÞ� and Tz ¼ Eð1ZðxÞ$ zÞ ¼ Pr½ZðxÞ$ z�

represent, respectively, the unconditional mean of the excess and the probability
of exceeding the cutoff z, which in mining is interpreted as the ore tonnage
above z (hence the notation Tz). In a stationary model these expected values do
not depend on the location x. The conditional mean of the excess, computed
only where it is positive, is equal to

E½ðZðxÞ � zÞjZðxÞ$ z� ¼ E½ðZðxÞ � zÞ1ZðxÞ$ z�
PðZðxÞ$ zÞ ¼ bz

Tz

Now the conditional expectation of Bz(x) given min(Z(x), z) is 0 if this
minimum equals Z(x)—that is, if Z(x), z—and is equal to E(Z(x)� z7Z(x)$ z)
otherwise, so that

E½BzðxÞjminðZðxÞ, zÞ� ¼ bz

Tz
1ZðxÞ$ z ð3:70Þ

The truncated grade and the excess are related through the indicator ofZ(x)$ z.
In fact the conditional expectation (3.70) can also be written as the regression
of Bz(x) on the indicator
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E½BzðxÞj1ZðxÞ$ z� ¼ bz

Tz
1ZðxÞ$ z

The residual from this regression is

RzðxÞ ¼ BzðxÞ � bz

Tz
1ZðxÞ$ z

By construction it has mean zero and is uncorrelated with the indicator. It also
turns out to be uncorrelated with the truncated grade. This lack of correlation
applies at the same point x. It also applies spatially—that is, between the
residual Rz(x) at point x and the indicator 1Z(x+h) $z at another point xþ h—
provided that there are no edge effects in the high value zone. This assumption
can be tested by considering indicators at different cutoffs: In the absence of edge
effects the indicator cross variogram γzz0 for two cutoffs z0 . z is proportional to
the direct variogram γz of the lower indicator. This criterion guides the selection
of the cutoff. There are also special models with lack of edge effect built in
(mosaic model and model with orthogonal indicator residuals, Section 6.4.3).

In the end the grade is decomposed into a sumof three variables: the truncated
grade, the weighted high-grade indicator, and an uncorrelated residual

ZðxÞ ¼ minðZðxÞ, zÞ þ bz

Tz
1ZðxÞ$ z þ RzðxÞ

For a sufficiently high cutoff the residual is nearly a nugget effect because it
inherits the spatial destructuring of high grades, therefore its kriging estimate is
its mean value zero. Replacing the residual by its mean value gives

ZðxÞ 	 minðZðxÞ, zÞ þ bz

Tz
1ZðxÞ$ z ð3:71Þ

The truncation model reduces to two spatially structured terms, the truncated
grade and the indicator, which are free from high grades—this is the beauty of
the decomposition.

These two terms can be estimated by cokriging, which involves modeling (a)
the direct variograms of the truncated grade and of the indicator and (b) their
cross-variogram.

When the residual is set to zero in formula (3.71), the only information
retained from high grades is the geometry of high-grade zones and the mean of
these high grades. This is quite interesting and can be used heuristically
regardless of the underlying assumptions, at least for the estimate (the variance
is more sensitive to the model). The improvement over a straight kriging of
truncated grades is the addition of the mean excess grade bz/Tz in proportion to
its probability of presence.

Rivoirard et al. (2012) present an application of the truncation model to a
gold deposit with vertical veins exploited in an open pit. The data consist of 8706
chemical assays on a 1-m support from 493 blast holes. Figure 3.21a shows the
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FIGURE 3.21 Vertical cross section through the block model along a gold vein. (a) Top view of

the deposit showing the trace of the cross-section and the position of the blast holes (drilling mesh

of 2.5 m perpendicular to the section and 5 m along the section); (b) Map of the indicator associated

with Z(x)$ 5 g/t, estimated by ordinary cokriging from truncated and indicator data; (c) Map of

truncated grade below a 5 g/t cutoff, estimated by ordinary cokriging from truncated and indicator

data; (d) Map of the final cokriging estimates obtained by recombining the indicator and the

truncated grades by (3.71); (e) Map of direct ordinary kriging estimates of grades. Notice that the

scale of (c) ranges from 0 to 5 whereas that of (d) and (e) ranges from 0 to 10. [From Rivoirard et al.

(2012), with kind permission of the International Association for Mathematical Geosciences.]

(See color insert)
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trace of the vertical vein and the position of the blast holes a few meters away on
either side. The data have an extremely skewed distribution with a minimum
of 0, a mean of 1.76, a maximum of 443 g/t, and a coefficient of variation σ/m of
7.74. A block model is built for short term planning, with block size 2.5� 5� 1m
and at least one sample per block. A top-cut grade of 5 g/t is selected (much
lower than the top-cut grade of 30 g/t commonly used in gold mines) to ensure
lack of edge effects and a practically flat variogram of residual Rz.

Figure 3.21b shows the cokriging estimates of the indicator above 5 g/t within
blocks. These represent estimated proportions of values above 5 g/t within each
block—which explains why they remain fairly low. Figure 3.21c shows the
cokriged truncated grade, with a color scale from 0 to 5 g/t, and Figure 3.21d is
the final result obtained with formula (3.71). The result obtained by straight OK
of the grade is shown in Figure 3.21e for comparison. Let us focus on the central
and left-hand parts of the section. Both show areas with a relatively high
truncated grade (between 3 and 4 g/t). However, high indicator values (between
0.4 and 0.6) are more abundant in the central part, which results in a more
developed patch of high grades (. 10 g/t). The massive high-grade area (red)
present on the left-hand side of the OK section and the large yellow patch on
the right-hand side are likely artifacts caused by unwarranted interpolation
of high grades.

3.8 CASE STUDY: THE CHANNEL TUNNEL

The Channel tunnel project may well be the ideal geostatistical case study. It
is an important application, it is simple to understand, and—a rare event—it is
possible to compare the geostatistical predictions with reality. Boring of the
tunnel was completed one month ahead of the initial schedule despite the fact
that most of the tunnel boring machines only came into service several months
late. This is in contrast with the long delays usually encountered in tunnel
boring around the world. It was the result of the excellent performance of men
and machines, but also of a careful assessment of the geological risk through
geostatistical analysis.

The first results of the study were published by Blanchin et al. (1989), and an
overview of the Channel tunnel project with a historical perspective is given by
Blanchin and Chilès (1993a). We will borrow heavily from these two papers,
with an emphasis on methodological aspects.

3.8.1 Objectives and Methodology

The geological setting of the tunnel shown in Figure 3.22 can be summarized as
follows: a favorable layer, the Cenomanian Chalk Marl, made of soft, generally
impermeable and homogeneous rock, overlain by the Grey Chalk, a highly
porous layer of typically fractured and altered rocks, and underlain by the
Gault Clay, which cannot be penetrated without serious civil engineering
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problems. The Chalk Marl and the Gault Clay are in fact separated by a thin
regular layer of Tourtia Chalk, but here it is lumped with the Chalk Marl for
simplicity. Notice that what is called the tunnel comprises really three parallel
tunnels 15 m apart, two for transport and a smaller one for servicing.

Although optimization of the tunnel alignment had to take into consider-
ation the slope and curvature constraints imposed by a high-speed railway, the
primary constraints were geotechnical and geological:

� No geophysical borehole could be intersected for fear of water inflow.

� The tunnel had to be at least 20 m deep below the seafloor to preserve the
mechanical strength of the overlying formations.

� The tunnel could not be bored much deeper than 100 m below sea level
because of the characteristics of the tunnel boring machines.

� The faults had to be intersected as orthogonally as possible.

� Most important, the tunnel had tobeboredwithin theChalkMarl formation.

The objective of the geostatistical study was to provide an accurate determi-
nation of the geometry of the Chalk Marl, which is only 30 m thick, and
dipping, in order to prevent the risk of tunneling into the Gault Clay. It focused
on the most critical variable, the top of the Gault Clay. A first estimation was
made by kriging on the basis of the data available before the construction of the
tunnel, with a careful evaluation of uncertainties. The results led the engineers
to revise the initial layout. It was also realized that a better precision was
needed in certain sections of the tunnel, and a complementary survey

FIGURE 3.22 Channel tunnel: typical geological cross section showing the three tunnels.

[Reprinted from Blanchin et al. (1989), with kind permission from Kluwer Academic Publishers;

Blanchin and Chilès (1992, Figure 1), with kind permission from Springer-Verlag.]
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was designed by geostatistical analysis. Finally, data acquired during drilling
of the service tunnel allowed a comparison with the geostatistical predictions.

3.8.2 Contour Mapping

In this phase the goal is to calculate a reliable digital model of the top
of the Gault Clay and to produce meaningful contour maps and cross sections.
The basis is 1500 km of bathymetric and reflection seismic surveys, recorded
continuously (every 3 m). The data include (1) five longitudinal seismic profiles
running parallel to the tunnel, 25 m apart on the French side and 250 m apart
on the British side; (2) 83 transverse seismic profiles, at variable intervals
between 250 m and 1000 m, and (3) 10 boreholes drilled in 1986 plus 90 old
boreholes.

The depth G(x) from sea level to the top of the Gault Clay is given by

GðxÞ ¼ SðxÞ þ VðxÞTðxÞ=2

where S(x) is the depth to the seafloor, computed from bathymetric data, T(x)
represents seismic two-way time from the seafloor to the top of the Gault Clay,
computed from seismic profile data, and V(x) is the average velocity obtained
by various geophysical methods, such as sonic logs in some of the wells. The
variables S(x), T(x), and V(x) are estimated independently and combined
through this equation to produce the final result G(x).

Kriging variances are computed for each interpolated variable and because
the errors are independent, the kriging variance attached to G is given by

σ2
G ¼ σ2

S þ ðσ2
VT

2 þ V2σ2
T þ σ2

Vσ
2
T Þ=4

where σ2
S,σ

2
V , and σ2

T are the kriging variances associated with S, V, and T and
all values depend on the location x.

Given the importance of risk assessment in this application and the geo-
logical heterogeneity from one part of the Channel to the other, a global
structural analysis would be meaningless because not only the variogram
parameters could change but also the variogram shape. The approach taken by
Blanchin et al. (1989) is to divide the area into successive 1000-m-long units
(37 units) and in each one compute (a) the histogram and statistical parameters
and (b) the raw and residual variograms in the two profile directions (that
coincide with the main directions of the anticline). To avoid sampling bias,
some data in overrepresented areas are discarded. The outcome of this pre-
liminary study is the definition of 16 homogeneous zones 1 to 5 km long,
obtained by merging similar successive units.

To complete the analysis, the various sources of measurement errors are
identified (e.g., tide correction, migration of seismic reflectors, velocity
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calculations) and included in the final structural model. The latter is validated
in each zone and also globally, using standard cross-validation techniques.

The area of study is defined as a 1-km-wide and 40-km-long strip centered
along the main axis of the first planned alignment. The variables are inter-
polated by kriging to the nodes of a 40-m� 20-m rectangular grid (20 m in the
transverse direction), using for each variable a moving variogram model
fitted zone by zone, with some smoothing between zones. Known faults are
included as screens for the estimation of seismic times and velocities. Mea-
surement errors that are locally constant along a profile are taken into account
by adding a specific variance term to all covariances between two points on the
profile.

Figures 3.23 and 3.24 show contour maps of depth and standard deviation
for part of the French side of the tunnel layout. The general pattern of the
top of the Gault Clay reflects the regional geological trend, an anticline
whose axis is parallel to the alignment; the boundary of the Gault Clay
outcrop is shown on the map as a dashed line. The standard deviation
increases from south to north, reflecting the higher impact of velocity
uncertainty with increasing seismic travel time. It shows well-marked minima
in the vicinity of the profiles (good knowledge of seismic time) and the
boreholes (consistent knowledge of seismic time and average velocity).
Throughout the study area the standard deviation lies between 2 and 6 m,
never exceeds 4 m along the underwater section of the tunnel route, and
generally falls between 2 and 3 m.

FIGURE 3.23 Channel tunnel: contour map of the top of the Gault Clay on the French side, in

meters. [Reprinted from Blanchin and Chilès (1992, Figure 2), with kind permission from Springer-

Verlag; Blanchin and Chilès (1993a), with kind permission of the International Association for

Mathematical Geosciences; Blanchin and Chilès (1993b), with kind permission from Kluwer

Academic Publishers.]
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3.8.3 Risk Assessment

We now have to answer the initial civil engineering question: Will the planned
alignment intersect the Gault Clay? Or rather, given our incomplete knowledge,
what is the risk that the planned alignment intersects the Gault Clay? This is
where kriging standard deviation proves to be useful.

Cross sections are the tool of choice to visualize the geometry of the tunnel
project in the vertical plane. They can be generated from the grid or directly by
kriging at points along the three tunnel galleries. Figure 3.25 shows the results
obtained with a spacing of 20 m along a section of the south tunnel (vertical
scale exaggeration: 20). The seafloor and the top of the Gault Clay are repre-
sented with their nominal 68% confidence intervals (61 standard deviation).
For bathymetry the estimation is so precise that the three lines are indistin-
guishable on the graph (the kriging standard deviation does not exceed 0.5 m).
When considering the estimated top minus one standard deviation, one can see
that the first alignment could intersect the Gault Clay in several places.

This led the engineers to revise the layout so as to maintain the tunnels
nearly everywhere at least one standard deviation above the estimated top of
the Gault, as shown in the cross section. The risk of penetrating the Gault Clay
was thus reduced, but of course not entirely eliminated. Notice that the engi-
neers chose to use σ rather than the statistician’s sacred 2σ because, in sections
where it mattered, they were ready to assume a 16% risk of hitting the Gault
Clay (one-sided interval).

FIGURE 3.24 Channel tunnel: kriging standard deviation for the top of the Gault Clay on the

French side, in meters. [Reprinted from Blanchin and Chilès (1992, Figure 4), with kind permission

from Springer-Verlag; Blanchin and Chilès (1993a), with kind permission of the International

Association for Mathematical Geosciences; Blanchin and Chilès (1993b), with kind permission

from Kluwer Academic Publishers.]
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3.8.4 Optimum Design of a Complementary Survey

The tunnel project also included crossover excavations at two locations to
enable the trains to pass from one tunnel to the other if necessary. Their
construction required more accurate geological predictions than those used for
the main tunnel, which required a complementary geophysical survey. How
should the survey be designed to achieve a standard error of less than 1 m on
the top of the Gault Clay?

Since kriging variances can be computed without knowing the values of the
variables, it suffices to simulate the surveying process by adding fictitious data
until the required precision is achieved. The result is a recommendation to place
the transverse seismic profiles 25 m apart over the French crossover and 100 m
apart over the British crossover and calibrate the seismic velocity by at least
four boreholes at each crossover. With this new survey and a new pass of
variogram analysis and kriging, maps and cross sections are redrawn with
improved precision.

3.8.5 Geostatistical Predictions Versus Reality

As boring of the tunnel progressed, dual boreholes, one dipping to the north
and the other to the south, were drilled downward from the central service
tunnel to determine the actual depth and dip of the Gault Clay. Fifty-four dual
boreholes were drilled along the first 13 km on the French side, and 31 were
drilled along the first 15 km on the British side. The objective was to check the
accuracy of the current estimates and, if needed, revise them to get a reliable
geometric model for the continuation of the project.

The “reality�prediction” differences are plotted in Figure 3.26, and their
statistical characteristics are summarized in Table 3.3, separately for the British
side and the French side because their data patterns and spatial characteristics

FIGURE 3.25 Channel tunnel: cross section of kriged results along the profile of the south tunnel.

Vertical scale exaggeration: 20. [Reprinted from Blanchin et al. (1989), with kind permission from

Kluwer Academic Publishers; Blanchin and Chilès (1992, Figure 1), with kind permission

from Springer-Verlag.]
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are rather different. Typical of real case studies, the results are not as straight-
forward as one would wish. On the British side the mean difference is 1.70 m and
the standard deviation 3.4 m. The distribution of errors along the service gallery
shows a good agreement between the actual and predicted depths for the first
20 points (dotted lines are 6σK), but a systematic effect is apparent for the last

FIGURE 3.26 Channel tunnel: discrepancies observed in the service tunnel (reality�prediction):

on the British side (above); on the French side (below). Both graphs go from the coast (left) toward

the tunnel midpoint (right). The distance axes have opposite directions, and their origins differ. The

two parts are separated by a zone of about 10 km without control borehole. [From Blanchin and

Chilès (1993a,b), with kind permission of the International Association for Mathematical

Geosciences and Kluwer Academic Publishers.]
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10 boreholes (average difference of 5.6 m). This prompted a review of the initial
interpretation in light of the new data. A key factor is that these 10 discrepancies
are clustered in a zone where the density of seismic profiles and borehole data is
the lowest for the whole tunnel—that is, where the accuracy of the geostatistical
mapping is low (σK¼ 3.25 m) compared with the average value for the British
sector (σK¼ 2.55 m). A careful reinterpretation of the seismic data in that zone
pinpointed two systematic errors: (1) An error in the time pick, the Tourtia
Chalk was mistaken for the Gault Clay horizon lying in reality 3.5 m below; (2)
there were errors in the calibration of the velocity data, due to poor positioning
of old (1964�1965) geophysical boreholes in an area with a strong dip.

On the French side the positioning uncertainty on the geophysical boreholes
was taken into account in the kriging process by a highly correlated error
component in the velocity data. The observed discrepancies are small through-
out, even apparently too small. But caution, the errors are far from independent!
If they were, they would fluctuate back and forth around the zero line; on the
contrary, they tend to stay on the same side of the line. Blanchin and Chilès
(1993b) did a variogram analysis of the errors and concluded that on the French
side the 54 observations are in fact equivalent to only 13 independent samples,
while on the British side the 31 values are worth 21 independent samples.

In conclusion, the observations in the service tunnel were generally in good
agreement with the geostatistical model and its predicted accuracy. When
discrepancies occurred, they could be traced to systematic interpretation errors
localized in sparsely sampled zones. This type of error is always a risk with
geophysical (i.e., indirect) measurements, so it requires calibration data. The
main objective of the geostatistical study, avoid penetrating the Gault Clay,
was achieved; it never happened on the French side and happened twice on the
British side, but where expected.

3.9 KRIGING UNDER INEQUALITY CONSTRAINTS

In natural phenomena one encounters inequalities of two types. The first are
global constraints due to the very definition of the variables. For example,

TABLE 3.3 “Reality�Prediction” Differences in British and French Sides

French Side (13 km) British Side (15 km)

Number of borehole pairs 54 31

Minimum difference �5.00 m �7.00 m

Maximum difference þ3.90 m þ8.00 m

Mean difference þ0.48 m þ1.70 m

Standard deviation from zero 2.02 m 3.40 m

Kriging standard deviation 2.85 m 2.55 m

Source: Blanchin and Chilès (1993a,b), with kind permission of the International Association for

Mathematical geology and Kluwer Academic Publishers.
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mineral grades, thicknesses of geological layers, are positive quantities, and
rock properties such as porosity and fluid saturations vary between 0 and 1.
The second type are local constraints providing bounds on the results, and these
can be regarded as data. For example, if drilling was stopped at a depth z0
without hitting a given geological surface, we know that the depth of the sur-
face at that point is Z(x). z0. Naturally the information carried by interval
data a # Z(x) # b depends on the tightness of the bounds.

Simple ad hoc methods can sometimes solve the problem. For global con-
straints an adequate transformation of the data, followed by kriging and a back
transform, can automatically produce estimates within the desired range. This
is often useful even if the reverse transformation poses a bias problem. Another
simple method is censoring: Estimation is carried out without consideration of
the constraints, and the results are modified as needed to satisfy the constraints.
For example, when a geological layer “pinches out,” negative thickness esti-
mates appear by continuity as the estimated point moves away from the layer
boundary; it is legitimate to set these negative estimates to zero. Finally, adding
dummy points, possibly with error variances, at critical locations may suffice to
produce a quick result honoring the constraints.

In this section we review methods that incorporate the constraints explicitly in
the estimation process by adaptations of linear kriging. Nonlinear methods based
on conditional simulations are presented in Sections 7.6.1 and 7.6.3.Wewill focus
here on three different approaches to handle inequalities: Place constraints on the
kriging weights, constrain the estimates, and treat constraints as data. The advent
of theGibbs sampler has made the third approach the one of choice, but the other
two still provide interesting methodological insight.

3.9.1 Nonnegative Kriging Weights

The reason why known global constraints may be violated by kriging estimates is the pos-
sibility of weights, 0 or. 1 (cf. Example 4 with a power α¼ 1.5; Figures 3.14 and 3.16). The
coincidence of a negative weight with a large sample value can produce negative estimates, or
simply puzzling ones such as an estimated grade lower than every sample in the neighbor-
hood. A sufficient but not necessary condition to preclude this is to constrain all kriging
weights to be nonnegative. If, in addition, weights add up to one, the kriging estimates
automatically lie within the minimum and maximum of the estimating data.

The ideal solution would be to use covariance or variogram models that automatically
generate positive weights. Matheron (1986) investigated whether such models exist and stated
the following conclusions.

Consider a set I¼ {1, 2, . . . ,N} of indexes that we arbitrarily partition into sample points
and estimated points. The random variables Zi have a covariance matrix Σ, assumed to be
strictly positive definite. We want to find Σ such that kriging weights are $0 for all partitions
of the set I, namely all kriging configurations. The results are as follows:

1. The problem may have a solution only for SK and OK.

2. SK and OK weights are $ 0 if and only if all off-diagonal terms of the inverse matrix
Σ�1 are # 0.

3. Only in 1D do we know covariance or variogram functions ensuring positive kriging
weights.
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In the special case of SK, formula (3.64) shows the direct link between the sign of the off-
diagonal terms of Σ�1 and the kriging weights. In the case of OK, the covariance matrix Σ in
statement 2 can be replaced by the generalized covariance matrix K where Kij¼�γij, or
Kij¼C� ai� aj� γij, and K is assumed strictly conditionally positive definite.

In 1D we already know that the exponential covariance ensures positive SK weights and the
linear variogram positive OK weights. In fact the exponential covariance also ensures positive
OKweights, and this property extends to completely monotone covariances (2.28). The (simple)
kriging weights satisfy

P
λα # 1 for all finite configurations and the optimal weights for the

estimation of the mean are also positive. Likewise, positive OK weights are obtained with any
variogram of the form

γðhÞ ¼ Ajhj þ Cð0Þ � CðhÞ ðA$ 0Þ

where C(h) is a completely monotone covariance. Unfortunately, these results are only for 1D.
In 2D we know that the geostatistician’s best friends, the spherical covariance and the linear
variogram, generate negative weights (see Figures 3.16 and 3.15). In dimension higher than 1D
the conditions onΣ�1, to be useful, would require modeling Σ�1, as in the Gaussian Markov
random field approach (Section 3.6.4) rather thanΣ as in the standard geostatistical approach.

An alternative is to place positivity constraints on the weights by using constrained
optimization. For example, Barnes and Johnson (1984) reformulate ordinary kriging as

Minimize E
X
α

λαZα � Z0

 !2

subject to
X
α

λα ¼ 1 and λα $ 0 ’α

which can be solved by quadratic programming. However, forcing all weights to be positive is
artificial, it confines kriging in a straitjacket.

3.9.2 Minimization under Inequality Constraints

The general problem is to find an estimator Z*(x) such that

Z�ðxαÞ ¼ zα for α ¼ 1, : : : ,N

zinfα #Z�ðxαÞ# zsupα for α ¼ N þ 1, : : : ,N þM

where the first N data are exact data and the remaining M are inequality data.
In two papers, Dubrule and Kostov (1986) and Kostov and Dubrule (1986) approach

this problem by first noting that a direct constrained minimization of the quadratic form
E(Z*�Z0)

2 leads to an impasse because a constraint at the point xα only affects estimation at
xα itself, without any lateral continuity, producing jumps just like kriging of a sample point in
the presence of a nugget effect. They reformulate the problem under dual kriging as follows:
Find an interpolating function of the form

z�ðxÞ ¼
XNþM

α¼1

bαKðx� xαÞ þ
X
‘

c‘ f
‘ðxÞ

where the coefficients bα and c‘ satisfy the conditions

z�ðxαÞ ¼ zα for α ¼ 1, : : : ,N,

zinfα # z�ðxαÞ# zsupα for α ¼ N þ 1, : : : ,N þM,

XNþM

α¼1

bα f
‘
α ¼ 0 for ‘ ¼ 0, : : : ,L

8>>>>><
>>>>>:

ð3:72Þ
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The first and third equalities are similar to the usual dual kriging equations (3.45) for exact
data. The interval constraints can be broken down into two one-sided inequalities.

These conditions on the form of the interpolating function do not suffice to determine a
unique solution. By analogy with spline theory, the authors propose to select the solution bα
and c‘ minimizing the quadratic form

Q ¼
XNþM

α¼1

XNþM

β¼1

bαbβKαβ

under the constraints (3.72). When M¼ 0 (no inequalities), the solution is the usual dual
kriging interpolant; when M. 0 and the spline covariance model is used for K(x, y), Q is
interpreted as the mean curvature of the interpolated surface, and the solution is then a thin
plate spline.

A technical difficulty appears here because the function K(x, y) used is not a genuine
covariance but a “generalized covariance” (see Chapter 4). The quadratic form is not positive
definite (strictly or not), and therefore not a convex function, which is inconvenient for
minimization. The difficulty is only apparent because in reality we only deal with vectors b
that satisfy the conditions F0b¼ 0 (allowable linear combinations), and the restriction of the
quadratic form to these vectors is a convex function. Considering the top left block U of
the partitioned inverse kriging matrix in equation (4.31), Langlais (1989) casts the minimi-
zation of Q in the equivalent form:

Minimize Z
0
UZ subject to

Zα ¼ zα for α ¼ 1, : : : ,N

zinfα #Zα # zsupα for α ¼ N þ 1, : : : ,N þM

8>>><
>>>:

The first N components of the vector Z are the exact data and the remaining M components
are the values at the constraint points determined by quadratic programming. Once Z is
determined, the dual kriging solutions are computed as b¼UZ and c¼V0Z. The constrained
minimization problem has a unique solution if the UK problem for the N exact data has itself
a unique solution (i.e., there are at least Lþ 1 exact data points over which the drift functions
are linearly independent); this condition is sufficient but not necessary (Langlais, 1989).

Figure 3.27 from Dubrule and Kostov illustrates the method in 1D using cubic spline
interpolation: First, only the 9 exact data are used; then 18 inequality constraints are added,
consisting of M1¼ 12 lower bounds, M2¼ 6 upper bounds, and two points (x¼ 4, x¼ 6)
having two-sided inequalities. In the first pass, 12 inequalities are violated; in the second pass
they are all satisfied of course, but notice the “clamping effect” at the bounds: The function is
exactly equal to some of the bounds. This is how quadratic programming works: It selects
some of the constraints (the “active” ones) and satisfies them at the bounds; then all the other
constraints are automatically satisfied as well. If we knew which constraints are the active
ones, it would be possible to introduce them as equality data, ignore the others, and
proceed with normal kriging. The problem is to determine the active set, because it does not
coincide with the constraints that are violated by an initial execution of the kriging procedure
based only on exact data.

Minimization under constraints requires special care when moving neighborhoods are
used because the algorithm may assign different values at the same inequality point depending
on the neighborhood considered. The recommended procedure is to select exact data first,
using the standard neighborhood search algorithm, and then include the constraint points
that would have been selected by the search algorithm operating without distinction between
data and constraints. To summarize, inequality data are treated as secondary information.
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3.9.3 Inequalities as Data

An alternative approach proposed by Langlais (1990) is to regard inequalities as data and
replace them by exact values. The procedure is to simulate exact data satisfying the given
inequalities, proceed to kriging from both actual and generated data, and finally average the
results over several simulations of the inequality data. We will keep her approach but present
a new implementation based on the use of the Gibbs sampler.

To simplify notations, we consider here that all data are of the form Zα2Bα, where Bα
denotes an interval, or more generally a Borel set (e.g., a finite union of intervals), with the
understanding that it may be reduced to a single point in the case of exact data. If Z is a
Gaussian RF with known mean, consider the conditional expectation

(a)

(b)

*
*

*
*

* *

*

*

*

*
* *

*
* *

*

*

*

FIGURE 3.27 Interpolation (a) based on exact data only; (b) with constrained optimization. The

function is a cubic spline obtained with K(h)¼ 7h73 and a linear drift. Asterisks are exact data,

triangles are lower bounds, and “Y” are upper bounds. [From Dubrule and Kostov (1986), with

kind permission of the International Association for Mathematical Geosciences.]
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E½ZðxÞjZα 2 Bα,’α�
In principle, this expectation can be calculated by integration of the Gaussian p.d.f., but in
practice, this is an intractable problem. Instead, note that the simple kriging estimator is

E½ZðxÞjZα ¼ zα,’α� ¼
X
α

λαzα

so that

E½ZðxÞjZα 2 Bα,’α� ¼
X
β

λβEðZβ jZα 2 Bα,’αÞ

Thus it suffices to perform simple kriging after replacing the inequality data by their condi-
tional expectations E(Zβ7Zα2Bα, ’α). We compute these means empirically by generating
samples from the joint conditional distribution of the Zα given all data {Zα2Bα}, using an
algorithm known as the Gibbs sampler (see Section 7.6.2). This is implemented by repeating
the following sequence:

1. Select an index α in the set of inequality data.

2. Simulate Zα conditionally on Zα2Bα and Zβ¼ zβ for all β 6¼ α (β ranges over all data
indexes except α).

The procedure can be initialized by generating each Zα separately, conditionally on Zα2Bα.
The index α may be scanned either periodically or using an irreducible Markov chain, the
important point being that, in theory, each index is almost surely drawn infinitely often. It is
possible to generalize the method to more complex constraints defined as a Borel set of RN

(e.g., ellipsoids instead of parallelepipeds; N is the number of data).
This approach finds its theoretical justification in the ideal case of a Gaussian RF with

known mean. It can be used more generally, as an algorithm, by assuming that at each step the
conditional distribution is Gaussian with mean the kriging estimate and variance the kriging
variance. The algorithm ensures that the inequality data are accounted for in a consistent
manner, but of course its optimality properties are unknown. The same approach is used
effectively to generate conditional simulations constrained by inequality data (Section 7.6.3).
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C H A P T E R 4

Intrinsic Model of Order k

A trend is a trend is a trend
But the question is, will it bend?
Will it alter its course
Through some unforeseen force
and come to a premature end?

— Sir Alec Cairncross

4.1 INTRODUCTION

4.1.1 A Perspective

Intrinsic random functions of order k (IRF–k) were developed initially to work
around the difficult problem of statistical inference of the variogram in the
Universal Kriging model. Indeed, as we have seen in Chapter 2, the presence of
a spatial trend creates a bias that affects both the raw variogram and the
variogram of estimated residuals. The idea of IRF–k theory was to remove
the trend from sight by using only linear combinations that filter out low order
polynomials, and any trend is at least locally polynomial. As a side benefit, the
new theory delivered a new class of covariance models, the polynomial gen-
eralized covariances, which are linear in their coefficients and thus make direct
statistical inference possible without bias. In retrospect, however, it appears
that the IRF–k model did not supersede the UK model, because the trend is
often a physically meaningful component, especially when it can be estimated
by regression on external variables.

The real benefit of IRF–k theory is that it brings unity and clarity to geos-
tatistical theory. It singles out the intrinsic properties of a nonstationary ran-
dom function, which are the only ones that really matter for kriging. It brings
new insights into radial basis function interpolation and splines. And, most
importantly, it builds a connection between geostatistics and physics by

Geostatistics: Modeling Spatial Uncertainty, Second Edition. J.P. Chilès and P. Delfiner.

r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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providing the correct conceptual model to represent the nonstationary solu-
tions of stochastic partial differential equations.

4.1.2 From IRF–0 to IRF–k

The notion of intrinsic random function of order k (henceforth abbreviated as
IRF–k) constitutes a natural generalization of the intrinsic random functions
(i.e., with stationary increments) of traditional geostatistics. These correspond
to the particular case k¼ 0 and will now be called IRF–0. In passing from
stationary random functions (SRF) to IRF–0, the following changes take place:

� The basic working tool of the stationary case, the covariance C(h), is
replaced by the variogram γ(h). This extends generality, since the class of
valid variogram functions is broader than the class of covariance functions
[C(h) must be positive definite, whereas it is only required that –γ(h) be
conditionally positive definite]. In contrast to the covariance, the vario-
gram may be unbounded, and this enables the description of phenomena
with a potentially unlimited dispersion (theoretically infinite variance)
such as the Brownian motion.

� In the stationary case there exists a mean value m about which the SRF
fluctuates. The phenomenon remains “controlled” in the sense that the
deviations from the mean are never too large nor last too long. In the case
of an IRF–0 with an unbounded variogram, no such regulation exists. The
Brownian particle has no memory. It bounces from its current position as
if it were a new origin and shows no tendency to revert to its starting point.
There is no constant mean valuem. In effect such a process is defined up to
an arbitrary constant and is generally studied only through its increments.

� In the case of an SRF, any linear combination

ZðλÞ ¼
X
i

λiZðxiÞ

has the variance

Var ZðλÞ ¼
X
i

X
j

λiλj Cðxj � xiÞ

where C(h) is a centered covariance. In the case of an IRF–0, only special
linear combinations have a finite variance, the allowable ones, satisfying
the condition

P
λi ¼ 0. The variance is then calculated using C(h)¼�γ(h)

as if it were a covariance function:

Var ZðλÞ ¼ �
X
i

X
j

λiλj γðxj � xiÞ

Other combinations do not, in general, have a finite variance. Thus, at the
cost of a relatively minor operating restriction (only use linear combina-
tions summing up to zero), we gain the possibility of dealing with a large
class of phenomena that, like the Brownian motion, cannot be represented
by a stationary model.
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Is it possible to go even further in the same direction? In other words, can we
get access to broader classes of nonstationary phenomena at the cost of
restrictions more severe than Σλi ¼ 0? The theory of IRF–k provides a positive
answer to this question. The idea is to define models through increments of a
sufficiently high order for stationarity to be reached, an approach generalizing
the ARIMA models of time series analysis (Box and Jenkins, 1976). We dis-
cover that these models are characterized by a new structure function that is
completely free of the influence of polynomial drifts and turns out to be the real
minimum prerequisite for universal kriging.

4.2 A SECOND LOOK AT THE MODEL OF UNIVERSAL KRIGING

The basic model of universal kriging is the dichotomy

ZðxÞ ¼ mðxÞ þ YðxÞ ð4:1Þ
where Z(x) is the variable under study, m(x) is the drift, and Y(x) is the
fluctuation, or residual, about this drift. From a mathematical point of view,
the drift is well-defined as the expected value m(x)¼E [Z(x)]. Butm(x) is not an
observable, except if there are repetitions allowing us to actually compute m(x)
as an average across several realizations of the same phenomenon.

When the phenomenon is unique, as it is in geological applications, this m(x)
is a purely theoretical construct. Its modeling is inspired by observations of
“trends,” namely systematic patterns of variations in the data. But in reality the
drift is an elusive concept, sometimes unclear or very complex, sometimes clear
but spurious.

4.2.1 Questioning the Dichotomy into Drift and Fluctuation

Except for replications, the most meaningful case for the dichotomy (4.1) is that
of a phenomenon showing small local fluctuations about a clear overall trend
liable to bemodeled by a simple and smoothmathematical function (Figure 4.1).
In themodel the trend is treated deterministically because it is simple, whereas the

FIGURE 4.1 A favorable case for universal kriging. (Author: J. P. Delhomme.)
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fluctuations are too complex to be described in detail and are captured by
probabilisticmeans. Specifically,Y(x) is a stationary randomfunctionwith a zero
mean and a covariance whose range is short at the scale of the study. The drift
may be estimated reliably and subtracted from the data to restore stationarity.
The underlying covariance can be determined from the variogram of residuals
which, at short distances, differs little from the true variogram. The drift then
possesses an objective meaning in the sense of Section 1.2.

The situation is very different when the covariance of fluctuations does not
have a short range. As we have seen in Section 2.7, the drift causes both the
experimental variogram and the variogramof residuals to be considerably biased,
which makes statistical inference of the covariance very difficult and thereby
precludes the use of statistical tests aimed precisely at deciding whether there is a
drift or not. Assuming that it can be defined, the drift is not necessarily simple
enough to be modeled by an analytic expression valid over the whole studied
domain (Figure 4.2). In such cases one can turn to a local model of the form

mðxÞ ¼
X
‘

a‘ðx0Þ f ‘ðxÞ ð4:2Þ

valid only in a neighborhood V(x0) of each point x0. As usual, the f ‘ðxÞ are
given functions (typically monomials), but the unknown coefficients a‘ vary
with the neighborhood. Their estimation is even more difficult than before,
since there are fewer data points in each neighborhood, and we are confronted
with the problem of piecing together local estimates. The map obtained by
moving neighborhood drift estimation often looks much less smooth than
the kriging map, which is rather disturbing (Chilès, 1979a). In reality, in the
absence of a clear separation of scales between m(x) and Y(x), the dichotomy is
simply arbitrary, and the drift is not an objective parameter.

4.2.2 Examples of Zero-Mean Processes with Apparent Drifts

Chance fluctuations may produce clear trends. A well-known and striking
example is shown in Figure 4.3 taken from Feller (1968, p. 87) displaying a
record of a coin-tossing experiment. The function graphed is

FIGURE 4.2 A puzzling case for drift modeling. (Author: J. P. Delhomme.)
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Sn ¼ X1 þ X2 þ � � � þ Xn

where Xi¼þ1 or Xi ¼�1 according to the outcome of the trial with a fair coin.
Given the string between n¼ 2000 and n¼ 4000 and told that these are daily

oil prices, an “expert” would fit an upward trend and extrapolate it for the next
decade. Alas, the trend turns and now points downward for the next 2000
samples! Thus, the next time the expert will try to forecast the “turning point.”
These trends are mere fluctuations of the random walk which has mean zero for
each n.

Large fluctuations such as these can occur due to the lack of any regulating
mechanism in the process. By contrast, a stationaryprocess is subject, so to speak,
to an elastic force pulling it back to itsmean.For example, consecutive increments
Z(x3) –Z(x2) andZ(x2) –Z(x1) at three alignedpointsx1,x2,x3 have a correlation
coefficient of –1/2 when the point interdistance is larger than the range: A move
up tends to be compensated by amove down. However, the variogram of Sn does
not have a range since it is unbounded (Var(Sn – Sm)¼ jn – mj).

Examples like this are not limited to one dimension. We can generate
surfaces that show clear systematic patterns even though, by design of the
simulation algorithm, E[Z(x)]¼ 0 for all x. Figure 4.4a shows a simulation of a
Brownian RF in 2D. The process has a mean zero and a linear variogram; it
was simulated by turning bands (see Section 7.4). Figures 4.4b and 4.4c were
obtained similarly by radial integration of 4.4a (Section 4.5.8); they exhibit
long-range patterns that could be interpreted as drifts, thoughmore complicated
ones than planes or quadratics. But we know that no drift was incorporated in
the generation of the process.

FIGURE 4.3 The record of 10,000 tosses of an ideal coin. [From Feller (1968, p. 87), with

permission of John Wiley & Sons, Inc.]

c04 30 January 2012; 10:56:7

242 INTRINSIC MODEL OF ORDER k



These examples illustrate the existence of zero-mean processes whose fluc-
tuations have an aspect usually attributed to the presence of a trend. There is an
apparent drift but no genetic drift. Any interpretation of these pseudodrifts as
systematic effects is totally spurious, and dangerous as well.

(a)

(b)

(c)

FIGURE 4.4 Simulations of IRFs of order k¼ 0, 1, and 2. Panels b and c suggest drifts that were

not present in the construction of the models. [From Orfeuil (1972).]
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4.2.3 Toward Stationarity

From the grid of values of Figure 4.4b we construct a new grid by differencing
as follows:

Iði; jÞ ¼ Zði � 1; jÞ þ Zði þ 1; jÞ þ Zði; j � 1Þ þ Zði; j þ 1Þ � 4 Zði; jÞ

This new grid is displayed in Figure 4.5c. The “systematic” effects have been
removed, the field appears stationary. The raw variograms which in Figure 4.5a
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FIGURE 4.5 A case where first-order differencing renders data stationary: (a) raw directional

variograms of grid displayed in Figure 4.4b; (b) directional variograms of first-order differences;

(c) map of first-order differences.
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exhibited a parabolic increase typical of a linear drift, and also a violent
anisotropy, now stabilize around a clear sill in Figure 4.5b. The anisotropy has
disappeared, which indicates that it was due to a (local) polynomial component
that differencing has eliminated. Differencing turns nonstationary data into
stationary ones.

Starting now from the highly nonstationary Figure 4.4c we apply the same
differencing operation, but this time the raw variograms still exhibit a parabolic
behavior (Figure 4.6b). Trying differencing again, which amounts to taking
second-order differences of the initial data, establishes stationarity (Figures 4.6c
and 4.6d). Again this is evidenced by a clear sill on the variograms and the
restoration of isotropy. Note that by construction of the simulations, the noise
level is zero so that the low correlation second-order differences, indicated by
the flat variogram, is a genuine feature of the variable Z(x) and not a mere
reflection of a deteriorated signal-to-noise ratio.

This example shows that differencing can be an effective move toward
stationarity. This technique can be extended to the more common case of
scattered data, leading to the concept of Generalized Increment of order k.

4.3 ALLOWABLE LINEAR COMBINATIONS OF ORDER k

4.3.1 Allowable Measures and Generalized Increments of Order k

A set of weights λi applied to m points xi of R
n defines a discrete measure λ of

the form

λ ¼
Xm
i¼1

λi δxi ð4:3Þ

where δxi is the Dirac measure at the point xi (Dirac delta function). The action
of λ on a function f(x) defines a linear combination that will be synthetically
denoted by f (λ):

f ðλÞ ¼
Z

f ðxÞ λðdxÞ ¼
Xm
i¼1

λi f ðxiÞ

Definition. A discrete measure λ is allowable at the order k if it annihilates all
polynomials P on Rn of degree less than or equal to k:

PðλÞ ¼
Xm
i¼1

λi PðxiÞ ¼ 0 whenever degree P# k ð4:4Þ

We call Λk the class of such allowable measures.
It is clear that (4.4) is achieved if and only if λ annihilates separately all

monomials of degree up to k. In one-dimensional space there are kþ 1 condi-

tions, one for each power of x. In n-dimensional space there are kn ¼
�
kþn
k

�
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FIGURE 4.6 A case where second-order differencing is needed to make data stationary: (a) raw

directional variograms of grid displayed in Figure 4.4c; (b) directional variograms of first-order

differences; (c) directional variograms of second-order differences; (d) map of second-order

differences.
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monomials of degree less than or equal to k and thus as many conditions. To
avoid quadruple indexes, it is convenient to use the following condensed
notations:

xi ¼ ðxi 1; : : : ; xi nÞ for a point in Rn (but in 2D we use (xi, yi) as the
coordinates)

‘ ¼ ð‘1; : : : ; ‘nÞ for a set of nonnegative integers

x‘i ¼ x‘1i 1 x
‘2
i 2 � � � x‘ni n for a monomial

j ‘ j ¼ ‘1 þ � � � þ ‘n for the degree of x‘

Then (4.4) is equivalent to the set of conditionsXm
i¼1

λi x
‘
i ¼ 0; j ‘ j ¼ 0; 1; : : : ; k ð4:5Þ

that is, all moments of order up to k, inclusive, are zero. Obviously we have
Λkþ1 � Λk.

An allowable measure λ 2Λk defines an allowable linear combination of order
k (abbreviated as ALC–k), also called authorized linear combination of order k,
or generalized increment of order k,

ZðλÞ ¼
X
i

λi ZðxiÞ ð4:6Þ

Link with Error Contrasts

The concept of ALC–k is of algebraic nature and can be presented in the framework of linear
models and “error contrasts” familiar to statisticians. Suppose that in the standard notations
of linear models

Y ¼ X βþU ð4:7Þ
where Y ¼ ðY1; : : : ;YNÞ

0
is a vector of observations (N. kn), X ¼ ðx‘i Þ is the N3 kn matrix of

all monomials evaluated at points x1, . . . , xN, β ¼ ðβ0; : : : ;βkn�1
Þ0 is a vector of coefficients,

and U¼ (U1, . . . ,UN)
0 a vector of residuals. Formula (4.7) is exactly the discrete formulation

of the universal kriging model with a polynomial drift of degree k. Then a linear combinationP
iλiYi is an ALC–k if the relation (4.5) is satisfied, namely if the vector of weights

λ¼ (λ1, . . . ,λN)0 satisfies

λ0 X ¼ 0 ð4:8Þ
Combining (4.7) and (4.8) gives

λ0 Y ¼ λ0 U

and it is seen that β (the drift coefficients) has been completely eliminated. Generalized
increments are linear functions of U only; they are error contrasts. Conversely, if a function
Φ(Y) of the data does not depend on β at all, namely satisfies the invariance property

ΦðYþ XaÞ ¼ ΦðYÞ ’a
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then Φ(Y) depends on Y only through N – kn error contrasts (Delfiner, 1977). This justifies
why in a theory where the drift is to be bypassed, it is necessary to allow some linear
combinations and forbid others.

Before turning to examples, it is worth mentioning that the notion of ALC–k can be
extended to the continuous case by considering

f ðμÞ ¼
Z
μðdxÞ f ðxÞ

for measures μ in the larger class Mk of measures vanishing outside a compact set (measures
with compact support) and satisfying

Z
μðdxÞx‘ ¼ 0; j ‘ j ¼ 0; :::; k

4.3.2 Examples

Finite Differences on the Line

The forward finite difference of order (kþ 1) of a function f(x) is defined by

Δ1
a f ðxÞ ¼ f ðxþ aÞ � f ðxÞ,

Δkþ1
a f ðxÞ ¼ Δ1

aΔ
k
a f ðxÞ ¼ ð�1Þkþ1

Xkþ1

p¼0

ð�1Þp kþ 1
p

� �
f ðxþ paÞ

As Δ1
a decreases by one the degree of any polynomial, it is easy to see by

induction that finite differences of order kþ 1 annihilate polynomials of degree
k. Thus they are ALC–k.

Five-Point Laplacian Approximation

In 2D consider 5 points x0, x1, . . . , x4 arranged as in Figure 4.7. Let
λ1¼λ2¼λ3¼λ4¼ 1 and λ0¼�4, and let xi and yi denote the two coordinates
of the point xi. The measure λ is allowable at order 1, since

x0 x1x3

x4

x2

x

y

a

FIGURE 4.7 f (λ)¼ f (x1)þ f (x2)þ f (x3)þ f (x4)� 4 f (x0) is an allowable linear combination of

order 1 but not of order 2.
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X
i

λi ¼
X
i

λi xi ¼
X
i

λi yi ¼ 0

Since xiyi¼ 0 for all i, λ also annihilates the monomial xy. But it does not
annihilate x2 nor y2: X

i

λi x
2
i ¼

X
i

λi y
2
i ¼ 2a2

Therefore λ is not allowable at the order 2. (As a matter of fact, f(λ)/a2 is a
finite difference approximation to the Laplacian Δf of f at the point x0.)

Increments on a Circle

2kþ 2 points placed on a circle at regular angular intervals π/(kþ 1) and with
alternating weights þ1 and �1 define an allowable measure of order k. The
proof follows from the orthogonality of the complex exponentials over the set
of points and De Moivre’s theorem ðcosθþ i sinθÞn ¼ cos nθþ i sin nθ (Chilès,
1977). Note, for example, that for k¼ 3 there are 8 points for 10 monomials to
annihilate.

Errors from Unbiased Estimation

A simple way of constructing an ALC–k is to take the difference between a
value and a linear unbiased estimate of this value calculated under the
assumption that the mean is a full polynomial of degree k. Indeed

Ẑ0 ¼
X
i

λi Zi

is an unbiased estimator of Z0¼Z(x0) if and only ifX
i

λi x
‘
i ¼ x‘0; j‘j ¼ 0; : : : ; k

and therefore
P

iλi Zi � Ẑ0 is an ALC–k.
Themanner inwhich Ẑ0 is obtaineddoesnotmatter: it canbekriging (whatever

the variogram) or least squares. For this purpose, least squares have the advantage
of being the simplest, and they are used most. Note that several ALC–k may be
obtained from the same least squares fit: all the residuals at the points used for the
fit plus estimation errors at other arbitrary points not used for the fit.

4.3.3 Minimum Number of Points

According to equation (4.8), an ALC–k based on N points has weights λi which
are a nontrivial solution of λ0X ¼ 0. If the columns of X are linearly indepen-
dent, necessarily N$ rank(X)þ 1. When all monomials of Rn are used, the rank
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of X is kn ¼
�
kþn
k

�
so that kn þ 1 is the minimum number of points required.

Minimum values of N according to the dimensionality n of the space are

2 points for k ¼ 0
nþ 2 points for k ¼ 1

ðnþ 1Þðnþ 2Þ=2þ 1 points for k ¼ 2

However, if the points are such that there is linear dependence between the
columns of X, it is possible to construct increments with fewer points because
some of the constraints are automatically satisfied. For example, on a circle, the
fact that x2þ y2¼ 1 implies that there are only 2kþ 1 linearly independent
monomials of degree up to k instead of (kþ 1) (kþ 2)/2 for the whole plane;
so 2kþ 2 points suffice to define an ALC–k as was indicated above. Geometri-
cally, this means that all points lie on a curve or surface defined by an algebraic
equation of the form Xa¼ 0, such as a line or plane if k¼ 1, a conic or quadric
if k¼ 2.

In practice, this possibility of taking advantage of the location of the points
is interesting when data are along lines: increments of order k on the line, such
as finite differences, are also valid increments in the plane or space. Indeed a
change of coordinate system transforms a polynomial of degree k into another
polynomial of degree k. Taking the line as one of the axes makes all other
coordinates zero and shows that the conditions involving these coordinates are
automatically satisfied.

4.3.4 Why Polynomials Are Used

We define the translate τh λ of the measure λ by the vector h as the measure with the same
weights as λ but applied to a point configuration shifted by h, namely

f ðτh λÞ ¼ f

�X
i

λi δxiþh

�
¼
X
i

λi f ðxi þ hÞ

Does τh λ remain allowable when λ is allowable? In other words, is Λk closed under
translations? The answer is in the affirmative owing to the binomial formula

ðxþ hÞ‘ ¼
X‘
s¼0

‘
s

� �
xs h‘�s

since X
i

λiðxi þ hÞ‘ ¼
X‘
s¼0

‘
s

� �
h‘�s

X
i

λi x
s
i ¼ 0

for j‘j# k and λ 2 Λk. In Rn, s ¼ 0; : : : ; ‘ is short for sj ¼ 0; : : : ; ‘j ’j ¼ 1; : : : ; n, and�
‘
s

� ¼ ‘!=½s!ð‘� sÞ!� where ‘! ¼ ‘1! : : : ‘n!. This result ensures that the translate Zðτh λÞ of an
ALC–k Z(λ) is also an ALC–k, a property without which stationarity assumptions on
generalized increments would not make sense. It is a direct consequence of the property of
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polynomials to be themselves closed under translations. Are polynomials special, or can other
functions be used to construct generalized increments?

Mathematically, the problem is the following: find p functions f ‘ðxÞ such that the finite-
dimensional vector space F generated by the f ‘ðxÞ is closed under translations. In other
words, we want that

f ðxÞ ¼
Xp
‘¼1

a‘ f
‘ðxÞ . f ðxþ hÞ ¼

Xp
‘¼1

a‘ðhÞ f ‘ðxÞ

Obviously this will hold if and only if it holds for each f ‘ðxÞ. So the f ‘ðxÞ are solutions of the
functional equation

f ‘ðxþ hÞ ¼
Xp
s¼1

B‘
sðhÞ f sðxÞ ð4:9Þ

A general theorem (Matheron, 1979a) states that the only continuous (and even the only
measurable) solutions of (4.9) are finite sums of functions of the form

f ðxÞ ¼ PðxÞ exp ðc1 x1 þ � � � þ cn xnÞ
where P(x) is a polynomial in x¼ (x1, . . . ,xn) and c¼ (c1, . . . , cn) are real or complex
coefficients.

For n¼ 1, F is generated by families of exponential monomials

fx‘ecx : ‘ ¼ 0; : : : ; kg ð4:10Þ
Since we only consider real functions, if ω 6¼ 0 the complex coefficient c¼αþ i ωmust have its
conjugate counterpart, and F is generated by the functions

fx‘eαxcos ωx;x‘eαx sin ωx : ‘ ¼ 0; : : : ; kg

There are three remarkable subsets of this family:

1. Pure polynomials P(x) of degree #k

2. Pure trigonometric functions {cos ωx, sin ωx}
3. Pure exponentials {exp(αx)}

Note that for exponentials or trigonometric functions, the rate α or the frequency ω/2π must
be selected, whereas for polynomials there is no scaling parameter.

The same results hold formally when n. 1. It suffices to regard ωx as a scalar product
,ω;x. ¼ ω1x1 þ ω2x2 þ � � � þ ωnxn. However, when n. 1, F does not necessarily contain
all terms of (4.10). For example, for n¼ 2 and x¼ (x, y), the space F generated by the
functions: 1; x ; y ; x2þ y2 is invariant under shifts but does not contain x2 and y2, nor xy.

From a theoretical point of view, it is possible to develop a theory of intrinsic random
functions based on all the solutions of (4.9), including the exponential terms (Matheron,
1979a). This extension will not be presented here. Indeed in more than one dimension there is
a genuine difficulty to use functions including an exponential component because they are
scale- and orientation-dependent. Except perhaps in very specific cases it is desirable that
allowable measures remain so under scaling or rotations. If this is also required, the poly-
nomial solutions of (4.9) are the only possible ones.

In conclusion, polynomials are not used just for the sake of convenience but because they
satisfy fundamental geometric invariance requirements.

c04 30 January 2012; 10:56:11

4.3 ALLOWABLE LINEAR COMBINATIONS OF ORDER k 251



4.4 INTRINSIC RANDOM FUNCTIONS OF ORDER k

Two mathematical definitions of IRF–k will be given: One is Matheron’s
original definition (1973a) which is abstract but mathematically more pro-
found, and the other is a simpler definition, easier to understand.

4.4.1 Ordinary IRF–k

Definition 1. A random function Z(x) is intrinsic of order k if for any allowable
measure λ 2 Λk the random function

ZλðxÞ ¼ ZðτxλÞ ¼
X
i

λi Zðxi þ xÞ

is second-order stationary in x 2 Rn and has a zero mean.
This is equivalent to

E½ZλðxÞ� ¼ 0,
E½ZλðxÞZλðyÞ� ¼ Kλðy� xÞ ’x; y 2 Rn;λ 2 Λk

�

An IRF–k is simply a random function with stationary increments of order k.
The usual intrinsic model of geostatistics corresponds to k¼ 0. Clearly an
IRF–k is also an IRF–(kþ 1) and of any higher order, since Λkþ1 � Λk. For
example, an SRF is intrinsic at all orders; formally it would correspond to the
case k¼ –1.

The condition that increments of order k have a zero mean is introduced
for a simpler presentation and does not restrict generality. If these incre-
ments are stationary, their mean is necessarily a polynomial of degree kþ 1
at most (Matheron, 1973a)1, which is eliminated by regarding Z(x) as an
IRF–(kþ 1).

For example, we have seen in Section 2.1.2 that the mean of stationary
increments is necessarily of the form E[Z(xþ h)�Z(x)]¼,a, h.; if a 6¼ 0 we
should regard Z(x) as an IRF–1 rather than as an IRF–0.

By definition, an IRF satisfies E[Zλ(x)
2],N for any λ 2 Λk. But E[Z(x)

2]
may be infinite, or may at least depend on x; in the introductory coin tossing
example we had E[Sn

2]¼ n. Stationarity of increments allows for both
nonstationarity in the mean and in the variance.

As usual with random functions, it will be assumed that Z(x) is continuous
in the mean square sense. This property is mathematically essential to extend
the theory from the space Λk of discrete measures to the space Mk of measures
with compact supports. If a discontinuity were present (nugget effect), it should
be handled separately.

1Matheron names intrinsic drift of the IRF�k the part of degree exactly kþ 1 of this polynomial.
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Examples of IRF–k

1. For n¼ 1 the integral of a zero-mean SRF is an IRF–0. Indeed let X(x) be
the SRF in R and Y0(x) the integral

Y0ðxÞ ¼
Z x

0

XðtÞ dt

For any h the increment

Y0ðxþ hÞ � Y0ðxÞ ¼
Z xþh

x

XðtÞ dt

is a moving average of the stationary process X(t) and is therefore stationary.

2. The (kþ 1)th integral of a zero-mean SRF is an IRF–k. We show this by
induction. Assume that Yk is an IRF–k, and consider the integral

Ykþ1ðxÞ ¼
Z x

0

YkðtÞ dt

Introducing the indicator function of the summation interval, we can write
equivalently

Ykþ1ðxÞ ¼
Z
YkðtÞ10# t#xdt

Thus for any discrete measure λ we have

Ykþ1ðλÞ ¼
X
i

λiYkþ1ðxiÞ ¼
Z

YkðtÞ μðdtÞ ¼ YkðμÞ

where

μðdtÞ ¼
�X

i

λi 10# t#xi

�
dt

Now λ 2Λkþ1 implies that μ2Λk (or more precisely2Mk), sinceZ
t‘ μðdtÞ ¼

X
i

λi

Z xi

0

t‘ dt ¼ 1

‘þ 1

X
i

λi x‘þ1
i ¼ 0; ‘ ¼ 0; :::; k

For any x the translate τx μ of the measure μ is defined by

Ykðτx μÞ ¼
X
i

λi

Z xiþx

x

YkðtÞ dt ¼
X
i

λiYkþ1ðxi þ xÞ

the last equality being a consequence of
P

λi ¼ 0. Finally we have

Ykðτx μÞ ¼ Ykþ1ðτx λÞ
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Since Yk is an IRF–k and μ 2 Λk, Ykðτx μÞ is stationary in x. Therefore
Ykþ1ðτxλÞ is also stationary in x, and this is true for any λ 2 Λkþ1. Conse-
quently Ykþ1 is an IRF–(kþ 1).

Conversely, if an IRF–k is differentiable (kþ 1) times, its (kþ 1)th derivative
is stationary, being the limit of an ALC–k.

3. The same results hold if we start with an IRF–0. By integrating k times a
Brownian motion W0(x), we obtain the IRF–k:

WkðxÞ ¼
Z x

0

ðx� tÞk�1

ðk� 1Þ! W0ðtÞdt

where Wk(x) vanishes at x¼ 0 as well as its first (k� 1) derivatives ( just like Yk

above).

4. Conversely, now in Rn, if a random function Z(x) is differentiable (kþ 1)
times and if all its partial derivatives of order (kþ 1) are stationary and with
zero mean, Z(x) is an IRF–k. This property characterizes differentiable
IRF–k’s. Of course there exist nondifferentiable IRF–k’s (e.g., an IRF–0
with a linear variogram), but it is shown below that any continuous IRF–k is
the sum of an SRF and a differentiable IRF–k.

5. An ARIMA process (autoregressive integrated moving average process)
is defined as a process whose finite difference of order d is a stationary
ARMA process (Box and Jenkins, 1976; see Section 7.5.1 for a definition
of ARMA models). Since a finite difference of order d is an ALC–(d� 1), an
ARIMA process is an IRF–(d� 1). However, the ARIMA and IRF–k
approaches differ in the following aspects:

– ARIMA models are completely specified, whereas IRFs are only
second-order models.

– ARIMA models are one-dimensional, whereas IRFs are defined in Rn.
– ARIMA models are essentially discrete, whereas IRFs are continuous

or discrete.

4.4.2 Abstract IRF and Its Representations

If Z(x) is an IRF–k and A‘ are random variables—independent or not of Z(x)—the new
random function

Z1ðxÞ ¼ ZðxÞ þ
X
j‘j# k

A‘ x
‘

is also an IRF–k: by definition, λ 2 Λk cancels all monomials x‘, and thus

Z1ðλÞ ¼ ZðλÞ
Z1(x) and Z(x) are indistinguishable on the basis of ALC–k only.

In reality the concept of IRF–k relates to an equivalence class rather than a single function,
namely the class of all random functions generating the same increments of order k. This
motivated Matheron’s definition of the IRF–k as a family of increments. To avoid any
confusion, we will call this an abstract IRF–k and denote it with a tilde.
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Definition 2. An abstract intrinsic random function eZ is a linear mapping of Λk into a
Hilbert space H of zero mean, finite variance random variables, such that for any λ 2 Λk the
random function eZðτxλÞ is second-order stationary in x:

eZ : Λk-H such that ’λ 2 Λk ZλðxÞ ¼ eZðτxλÞ is an SRF

An ordinary IRF–k is a random function Z(x) in the usual sense, whereas the abstract IRF eZ
is not a function of x but of λ. Any ordinary IRF–k Y(x) generating the same increments as eZ,
namely satisfying

YðλÞ ¼ eZðλÞ ’λ 2 Λk

is called a representation of eZ. So, from this new perspective, what we defined as an ordinary
IRF–k was in fact a representation of the abstract IRF eZ. But it is simpler to reason with
representations because they “materialize” the equivalence class defined by the abstract IRF.
The following two properties make it possible to identify eZ with the class of all its
representations:

1. Any abstract IRF–k eZ has representations.

2. If one representation is known, all the others are deduced by addition of a polynomial
of degree k with random coefficients.

Proof. It was shown in Section 4.3.2 that errors from linear unbiased estimation are ALC–k.
We will use this property to construct a representation that has the structure of a residual. To
this end, consider a collection of measures λ‘ðdxÞ satisfying for all j‘j# k the conditionsZ

λ‘ðdxÞxs ¼ δs‘

ðδs‘ ¼ 1 if ‘ ¼ s and ¼ 0 otherwiseÞ. One may think of these measures as defining unbiased
estimators of the coefficients of a polynomial of degree k in the space Rn considered. For any
x2Rn the measure

εxðdtÞ ¼ δxðdtÞ �
X
‘

x‘ λ‘ðdtÞ ð4:11Þ

belongs to Λk, sinceZ
εxðdtÞts ¼

Z
δxðdtÞts �

X
‘

x‘
Z

λ‘ðdtÞts ¼ xs �
X
‘

x‘ δs‘ ¼ 0

Now we claim that the RF Y(x) defined by

YðxÞ ¼ eZðεxÞ
is a representation of eZ. Indeed, for any λ ¼Pλi δxi 2 Λk the linearity of eZ entails

YðλÞ ¼
X
i

λiYðxiÞ ¼
X
i

λi
eZðεxi Þ ¼ eZ�X

i

λi εxi
�

But X
i

λi εxi ¼
X
i

λi δxi �
X
‘

�X
i

λi x
‘
i

�
λ‘ ¼ λ
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the last equality being a consequence of λ 2 Λk (the coefficients of λ‘ are all zeros). Thus we
have

YðλÞ ¼ eZðλÞ ’λ 2 Λk

which proves point 1. In particular, for λ ¼ εx we obtain YðεxÞ ¼ eZðεxÞ ¼ YðxÞ.
For point 2 suppose that Z(x) is another representation of eZ. We have

ZðλÞ � YðλÞ ¼ 0 ’λ 2 Λk

So Z0(x)¼Z(x) – Y(x) is a representation of the identically nil abstract IRF–k
ð eZ0ðλÞ ¼ 0 ’λ 2 ΛkÞ: In particular, with the measure εx defined in (4.11),

Z0ðεxÞ ¼ Z0ðxÞ �
X
‘

Z0ðλ‘Þ x‘ ¼ 0

and thus Z0(x) is of the form

Z0ðxÞ ¼
X
‘

A‘ x
‘

With this presentation we have three levels of abstraction instead of two as usual: the abstract
IRF–k eZ, its representations Y(x), which are random functions, and numerical realizations of
Y(x). We regard our regionalized variable as a realization of a representation of an abstract
IRF eZ. This allows us to distinguish two kinds of properties:

� Those that do not depend on the representation: they are intrinsic properties.

� Those that depend on the representation.

The estimation of intrinsic properties only requires the specification of the abstract IRF–k
model. To estimate other properties, it is necessary to qualify the representation being
considered.

Internal Representations

The particular representation Y(x)¼Y(εx) that we have just constructed has the remarkable
property of being itself an ALC–k. Therefore Y(x) satisfies E[Y(x)]¼ 0 and E[Y(x)2],N.

To appreciate the specificity of Y(x), consider another representation Y1(x). We have

YðxÞ ¼ Y1ðεxÞ ¼ Y1ðxÞ �
X
‘

x‘
Z

λ‘ðdyÞY1ðyÞ

We see that Y(x) is an additive renormalization of Y1(x) obtained by subtracting a polynomial
of degree k whose coefficients A‘ ¼

R
λ‘ðdyÞY1ðyÞ are linear functionals2 of Y1(x). A simple

and standard example for an IRF–0 is the representation Y(x)¼Y1(x)�Y1(0). By construc-
tion, Y(x) has a finite variance, while Y1(x) may not. Now, considering a compact domain D
(with a nonempty interior), if all measures λ‘ have their support included in D, the
representation Y(x) only depends on values of Y1(x) within D. We say that Y(x) is an
internal representation over D. This notion is useful for the solution of partial differential
equations of the type ΔZ(x)¼Y(x) (see Dong, 1990).

2 For true generality we must include the limits of all Y1(εx), where εx2Λk and with support in D.
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An internal representation is generally not stationary, although it is sometimes possible to
make it locally stationary by an astute choice of the measures λ‘. We will revisit this subject
later.

General Form of Representations

From the above we can conclude that all representations are the sum of an
internal representation and an arbitrary polynomial of degree k at most

YðxÞ ¼ Y

�
δx �

X
‘

x‘ λ‘

�
þ
X
‘

A‘ x
‘ ð4:12Þ

From now on we will leave the abstract IRF–k eZ in the background and,
following the simpler definition, will refer to Z(x) and an IRF–k (instead of a
representation of an abstract IRF–k).

4.5 GENERALIZED COVARIANCE FUNCTIONS

The correlation structure of a stationary random function Z(x) is defined by its
ordinary covariance function C(h). If only the (ordinary) increments Z(xþ h)�
Z(x) of the function are assumed stationary, the variogram γ(h) is the structural
tool. We saw that γ(h) only allows the calculation of the variances of linear
combinations whose sum of weights is zero. In the same manner, when the
stationarity assumptions are limited to generalized increments of order k, what
characterizes the correlation structure of Z(x) is a new function called a gen-
eralized covariance function, abbreviated as GC and denoted by K(h). Just as
there were more models for variograms than for covariances, there are more
models for generalized covariances than for both ordinary covariances and
variograms. But there are also more restrictions attached to their use in vari-
ance calculations: They only work on allowable linear combinations. Figure 4.8
shows a family picture of C, γ, and K taken by J. P. Delhomme.

FIGURE 4.8 Covariance, variogram, and generalized covariance: a family picture. (Author: J. P.

Delhomme.)
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4.5.1 Existence and Uniqueness

Definition. Let Z be an IRF–k. A symmetric function K(h) defined on Rn is
called a generalized covariance (GC) of Z if

E½ZðλÞZðμÞ� ¼
X
i

X
j

λi μj Kðyj � xiÞ ð4:13Þ

for any pair of measures λ, μ 2 Λk.
In fact it is sufficient that the above condition be satisfied in the case λ¼μ (it

is seen easily by expanding [Z(λþμ)]2). In other words, it suffices to verify that

E½ZðλÞ2� ¼
X
i

X
j

λiλjKðxj � xiÞ ðλ 2 ΛkÞ ð4:14Þ

Formally K(h) is used just as an ordinary covariance C(h), but (4.14) only holds
for λ 2 Λk.

There is an existence and uniqueness theorem for any continuous IRF–k
(i.e., whose representations are continuous in the mean square sense).

Theorem. Any continuous IRF–k has a continuous GC K(h). This GC K(h) is
unique as an equivalence class, in the sense that any other GC is of the form
K(h)þQ(h), where Q(h) is an even polynomial of degree 2k or less.

This theorem holds in Rn whatever the dimension n, and for any IRF–k. But
the proof in the general case encounters technical difficulties which obscure the
almost intuitive aspect of the result (Gel’fand and Vilenkin, 1961; Matheron,
1973a). Therefore we will restrict ourselves here to the simple case n¼ 1 and Z
differentiable.

Proof of the Theorem for a Differentiable Z on R

� Existence. Let Z(x) be an IRF–k on R, differentiable kþ 1 times (in the mean square). Its
(kþ 1)th derivative Z(k+1)(x) is stationary and has a stationary covariance C(h). If we
denote by σ(x,y) the nonstationary covariance of Z(x), it is related to C(h) by

@2ðkþ1Þ

@xkþ1 @ykþ1
σðx; yÞ ¼ Cðy� xÞ

Integrating (kþ 1) times in x gives

@kþ1

@ykþ1
σðx; yÞ ¼ ð�1Þkþ1

Z y�x

0

ðy� x� uÞk
k!

CðuÞduþ
Xk
‘¼0

a‘ðyÞx‘

Integrating now (kþ 1) times in y for fixed x gives

σðx; yÞ¼ð�1Þkþ1

Z y�x

0

ðy� x� uÞ2kþ1

ð2kþ 1Þ! CðuÞ duþ
Xk
‘¼0

b‘ðyÞx‘ þ
Xk
‘¼0

c‘ðxÞy‘
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where b‘ðyÞ is a definite integral of order kþ 1 of a‘ðyÞ. Let

KðhÞ ¼ ð � 1Þkþ1

Z h

0

ðh� uÞ2kþ1

ð2kþ 1Þ! CðuÞdu

Verify that K(h)¼K(�h) so that K(h) is a symmetric function just as C(h); and since σ(x, y)
is symmetric in x and y, the b‘ð:Þ and c‘ð:Þ functions are identical. Thus the general form of
the covariance σ(x, y) is

σðx; yÞ ¼ Kðy� xÞ þ
Xk
‘¼0

c‘ðyÞx‘ þ
Xk
‘¼0

c‘ðxÞy‘ ð4:15Þ

If λ is an allowable linear combination, then we have

X
i

λi x
‘
i ¼ 0; ‘ ¼ 0; :::; k

and from (4.15) we obtain

X
i

X
j

λi λj σðxi; xjÞ ¼
X
i

X
j

λi λj Kðxj � xiÞ

which proves that K(h) is a generalized covariance.

� Uniqueness. Let us assume that Z(x) has two distinct GCs, K1(h) and K2(h). From (4.15) the
difference K0¼K1�K2 is of the form

K0ðy� xÞ ¼
Xk
‘¼0

c‘ðyÞx‘ þ
Xk
‘¼0

c‘ðxÞy‘

Because Z(x) is differentiable (kþ 1) times, K0(h) is differentiable 2(kþ 1) times. Letting
h¼ y� x, we have

d2kþ2

dh2kþ2
K0ðhÞ ¼ ð� 1Þkþ1 @kþ1

@xkþ1

@kþ1

@ykþ1
K0ðy� xÞ

But this is zero identically, since x‘ and y‘ are monomials of degree strictly less than
(kþ 1). So K0(h) is a polynomial of degree 2kþ 1 at most. Because K0(h) is a symmetric
function, it is necessarily an even polynomial of degree # 2k (i.e., with even powers only).

Conversely, for any even polynomial Q(h) of degree# 2k, K(h)þQ(h) is indeed a GC. It
suffices to note that Q(h) can be written just as K0(y� x), with the c‘( � ) being polynomials
of degree up to 2k. &

Examples of GCs

1. If Z(x) is an SRF with ordinary stationary covariance C(h), then C(h) is
clearly also a GC. If Z(x) is an IRF–0, then

KðhÞ ¼ �γðhÞ þ constant
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The GC is equal to�γ up to an arbitrary constant (which is an even polynomial
of degree k¼ 0).

2. We have seen earlier that if X(t) is a zero-mean SRF on R its (kþ 1)th
integral

YkðxÞ ¼
Z x

0

ðx� tÞk
k!

XðtÞdt

is an IRF–k. The proof of the existence theorem given above shows that the GC
of Yk(x) is

KkðhÞ ¼ ð�1Þkþ1

Z h

0

ðh� uÞ2kþ1

ð2kþ 1Þ! CðuÞdu ðh. 0Þ

where C(h) is the stationary covariance of X(t).

4.5.2 Link Between Generalized and Ordinary Covariance Functions

The covariance and the variogram are easy to understand because they are
directly related to the variable Z(x). The GC is more abstract. To “materialize”
it, let us see how it relates to the ordinary covariance. To this end, we consider
the general form of representations (4.12),

ZðxÞ ¼ Zðδx �
X
‘

x‘ λ‘Þ þ
X
‘

A‘ x
‘

and calculate the centered covariance σ(x, y). Because the first term is of the
form Z(εx) with εx2Λk, its covariance can be calculated with the GC K(h)
using the general formula (4.13):

E½ZðεxÞZðεyÞ� ¼
Z Z �

δxðdtÞ �
X
‘

x‘λ‘ðdtÞ
�
Kðt0 � tÞ

�
δyðdt0Þ �

X
s

ysλsðdt0Þ
�

¼ Kðy� xÞ �
X
‘

x‘
Z

Kðy� tÞλ‘ðdtÞ �
X
‘

y‘
Z

Kðt0 � xÞλ‘ðdt0Þ

þ
X
‘

X
s

x‘ys
Z Z

λ‘ðdtÞKðt0 � tÞλsðdt0Þ ð4:16Þ

Now the covariance of Z(x) is

CovðZðxÞ;ZðyÞÞ ¼ E ðZðεxÞ ZðεyÞÞ þ
X
‘

x‘ CovðA‘; ZðεyÞÞ

þ
X
‘

y‘ CovðZðεxÞ; A‘Þ þ
X
‘

X
s

x‘ ys CovðA‘;AsÞ
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The covariance CovðA‘;:Þ cannot be calculated with the GC because A‘ is not
an ALC–k. Anyhow, collecting the coefficients of x‘ andys with those in (4.16),
we get a covariance of the form

σðx;yÞ ¼ Kðy� xÞ þ
Xk
j‘j¼0

c‘ðyÞx‘ þ
Xk
j‘j¼0

c‘ðxÞy‘ þ
Xk
j‘j¼0

Xk
jsj¼0

T‘s x
‘ys ð4:17Þ

This is the same formula as (4.15) obtained by integration of a differentiable
GC (the terms x‘ys can be distributed equally between the x‘ and ys terms). It
exposes the impact of the stationarity of increments of order k, an attenuated
form of stationarity, on the covariance of Z(x). There is a stationary part
K(y� x) and a nonstationary part involving polynomial terms separately in x
and y. In general, the functions c‘ðxÞ are not polynomials, nor can they be
determined from the data on the basis of a single realization because they
involve nonstationary features of Z(x). If we consider an arbitrary linear
combination Z(λ), its variance depends on the c‘ðxÞ and cannot be evaluated.
But, if λ2Λk, then these coefficients are filtered out.

Examples

1. The simplest illustration is with a GC–0 K(h)¼�γ(h). Then

σðx; yÞ ¼ �γðy� xÞ þ ½σðx; xÞ þ σðy; yÞ�=2

which is of the form (4.17) with k¼ 0 and c0(x)¼σ(x, x)/2.
To take a specific example, consider in 1D a fractional Brownian motion

X(t) without drift and the representation Y(t)¼X(t)�X(0). This is a nonsta-
tionary RF with mean zero and a variance proportional to j t jα. We assume a
scaling such that γ(1)¼ 1. Then the covariance of Y(t) is

σðt; t 0Þ ¼ jt 0 � tjα þ j t jα þ jt 0jα ð0,α, 2Þ

When α¼ 1 and both t and t 0 . 0, this takes the form σ(t, t 0)¼ 2 min (t, t 0).
2. Now suppose that X(t) has a linear drift. We model it as an IRF–1 and

consider the representation defined by

YðtÞ ¼ XðtÞ � Xð0Þ � 1

2R
½XðRÞ � Xð�RÞ� t

Y(t) has the structure of an estimated residual and satisfies E [Y(t)]¼ 0.
It is therefore an ALC–1 of X and has a finite variance that can be calcula-
ted with the GC K(h)¼�jhjα. The nonstationary covariance of Y(t) is found
to be
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σðt; t 0Þ ¼ �jt 0 � tjα þ jtjα þ jt 0jα þ ðjR� t 0jα � jRþ t 0jαÞ t

2R

þ ðjR� tjα � jRþ tjαÞ t 0

2R
þ 2α�1

R2�α tt
0

which is of the form (4.17). It is interesting to note that for α¼ 1 and t and t 0 2
[�R,+R], the variogram of Y(t) is

1

2
E½Yðt 0Þ � YðtÞ�2 ¼ jt 0 � tj � 1

2R
ðt 0 � tÞ2

and depends only on j t 0 � t j. The variogram of estimated residuals is stationary
(but biased).

4.5.3 Spectral Theory

The existence and uniqueness theorem for GCs is a direct consequence of Gel’fand and
Vilenkin’s theory of generalized random fields (1961, Chapter 3, Section 5.2). The result gives
the general form of the correlation functional B(ϕ, ψ) of a generalized random field acting on
functions ϕ and ψ of the class of infinitely differentiable functions vanishing outside a
compact set. This correlation functional is characterized by a “slowly growing measure”
satisfying certain requirements. Matheron (1971b) established this result directly for the case
of random functions (as opposed to random generalized functions).

The spectral theory of ordinary processes with stationary increments of arbitrary order
(case n¼ 1) was established by Yaglom and Pinsker (1953). A comprehensive presentation of
the theory is also given by Yaglom (1987, Vol. I, Chapter 4).

The class of GCs coincides with the class of continuous and symmetric functions K(h) on
Rn satisfying X

i

X
j

λi λjKðxj � xiÞ$ 0 ð4:18Þ

for any real allowable measure λ 2Λk. This condition ensures that E [Z(λ)2]$ 0. A real
function satisfying (4.18) is said to be k-conditionally positive definite. Such functions are
characterized by a certain spectral representation, just as ordinary covariances in the Bochner–
Khinchin theory. The formula looks awesome, but it provides insight into the physical
significance of IRFs.

Theorem. A continuous and symmetric function K(h) on Rn is a GC of an IRF–k if and
only if it is of the form

KðhÞ ¼
Z

cosð2π, u; h. Þ � 1BðuÞPkð2π, u; h. Þ
ð4π2juj2Þkþ1

χðduÞ þQðhÞ ð4:19Þ

where Pk(x)¼ 1� x2/2þ � � � þ (�1)k x2k/(2k)!, 1B(u) is the indicator function of an arbitrary
neighborhood of u¼ 0, and χ(du) is a unique positive symmetric measure, with no atom at the
origin and satisfying

Z
χðduÞ

ð1þ 4π2juj2Þkþ1
,N ð4:20Þ
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Q(h) is an arbitrary even polynomial of degree # 2k.

u¼ (u1, . . . , un) denotes a frequency vector

juj2¼ u1
2þ � � � þ un

2 denotes its squared modulus

,u,h.¼ u1 h1þ � � � þ un hn denotes a scalar product

To understand this formula, first note that the term 1B(u) Pk(2π ,u, h.) under the integral
represents the expansion at the order k of cos (2π,u, h.) in the neighborhood B of u¼ 0. It is
an even polynomial of degree 2k in the argument h and represents exactly what must be
subtracted from the cosine to make the integral converge at u¼ 0 given (4.20) (the difference is
of the order juj2k+2). The value of the integrand is not defined at u¼ 0, but since χ(du) has no
atom there, the integral converges.

The neighborhood B is arbitrary: If B1 and B2 are two different neighborhoods of u¼ 0,
then the difference between the associated K1(h) and K2(h) is an even polynomial of degree 2k
in h and may thus be incorporated in the arbitrary Q(h) polynomial.3

When K(h) is differentiable 2k times, the term 1B(u) in formula (4.19) can be dropped (i.e.,
replaced by 1). Thus for k¼ 0 this term is never needed and formula (4.19) is seen to coincide
with the spectral representation (2.21) of �γ(h).

Formula (4.19) associates to each K(h) the spectral measure

FðduÞ ¼ χðduÞ=ð4π2juj2Þkþ1

defined on the space Rn� {0}. This measure is the same for all GCs in the equivalence class
and thus appears as the fundamental information on the correlation structure of an IRF–k.
The synthetic condition (4.20) on the measure χ(du) is equivalent to the following two
conditions on F(du): Z

juj, ε

juj2kþ2FðduÞ,N;

Z
juj. ε

FðduÞ,N ð4:21Þ

where ε. 0 is arbitrary. Unlike for ordinary covariances it is not required that the integral of

the spectrum converge but only that near-zero frequency
R
juj, εjuj2kþ2FðduÞ converge whileR

juj. εFðduÞ must converge at infinity.

In the case of stationary processes, F(du) is interpreted as the power in the frequency
interval (u, uþ du) and the integral

R
FðduÞ ¼ Cð0Þ as the total power of the process. With

IRF–k the integral
R
FðduÞmay become infinite because the first condition (4.21) allows F(du)

to tend rapidly to infinity as u- 0: There may be an infinite power at low frequencies, a
phenomenon referred to as an infrared catastrophe. Such effect is observed with Brownian
and fractional Brownian motions in one dimension (Mandelbrot, 1967, 1982, p. 389)—the
spectral measure is then proportional to du/u1+α (0,α, 2).

It is this high power at low frequencies that is responsible for the apparent long-term
“trends.” It also explains why the restriction to allowable measures is necessary. Indeed
consider λ 2 Λk and denote by

eλðuÞ ¼ Z expð�2πi, u;x.ÞλðdxÞ

3 If the assumption E [Z(λ)]¼ 0 were relaxed, Z(λ) remaining of course stationary, the polynomial

Q(h) would be of degree #2kþ 2 instead of 2k, the coefficient of h2k+2 not depending on 1B. For

example, γ(h)þ a jhj2/2 is a valid variogram if E [Z(xþ h)�Z(x)]¼,a, h.. But we exclude such

possibility by requiring a¼ 0.
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the Fourier transform of λ (i is the unit pure imaginary number). From (4.14) and (4.19) we
obtain

E½ZðλÞ�2 ¼
Z jeλðuÞj2

ð4π2juj2Þkþ1
χðduÞ

Since λ has a compact support, the function eλðuÞ is infinitely differentiable, and λ 2 Λk

implies that eλðuÞ and its first k derivatives vanish at u¼ 0. This ensures the convergence of the
above integral given the fact that χ(du) itself is integrable near 0 (first condition 4.21). In other
words, the Fourier transform eλðuÞ neutralizes catastrophes.

In the case that
R
FðduÞ converges, the integral in (4.19) may be written as the difference

between two convergent integrals, and since the second integral is a polynomial of degree 2k
in h, K(h) finally takes the form

KðhÞ ¼ CðhÞ þQðhÞ
where C(h) is an ordinary covariance function. This is sufficient to assert that the IRF–k Z(x)
possesses a stationary representation YSt(x) whose covariance is C(h). From Section 4.4.2 we
then know that Z(x) differs from YSt(x) by a random polynomial of degree k: This is the
universal kriging model.

Another special case is when
R
χðduÞ,N. Then K(h) is differentiable (2kþ 2) times,

which means that Z(x) is differentiable (kþ 1) times in the sense that all its partial derivatives
of order kþ 1,

@kþ1ZðxÞ
@‘1x1 : : : @‘nxn

, ‘1 þ � � � þ ‘n ¼ kþ 1

exist and are stationary. Differentiating (4.19) under the integral sign (which is valid) yields
the equation

Δkþ1KðhÞ ¼ ð�1Þkþ1CðhÞ ð4:22Þ

whereΔkþ1 is the iterated Laplacian operator and C(h) is the stationary covariance associated
with the spectral measure χ(du).

Finally let us note the following decomposition of the integral in (4.19),

KðhÞ ¼
Z

juj# u0

cosð2π, u; h.Þ � Pkð2π, u; h.Þ
ð4π2juj2Þkþ1

χðduÞ þ
Z

juj. u0

cosð2π, u; h.Þ χðduÞ
ð4π2juj2Þkþ1

The integral over juj # u0 corresponds to an IRF–k with no high frequencies, an infinitely
differentiable IRF–k, while the integral over juj. u0 is an ordinary stationary covariance
function C(h) — thanks to the second relation (4.21). We can write the phenomenological
“equation”:

continuous IRF�k ¼ infinitely differentiable IRF�kþ stationary random function

In principle, this dichotomy into low and high frequencies could be used as a definition of a
“driftþ residual” model. However, the arbitrariness of the cutoff frequency u0 highlights once
again the elusive character of the notion of drift. In practice it is also nearly impossible to
estimate these two components. This decomposition is thus mainly of theoretical interest.
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4.5.4 A Characterization of Isotropic GCs on Rn

Micchelli’s landmark paper (1986) provides a very useful characterization of
isotropic conditionally positive definite functions of order k on Rn for all n.
We recall that a continuous function F on [ 0,N[ is completely monotone if it
possesses derivatives F (p)(t) of all orders and if (�1)p F (p)(t)$ 0 for p¼ 0, 1,
2, . . . , and t. 0. In our notations, Micchelli’s Theorem 2.1 can be restated as
follows:

Theorem. An isotropic function K is conditionally positive definite of order k
on Rn for all n whenever K is continuous on [ 0,N[ and ð�1Þkþ1K ðkþ1Þð ffiffi

r
p Þ is

completely monotone on ] 0,N[.

One of the motivations for this theorem was to show that the function
ðr2 þ r20Þ1=2 is a variogram, thereby proving the conjecture that multiquadric
interpolation is always solvable. Indeed consider KðrÞ ¼ �ðr2 þ r20Þ1=2 and

k¼ 0. Then Kð ffiffi
r

p Þ ¼ �ðrþ r20Þ1=2 and ð�1Þ1K ð1Þð ffiffi
r

p Þ ¼ 1
2
ðrþ r20Þ�1=2, which

has derivatives of alternating signs. To further illustrate the theorem, consider

now the power law variogram γ(r)¼ rα and k¼ 0. We have Kð ffiffi
r

p Þ ¼ �rα=2 and

ð� 1Þ1Kð1Þð ffiffi
r

p Þ ¼ α
2
rα=2�1, which is completely monotone if and only if α, 2.

As a last example, consider the function K(r)¼ r2 logr and k¼ 1. Then

Kð ffiffi
r

p Þ ¼ r log
ffiffi
r

p
~ r log r and ð�1Þ2K ð2Þð ffiffi

r
p Þ ¼ 1=r

The function 1/ r is completely monotone and we can conclude that r2 log r is a
GC–1 on Rn for all n. It is obviously a GC of higher order but not a GC–0 since
– (log rþ 1) is not positive for all r.

Micchelli’s theorem is much easier to use than the spectral characteri-
zation (4.19); but its application is restricted to isotropic covariances that
are valid whatever the space dimensionality n, whereas (4.19) is completely
general.

4.5.5 Majorization of Generalized Covariances

From the spectral formula (4.19) and the majorization jcos x� PkðxÞj#
x2kþ2=ð2kþ 2Þ! it is seen readily that a GC–k must satisfy the inequality

jKð0Þ � KðhÞj# aþ bjhj2kþ2 ’h 2 Rn ð4:23Þ

for some positive constants a and b. Likewise an IRF–k is differentiable (once)
if and only if its GCs satisfy an inequality of the form (a0, b0 $ 0)

jKð0Þ � KðhÞj# a0jhj2 þ b0jhj2kþ2 ’h 2 Rn
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The following two results are proved in Matheron’s 1973 paper4:

1. lim
jhj-N

KðhÞ=jhj2kþ2 ¼ 0 ð4:24Þ
2. An IRF–k is the restriction to Λk of a stationary random function if and

only if one of its GCs is bounded on Rn. When k¼ 0, this means that the
variogram must be bounded.

4.5.6 The Power Law Class

The jhjα Model

We know that
γðhÞ ¼ jhjα

is a variogram,that is,�γ is a GC–0, whenever 0,α, 2. Likewise, the function

KðhÞ ¼ ð�1Þ1þbα=2c jhjα ð4:25Þ
is a GC of order k on Rn for any n whenever 0,α, 2 kþ 2, where α is not an
even integer. This can be verified using Micchelli’s theorem.

The sign of K(h) alternates with the value of α: It is negative for 0,α, 2,
positive for 2,α, 4, negative for 4,α, 6, and so on. When α is an even
integer, K(h) is an even degree polynomial and thus equivalent (in the same GC
class as) the identically nil covariance K(h) � 0. Note that the class of GCs
expands as the order k increases.

For completeness, the spectral measure associated with KðhÞ ¼ Γð�α=2Þjhjα
in (4.19) is

FðduÞ ¼ χðduÞ=ð4π2juj2Þkþ1 ¼ π�α�n=2 Γ
αþ n

2

� �
juj�α�n

where Γ(�) is the gamma function. Note that Γ(�α/2) has the same sign as

ð�1Þ1þbα=2c.

The jhj2k log jhj Model

Consider

KðhÞ ¼ ð� 1Þkþ1 lim
ε-0

1

ε

�
jhj2kþε � jhj2k

�
(�1)k+1 jhj2kþε is a GC–k on Rn for any n if 0, ε, 2, and so is (�1)kþ1

(jhj2kþ ε� jhj2k) since jhj2k is an even polynomial of degree 2k . The limit of a
GC–k is still a GC–k and therefore

KðhÞ ¼ ð�1Þkþ1jhj2k logjhj ð4:26Þ

4All inequalities in this section assume an IRF�k with no intrinsic drift (E[Z(λ)]¼ 0 for λ2Λk).
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is a GC of order k on Rn for any n. It is not a GC of any lower order because it
would violate the condition (4.24).

A remarkable member of the family (4.26) is the GC–1 K(h)¼ jhj2 logjhj,
which, as we will see, is associated with biharmonic splines in 2D.

4.5.7 Polynomial Covariance Models

Interesting elements of the power law class are the terms with odd integer
exponent α¼ 2pþ 1. Then (�1) p+1 jhj2p+1 is a GC–k, provided that p # k.
More generally, the function

KðhÞ ¼
Xk
p¼0

ð�1Þpþ1bpjhj2pþ1 ð4:27Þ

is a GC of order k under conditions on the coefficients bp, which are obviously
satisfied if bp$ 0 ’p.

Covariances of this form are called polynomial GCs. This is a slight mis-
nomer because the functions are polynomials with respect to the modulus
jhj ¼ ðh21 þ � � � þ h2nÞ1=2 of the vector h and not with respect to the components
h1, . . . , hn of this vector. Since they depend only on the modulus of h, poly-
nomial GCs are isotropic models. (However, the techniques presented to deal
with variogram anisotropies can be used here as well.)

The physical meaning of the exponent α is the following: The higher α, the
more regular the model at a local scale and the more fluctuating at a global scale.
A phenomenon with a linear covariance �b0jhj is continuous but not differen-
tiable, with b1jhj3 it is differentiable once but also has very large fluctuations, and
with �b2jhj5 it is differentiable twice but fluctuates wildly at large distances.
Figure 4.4 illustrates the aspects of phenomena associated with the pure terms
�jhj, jhj3, �jhj5. The last one represents a slowly varying twice differentiable
component that in the universal kriging terminology would be called a drift.

The exact conditions to be placed on the coefficients bp in (4.27) for K(h) to
be a valid GC–k on Rn are obtained by requiring that the measure χ(du) in the
general spectral representation (4.19) be positive, leading to

Xk
p¼0

ð2pþ 1Þ!
p!

Γ


pþ 1

2
ðnþ 1Þ� bp xk�p $ 0 for x $ 0

For k¼ 0, 1, and 2 and according to the space dimensionality n, the conditions are

k ¼ 0 : b0 $ 0; b1 ¼ 0; b2 ¼ 0;
k ¼ 1 : b0 $ 0; b1 $ 0; b2 ¼ 0;

k ¼ 2 : b0 $ 0; b2 $ 0; b1 $ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20

3
1þ 2

nþ 1

� �s ffiffiffiffiffiffiffiffiffi
b0b2

p
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Note that for k¼ 2 the condition on b1 depends on the space dimensionality n
and becomes more severe as n increases (lower bound¼�3.651, �3.333,
�3.162 for n¼ 1, 2, 3, respectively).

Table 4.1 summarizes the polynomial models for k¼ 0, 1, and 2; the nugget
effect has been added to take into account microstructures or measurement
errors. The main advantage of these models for applications is that they depend
linearly on their parameters, which facilitates their statistical inference.

It is possible to augment (4.27) with logarithmic terms of the form (4.26).
In practice this is limited to the jhj2 log jhj term, and then it is preferable to drop
the �jhj5 covariance so as to keep the number of parameters as low as possible
for better statistical inference. (The �jhj5 covariance leads to poorly condi-
tioned kriging matrices.) The resultant covariance with terms arranged by
increasing regularity is

KðhÞ ¼ C0 δðhÞ � b0 jhj þ bS jhj2logjhj þ b1jhj3

K(h) is a valid GC of order k¼ 1 —and of course of higher order as well—if and
only if the coefficients satisfy the following inequalities (from Dubrule, 1981):

In R1 C0 $ 0; b0 $ 0; b1 $ 0; bS $ �
ffiffiffiffiffi
24

p

π

ffiffiffiffiffiffiffiffiffi
b0b1

p
;

In R2 C0 $ 0; b0 $ 0; b1 $ 0; bS $ � 3

2

ffiffiffiffiffiffiffiffiffi
b0b1

p
;

In R3 C0 $ 0; b0 $ 0; b1 $ 0; bS $ � 8

π
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffi
b0b1

p

4.5.8 Construction of an IRF–k with a Polynomial GC in R1

Successive integrations of a process W0(x) with GC K0(h)¼�jhj (W for
Wiener–Lévy process) lead to a process

TABLE 4.1 Polynomial GC Models for k# 2 with Nugget Effect Added

Filtered Polynomial

(Drift) k

Polynomial Generalized Covariance Model

þNugget Effect

Constant 0 K(h)¼C0 δ(h)� b0 jhj
Linear 1 K(h)¼C0 δ(h)� b0 jhj þ b1 jhj3
Quadratic 2 K(h)¼C0 δ(h)� b0 jhj þ b1 jhj3� b2 jhj5

Constraints

In R1 : C0 $ 0; b0 $ 0; b2 $ 0; b1 $ � 2
ffiffiffiffiffiffiffiffiffiffi
10=3

p ffiffiffiffiffiffiffiffiffi
b0b2

p
In R2 : C0 $ 0; b0 $ 0; b2 $ 0; b1 $ � ð10=3Þ ffiffiffiffiffiffiffiffiffi

b0b2
p

In R3 : C0 $ 0; b0 $ 0; b2 $ 0; b1 $ � ffiffiffiffiffi
10

p ffiffiffiffiffiffiffiffiffi
b0b2

p
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WkðxÞ ¼
Z x

0

ðx� tÞk�1

ðk� 1Þ! W0ðtÞdt

that is an IRF–k, with the polynomial GC:

KkðhÞ ¼ ð�1Þkþ1jhj2kþ1=ð2kþ 1Þ!

Now consider a process of the form

YðxÞ ¼
Xk
p¼0

cpWpðxÞ ð4:28Þ

where all Wp(x) are integrals of the same process W0(x). Then Y(x) can be
expressed as a sum of derivatives of Wk(x):

YðxÞ ¼
Xk
p¼0

cpD
k�pWkðxÞ

where Dp denotes derivation of order p, from which the GC of Y(x) is found
to be

KðhÞ ¼
 Xk

p¼0

cpD
k�p

! Xk
q¼0

ð� 1Þk�qcqD
k�q

!
ð�1Þkþ1jhj2kþ1=ð2kþ 1Þ!

It is a polynomial GC. Conversely, any IRF–k in 1D with a polynomial GC has
a representation of the form (4.28), which means that for any given valid set of
covariance coefficients bp defined in (4.27), we can always find the matching set
of coefficients cp (Matheron, 1973a). For k¼ 2 the results are

c0 ¼
ffiffiffiffiffi
b0

p
; c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
120b2

p
; c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b1 þ 2c0c2

p
This provides a simple algorithm for simulating in 1D any IRF–k with a given
polynomial GC: It suffices to simulate an IRF–0 with a linear variogram and
integrate it k times. The turning bands algorithm can then take over to generate
a simulation with polynomial GC on Rn.

4.6 ESTIMATION IN THE IRF MODEL

4.6.1 Intrinsic Kriging

The rule of the game here is to derive the kriging equations using allowable
linear combinations, which are the only ones to have computable variances.
This is done below in a straightforward manner. A geometric derivation of the
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equations in terms of projections in Hilbert spaces can be found in Matheron
(1981c).

In our model the variable under study Z(x) is regarded as a realization of an
IRF–k of known order k and known GC K(h); the inference problem will be
considered later. To keep things simple, let us suppose that we want to estimate
the value Z0¼Z(x0) at a point x0 using a linear combination of observed data
Z(xα). By placing appropriate conditions on the weights, we can ensure that the
estimation error Z*�Z0 is an allowable linear combination of order k. Then its
variance can be expressed in terms of K(h), and the kriging equations are
derived exactly as in the universal kriging approach.

Specifically, if X
α

λα x
‘
α � x‘0 ¼ 0; j‘j ¼ 0; : : : ; k ð4:29Þ

then Z�� Z0 ¼ Z
�P

αλαδxα � δx0
�
is an ALC–k, and by formula (4.14) its

variance is

EðZ�
0 � Z0Þ2 ¼

X
α

X
β

λα λβ Kðxβ � xαÞ � 2
X
α

λα Kðx0 � xαÞ þ Kð0Þ

Minimizing this subject to (4.29) leads to the system

Intrinsic Kriging SystemX
β

λβ Kðxβ � xαÞ þ
X
‘

μ‘ x
‘
α ¼ Kðx0 � xαÞ; α ¼ 1; : : : ;N;X

α
λα x

‘
α ¼ x‘0; j ‘ j ¼ 0; : : : ; k

8>><>>: ð4:30Þ

The kriging variance is as usual.

Intrinsic Kriging Variance

σ2
K ¼ Kð0Þ �

X
α

λα Kðx0 � xαÞ �
X
‘

μ‘ x
‘
0

This system, sometimes named “intrinsic kriging,” is exactly the same as in the
universal kriging model (3.21) except that K(h) is substituted for σ(h).
The kriging estimator and the kriging variance only depend on the GC class
and not on the particular version used—namely not on the particular
representation. They are intrinsic properties.

Just as for UK, there is a dual form of intrinsic kriging and the interpolant is
given by exactly the same equations as (3.46) and (3.47) with K in place of σ and
the f ‘ as monomials.

Note that in this approach the conditions (4.29) are not introduced as
unbiasedness conditions but as constraints to make the estimation error an
allowable measure. For these conditions to be realizable, it is necessary that the
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matrix X ¼ ½x‘α� has a rank equal to its number of columns (full rank)—that is,
the same conditions as in UK.

The conditions (4.29) ensure numerical invariance in the sense that an arbi-
trary polynomial of degree k may be added to Z(x) without changing the value
of Z*�Z0 (which is stronger than not changing the expected value). If moving
neighborhoods are used for the estimation, then (4.29) may be interpreted
physically as filtering conditions. They eliminate the effect of a local “drift,” if
we mean by this a smooth component locally approximable by a polynomial of
degree k.

Properties of the Intrinsic Kriging Matrix

The kriging matrix of (4.30) is of the form

A ¼
�
K X

X0 0


; where K ¼ ½Kαβ� and X ¼ ½x‘α�

If the generalized covarianceK(h) is strictly conditionally positive definite of order
k, all data points are distinct, and thematrixX is of full rank, the krigingmatrixA
is invertible. To show this suppose Aw 5 0 for some vector w0 5 (λ0, μ0)0, then

KλþXμ ¼ 0 and X
0
λ ¼ 0

Premultiplying the first equation by λ0 gives λ0Kλ 5 0, which, by the
positiveness of K, implies λ¼ 0. The first equation then reduces to Xμ¼ 0

and since X is of full rank, necessarily μ¼ 0. Therefore A is nonsingular.
Note that the matrix K itself may be singular when k. 0 (for k¼�1 and

k¼ 0 it is always invertible). A classic example is given by the GC K(r)¼ r2 log r
with data points x2, . . . , xN located on the unit circle centered at x1. Then the
first row and column of the matrix K consist of zeroes, and K is singular. The
presence of X in the A matrix—that is, the side conditions (4.29)—solves the
problem. Note that in IRF–k theory these condintions derive from the essence
of the random function model, whereas for radial basis functions presented in
Section 3.4.9 they appear as a trick. This result guarantees that interpolation by
radial basis functions is always possible if the basis function is a generalized
covariance and the proper side conditions are imposed.

It is interesting to go a bit further and investigate the properties of A�1. We
define this inverse in partitioned form using block matrices U, V, W such that�

U V

V
0

W

�
K X

X0 0


¼
�
UKþ VX

0
UX

V0KþWX
0

V
0
X


¼
�
IN 0

0 Ikn


¼ INþkn ð4:31Þ

Where kn ¼
�
kþn
k

�
is the number of monomials of degree less than or equal to k

in Rn.
As A is symmetric, so is its inverse andU andW are symmetric matrices. U is

obviously singular (since UX¼ 0) and, less obviously, nonnegative definite.
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Indeed, postmultiplying the top left equation by U and taking into account
UX¼ 0 leads to

UKU ¼ U ð4:32Þ

Now consider an arbitrary vector x and the weights vector λ¼Ux. It defines an
ALC since λ0X¼ 0. Therefore λ0 Kλ$ 0 (equals 0 only if λ¼ 0) and from (4.32)

λ0Kλ ¼ x0UKUx ¼ x0Ux$ 0

Multiplying A
�1 by the vector [z0 0] 0 the solutions b and c of the dual kriging

equations are simply b¼Uz and c¼V0z. In the special case K¼Σ, the vector c
holds the optimal drift coefficients estimates and �W is its covariance matrix.
There is no such interpretation for an arbitrary GC. The matrix U is also useful
for kriging under inequality constraints (Section 3.9.2).

4.6.2 Locally Equivalent Stationary Covariances

From a computational point of view, it is interesting to replace the K¼ [Kαβ] matrix, which is
only k-conditionally positive definite, by a genuinely positive definite matrix C¼ [Cαβ].

In principle, this is always possible by picking an internal representation Y(x)¼Z(εx)
and using the nonstationary covariance Cov(Y(x), Y(y)) in the kriging system (4.30) in lieu
of K(y – x). Since εx2Λk, this covariance can be computed from the GC K(h) using (4.16).

This method, however, is cumbersome and computationally slow. It would be much nicer
if the IRF–k had a stationary representation: The stationary covariance C(h) of this repre-
sentation could then be used as a version of the GC K(h). But in Section 4.5.5 we have seen
that only an IRF–k with a bounded GC can have a stationary representation. This excludes
the important case of IRFs with polynomial covariances.

Fortunately, we can be less demanding because in fact only local stationarity is needed.
For any practical purpose we work in a restricted domain D—the studied area, or a moving
neighborhood—and it is enough if the IRF–k Z(x) has a representation Y(x) that coincides
within D with an SRF Y1(x) (being understood that Y(x) may differ from Y1(x) outside the
working domain D). This leads to the following definition:

Definition. An IRF–k is locally stationary over a bounded domain D if it has a
representation Y(x) that coincides on D with a stationary random function Y1(x).

The relationship between Y1(x), Y(x), and Z(x) is the following:

Y1ðxÞ ¼ YðxÞ ’x 2 D
YðλÞ ¼ ZðλÞ ’λ 2 Λk

Hence

X
i

λi Y1ðxiÞ ¼
X
i

λi ZðxiÞ

for any λ in the space Λk(D) of allowable measures with support in D. The ordinary
covariance C(h) of Y1(x) is equivalent to the GC K(h) over D in the sense that for any
λ 2 ΛkðDÞ we have
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X
i

X
j

λi λj Cðxj � xiÞ ¼
X
i

X
j

λi λj Kðxj � xiÞ

C(h) is called a locally equivalent stationary covariance.
Not every IRF–k is locally stationary,5 but the IRF–k0s of practical interest are. In par-

ticular, any IRF–k with a polynomial GC is locally stationary on any bounded open set
(Matheron, 1973a).

A locally equivalent stationary covariance C(h) differs from its parent GC–k K(h) by an
even polynomial of degree 2k that depends on the dimensions of the domain D (it must since
the IRF is not globally stationary)

CðhÞ ¼ KðhÞ þQðhÞ

Even for a fixedD, the covariance C(h) is not unique. However, Matheron (1974b) shows that
an IRF–k has at most one stationary internal representation overD (i.e., involving only values
within D), but it is usually difficult to find!

Examples

1. Consider a Brownian motion without drift as in Example 1 of Section 4.5.2 with α¼ 1,
and restrict our attention to the interval [�R, þR]. If instead of X(t)�X(0) we consider the
representation

YðtÞ ¼ XðtÞ � 1

2
½Xð�RÞ þ XðRÞ�

(which satisfies Y(�R) ¼� Y(R)), we obtain the covariance

σðt; t 0Þ ¼ R� jt 0 � tj

C(h)¼R – jhj is therefore locally equivalent to the GC–0 K(h)¼�jhj for jhj# 2R. (It
corresponds to the stationary internal representation on [�R, þR].) An arbitrary constant
A. 0 may be added so that the class of locally stationary covariances is a one-parameter
family.

2. Matheron (1974b) shows that an IRF–0 with variogram γ(h)¼ bjhjα, where 0,α, 2
(e.g., fractional Brownian motion) possesses locally stationary representations on [�R, R]
with covariances of the form

CðhÞ ¼ bðA� jhjαÞ jhj# 2R; A$Aα ¼ Rαffiffiffi
π

p Γ
�
1þ α
2

�
Γ
�
1� α

2

�
ð4:33Þ

In the special case α¼ 1 we recover the covariance R� jhj. By application of turning bands,
(4.33) is also a locally stationary covariance on Rn, provided that

5An analytic IRF–0 with an unbounded variogram, such as a Brownian motion convolved with a

Gaussian density, cannot be locally stationary because it would then be stationary on the whole

space, which is impossible since its variogram is not bounded. Another example is the integral of a

zero-mean Gaussian process with a Gaussian covariance (Gneiting et al., 2001).
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A$
Aα

Bnα
where Bnα ¼ Γ n

2

� �
Γ 1þα

2

� �
Γ 1

2

� �
Γ nþα

2

� � ð4:34Þ

For k. 0, Stein (2001) proves that the generalized power law GC–k (4.25) or (4.26) on Rn

admits a locally equivalent stationary covariance on any bounded domain if α# 2kþ ν0 with
ν0� 1.6915.

3. If X(t) is a Brownian motion with a linear drift, it is advantageous to consider the
representation

YðtÞ ¼ XðtÞ � 1

2R

Z þR

�R

XðsÞds� 1

2R
½XðRÞ � Xð�RÞ� t

By construction, E [Y(t)]¼ 0 and the covariance is found to be

σðt; t 0Þ ¼ R

3
� jt 0 � tj þ ðt 0 � tÞ2

2R

This is in fact the covariance of the stationary internal representation on [�R, þR]. The
complete class of locally equivalent stationary covariances (for the IRF–1) is of the form
(Matheron, 1974b)

CðhÞ ¼ A� jhj þ B h2 with B# 1=ð2RÞ and A$Rð1� 2BRÞ þ 1

3
Rð2BRÞ2

This class contains the covariance (1/2R) (R� jhj)2 (quadratic model, valid in 3D).

4. An example of a locally stationary representation in 2D is obtained using the
construction based on Poisson lines presented in Section 7.6.5: The convex set D is intersected
by a network of Poisson lines. Each line cuts D in two parts; random values are assigned to
each part and cumulated. The resulting RF has the stationary covariance of the form

σðx; yÞ ¼ A
1

2
j@Dj � jy� xj

� 
where j@Dj is the perimeter of D and A is a positive constant.

5. Table 4.2 gives a particular family of covariances locally equivalent to polynomial GCs
for k # 2. C2 and C3 are deduced by the turning bands method from C1 which satisfies
C1(2R)¼�C1(0) when A¼ 0. The formulas are written in terms of the modulus r¼ jhj and
hold for r # 2R. Adding a strictly positive constant A makes the covariances strictly positive
definite. Note that for ALC–k the results of variance calculations do not depend on R or A
because R and A are only involved in even powers of r.

6. Table 4.3 gives the locally equivalent stationary covariances for the GC model
K(h)¼ jhj2 log jhj. Note that this is a valid model in Rn for any n although the equivalence
with splines is only true in R2. C2(r) is graphed in Figure 4.9. It becomes negative at r¼R,
indicating a “hole effect” which is not surprising when one thinks of the physics of a flexed
plate. As long as r # 2R, the function C2(r) may be used just as an ordinary covariance even
without restrictions on the weights, but it is equivalent to the spline GC only if the three
conditions ensuring that k¼ 1 are imposed. For r$ 2R the function C2(r) loses its positive-
definiteness property.
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TABLE 4.2 Stationary Covariances Locally Equivalent to the GC K(h) 5 2 b0jhj
1 b1jhj32 b2jhj5 for r 5 jhj# 2 R

In R1 : C1ðrÞ ¼ A� b0 ðr� RÞ þ b1 ðr3 � 3r2Rþ 2R3Þ
� b2 ðr5 � 5r4 Rþ 20r2R3 � 16 R5Þ

In R2 : C2ðrÞ ¼ A� b0 ðr� π
2
RÞ þ b1 ðr3 � 9π

8
r2Rþ 3π

2
R3Þ

� b2 ðr5 � 225π
128

r4Rþ 75π
8

r2 R3 � 15πR5Þ

In R3 : C3ðrÞ ¼ A� b0 ðr� 2RÞ þ b1 ðr3 � 4r2Rþ 8R3Þ
� b2 ðr5 � 6r4Rþ 40r2R3 � 96R5Þ

TABLE 4.3 Stationary Covariances Locally Equivalent to the GC K(h) 5 jhj2 log jhj
for r 5 jhj# 2R

In R1 : C1ðrÞ ¼ 1

2
R2 �

�
3

2
� log 2

�
r2 þ r2 log ðr=RÞ

In R2 : C2ðrÞ ¼ R2 � r2 þ r2 log ðr=RÞ

In R3 : C3ðrÞ ¼ 3

2
R2 �

�
11

6
� log 2

�
r2 þ r2 log ðr=RÞ

Source: Matheron (1981a).

R
r

0

C2

0

R2

2R

FIGURE 4.9 Stationary covariance locally equivalent to K(r)¼ r2 log r in 2D for r# 2R.
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The r2 and r4 terms in the covariances are transparent to the kriging equations: In theory,
they have no influence on either the kriging weights or the kriging variance. Numerically,
however, these terms will dominate the other terms if R is large. These numerical considera-
tions suggest to choose for R the smallest possible value. R is the radius of a circle (or a
sphere) large enough to include all points involved in the estimation problem considered—
that is, both the observations and the points to be estimated. For example,Rmay be the radius
of the largest moving neighborhood or of the current neighborhood (hence the maximum
distance involved in covariance calculations is 2R).

4.6.3 Status of the Drift in IRF–k Theory

Since the concept of IRF–k encompasses a class of random functions (the
representations) that are defined up to a polynomial, one could argue that this
polynomial implicitly captures the concept of drift—whatever that means. But
the drift itself can only be defined in an exceptional case: When the class of
representations of the abstract IRF–k eZ contains a special random function
Y(x) that is distinguishable from all others by some remarkable property and
can thus serve as an absolute reference. Then any other representation Z(x)
would differ from Y(x) by a polynomial drift.

A case when this circumstance occurs is that of an IRF–k with a stationary
representation YSt(x). Any other representation is then of the form

ZðxÞ ¼ YStðxÞ þ
X
‘

A‘ x
‘

This is nothing but the universal kriging model (driftþ stationary residual) with
random coefficients. This case, however, is an exceptional one requiring that
one of the GCs be bounded. In general, an IRF–k has no stationary
representation and therefore no uniquely definable drift (IRF–k with polyno-
mial GCs never have a stationary representation). Far from being an objection
against the IRF model, this circumstance is consistent with our initial goal,
which was precisely to deal with phenomena for which the dichotomy into drift
and residual is meaningless, or at least arbitrary. The important point is that
spatial estimation (kriging) remains possible within this model.

A Fallacy

At the early times of the development of the IRF theory, it was believed that locally equiv-
alent stationary covariances could be used to perform drift estimation. But practical examples
soon showed that it did not work. The drift estimates obtained did not reflect at all the general
behavior of the phenomenon. Furthermore, these estimates differed with the radius R of the
domain. The reason is now well understood. Locally equivalent stationary covariances are
not unique even over a fixed domain D. As a consequence, the estimated drift is arbitrary and
depends on the particular choice of the covariance. To some extent the terminology “locally
equivalent stationary representation” is misleading, because one expects the equivalent Y(x)
to really look stationary over D. But that cannot be the case. If Y1(x) and Y2(x) are two
distinct locally equivalent stationary representations, their difference

Y1ðxÞ � Y2ðxÞ ¼
X
‘

A‘ x
‘
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is necessarily a polynomial of degree k, and at least one of these functions has locally the
aspect of a drift.

The locally equivalent stationary Y(x) is no more than a mathematical construct, useful to
derive covariance models but unable to give a meaning to the drift.

Estimation of a Regional Trend

For interpretation purposes it may be useful to estimate a spatial trend. Since
our information on the phenomenon is most of the time very fragmentary, we
must carefully distinguish two problems: that of the conceptual definition of the
trend and that of the estimation of the trend so defined.

In light of the discussion on the objectivity of probabilistic parameters
(see Section 1.5), we are led to ask the interpreter the following question:
“Assuming that instead of knowing the variable at a limited number of points you
knew the values z(x) everywhere in the domain of interest, which algorithm
would you use to calculate your trend function?” If the notion of trend as portrayed
in the interpreter’s mind has an objective meaning, such an algorithm must exist.

Typically the interpreter will respond with a conventional definition of the
trend that translates into a linear algorithm—for example, fit a least squares
polynomial, or apply a low-pass filter. We will then be able, on the basis of the
available data, to estimate that specific trend using a kriging estimator.

Suppose, for example, that the user defines the trend as the polynomial of
degree k that best fits z(x) in the least squares sense over a specified domain D.
The coefficients β‘ of that polynomial are linear functions of {z(x) : x2D} and
can therefore be estimated from the available data z1, . . . , zN. By the linearity of
kriging, the estimators are simply the same linear functions of the kriging
estimate z*(x). The procedure is equivalent to minimizing the integralZ

D

�
z*ðxÞ �

X
‘

β‘ x
‘

�2

dx

in which the true z(x) are replaced by their kriging estimates z*(x).
It must be emphasized that this technique differs from a direct polynomial fit

to the observations. We want the fit to be representative of the domain D and
not only of the data points. The closest we can come to this objective is by
reconstructing the values of z(x) as accurately as possible over the whole
domain D, or a discretized form of it, and then fit a polynomial. In the process
we make use of the structure information contained in the GC, which the plain
least squares fit at the observations does not.

4.6.4 Kriging and Splines

Interpolating Splines

Consider in 1D the IRF–1 Z(x) with GC K(h)¼ jhj3, and let us examine the
behavior of the dual kriging interpolant z*(x) based on N consecutive points
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x1, . . . , xN. From (3.46) and (3.47) we obtain

z�ðxÞ ¼
XN
α¼1

bαjx� xαj3 þ c0 þ c1x;

z�ðxαÞ ¼ zα; α ¼ 1; : : : ;N;XN
α¼1

bα ¼ 0 and
XN
α¼1

bαxα ¼ 0

8>>>>>><>>>>>>:
z*(x) is a cubic polynomial within each interval [xα, xα+1], assumes the values
zα and zα+1 at its boundaries, and is continuous in the first and second
derivatives across boundaries, including at x1 and xN where the second
derivative is zero. In the intervals ]�N, x1] and [xN, þN[, z*(x) is linear as
can be seen by expansion of the polynomial (x� xα)

3 and the application of the
two constraints on bα. Therefore z*(x) coincides with the cubic interpolating
spline going through z1, . . . , zN, which is the function f(x) minimizing

Jðf Þ ¼
Z þN

�N
½ f 00ðxÞ�2dx

subject to the N constraints f(xα)¼ zα. Note that the linear behavior of f(x) on
the outer intervals cancels f 00(x) and ensures that the integral is finite.

A physical interpretation of the problem is to consider a metal strip clamped
at the N points (x1, z1), . . . , (xN, zN). The strip will adopt the shape that
minimizes its flexing energy, which is proportional to the square of the cur-
vature of the strip, a quantity approximated by J( f).

The analog of this problem in 2D is to minimize the flexing energy of a thin
metal plate, which is proportional to

Jðf Þ ¼
ZZ

ð@2f =@x2Þ2 þ 2ð@2f =@x@yÞ2 þ ð@2f =@y2Þ2
j k

dx dy

under the N constraints f(xα, yα)¼ zα [e.g., Gonzalez-Casanova and Alvarez
(1985)]. (As usual in 2D, we use (x, y) as the coordinates of a point.) Duchon
(1975) derived the explicit solution of this minimization problem

f ðx; yÞ ¼
X
α

bα KðrαÞ þ c0 þ c1xþ c2y ð4:35Þ

where

KðrÞ ¼ r2 log r and r2α ¼ ðx� xαÞ2 þ ðy� yαÞ2

with coefficients satisfyingX
α

bα ¼ 0
X
α

bαXα ¼ 0
X
α

bαYα ¼ 0
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The spline interpolating function (4.35) turns out to have the same form as the
kriging interpolant (3.46) with k¼ 1 and a generalized covariance function
K(h)¼ jhj2 log jhj.

The functions f presented above are known as biharmonic splines because
each in its space of definition satisfies the equation Δ2 f (x)¼ 0 at every point
x 6¼ xα (Δ

2: iterated Laplacian). The basis function K itself satisfiesΔ2 K¼ δ. In
3D the solution is K(r)¼�r. Higher-order splines can be defined by considering
higher-order derivatives, but biharmonic splines are used most.6 The reader is
referred to Wahba (1990) for further information.

It is remarkable that biharmonic splines and kriging lead to the same results,
considering that they proceed from two very different approaches. With splines
one postulates a property of the interpolating surface, whereas with kriging one
focuses on modeling the underlying random function itself. A common ground is
the property of invariance under translations that is shared by IRF theory and by
the differential operatorswith constant coefficients generally used to define splines.

The notion that spline interpolation is in certain cases equivalent to minimum
variance linear prediction was shown byKimeldorf andWahba (1970) within the
scope of a Bayesian analysis, and by Duchon (1976) who related splines with
conditional expectations of random fields. Matheron (1981a) proved that the
converse is also true: any kriging problem can be cast into a spline problem
defined as the minimization of a norm associated with a linear operator. Such
operator, however, is not necessarily with constant coefficients. Dubrule (1981)
gives the following example: In 1D, kriging an IRF–1 with GC K(h)¼ jhj3 is
equivalent to splines with the differential operator T ¼ @2=@x2. But if the
covariance is K(h)¼� jhj þ jhj3, the operator T cannot be differential with con-
stant coefficients (the proof is not obvious). Likewise for a fixed order k, if we
consider polynomial GCs

KðhÞ ¼
Xk
p¼0

ð�1Þpþ1bpjhj2pþ1

only one of them (�1)kþ1 jhj2kþ1 corresponds to the minimization of the norm
of a simple differential operator (T¼ @kþ1/@xkþ1).

Spline and kriging interpolation are thus equivalent in a formal way but not so
in a practical way. Given the operator defining the spline, it is a tractable problem
to find the equivalent kriging formulation, whereas it can be extremely difficult

6A fallacious argument sometimes heard to justify the use of splines for mapping geological

structures goes roughly like this: Since geological materials have elastic properties and since thin-

plate splines are a solution to the minimum stress problem, they are clearly physically correct. In

reality, even if nature did create minimum stress surfaces, it did not force them to go through

boreholes drilled millions of years later; that is, the boundary conditions were completely different.

The fact that beds are necessarily minimum stress surfaces is also dubious, geologically. As shown

by Suppe (1985), and simplifying to the extreme, the shape of a fold is largely a function of its

thickness, with thicker layers having a longer wavelength. On the other hand, structural geologists

have developed algorithms that take into account the geometric constraints imposed by the physics

of deformation, most notably balanced cross sections (see footnote 12 of Section 3.6.2).
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to identify the minimization problem associated with a given kriging solution.
In this perspective, biharmonic splines constitute a very special and isolated case.

Smoothing Splines

When the data are subject to measurement errors—or when interpolating
splines produce nonsensical results—one relaxes the constraints of exact fit at
the sample points to request only that the fitted surface pass not too far from
the data. Assuming equal error variances, the solution minimizesX

α
½f ðxαÞ � zα�2 þ ρ Jðf Þ ðρ. 0Þ ð4:36Þ

within a class of functions f with continuous derivatives up to the appropri-
ate order. The parameter ρ controls the trade-off between the smoothness
of the curve and the fit at the data point. As ρ tends to zero, the solution
tends to an interpolating spline; as ρ increases, the solution approaches a line
or plane fit by least squares. Such interpolating functions are known as
smoothing splines.

The formal equivalence with kriging extends to smoothing splines but in a
slightly modified setup. The model is now

Zα ¼ Yα þ εα

where the underlying Y(x) is a smooth random function with covariance K(h)
and the εα are errors, uncorrelated with the RF Y(x) and satisfying

E½εα� ¼ 0; E½εαεβ� ¼ Sαβ

The estimation of the smooth component Y(x) from noisy data Zα is a
cokriging problem analogous to equations (3.68) whose solution, in dual
kriging terms, is of the form

y	ðxÞ ¼P
α

bα Kðx� xαÞ þ P
‘

c‘ x
‘;P

β
bβ ðKαβ þ SαβÞ þ P

‘

c‘ x
‘
α ¼ zα; α ¼ 1; : : : ;N;P

α
bα x

‘
α ¼ 0; j ‘ j ¼ 0; : : : ; k

8>>>><>>>>: ð4:37Þ

Biharmonic smoothing splines are a particular case of such cokriging, with a
diagonal error covariance matrix Sαβ¼C0 δαβ and a covariance K(h) propor-
tional to jhj3 in 1D and to jhj2 log jhj in 2D (Matheron, 1981a; Dubrule, 1983a).
A simple parallel is established in 1D by Watson (1984).

A key problem in the application of smoothing splines is the choice of the
smoothing parameter ρ. It is achieved by cross-validation techniques—in par-
ticular, the generalized cross-validation method of Craven and Wahba (1978).
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This is where splines and kriging really meet because the endeavor to determine ρ
from the data is a form of structure identification, a step central to kriging. Along
these lines Dubrule (1983a) proposed to model the generalized covariance ofZ(x)
with precisely the function that leads to smoothing splines in 2D:

KðhÞ ¼ C0 δðhÞ þ bS jhj2 logjhj
The problem of selecting ρ subsumes into the determination of the structural
parameters C0 and bS. In fact, by identification with the solution of (4.36) [e.g.,
Wahba (1990, p. 12)], we find simply ρ¼C0/bS, which makes sense when
interpreted as a “noise-to-signal ratio.”

In conclusion of this section we note that the identification of splines with a
special form of kriging is a tangible benefit of the IRF–k theory. It allows
kriging to borrow techniques developed for splines, such as estimation under
linear inequality constraints. From an operational perspective, however, the
two approaches remain different because kriging leaves open the possibility of
selecting a covariance model other than the standard spline type if the data so
suggest. An empirical comparison of the predictive performance of kriging and
splines, with a discussion, can be found in Laslett (1994). We give an excerpt
from his conclusion: “It is when data are not sampled on a grid that kriging has
the potential to outpredict splines, because it involves a translation of infor-
mation on covariation of data values from intensely sampled regions to
sparsely sampled regions; splines and some other nonparametric regression
procedures do not appear to exploit such information.”

4.7 GENERALIZED VARIOGRAM

Now that the theory is laid out, we are left with the crucial problem of structure
identification: to determine the order k and the generalized covariance function
K(h). We will start with the special case of regularly spaced data along lines
and introduce the generalized variogram, a new structural tool that inherits
the advantages of the ordinary variogram. It can be calculated “non-
parametrically” (i.e., without presuming a parametric model) and can be dis-
played and fitted graphically. The first definition of the generalized variogram
can be found in Matheron (1972b), and it was first used by Orfeuil (1972) to
check simulations of IRF–k. Applications include the analysis of micro-
gravimetry data (Chilès, 1979b), geothermal data (Chilès and Gable, 1984), and
fracture data (Chilès and Gentier, 1993). A similar tool, though more difficult
to interpret, has been proposed by Cressie (1987).

4.7.1 Definition

The generalization of the simple increment or forward finite difference

ΔhZðxÞ ¼ Zðxþ hÞ � ZðxÞ
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is the increment or forward finite difference of order kþ 1, which is the simplest
ALC–k in 1D:

Δkþ1
h ZðxÞ ¼ ð�1Þkþ1

Xkþ1

p¼0

ð�1Þp�kþ1
p

�
Zðxþ phÞ ð4:38Þ

By definition, the generalized variogram of order k, denoted by Γ(h) and
abbreviated as GV, is the appropriately scaled variance of the increment of
order kþ 1:

ΓðhÞ ¼ 1

Mk
Var½Δkþ1

h ZðxÞ� ð4:39Þ

The scaling factor Mk ¼
�
2kþ2
kþ1

�
is introduced to ensure that in the case of a

pure nugget effect, Γ(h)¼C0 δ(h) as for an ordinary variogram.7 Explicitly
we have

k¼ 1 : ΓðhÞ ¼ 1

6
Var½Zðxþ 2hÞ� 2 Zðxþ hÞþZðxÞ�;

k¼ 2 : ΓðhÞ ¼ 1

20
Var½Zðxþ 3hÞ� 3 Zðxþ 2hÞþ 3 Zðxþ hÞ�ZðxÞ�;

k¼ 3 : ΓðhÞ ¼ 1

70
Var½Zðxþ 4hÞ� 4 Zðxþ 3hÞþ 6 Zðxþ 2hÞ� 4Zðxþ hÞþZðxÞ�

4.7.2 Relationship Between Generalized Variogram and Covariance

Since the increment of order kþ 1 is an ALC–k, its variance can be expressed in
terms of the generalized covariance. Applying the definition (4.14) of a gen-
eralized covariance to (4.39) gives

ΓðhÞ ¼ 1

Mk

Xkþ1

p¼�ðkþ1Þ
ð�1Þp� 2kþ2

kþ1þp

�
KðphÞ ð4:40Þ

Explicitly

k ¼ 1 : ΓðhÞ ¼ Kð0Þ � 4
3
KðhÞ þ 1

3
Kð2hÞ

k ¼ 2 : ΓðhÞ ¼ Kð0Þ � 3
2
KðhÞ þ 3

5
Kð2hÞ � 1

10
Kð3hÞ

k ¼ 3 : ΓðhÞ ¼ Kð0Þ � 8
5
KðhÞ þ 4

5
Kð2hÞ � 8

35
Kð3hÞ þ 1

35
Kð4hÞ

7Here we find further justification for naming γ(h) a variogram rather than a semi-variogram;

otherwise, Γ(h) would not be the generalized variogram, even less the generalized semi-variogram,

but the Mkth of a generalized variogram!
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While being simple, the relationship between Γ(h) and K(h) is more complex
than for the ordinary variogram. In particular, whether the GV determines the
GC (up to the even polynomial) is still an unsolved problem (Chauvet, 1987,
pp. 215–231). Indeed Γ(h) only represents the variance of the increments
associated with h, while what determines the GC is the set of all covariances
of these increments for all h.

However, there are two important cases where the GV does determine the
GC: When the GC is bounded and when the GC is of polynomial form. This is
readily seen from (4.40) by observing that if K(h) behaves like jhjα, so does Γ(h),
only the coefficient changes. On the other hand, if K(h) is an ordinary
covariance such that K(h)¼ 0 for jhj$ a, then by (4.40) we obtain Γ(h)¼K(0)
for jhj$α. The GV has the same range and sill as the ordinary variogram
K(0)�K(h); the nugget effect remains the same. All common covariance models
have a polynomial behavior near the origin, and the GV inherits this but with
changes in the coefficients; in particular, the even terms of degree$2k disappear.
Figure 4.10 displays the GVs associated with the spherical model (2.47).

From a practical point of view, it should be kept in mind that the objective is
to identify the GC function K(h), since it is the quantity involved in estimation
problems. So, after computing an experimental GV, one will try to fit a linear
combination of GV models associated with known GC models. The above-
mentioned models are the only ones used in practice. Since the GV models
remain close to the GC models, fitting a model to an experimental GV is not
more difficult than fitting a model to an ordinary variogram.

The statistical inference problems associated with the GV are essentially the
same as for the ordinary variogram. The conclusions are also similar except
that the GV can only be computed at shorter distances (the length of the region

1

0 ha

Γ

γ

Γ2

Γ3

Γ1

FIGURE 4.10 Generalized variograms associated with the spherical variogram model for k¼ 0,

1, 2, 3.
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of interest divided by kþ 1) and fluctuation variances are higher. In the
Gaussian case the regional GV ΓR(h) still converges to Γ(h) when h- 0 (micro-
ergodicity), provided that Γ(h) is not too regular near the origin (Γ(h) B jhjα
with 0,α, 2kþ 2). More on statistical properties of the GV can be found in
Chilès (1979b).

Polynomial Covariances

If KðhÞ ¼ ð�1Þ1þbα=2cbαjhjα, then

ΓðhÞ ¼ ð�1Þ1þbα=2cBα bαjhjα with Bα ¼ 1

Mk

Xkþ1

p¼�k�1

ð�1Þp� 2kþ2
kþ1þp

�jpjα
Explicit results are given below for the polynomial/logarithmic family model (where h stands
for jhj; notice that bp is here the coefficient of the monomial or logarithmic-monomial of
degree p)

k ¼ 1
KðhÞ ¼ C0 δðhÞ � b1hþ b2h

2 log hþ b3h
3

ΓðhÞ ¼ C0 ½1� δðhÞ� þ 2
3
b1hþ 4

3
ðlog 2Þb2h2 þ 4

3
b3h

3

(

k ¼ 2

KðhÞ ¼ C0δðhÞ � b1hþ b2h
2 log hþ b3h

3 � b4h
4 log h� b5h

5

ΓðhÞ ¼ C0½1� δðhÞ� þ 3
5
b1hþ 3

10
ðlog 256� log 27Þb2h2 þ 3

5
b3h

3

þ 3
10
ð27 log 3� 32 log 2Þb4h4 þ 33

5
b5h

5

8>><>>:

k ¼ 3

KðhÞ ¼C0 δðhÞ � b1hþ b2h
2 log hþ b3h

3 � b4h
4 log h� b5h

5

þb6h
6 log hþ b7h

7

ΓðhÞ ¼C0 ½1� δðhÞ� þ 4
7
b1hþ 72

35
ð log 4� log 3Þb2h2 þ 16

35
b3h

3

þ 24
35
ð27 log 3� 40 log 2Þb4h4 þ 16

7
b5h

5

þ 8
35
ð1248 log 2� 729 log 3Þb6h6 þ 2416

35
b7h

7

8>>>>>>>>><>>>>>>>>>:
Γ(h) is a polynomial of degree 2kþ 1 in h, where all the logarithmic terms of K(h) have turned
into even degree terms.

4.7.3 An Application to the Topography of Fractures

Chilès andGentier (1993) describe an application of generalized variograms to the
study of the morphology of natural rock fractures. A precise determination of the
topography of the two surfaces bordering a fracture is performed in the labora-
tory on cores by sampling the surfaces along profiles, using a special tool called a
“profilometer.” The goal is to understand the roughness of the fracture surfaces
and the spatial variations of the aperture, which control the mechanical behavior
of fractures under stress and the flow and transport within the fractures.
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FIGURE 4.11 Fracture profile shown on cross-section along core axis, and associated vario-

grams. [From Chilès and Gentier (1993), with kind permission from Kluwer Academic Publishers.]
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Figure 4.11 shows a profile recorded across a fracture surface, its raw vario-
gram, its variogram of residuals, and its GV for k¼ 1. The raw variogram has a
parabolic shape that mainly reflects the bias due to the presence of a strong linear
drift. By contrast the GV, displayed with a vertical exaggeration of about 10,
exhibits a clear sill reached at a range of about 10mm. It agreeswith the variogram
of residuals γR(h) in the sense that they have the same range and sill, and the slope
at the origin of Γ(h) is two-thirds of the slope of γR(h), as predicted by theory.

The excellent agreement of the two variograms in this example is due to
the simplicity of the drift, which allows a global linear fit. In more complex
cases a simple global fit of the drift would still leave bias in the variogram of
residuals, whereas the GV remains unbiased at short distances because it
filters the drift locally. In addition, Γ(h) can reflect the unbounded behavior
of the underlying variogram, while by construction a variogram of residuals
is always bounded.

4.8 AUTOMATIC STRUCTURE IDENTIFICATION

In the general case of scattered data, it is not possible to compute a structure
function such as the generalized variogram and graph it to suggest a model. We
have to operate “blindly” and rely on an algorithm to pick the best set of
parameters within a prespecified family of models. This is a parametric
approach, whereas the generalized variogram is nonparametric. The design of
that automatic procedure is the critical and also the most difficult part of the
application of the IRF theory. We present here a method that claims no
optimality properties but has the advantage of being completely general since it
does not require the data points to be evenly distributed nor the underlying RF
to be Gaussian. However, it critically depends on a good design of the measures
λ used for the estimation, which requires careful tuning.

Since this method was introduced (Delfiner, 1976), numerous attempts have
been made to improve on it and find estimators endowed with optimality prop-
erties. One approach (Delfiner, 1977;Kitanidis, 1983, 1985;Marshall andMardia,
1985; Stein, 1986a) consists of treating the covariance identification problem as
one of estimation of variance components using Rao’s minimum norm quadratic
unbiased estimator (MINQUE) theory (Rao, 1970, 1971a,b, 1973, p. 303).
Another approach is restricted maximum likelihood (REML) estimation based
on maximizing the loglikelihood associated with a vector of linearly independent
ALC–k (Kitanidis, 1983). The latter method relies heavily on the Gaussian
assumption and is computationally intensive. Zimmerman (1989) proposes an
efficient implementation for data on a lattice—but then, why not use generalized
variograms?

4.8.1 General Principles

The method is based on the assumption that the covariance K(h) is a linear
combination of elementary models Kp(h):
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KðhÞ ¼
X
p

bpKpðhÞ ð4:41Þ

For a polynomial GC model of order k, we take the elementary models
Kp(h)¼ (�1)pþ1 jhj2p+1, p¼ 0, . . . , k, plus the unit nugget effect δ(h) that we will
associate with p¼�1 (but we will maintain the usual notationC0 rather than b�1

for thenugget effect value). It is alsopossible to include the splinemodel jhj2 log jhj,
but then�jhj5 should be dropped to keep the number of terms as low as possible.
We could also consider forKp(h)modelswith given ranges and estimate the sills bp.

Let us define the synthetic notation

KðλÞ ¼
X
α

X
β

λαλβ Kðxβ � xαÞ ¼ E½ZðλÞ2�

It results from (4.41) that

E½ZðλÞ2� ¼ KðλÞ ¼
X
p

bpKpðλÞ ð4:42Þ

This is a linear regression of Z(λ)2 on the predictor variables Kp(λ). To
determine the coefficients of this regression, we construct, based on the data
points, a large number of ALC–k Z(λi) and minimize

QðbÞ ¼
X
i

w2
i ½ZðλiÞ2 �

X
p

bpKpðλiÞ�2 ð4:43Þ

where b¼ [bp]¼ (C0, b0, . . . , bk)
0 is the vector of the unknown coefficients. The

weights w2
i are introduced to equalize the variances of Z(λi)

2 and therefore
should, in theory, be equal to the reciprocals of Var[Z(λi)

2]. But these
variances are unknown. They involve the fourth-order moments of Z(λi) or
at least, in the Gaussian case, the second-order moments, which just depend on
the covariance to be estimated. An iterative procedure could be considered,
but it is not worth pursuing too far in this direction, since another basic
assumption of least squares, the noncorrelation of the Z(λi)

2, is violated
anyway. Thus one simply uses empirical weights. For example, one can take
the weights associated with the elementary models δ(h), �jhj, or jhj3 in the
Gaussian case where

Var½ZðλiÞ2� ¼ 2KðλiÞ2

Just as a variogram is better known at short distances than at large ones, it is
preferable to assign a larger weight to increments that are more “packed.”
Therefore the weighting derived from jhj3 is used whenever possible. For k¼ 0 a
weighting based on �jhj is used.
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In fact the problem departs from a plain least squares regression when we
require the fit to constitute a valid GC at the order k considered. The coeffi-
cients are not free but must satisfy the inequalities of a polynomial GC. This
would call for a constrained minimization of (4.43) using the techniques of
quadratic programming. An easier way is to simply fit all possible regressions
based on all subsets of the predictor variables Kp(λ) and discard those that do
not satisfy the constraints. Valid models are guaranteed to exist: The solutions
associated with a single elementary model lead to a positive coefficient. If the
search is limited to models for k # 2, there are 24�1¼ 15 possible regression
equations to consider.

At this stage, two questions remain:

� How to select the order k?

� What is the best valid regression equation (4.42)?

The answers are unfortunately largely empirical due to the absence of solid
goodness-of-fit criteria. For the second question least squares suggest that one
ought to consider the residual sum of squares Q(b) or its normalized version:

QðbÞ
Qð0Þ ¼

QðC0; b0; : : : ; bkÞ
Qð0; 0; : : : ; 0Þ ¼ residual sum of squares

total sum of squares

This ratio is always less than 1. A value close to 1 indicates a bad fit, and a value
close to 2/3 indicates a good fit. This number 2/3 is the theoretical value
E[Q(b)]/E[Q(0)] in the Gaussian case with the correct model and a perfect fit.
The problem is that no significance test is available such as the F-test of
standard least squares theory, and we must therefore base our selection on mere
sample fluctuations. In practice, the quality of the fit is gauged not from the
simple criterion Q but from several criteria considered simultaneously. The
same holds true for the determination of the order k.

To illustrate the above,we now sketch the procedure implemented in a program
named BLUEPACK developed at the Center for Geostatistics, Fontainebleau.8

4.8.2 An Implementation Example

BLUEPACK fits a polynomial GC model plus a nugget effect. (There is a variant, not pre-
sented here, including a spline term). The procedure comprises three steps:

1. Determine the order k (0, 1 or 2).

2. Compute all possible regressions (3, 7, or 15 according to the value of k), eliminate
those that are not valid, and perform a first selection.

3. Compare the best regressions of step 2 to make a final selection.

8 The predecessor of the current geostatistical package ISATISs.
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Step 1. To determine the order, k the idea is to cross out known points and estimate them
from neighboring data points, while varying only the number of unbiasedness conditions (1,
3, or 6)—that is, the order k of the IRF.

For each estimateddatapointZα the errors Ẑα � Zα areALC–koforderk¼ 0, 1, or 2.These
errors are ranked by ascending magnitude, and the corresponding orders k are thus ranked by
performance.Themean rank is computed for eachkover all estimatedZα, and the value selected
is thatwithminimummean rank.The advantageof thismethod is its robustness against outliers.

Themean square error criterion is also output by the programbut only as a secondary check.
In ambiguous cases it is advisable to select the lowest possible k.

Since at this stage of structure identification the covariance is not yet known, the above
estimators Ẑα are simply determined by least squares. One design rule is to avoid using
configurations of data points that have a high symmetry about the estimated point. Indeed a
symmetric neighborhood tends to filter polynomials by itself, which leads to underestimate k.
To introduce asymmetry, the data points are split into two concentric rings: data from the
inner ring are used to estimate points from the outer ring, and vice versa.

Step 2. Once k is determined, the possible regressions are computed. Those that are not
valid are discarded (i.e., for polynomial GCs, those that do not fulfill the constraints
expressed in Table 4.1). A selection is then made among the remaining regressions. The
operational criterion involves a ratio of mean square errors. For any ALC–k Z(λi) we have

E½ZðλiÞ2� ¼ KðλiÞ ¼
X
p

bpKpðλiÞ

Let

K̂ðλiÞ ¼
X
p

b̂pKpðλiÞ

be its estimator. Since

E

�X
i

ZðλiÞ2

¼
X
i

KðλiÞ

the ratio

ρ ¼ E

�X
i

ZðλiÞ2
.

E

�X
i

K̂ðλiÞ


should be close to 1. The estimator

r ¼
X
i

ZðλiÞ2=
X
i

K̂ðλiÞ ð4:44Þ

is a biased estimator of ρ. To reduce the bias, we can split the sample and use the jackknife
estimator

ρ̂ ¼ 2r� n1r1 þ n2r2

n1 þ n2

where r1 and r2 are the ratios (4.44) computed separately in ring 1 and ring 2, comprising n1
and n2 measures, and r the ratio computed with all n1þ n2 measures (this eliminates a bias of
the form b/n). The regression whose ρ̂ is closest to 1 is selected.

Step 3 (Optional Cross-Validation). Themethod is similar to the leave-one-out described in
Section 2.6.3 for the stationary case, and it consists of evaluating candidate models through
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their performance in actual kriging situations. This is to avoid basing the selection onmarginal
differences in the jackknife statistics. The sample points, or a subset of them, are estimated
from their neighbors as if they were unknown, using the order k determined at Step 1 and the
best covariance models from Step 2 (ranked by increasing distance of ρ̂ from 1). If the model is

correct, the errorZ��α � Zα obtained when leaving the point xα out has a variance equal to σ2
Kα

so that the mean square standardized error

m:s:s:e: ¼ 1

N

X
α

ðZ��α � ZαÞ2=σ2
Kα

should be close to 1. As a reference, note that the variance of this ratio is equal to 2/N if the
variables Z��α � Zα are independent and Gaussian.

The operational criterion is to minimize the mean square error

m:s:e: ¼ 1

N

X
α

ðZ��α � ZαÞ2

under the constraint that the mean standardized square error defined above is not too far
from 1. (Typically, a tolerance of 63

ffiffiffiffiffiffiffiffiffi
2=N

p
is used.)

More sophisticated procedures may be used, such as pairwise ranking of models. Better
yet, an analysis of the kriging errors Z��α � Zα or their standardized version ðZ��α � ZαÞ=σKα
can be performed using graphical statistical procedures. This procedure also allows one to
spot suspect data points in the context of their surrounding neighbors.

An Example

Figure 4.12 shows an output of the BLUEPACK Automatic Structure Identification options
illustrating the first two steps. The data are the 573 topographic elevations of the Noirétable
area presented in Section 2.7.3. In the first section each line indicates the performance of an
order k. Results relative to measures based on polynomials fitted in rings 1 are reported under
the heading “Ring 1”; they correspond to estimation of points of rings 2, and vice versa for
“Ring 2.” The means of the results obtained in Ring 1 and Ring 2 are given in the last column
“Total.” Naturally these means are weighted by the count of measures in each ring which are
printed below the table (n1¼ 805 and n2¼ 877). A cutoff is applied on the sum of squares of
the weights of the measures to avoid strong ill-conditioning; this explains why n1 and n2 may
be different. The “mean neighborhood radius” (257 m) is also printed and tells us the scale at
which the degree selection is made.

In the present case the degree k¼ 1 is the best with an average rank of 1.83. Note that the
sum of the ranks is 1þ 2þ 3¼ 6. The mean square error criterion also indicates k¼ 1 as
the best choice, which increases our confidence. Such agreement of criteria for drift identi-
fication is not always achieved, but it is not uncommon.

Only five out of the seven possible fits were found valid and are listed in the second section
of Figure 4.12. The discarded models are C0δ(h)� b0 jhj and C0 δ(h) � b0 jhj þ b1jhj3.

The right-hand part of Figure 4.12 displays several criteria for selecting a model among
the five candidates. The Q column shows the ratio Q(b)/Q(0), while r1, r2, r, and ρ̂ are given in
the other columns. Here the model

C0;¼ 0 b0 ¼ 0:230 b1 ¼ 0:9603 10�5

stands out with a jackknife of 0.994, which turns out to also have the smallest ratio Q(b)/
Q(0)¼ 0.761. Figure 4.13 shows the results of cross-validation of the best four covariance
models using all data points. These tests confirm the above selection with m.s.e.¼ 21.12 m2
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and m.s.s.e.¼ 0.83. Note that the model selected is not the one with the minimum m.s.e.
because a good estimation of error variances is also required.9

Additional insight into the behavior of the selected model can be gained by inspection of the
diagnostic plots shown in Figure 4.14. These plots are meant to detect the presence of residual
structure not accounted for by the selected model and should be used qualitatively (e.g., the
independence ofZ* and Z�Z* is established only for simple kriging and for a Gaussian SRF).
Here we verify that posted standardized errors exhibit no particular clustering of large errors in
specific areas; the scatterplot of Z versus Z* shows no systematic effect hinting at a bias; the
scatterplot of Z* and standardized error indicates no major dependency of the error on the Z*
value (except for a decrease of the apparent scatter). Finally the histogram of standardized
errors is symmetric about zero, with a normal shape but more squeezed in the middle and more
tail-stretched than the Gaussian (this shape is very frequent).

1) IDENTIFICATION OF THE ORDER k

MEAN SQUARE ERRORS
RANKING OF THE TRIALS

AVERAGE RANKS 

Degree Ring 1 Ring 2 Total Ring 1 Ring 2 Total 

2 342.3 349.1 345.8 1.92 1.85 1.88

1 119.7 137.1 128.8 1.82 1.85 1.83

0 298.2 293.3 295.7 2.26 2.31 2.28 

Degree of the drift � 1
Counts: Ring 1 � 805 Ring 2 � 877 Total � 1682

Mean neighborhood radius � 256.7

2) IDENTIFICATION OF THE COVARIANCE

COVARIANCE COEFFICIENTS EXPL/THEOR  VARIANCE RATIOS

C0 –b0 b1 Q r1 r2 r ρ

3.060       0        0 0.8461 13.5092 12.4363 12.9867 13.0047

0 �0.3392        0 0.7637  1.8649  1.7122  1.7904  1.7929

0       0 0.3904 E-4 0.9241  0.4692  0.4348  0.4525  0.4531

0 �0.2296 0.9595 E-5 0.7609  1.0321  0.9518  0.9931  0.9944

2.715       0 0.2798 E-4 0.8091  0.6276  0.5814  0.6052  0.6061

Provisional covariance fit

Order k � 1 C0 � 0 b0 � 0.2296 b1 � 0.9595E-5

AUTOMATIC STRUCTURE IDENTIFICATION 

FIGURE 4.12 An example of automatic structure identification by BLUEPACK.

9The stationary covariance locally equivalent to the selected GC for jhj# 525 m (approximately the

neighborhood diameter, cf. Figure 4.12) allows an excellent fit of the sample variogram shown in

Figure 2.29 b,c. This reconciles the variographic and IRF–k approaches.
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Discussion

One of the limitations of the above procedure is the isotropy of polynomial GCs. The
inference of anisotropic models was considered by Chilès (1978) but was not used at the time
because it requires too many parameters; this question could be revisited now with faster
computers. While in the stationary case it is not acceptable to ignore anisotropy, in the
nonstationary case one can postulate that the anisotropies are captured by the filtered
polynomials (the “drift”). For k¼ 0 the only filtered terms are constants, which is a good
reason, among others, to revert to a standard structural analysis. A stronger reason yet is that
a model with a range may be more appropriate than a linear variogram.

The weakness of the automatic structure identification procedure lies in its lack of
robustness against variables that do not fit the intrinsic hypotheses well: presence of a few
isolated peaks, mixture of flat and jagged areas, and erroneous or “outlying” data. These
heterogeneities have a strong influence on the criterion Q(C0, . . . , bk) to be minimized. As we
have seen, there are methods to check the model, but only after the fact.

Starks and Fang (1982) pointed out that in the case of the basic polynomial covariances
K0(h)¼�jhj, K1(h)¼ jhj3, and K2(h)¼�jhj5, there is a great deal of linear dependency
between the predictor variables K0(λ), K1(λ), and K2(λ). This can cause instability in the
estimation of the regression coefficients bp.

Final-selection criteria: 
1. M.S.E. close to its minimum value; and
2. M.S.S.E. close to 1, possibly in the interval 1 � 3 Sqrt(2/N), i.e., [0.82, 1.18].

Final covariance fit 

Order k � 1 C0 � 0 b0 � 0.2296 b1 � 0.9595E-5 

COVARIANCE COEFFICIENTS JACKKNIFE ERROR  STATISTICS 

C0 –b0 b1 ρ M.S.E. M.S.S.E.

0 �0.2296 0.9595 E-5 0.9944 21.12 0.8276

2.715 0 0.2798 E-4 0.6061 20.50 1.3450

0 0 0.3904 E-4 0.4531 20.22 2.4520

0 �0.3392 0 1.7929 24.41 0.9697

MODEL
CROSS-VALIDATION

FIGURE 4.13 Cross-validation of the best four covariance models (ranked by increasing devia-

tion of the jackknife from 1). Every data point has been estimated from 12 neighbors. m.s.e. (mean

square error) shows that the first three fits outperform the fourth one. m.s.s.e. (mean square

standardized error) is the closest to 1 for fit 1, and it lies in the tolerance interval for this fit only. Fit 1

is selected.
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An empirical study was made in one dimension with equispaced data (Chilès, 1978). Its
conclusions cannot a priori be extended to scattered two-dimensional data, but they are
consistent with the experience accumulated on automatic structure identification. The con-
clusions of this study are the following:

� If the covariance is predominantly linear with a nugget effect, all models can be fitted
with fair precision.

� If the covariance is predominantly of type jhj3, only models with a single other term may
be fitted with acceptable precision.

� If the covariance model is predominantly of type �jhj5, estimation of anything else than
the coefficient of jhj5 is meaningless.

Basemap of standarized errors (Z*–Z)/�K
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Scatterplot of Z (vertical axis) versus Z* (horiz. axis)

450 500 550 600 650
450

500

550

600

650

(b)

Histogram of standardized errors (Z*–Z)/�K
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FIGURE 4.14 Diagnostic plots (topographic elevation, Noirétable): (a) posted standardized errors

(the symbol size is proportional to the absolute value of the standardized error); (b) scatterplot of Z

versus Z*; (c) histogram of standardized errors; (d) scatterplot of standardized error versus Z*.
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4.9 STOCHASTIC DIFFERENTIAL EQUATIONS

Physical laws often take the form of differential or partial differential equa-
tions. Their transposition to the stochastic domain is fairly natural but can
present specific difficulties, especially when white noise is involved. The ques-
tions asked for stochastic differential systems are the same as for deterministic
ones, namely the existence and uniqueness of a solution, the analytical prop-
erties of the solutions, and how they depend on parameters and initial condi-
tions. However, the introduction of stochastic elements brings new questions,
such as the determination of the spatial distribution of the solution and the
existence of stationary solutions. The study of stochastic differential equations
is by itself a vast subject. The interested reader is referred to the works of
Gikhman and Skorokhod (1972), Arnold (1973), Friedman (1975–1976), and
Sobczyk (1991), to quote only a few, and of Gel’fand and Shilov (1958) for
generalized random functions. We specialize our discussion to just one equa-
tion, but with broad utility, the Poisson equation ΔZ¼Y.

4.9.1 The Poisson Equation ΔZ 5 Y

The stochastic Poisson equation is defined by

ΔZ ¼
Xn
i¼1

@2

@x2i
ZðxÞ ¼ YðxÞ ð4:45Þ

whereΔ is the Laplace operator and Y and Z are RFs on Rn. In this equation, Y
represents a source term and is given. When Y is equal to zero, the equation is
named the Laplace equation and its solutions are harmonic functions. The
Poisson equation represents fluid flow in a porous medium with a constant
permeability equal to one, where Z is the piezometric head and Y is the inflow/
outflow (due to rainfall, or injection, or pumping counted negatively). It can also
represent the flow of heat in a homogeneous medium with thermal conductivity
equal to one, where Z is the temperature and Y the heat production.10 It is also
used to find the electric potential for a given charge distribution.

Stochastic Model

The first question that arises is the existence of a stochastic model compatible
with this equation. Let us first consider the 1D case. When Y is deterministic,
the differential equation has for solution the second integral of Y, plus an
arbitrary polynomial of degree 1. When Y is an SRF with zero mean, we have
seen in Section 4.4.1 that the second integral of Y is a representation of an
IRF–1. Since the various representations of an IRF–1 differ only by an

10 The name heat equation usually refers to the equation @Z=@t ¼ a2ΔZ which defines the

temperature Z of an isotropic homogeneous medium as a function of point x and time t (the

Laplacian being taken with respect to space coordinates) in the absence of heat production.
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arbitrary polynomial of degree 1, the solution of the equation is an IRF–1 in
the sense of the definition of Section 4.4.2. Likewise, if Y is an IRF–0, Z is an
IRF–2. In both cases the solution is an IRF, that is, a class of ordinary RFs.
Like in the deterministic case, boundary or initial conditions can restrict the
generality of the solution to a particular representation. These results can be
generalized to higher-dimensional spaces and to IRFs of a higher order, as
shown by the following theorem from Matheron (1971b):

Theorem. If Y is a continuous IRF–k on Rn, there exists a unique twice dif-
ferentiable IRF–(kþ 2) Z satisfying the differential equation ΔZ¼Y.

Uniqueness of course pertains to the IRF–(kþ 2) regarded as a class of RFs.

Covariance Models

From this we can derive the relationship between the generalized covariances of
Z and of Y, as well as the (generalized) cross-covariance of Y and Z (Matheron,
1971b; Dong, 1990, pp. 55–59). To keep things simple, let us consider only the
case where Y is a zero-mean SRF. Let x¼ (x1, . . . xn) and y¼ (y1, . . . , yn) be two
points of Rn. Denoting by C(h) the stationary covariance of Y, we get

Cðy� xÞ ¼ E½YðxÞYðyÞ� ¼ E½ΔZðxÞΔZðyÞ� ¼ E
Xn
i¼1

Xn
j¼1

@2ZðxÞ
@x2i

@2ZðyÞ
@y2j

" #

With Z being twice differentiable, its nonstationary covariance σ(x,y) is
differentiable four times, and therefore we have

Cðy� xÞ ¼
Xn
i¼1

Xn
j¼1

@2

@x2i

@2

@y2j
E½ZðxÞZðyÞ� ¼ ΔxΔyσðx; yÞ

where Δx is the Laplace operator applied with respect to x. Because the
ordinary covariance σ of Z and its generalized covariance K are related by
(4.17), we get

ΔxΔyσðx; yÞ ¼ ΔxΔyKðy� xÞ ¼ Δ2KðhÞ for h ¼ y� x

The covariances C of Y and K of Z are therefore related by the equation

Δ2KðhÞ ¼ CðhÞ ð4:46Þ

Likewise for the cross-covariance we get

E½YðxÞZðyÞ� ¼ E½ΔZðxÞZðyÞ� ¼ E
Xn
i¼1

@2ZðxÞ
@x2i

ZðyÞ
" #

¼
Xn
i¼1

@2

@x2i
E½ZðxÞZðyÞ�

¼ Δxσðx; yÞ
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Given (4.17), for k¼ 1 this is of the form

E½YðxÞZðyÞ� ¼ΔKðhÞþΔc0ðxÞþ
Xn
i¼1

ΔciðxÞyi for h¼ y� x and

y ¼ ðy1; : : : ;ynÞ ð4:47Þ

In practice, we do not know which representation of the IRF–1 we are dealing
with, and we only work on linear combinations allowable at order 1. The
terms involving c0 and ci then disappear, and the covariance betweenY(x) and an
ALC–1 Z(λ) can be calculated using the generalized cross-covariance ΔK(h).

Case Where Y Is White Noise

If Y is not a continuous IRF–k but a random noise with covariance C0δ it
should be interpreted as a generalized random function. The covariance K of Z
is then a generalized function satisfying

Δ2K ¼ C0 δ

As seen in Section 4.6.4, this is the equation satisfied by the generalized
covariance associated with biharmonic spline interpolation. Consequently the
function K is, up to a multiplicative factor, the isotropic generalized covariance
r3 in R, r2 log r in R2, �r in R3, �log r in R4, and r�(n–4) in Rn, n. 4. Note that
the irregularity of the RF Z increases with the space dimensionality.

Existence of a Stationary Solution

As an IRF–1, can Z have a stationary representation? Its covariance K(h) has a
spectral representation of the form (4.19) with k¼ 1. It can coincide with
a spectral representation of a stationary covariance only if χ(du)/(4π2juj2)2
has a finite integral. Now, in view of (4.46), the spectral measure F(du) asso-
ciated with the covariance C(h) of Y is equal to χ(du).

Therefore Z has a stationary representation only if F(du)/(4π2juj2)2 is
a spectral measure (with a finite integral)—that is, if Y has very little low
frequency content. This is not true in general.

Note that (4.46) can be solved directly in simple cases, notably in 1D or when
the covariance is isotropic [cf. Dong (1990, pp. 56–57)].

Solution under Boundary Conditions

Let us restrict ourselves to a domain D with boundary Γ. Let Z and Y be two
ordinary functions satisfying

ΔZðxÞ ¼ YðxÞ ’x 2 D;

ZðxÞ ¼ zðxÞ ’x 2 Γ

�
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The Green function (which only depends on the shape of the boundary11)
makes it possible to express the real solution in the integral form

ZðxÞ ¼
Z
D

Gðx; x0ÞYðx0Þdx0 þ
Z
Γ

d

dν
Gðx; x0Þzðx0Þdx0 ð4:48Þ

where ν is the outward unit vector at the point x0 of Γ. This amounts to
decomposing Z into a sum of two functions Z1 and Z2 such that

ΔZ1 ¼ Y overD
Z1 ¼ 0 over Γ and

ΔZ2 ¼ 0 overD
Z2 ¼ z over Γ

��

where Z1 depends on the shape of the boundary but not the boundary values.
These determine Z2. In view of the preceding stochastic framework, the
solution of (4.45) is an IRF, but knowledge of Z on Γ characterizes a specific
representation.

Cokriging of Y and Z

The solution of the above systems is generally nontrivial. Moreover, in usual
applications Y is not known at every point of D nor Z at every point of Γ. The
stochastic model then achieves its full value. Once the generalized covariance
K(h) of Z is known, as well as its Laplacian and its iterated Laplacian, we have
all the elements to perform a cokriging of Z (or of Y) from data of both
variables. Because Z is an IRF–1, we must of course impose conditions
ensuring that in the expression of the cokriging error the terms involving Z
constitute an ALC–1. This requires that we have enough Z data (at least nþ 2
in n-dimensional space). If we have no Z data at all, we can still use cokriging,
provided that we work on an internal representation of the IRF–1 (recall that
an internal representation is an ALC–1 at every point x; see Section 4.4.2), but
the result will depend on the selected internal representation, which is arbitrary.

Given the linearity of equation (4.45), the cokriged fields Y** and Z**
satisfy the corresponding partial differential equation

ΔZ** ¼ Y**

11G(x, x0) is zero on the boundary Γ. For fixed x0 ¼x0, G(., x0) corresponds to the solution of the

Poisson equation for a point source located at x0

ΔGðx; x0Þ ¼ δðx� x0Þ

If the boundary Γ is at infinity, G is an isotropic (generalized) function of r¼ jx0 – xj that depends on
the space dimension n: G(r)¼ r/2 if n¼ 1,¼ (log r)/(2π) if n¼ 2,¼ –1/(4π r) if n¼ 3, and in general

for n 6¼ 2, G(r)¼�Γ(n/2)/[2 (n� 2) πn/2 rn�2] where the last Γ stands for the gamma function.
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In particular, at points xα where measurements of Y are available, we have
ΔZ**(xα)¼Y(xα). In the same manner we can reconstruct conditional co-
simulations of Y and Z (at least in the Gaussian case) satisfying the Poisson
equation.

4.9.2 Stochastic Hydrogeology

Hydrogeology is the earliest and most prolific field of application of geosta-
tistics to variables whose physical behavior is governed by partial differential
equations. In an aquifer, permeability and the piezometric head are related by
the flow equation: When permeability and boundary conditions are given, the
head is determined. Therefore consideration of the flow equation is the key for
developing physically consistent stochastic models of permeability and head.

Permeability observations are usually scarce, because they require setting up
monitoring wells to measure the water level and carry out pumping tests, from
which permeabilities are deduced. Piezometry data are easier to get and since
the water level is directly related to the permeability field, piezometry data are
used to reduce the uncertainty on permeability. This leads to the inverse
problem: Find a permeability field that matches the permeability data and is
consistent with the piezometry measurements.

When variables are treated as deterministic, the partial differential system
has an infinite number of solutions that can be vastly different, many of them
devoid of physical sense. A geostatistical approach makes it possible to capture
spatial heterogeneity and thereby restrict the space of possible solutions. It also
deals with the uncertainty due to the scarcity of data. In the end the set of
solutions is represented as a family of conditional simulations.

The long list of contributors to stochastic hydrogeology includes Matheron
himselfwithhis 1967monographonporousmedia,deMarsily,Delhomme,Freeze,
Dagan, Neuman, Gelhar,Gutjahr,Kitanidis, Rubin, Gómez-Hernández, Renard,
to nameonly a few.A 2005 special issue of theHydrogeology Journal, entitled “The
Future ofHydrogeology,” contains a number of papers related to geostatistics—in
particular, those of deMarsily et al. dealingwith spatial heterogeneity,Noetinger et
al. on upscaling (further discussed in Section 7.10.2), and Carrera et al. on the
inverse problem.
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C H A P T E R 5

Multivariate Methods

There are mountains here and hairy gooseberries don’t grow on
mountains

—D. H. McLain

5.1 INTRODUCTION

With kriging we estimate unknown values of a variable of interest Z from
known values of the same variable Z. However, in applications the data often
include values of other variables, possibly at other locations. These secondary
variables may provide useful information on Z and should be taken into
account. This calls for a multivariate generalization of kriging, which is
developed in this chapter under the name of cokriging.

Notations and the geometry of sample sets are the main difficulties with
cokriging theory, otherwise it is essentially the same as that of kriging. When
drifts are present, one must consider the possible functional dependencies
between them, but this is rather straightforward once the mechanism for
deriving the equations is understood. We will not attempt to be exhaustive but
will explain the general principles and concentrate on a few interesting pro-
blems. The real theoretical challenge is this: How can we model the relation-
ships between the different variables in a globally coherent manner? And the
practical challenge is: How can we infer this model from an often undersampled
data set?

Due to the difficulty of building a complete multivariate model, simplified
implementations are often used. The most popular one is known as collocated
cokriging; it is optimal under a specific covariance model with screening
properties. The common alternative to collocated cokriging is the external drift
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model presented in Chapter 3, based on linear regression, which treats sec-
ondary variables as deterministic functions known everywhere.

A number of applications where a variable is estimated from other variables
are discussed in this chapter. Of particular interest are (a) the use of gradient
information to constrain the shape of potential lines (for example, impose
boundary conditions on a flow model) and (b) how the method can be devel-
oped toward potential function mapping.

In the atmospheric sciences and elsewhere, data are localized in both space
and time. While the general cokriging framework would be formally applicable,
specific space�time models have been developed to account for the specific
nature of the time coordinate. Considerable progress has been achieved in the
last 10 years or so to move away from the previous separability assumptions of
time and space and allow space�time interaction either through specific
covariance models or by physical modeling of the time evolution of dynamic
systems. We will give a short account of the state of the art in these areas.

5.2 NOTATIONS AND ASSUMPTIONS

With cokriging theory, one quickly becomes short of space and names for
indexes. We have tried to emphasize clarity by using a mix of Latin and Greek
subscripts and matrix notations.

1. We are considering p simultaneous random functions Zi(x), indexed by
Latin subscripts i ranging in the set I¼ {1, . . . , p} and defined over a domain D
of Rn:

fZi xð Þ : x2D � Rng
Each Zi(x) is sampled over a set Si of Ni$ 0 points, referenced as usual
with Greek indexes—which makes the distinction with random function
indexes very clear:

Si ¼ fxα 2 D : Zi xαð Þ knowng
For simplicity we use the same notation xα for generic data points, but the
sample sets Si are in general different for the different indexes. They may be
pairwise disjoint, and some may even be empty. In fact the relationships
between the different sets constitute one of the key aspects of a multivariate
estimation problem.

2. As with universal kriging, we assume that each function Zi(x) may have a
drift mi(x) that can be represented as a linear combination with unknown
coefficients of known basis drift functions f ‘i xð Þ, ‘ ¼ 0, : : : ,Li, which in general
may be different for the different RFs:

E Zi xð Þ½ � ¼ mi xð Þ ¼
X
‘

ai‘ f
‘
i xð Þ
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Cross-covariances between Zi (xα) and Zj (xβ) will be denoted by σi j (xα, xβ):

σi j xα, xβ
� � ¼ Cov Zi xαð Þ,Zj xβ

� �� � ¼ E Zi xαð Þ Zj xβ
� �� ��mi xαð Þ mj xβ

� �
At this point we make no assumption on covariances σij (x, y) other than the
fact that they exist and are mathematically consistent. In the stationary case
these covariances are of the form Cij(h) with h¼ y� x.

3. To avoid carrying quadruple indexes such as those above, it is useful to
define vector notations. There are two ways of doing that. The natural one is to
consider a vector-valued random function Z(x) (denoted with a bold Z) whose
components are the p RFs, namely

Z xð Þ ¼ Z1 xð Þ,Z2 xð Þ, : : : ,Zp xð Þ� �0
However, this formulation implicitly assumes an equal sampling of all
components, which is usually not the case. The other way, which we prefer
to use here, is to pool all observations relative to the ith variable into an
Ni -vector:

Zi ¼ Zi x1ð Þ,Zi x2ð Þ, : : : ,Zi xNi
ð Þð Þ0

Accordingly, an Ni -vector of weights is defined by λi¼ (λi1, λi2, . . . , λiNi
)0 so

that

λ0
i Zi ¼

X
α

λiαZi xαð Þ

where the summation in α is short for “sum over all points xα 2 Si”.
The covariance matrix between Zi and Zj data is the Ni�Nj matrix with

general term σij (xα, xβ) (or Cij (xβ� xα) in the stationary case), xα2Si, xβ2Sj.
The letter C will be used for covariance matrices instead of Σ to avoid
confusion with the summation sign:

Ci j ¼ Cov Zi,Zj

� � ¼ E Zi Z
0
j

� �� E Zið ÞE Z0
j

� �
In general, Cij is not a symmetric matrix (even when it is a square matrix),
however, from the above we have Cji¼Cij

0 .
The vector of mean values can be written as

E Zið Þ ¼ Fi ai

where Fi ¼ f ‘i xαð Þ� �
is the matrix of drift functions arranged by columns ‘ and

rows α xα 2Sið Þ and ai ¼ ai‘ð Þ is the column vector of drift coefficients for the
RF Zi, just as in standard UK theory.
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4. The estimated variable corresponds to the value i¼ 1 of the subscript and
will be called the primary variable, by opposition to the secondary variables with
indexes i 6¼ 1. We will focus here on the estimation of the primary variable at a
single target point x0, knowing that any linear functional can be linearly
deduced from such point estimates. Our objective is thus

Z0 ¼ Z1 x0ð Þ
Its mean value is

E Z0ð Þ ¼
X
‘

a1‘ f
‘
1 x0ð Þ ¼ a01f10

where f10 ¼ f ‘1 x0ð Þ� �
is the vector of drift functions values at the point x0 and

a1 ¼ a1‘ð Þ is the vector of drift coefficients for the RF Z1.
The covariance between the data vector Zi and the objective Z0 is the

Ni-vector (lowercase)

ci0 ¼ Cov Zi,Z0ð Þ ¼ E ZiZ0ð Þ � E Zið ÞE Z0ð Þ

and the variance of the objective is

c00 ¼ Cov Z0,Z0ð Þ ¼ Var Z0ð Þ

5. Finally the cokriging estimator of Z0 is an affine function of all available
data of the form

Z�� ¼
X
i2I

X
α2Si

λiαZiðxαÞ þ λ0 ¼
X
i2I

λ0
i Zi þ λ0

The double asterisk (**) is introduced to emphasize the difference with the
kriging estimator; and the subscript CK will be used for the variance.

5.3 SIMPLE COKRIGING

Simple cokriging corresponds to the case where the means of the estimating and
estimated RFs are known. Just as for simple kriging, elimination of the bias
leads to

λ0 ¼ m1 x0ð Þ �
X
i

X
α

λiαmi xαð Þ

This amounts to subtracting the means and working with the zero-mean RFs:

Yi xð Þ ¼ Zi xð Þ �mi xð Þ

In the rest of this section we will consider that all RFs have zero means.
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5.3.1 Derivation of the Equations

In order to estimate Z0¼Z1(x0) from the RFs Zi(x) known over the sample sets
Si, i2 I, we consider a linear estimator of the form

Z�� ¼
X
i

X
α

λiαZi xαð Þ ¼
X
i

λ0
i Zi

Since the mean is zero, the mean square error is equal to the error variance:

E Z��� Z0

� �2 ¼ E
X
i

X
j

λ0
i Zi Z

0
iλj � 2

X
i

λ0
i Zi Z0 þ Z0Z0

" #
¼
X
i

X
j

λ0
iCi jλj � 2

X
i

λ0
i ci0 þ c00

Canceling the partial derivatives with respect to λi yields the simple cokriging
system and variance.

Simple Cokriging SystemX
j

Ci j λj ¼ ci 0; i ¼ 1, : : : , p ð5:1Þ

σ2
CK ¼ E Z��� Z0

� �2 ¼ c00 �
X
i

λ0
i ci0 ð5:2Þ

5.3.2 Simple Cokriging as a Projection

Just like its univariate brother, simple cokriging admits of a geometric inter-
pretation in terms of projection onto a Hilbert space. Following Matheron
(1970), we consider RFs defined over the product space

E ¼ Rn � I

of Rn by the set I¼ {1, . . . , p} of indexes. An element of E is a pair (x, i), where
x2Rn and i2 I. The p random functions Zi(x) can be regarded as a single RF
Z(x, i) on this product space. Similarly, the sampling set of the RF Z(x, i) is the
collection of pairs (x, i) such that the point x belongs to Si:

S ¼ f x, ið Þ : x 2 Rn, i 2 I , x 2 Sig

Now consider the Hilbert subspace HS generated by linear combinations of
zero-mean finite variance random variables {Z(x, i) : (x, i)2S} (i.e., the sampled
ones) and all their L2 limits, with the usual scalar product hX ,Yi ¼ E XYð Þ. In
explicit form, equations (5.1) can be written as

Cov Z��,Zi xαð Þ� � ¼ Cov Z0,Zi xαð Þ½ � ’i 2 I , xα 2 Si
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which translates into

Z��� Z0,X
� � ¼ 0 ’X 2HS ð5:3Þ

showing that the cokriging estimator is the projection of Z0 ontoHS. Replacing
X in (5.3) by all the Zi(xα), which form a basis of HS, leads to the system (5.1).
Furthermore, since Z�� 2 HS, the cokriging error is orthogonal to the
cokriging estimator

hZ��� Z0, Z
��i ¼ 0

and the smoothing relationship holds:

VarZ0 ¼ VarZ�� þ σ2
CK

This geometric formulation provides a synthetic expression of cokriging
equations in terms of orthogonality relations that proves useful to shortcut
cumbersome algebra. To take a specific example, consider, following Myers
(1983), the problem of estimating a given linear combination of variables:

W xð Þ ¼
Xp
i¼1

wi Zi xð Þ

(e.g., the sum over several geological horizons or the sum of values for different
minerals). When all variables are equally sampled, we have the choice of either
direct estimation ofW0¼W(x0) by kriging, or estimation by cokriging. How do
they compare? For simplicity let us assume here that all means are zero. For
every variable i the cokriging estimator of Zi (x0) satisfies (5.3), so by linearity
the linear combination

W�� ¼
Xp
i¼1

wi Z
��
i x0ð Þ

also satisfies (5.3) and is therefore the cokriging estimator of W0. Consider now
the straight kriging estimator W*. The difference W*�W**2HS so that

W�� �W0,W
� �W��� � ¼ 0

and

:W0 �W�:2 ¼ :W0 �W��:2 þ :W���W�:2

The cokriging estimator has a smaller mean square error than the straight
kriging estimator. Note, in passing, that cokriging ensures consistency: The
estimate of the sum is the sum of the estimates, which would not be true if each
variable Zi were estimated separately by kriging.
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5.4 UNIVERSAL COKRIGING

The simplicity and generality of simple cokriging is marred by the introduction
of drifts because, to derive the equations, we have to specify if and how the
means mi (x) of the different variables are related. Three cases will be consid-
ered: (1) algebraically independent drifts, (2) linearly dependent drifts, or (3)
mixed case. The fourth possible case, nonlinear functional relationships
between drifts, cannot be handled by universal cokriging; transformations and
reparameterizations are required that are not discussed here.

Given the diversity of multivariate situations our intent here is not to be
exhaustive but to lay out the general principles that will enable the user to
develop the cokriging equations for a particular problem. We will focus on
point estimation. The equations for block estimation and for drift estimation
can be established in a similar straightforward manner.

5.4.1 Theory for Algebraically Independent Drifts

Here we assume that each RF Zi(x) has a drift of its own and that the drift
coefficients of the different variables are not related. As before, we wish to
estimate Z0¼Z1(x0) using an estimator of the form

Z�� ¼
X
i

λ0
i Zi

We have

E Z��� Z0

� � ¼X
i

λ0
i Fi ai � f 010 a1

and want to make this zero for all drift coefficient vectors ai and a1. There are
two cases to consider:

1. S1¼ {Ø}. Then the drifts of Z** and Z0 have no coefficient in common
and the above can hold as an identity only if f10¼ 0. But, in general,
f10 6¼ 0 (typically there is at least a 1) so that, except for particular cases,
estimation is impossible if there is no observation of the primary variable.

2. S1 6¼ {Ø}. Then universal unbiasedness is achieved if and only if

λ0
i Fi ¼ 0 for i 6¼ 1 and λ0

i F1 ¼ f 010

These conditions can be rewritten in the synthetic form:

λ0
i Fi ¼ δi1 f 010, where δi1 ¼ 1 if i ¼ 1,

0 if i 6¼ 1

�
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Now

Var Z��� Z0

� � ¼X
i

X
j

λ0
iCi j λj � 2

X
i

λ0
i ci0 þ c00

Minimizing this variance subject to the unbiasedness constraints leads to the
system with Lagrange parameters vector μi ¼ μi‘ð Þ0, ‘ ¼ 0, : : : ,Li.

Universal Cokriging System

X
j

Ci j λj þ Fi μi ¼ ci0 i ¼ 1, : : : , p

F0
i λi ¼ f10 δi1 i ¼ 1, : : : , p

8><
>: ð5:4Þ

Cokriging Variance

σ2
CK ¼ E Z��� Z0

� �2 ¼ c00 �
X
i

λ0
i ci0 � μ0

1 f10 ð5:5Þ

(Note: If E [Zi ]¼ 0 the corresponding matrix Fi is absent from the system.)
To take a specific example, if p¼ 2, the structure of the cokriging system is as

follows:

C11 C12 F1 0

C21 C22 0 F2

F0
1 0 0 0

0 F0
2 0 0

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

λ1

λ2

� � � �
μ1

μ2

2
66664

3
77775

|fflfflfflfflffl{zfflfflfflfflffl}
X

¼

c10
c20
� � � �
f10
0

2
66664

3
77775

|fflfflfflfflffl{zfflfflfflfflffl}
B

ð5:6Þ

where on the right-hand side

c10 ¼ Cov Z1 xαð Þ,Z1 x0ð Þ½ �, xα 2 S1ð Þ0
c20 ¼ Cov Z2 xβ

� �
,Z1 x0ð Þ� �

, xβ 2 S2

� �0
are the vectors of covariances between Z1 and Z0, and Z2 and Z0. Also,

σ2
CK ¼ c00 � X0B ð5:7Þ

Unlike kriging weights which do not depend on the variance level, cokriging
weights depend on the relative dispersions of the different variables. For
example, given auto- and cross-correlations between Z1 and Z2, the cokriging
weights on the secondary variable Z2 are proportional to the ratio of standard
deviations σ1/σ2. This shows the importance of an accurate fit of covariances
for use in cokriging.
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Existence and Uniqueness of a Solution

With obvious notations the cokriging matrix A in (5.6) is of the form

A ¼ C F

F0 0


 �
Notice that C is symmetric owing to the symmetry property Cji¼C0

ij. In fact the
cokriging system has the same structure as the standard UK system.

If the multivariate covariance model is strictly positive definite (discussed
later) and if there is no data duplication, the matrix C is nonsingular. Then, just
as in the UK theory, the matrix A is nonsingular if and only if the columns of F
are linearly independent—that is, if

Fa ¼ 0 . a ¼ 0

Given the block diagonal structure of F, this is equivalent to

F1a1 ¼ 0 . a1 ¼ 0

^ ^

Fpap ¼ 0 . ap ¼ 0

8>><
>>:

that is, every Fi is of full rank equal to its number of columns.
Each matrix Fi has Ni rows (the number of data points in Si) and Liþ 1

columns (the number of basis drift functions). For the rank of Fi to beLiþ 1, it is
required that Ni$Liþ 1. For a secondary variable the practical minimum is in
fact Liþ 2, or else the variable plays no role. Indeed, ifNi¼Liþ 1, the matrix Fi

is then a square nonsingular matrix, and the constraint Fi
0 λi¼ 0 entails λi¼ 0.

Discussion

1. It is intuitively obvious that if all variables are mutually uncorrelated
(orthogonal) and if their means are algebraically independent, the secondary
variables are of no help for the estimation of the primary variable. Indeed in
this case the cokriging solution coincides with the UK estimator based on the
primary variable alone. This is easily verified on (5.6) by letting C12¼C21¼ 0

and c20¼ 0.

2. At the same time, it is difficult to conceive of an actual situation in which
two variables are allowed to drift away independently and yet carry useful
information about each other: The variations of the unknown drifts would
dominate those of the residuals. The only case of practical interest for
algebraically independent drifts is when all the means are constants, namely
ordinary cokriging.

3. There must be at least enough data points of the primary (i.e., estimated)
variable to be able to estimate its mean. However, if the primary variable has a
zero mean, or equivalently if its mean is known, there is no minimum number

c05 28 January 2012; 12:53:12

5.4 UNIVERSAL COKRIGING 307



of points. In this particular case, estimation of the primary variable is possible
on the basis of secondary variables only.

4. Being constrained by Fi
0 λi ¼ 0, the secondary variables contribute to

the estimator only as corrections (they only involve the true residuals of Zi).
Estimation will be improved only if the secondary variables are strongly
correlated with the objective. Also, as noted above, the weights on secondary
variables are nonzero only if their number exceeds the number of basis drift
functions. For example, the weight assigned to a single secondary data point
with an unknown mean is necessarily zero (but not so if the mean is known).

5. Instead of estimating a single variable, we may want to estimate p of them
simultaneously. The efficient way to do this is to perform all calculations at
once and solve one linear system with p right-hand sides rather than p linear
systems with one right-hand side.

The cokriging estimator of a linear combination of variables is simply the same
linear combination of the individual cokriging estimators of these variables.
This quantity can be obtained directly by solving the system (5.4) for a right-
hand side which is the same linear combination of the individual right-hand
sides. The converse, however, is not true: It may be possible to estimate a linear
combination (e.g., one that filters the drift) without being able to estimate its
components individually.

5.4.2 A Worked-Out Example of Ordinary Cokriging:

Incompletely Drilled Wells

In order to demonstrate the use of ordinary cokriging equations, we will work out a synthetic
example that is also of practical interest. We consider two variables Z1 and Z2 with constant
but unknown means m1 and m2—for example, the depths (counted positively downward) of

A

?

Z2

Z1

B C

FIGURE 5.1 Estimation of the depth of Z1 at well B from known depths of Z1 and Z2. Wells A

and C have been drilled through both surfaces, but well B is incomplete.
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two geological surfaces, where Z1$Z2. If depths are determined from vertical wells, the
coordinates of sample points are the same for the two surfaces—except that in some of the
wells drilling may have been interrupted before hitting the deeper surface. The sample sets are
related by S1�S2. If wells are deviated, the sampling points are different for the two surfaces,
and we may have S1-S2¼Ø. For the example we consider the simple situation of Figure 5.1
with three vertical wells located at points A, B, C and well B drilled only down to the shal-
lower surface. We wish to estimate the depth Z1 at location xB using all available depth
values.

The cokriging estimator of Z1(xB) is of the form

Z��1 xBð Þ ¼ λ1AZ1 xAð Þ þ λ1CZ1 xCð Þ þ λ2AZ2 xAð Þ þ λ2BZ2 xBð Þ þ λ2CZ2 xCð Þ

Letting p¼ 2, and x0¼ xB the general cokriging equations (5.4) are

C11 0ð Þ C11 ACð Þ C12 0ð Þ C12 ABð Þ C12 ACð Þ 1 0

C11 CAð Þ C11 0ð Þ C12 CAð Þ C12 CBð Þ C12 0ð Þ 1 0

C21 0ð Þ C21 ACð Þ C22 0ð Þ C22 ABð Þ C22 ACð Þ 0 1

C21 BAð Þ C21 BCð Þ C22 BAð Þ C22 0ð Þ C22 BCð Þ 0 1

C21 CAð Þ C21 0ð Þ C22 CAð Þ C22 CBð Þ C22 0ð Þ 0 1

1 1 0 0 0 0 0

0 0 1 1 1 0 0

2
66666666666664

3
77777777777775

λ1A

λ1C

λ2A

λ2B

λ2C

μ1

μ2

2
66666666666664

3
77777777777775
¼

C11 ABð Þ
C11 CBð Þ
C21 ABð Þ
C21 0ð Þ
C21 CBð Þ

1

0

2
66666666666664

3
77777777777775

ð5:8Þ

where AB is shorthand for xB� xA.
Direct covariances C11(h) and C22(h) are symmetric, whereas cross-covariances are not but

satisfy C12(AB)¼C21(BA) so that the matrix of the cokriging system is indeed symmetric.
To go further and get interpretable results, we must now particularize the covariance

models. We will consider two cases: the additive model and the proportional covariance
model.

Additive Model

In this model the thickness H(x) of the layer delimited by the two surfaces is assumed
uncorrelated with the top depth Z2(x):

Z1 xð Þ ¼ Z2 xð Þ þH xð Þ with Cov Z2 xð Þ,H yð Þ½ � ¼ 0 ’x, y

The covariance structure becomes

C12 hð Þ ¼ C21 hð Þ ¼ C22 hð Þ ¼ C hð Þ,
C11 hð Þ ¼ C hð Þ þ K hð Þ

where K(h) is the covariance ofH(x). Substituting into (5.8), we find that the solution satisfies

λ2A ¼ �λ1A λ2B ¼ 1 λ2C ¼ �λ1C μ2 ¼ 0

so that

Z��1 xBð Þ ¼ Z2 xBð Þ þ λ1A Z1 xAð Þ � Z2 xAð Þ½ � þ λ1C Z1 xCð Þ � Z2 xCð Þ½ �
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where λ1A and λ1C are solutions of the system

KAAλ1A þ KAC λ1C þ μ1 ¼ KAB

KCAλ1A þ KCC λ1C þ μ1 ¼ KCB

λ1A þ λ1C ¼ 1

8>><
>>:

which coincides with the ordinary kriging system of H(xB) from H(xA) and
H(xC).

In this particular case, cokriging amounts to the obvious solution of estimating the
thickness H(xB) by univariate kriging from H(xA) and H(xC) and adding the estimate to
Z2(xB):

Z��1 xBð Þ ¼ Z2 xBð Þ þH� xBð Þ
The cokriging variance computed from (5.5) coincides with the OK variance of H(xB):

σ2
CK ¼ K00 � λ1AKAB � λ1CKCB � μ1

Proportional Covariance Model

In this model, all direct and cross-covariances are proportional to the same correlogram C(h):

C11 hð Þ ¼ σ2
1C hð Þ,

C22 hð Þ ¼ σ2
2C hð Þ,

C12 hð Þ ¼ C21 hð Þ ¼ ρ σ1σ2C hð Þ, �1, ρ, 1

That this is a valid multivariate covariance model is shown in Section 5.6.1, Example 3.
Substituting into (5.8), we see that the last three covariance equations are satisfied identically
with μ2¼ 0 whenever

λ2A ¼ �ρ
σ1

σ2
λ1A λ2B ¼ ρ

σ1

σ2
λ2C ¼ �ρ

σ1

σ2
λ1C

The remaining equations then become

CAA λ1A þ CAC λ1C þ μ1=½ð1� ρ2Þσ2
1� ¼ CAB

CCA λ1A þ CCC λ1C þ μ1=½ð1� ρ2Þσ2
1� ¼ CCB

λ1A þ λ1C ¼ 1

8>><
>>:

One recognizes the OK system for estimating Z1(xB) from Z1(xA) and Z1(xC) and also for
estimating Z2(xB) from Z2(xA) and Z2(xC), without using Z2(xB) of course. Finally the
cokriging estimator can be written in the form

Z��1 xBð Þ ¼ Z�1 xBð Þ þ ρ
σ1

σ2
Z2 xBð Þ � Z�2 xBð Þ� � ð5:9Þ

where Z�1 xBð Þ and Z�2 xBð Þ are the OK estimators of Z1(xB) and Z2(xB) based on the obser-
vations of Z1 alone and Z2 alone at points A and C.
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The result is strikingly simple and intuitive: Cokriging improves ordinary kriging esti-
mation of Z1 by adding a correction equal to ρ σ1/σ2 times the ordinary kriging error
observed for Z2. The cokriging variance is found to be

σ2
CK ¼ σ2

K 1� ρ2
� �

and is indeed smaller than the OK variance σK
2 of Z1.

Under this model, cokriging estimation can be decoupled into two identical kriging pro-
blems. The same results are found if simple, instead of ordinary, kriging and cokriging are used.

For future reference it will be useful to rewrite (5.9) as

Z��1 xBð Þ ¼ ρ
σ1

σ2
Z2 xBð Þ þ λ1A Z1 xAð Þ � ρ

σ1

σ2
Z2 xAð Þ


 �
þ λ1C Z1 xCð Þ � ρ

σ1

σ2
Z2 xCð Þ


 �
ð5:10Þ

5.4.3 Collocated Cokriging

In the previous example, both variables are sampled equally (are collocated)
except that the secondary variable is also available at the estimated point—
where the primary variable of course is not. A simplified implementation
of cokriging for two variables, introduced by Xu et al. (1992) under the name of
collocated cokriging, is to retain only the value of the secondary variable that is
co-located with the estimated point, thus using a total of Nþ 1 values. Another
implementation also includes the secondary data collocated with the primary
data points—that is, 2Nþ 1 values in total. We propose to give this latter
implementation the short name of collocated cokriging and name the less used
single-point implementation strictly collocated cokriging. Both methods have
become popular as techniques to simplify cokriging.

MM1 Model

Strictly collocated cokriging is implemented as simple cokriging, because oth-
erwise the weight on the secondary data point would be zero (although the
primary variable could have an unknown mean). The method is usually applied
in conjunction with the special correlation structure:

ρ12 hð Þ ¼ ρ12 0ð Þ ρ11 hð Þ ð5:11Þ
where ρ11(h) is the correlogram of Z1 and ρ12(h) is the cross-correlogram of Z1

and Z2. No assumption is made for the correlogram of Z2 because it is not
needed when a single secondary value is used.

Under this model the strictly collocated cokriging estimator is a variance-
weighted linear combination of the simple kriging estimator of Z1(x0) from Z1

data and the linear regression estimator of Z1(x0) from Z2(x0):

Z��1 x0ð Þ ¼ 1� ρ2
� �

Z�1 x0ð Þ þ σ2
SK ρ Z2 x0ð Þ

1� ρ2ð Þ þ ρ2 σ2
SK

, σ2
CK ¼ σ2

SK

1� ρ2
� �

1� ρ2ð Þ þ ρ2 σ2
SK

ð5:12Þ
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Here ρ=ρ12(0) and Z1 and Z2 have zero mean and unit variance. Necessarily

σ2
SK # 1, with equality when the kriging estimate is zero (the mean), in which

case the cokriging estimate reduces to the linear regression estimate ρZ2(x0).
Formulas are derived from (5.1) and (5.2) and can also be established by
Bayesian analysis (Doyen et al., 1996).

Model (5.11), introduced by Almeida and Journel (1994) as a “Markov-
type” model and named MM1 (Journel, 1999), has the following conditional
independence property in the Gaussian case (see Appendix, Section A.9):
when Z1(x0þ h) is known Z1(x0) and Z2(x0þ h) are independent. The primary
value Z1(x0þ h) “screens” Z1(x0) from the influence of any further-away value
Z2(x0þ h). In other words, under (5.11) the simple cokriging estimator of
Z1(x0) from Z1(x0þ h) and Z2(x0þ h) assigns a zero weight to Z2(x0þ h).

The model Z2(x)¼Z1(x)þ ε(x), where ε(x) is a pure nugget effect, provides
an easy illustration of the screening effect: At locations where Z1 is available,
Z2 brings no additional information since ε is independent of everything else,
and with simple cokriging these Z2 values are screened out. This is not neces-
sarily the case with ordinary cokriging because the auxiliary data contribute to
the implicit estimation of the means (screening occurs when S2�S1).

Surprisingly, however, adding a value ofZ2 at a place whereZ1 is not known,
and in particular at x0, breaks the screening effect of Z1 on Z2 where they are
both present. We can verify this, for example, in (5.9): All secondary data
contribute to the estimation, and this remains true with simple cokriging (see
also Section 5.6.4). Therefore the MM1 model (5.11) cannot be a justification
for strictly collocated cokriging.Reducing the influence of the secondary variable
to a single collocated value is a choice of neighborhood, not an optimality
property.

MM2 Model

The question then arises: Which covariance model supports collocated
cokriging without loss of information? This question has been studied in great
detail by Rivoirard (2001, 2004) under various configurations of sampling sets.
We will just examine the case of collocated cokriging of two variables with
constant unknown means. We assume that S1�S2, x02S2, and of course
x0 =2S1, and instead of (5.11) we consider the alternative model:

ρ12 hð Þ ¼ ρ12 0ð Þ ρ22 hð Þ ð5:13Þ

This model, introduced as MM2 (Journel, 1999), has the following conditional
independence property in the Gaussian case: When Z2(x0) is known, Z1(x0) and
Z2(x0þ h) are independent. The collocated Z2(x0) screens Z1(x0) from the
influence of any further-away datum Z2(x0þ h). Said differently, if (5.13) holds,
the simple cokriging estimator of Z1(x0) from Z2(x0) and Z2(x0þ h) assigns a
zero weight to Z2(x0þ h). The converse is also true so that (5.13) is a necessary
condition for cokriging to be collocated.
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Let σ1 and σ2 be the standard deviations of Z1 and Z2, let ρ¼ ρ12(0) and let
a be the slope of the linear regression of Z1 on Z2; then (5.13) is equivalent to
C12(h)¼ a C22(h), that is,

Cov Z1 xð Þ � aZ2 xð Þ,Z2 xþ hð Þ½ � ¼ 0 with a ¼ ρ
σ1

σ2

Therefore Z1 admits the following orthogonal decomposition:

Z1 xð Þ ¼ a Z2 xð Þ þ R xð Þ ð5:14Þ

whereR(x) is spatially uncorrelated withZ2, that is, Cov[R(x),Z2(y)]¼ 0 for any
points x and y. If the means of Z1 and Z2 are known and subtracted out, R(x) is
the residual from the regression of Z1 on Z2 and has mean zero; otherwise it has
an unknown mean. The cokriging estimator of R(x0) is the simple or ordinary
kriging of R(x0) computed with the covariance CRR(h)¼C11(h)� a2C22(h).
Since Z2 is known at x0, the cokriging estimator and cokriging variance of
Z1(x0) are

Z��
1 x0ð Þ ¼ a Z2 x0ð Þ þ R� x0ð Þ, σ2

CK ¼ E R� x0ð Þ � R x0ð Þ� �2 ð5:15Þ

The covariance of residuals CRR(h) is the only one needed for cokriging.
In Section 5.6.1 (Example 4) it is shown that CRR(h) is a valid covariance if the
multivariate model is correct. This model also implies that Z2 is at least as
smooth as Z1 or smoother, which is typically the case if it is defined over a
larger support than Z1. The results (5.10) of the incompletely drilled wells
example illustrates the general formulas (5.15).

If Z2 is not known at x0, then in (5.15) Z2(x0) is replaced by its SK or OK
estimator based on all Z2 data, and the cokriging variance is augmented by
a2� kriging variance of Z2(x0).

In conclusion, collocated cokriging is optimal if and only if the cross-
covariance is proportional to the covariance of the secondary variable, which is
the correct model if the secondary variable is smoother. We arrive at the fol-
lowing paradox noted by Rivoirard (2001): When collocated cokriging is fully
justified, we don’t need it since it reduces to kriging of a residual. In other cases,
however, using a collocated neighborhood remains a convenient simplification.

5.4.4 Cokriging to Reduce the Impact of a Nugget Effect

An early application of cokriging dealt with the estimation of uranium reserves
on the basis of chemical analyses from drill-hole cores and of radioactivity
measurements (Guarascio, 1976). Although the relationship between radioac-
tivity and uranium is not simple, in particular due to the fact that radioactivity
integrates a much larger volume than cores, these data are still useful because
they are sampled much more densely. Also, the nugget effect in the uranium
grades is integrated out by radioactivity measurements.
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In order to evaluate the benefit of cokriging as a function of the relative
importance of the nugget effect, let us consider a controlled configuration in
which the uranium grade (variable 1) of a block v is estimated from a central
drill-hole and four drill-holes symmetrically located far from the block—that is,
at a distance greater than the range. Radioactivity measurements (variable 2)
are also assumed known at these locations. The two means are constant but
unknown, and to simplify calculations, we assume that variable 2 and the
continuous component of variable 1 conform to a proportional covariance
model. Our complete model is therefore

C11 hð Þ ¼ σ2
0 δ hð Þ þ σ2

1 ρ hð Þ,
C22 hð Þ ¼ σ2

2 ρ hð Þ,
C12 hð Þ ¼ σ12 ρ hð Þ

where ρ(h) is an isotropic correlogram. The covariance between the central drill-
hole and the mean block value is σ1

2 ρ0v while the covariance between the other
four samples and that block is zero. Likewise the covariance between the central
radiometry sample and the block is σ12 ρ0v and the other four covariances are
zero. Finally the variance of the block itself is σ1

2 ρvv, assuming that the nugget
effect is averaged out. For the example we use the values ρ0v¼ 0.718 and
ρvv¼ 0.624 obtained by integration of a spherical model of unit sill over a square
of length half the range. These numbers can also be read from graphs
[e.g., Journel and Huijbregts (1978, pp. 127�128)], though with less precision.

Due to the symmetry of the configuration, it is possible to reduce the
problem to the determination of the two weights λ1 and λ2 assigned to
the central sample of Z1 and Z2, respectively. The weights assigned to the other
four samples are the same and equal to (1�λ1)/4 and �λ2/4 respectively. The
cokriging system (5.6) comprises four equations:

λ1 σ2
0 þ σ2

1

� �þ λ2 σ12 þ μ1 ¼ σ2
1 ρ0v

1� λ1ð Þ=4ð Þ σ2
0 þ σ2

1

� �� λ2=4ð Þσ12 þ μ1 ¼ 0

λ1σ12 þ λ2 σ2
2 þ μ2 ¼ σ12 ρ0v

1� λ1ð Þ=4ð Þσ12 � λ2=4ð Þσ2
2 þ μ2 ¼ 0

8>>>><
>>>>:

ð5:16Þ

Although the four distant drill-holes have no correlation with the block, they
play a role in its estimation: They help define the mean of the primary variable,
and they permit λ2 to be nonzero. Letting σ12¼ ρ12 σ1σ2 in (5.16), the weights
are given by

λ1 ¼ 1

5
þ 4

5

1� ρ212
� �

σ1
2

σ0
2 þ 1� ρ212

� �
σ2
1

ρ0v λ2 ¼ 4

5

σ2
0 ρ12

σ2
0 þ 1� ρ212

� �
σ2
1

σ1

σ2
ρ0v ð5:17Þ

After rearrangement of the terms, the cokriging variance is

σ2
CK ¼ λ1 σ2

0 þ ð1� ρ0vÞσ2
1

� �þ λ2 σ12ð1� ρ0vÞ � σ2
1ðρ0v � ρvvÞ ð5:18Þ
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The solutions for ordinary kriging are obtained by letting ρ12¼ 0 in (5.17) and
(5.18). Figure 5.2 displays the cokriging to kriging variance ratio as a function
of the relative nugget effect σ0

2/(σ0
2þσ1

2) for ρ12¼ 0.9. It reaches a minimum of
0.73, representing a variance reduction of 27%, for a relative nugget effect
of 0.55. This figure gives an idea of the maximum advantage that can be
obtained by cokriging compared to kriging. The fact that λ2¼ 0 when the
nugget effect vanishes is due to the screening effect of the proportional
covariance model with equal sampling of all locations (Section 5.6.4). It may
be noted that for a given relative nugget effect the cokriging-to-kriging variance
ratio does not depend on either σ1 or σ2.

This example shows that the degradation of the “signal” due to noise on the
primary variable can be partially offset by cokriging, if we have available a
smooth secondary variable well correlated with the primary. However, when
the noise variance becomes too large, in our example when it exceeds the signal
variance, the advantage of cokriging declines.

When both primary and secondary variables have a nugget effect, it is
usually the continuous components that contribute to cross-correlations.
Marbeau (1976) made an extensive application of ordinary cokriging in for-
estry, where nugget effects are strong, and found a reduction in error standard
deviation of about 10% with a maximum of 15%. Pan et al. (1993) compared
cokriging and OK by cross-validation in a case study of a polymetallic deposit
and report a standard deviation reduction of about 20%.

5.4.5 Filtering a Systematic Error

Suppose that we have two sets of data for a variable of interest Z1, where the
second set comprises a systematic error ε(x) that is uncorrelated with Z1 but
spatially structured. Can the biased data help estimate Z1?

Relative nugget effect

0.7

0.8

0.9

1.0

R
at

io

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 5.2 Cokriging-to-kriging variance ratio for a square panel as a function of the relative

nugget effect. Vertical axis is σ2
CK=σ

2
K and horizontal axis is σ2

0=ðσ2
0 þ σ2

1Þ.
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Our model is

Z2 xð Þ ¼ Z1 xð Þ þ ε xð Þ,
E½ε xð Þ� ¼ mε 6¼ 0 and Cov Z1, εð Þ ¼ 0

In the absence of indications on the bias mε, the means of Z1 and Z2 are
algebraically independent and the cokriging equations (5.6) apply. We can
therefore use the information in the second data set, provided that the
decomposition C22(h)¼C11(h)þCεε(h) is known and, most important, that
we can tell which data are biased and which are not.

As usual, this requires the availability of at least enough data of Z1 to
estimate the mean—that is, evaluate the bias; clearly, biased data alone would
be worthless unless the bias is very small. At the other extreme, if Z1 and Z2 are
simultaneously present at most of the points, the practical solution is to fill in
the gaps by interpolation of the error field and then base the estimation on the
Z1 data only, both actual and derived from Z2. In intermediate sample con-
figurations, cokriging can provide a useful solution.

Journel and Huijbregts (1978, p. 342) compared kriging with cokriging in
a mining case of block estimation where cuttings are used in addition to a
central core analysis, and they report a gain in standard deviation of about
20%.1

5.4.6 Universal Cokriging and Linear Regression

Cokriging exploits both correlations due to proximity in space and correlations
among variables. We have already noted that when considering independent
drifts, cokriging reduces to kriging if correlations among variables are zero, and
we will now show that cokriging coincides with linear regression when means
are known and all point-to-point correlations are zero. In this sense, cokriging
constitutes a generalization of both approaches.

In linear regression theory, one considers independent samples of a ran-
dom vectorZ¼ (Z1, . . . ,Zp)

0 drawn from amultivariate distribution with mean
vector m¼ (m1, . . . , mp)

0 and a covariance matrix defined by σij¼Cov(Zi, Zj).
The linear regression of Z1 on Z2, . . . , Zp is the function of the form

Ẑ1 ¼ λ1 þ λ2Z2 þ � � � þ λpZp

minimizing the expected mean square error. The solution is easily found to be

Ẑ1 ¼ m1 þ
Xp
i¼2

λi Zi �mið Þ ð5:19Þ

1 The authors normalize the gain by the cokriging variance, whereas here we normalize it by the

kriging variance so that the relative gain is always less than one.
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with coefficients λi that satisfy the linear system

Xp
j¼2

σi j λj ¼ σi1 i ¼ 2, : : : , p

These equations coincide with the simple cokriging equations (5.1) for estimat-
ing Z1 from Z2, . . . , Zp, where vectors are replaced by scalars (one sample per
variable) and i0¼ 1, with the set S1 being empty. In the Gaussian case the
estimator also coincides with the regression equation (conditional expectation).
Note that the means are assumed constant and known and that no spatial aspect
is involved so far.

In linear regression theory the multivariate samples are regarded as inde-
pendent realizations of a parent random vector so that the estimation of a
vector component Z1 only involves the other components of the same vector.
The equivalent geostatistical model where vectors Z are indexed by location x is
to assume a multivariate nugget effect

Cov Zi xð Þ,Zj yð Þ� ¼ σi j δ y� xð Þ�
or that all ranges are small compared with distances between samples (large
grids). The simple cokriging estimator of Z1 at a point x0 where the other
variables are known, only involves the values at this point and is similar to
(5.19) except that the means are possibly location-dependent:

Z��
1 x0ð Þ ¼ m1 x0ð Þ þ

Xp
i¼2

λi Zi x0ð Þ �mi x0ð Þ½ � ð5:20Þ

This remains the simple cokriging estimator of Z1 when ranges are not small
but x0 is so far from the other data points that correlations have vanished
(isolated point).

Universal cokriging generalizes this by allowing for unknown means defined
in linear parametric form. The result is obtained by simply replacing all means in
(5.20) by their cokriging estimates, by virtue of an additivity relationship
between simple and universal cokriging similar to that between SK and UK:

Z��
1 x0ð Þ ¼ m��

1 x0ð Þ þ
Xp
i¼2

λi Zi x0ð Þ �m��
i x0ð Þ� � ð5:21Þ

Note that, in general, m��
i x0ð Þ is not the least squares estimator based on the

values of the ith variables only but may involve all variables at all points. For
example, if the data consist ofN complete vectors in addition to the ( p� 1) values
at x0, the means for i. 1 coincide with the least squares estimators based on
the Nþ 1 values of the ith variable, but for i¼ 1 the optimum estimator of the
mean turns out to be the least squares estimator from the Nþ 1 values
Z��1 x0ð Þ,Z1 x1ð Þ, : : : ,Z1 xNð Þ, where the unknown Z1(x0) is replaced by its
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optimal estimator (5.21). (This looks circular but it isn’t!) In practice, the means
and the coefficients of the regression are established once and for all by least
squares from a subset of complete vectors, and a fixed equation is used thereafter.

The next generalization is to introduce spatial correlation among the vectors
Z(x). But the price to pay for that extra power is the burden of statistical
inference of p (pþ 1)/2 covariance functions.

5.4.7 Simultaneous Estimation of Several Variables

Instead of estimating a single variable, we may want to estimate a few or all of them
simultaneously. Typical examples are (a) the evaluation of different elements, such as Pb, Zn,
and Ag in a polymetallic mineral deposit, or (b) the joint reconstruction of geological surfaces
to define a consistent three-dimensional model. This can be achieved by cokriging each
variable from all the others, one at a time, but it would be a very inefficient algorithm. The
better way is to perform all calculations at once and solve one linear system with p right-hand
sides rather than p linear systems with one right-hand side. Denote the cokriging estimator of
the kth variable at the point x0 by

Z��k x0ð Þ ¼
X
i

λ0
ikZi

where the second subscript k refers to the kth variable; then the joint cokriging equations for
the vector

Z�� x0ð Þ ¼
�
Z��1 x0ð Þ,Z��2 x0ð Þ, : : : ,Z��p x0ð Þ

0
is obtained by writing the equations (5.4) for the different values of the index of the estimated
variable: X

j

Ci j λjk þ Fi μik ¼ cik i ¼ 1, : : : , p; k ¼ 1, : : : , p

F0
i λik ¼ fk0 δik i ¼ 1, : : : , p; k ¼ 1, : : : , p

8><
>: ð5:22Þ

μik is a matrix of Language parameters and fk0 is the vector of drift functions associated with
the k-th variable and calculated at x0. The vector cik is covariance between Zi and Zk (x0); it
depends on x0 but that dependence does not show in the notation. In (5.22) the index k ranges
from 1 to p, but it could as well vary within a subset if one wanted to estimate a subset of the p
variables.

The covariance of cokriging errors is given by

E Z��k x0ð Þ � Zk x0ð Þ� �
Z��l x0ð Þ � Zl x0ð Þ� � ¼ ckl �

X
i

λ0
i l cik � μ0

kl fk0 ð5:23Þ

where ckl is the covariance of Zk x0ð Þ and Zl x0ð Þ. In the simple case p¼ 2, the awesome system
(5.22) is simply written as

C11 C12 F1 0

C21 C22 0 F2

F1
0 0 0 0

0 F2
0 0 0

2
66664

3
77775

λ11 λ12

λ21 λ22

μ11 μ12

μ21 μ22

2
6664

3
7775 ¼

c11 c12

c21 c22

f10 0

0 f20

2
6664

3
7775

generalizing (5.6).

c05 28 January 2012; 12:53:14

318 MULTIVARIATE METHODS



The problem of simultaneous cokriging of several variables was first considered by Myers
(1982), who solved it by minimizing

Xp
k¼1

E Z��k x0ð Þ � Zk x0ð Þ� �2 ¼ Tr MBð Þ

where MB is the covariance matrix of cokriging errors for a given matrix of weights B

ensuring unbiasedness. Carr et al. (1985) published a computer program implementing this
approach. Alternatively, Ver Hoef and Cressie (1993) proposed to find the matrix B such that
for any other matrix of weights A ensuring unbiasedness, the matrix MA�MB is positive
definite, implying that any linear combination of variables Zi (x0) is estimated better using B

than A. The equations turn out to be the same and coincide with (5.22). The error covariance
matrix MB is given by (5.23) and can be used to define confidence ellipsoids for the vector Z
(x0)¼ (Z1(x0), . . . , Zp (x0))

0.

5.4.8 Algebraic Dependence Between Drifts

We now turn to the case where the drift coefficients of the different variables
are related. Each case is different but the principle is the same: The unbi-
asedness conditions must be modified to reflect the algebraic dependencies.
In this section we will just examine the case of two variables with the same
mean. Other cases will be encountered later.

Consider the cokriging estimator of Z1(x0) based on Z1 and Z2:

Z��
0 ¼ λ0

1Z1 þ λ0
2Z2

If Z1(x) and Z2(x) have the same mean, the unbiasedness conditions are of
the form

EZ��
0 ¼ λ0

1F1 þ λ0
2F2ð Þa ¼ f 010 a ’a

that is,

F0
1 λ1 þ F0

2 λ2 ¼ f10

and the cokriging system (5.6) becomes

C11 C12 F1

C21 C22 F2

F0
1 F0

2 0

2
4

3
5 λ1

λ2

μ

2
4

3
5 ¼

c11
c21
f10

2
4

3
5

Here there is a single set of unbiasedness conditions and therefore a single μ.
An application of this system is the estimation of point or block values from data
with different supports. If the mean is constant, all points and blocks have
the same mean, and the result applies directly. If it isn’t, the system is still valid,
simply the basis drift functions for Z1 or Z2 are replaced by their block average
equivalents.
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The structure of the above system allows for the estimation of Z1 from Z2

alone using

C22 F2

F0
2 0


 �
λ2

μ


 �
¼ c21

f10


 �

which is essentially a UK system in which the right-hand side has been modified
to include the cross-covariances between the estimating and the estimated
variables instead of direct covariances. We have already encountered one appli-
cation of this: filtering a nonsystematic error in (3.68). Another could be the
estimation of block values from point values or the reverse, provided that
the point-to-point covariance is known.

Instead of postulating that all variables have the same mean, one could let the
drifts differ by a free constant as when mapping subparallel horizons. This would
be a mixed case. The resulting changes in the equations are left to the reader.

5.5 DERIVATIVE INFORMATION

A case of algebraic dependence that is particularly interesting for applications is
when the auxiliary variables are derivatives of the primary variable. Typically
we may know the depth of a geological surface and also its dip magnitude and
azimuth. In the petroleum industry, those measurements are performed by
dipmeter logging tools, which are resistivity devices that record several curves
along the borehole wall or even a complete image. The dipping plane is deter-
mined from the displacements of these curves or by tracking the trace of the
plane along the image [e.g., Hepp andDumestre (1975), Antoine andDelhomme
(1993)]. Another familiar example of gradient information is atmospheric
pressure or geopotential and wind. In the so-called geostrophic approximation,
wind is the gradient of atmospheric pressure or geopotential, up to a multipli-
cative factor and a 90� rotation due to the Coriolis force.

Two estimation problems may be considered, one is estimation of gradients,
and the other is estimation with gradients. For a general treatment it is useful to
introduce the notion of directional derivative of the RF Z(x) with respect to the
unit vector u2Rn [e.g., Rockafellar (1970)]. This is a random variable defined
as the following limit in the mean square sense:

@Z

@u
xð Þ ¼ lim

ρk0

Z xþ ρuð Þ � Z xð Þ
ρ

ð5:24Þ

If Z(x) is (m.s.) differentiable, the directional derivative in the direction u is the
projection of the gradientrZ(x) onto the unit vector uwith direction cosines cos θi:

@Z

@u
xð Þ ¼ hrZ xð Þ, ui ¼

Xn
i¼1

@Z xð Þ
@xi

cos θi

The mathematical conditions for the existence of directional derivatives in all
directions u are the same as the differentiability of Z(x), namely that the
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(generalized) covariance of Z(x) be twice differentiable at the origin. Unfortu-
nately, the variogram functions most used in practice—namely the spherical,
the exponential, or the linear models—are not differentiable. The derivatives of
Z(x) are then simply not defined mathematically (infinite variance) and can in
principle neither be estimated nor be used for estimation. Does it mean that
slope information is essentially useless? We will discuss this question later; for
now let us assume that derivatives exist.

5.5.1 Estimation of Derivatives

This part is straightforward. By linearity of the kriging system, the optimal
estimator of the difference Z(xþ ρu)�Z(x) is Z*(xþ ρu)�Z*(x). Passing to
the limit as in (5.24), we get

@Z=@uð Þ� ¼ @Z�=@u ð5:25Þ
That is, the cokriging estimator of the derivative from Z alone is equal to the
derivative of the kriging estimator. Hence the system for cokriging the derivative
from Z is simply obtained by differentiating the right-hand side of the UK
system (3.21), using the formula in the first line of (5.28). For the variance the
term σ00 becomes Var[(@Z/@u)(x0)]. The variogram equations (3.25) can be
modified in the same manner, but the above variance term must be added.
(Note: A derivative is a linear combination whose sum of weights is zero.)

The relation (5.25) assumes that both the derivatives of Z and Z* exist, but
in fact only Z* may have a derivative; for example, if the variogram of Z is
linear near the origin, Z* is differentiable nevertheless, except at the sample
points. By extension we may accept @Z*/@u as the derivative estimator, but of
course no estimation variance can be attached. Note that differentiating the
kriging estimator does not lead to noise enhancement in the derivatives as
would the differentiation of the Z data themselves because Z* is a smoothed
version of Z, except at the sample points.2

5.5.2 Estimation with Derivatives

Now we turn to the more difficult and also the more interesting problem.
For the sake of simplicity we develop the theory in 2D but the results are
basically the same in 3D or higher. Our cokriging estimator is of the form

Z�� x0ð Þ ¼
X
xα2S1

λ1αZ xαð Þ þ
X
xβ2S2

λ2β
@Z

@uβ
xβ
� �þ X

xβ2S3

λ3β
@Z

@vβ
xβ
� � ð5:26Þ

S1 is the sampling set of Z data, and the directional derivatives are taken along
directions u and v which are allowed to vary with the point in the sampling sets
S2 and S3 of derivatives. Typically, u and v are simply the directions of the

2 In frequency terms, differentiation amounts to a multiplication of the signal frequency response

X(u) by the frequency u, thereby enhancing the high frequencies present in the signal. The

smoothing nature of kriging attenuates high frequencies, at least away from the data points.
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coordinate axes, but they can also be the gradient direction (e.g., downdip) and
the orthogonal direction (strike). This general form of the estimator allows
for the case where only one of the components is known, such as only the strike
direction (the horizontal line of the bedding plane).

The functional relationship between Z(x) and its derivatives carries over to
the drift and covariances. From (5.26) the unbiasedness conditions are imme-
diately found to be

X
xα2S1

λ1α f ‘ xαð Þ þ
X
xβ2S2

λ2β
@f ‘

@uβ
xβ
� �þ X

xβ2S3

λ3β
@f ‘

@vβ
xβ
� � ¼ f ‘ x0ð Þ for all ‘

The cokriging system is then of the form

C11 C12 C13 F1

C21 C22 C23 F2

C31 C32 C33 F3

F0
1 F0

2 F0
3 0

2
664

3
775

λ1

λ2

λ3

μ

2
664

3
775 ¼

c11
c21
c31
f0

2
664

3
775 ð5:27Þ

and the cokriging variance is as in (5.7). On the left-hand side, F1 holds the drift
function values over S1, while F2 and F3 hold their derivatives in u and v over S2

and S3. All Fi have the same number of columns—that is, the number of basis
drift functions—and a number of rows equal to the number of data points of
each variable (the first column of F1 is usually composed of 1’s, and those of
F2 and F3 consist of 0’s). Assuming the covariance model to be positive definite
and to have no duplication of points, a sufficient condition for the cokriging
system to have a unique solution is that F1 be of full rank, namely that kriging
based on the Z values alone is possible. That condition is not necessary,
however, since knowledge of derivative information may remove indeterminacy
(e.g., specifying the normal to a plane in addition to one line in that plane).

The Cij terms are the direct and cross-covariances between the Z data and the
derivatives, and the ci1 termsare the covariances between, respectively, the vectors
of Z, @Z/@u and @Z/@v data, and Z(x0). All these can be obtained by differen-
tiation of the covariance σ(x, y) of Z( � ), provided that all derivatives involved
exist and that differentiation and expectation may be interchanged. We get

Cov Z xð Þ, @Z
@u

yð Þ
2
4

3
5 ¼ lim

ρk0

σ x, yþ ρuð Þ � σ x, yð Þ
ρ

,

Cov
@Z

@u
xð Þ, @Z

@v
yð Þ

2
4

3
5

¼ lim
ρ, ρ0k0

σ xþ ρu, yþ ρ
0
v

� �� σ x, yþ ρ
0
v

� �� σ xþ ρu, yð Þ þ σ x, yð Þ
ρ ρ0

ð5:28Þ
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These formulas are general and do not require stationarity of the covariance.
Explicit results can be obtained if the covariance is stationary and isotropic,
that is, of the form

σ x, xþ hð Þ ¼ C rð Þ with r ¼ jhj
Defining the projections of h on the unit vectors u and v

hu ¼ hh, ui, hv ¼ hh, vi
we have

Cov Z xð Þ, @Z
@u

xþ hð Þ
2
4

3
5 ¼ hu

C 0 rð Þ
r

,

Cov
@Z

@u
xð Þ, @Z

@v
xþ hð Þ

2
4

3
5 ¼ �huhv

1

r2
C 00 rð Þ � C 0 rð Þ

r

2
4

3
5� u, vh iC

0 rð Þ
r

ð5:29Þ

Here u and v are arbitrary unit vectors not assumed orthogonal. This generality
is useful when only the gradient direction is known. There are two special cases
of interest that emphasize the fundamental anisotropy of the derivative field:
when the covariance is evaluated along the same direction as the directional
derivative and when it is evaluated in the perpendicular direction. Letting
u¼ h/r and v orthogonal to u, we get from (5.29)

CLðrÞ ¼ Cov
@Z

@u
xð Þ, @Z

@u
xþ ruð Þ

2
4

3
5 ¼ �C 00 rð Þ,

CNðrÞ ¼ Cov
@Z

@u
xð Þ, @Z

@u
xþ rvð Þ

2
4

3
5 ¼ �C 0 rð Þ

r

ð5:30Þ

CL(r) and CN(r) are called the longitudinal and transverse (or lateral) covariance
functions and play an important role in the theory of vector random fields.3 See
Daly (2001) for an application to strain modeling. These equations as well as
(5.28) remain valid when the covariance C(h) is replaced by �γ(h), and the

3The covariance of isotropic vector random fields (Yaglom, 1987, p. 374) is of the form

Cij rð Þ ¼ CL rð Þ � CN rð Þ½ � rirj
r2

þ CN rð Þδi j

where i and j are vector component indexes, δij is the Kronecker delta, and ri and rj are the

components of the separation vector h along orthogonal axes i and j. The longitudinal and transverse

covariance functions CL(r)=�C 00(r) and CN(r)¼�C 0(r)/r verify the general relation for potential

fields CN rð Þ ¼ 1
r

R r
0
CL xð Þdx. This remains true for gradients in Rn since the longitudinal covariance

remains �C 00(r). Furthermore, the general theory tells us that C(r) is the covariance of a (scalar)

differentiable isotropic randomfield inRn if and only if�C 00(r) and�C 0(r)/r are covariances inRn+2.
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cokriging system (5.27) can be written in terms of the variogram, provided that
the constant function 1 is included in the set of drift basis functions.

The foregoing approach has been applied to meteorological problems in the
scope of a broader study involving a model of four variables (geopotential, wind
components, and temperature) over 10 layers. (Chilès, 1976; Chauvet et al.,
1976). The example shown in Figure 5.3 is a 500-millibar geopotential map over
Western Europe and the Atlantic Ocean obtained by using both geopotential
and wind observations. The variogram of geopotential, similar to that shown in
Figure 2.30b, was modeled as the sum of two Gaussian variograms, one with a
scale parameter of about 1400 km and the other, representing the main com-
ponent of the variogram of derivatives, with a scale parameter of 500 km.With a
grid spacing of about 200 km the short-scale variogram allows winds to influence
nearby grid nodes, but this influence decreases rapidly with distance. The map
shows wind data in sparsely sampled areas. Notice that due to the Coriolis force,
these winds are approximately tangent to geopotential contours.

5.5.3 Physical Validity of Derivatives

The singularity of common variogram models at the origin forces us to ques-
tion the physical validity of representing gradient information by derivatives. In
a mathematical sense a derivative is punctual information, but in the real world
this is usually not what is measured. Consider, for example, geological dips.
With a dipmeter tool there is a minimum distance between dip computation
points corresponding to the diameter of the borehole, typically 20 to 25 cm.
Even so there can be considerable variability in the magnitude and azimuth of
these dips due to local sedimentary features such as ripples or cross-bedding.
Since we are not interested in representing these local fluctuations, we consider
only the dips that are likely to have significant lateral extension. Typically, this
is what geologists call the structural dip. It is determined by statistical averaging
within depth intervals with approximately constant dip magnitude and azimuth
and is supposed to represent beds that were deposited on a nearly horizontal
surface, with their present dips being the result of tectonic stresses [e.g., Serra
(1985)]. Thus the slope information to be used for geological mapping is not a
point gradient but rather an average over some support actually difficult to
specify.4 Renard and Ruffo (1993) modeled this dip as the derivative of the
depth convolved by a Gaussian weighting function with main axes lengths
(a1, a2), which were assigned arbitrary but plausible values (a1¼ a2¼ 50 m for a
depth variogram range of 1400 m).

Another solution is to model derivative information by finite increments,
which is where we started from in the definition (5.24), and this is also a
form of averaging. In 2D, when both value and gradient are known at the

4The depth of investigation of the dipmeter tool should also be taken into account, and that in turns

depends on the resistivity constrasts and also the geometry of the beds and the inclination of the

wellbore.
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same data point P0, a simple procedure is to create dummy points P1 and P2

that, together with P0, recreate the correct tangent plane. For example, P1

and P2 are placed at a distance ρ from P0, where P1 is along the direction of
steepest slope (e.g., downdip) with the value Z1¼Z0þ ρ:rZ: and P2 is
normal to this direction (e.g., along strike) with the value Z2¼Z0. The value
of ρ depends on the lateral validity of the dip and is an interpretation

FIGURE 5.3 Cokriging of the 500-millibar geopotential field on 15/03/74—12:00. Unit: gpm. The

symbol F represents wind data (direction and intensity). A guess field was used. [From Chilès

(1976), with kind permission from Kluwer Academic Publishers.]
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decision. The main advantage of the method is that it can be implemented
with a standard kriging program. When only the gradient is known, a
similar method can be applied, except that the dummy points are involved
only through the differences Z1�Z0 and Z2�Z0, which requires a genuine
cokriging program.

When the RF Z(x) is differentiable, the question of the lateral extent (the
distance ρ) seems irrelevant, at first glance. But we know from experience that
the influence of punctual derivatives may be so local as to have virtually no effect
on the interpolated grid. In reality there is a difference between a mathematical
derivative and a physical derivative. The mathematical derivative at the point x in
the direction u is the limit of the ratio [Z(xþ ρu)�Z(x)]/ρ as ρ becomes infinitely
small. It suffices to modify a function only very slightly, for example, by
convolving it with a smooth window of arbitrarily small width, to make it dif-
ferentiable and even infinitely differentiable. The mathematical derivative has a
physical existence only if this ratio remains approximately constant over a dis-
tance commensurate at least with the scale of observation and, preferably, the
grid spacing. That distance represents the lateral extent of the gradient. Phrased
differently, derivative data have an impact only if they exhibit enough spatial
correlation at the scale of the study; otherwise, they appear like a nugget effect.

A final remark. The presence of a nugget effect on the variogram of Z(x),
which is the most adverse case of singularity at the origin, does not exclude the
possibility of useful derivative information. If the derivative is computed from
measurements of Z recorded by the same process, the measurement errors are
the same and cancel out in derivatives. A case in point is again the dipmeter,
where the uncertainty on the absolute depth of a single resistivity curve can
reach several feet, but the displacement between curves can be determined
within a fraction of an inch.

5.5.4 Kriging under Boundary Conditions

The example is taken from a work that J. P. Delhomme (1979) presented at
a conference but never published, where he used gradient information as a
means of constraining estimates to honor known physical boundary con-
ditions. The study concerns an aquifer in which water, for geological rea-
sons, cannot flow through the boundaries marked with a thick solid line in
Figure 5.4a and is released through the western outlet. For the purpose of
numerical modeling of the aquifer, it is desired to map the hydraulic head
on the basis of 49 available piezometric measurements. Figure 5.4b shows
the map produced by usual kriging; it is not acceptable for a hydrogeologist.
First, the no-flow constraints are violated: Since the flow is orthogonal to
hydraulic head contour lines, these lines should be perpendicular to the no-
flow boundary, but in the southern part they are not. Second, to the west
the water release is not in front of the actual outlet. Boundary conditions
are now introduced by specifying that the gradient component normal to
the no-flow boundary is zero. In principle, since the no-flow contour is
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continuous, one should consider a continuous cokriging estimator, but in
practice, it suffices to discretize the problem and replace the gradient
component by the differences between pairs of dummy points as shown in
Figure 5.4a, considering

Z��0 ¼
X
α

λ1αZ xαð Þ þ
X
β

λ2β Z xβ þ ρvβ
� �� Z xβ � ρvβ

� �� �

(a) (b)

(c) (d)

FIGURE 5.4 Kriging piezometric head under boundary conditions: (a) layout of the aquifer and

locations of the wells and the dummy wells (thick lines are no-flow boundaries); (b) usual kriging

from the 49 wells does not honor the constraints; (c) kriging under boundary conditions and the 49

wells honors the constraints; (d) kriging under boundary conditions using 9 wells only does

practically as well as in (c). [From Delhomme (1979).]
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The vectors vβ are perpendicular to the boundary and the differences are
zeros. One may wonder why these differences are included at all since their
contribution to the estimator is zero. Because, and that is key, the weights λ1α
are different from kriging weights based on the Zα alone. The resulting map
in Figure 5.4c is the “ideal” one in the sense that it is consistent with everything
that is already known. In order to evaluate the strength of the additional
boundary conditions, the map was redrawn using only 9 wells plus these
constraints and the result is pictured in Figure 5.4d, which also shows the
locations of the dummy wells. The map is not very different from the ideal
one, indicating that boundary conditions constitute very strong constraints.

5.5.5 Potential-Field Interpolation

Use of orientation data is at the core of an original method for building a 3D
model of geological interfaces. The principle is to define a potential field, namely
a scalar function T(x) of location x¼ (x, y, z) in 3D space, such that the geo-
logical interface corresponds to an isopotential surface—that is, the set of
points x that satisfy T(x)¼ c, a given constant value (a level set). In the case of
sedimentary deposits, T could be interpreted as geological time, or an
increasing function of time, and an interface can be interpreted as an isochron
surface, analogous to Mallet (2004).

The intriguing feature of this approach is that it permits an interpolation
of potential differences using only potential differences equal to zero and
gradients. The available data are as follows:

1. Interface Points: Locations of points x1, . . . , xm known to belong to the
same interface. Two interface points x1 and x2 satisfy T(x2)�T(x1)¼ 0.

2. Orientation Data: The dip and strike of layers at selected points not
necessarily on an interface. These define a local tangent plane where the
potential remains constant. The unit vector normal to this plane and
pointing toward increasing T is taken as the gradient of the potential
field (this assumes the geologist is able to tell the direction of time).
The gradient vector has for components three partial derivatives @T/@u,
@T/@v, @T/@w in directions u, v, w, which in practice usually coincide with
the axes directions in 3D space.

T itself is defined up to an arbitrary constant taken to be the potential at an
arbitrary reference point x0. We estimate a potential difference using a cokri-
ging estimator of the form

T�� xð Þ � T�� x0ð Þ ¼
Xm
α¼2

λα T xαð Þ � T xα�1ð Þ½ � þ
X
xβ2SG

X3
i¼1

νiβ
@T

@ui
xβ
� �

where SG is the sample set of gradient points, and the ui stand for the unit
vectors u, v, w. Just as in the general case of gradients it is not neccessary to
assume that all gradient components are known: If the i-th one is missing it
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suffices to set νiβ¼ 0. The potential increments have a zero value, but their
presence in the estimator causes the weights on the gradient to be different from
what they would be based on the gradient data alone. Conversely, in the
absence of gradient data the cokriging estimator would be identically zero.
Note that this formula uses data from a single interface; if there are multiple
interfaces, other terms similar to the first sum must be added.

The cokriging model includes a polynomial drift in 3D. For example, if
interfaces are subparallel subhorizontal surfaces, it makes sense to use a linear
drift in the vertical direction. For an ellipsoid-shaped body a quadratic drift in
3D (10 coefficients) may be considered. In all cases the constant function
f 0(x)� 1 should be omitted since the potential increments as well as the gra-
dients filter it out. Concerning covariances, the method consists of postulating a
twice differentiable covariance model for T—for example, a cubic model—and
fitting its parameters so as to match the longitudinal and transverse variograms
of derivatives given by (5.30). Figure 5.5 shows an example of such variograms
for a dataset in central France.

It is advantageous to implement the cokriging algorithm in dual form
because it allows an easy computation of the potential at any point x, and
consequently the use of an efficient algorithm such as the marching cubes, to
visualize iso-surfaces in 3D, without the need of a fine 3D grid.

Figure 5.6 illustrates the results obtained with the potential-field approach.
It is especially useful to model the 3D geometry of geological bodies described
by outcrop data and possibly a few drill-holes. Additional information on the
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FIGURE 5.5 Longitudinal and transverse variograms of potential field derivatives for the

Limousin dataset, Massif Central, France. Notations: γX// is the longitudinal variogram of @T/@x

and γX> the transverse. [From Aug (2004).] (See color insert)
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method and its applications can be found in Lajaunie et al. (1997), Aug (2004),
Chilès et al. (2005), and Calcagno et al. (2008).

5.6 MULTIVARIATE RANDOM FUNCTIONS

5.6.1 Cross-Covariances

The cross-covariance functions of a multidimensional stationary RF Z(x)¼
(Z1(x), . . . , Zp(x))

0 with mean vector m(x)¼ (m1(x), . . . , mp(x))
0 are defined by

Cij hð Þ ¼ E Zi xð Þ �miðxÞ½ � Zj xþ hð Þ �mjðxþ hÞ� � ð5:31Þ

and only depend on the separation h between the two points. For simplicity and
without loss of generality, we will assume here that all variables are centered to
zero means.

The order in which variables are considered matters: Zi is at the origin x, and
Zj is at the end point xþ h. If we swap the variables, we get another cross-
covariance:

E Zj xð ÞZi xþ hð Þ� � ¼ Cji hð Þ

A

Vertical cross section

Horizontal view

A

B

B

FIGURE 5.6 Potential field interpolation. Top: points at interfaces and structural data, sampled

on the topographic surface; bottom: vertical cross section through the 3D model. [From Courrioux

et al. (1998).] (See color insert)
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Trivially, we obtain

Cij hð Þ ¼ E Zi xð ÞZj xþ hð Þ� � ¼ E Zj xþ hð ÞZi xð Þ� � ¼ Cji �hð Þ
but in general we get

Cij �hð Þ 6¼ Cij hð Þ

By Cauchy�Schwarz’s inequality we have

jCij hð Þj#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cii 0ð ÞCjj 0ð Þ

q
so that Cij (h) is bounded. Applying the same inequality to one variable and an
increment of another shows that Cij(h) is continuous at h¼ 0 whenever Zi(x) or
Zj(x) is continuous in the mean square. A cross-covariance behaves very
differently than a direct covariance function Cii(h). It is not necessarily
symmetric, and its maximum may lie at h¼ τ 6¼ 0. Such lagged correlation is
common in time series due to a delay between the input and the output signals.
It is less frequent in spatial phenomena, perhaps because it is incompatible with
isotropy. But there are examples: offsets caused by faulting, by selective
migration of a chemical element (in uranium mines, maximum radioactivity
does not necessarily coincide with maximum uranium grades), or by “man-
made” offsets between two images.

Example: The Pure Offset Model
The topography of the lower and upper surfaces of an horizontal fracture are
described by two RFs Z1(x) and Z2(x), where x is the position of a point in the
horizontal plane. If the two surfaces simply differ by a displacement of horizontal
and vertical components τ and m (idealized case of a shear fracture), we obtain

Z2 xð Þ ¼ Z1 xþ τð Þ þm

so that

C12 hð Þ ¼ C11 hþ τð Þ

and is a maximum for h¼�τ, allowing the detection of τ (Chilès and Gentier,
1993). The same principle is used for locating patterns in an image using templates.

Characterization of Covariance Function Matrices

Since a positive definite function has its maximum at zero, a cross-covariance is
generally not positive definite. Under which conditions is Cij(h) a valid cross-
covariance function, or, rather, under which conditions does the set of Cij (h)
constitute a valid model? The criterion is in the frequency domain and is due to
Cramér (1940), who mentions in a footnote of his paper that the same result
was found independently by Kolmogorov.
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A continuous cross-covariance function Cij(h) has the spectral representation

Cij hð Þ ¼
Z
e2πihu, hiFij duð Þ ð5:32Þ

where u¼ (u1, u2, . . . , un) is frequency in Rn and hu, hi¼ u1h1þ � � � þ unhn (of
course the “i” in the exponential is the pure imagining number and has nothing
to do with the index i in Cij). The cross-spectral measure Fij(du) represents the
common power of Zi and Zj in the infinitesimal spectral interval du. It satisfies
the following symmetry relations for any Borel set B:

Fij �Bð Þ ¼ Fij Bð Þ ¼ Fji Bð Þ

Criterion. (Cramér, 1940; Yaglom, 1987, Vol. I, p. 314)
The continuous functions Cij(h) are the elements of the covariance matrix of a
multidimensional stationary RF of order 2 if and only if the cross-spectral
matrix M(B)¼ [Fij(B)] is positive definite for any (Borel) set B of Rn, namelyP

i

P
jλiλjFi j Bð Þ$ 0 for any set of complex coefficients λ1, . . . , λp.

This concise criterion ensures that given any linear combination with com-
plex coefficients

Y xð Þ ¼ λ1Z1 xð Þ þ � � � þ λpZp xð Þ
its covariance function

E Y xð ÞY xþ hð Þ
h i

¼
Xp
i¼1

Xp
j¼1

λiλjCij hð Þ ¼
Z
e2πihu, hi

Xp
i¼1

Xp
i¼1

λiλj Fi j duð Þ
" #

is the Fourier transform of a nonnegative measure and is therefore positive
definite.5 More generally, all variances of linear combinations calculated with
themodel are nonnegative. Note, however, that the criterion does not exclude the
possibility of singular cokriging matrices due to linearly dependent variables.
But the cokriging estimator is always unique (being a projection).

If Cij(h) decreases fast enough for Cij(h)
2 to be integrable, there exists a

spectral density function fij(u) such that Fij (du)¼ fij(u) du. If in addition jCij (h)j
is integrable, fij (u) is continuous and bounded and can be computed by
inversion of the Fourier transformation (5.32). If all cross-covariances have a
spectral density function, the validity criterion is a positive definite spectral
density matrix:

M uð Þ ¼
f11 uð Þ � � � f1p uð Þ
^ � � � ^

fp1 uð Þ � � � fpp uð Þ

2
4

3
5

5As in Chapter 2, positive definite is taken synonymously to nonnegative definite; and to exclude the

value zero, we refer to strict positive definiteness.
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In general, fij(u) is a complex function with the Hermitian symmetry (since
Cij(h) is real)

fi j �uð Þ ¼ fi j uð Þ ¼ fji uð Þ

The positive definiteness property entails in particular that for any pair (i, j) we
obtain

j fi j uð Þj#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fii uð Þ fj j uð Þ

q
ð5:33Þ

Examples

1. Independent RFs. In this case M(u) is diagonal. Since all fii (u) are real and
nonnegative, being spectral densities of ordinary covariances Cii (h), M(u) is
positive definite.

2. Derivative. In R consider a RF Z(x) and its derivative Z0(x) and let f(u) be
the spectral density associated with the covariance of Z(x). The spectral density
matrix is

M uð Þ ¼ 1 2πiu
�2πiu 4π2 u2


 �
f uð Þ

We have f(u)$ 0 and detM(u)¼ 0 for all u so thatM(u) is nonnegative definite.
The same reasoning applies to the pure offset model, with

M uð Þ ¼ 1 e2πiuτ

e�2πiuτ 1


 �
f uð Þ

3. Proportional Covariances. Let Cij(h)¼σij ρ(h) and f (u) the spectral density
associated with ρ(h). Then M(u)¼ [σij ] f(u), and since f(u)$ 0, M(u) is positive
definite if and only if the matrix [σij ] is also positive definite. Note that if
ρ(h) assumes negative values, the matrix [Cij(h)] is negative definite for those
values of h.

4. “Markov-Type” Models. Consider two RFs, Z1 and Z2, with unit variance
and correlation coefficient ρ. Assume that their cross-covariance is proportion-
al to the covariance of Z2 (MM2 model):

C12 hð Þ ¼ ρC22 hð Þ

If C11 and C22 (which are correlograms) have spectral densities f1 and f2,
we have

M uð Þ ¼ f1 uð Þ ρ f2 uð Þ
ρ f2 uð Þ f2 uð Þ

 �

. detM uð Þ ¼ f2 uð Þ f1 uð Þ � ρ2f2 uð Þ� �
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The multivariate model is valid if and only if f1(u)$ ρ2f2(u) for every
frequency u. In particular, f1(u) cannot tend to zero faster than f2(u) as
u-N, showing that Z1 cannot be smoother than Z2. Equivalently, C11(h) is
of the form

C11 hð Þ ¼ ρ2C22 hð Þ þ 1� ρ2
� �

CRR hð Þ

for some correlogram CRR (h). If Z1 and Z2 have zero mean, Z1 can be
decomposed as

Z1 xð Þ ¼ ρ Z2 xð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
R xð Þ

where R(x) is a zero mean unit variance residual spatially uncorrelated with Z2.
Similar results are obtained if we start from the MM1 model C12(h)¼ρC11(h),
which may be more appropriate if Z1 is smoother than Z2.

5. Nugget Effects. In the multivariate case, it is not sufficient (nor
necessary) for nugget effect constants to be positive; there are consistency
constraints. We consider here the case where discontinuities are at the origin
only, keeping in mind that cross-covariances can have discontinuities else-
where (e.g., the pure offset model). If we admit that the phenomenon can be
decomposed into two uncorrelated multivariate components, a pure nugget
effect and a continuous component, each must be a valid model, and this
condition is also clearly sufficient for the sum to be valid. A little technical
difficulty appears if we want to apply the Cramér criterion to the nugget effect
because it is applicable only to continuous covariances. A simple way to work
around this difficulty is to consider the pure nugget effect as a case of
proportional covariance model with a continuous correlogram ρ(h) of arbi-
trarily small range:

Cij hð Þ ¼ σi j ρ hð Þ

We conclude immediately that the nugget effect matrix [σi j ] must be positive
definite. For example, in a bivariate model we must have σ11$ 0, σ22$ 0, and
σ12
2 #σ11σ22. The magnitude of the nugget effect on the cross-covariance

cannot exceed the geometric mean of the nugget effects on the two direct
covariances. Again, if one of the variables is continuous, the cross-covariance
must be continuous too.

Coherency and Phase Spectrum

The spectral density function fij (u) is a very informative tool to study the relationship between
two stationary RFs Zi (x) and Zj (x) and is used extensively for the analysis of time signals
[e.g., Jenkins and Watts (1968), Koopmans (1974)]. We do not know of such use in a spatial
geostatistical context, but it is interesting to briefly mention the approach. We will use the
indexes 1 and 2 to denote the two generic variables.
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Due to the absence of symmetry of C12(h), the spectral density f12(u) is a complex function

f12 uð Þ ¼ c12 uð Þ � iq12 uð Þ

The real part c12(u) (not be confused with the covariance C12(h)) is the Fourier transform of
the even part of the cross-covariance and is usually called the cospectrum, while the imaginary
part q12(u) is the Fourier transform of the odd part of the cross-covariance and is called the
quadrature spectrum.

The Hermitian symmetry of f12(u) entails

c12 �uð Þ ¼ c12 uð Þ and q12 �uð Þ ¼ �q12 uð Þ
The polar representation

f12 uð Þ ¼ j f12 uð Þj eiϕ12 uð Þ

yields another set of spectral parameters that are perhaps the most useful because they can be
interpreted quantitatively. Owing to the Cauchy�Schwarz inequality (5.33), the ratio

ρ12 uð Þ ¼ j f12 uð Þj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f11 uð Þ f22 uð Þ

p
when defined, is always between 0 and 1. It is named the coherency spectrum and provides a
nondimensional measure of the correlation between two RFs as a function of frequency. The
term “coherency” (or “coherence”) is borrowed from the study of light, and an interesting
explanation of this idea can be found in Koopmans (1974, pp. 138ff.). Coherency remains
invariant under scale changes in the frequency domain, namely under the application of
independent linear filters to Z1(x) and Z2(x), which is a very important property when the
data have been passed through linear filters with possibly unknown characteristics. The phase
spectrum is defined by

ϕ12 uð Þ ¼ �arctan q12 uð Þ=c12 uð Þð Þ
It is interpreted as the average phase difference between Z1(x) and Z2(x) at frequency u. When
there is no phase difference at any frequency, the cross-spectral density f12(u) is real and the
cross-covariance is an even function.

5.6.2 Cross-Variograms

The cross-variogram was introduced by Matheron (1965) as the natural gen-
eralization of the variogram

γi j hð Þ ¼ 1
2
E
�
Zi xþ hð Þ � Zi xð Þ� Zj xþ hð Þ � Zj xð Þ� � ð5:34Þ

for multivariate intrinsic random functions (of order 0), namely satisfying

E Zi xþ hð Þ � Zi xð Þ½ � ¼ 0 for i ¼ 1, : : : , p

Cov Zi xþ hð Þ � Zi xð Þ,Zj xþ hð Þ � Zj xð Þ� � ¼ 2γi j hð Þ exists and depends
only on h

The cross-variogram has two advantages over the cross-covariance: (1) It does
not assume finite variances, and (2) the estimation of the cross-variogram is not
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corrupted by the estimation of the means. The relationship between the cross-
variogram and the cross-covariance, when it exists, is the following:

γi j hð Þ ¼ Cij 0ð Þ � 1
2
Cij hð Þ þ Cij �hð Þ� � ð5:35Þ

The cross-variogram satisfies γij(0)¼ 0 and is an even function of h, whereas the
cross-covariance in general is not. Here lies the shortcoming of the cross-
variogram: There is a potential loss of information. The decomposition of the
cross-covariance into even and odd parts

Cij hð Þ ¼ 1
2
Cij hð Þ þ Cij �hð Þ� �þ 1

2
Cij hð Þ � Cij �hð Þ� �

shows exactly what is lost, namely the odd part of the cross-covariance.

Example: The Pure Offset Model

Let Z1(x) and Z2(x) be two intrinsic random functions where Z2(x)¼
Z1(xþ τ)þm. Their cross-variogram is

2γ12 hð Þ ¼ γ11 hþ τð Þ þ γ11 h� τð Þ � 2γ11 τð Þ

Unlike the covariance it cannot distinguish an offset τ from an offset � τ.

In the extreme case where the cross-covariance is odd the cross-variogram is
identically zero. For example, the cross-covariance between Z and Z0 is the odd
function C 0(h); as a consequence, Z(y)�Z(x) and Z0(y)�Z0(x) are always
uncorrelated. Note in passing that the variogram derivative γ 0(h) is not a cross-
variogram (because it is an odd function of h).

As a covariance of increments, γij(h) is subject to the Cauchy�Schwarz
inequality

jγi j hð Þj#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γii hð Þ γj j hð Þ

q
’h ð5:36Þ

This inequality ensures the continuity of γij(h) at h¼ 0, provided that Zi(x) or
Zj(x) is continuous in the mean square, and it also majorizes the growth of
γij(h). Furthermore, the coefficient of codispersion

Rij hð Þ ¼ γi j hð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γii hð Þ γj j hð Þ

q ð5:37Þ

introduced by Matheron (1965) provides an interpretive tool to analyze the
correlation between the variations of Zi (x) and those of Zj (x).

Expansion of Var
P

λi Zi xþ hð Þ � Zi xð Þ½ �ð Þ shows that [γij(h) ] is a positive
definite matrix for every h (unlike [Cij (h)]). The Cauchy�Schwarz inequality
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(5.36) is a particular consequence of this, which is by no means sufficient to
ensure the validity of the multivariate model, as the following example
demonstrates. The true validity criterion is again in the frequency domain.

Example: An Invalid Cross-Variogram Model Satisfying
the Cauchy�Schwarz Inequality

Consider the exponential cross-variogram model

γ11 hð Þ ¼ γ22 hð Þ ¼ 1� e�bjhj γ12 hð Þ ¼ � 1� e�cjhj
� 

b, c. 0ð Þ

When b. c, these variogram functions satisfy the Cauchy�Schwarz inequality

γ11 hð Þγ22 hð Þ � γ12 hð Þ2 ¼ 2� e�bjhj � e�cjhj
� 

e�cjhj � e�bjhj
� 

$ 0

and yet the model is not valid. Indeed under a valid multivariate model the ordinary vario-
gram of any linear combination of Z1(x) and Z2(x), expressed in terms of the model, must be
a valid variogram function. Consider the sum Y(x)¼Z1(x)þZ2(x); its variogram is

γYY hð Þ ¼ γ11 hð Þ þ γ22 hð Þ þ 2γ12 hð Þ ¼ 2 e�cjhj � e�bjhj
h i

Since b is greater than c, this function is positive, but it is a suspicious-looking variogram that
tends to 0 as h-N. A direct proof (not by Fourier) is to consider that the covariance of Y
(xþ τ)�Y(x) for an arbitrary constant τ,

γYY hþ τð Þ þ γYY h� τð Þ � 2γYY hð Þ
must be a positive definite function of h and therefore bounded in absolute value by 2γYY (τ).
But for fixed h and large τ, the first two terms tend to zero so that this function is equivalent to
�2γYY (h), which can be greater in magnitude than 2γYY (τ). So γYY (h) is not a variogram and
the multivariate model is invalid. The only case6 where the model can be valid is b¼ c, which
implies γYY (h)� 0 and Z1(x)þZ2(x)¼ constant.

Cokriging Equations in Terms of Cross-Variograms

In the special case where the RFs satisfy the symmetry condition

E
�
Zi xð Þ � Zi x

0ð Þ� Zj yð Þ � Zj y
0ð Þ� � ¼ E Zj xð Þ � Zj x

0ð Þ� ��
Zi yð Þ � Zi y

0ð Þ� ð5:38Þ
the covariance of any two increments is given by

E
�
Zi xð Þ � Zi x

0ð Þ� Zj yð Þ � Zj y
0ð Þ� �

¼ γi j y
0 � xð Þ þ γi j y� x0ð Þ � γi j y� xð Þ � γi j y

0 � x0ð Þ
(Matheron, 1965, p. 146) so that in particular we have

E
�
Zi xð Þ � Zi x0ð Þ� Zj yð Þ � Zj x0ð Þ� � ¼ γi j x� x0ð Þ þ γi j y� x0ð Þ � γi j y� xð Þ

6A characterization of cross-covariances in R with exponential autocovariances is given by Yaglom

(1987, Vol. 1, p. 315). In the example we have postulated that the cross-covariance is exponential.
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From this is it easy to see that the variance of any linear combination of
increments X

i

X
α

λiαZi xαð Þ with
X
α

λiα ¼ 0 ’i

(and, in particular, error variances) can be expressed in terms of the cross-
variogram by simply substituting �γij(h) for Cij(h), the same rule as used in the
univariate case. Thus ordinary and universal cokriging systems can be written
in terms of cross-variograms, provided that for each variable the sum of
weights is explicitly constrained to zero (i.e., even if the variable has mean zero)
and that the symmetry condition (5.38) is satisfied.

Generalized Cross-Covariance

What would be the completely general equivalent of the variogram for a cross-structure
function? In the case of an intrinsic model (of order 0), this would be a function Kij (h)
enabling us to calculate the covariance of any pair of increments of the variables Zi (x) and
Zj (x). Using the notations of IRF�k theory, let us define such increments in the concise
integral form

Zi λð Þ ¼ R Zi xð Þλ dxð Þ, where
R
λ dxð Þ ¼ 0

Zj μð Þ ¼ R Zj yð Þμ dyð Þ, where
R
μ dyð Þ ¼ 0

Then the structure function should satisfy

E Zi λð ÞZj μð Þ� � ¼ZZ λ dxð Þ Kij y� xð Þ μ dyð Þ

When the ordinary cross-covariance Cij (h) exists, it is obviously a solution. But so is the
family

Kij hð Þ ¼ Cij hð Þ � Cij 0ð Þ �, c1, h.

for any constant vector c1. This leads to a multivariate generalization of the IRF�0 theory, in
which the structural tool is a class of generalized cross-covariances Kij (h) with the spectral
representations (Matheron, personal communication)

Kij hð Þ ¼
Z

e2πi, u, h. � 1� i, u, h. 1B uð Þ
4π2juj2 χi j duð Þ þ c0 þ , c1, h. ð5:39Þ

where B is an arbitrary symmetric neighborhood of the origin, χij (du) is a complex measure

with the Hermitian symmetry, no atom at the origin, satisfying
R
χi j duð Þ=ð1þ 4π2juj2Þ,N,

and the matrix [χij (B)] is positive definite for all Borel sets B�Rn. The constant c0 and vector
c1 are arbitrary.

Separating the real and imaginary parts of χij in (5.39) yields a decomposition of Kij (h)
into even and odd parts

Kij hð Þ ¼ c0 � γi j hð Þ
h i

þ hc1, hi �
Z

sin 2πhu, hið Þ � hu, hi1B uð Þ
4π2juj2 Qij duð Þ

" #
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where Qij is the imaginary part of χi j. When this is zero, Kij (h) is reduced to c0� γij (h).
In the case of the pure offset model with variogram γ(h) and spectral measure χ(du), the

generalized cross-covariance is of the form �γ(hþ τ) for a fixed offset τ, and its spectral
measure is e2πi uτ χ(du).

It does not seem possible to express Kij (h) as the expected value of increments and
compute an experimental version of it. One must resort to postulating a parametric model
and estimate its parameters like for generalized covariances. Dowd (1989) approaches this in
the scope of a linear model of coregionalization. The definition of interesting models of
generalized cross-covariances deserves further research.

5.6.3 An Example of Structural Analysis with Cross-Variograms

The following example illustrates the use of cross-variograms and codispersion
graphs as analysis tools, independently of cokriging. It is taken from a study of
the hydrothermal behavior of the ocean crust in a subduction zone located
in the eastern Pacific Ocean (Chilès et al., 1991). Simply put, the objective of the
work is to determine if the heat transfer in the ocean crust proceeds from a
conductive or a convective regime. A conductive regime, because of thermal
refraction, is associated with high heat transfer in deep water and low heat
transfer in shallow water—that is, a positive correlation between variations of
ocean depth and of heat flux. A convective regime (influx of cold water in deep
permeable seabeds, followed by percolation and heating through the overlaying
sedimentary layers up to shallower seabeds) results in the opposite effect.
Although the site under consideration has been extensively studied, in particular
in the scope of the ODP (Ocean Drilling Program), its hydrothermal system is
still not well understood.

The most basic statistical analysis consists of a scatterplot of depth (in m)
versus heat flux (in mW/m2), displayed in Figure 5.7a for the western part of the
site. It shows a clear negative correlation, but the correlation coefficient is
only �0.68. Geostatistical tools enable us to improve this correlation and also
to analyze it more subtly.

The experimental cross-variogram between two variables is computed from
all pairs of data points where both variables are known using the unbiased
estimator

γ̂i j hð Þ ¼ 1

2N hð Þ
X

xβ�xα	h

Zi xβ
� �� Zi xαð Þ� �

Zj xβ
� �� Zj xαð Þ� �

where N(h) is the number of pairs (xα, xβ) with separation h. Data points where
only one of the variables is present are simply ignored. If the variables have no
or too few samples in common to compute a cross-variogram, one may turn to
the cross-covariance, but it is risky. Remember that for a single variable the
covariance is biased by the estimation of the mean; for two variables, things
may be worse as we subtract different means computed from data at different
places. To ensure numerical consistency and avoid correlation coefficients
greater than one, it is also recommended to compute the cross and direct
variograms from the same set of points.
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FIGURE 5.7 Scatterplots of heat flux versus depth and regression lines, western zone:

(a) unfiltered flux; (b) filtered flux. [From Chilès et al. (1991).]
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In the present case study the sampling requirement is fulfilled with the help
of a little trick, a preliminary kriging interpolation to determine the depth at
every point where the flux is known. This estimation having a good precision
the kriging error may be neglected. Figures 5.8a to 5.8c show the direct and
cross-variograms for depth (bathymetry) and heat flux in the western zone.
These variograms are strongly anisotropic: The variations are more important
in the N�S direction than in the E�W direction. This apparent anisotropy can
also be interpreted as the effect of an N�S drift, but for our purpose we
can leave the choice of an interpretation open.

The depth variogram is continuous at the origin. The heat flux variogram has
the same shape but exhibits a nugget effect due to uncertainties on flux measure-
ments. The flux measurement error variance has a value of about 300�400
(mW/m2)2, which corresponds to an error standard deviation of 17�20 mW/m2,
for a mean flux value of about 220 mW/m2. The cross-variogram between depth
and flux is negative as expected. The interesting new feature is that the correlation
is weak, if not negligible, along the E�W direction. At the same time, the corre-
lation in the N�S direction is stronger than what the correlation coefficient
indicates, as canbe seen from the coefficient of codispersionR(h), definedby (5.37),
graphed inFigure 5.8d.Atmedium to large distances the good correlation between
depth variations and flux variations in the N�S direction shows up clearly.

Improvement of Correlation by Filtering of Measurement Error

The measurement errors on heat flux do not affect the covariance between flux
and depth nor the cross-variogram. But they increase the scatter in the cross-
plots and inflate the variance and variogram of the flux and therefore reduce the
correlation and codispersion coefficients, especially at short distances. There
are two possibilities to correct for measurement errors:


 Subtract the measurement error variance from the variance and variogram
of the flux and recompute the correlation coefficient and the codispersion
function.


 Filter the flux data themselves by the method of kriging with filtering of the
nugget effect, and recompute the statistical parameters and variograms.

In the second approach the effect of measurement errors is considerably
reduced, without being completely eliminated because the neighboring points
used for kriging are only “pseudoreplicates” and they involve some lateral
variations. But the first approach is very dependent on the fit of the nugget
effect and so the second method is preferred.

Figure 5.7b displays the new depth�flux scatterplot for the western zone.
Observe that it is less scattered along the regression line. The correlation coef-
ficient improves from �0.68 to�0.78. The nugget effect is practically eliminated
from the variogram of the filtered flux (not shown in the figure). Thus the new
codispersion function R(h) can be considered unaffected by measurement errors,
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FIGURE 5.8 Direct and cross-variograms of depth and heat flux, western zone: (a) depth

variogram; (b) flux variogram; (c) cross-variogram of depth and flux; (d) codispersion graph;

(e) codispersion graph of depth and filtered heat flux. [From Chilès et al. (1991).]
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at least at large distances; at short distances, where variations remain small, even
small residual errors can produce an instability. The graph of this new R(h),
displayed in Figure 5.8e, reinforces the preceding analysis: low correlation in the
E�W direction and high correlation in the N�S direction where R(h) stabilizes
at �0.86. This high correlation between depth and flux variations confirms the
convective behavior in the western zone, at least along the N�S direction.

In the example presented, only one of the variables was subject to noise.
However, the technique of spatial filtering provides a solution to a more
challenging statistical problem: Determine the relationship between two vari-
ables when both are subject to measurement errors. The raw data scatterplot
may be completely blurred by noise while the plot of filtered data may be
focused enough to be interpretable.

5.6.4 Proportional Covariance Model and Screening Property

The proportional covariance model is the simplest multivariate model used in
geostatistics. All covariances (variograms) are proportional to the same
covariance (variogram) function

Cij hð Þ ¼ bijC hð Þ or γi j hð Þ ¼ bijγ hð Þ ð5:40Þ
with symmetric coefficients bij that define a positive definite matrix B¼ [bij ].
The conditions on B result directly from the symmetry Cij (h)¼Cij (�h) built in
this model (hence Cij(h)¼Cji (h)) and the Cramér criterion of Section 5.6.1. It is
convenient to scale the basic structure function to C(0)¼ 1 so that B is the
matrix of covariances of the variables at the same point, or of correlation
coefficients if all variables are scaled to unit variance. If the matrix B is strictly
positive definite (λ0 Bλ. 0 for λ 6¼ 0), it has an inverse and the cokriging
system is always nonsingular. If B were singular, it would suffice to consider
only a subset of linearly independent variables and deduce the others through
the linear relationships. This model reduces the determination of p (pþ 1)/2
covariance (variogram) functions to the determination of one covariance
(variogram) function and p (pþ 1)/2 numbers.

Matheron (1965, p. 149) introduced the proportional covariance model
(which he named the “intrinsic correlation” model) not for the purpose of
cokriging but to validate the usual statistical correlation coefficient in a geos-
tatistical context. Why is there a problem? Because, when variables are spatially
correlated, their variance or covariance within a finite domain V depends on V
and on the support on which they are defined. We saw, for example, that the
empirical variance s2 is an estimate of σ2(0jV), the variance of a point within V,
which is smaller than the variance of Z(x) if it exists (Section 2.8.2). The general
formula for the covariance within V of the variables Zi (v) and Zj(v) with
support v, including the case i¼ j, is given by

σi j vjVð Þ ¼ 1

V2

Z
V

Z
V

γi j y� xð Þdx dy� 1

v2

Z
v

Z
v

γi j y� xð Þdx dy
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and their correlation coefficient within V is

ρi j ¼
σi j vjVð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σii vjVð Þ σjj vjVð Þp ð5:41Þ

This coefficient depends on v and V. It may tend to a limit when V becomes
infinite, but this limit in general depends on the particular way V tends to
infinity. Now, when all variograms are proportional, (5.41) becomes

ρi j ¼
bijffiffiffiffiffiffiffiffiffiffiffiffi
bii bj j

p
This coefficient reflects the relationship between the two variables independently
of the domain V and the support v. It is equal to the coefficient of codispersion
Rij (h), which in this case does not vary with h.

A proportional covariance model can be generated by a linear combination
of p mutually orthogonal zero-mean RFs Yj(x) with the same covariance C(h),
or the same variogram γ(h):

Zi xð Þ ¼ mi xð Þ þ
Xp
j¼1

AijYj xð Þ

where the matrix A¼ [Aij] is nonsingular, satisfies B 5 AA0 and is computed,
for example, by the Cholesky decomposition. In this expression the drifts mi (x)
are assumed algebraically independent and modeled using the same set of basis
drift functions. Equations (5.4) apply with similar matrices F. This decompo-
sition is often used to co-simulate correlated Zi by simulating p independent
RFs Yj.

The proportional covariance model has the following screening property: If
all variables are measured at the same points, the cokriging estimator of a variable
coincides with the kriging estimator based on that variable alone. The secondary
variables are “hidden” by the primary variable and receive zero weights.

This can be checked by letting λi ¼ 0 for i. 1 in the general cokriging
equations (5.4) written with Cij ¼ bij C11 and Fi¼F. In fact the screening
property holds under the weaker conditions

Ci1 hð Þ ¼ bi1C11 hð Þ or γi1 hð Þ ¼ bi1γ11 hð Þ
which generalize the MM1 model (5.11). An interesting direct proof can be
derived along the lines proposed by Rivoirard (2004) using a model with
residuals similar to (5.14):

Zi xð Þ ¼ bi1Z1 xð Þ þ Ri xð Þ, i. 1; Cov Ri xð Þ,Z1 yð Þ½ � ¼ 0 ’x, y

All residuals Ri are assumed spatially uncorrelated with Z1 but the correlation
structure between secondary variables is immaterial. If all variables are sampled
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at the same points the knowledge of Z1 and Zi is equivalent to the knowledge of
Z1 and Ri and cokriging estimation of Z1(x0) involves the minimization of

Q¼ Var
X
α

λ1αZ1 xαð Þ �Z1 x0ð Þ
" #

þ
X
‘

μ1‘

X
α

λ1α f ‘ xαð Þ � f ‘ x0ð Þ
" #

þVar
X
i.1

X
α

λiαRi xαð Þ
" #

þ
X
i.1

X
‘

μi‘

X
α

λiα f ‘ xαð Þ
ð5:42Þ

with the usual Lagrange parameters. This expression is of the form Q1þQ2,

where Q2 simply cancels out by setting all weights λiα ¼ 0. The minimization of
Q simplifies to that of Q1, which gives the UK estimator of Z1(x0) from Z1 data
alone, the stated screening property.

The result is the same if Z1 is known at points where some Zi are missing:
The corresponding residuals are missing in (5.42) but still Q2¼ 0 and the
screening effect persists. Another explanation is to remark that whenever a
secondary variable is missing, we can always by thought give it an arbitrary
value; once equal sampling is achieved, the screening property applies, making
values of secondary variables irrelevant.

Now suppose on the contrary that Z1 is missing at a place where Zi is
available. Then our observation is a composite of Z1 and Ri, which ruins the
separability in (5.42) and destroys the screening effect.

The considerable simplifications brought by the proportional covariance
model should not hide the fact that it is a very special model. For example, it is
practically incompatible with the presence of a nugget effect, because then it
must be present also in cross-covariances, while microstructures usually do not
cross-correlate. Another limitation of the model is its behavior under a change
of support. Since the correlation between variables does not vary with the
support, it cannot be improved by averaging over larger volumes, while such
improvement may be observed. In view of this, the proportional covariance
model is often used as part of another model presented next.

5.6.5 Linear Model of Coregionalization

The linear model of coregionalization is a sum of proportional covariance
models. In matrix notations where C(h)¼ [Cij(h)] is the p� p covariance matrix
and similarly Γ(h)¼ [γij(h)], this model takes the simple form

CðhÞ ¼
Xs
k¼1

BkCk hð Þ or Γ hð Þ ¼
Xs
k¼1

Bkγk hð Þ ð5:43Þ

where each Bk is called a coregionalization matrix. The explicit form is some-
what clumsy because triple indexes are involved, but hopefully the following will
be clear:
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Cij hð Þ ¼
Xs
k¼1

bk i, jð ÞCk hð Þ or γi j hð Þ ¼
Xs
k¼1

bk i, jð Þγk hð Þ

In this model all covariances (variograms) are linear combinations of the same
basic structures, indexed by k. If a particular elementary model is not present,
its coefficient is set to zero; with this convention all covariances (variograms)
comprise the same number s of structures. A sufficient condition for the model
to be valid is that all matrices Bk are positive definite.

The name “linear model” originates from the fact that the above covariance
structure can be obtained by linearly combining multivariate random functions
Yk(x)¼ (Y1k(x), . . . , Ypk(x))

0 (the coregionalizations), whose components have
a common structure function Ck (h) or γk (h) and where all RFs with different
indexes are orthogonal. Indeed

Z xð Þ ¼
Xs
k¼1

AkYk xð Þ . 5:43ð Þ with Bk ¼ AkA
0
k

The functionsCk(h) or γk (h) are assumed to be known, and the p� pmatricesBk

are to be estimated. Each component Ck(h) or γk(h) is associated with a certain
structure scale, typically a nugget effect, a short- or medium-range model, and a
long-range model. In practice, the number of structures does not exceed three
because of the difficulty of clearly separating scales from an empirical variogram.
When the elementary structures are scaled to unity (Ck(0)¼ 1), the sum of all Bk

represents the covariance matrix of the variables at the same point.
By construction of the model, all cross-covariances are symmetric, and

cross-variograms are therefore the correct structural tool. Due to the positivity
assumption, for every (i, j) and every k, we obtain

jbk i, jð Þj#
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bk i, ið Þ bk j, jð Þ

p
ð5:44Þ

In words, every basic structure present in the cross-covariance (variogram)
of the variables i and j must also be present in the two direct covariances
(variograms) of i and j, but the converse is not true.

Due to its simplicity and relative versatility, the linear model of cor-
egionalization has received the most attention. Many applications can be found
in the geostatistical literature. Journel and Huijbregts (1978, pp. 256ff.), after a
study by Dowd (1971), show how the cross-variograms of lead, zinc, and silver
in the Broken Hill mine can be nicely modeled by two basic structures, a nugget
effect, and a spherical variogram with a range of 60 feet (so here p¼ 3 and
s¼ 2). Wackernagel (1985, 1988) was able to fit the 120 variograms from
15 geochemical variables using just two structures (nugget effect and spherical
model with a 5-km range). Daly et al. (1989) model microprobe X-ray images of
six chemical elements with mixtures of spherical and cubic variograms and use
this to optimize linear filtering of the noisy images. But the most exotic of this
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incomplete list must be the study by Steffens (1993) of animal abundance in the
Kruger National Park in South Africa, where he analyzes variograms and
cross-variograms of giraffe, impala, kudu, warthog, blue wildebeest, and zebra
counts. We learn that zebra variograms have a very high nugget effect, while
warthogs and kudus are negatively correlated. A spherical model (range 4 km)
with a nugget effect fits these wildlife variograms reasonably well.

5.6.6 Fitting a Linear Model of Coregionalization

The fitting of a linear model of coregionalization can be done by the least squares method
presented in Section 2.6.2 for a single variogram. Indeed, the sole difference with the univariate
case is that the sill or slope of each elementary structure is replaced by amatrix of sills or slopes.
An efficient implementation is proposed by Desassis and Renard (2011) who use the iterating
algorithm proposed by Goulard (1989) and Goulard and Voltz (1992) to ensure the positivity
of the coefficient matrices Bk. Defining the empirical and model cross-variogram matrices

Γ̂ hð Þ ¼ γ̂i j hð Þ
h i

and Γ hð Þ ¼ γi j hð Þ
h i

¼
X
k

Bkγk hð Þ

the goodness-of-fit criterion is a weighted sum of squares (WSS) of all terms of the error
matrix Γ̂ hð Þ � Γ hð Þ summed over the set of lags J used for the fit. Specifically, it is the
Euclidean norm

WSS ¼
X
h2J

wðhÞTrace V
�
Γ̂ðhÞ � ΓðhÞ

h i2� �

The weights w(h) are positive and typically equal to the number of pairs used for variogram
estimation at lag h. The matrix V is a positive definite matrix designed to equalize the
influence of variables, typically the diagonal matrix of inverse variances—or the identity.
The idea is to minimize the criterion by optimizing one Bk at a time and to repeat this until no
improvement is possible. The residual for the current fit less the kth term is

dΓk hð Þ ¼ Γ̂ hð Þ �
X
u6¼k

Buγu hð Þ

In the absence of positivity constraint, the optimal fit of dΓk by Bk γk (h) is obtained by
canceling the derivative of WSS with respect to Bk:

@WSS

@Bk
¼ �2V

X
h2J

w hð Þγk hð ÞfdΓk hð Þ � γk hð ÞBkg
" #

V ¼ 0

As V is nonsingular this gives

Bk ¼ 1=αkð Þ
X
h2J

w hð Þγk hð ÞdΓk hð Þ, where αk ¼
X
h2J

w hð Þγk hð Þ2

The constrained solution Bþ
k $ 0 is the positive definite matrix nearest to Bk according to the

norm defined by V. Being symmetric, the matrix Bk has a spectral decomposition of the form

Bk ¼ UkΛkU
0
k with U0

kVUk ¼ Ip
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where Uk is a matrix of eigenvectors of BkV and Λk is the diagonal matrix of its eigenvalues.
The constrained solution is then

Bþ
k ¼ UkΛþ

k U
0
k

where Λþ
k is the matrix Λk in which all negative eigenvalues are replaced by zeros. The

authors notice that this iterative algorithm always converges and that the solution does not
depend on the starting point. Pelletier et al. (2004) propose several modifications of the above
fitting procedure and compare them by Monte Carlo.

5.6.7 Factorial Kriging and Cokriging

We have seen that a linear model of coregionalization is associated with an
orthogonal decomposition of the form Z xð Þ ¼PkAkYk xð Þ. A method known
as Factorial Kriging Analysis, developed by Matheron (1982a), permits the
determination of the components Yk on the basis of Z, with the idea that they
represent different genetic structures. The approach may be used for kriging or
cokriging of a particular component on the basis of one or several RFs Z, or for
analysis of a p-dimensional spatial vector Z in the same spirit as Principal
Component Analysis. The latter is presented in the next section.

Consider the model

Z xð Þ ¼ m xð Þ þ
Xs
k¼1

akYk xð Þ ð5:45Þ

where the ak are known coefficients7 and the Yk(x) mutually orthogonal RFs
with zero mean and covariances Ck (h). None of the Yk (x) is directly observable
but can be estimated by cokriging from observations of Z(x), provided that we
know the cross-covariance between Z(x) and Yk (x), which we do: It is ak Ck (h).
The cokriging system for the estimation of Yk (x0) is the following:

X
β

λβ C xβ � xα
� �þX

‘

μ‘ f
‘
α ¼ akCk x0 � xαð Þ α ¼ 1, : : : ,N

X
α

λα f ‘α ¼ 0 ‘ ¼ 0, : : : ,L

8>>><
>>>:

If the mean of Z were known and subtracted out, there would of course be no
unbiasedness condition at all and no Lagrange parameter. Constraining the
weights to zero has the effect of filtering out this mean without requiring an
explicit estimation. Note that the left-hand side of the system remains the same
for the estimation of all components Yk, since the estimators are based on the
same data, so that the work may be done in parallel. A standard kriging

7They are just scaling factors and can be set to one if the variances are included in the Yk (x) terms.

Of course they have nothing to do with drift coefficients usually denoted by a‘:

c05 28 January 2012; 12:53:26

348 MULTIVARIATE METHODS



program may be used with a modified right-hand side—just as for filtering a
nonsystematic error, which is a particular case of factorial kriging.

Given that the covariance of Z satisfies C x0 � xαð Þ ¼P a2kCk x0 � xαð Þ, the
cokriging estimates automatically satisfy the consistency relation

Z�
UK x0ð Þ ¼ m� x0ð Þ þ

Xs
k¼1

akY
��
k x0ð Þ

where m*(x0) is the optimal drift estimate computed from the system (3.26).
Applications of this approach include geochemical prospecting (Sandjivy,

1984), geophysical prospecting (Galli et al., 1984; Chilès and Guillen, 1984),
remote sensing (Ma and Royer, 1988), and petroleum exploration (Jaquet,
1989; Yao and Mukerji, 1997). Two examples will illustrate the method. The
first is from the study of gravity data by Chilès and Guillen (1984).

Extraction of a Deep Gravity Source

In magnetic or gravimetric surveys, one wishes to distinguish long wavelengths,
associated with deep sources, from short wavelengths, reflecting shallower
sources. This separation is traditionally performed on the basis of the two-
dimensional power spectrum, but a direct spatial determination is possible and
even advantageous. The experimental variogram of gravity data in this basin is
shown in Figure 5.9. An excellent fit is obtained with a sum of two Cauchy
models (2.55) with shape parameter 1/2, especially suited to represent gra-
vimetry data: a structure with scale parameter 5 km and sill 5 mgal2 and
another with scale parameter 11.4 km and sill 53 mgal2, plus a very small
measurement error nugget effect. In this variogram model the scale parameter

Distance (km)

γ
(mgal2)

0 5 10 15 20 25 30
0

10

20

30

FIGURE 5.9 Sample variogram of gravity data and fit with two nested Cauchy models. [From

Chilès and Guillen (1984).]
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represents twice the average depth of the sources, which are therefore located at
2.5 km and 5.7 km, in agreement with local geological knowledge. Figure 5.10
shows the logarithm of the isotropic power spectrum and the fit made by the
geophysicist—don’t ask how! The slopes of the lines indicate the depths of
the sources: 1.5 and 4.5 km, consistent with the variogram fit. In order to
compute this spectrum, the data had first to be interpolated to a regular grid,
which was achieved by kriging using the fitted variogram. The kriged map and
standard deviation are displayed in Figure 5.11. The decomposition of the
kriged map into deep and shallow components is shown in Figures 5.12 and
5.13, on the right. Observe in Figure 5.13 that the anomaly in the upper right-
hand corner coincides with a maximum of the kriging standard deviation and
is therefore dubious. In performing the cokriging estimation, the neighborhood
search algorithm must be customized to include near and far data so as to
allow the separation of scales.

The results obtained with the spectral method are shown on the left-hand
sides of Figures 5.12 and 5.13. The spectral and geostatistical maps are
equivalent. The deep-field spectral map is smoother because of the global
character of the spectral approach. Note that the separation between deep and
shallow components, as well as the interpretation of gravimetric anomalies, is
up to a constant. But the two methods do not correspond to the same constant.

FIGURE 5.10 Logarithm of the isotropic power spectrum of gravity data. [From Chilès and

Guillen (1984).]
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For geostatistical filtering, the mean of the shallow component has been set to
zero, while it is a positive value for the spectral method.

The spectral method has some practical limitations that factorial kriging
does not have:

1. It requires a complete rectangular grid of data; if these data are not
acquired on a grid, or if the rectangle is not complete, a preliminary
interpolation, or worse, extrapolation, is needed which already involves
kriging (or similar) and alters the spectral characteristics.

2. It requires tedious tapering or padding to make the input grid periodic
(wrap around in both directions).

3. It smears a local anomaly over all frequencies.

On the other hand, some phenomena, such as acoustic waves, are better
understood in the frequency domain. Regardless of the method used, the sepa-
ration of a field into spatial components must be supported by a physical model.

FIGURE 5.11 Kriged gravity field (left) and error standard deviation (right). [From Chilès and

Guillen (1984).]
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Extraction of the Common Part of Two Surveys

In order to monitor fluid movements in a producing oil reservoir, seismic
surveys are acquired at different times over the same area (4D seismic).
However, due to many acquisition and processing differences, surveys need to
be equalized before they can be compared. This is achieved by calibrating the
surveys against a common reference established in an interval not affected by
production (in practice in the overburden, ignoring geomechanical effects).

To define the reference, Coléou (2002) developed an automatic factorial
cokriging procedure (AFACK) that extracts the common part between two
surveys. The seismic signals Z1 and Z2 are modeled as sums:

Z1 xð Þ ¼ S xð Þ þ R1 xð Þ, Z2 xð Þ ¼ S xð Þ þ R2 xð Þ

of a common part S representing the repeatable component (the geology) and
residuals R1 and R2 representing acquisition effects (stripesþwhite noise).

FIGURE 5.12 Estimates of deep gravity field: spectral (left), geostatistical (right). [From Chilès

and Guillen (1984).]
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Residuals are assumed independent of S and also mutually independent.
A cokriging estimator of S is formed:

S�� xð Þ ¼
X
α

λ1αZ1 xαð Þ þ
X
α

λ2αZ2 xαð Þ

This can be computed using the covariances C11, C22, and C12. Because the
estimated points are on the same regular grid as the data points, the values
of empirical covariances are available for all lags involved in the cokriging
equations and there is no need to fit models. The positivity of C11 and C22 can
be assured by taking estimators of the form (2.80) on a centered signal using
a constant N as the denominator, and similarly for C12. The regular grid
geometry also permits an implementation of cokriging as a moving filter with
constant weights computed once for all.

Under the independence assumptions, the complete covariance structure is

C11 hð Þ ¼ CS hð Þ þ CR1
hð Þ, C22 hð Þ ¼ CS hð Þ þ CR2

hð Þ, C12 hð Þ ¼ CS hð Þ

FIGURE 5.13 Estimates of shallow gravity field: spectral (left), geostatistical (right). [From

Chilès and Guillen (1984).]
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If the model is correct, C12¼CS is also a covariance and so are C11�CS and
C22�CS. This provides a quality check of the model. On the other hand, the
model may serve only as a heuristics to derive the filtering algorithm, which is
then judged by its results.

In Figure 5.14 the common part between two maps is extracted from very
noisy synthetic data. The estimated common part S is a better reference to be
used for the processing than any of the initial surveys. The stripes seen on the
residuals are acquisition artifacts that can also be filtered by factorial cokriging.

The same approach is used for 3D cubes and between consecutive offset
cubes, in a “movie” fashion. Angerer et al. (2003) extract an azimuth-dependent
component in addition to the common part and the noise. Finally, factorial
cokriging can be applied to extract the common part between more than two
surveys.

5.6.8 Factorial Kriging Analysis

We now consider a p-variate spatial vector Z(x) and write the model as
Z ¼ mþPkAkYk, or in explicit notations

Zi xð Þ ¼ mi xð Þ þ
Xs
k¼1

Xp
j¼1

Ak i, jð ÞYjk xð Þ ð5:46Þ

FIGURE 5.14 The common part S (center) of the two maps Z1 and Z2 (left) is extracted by

cokriging. Residuals (right) display noise and stripes due to acquisition footprints. [From Coléou

(2002).] (See color insert)
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The Yjk (x) are mutually uncorrelated RFs, called factors, with zero mean and
covariance

E½YjkðxÞYjkðxþ hÞ� ¼ CkðhÞ ’j

In reality, only Bk¼AkA
0
k is directly estimable and Ak is not uniquely defined.

Given a symmetric positive definite matrix B, one can find an infinite number of
matrices A such that B¼AA0. Principal component analysis (PCA), however,
provides a natural determination of the matrices Ak. Then the individual
components Yjk(x) can be estimated by cokriging. When the drifts mi (x) are
algebraically independent, the general equations (5.4) apply with the index pair
( j, k) in the role of the index i¼ 1. The vectors ci 0 are the Ni-vectors of the
covariances between Zi (xα) and Yjk (x0) for xα2Si, namely the vectors (Ak(i, j)
Ck (x0� xα) : xα2Si), and the unbiasedness conditions are Fi

0 λi ¼ 0 for all i
(special case of a primary variable with no observation of it but a zero mean).

Now we need to elaborate on the definition of these “factors” that we are
attempting to estimate. To this end, let us focus on a single scale and drop the index
k. We are now dealing with a pure proportional covariance model with common
correlogramC(h). Let λ1$ � � �$λp. 0 be the eigenvalues of the covariancematrix
Band letu1, . . . ,upbe theassociatedeigenvectors,whereui

0uj ¼ δi j.Theui, called the
principal axes, define a new orthonormal coordinate system diagonalizing B:

B ¼
Xp
j¼1

λj uju
0
j, I ¼

Xp
j¼1

uju
0
j, u0i B uj ¼ λj δi j ð5:47Þ

The principal components are the coordinates of Z in this new system. They are
uncorrelated linear combinations uj

0Z with variances λj. The quantities

Yj ¼ u0j Z=
ffiffiffiffiffi
λj

p
are uncorrelated random variables with unit variance. From (5.47), Z can be
expressed as

Z ¼
Xp
j¼1

uj u
0
j

� �
Z ¼

Xp
j¼1

u0j Z
� �

uj ¼
Xp
j¼1

ffiffiffiffiffi
λj

p
Yj uj

or, explicitly reintroducing the dependence on x and letting uij be the ith
coordinate of uj, we have

Zi xð Þ ¼
Xp
j¼1

A i, jð ÞYj xð Þ with A i, jð Þ ¼ ffiffiffiffiffi
λj

p
ui j

The interesting feature of this decomposition is the possibility to reduce it to the
first q, p terms without losing much information—that is, if the first q
eigenvalues account for most of the dispersion in the data (represent a high
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fraction of the trace of B). Typically the first two terms will account for 80% of
the variance, and the first three will account for 90% or more. Thus theYj can be
interpreted as the common factors underlying the different observed variables.

To summarize the approach, we first compute direct and cross-covariances
(variograms), fit a linear model of coregionalization, perform a PCA on each
matrix Bk and deduce the coefficients Ak (i, j) in (5.46), and finally estimate the
leading factors Yjk(x) by cokriging.

The factors defined by PCA of B orthogonalize C(0), the covariance matrix
at lag zero. The factors are uncorrelated at zero distance, but we can say no
more because in general the eigenvectors of C(0) do not remain orthogonal with
respect to C(h). Under the proportional covariance model, however, they do. In
C(h)¼B C(h) the scalar C(h) is just a multiplier and the same eigenvectors
orthogonalize the covariance matrix C(h) for any lag h. The factors remain
spatially uncorrelated

Cov Yi xð Þ,Yj xþ hð Þ� � ¼ u0i C hð Þuj=
ffiffiffiffiffiffiffiffiffi
λiλj

p ¼ C hð Þ u0iB uj=
ffiffiffiffiffiffiffiffiffi
λiλj

p ¼ C hð Þδi j

and achieve a spatially consistent decomposition of Z(x).
The novelty of factorial kriging analysis is to enable a scale-dependent

analysis of the correlation structure among variables. A separate PCA is carried
out for each scale component rather than the raw observations, namely for each
coregionalization matrix Bk rather than the covariance matrix which mixes the
scales. This approach enabled Rouhani and Wackernagel (1990) to sort 16
piezometric observation wells into two groups, one with a relatively strong 12-
month cycle seasonal component and the other with only a climatic 12-year
cycle. Goovaerts et al. (1993) analyzed the chemical composition of ground-
water and identified two scales of variation, a small scale likely due to the
presence of local contamination and a large scale reflecting regional geological
changes of the aquifer. Dousset and Sandjivy (1987), Wackernagel (1988),
Bourgault and Marcotte (1993), and Goovaerts and Sonnet (1993) present
applications in geochemistry, and Wackernagel et al. (1988) present others in
soil science.

5.6.9 Min/Max Autocorrelation Factors

The factors defined by PCA are linear combinations, ordered by decreasing
variance, of the p components at the same point of a p-variate spatial vector
Z(x). As mentioned by Switzer and Green (1984), all data points are treated as
replicates of a p-variate observation and no spatial properties are used to define
the factors; that is, if all data points were rearranged, the factor definition
would not change. Switzer and Green propose an alternative PCA method
suited to geostatistics and named MAF, standing for maximal autocorrelation
factors. The new factors are designed to maximize spatial autocorrelation at a
given lag Δ.
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Consider a p-variate random field Z(x)¼ (Z1(x), . . . , Zp (x))
0 with mean and

covariance:

E Z xð Þ½ � ¼ 0, Cov Z xð Þ,Z xþΔð Þ½ � ¼ E Z xð ÞZ0 xþΔð Þ½ � ¼ ΣΔ

The covariance of a linear combination a0Z(x) is

Cov a0Z xð Þ, a0Z xþΔð Þ½ � ¼ a0ΣΔ a ¼ a0Σ
0
Δa ¼ a0 ~ΣΔa

where

~ΣΔ ¼ 1
2
ΣΔ þΣ

0
Δ

� � ð5:48Þ

The cross-variogram matrix at lag Δ is related to the symmetrized matrix
(5.48) by

ΓΔ ¼ 1
2
E
�
Z xð Þ � Z xþΔð Þ��Z xð Þ � Z xþΔð Þ�0 ¼ Σ0 � ~ΣΔ

The autocorrelation of a0Z(x) at lag Δ is therefore

Corr a0Z xð Þ, a0Z xþΔð Þ½ � ¼ 1� a0ΓΔa

a0Σ0a
ð5:49Þ

Let λ1$� � �$λp be the roots of the determinantal equation jΓΔ�λ Σ0j ¼ 0 and
let ai be a generalized eigenvector of ΓΔ and Σ0:

ΓΔ ai ¼ λi Σ0 ai ð5:50Þ

The maximum autocorrelation 1�λp is reached for a¼ ap, and ap
0 Z(x) is the

first MAF. Considering the eigenvectors associated with increasing λs, we
define pMAF factors ai

0 Z(x) from maximal to minimal spatial autocorrelation
1�λi. These MAF factors satisfy the following orthogonality properties:

a0iΓΔ aj ¼ a0iΣ0 aj ¼ 0, i 6¼ j, λi 6¼ λj

ai
0Z(x) and aj

0Z(x) are uncorrelated at zero distance and so are their increments
at lagΔ. In other words, the cross-variograms of the two MAFs cancel at lagΔ
(and of course also at lag zero). Note that this does not imply that the MAFs
themselves are uncorrelated at lag Δ; this is true only if cross-covariances are
symmetric.

A nice property worth noting is the invariance of the MAF factors under
a nonsingular linear transformation of the data; that is, W0Z(x) has the
same MAF factors as Z(x). This property is not shared by standard PCA,
which gives different factors when a correlation rather than a covariance matrix
is used.
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From (5.50), λi and ai can be viewed as the standard eigenvalues and
eigenvectors of the matrix Σ�1

0 ΓΔ, but this asymmetric form is not convenient
for calculations. Instead, the following algorithm is used:

1. Transform Z(x) into Y xð Þ ¼ Σ�1=2
0 Z xð Þ with a covariance equal to the

identity matrix Ip.

2. Compute differences Y(x)�Y(x+Δ) and the corresponding covariance
matrix.

3. Find the eigenvectors of this covariance matrix and project Y(x) on these
vectors.

TheMAF techniquewas originally proposed by Switzer andGreen (1984) to filter
the noise component in multichannel spatial imagery data. The model assumes
additive noise independent of the signal and proportional covariance models for
both the signal and the noise, with autocorrelation decaying at a higher rate
for the noise than for the signal. Then the maximal MAF is equivalent to maxi-
mizing the signal-to-noise ratio over all projections. The difference in decay rates
is essential, because if all covariances of Z(x) itself are proportional, there is no
MAF and all directions are equivalent [any a is an eigenvector of (5.50)].

Shapiro and Switzer (1989) apply the MAF procedure to extract time trends
from multiple monitoring sites, the idea being that the trend is smooth,
therefore strongly autocorrelated, and should be captured by the first MAF
factors while the weakly autocorrelated time series should collect the high-
frequency or noise components of the original input series. Nielsen et al. (2000)
analyze irregularly sampled stream sediment geochemical data and display a
collection of 40 MAF variograms that gradually evolve toward smaller ranges
and higher nugget effects. Desbarats and Dimitrakopoulos (2000) use the MAF
decomposition for a reduction of dimensionality and decorrelation of variables
in a conditional simulation of pore-size distributions. The MAF approach is
also used in ecology (Fujiwara, 2008).

5.6.10 Miscellaneous Models

In this section we give a brief overview of two models that can be of interest.
Another one, indicator cokriging, is covered in Section 6.3.3.

Multivariate Matérn Model

Gneiting et al. (2010) introduce a multivariate covariance model in which both the direct and
the cross-covariance functions are of Matérn type. What appears as a tour de force when
poring over simulated realizations is that individual components can be very dissimilar. In the
bivariate model on which we will focus here, one component may be rough and the other
smooth, and they may even have different ranges.

Recall the Matérn isotropic covariance model with smoothness parameter ν and scale
parameter a:

M r jν, að Þ ¼ 21�ν

Γ νð Þ arð ÞνKν arð Þ a. 0, ν. 0ð Þ
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Here Kν is a modified Bessel function of the second kind, and 1/a represents a scale parameter
[unlike (2.56), where that parameter is a].

The bivariate full Matérn model is defined as

C11ðrÞ ¼ σ2
1Mðr jν1, a1Þ, C22ðrÞ ¼ σ2

2Mðr jν2, a2Þ,
C12ðrÞ ¼ C21ðrÞ ¼ ρ12 σ1σ2Mðr jν12, a12Þ

This model is valid if and only if the magnitude of the collocated correlation coefficient ρ12 is
less than a complicated function of the smoothness and scale parameters. Simpler sufficient
conditions are more convenient. Letting

A ¼ a212 � 1
2
a21 þ a22
� �

, B ¼ ν12 � 1
2
ν1 þ ν2ð Þ

the sufficient conditions are

A$ 0, B$ 0, jρ12j #
aν11 aν22
aν1þν2
12

Γ ν12ð Þ
Γ ν1ð Þ1=2 Γ ν2ð Þ1=2

A

B

� �B

eB

This full bivariate model has 9 parameters plus 2 more if nugget effects are added on the direct
covariances. In view of this the authors define a parsimonious bivariate Matérn model in
which

a1 ¼ a2 ¼ a12 ¼ a, ν12 ¼ 1
2
ν1 þ ν2ð Þ

This reduces the number of parameters to 6 plus 2 for nugget effects. This model is valid if and
only if

jρ12j#
Γ ν1 þ n

2

� �1=2
Γ ν1ð Þ1=2

Γ ν2 þ n
2

� �1=2
Γ ν2ð Þ1=2

Γ 1
2
ν1 þ ν2ð Þ� �

Γ 1
2
ν1 þ ν2ð Þ þ n

2

� �
where n is the space dimensionality. When n¼ 2 (i.e., in 2D) this simplifies to

jρ12j#
ν1ν2ð Þ1=2

1
2 ν1 þ ν2ð Þ

A parsimonious multivariate Matérn model is proposed for more than two variables in which
all ranges are equal and all smoothness parameters νi j are arithmetic means of νi and νj.

Cross-Covariances Derived from Complex Models

The linear model of coregionalization has the following limitations:


 Direct and cross-covariances are even functions.


 There is limited flexibility for modeling cross-covariances: By the Cauchy�
Schwarz inequality (5.44), any term included in the cross-covariance must also be present
in the two direct covariances.

An innovative method to extend the model has been proposed by Grzebyk (1993), based
on work by Lajaunie and Béjaoui (1991) to adapt kriging to either the case of complex
variables or directional data in R2 (complex kriging). The idea is to consider the real part of a
complex covariance model. If Z(x) is a complex RF, with mean zero to simplify the pre-
sentation, its covariance

C hð Þ ¼ EZ xð ÞZ xþ hð Þ

c05 28 January 2012; 12:53:42

5.6 MULTIVARIATE RANDOM FUNCTIONS 359



is a complex function with the Hermitian symmetry C �hð Þ ¼ C hð Þ, whose Fourier transform
is real and nonnegative. Consider now a complex proportional covariance model:

Cij hð Þ ¼ bij C hð Þ

where B¼ [bij ] is a complex positive definite matrix with the Hermitian symmetry bj i ¼ bij .
That this is a valid model follows directly from the characterization criterion in Section 5.6.1;
for the same reason, the complex conjugate model is also valid and therefore also the sum

1
2 Cij hð Þ þ Cij hð Þ
h i

¼ Re Cij hð Þ� �
So the real part of the complex covariance matrix [Cij (h)] is a valid covariance model.
The expression of these covariances in terms of the real and imaginary parts of C(h) and bij is
given by

Re Cij hð Þ� � ¼ Re bij
� �

Re C hð Þ½ � � Im bij
� �

Im C hð Þ½ �

To go further, some explicit model of complex covariance must be selected. The above
authors propose the following:

Re C hð Þ½ � ¼ σ hð Þ Im C hð Þ½ � ¼ 1

2

X
θ

pθ σ h� τθð Þ � σ hþ τθð Þ½ �

where σ(h) is a real covariance function, {τθ} is a family of translation vectors in Rn, and {pθ}
is a set of positive constants satisfying

P
pθ# 1 (sufficient but not necessary condition).

Dropping the Re sign and renaming the real and imaginary parts of B as G and H, respec-
tively, the cross-covariance model is of the form

Cij hð Þ ¼ gij σ hð Þ � hij
1

2

X
θ

pθ σ h� τθð Þ � σ hþ τθð Þ½ � ð5:51Þ

Diagonal terms hi i equal zero by the Hermitian symmetry of B. In this formula the parametric
form of σ(h) is selected and so are the vectors {τθ}, which may have different directions. The
coefficients gij, hij, pθ are fitted, for example, by a least squares procedure described in
Grzebyk (1993).

The model can be further generalized by introducing several scales of structures and lends
itself to a decomposition into orthogonal factors leading to a “bilinear model of cor-
egionalization.” The reader is referred to Grzebyk and Wackernagel (1994) and Wackernagel
(2003, Section 30) for the theory. The theory of complex kriging itself is presented in
Wackernagel (2003, Section 29). Basically this approach minimizes the sum of the errors on
the real and imaginary components (Z*

Re�ZRe)
2þ (Z*

Im� ZIm)
2 and spares us the necessity of

modeling the cross-covariance between ZRe and ZIm, which cokriging of the components
would require. However, as shown by Lajaunie and Béjaoui (1991), it is only when that cross-
covariance is asymmetric that complex kriging may outperform a separate kriging of each
component.

5.7 SHORTCUTS

Collocated cokriging, especially under the MM2 model, provides us with
simplified cokriging. In this section we consider other approaches that bypass
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cokriging altogether but retain a multivariate character. We will begin with
approaches that aim at introducing external knowledge in the interpolation of
nonstationary phenomena. McLain (1980) poses the problem in a striking
manner with an example of mapping the growth rate of hairy gooseberries in
Ireland. In an area where there are no data points, a blind run of a computer
mapping package produces a high growth rate, which the user knows to be
incorrect because gooseberries don’t grow on mountains. McLain diagnoses
three causes for the computer’s lack of success: “the computer didn’t know
where the mountains are, the computer didn’t know that hairy gooseberries
don’t grow on mountains, and the computer wouldn’t know how to use such
information in any case.” Here is McLain’s solution: Establish a relationship
between gooseberry growth rate and altitude, use the regression equation to
predict the growth rate anywhere without interpolation, and finally correct
the results by adding interpolated residuals. This is the guess field or the
external drift approach, depending on whether the regression equation is fixed
or not.

5.7.1 Guess Field Model

This model is associated with methods used in weather forecasting and called
“objective analysis” (Cressman, 1959), by contrast with hand analyses. They
were early applications of what is now known as Data Assimilation, a name
actually already present in Rutherford (1972). The principle was to use the
results from a numerical weather prediction model as an initial guess field,
compute prediction errors at observation locations, and interpolate a correc-
tion using Gandin’s “Optimum Interpolation” (Gandin, 1963), which coincides
with simple or ordinary kriging. The guess field is powerful, it integrates
diverse data from the recent past as well as the laws of physics to produce
plausible estimates over areas where sampling is sparse (oceans and deserts). In
Figure 5.3, for example, the 12-hour-lead forecast of the 500-mb geopotential
surface was used as a guess field; if it were not, the results would be similar over
Europe where observations are dense, but nonsensical gradients would be
obtained over the Southern Atlantic, because extrapolation is unstable espe-
cially in the presence of a drift. Cokriging of geopotential and wind data
(gradients) was used to produce this map (Schlatter, 1975; Chauvet at al., 1976).

The statistical model underlying the guess field approach is of the form

Z1 xð Þ ¼ f x,Z2ð Þ þ R xð Þ ð5:52Þ

Z1 is the variable of interest, of which we have a set of observations S1. On the
basis of other data, denoted generically by Z2, a prediction f (x, Z2) of Z1(x) can
be formed: This is the guess field. R(x) is a residual independent of Z2(y) and
represents the prediction error.

The function f in (5.52) is assumed known, at least to a good approximation,
so that prediction errors are true residuals, without bias. It is also assumed that
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the guess field, which is usually defined on a grid, can be interpolated accurately
to the observations’ locations.

When R(x) has mean zero and a stationary covariance model with a finite
range, interpolation by simple kriging ensures a graceful blending with the
guess field over sparsely sampled regions. On the other hand, assuming a
constant unknown mean allows for local adjustments of the estimates when
moving neighborhoods are used. The residual map may reveal anomalies
calling for a revision of the model. For example, in the petroleum application of
Delfiner et al. (1983) a water saturation residual tends to be systematically
positive in the northern part of the field but negative in the southern part,
indicating a possible tilt in the oil�water contact toward the south.

The guess field may be a regression, but it should not be calibrated on the
observations S1. In the MM2 model (5.14) the component a Z2(x) plays the role
of a guess field. Actually, (5.52) is especially interesting when f is a complicated
nonlinear function of Z2 incorporating known physical relationships.

5.7.2 External Drift Model

The external drift model was introduced in Chapter 3 as a variant of the
universal kriging model with polynomial drift. It may also be regarded as a
multivariate model akin to collocated cokriging, and we will discuss how they
relate. Unlike with the guess field model, here the regression coefficients are not
assumed known but are estimated from the observations.

For the presentation to be specific, we revisit the example of seismic time-
to-depth conversion. Z(x) is the depth of a geological horizon at point x, and
T(x) is the travel time of a seismic wave from the surface to that horizon.8 Seismic
surveys provide a fine-mesh grid of the geometry of the subsurface, but depths
are measured with high vertical resolution and absolute accuracy in boreholes
only. By and large, it may be considered that seismic measurements describe the
shape of a geologic object, whereas borehole data provide depth control.

To convert seismic reflection times to depths, geophysicists establish a
time�velocity curve that is a best fit on a scatterplot of average velocity v
against travel time T. Both quantities are measured between the mapped seis-
mic horizon and an arbitrary reference plane (the datum plane), to correct for
anomalous effects induced by significant elevations and/or near surface velocity
changes. As a result of higher compaction at greater depth, velocity tends to
increase with time and is often modeled, within zones, by a linear relationship.
Average velocity and seismic derived depth are therefore

v ¼ a1 þ a2T

E ZÞ ¼ a0 þ vT ¼ a0 þ a1T þ a2T
2

�
8Again to simplify the presentation, we consider one-way time. If T is two-way time, the equations

should be written with T/2, and even T/2000 to account for differences in units (T in milliseconds

and velocity in meters per second).
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The coefficients a0, a1, and a2 have to be determined from depth, time, and
velocity information; they may vary from one zone to another. Due to the
many uncertainties involved in seismic computations, it is unreasonable to
expect a perfect match between the seismic depth and the depth measurements
in boreholes. There are misties at the wells.

In the geostatistical model a residual fluctuation Y(x) is allowed, accounting
for details that cannot be captured at the resolution of surface seismic and
also for local errors on datum plane determination. The depth at a point x is
finally expressed as

Z xð Þ ¼ a0 þ a1T xð Þ þ a2T
2 xð Þ þ Y xð Þ ð5:53Þ

where Y(x) is random and T(x) deterministic. Statistically, this is a regression
model with correlated residuals. When the regression coefficients are unknown,
Kriging with External Drift (KED) equations are UK equations (3.21) or (3.25)
with unbiasedness conditions:X

α
λα ¼ 1

X
α

λαTðxαÞ ¼ Tðx0Þ
X
α

λαT
2 xαÞ ¼ T2ðx0Þ
�

Physically the first condition eliminates the influence of a constant shift due
to an error in picking the seismic reflector; the other two conditions ensure
that our estimator interpolates T(x) and T2(x) exactly. Thus Z(x) is esti-
mated directly without an explicit time-to-depth conversion (though it is done
implicitly by KED). Besides, the use of moving neighborhoods allows for
lateral variations of these conversion coefficients. Kriging interpolation being
exact, there are no misties at well locations.

As usual with UK, the variogram to be used is the variogram of the residuals
Y(x). If there are not enough data points to compute it, its shape can be
hypothesized and the parameters fitted by cross-validation.

An application of this model was first published by Delhomme et al. (1981).
We consider here a different example that is extreme but real, where only seven
wells are available, five of them on top of a dome-shaped structure and two on
the flanks (Delfiner et al., 1983). To make the problem more fun, a fault is
present to the NE. Naturally, it is not possible to do any statistical inference
with so few data, but we can still use kriging equations as algorithms and
gauge the results on their merit. Figure 5.15a shows the time contour map of
a marker close to the top of the formation of interest; this marker does
not coincide with the reservoir top, and there is a small but unknown shift. We
do not know which method was used to establish that map, but it does not
matter. We accept it as the geophysicist’s best guess, and of course it incor-
porates the fault information. On the basis of the seven wells alone, the best we
can do is shown in Figure 5.15b; it is obtained by kriging with a forced qua-
dratic drift, to achieve closure, and a spline covariance model. A fault screen is
used: Note that no estimation is performed behind the fault due to the absence
of wells.
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FIGURE 5.15 Use of seismic data in combination with well data to improve external structure

definition: (a) seismic two-way time map; (b) top of reservoir from the wells alone; (c) map

combining seismic times and well depths; (d) standard error map. [From Delfiner et al. (1983).]
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Now the seismic times are introduced as an external drift and kriging is
performed without a fault screen. The resulting map is shown in Figure 5.15c. It
matches the well data exactly—see, for example, contour line 800 m—and its
contours have the same shape as those of the seismic map. In particular, the
influence of a secondary dome to the west marked by a seismic line at 960 m
(Figure 5.15a) is reflected in the final depth contours, with some attenuation.
Note that now there are contours behind the fault, thanks to the seismic
information.

The method also allows the computation of a standard error map
(Figure 5.15d), a conventional one in this case since no real inference was
performed. As expected, the uncertainty is smaller near the wells (labeled less
than 10 m), and one can see a sharp increase behind the NE fault. That increase
takes place even though this time no fault was introduced in the estimation
process. It seems that the method is intelligent and “knows” that a fault is there.
Granted, we expect this to be the case for the map itself, since the fault
information is present in the external drift, but standard errors do not depend
on values. The explanation lies in the additivity relationship (3.35)

σ2
UK ¼ σ2

SK

þ
X2
‘¼0

X2
s¼0

Cov a�‘ ,a
�
s

� �X
α

X
β

λKαT
‘ xαð Þ�T ‘ x0ð Þ� �

λKβT
s xβ
� ��Ts x0ð Þ� �

ð5:54Þ
When T(x0) is very different from the calibration values T(xα), the variance of
the drift correction is large. In other words, the uncertainty increases as one
moves away from the range of validity of the (implicit) velocity function—as a
geophysicist would expect.

The external drift approach is easy to implement but requires the knowledge
of T(x) at every point involved in the kriging estimation, namely every Z
sampling location and every grid node. In case T(x) must be interpolated, the
interpolation error is ignored.

Nothing in the theory requires T(x) to be continuous. For example, Maréchal
(1984) represents faulting along a profile with the discontinuous external drift
function

m xð Þ ¼ a0 þ a1xþ a2Hc xð Þ þ a3 x� cð ÞHc xð Þ
where Hc(x) is the step function valued 1 if x. c and 0 otherwise. Similar
models are used in two dimensions and allow interpolation of faulted surfaces
without the artificial recourse to fault screens.9 Contouring the residuals
enables visualization of the original unfaulted surface.

9 The conditions of linear independence of the drift functions still entail that empty fault blocks

cannot be interpolated.
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KED and Collocated Cokriging: Do they Coincide?

Both methods use exactly the same data: the values of Z and T at estimating
points and the value of T alone at the estimated point x0. Are they the same? If
not, which is better?

One obvious difference is that KED treats T(x) as a deterministic drift
whereas cokriging treats it as a random function. From an interpretation point
of view, this difference may not be substantial. Indeed, considering the model

Z xð Þ ¼ a0 þ a1T xð Þ þ Y xð Þ

with a random T(x) and conditioning on T

E Z xð ÞjT xð Þ½ � ¼ a0 þ a1T xð Þ

and recover the external drift model. However, while it is a simple matter to add
a square term as in (5.53), the equivalent cokriging model would require the
definition of three direct and three cross-covariances. External drift has more
flexibility.

Let us then compare collocated cokriging under the MM2 model with KED
under the drift model E(Z)¼ a0þ a1T. By the additivity relationships of Section
3.4.7, KED is equivalent to an optimal estimation of the drift slope plus an
OKestimation of the residual as if the slopewas estimatedperfectly. For collocated
cokriging, the decomposition (5.15) is used and the residual is estimated by OK.

Z�
KED x0ð Þ ¼ a�1 T x0ð Þ þ

X
α

λα Z xαð Þ � a�1 T xαð Þ� �
Z�

CK x0ð Þ ¼ a1T x0ð Þ þ
X
α

λα Z xαð Þ � a1T xαð Þ½ � ð5:55Þ

The difference between these two results is that cokriging assumes that the
regression slope a1 is known, while KED does not. In terms of variances we have

E Z�KED x0ð Þ � Z x0ð Þ� �2
¼ E a�1 � a1

� �2

T x0ð Þ �

X
α

λαT xαð Þ
�2

þ E R�OK x0ð Þ � R x0ð Þ� �2
,

E Z�CK x0ð Þ � Z x0ð Þ� �2 ¼ E R�OK x0ð Þ � R x0ð Þ2
h i

Cokriging has a smaller variance and wins. Actually, not really, because KED
incorporates the uncertainty on a1 and is therefore more general. If the cok-
riging model is implemented with a regression slope a1 equal to the optimal
drift estimate a1

�, the two estimators coincide.
This equivalence is surprising because, by design, cokriging is linear in T

whereas KED is nonlinear in the drift functions (see Example 5 in Section
3.4.3). The contradiction is resolved by observing that when a1 is replaced by
a1
�, the cokriging estimator ceases to be linear in T.
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The equivalence between KED and the MM2 model, when it applies, justifies
the requirement that the external drift be smooth. While it is intuitively clear
that a rough T serving as a drift for a smooth Z does not make much sense, the
MM2 model is simply not mathematically valid if Z, the primary variable, is
smoother than (see Example 4 in Section 5.6.1). Further discussion on the
structural link between variables in KED can be found in Rivoirard (2002).

5.7.3 Layer Cake Estimation

In sedimentary deposits the subsurface is often modeled as a stack of layers of thickness Zi (x),
for x varying in the horizontal plane (layer cake model). Individual and total thicknesses are
observed at well locations and we wish to interpolate them in a consistent manner—that is,
ensure that the sum of individual thickness estimates is equal to the estimate of the sum. The
complete cokriging solution satisfies this requirement but is impractical with a large number of
layers. Furthermore, modeling errors on cross-covariances are likely to make the improved
precision largely spurious. Hence the need for simpler estimators with the consistency property.

The simplest of all is to use the same kriging weights for all layers, but this disregards the
spatial structure of individual layers. A more elaborate approach proposed by M. Riguidel
quoted in Matheron (1979b) is to carry out independent kriging estimations of each layer and
then apply a correction distributing the error on total thickness among individual layers. We
present here a useful variant developed by Haas et al. (1998) which incorporates seismic
information.

The first step is to estimate each layer independently from its own data by ordinary kri-
ging. A collocated correction is then applied to take into account the total thickness obtained
from seismic but with uncertainty. Defining

p number of layers

Z�i and σ2
Ki kriging estimator of ith layer thickness and kriging variance

ẐT and σ2
T total thickness from seismic thickness map and uncertainty variance

the corrected estimator is

Ẑi ¼ Z�i þ λi ẐT �
Xp

j¼1
Z�j

� 
with λi ¼ σ2

KiXp

j¼1
σ2
Kj þ σ2

T

ð5:56Þ

The weight λi is derived by minimizing the estimation variance under the assumption that the
kriging errors of individual layers are uncorrelated among themselves and with the seismic
total thickness error.

The correction formula (5.56) has several nice properties. When the seismic total thickness
variance σ2

T is zero, the weights λi add up to one and the total thickness is honored exactly. As
the uncertainty on seismic total thickness increases, the constraint becomes looser. (Note that
this uncertainty may vary with location.) The correction itself is proportional to the total
thickness estimation error: The better the estimation, the smaller the correction. It is also
weighted by the kriging variance of each layer, ensuring that no correction is applied at a
point where the thickness is known, and therefore an exact match at the wells regardless of the
seismic total thickness estimate. Error variances on individual and total thickness are

E Ẑi �Zi

� �2 ¼ σ2
Ki 1�λið Þ E

�X
i

Ẑi �ZT

�2

¼
�X

i

σ2
Ki

�
σ2
T=

�X
i

σ2
Ki þσ2

T

�
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Both variances are smaller than what they would be in isolation. Errors between two different
layers are negatively correlated with covariances:

E Ẑi � Zi

� �
Ẑj � Zj

� � ¼ �σ2
Ki σ

2
Kj=

X
n

σ2
Kn þ σ2

T

 !

In the example shown in Figure 5.16, with a large vertical exaggeration, the total thickness
base map and its uncertainty are derived from seismic. The interval is divided into 13 layers.
In Figure 5.16a, each layer is kriged independently and total thickness is not honored. In
Figure 5.16b, total thickness is introduced with an uncertainty variance: total thickness is
partly reproduced. In Figure 5.16c, total thickness is known without uncertainty and is
reproduced exactly. The method assumes implicitly that the wells are vertical; or nearly
vertical, otherwise the seismic and the wells would not measure the same thicknesses.

The authors have considered applying the same correction procedure to a set of simula-
tions. They also suggest for the first step to use the total thickness map as an external drift.

5.7.4 Compositional Data

These are vector RFs Z(x)¼ (Z1(x), . . . , Zp (x))
0 whose components are proportions: They

are positive and add up to one. We would like the estimates to have the same properties.
Direct kriging or cokriging of the proportions cannot guarantee that. Furthermore, the
implementation of cokriging is impractical for several reasons, the most important being that
the covariances of the Zs must satisfy the closure relations

Pp
j¼1 Cij 0ð Þ ¼ 0 ’i induced by the

constant sum constraint, which result in spurious negative correlations and singular cokriging
matrices. This leads to the use of preliminary transformations before applying kriging or
cokriging.

Pawlowsky et al. (1994) use the additive logratio transformation of Aitchison (1986) and
define

Yi xð Þ ¼ log Zi xð Þ=Zp xð Þ� �
i ¼ 1, : : : , p

where Zp (x) is the last component of Z(x). Note that all components Zi (x) must be strictly
positive. The first (p� 1) transforms Yi (x) are estimated by cokriging, or kriging, while the

1 km

(a) (b) (c)

10 m 
Total

thickness
base map

FIGURE 5.16 Kriging of layer thicknesses constrained by a seismic total thickness map.

(a) Unconstrained ordinary kriging: total thickness is not reproduced; (b) constrained kriging

with uncertainty on total thickness: total thickness is partly reproduced; (c) constrained kriging with

no uncertainty on total thickness: total thickness is reproduced exactly. [From Haas et al. (1998).]

(See color insert)
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last component Yp (x) is zero at all points and therefore can be ignored. The reverse trans-
formation yields the estimates

Z�i xð Þ ¼ exp Y��
i xð Þ� �

1þ
Xp�1

j¼1

exp Y��
j xð Þ

h i Z�p xð Þ ¼ 1

1þ
Xp�1

j¼1

exp Y��
j xð Þ

h i

By construction all estimates lie in the interval [0, 1] and add up to one, as desired. On the
negative side, the estimators are neither unbiased nor minimum variance, and the special role
played by the last component appears arbitrary.

An alternative transformation is the centered logratio transformation of Aitchison (1986)
defined as

Yi xð Þ ¼ logfZi xð Þ=g Z xð Þ½ �g

where g Z xð Þ½ � ¼ Z1 xð ÞZ2 xð Þ � � � Zp xð Þ� �1=p
is the geometric mean of the components of Z(x),

which must also be strictly positive. The symmetry with respect to the components is now
preserved but the closure relation

Pp
i¼1 Yi xð Þ ¼ 0 creates the same problems as with the initial

proportions. Note that in both cases the transform vector is 0 when all proportions are equal.
For clarity we now drop the dependence on location x.

The possible compositional vectors u¼ (u1, u2, . . . , up)
0 form a set of points called a p-

simplex and defined by

Sp ¼
�
u ¼ u1, u2, : : : , up

� �0; ui . 0, i ¼ 1, 2, : : : , p;
Xp

i¼1
ui ¼ 1

�

S3, for example, is the portion of the plane u1þ u2þ u3¼ 1 in the first octant of R3, namely the
interior of an equilateral triangle. In general the simplex Sp has the structure of a (p� 1)-
dimensional vector space. For any pair of compositions u and v in Sp the Aitchison scalar
product is defined by

hu, via ¼
Xp
i¼1

log
ui

g uð Þ log
vi
g vð Þ

This scalar product induces a distance which is useful to evaluate the difference between two
compositions, and an Euclidean geometry on the simplex, called the Aitchison geometry. A
correspondence between the Aitchison geometry and the standard Euclidean geometry is
established by means of isometric logratio transformations, which associate to a point in the p-
simplex its (p� 1) coordinates in an orthonormal basis of the simplex whose origin is the equal
proportions composition. Egozcue et al. (2003) propose the following transformation:

yi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i i þ 1ð Þp log

z1z2 : : : zi

ziþ1ð Þi , i ¼ 1, 2, : : : , p� 1

For example, for p. 2 the first two coordinates are

y1 ¼ 1ffiffiffi
2

p log
z1

z2
, y2 ¼ 1ffiffiffi

6
p log

z1z2

z23

The obtained coordinates yi are then treated by standard geostatistics and the transformation
is reversed in the end using the constraint on the sum of proportions.
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For further information and application examples on compositional data the reader is
referred to the monograph by Pawlowski-Glahn and Olea (2004) and to the October 2005
issue of Mathematical Geology entirely devoted to this subject. More recently, this type of
simplex approach has been proposed by Tolosana-Delgado et al. (2008) as an improvement
over Indicator Kriging.

We conclude by mentioning the direct approach proposed by Walvoort and de Gruijter
(2001), which consists in minimizing the sum of the kriging variances of the components
subject to the positivity and unit sum constraints. One advantage of this method is that it can
accommodate compositions with zero components.

5.8 SPACE�TIME MODELS

The treatment of variables Z(x,t) distributed in both space and time has
become so important that it would deserve a chapter of its own. However,
rather than add pages to an already thick book, we prefer to outline the main
approaches and refer the reader to recent review papers and books on the
subject (Cressie and Wikle, 2011; Gneiting and Guttorp, 2010; Aanonsen et al.,
2009; Evensen, 2009; Gneiting et al., 2007a).

Mathematically, Z(x, t) may be regarded as a random function in the (nþ 1)-
dimensional space Rnþ1¼Rn�R—that is, n space dimensions plus one time
dimension. If one can build a meaningful model of the covariance structure and
of the drift in this space, then it is kriging as usual. This is true except that it
misses a key point, the special role played by the time dimension. Isotropy may
exist in space, but time flows only in one direction (unfortunately).

The main dividing line between space�time approaches is whether or not
a physical model is available to describe the time evolution of the system. If
such a model exists, data assimilation methods permit a merge of the numerical
model with observations. These methods are applied in meteorology, ocean-
ography, ecology, and petroleum engineering, to name the most frequent.
Among them, sequential methods related to the Kalman filter and the Ensemble
Kalman Filter (EnKF) will be discussed from the perspective of their connection
with geostatistics.

If no dynamic model is available, then a purely probabilistic model is
used, sometimes “inspired” by physics. Following Kyriakidis and Journel
(1999), two conceptual viewpoints can be taken: Either regard Z(x, t) as a single
spatiotemporal RF, or else treat time or space location as an index and
work in a multivariate setting in which space�time estimation is performed by
cokriging.

In the multivariate approach a record of p time measurements at N moni-
toring stations may be regarded as N spatially correlated time series indexed by
location, or as p serially correlated RFs indexed by time—in other words,
“snapshots” of the Z(x, t) process. The index is discrete and cannot be inter-
polated without further modeling. So, for example, the RF view does not allow
time interpolation nor forecasting. However, given temporal stationarity, it
allows the inference of nonstationary spatial models, which lead to better
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spatial estimates and standard errors than those obtained using a spatially
averaged covariance structure.

Until about 10 years ago the only spatiotemporal models available were
separable models, decomposing the space�time random function as a sum
or a product of a purely spatial and a purely temporal component. Since
then, families of nonseparable stationary covariance functions have been pro-
posed, which allow space�time interaction and therefore a true spatio temporal
approach.

5.8.1 Separable Space�Time Models

The straightforward extension of kriging is to consider that each point has
space�time coordinates (x, t). For example, there may be two space coordi-
nates, easting and northing measured in meters, and time which is measured,
say, in hours. In view of statistical inference, it is assumed that the RF Z(x, t),
or its increments of some order, are second-order stationary in space and time.
Thus, for example, the spatiotemporal variogram is a function of space and
time separations:

1
2
E Z x 0, t 0ð Þ � Z x, tð Þ½ �2 ¼ γ x 0 � x, t 0 � tð Þ, x, tð Þ, x 0, t 0ð Þ 2 Rn � R

When t¼ t 0, the variogram reflects purely spatial variations; these are assumed
statistically the same for all fixed times. When x¼ x 0, the variogram captures
the time variations only, and they are assumed statistically similar for all
locations. Intermediate “directions” represent pairs separated both in space
and time—for example, points 5 km and 3 hours apart; these directions are
interesting for model discrimination and should not be overlooked. Naturally,
there is a scaling problem between the time and the space dimensions, but it is
not different, in principle, from the scaling problem encountered in 3D between
vertical and horizontal variations. In case of “geometric anisotropy” a

generalized distance such as
�
x 0 � xð Þ2=a2 þ t 0 � tð Þ2=b2�1=2 would correct for

unequal spatial and temporal scale parameters a and b. The real difference is
that phenomena are often periodic in time (diurnal period, yearly period, moon
cycle, etc.), whereas they are not in space. This is the essential reason why going
from R2 to R2�R is more difficult than from R2 to R3. A theory of space�time
RFs has been proposed by Christakos (1992, 2000).

Great simplifications occur when the spatial and temporal variations can be
completely separated. Two models share this nice property. The first one is a
“zonal anisotropy” where the time direction plays the same role as the vertical
direction in 3D problems (cf. Section 2.5.2)

γ h, τð Þ ¼ γS hð Þ þ γT τð Þ, h, τð Þ 2 Rn � R ð5:57Þ

Structural analysis can be performed independently in space and time by
considering pairs in the same spatial planes or in the same time series, possibly
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with tolerance limits. One way of checking this model is to look at the sill: It
should be equal to the sill of γS in the space direction (τ¼ 0), to the sill of γT in the
time direction (h¼ 0), and to the sum of the two in all intermediate directions.

The additive model (5.57) can also be written in terms of generalized cov-
ariances, in which case, as noted by Rouhani and Hall (1989), who proposed it
for groundwater data, the separation extends to the unbiasedness conditions as
well; that is, there is no need for mixed space�time monomials. A known
problem with model (5.57) is the possibility of singular kriging systems. More
important, this model may be too crude. A more useful variant is the sum of an
“isotropic” model in the space�time domain and a zonal term corresponding to
the periodic time component of the phenomenon.

The second case of simplification occurs with the separable covariance
model

C h, τð Þ ¼ CS hð ÞCT τð Þ, h, τð Þ 2 Rn�R ð5:58Þ

Here the sill is the same in all directions and equal to CS(0) CT(0). A quite
useful property of this model is its associated screening effect pictured in
Figure 3.13b: Given observations at time t, all other observations at the same
space locations but different times are irrelevant for estimation at time t by
simple kriging. In particular, where the present is known, there is no information
in the past. However, this is only true in the case of a known mean.

The first use of the separable covariance (5.58), at least in the geosciences,
seems to be traced back to a paper of Rodrı́guez-Iturbe and Mejı́a (1974) in
which they optimized the design of a hydrologic network for the estimation of
the long-term areal mean rainfall (an integral over space and time). Using a
stationary model in time and space and a separable covariance, they showed that
the time interval cannot be reduced too much: “No miracles can be expected in
short times even from the most dense of all possible networks.”

The above models are for the covariance structure. In general the spatial
mean for fixed t will differ from the temporal mean for fixed x. There too a
separable model is often used, decomposing the mean fieldM(x, t) as the sum of
a “space effect” F(x) and a “time effect” X(t), usually centered at zero, the
baseline level of Z(x, t) being included in the spatial component F(x):

M x, tð Þ ¼ F xð Þ þ X tð Þ

For example, Séguret (1989) and Séguret and Huchon (1990) model the diurnal
fluctuation of the magnetic field by a finite trigonometric expansion of the form

X tð Þ ¼
X
i

Ai cos ωi tð Þ þ
X
i

Bi sin ωi tð Þ

where the ωi are fixed angular frequencies (e.g., 2π/24 for a daily cycle and t in
hours) and Ai and Bi are unknown (possibly random) coefficients. This time
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effect is then removed by an adaptation of UK that filters the sine and cosine
components (trigonometric kriging). General models for space�time trends can
be found in Dimitrakopoulos and Luo (1997).

Once the covariance structure is determined and a drift model is postulated,
kriging proceeds as usual by optimizing a linear estimator of the form

Z� ¼
X
α

λαZ xα, tαð Þ

Sample points are {(xα, tα)}, and the kriging neighborhood is defined in both
space and time.

5.8.2 Nonseparable Space�Time Covariance Models

Separable models are convenient but do not necessarily fit the data well.
A simple example of a process with space�time interaction is the so-called
frozen field. Imagine a purely spatial RF ZS(x), with stationary covariance CS,
moving in time with a constant velocity vector v2Rn. It defines a space�time
process Z(x, t)¼ZS(x� vt) with covariance

C h, τð Þ ¼ CS h� vτð Þ
This would apply to a mass of air under the influence of prevailing winds, or
to a mass of water transported by ocean currents, over a short period of time.
The velocity can also be a random vector V in which case the covariance
becomes C (h, τ)¼E[CS(h�V τ)] where the expectation is taken with respect to
V (Gneiting and Guttorp, 2010).

Another classic example concerns covariances satisfying the so-called Taylor
hypothesis, which states the equivalence of a time lag τ and a spatial lag vτ for
some velocity vector v2Rn:

C 0, τð Þ ¼ C vτ, 0ð Þ, τ 2 R

This model was proposed by Taylor (1938) based on studies of turbulent flow
and has been widely used because it allows the substitution of difficult space
measurements by much easier time measurements at a fixed location. Gneiting
et al. (2007a) provide a list of covariance functions that satisfy the Taylor
hypothesis exactly, which includes the frozen field model.

Further in the vein of physically inspired models, partial differential equa-
tions are a natural source of nonseparable space�time covariances since they
establish a relationship between time and space partial derivatives. Kolovos
et al. (2004) provide a number of interesting examples.

To construct new models, Cressie and Huang (1999) establish that stationary
space�time covariance functions admit the following representation:

C h, τð Þ ¼
Z
e2πihu, hiρ u, τð Þ du, h, u 2 Rn, τ 2 R
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where ρ (u, τ) is a continuous positive definite function of τ for all u, and derive
covariances for specific choices of ρ(u, τ). Gneiting (2002) generalizes these
results and proposes the following covariance family, which has become known
as the Gneiting class:

C h, τð Þ ¼ 1

Ψ τ2ð Þn=2
ϕ

jhj2
Ψ τ2ð Þ

 !
, h, τð Þ 2 Rn � R

Here ϕ(r), r$ 0, is a completely monotone function and ψ(r), r$ 0, is a positive
function with a completely monotone derivative (see definition in Section
4.5.4). The specific choices

ϕ rð Þ ¼ σ2exp �crγð Þ and ψðrÞ ¼ ð1þ arαÞβ

yield the parametric family

C h, τð Þ ¼ σ2

1þ ajτj2α
� β n=2

exp � cjhj2γ

1þ ajτj2α
� βγ

0
B@

1
CA ð5:59Þ

a$ 0 and c$ 0 are scale parameters of time and space, respectively, and σ2 is
the variance of the process. α and γ, both2 [0,1], control the smoothness of the
purely temporal and purely spatial covariances, and β 2 ]0,1] is the space�time
interaction. It is a bit surprising that the value β¼ 0 is excluded since we expect
the model to accommodate the case of no space�time interaction. In fact it is a
matter of parameterization: It suffices to multiply the covariance by the purely

temporal covariance function 1þ ajτj2α
� �δ

with δ. 0 to get a separable

model with β¼ 0 (Gneiting, 2002).
Notice that the purely temporal or purely spatial covariances defined in

(5.59) display all types of behavior near the origin, with exponents 2α and 2γ
between 0 and 2. Notice also that these covariances are spatially isotropic and
fully symmetric in the sense that

C h, τð Þ ¼ C h,�τð Þ ¼ C �h, τð Þ ¼ C �h, �τð Þ

Kent et al. (2011) draw our attention on the counterintuitive presence of a
“dimple” in the covariance surface in certain cases. The effect is illustrated in
Figure 5.17: For a fixed spatial lag h. 0.7 the temporal covariance is not
a decreasing function of the temporal lag τ as one would normally expect,
but increases from a minimum at zero lag before decreasing to zero, forming
a valley or dimple in 3D. On the other hand, for spatial lags less than or equal
to 0.7 the temporal covariance is well-behaved. So the real question for
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applications is whether or not the dimple occurs at practically relevant
spatial lags, which can be determined by time cross sections such as shown in
Figure 5.17.

Stein (2005) gives a spectral characterization of continuous space�time
covariance functions associated with Gaussian processes that are Markov in
time, in the sense that the processes at times t. 0 and s, 0 are conditionally
independent given the process everywhere at time 0. Unexpectedly, long-term
dependence can take place despite the Markov property. From a theoretical
perspective, Schlather (2010) unifies much of the existing literature, including
Gneiting’s class, in a unique class of normal scale mixtures [function ϕ of the
form (2.27)].

5.8.3 Multivariate Approach

We now leave the view of the space�time Z(x, t) as a random function in
Rn�R to consider t or x as a discrete index. If Z(x, t) is sampled synchronously
at p time points, the data can be modeled as p serially correlated RFs {Zi(x)¼
Z(x, ti) : i¼ 1, . . . , p} indexed by time. This involves the inference of p (p+1)/2
direct and cross-covariances between data at time ti and tj. Denoting by mi and
mj the mean areal values at time ti and tj, we have

Cij hð Þ ¼ Cov Zi xð Þ,Zj xþ hð Þ� � 	 1

N

XN
α¼1

�
Z xα, tið Þ �mi

�
Z xα þ h, tj
� ��mj

� �

0.0
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FIGURE 5.17 Temporal cross sections of the surface of the Gneiting class covariance C(h, τ) with
parameters a¼ c =1, σ2¼ 1, α¼β¼ γ¼ 1 and n¼ 1, for fixed values of spatial lag. From top to

bottom: h¼ 0, 0.5, 0.7, 0.8, 1, 1.5, 3. A dimple is seen for h. 0.7.
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This formula assumes spatial stationarity10 but permits the estimation of a
nonstationary temporal covariance by letting h¼ 0.

The alternative view is to treat the data as N time series {Zα(t)¼Z(xα, t) :
α¼ 1, . . . ,N} indexed by space location. This involves the inference of
N(Nþ 1)/2 direct and cross-covariances between data at points xα and xβ.
Denoting by mα and mβ the mean time values at locations xα and xβ, we have

Cαβ τð Þ ¼ Cov Zα tð Þ,Zβ tþ τð Þ� � 	 1

p

Xp
i¼1

�
Z xα, tið Þ �mα

�
Z xβ, ti þ τ
� ��mβ

� �

This expression assumes temporal stationarity but permits the estimation of a
nonstationary spatial covariance by letting τ¼ 0.

Once the model is established, estimation can be carried out by cokriging,
but this is rarely done. Rather, specific models are developed to take advantage
of particular data configurations and relax stationarity assumptions. We will
give three examples.

Estimation of Nonstationary Spatial Covariances

Consider a variable monitored at N sites xα and p time points ti so that the data are on a
rectangular space�time lattice {Z(xα, ti) : α¼ 1, . . . ,N; i¼ 1, . . . , p}. Typically, there are
much fewer sites than time points. If we postulate that the process Z(x, t) is temporally
stationary, each time section Zi (x)¼Z(x, ti) may be regarded as a realization of the same
parent random function Z(x). Time plays no role except that the multiple realizations of Z(x)
may exhibit serial correlation if the lag between observation times is short. In the real world
the assumption of temporal stationarity is never a trivial one and requires a careful selection
of the data to ensure that they originate from the same underlying physical process, and in
particular that the mean does not depend on t. For example, if we are interested in January
temperatures, we may want to work only from January temperature data rather than a mix of
all months.

The model is of the form

Z x, tð Þ ¼ m xð Þ þ Y x, tð Þ
where Y(x, t) is a zero-mean residual process assumed stationary over time but nonstationary
over space. In this model it is possible to estimate the mean at any monitoring site and to
estimate the spatial covariance between two sites as time averages, without forcing spatial
stationarity assumptions. For example,

m̂ ¼ Z ¼ 1

p

Xp
i¼1

Zi, Σ̂ ¼ 1

p

Xp
i¼1

Zi � Z
� �

Zi � Z
� �0 ð5:60Þ

where as usual Zi ¼ Zi x1ð Þ, : : : ,Zi xNð Þð Þ0.
Σ̂ is numerically positive definite, although possibly not strictly: It is singular if and only if

there exist nonzero weights wα such that
P

αwα Zi xαð Þ � Z xαð Þ� � ¼ 0 for all i. Note that Σ̂ is a

10A space�time RF is spatially stationary in the wide sense if C (x, t; x 0, t 0)¼C (x 0 � x; t, t 0) and
is time stationary in the wide sense if C(x, t; x 0, t 0)¼C(x, x 0; t 0 � t) [from Christakos (1992,

pp. 186�187)].
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valid estimate of the trueΣ even in the presence of serial correlation, but of course the estimate
is more stable if the realizations are independent. (In this case, dividing by p� 1 eliminates the
slight bias in the covariance estimate due to the estimation of the mean.)

Now suppose that we want to estimate Z(x0, t0) at one of the observed time point t¼ t0,
using contemporaneous data only. We can subtract the means from the data and interpolate
the residuals by simple kriging. It is possible to plug the covariance estimate (5.60) directly
into the left-hand side of the simple kriging equations (3.2), which were established without
stationarity assumptions. (This amounts to minimizing the time-averaged squared error.) By
doing so, we introduce what Switzer calls location-specific information. However, we also
need the covariances σα0 between the stations and the unobserved location x0 and the vari-
ance σ00.

First, in order to mitigate the dependence of the empirical covariance Σ̂ between moni-
tored locations on sampling variations, Loader and Switzer (1992) propose the alternative
estimate

~Σ ¼ ν Σ̂þ 1� νð ÞC ð5:61Þ

where 0, ν, 1 is a constant and C is computed from a parametric model of the covariance
function, typically obtained by forcing a stationary model. This is called a shrinkage estimate
because it “shrinks” Σ̂ toward C. The value of the parameter ν is chosen from the data. A
formal optimization formula (based onWishart distributions) is provided but looks awesome;
trial and error may be simpler, if not optimal.

Next the covariance vector σ0¼ (σ10, . . . , σN0)
0 between the stations and an arbitrary

unobserved point x0 is estimated by interpolation of the columns of ~Σ, using as interpolation
coefficients the simple kriging weights for estimation at the location x0 calculated with the
parametric covariance C (Switzer, 1989):

~σ0 ¼ ~ΣC�1c0 ð5:62Þ

where c0¼ (c10, . . . , cN0)
0. With this choice the SK system (3.2) becomes

~Σ λ ¼ ~ΣC�1c0

which when ~Σ is nonsingular is equivalent to the SK system Cλ¼ c0. The kriging estimator
obtained using the location-specific ~Σ is no different than that obtained using the parametric
model C. The improvement lies in the kriging variance, which reflects local covariance
properties. This is given by

σ2
SK ¼ Var Z0 � Var Z� ¼ ~σ00 � λ0

K
~ΣλK ¼ ~σ00 � ~σ0

0
~Σ
� ��1

~σ0 ð5:63Þ

where ~σ00 is an estimate of Var Z0 and λK is the vector of simple kriging weights. The
procedure suggested for estimating ~σ00 is spatial smoothing of the diagonal elements of ~Σ.
From (5.63) it is seen that the estimate is constrained by

~σ00 $ ~σ0
0 ~Σ
� ��1

~σ0

More generally, the consistency of the covariance model requires that the augmented
covariance matrix obtained by adding rows and columns for q unobserved locations be
positive definite. A necessary and sufficient condition is the positive definiteness of the matrix

~Σq � ~σq
0 ~Σ
� ��1

~σq
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where ~Σq is the estimate of the q� q covariance matrix between the new sites and
~σq ¼ ~ΣC�1cq is the N� q covariance matrix between observed and unobserved sites. Loader
and Switzer show that the estimation of ~Σq can be carried out sequentially by adding one site
at a time. The order in which points are added has no influence on the estimates of covari-
ances between observed and unobserved locations but does influence the covariances
between unobserved locations. The sequential algorithm only requires fresh estimation of
the diagonal terms of the matrix, and the off-diagonal terms are obtained automatically
from (5.62).

The limitation of the foregoing approach is the estimation of spatial covariances for pairs
of unobserved locations. An alternative approach has been proposed by Sampson and
Guttorp (1992) based on multidimensional scaling. In a nutshell, the empirical

ffiffiffiffiffiffiffiffiγαβ
p

is a
distance dαβ between the temporally stationary Z(xα, t) and Z(xβ, t). The idea is to represent
the data as points in an image space such that the Euclidean interpoint distances match the
order relationships among the dαβ. The distances jyβ� yαj in the image space and the cor-
responding dαβ are related by a monotone step function g such that d2

αβ ¼ g jyβ � yαj
� �

.
The function g is analogous to the usual variogram and is both stationary and isotropic. The
extension to unobserved locations is achieved by fitting a parametric variogram model to this
g function and modeling the mapping y¼ f (x) between the geographic space and the image
space. A discussion of this approach and an alternative rescaling procedure can be found in
Monestiez and Switzer (1991).

A Model for Monitoring Data

The assumption of temporal stationarity may be unreasonable or may force us to ignore too
much data. A milder form is to assume that this is only true for residuals. The above
covariance estimation technique is then applied to residuals. There remains to define the
model. A very detailed one has been proposed by Høst et al. (1995), based on the decom-
position

Z x, tð Þ ¼ M x, tð Þ þ S x, tð ÞU x, tð Þ

where M(x, t) is the mean, S(x, t) the standard deviation or scale, and U(x, t) a temporally
stationary residual random function with zero mean and unit variance. The authors decide
to also regard M and S as random functions and assume mutual independence among M, S,
and U.

Next the mean field is modeled as the sum of a “space effect” F(x) and a “time effect”
X(t):

M x, tð Þ ¼ F xð Þ þ X tð Þ

where X(t) has zero mean over the discrete set of observation times. Similarly, the scale field is
decomposed as

S x, tð Þ ¼ H xð Þ þ κ tð Þ

where H(x) is a spatial scale field and κ(t) is a temporal modulation such that κ2(t) has mean
one. F(x) and H(x) are considered as second-order stationary random functions.

It is convenient to abbreviate Z(xα, tj) as Zαj and write the model in the condensed
notation

Zα j ¼ Fα þ Xj þ κj HαUα j
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Taking means along rows and columns as is done for two-way tables yields the following
estimates of the model components:

F̂α ¼ 1

p

Xp
j¼1

Zα j X̂ j ¼
P

α θα Zα j � F̂α
� �

Ĥ
2

α ¼ 1

p

Xp
j¼1

Zα j � F̂α � X̂ j

� �2

κ̂2
j ¼

X
α

θα Zα j � F̂α � X̂ j

� �2
=
X
α

θαĤ
2

α Ûα j ¼ Zα j � F̂α � X̂ j

� �
=Ĥακ̂j

where θα are spatial weights adding up to one—for example, the optimal weights in the
estimation of the constant mean of F(x) (see Section 3.4.6). Once computed, these estimates
are considered as exact. The estimate at an unobserved location x0 and a monitoring time tj is
obtained by combining the separate kriging estimates

Z�0 j ¼ F�0 þ X̂ j þ κ̂j H
�
0 U

�
0 j

Here F�0 and H�
0 are ordinary kriging estimates from the values F̂α and Ĥα at monitoring

stations, derived with fitted spatially stationary variogram models. U�
0 j is the simple kriging

estimate from empirical residuals Ûα j , based on a nonstationary covariance matrix obtained
as indicated above. There is a difficulty here because the estimation of the residuals forces the
linear constraint

P
αθαĤαÛα j ¼ 0 for all j, making the empirical covariance matrix singular

[cf. (5.60)]. To overcome this problem, Høst et al. suggest to replace the time effect estimate X̂ j

by another time series ~Xj which is the sum of annual and seasonal effects, and modify the
residuals accordingly. Note that interpolation is only possible at monitored times, since no
model is assumed for the temporal modulation X(t) and κ(t).

The interpolation variance is given by11

Var Z�0j � Z0j

� 
¼ Var F�0 � F0

� �þ κ2
j ν2 þ σ2

H

� �
Var U�

0 j �U0 j

� 
þ κ2

j Var H�
0 �H0

� �
Corr2 U�

0 j ,U0 j

� 
where ν¼E[H(x)] and ν2þσH

2 is approximated by
P

αθαĤ
2

α. The squared correlation is
equal to VarðU�

0 jÞ because simple kriging is used and the U field has unit variance. This
formula shows the contributions of the interpolation variance of the mean field F, the residual
field U, and the scale component H.

The authors apply the approach to sulfur dioxide concentrations recorded as monthly
averages over six years, and they compare the results with those obtained using standard
kriging based only on data from the same time section. They conclude that the estimates are
virtually identical but that the space�time model allows a better assessment of standard
errors.

There are simpler versions of this very general model, for example, the scale can be made
constant [e.g., Stein (1986b)].

Estimating a Time Trend

In all the preceding models the focus was on spatial estimation, and time was secondary. We
used the time observations merely to strengthen spatial estimation. The priorities may be
reversed, and the time evolution of the process may on the contrary be the primary focus of
interest. A spectacular example is the discussion on global warming in relation with the

11 This formula rectifies an error in formula (5) of the Høst et al. (1995) paper. Note that the

parameter ν has nothing to do with the parameter of formula (5.61).
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greenhouse effect. Is there a systematic increase of temperature liable to change the life
conditions on earth within the next century? Here we have no interest in the spatial hetero-
geneity among monitoring stations.

Sølna and Switzer (1996) propose the following temperature model:

Z x, tð Þ ¼ a xð Þ þ b xð ÞtþU x, tð Þ
where a(x) is a deterministic baseline temperature field, b(x) a spatially varying time-trend
rate modeled as a second-order stationary RF, t is a year index, and U(x, t) is a zero-mean
residual random function, second-order stationary in both space and time. The random
functions b(x) and U(x, t) are assumed uncorrelated. Two related quantities are of interest:


 Estimation of the time-trend rate averaged over a geographic region A:

mA ¼
Z
A

b xð Þdμ xð Þ


 Estimation of an annual regional temperature change:

MA t1, t2ð Þ ¼ 1

t2 � t1

Z
A

Z x, t2ð Þ � Z x, t1ð Þ½ �dμ xð Þ

The idea is to estimate these quantities from the available records and compare them with the
associated standard errors in order to test whether the rate of temperature change is signif-
icantly different from zero. It is immediately apparent that these two quantities depend on the
year-to-year differences

d x, tð Þ ¼ Z x, tð Þ � Z x, t� 1ð Þ ¼ b xð Þ þ U x, tð Þ �U x, t� 1ð Þ½ �

rather than on temperatures themselves. The derivation of the space�time variogram of
d (x, t) and of the kriging estimates and variances of mA and MA would take too long and can
be found in the Sølna and Switzer paper. An application to temperature data in a climatically
homogeneous region, the steppe of eastern Europe, shows a very strong spatial dependence
allowing a precise estimation of regionally averaged temperature changes. On the other hand,
the time series of these estimates show little temporal structure. On the basis of 40 years of
temperature observations the authors concluded that “a warming trend cannot easily be
discerned from a ‘nonwarming’ scenario,” but it might with a record of 90 years. Naturally,
these conclusions pertain to a relatively small geographic region and cannot be extended to
the global scale.

The conclusions could also be different with the record of nearly 60 years that should be
available now.

5.8.4 Sequential Data Assimilation

“Data assimilation can be defined as the incorporation of observations into a
dynamical model to improve forecasts” (Bertino et al., 2003). There is an abun-
dant literature on data assimilation (DA) and our purpose here is to highlight its
links with geostatistics. We refer the reader to the monograph by Evensen (2009)
for a complete treatment of DA, and we refer to Aanonsen et al. (2009) for a
review focusing on applications to history matching of oil and gas reservoirs.
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Kalman Filter

Consider a system evolving through time and sampled at regular time points. This
system is characterized by a true state N-vector xn where the subscript n denotes
time. Typically, xn holds the average values of the physical variables of interest
over all active grid cells plus global variables. The dynamics of the system, which
we assumehere to be linear, is captured by anN�N state transitionmatrixFn. On
the other hand, we have an M-vector of observations yn with M generally much
smaller than N. Observations are related to the true state space by an M�N
observation matrix H. Dynamics and observations are assumed imperfect, so
model and observation errors are included in the model. In the notations of
Bertino et al. (2003), which we generally follow here, the superscript “m” is used
for model and “o” for observation. The equations of the system are then

xn ¼ Fn xn�1 þ εmn εmn BN 0,Σmð Þ
yn ¼ H xn þ εon εonBN 0,Σoð Þ

ð5:64Þ

εmn and εon are mutually independent, zero mean Gaussian vectors, uncorrelated
in time, with time-invariant covariance matrices Σm and Σo. Evaluating Σo is
simple if observation errors are assumed spatially independent: Σo is then
diagonal and error variances can be estimated from the nugget effects of the
measurements time series. Model errors are difficult to evaluate and require
severe assumptions such as a stationary covariance (Bertino et al., 2002).

The Kalman filter may be described as a two-step process: prediction and
update—or in DA terminology, forecast and analysis, denoted by the super-
scripts f and a. The forecast is made by taking the best state estimate at the
previous time point and applying Fn:

x f
n ¼ Fnx

a
n�1

The forecast error is

x f
n � xn ¼ Fn xan�1 � xn�1

� �� εmn

By design, xan�1 is unbiased and therefore so is the forecast. The forecast
error covariance is most important and can be computed by propagating
the covariance Ca

n�1 of the state vector estimation error at the previous time
point

Ca
n�1 ¼ E xan�1 � xn�1

� �
xan�1 � xn�1

� �0
using the formula

C f
n ¼ E x f

n � xn
� �

x f
n � xn

� �0 ¼ Fn C
a
n�1F

0
n þΣm ð5:65Þ
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The analysis step improves the estimation of the state vector xn by combining
the forecast with the observations available at time n using an unbiased linear
estimator of the form

xan ¼ Jn x
f
n þ Kn yn

where Jn and Kn are matrices to be determined. Unbiasedness entails

E xan � xn
� � ¼ Jn þ Kn H� Ið Þ E xnð Þ ¼ 0 ’E xnð Þ . Jn ¼ I� Kn H

so that the updated estimate is of the form

xan ¼ x f
n þ Kn yn �Hx f

n

� � ð5:66Þ

A correction term proportional to the difference between actual and forecast
observations is added to the forecast. The minimum variance N�M Kalman
gain matrix Kn is determined by minimizing the trace of the error covariance
matrix

Ca
n ¼ I� Kn Hð ÞC f

n I� Kn Hð Þ0 þ KnΣoK0
n

with respect to Kn. This leads to the Kalman updating formulas

Kn ¼ C f
n H0 HC f

n H0 þΣo
� ��1

Ca
n ¼ I� Kn Hð ÞC f

n

ð5:67Þ

These equations may also be derived in a Bayesian framework where the
forecast plays the role of the prior and the analysis the role of the posterior.

In geostatistical terms the correction defined in (5.66) is the simple cokriging
estimate of the forecast error xn � x f

n from the measurement residuals
yn �Hx f

n . Indeed the covariance of these residuals is

E yn �Hx f
n

� �
yn �Hx f

n

� �0 ¼ HC f
n H

0 þΣo

while the covariance between these residuals and forecast errors is

E yn �Hx f
n

� �
xn � x f

n

� �0 ¼ HC f
n

Writing the simple cokriging equations with these matrices yields the solution
(5.67).

It is interesting to note that in the absence of observation errors the analysis
step ensures an exact match of the observations. Since

H Kn ¼ HC f
n H0 HC f

n H0� ��1 ¼ I
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we have

H xan ¼ H x f
n þHKn yn �H x f

n

� � ¼ yn

In the case when observed variables are part of the state vector, the matrixH just
operates a selection of these variables from the state vector, and the exact match
property is equivalent to exact interpolation. In its simplest form, when consider-
ing a single state variable, the analysis step reduces to a simple kriging of the
correction from themeasurement residuals (Gandin’s “Optimum Interpolation”).

In general the Kalman filter differs in an essential way from a standard
kriging or cokriging estimation in that it does not require stationary covar-
iances in either space or time. The covariance matrix C f

n is spatially nonsta-
tionary and is evolved in time by application of formula (5.65). This brings
significant modeling flexibility.

Extended Kalman Filter

The Kalman filter was extended to nonlinear dynamics by the so-called
extended Kalman Filter where the state transition and the observation models
(5.64) are replaced by

xn ¼ f xn�1, εmn
� �

, yn ¼ h xnð Þ þ εon

with nonlinear but differentiable functions f and h. At each time step the functions
are linearized around the current state estimate and an approximate equation
for the forecasting error covariance is derived. The extended Kalman filter
gained an early popularity by being successfully applied for trajectory estimation
in the Apollo space program (the first mannedmission to the moon). However, it
is of heuristic nature and may diverge in the case of highly nonlinear dynamics.

Ensemble Kalman Filter (EnKF)

While the Kalman filter is conceptually appealing, its implementation is simply
not feasible computationally when the state dimension N is very large, typically
from 105 to 106. Evensen (1994) introduced the Ensemble Kalman Filter (EnKF)
to address this problem and also the possible divergence of the extended
Kalman filter. The principle of EnKF is to propagate the uncertainty on initial
conditions by generating multiple realizations of the state vector, called an
ensemble, using successive forecast and analysis cycles. The ensemble may be
thought of as a set of conditional simulations.

The workflow begins by generating an ensemble of realizations of the inputs
to the dynamic system, typically r¼ 100 realizations that represent the prior
knowledge and its uncertainty. This is achieved using geostatistical simulation
techniques. Then for each realization, denoted by the subscript j, a forecast is
computed by

x
f
n, j ¼ fn xan�1, j; ε

m
n, j

� 
j ¼ 1, : : : , r
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Unlike with the extended Kalman filter, no linearization of fn is required.
Furthermore, forecasts can be parallelized, which is an attractive feature of
EnKFs.

Assuming a linear observation matrix H, the analysis (conditioning) step is
performed by

xan, j ¼ x
f
n, j þ Kn yn �H x

f
n, j þ εon, j

� 
ð5:68Þ

where Kn is the classic Kalman gain matrix given by (5.67) except that the
covariance matrix of forecasts is replaced by its ensemble estimate. Notice
the inclusion of an observation error εon, j, not present in (5.66) and varying
with the realization. This amounts to treating observations as random variables

yn, j ¼ yn þ εon, j

with means equal to the actual measurements yn. These randomized observa-
tions must also be simulated at every time step. As explained by Burgers et al.
(1998), without this error term the analyzed ensemble covariance would have
an underestimation bias equal to KnΣoK 0

n. If the mean of the analyzed
ensemble is used as the best estimate, ensemble covariances may be interpreted
as error covariances.

Let us now examine the consequences of replacing the forecast covariance by
an ensemble covariance. We define an N� r matrix X whose columns are the
ensemble members and an M� r matrix Y holding the randomized observa-
tions, i.e., including the ε0n, j terms. With obvious notations and dropping the
time index n the updating equation (5.68) becomes

Xa ¼ Xf þ K Y�HXf
� � ð5:69Þ

To compute K the forecast covariance matrix is replaced by the ensemble
covariance

Cf ¼ 1

r� 1
Xf � X

f
� 

Xf � X
f

� 0
, where X

f ¼ 1

r

X
j
x
f
j

� �
10N ð5:70Þ

Considering (5.67) and (5.70), the analysis equation (5.69) is then of the form

Xa ¼ Xf þ ðXf � X
f Þ � � �ð Þ

The analyzed state vectors belong to the vector space spanned by the columns
of Xf, the forecast ensemble members. If the forecasting equations are linear,
the analysis will be a linear combination of the initial ensemble. The small size
of the ensemble compared to the number of state variables seriously limits the
performance of the EnKF. A way around this is localization, which means local
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analysis using moving neighborhoods, possibly combined with covariance
tapering to force the covariance to zero at a finite distance. Then the analysis
is locally linear but globally it is not, and it lies in a much larger space than that
spanned by the ensemble members (Evensen, 2009).

In this brief tour of EnKFs we encountered geostatistics at several places: for
generating the initial ensemble, modeling spatial covariances, assimilating new
data, and localizing the analysis. Other points of contact include Gaussian
transform (Bertino et al., 2003; Simon and Bertino, 2009), change of support
issues (Bertino et al., 2002), and facies modeling and simulation (Aanonsen
et al., 2009).

Geostatistical Output Perturbation

For the sake of completeness we conclude by mentioning an approach proposed
byGel at al. (2004) to generate an ensemble of forecasts, the geostatistical output
perturbation method. Contrary to EnKFs, which perturb the inputs to the
numerical weather prediction model and then run the model many times, this
method runs themodel once and perturbs the output. These “perturbed” outputs
are conditional simulations generated under an external drift model in which the
forecast values define the regression function and the measurements are
the conditioning data. This approach is intended for organizations that do not
have the computing resources and data access required to perform a proper DA.
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C H A P T E R 6

Nonlinear Methods

We do not send estimates to the mill.
—Michel David

6.1 INTRODUCTION

Kriging permits the estimation of a variable Z at a point, or of its average value
over a domain. But for a number of applications the real issue is whether Z(x)
exceeds a given threshold. The navigator gives special attention to the shallow
parts of a bathymetric map. The environmentalist looks for places where con-
taminant concentration may exceed a given critical level. The meteorologist
focuses on weather situations that may result in cooling below 0�C. The mining
engineer attempts topredictwhich elementary blocks haveameangradeabove the
economic cutoff grade and the quantity of metal these blocks contain. When
varying the threshold, it appears that the basic problem is the determination of a
cumulative distribution function, or,more generally, the estimation of a nonlinear
functionalH ofZ(x). Now due to the smoothing property of kriging, one can see
thatH(Z*) is not a good estimator of H(Z(x0)). Hence the need for a more pow-
erful estimator than linear kriging. There are, however, specific spatial aspects that
distinguish our problem from standard estimation of a frequency distribution:

1. Domain. The distribution is not necessarily estimated at a precise location
but over a given domain. This may be the whole domain of interest D,
using all available data (global estimation). Or it may be a local
distribution based only on a subset of neighboring values (local estima-
tion), in which case the distribution is also conditional on these values.
The typical application is the determination of the grade distribution of

Geostatistics: Modeling Spatial Uncertainty, Second Edition. J.P. Chilès and P. Delfiner.

r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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small blocks in a mining panel. If the spacing between samples is large
compared with the dimensions of a block, it is unrealistic to attempt
predicting individual blocks—precision would be poor, and estimates
would change very little from block to block. A more reasonable goal is
to predict the number of blocks above the threshold. An equivalent way of
expressing this, which may be meaningful for a variety of applications, is
to say that rather than estimating the probability of exceeding the
threshold at a given location x, we are estimating that probability at a
random location x within the region of interest.

2. Change of Support. Although measurements are usually made on a point
support—or at least small enough to be considered as such—one is often
interested in larger supports. Thus in selectivemining only the high-grade ore
isprocessed formetal recovery.But adeposit is notminedwitha teaspoon. In
the absence of geological guidance, selection is performed on “small” blocks,
which are in fact huge compared with the core samples. The distribution of
these blocks is the quantity of interest andmust be determined from the core
samples, a challenging task that requires change-of-support models.

3. Information Effect. The classification of Z as above or below threshold is
necessarily made on the basis of incomplete information, which results in
a loss of efficiency. In selective mining, a selection of the blocks based on
estimates Z* will yield inferior economic results compared to a selection
based on true values. This effect is named the information effect. Its
evaluation requires modeling of the joint distribution of Z and Z*.

In the first part of this chapter, we will examine the estimation of the point
distribution. We will first review the solutions provided by simple methods
whose implementation only requires modeling second-order moments. We will
in particular discuss the capabilities and the limits of indicator kriging and its
variants. We will then present a nonlinear estimator that is intermediate
between simple or ordinary kriging and conditional expectation, disjunctive
kriging. Since this requires modeling bivariate distributions, we will give a
glimpse of the main models available and criteria for selecting one.

In the second part, we will turn to the change-of-support problem. There lies
the full worth of these bivariate models, because they provide change-of-sup-
port models whose domain of validity far exceeds that of classic models, which
will be presented too. The information effect will be discussed only briefly.

6.2 GLOBAL POINT DISTRIBUTION

Similar to SK requiring the knowledge of the mean m, estimating a local—or
conditional—distribution requires the knowledge of the global—or marginal—
distribution. We will seek to relax this prerequisite, like OK does for the mean.
But first let us examine the problem of determining the marginal distribution of
Z from the data.
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6.2.1 Regional Distribution and Theoretical Distribution

Global estimation of the point distribution covers in fact two conceptually
different problems:

1. Considering a regionalized variable z(x), where x belongs to a domain D,
one is interested in the regional histogram of the values of z(x), x2D, or
in the regional c.d.f.

FR zð Þ ¼ 1

jDj
Z
D

1z xð Þ, z dx

FR(z) is an ordinary function that exists independently of any probabilistic
interpretation. However, since z(x) is known only at a limited number of
points {xα : α¼ 1, . . . , N}, one is led to consider z(x) as a realization of a
RF Z(x), and the problem becomes that of the estimation of

FR zð Þ ¼ 1

jDj
Z
D

1Z xð Þ, z dx

for any value of z from the data {Z(xα) : α¼ 1, . . . , N}. We will keep the
same notation FR(z) for a c.d.f. that is now random (through Z).
The problem is meaningful for general random function models, but in
practice, it is only considered under an assumption of global or local
stationarity.

2. Given that one turns to the model of a stationary and ergodic RF Z(x),
the global problem may be regarded as the estimation of the theoretical
marginal distribution F(z)¼E[1Z(x),z].

This distinction generalizes the distinction between the theoretical mean, or
mathematical expectation, of an SRF Z(�) and the regional mean of Z(x) in
the domain of interest D. In practice, we can at best determine the regional
distribution, and most of the time only its approximation by an empirical
distribution. We will often have to consider a framework in which the theo-
retical distribution is known. We will then assume that it can be identified with
the empirical distribution or modeled from it, which amounts to assuming
that we have a fairly large number of data and that the domain of interest is
large with respect to the range (cf. the discussion in Section 2.3.5 on the
integral range and the conditions under which the regional mean and the
theoretical mean can be identified). Of course we will try to walk away as
much as possible from the relatively strict stationarity that is implicit in this
hypothesis.

Determination of the Empirical Distribution

Consider a stationary and ergodic RF Z(x), with marginal distribution F(dz).
This distribution is generally unknown. We assume to be dealing with a
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realization z(x) of the RF Z(x), whose values zα¼ z(xα) are known at N data
points {xα : α¼ 1, . . . , N}. It is further assumed that we can construct an
empirical distribution F̂ that is a good approximation of the true F by assigning
an appropriate weight to each sample. The empirical distribution F̂ is of the
form

F̂ zð Þ ¼
XN
α¼1

wα1zα , z ð6:1Þ

where the wα are nonnegative weights summing to one. The simplest is to give
all weights the same value 1/N. This solution is acceptable if the sampling
pattern is nearly uniform. But data are often in clusters or aligned along
profiles, or else the sampling grid is locally tighter, for example, in shallow
areas, near pollution peaks, or in well-mineralized zones. We have seen in
Section 2.2.6 that special care must be taken to get a sensible sample variogram
from such data. Similarly, the raw data histogram provides a biased image of
the mean characteristics. We have to seek a declustering technique to weigh
each sample according to its location relative to the other samples and to the
domain D of interest. Geometrical methods, such as cell declustering (Journel,
1983; Deutsch and Journel, 1992) and polygonal declustering (Isaaks and
Srivastava, 1989; Deutsch, 2002), provide ad hoc answers to the presence of
clusters but do not take spatial correlations into account.

A natural way of accounting for these correlations is to use kriging weights.
Several solutions are possible according to the type of kriging considered.
Switzer (1977) proposes to minimize a weighted sum of relative variances of the
differences F̂ zð Þ � F zð Þ for different values of z. If one is mainly interested in
values near the median, he suggests to simply take the kriging weights of the
estimation of the mean value in D of the indicator associated with the median.
Another solution is to take the ordinary kriging weights of ZD. This method has
the merit of being consistent with the estimation ofZD. Indeed the mean that can
be deduced from the histogram thus estimated coincides by construction with the
direct kriging ofZD. The histogram obtained is a genuine histogram if all weights
are positive, which is generally the case for global estimation. This histogram
obviously depends on the domain D, so that the choice of D matters. It should
not exceed too much the “envelope” of the sample points.

Evaluating the Tail of the Distribution

The empirical distribution (6.1) progresses by jumps at each value z that
coincides with one of the data values zα. This can be avoided by replacing 1zα , z

in (6.1) by a kernel k(zα; z) that is an appropriate continuous function
increasing from 0 to 1 in a neighborhood of zα.

Another reason to do so is that a finite number of data does not sample the
full range of the possible values. Even if the data are evenly located and are of
good quality, the sample variance is on average smaller than the a priori
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variance of Z, because it is a variance of dispersion of point values in the
domain defined by the union of all the data points.

Since k(zα; �) can be considered as a cumulative distribution function,
examples of kernels are (a) the Gaussian c.d.f. for a variable with a symmetric
distribution and (b) the lognormal c.d.f. for a positive variable with a positively
skewed distribution. The mean of the distribution k(zα; �) is fixed at zα so that
the sample mean is not altered. Its variance is independent of zα (Gaussian
kernel), or proportional to z2α (lognormal kernel), and is parameterized so as to
obtain the desired tail or the desired variance for Z (for example, a variance
equal to the sill of the variogram). This method, proposed by Deraisme and
Rivoirard (2009), is very flexible.

Modeling of the Global Distribution

This empirical distribution may display peculiarities of the data set, reflecting
the anecdote rather than the global behavior in the area of interest. So a smooth
version of F̂ may be retained for F (e.g., a piecewise linear function). In all cases
it is important to pay attention to the modeling of F at both ends of the dis-
tribution, especially the tail of the distribution for a nonnegative variable.
At that point, external knowledge can be incorporated. For example, a linear or
negative exponential function can be used to model the end of the cumulative
distribution up to what is considered as the maximum possible value for Z. We
can control the fitting by comparing the empirical distribution and the final
model, as well as the corresponding selectivity curves presented in Section 6.5.1.

6.2.2 Transform to a Gaussian Variable

In a nonlinear study the interest usually lies more in the estimation of a local
conditional distribution than in the global distribution. Gaussian SRFs have
nice properties for that. While it is rare to encounter a variable with a Gaussian
spatial distribution, it is usually possible at least to transform it into one with
a Gaussian marginal. If Z(�) has a continuous marginal distribution F(dz) and
if G(dy) stands for the standard Gaussian distribution, the transformation
Y ¼ G�1ðF Zð ÞÞ transforms Z(�) into an SRF Y(�) with standard Gaussian
marginal and is called the normal score transform (recall that FðZ xð ÞÞ ¼ GðY xð ÞÞ
in distribution, being both uniform deviates). This Gaussian transformation can
be defined “graphically” from the modeled c.d.f. F: Each point (z, F(z)) of the
graph of the c.d.f. is associated with the point (y, G(y)) such that F(z)¼G(y)
(Figure 6.1). Conversely, Z can be regarded as the transform of the Gaussian Y
by Z xð Þ ¼ ϕðY xð ÞÞ, and this will turn out to be the useful formulation. The
function ϕ ¼ F�13G is called the transformation (or anamorphosis) function. It
can be represented by its expansion into Hermite polynomials (Section 6.4.4).
The normal score transform is the function ϕ�1.

The case where G is the standard normal c.d.f. is of special interest, but we
will also consider other marginal distributions for Y—for example, a gamma
distribution. The methodology is exactly the same as for a Gaussian
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transformation, except that the polynomial expansion of ϕ is made with
Laguerre polynomials (Section 6.4.4)

Improved Modeling of the Marginal Distribution
in a Multi-Gaussian Framework

Emery and Ortiz (2005b) propose an original and elegant method for modeling
the marginal distribution when Z(�) is regarded as the transform of a Gaussian
random function Y(�)—that is, an SRF with multivariate Gaussian distribu-
tions and not only a Gaussian marginal. They start from a first guess F̂ zð Þ of
the c.d.f. F(z)—for example, the empirical distribution defined by (6.1).

The N data Z(xα)¼ zα are sorted by ascending values (assuming no ties to
simplify the presentation). We denote the sorted data by zi and denote the
associated values of the c.d.f. by F̂ i ¼ F̂ zið Þ. The Gaussian value associated
with zi is yi ¼ G�1 F̂ i

� �
. The c.d.f. F̂ , however, is an approximation to the true

distribution F. The values yi are therefore approximations to the true values
Y(xi) at the locations xi of the sorted data. These true values are unknown, but
they honor the ranking

�N ¼Y x0ð Þ,Y x1ð Þ,Y x2ð Þ, � � �,Y xi�1ð Þ,Y xið Þ
,Y xxþ1ð Þ, � � �,Y xNð Þ,Y xNþ1ð Þ ¼ þN

Starting from the initial approximations yi, a set of {Y(xi) : i¼ 1, . . . , N}
honoring these constraints and consistent with the spatial structure is simulated
with the Gibbs sampler presented in Section 7.7.3: (i) An index i is chosen
randomly and (ii) the value of Y(xi) is relaxed: Y(xi) is simulated conditionally
on the other values Y(xj)¼ yj, j 6¼ i, under the constraint that the updated value
Y(xi) belongs to the current interval ]yi�1, yiþ1[. The procedure is repeated for
another index, and so on, until all the Y(xi) have been updated. The complete
loop is repeated a large number of times. The average of the successive updates
of Y(xi) for a fixed i converges to the conditional expectation of Y(xi).

The Gibbs sampler assumes that the variogram of Y is known, which is not
the case. The method is therefore first applied with a model fitted to the sample
variogram of the yi derived from the first guess F̂ . At the end of each Gibbs
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FIGURE 6.1 An example of graphical Gaussian transformation.
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sampler run, the variogram of the current simulation is calculated and taken as
a new initial model to repeat the whole procedure. Emery and Ortiz show an
example where convergence is obtained after about five iterations of the whole
procedure.

This approach can be easily generalized to the presence of spikes, typically
due to a zero effect (a significant proportion of zero values). It automatically
takes the redundancy of clustered data into account, doing it in a fully con-
sistent way. Moreover, it solves an important practical problem: With the
standard normal score transform the Gaussian data Y(xj) have, by design, a
variance equal or very close to 1, so that their variogram has a sill greater than
1, because the variance of the Y(xj) is a dispersion variance (the exception is
when the range is much shorter than the size of the study domain). Then,
contrary to expectations, Y(x) is not a standard Gaussian SRF, which may
result in unrealistically high back-transformed values. In order to get a sample
variogram with unit sill and a sample variance smaller than 1, in conformity
with the dispersion variance formula, Emery and Ortiz apply the Gibbs sampler
with a variogram model rescaled to a unit sill: The successive sample vario-
grams then progressively tend to have a unit sill.

Note that this methodology gives the transformation ϕ�1, or equivalently
the c.d.f. F, for z¼ zi only. Between these values the c.d.f. must be modeled,
particularly at its tail, using one of the methods presented above.

6.3 LOCAL POINT DISTRIBUTION: SIMPLE METHODS

6.3.1 Local Estimation of the Point Distribution: Goals

Consider a subdomain V of the domain of interest D. The proportion of V
occupied by the points where Z(x) is below a given threshold z is

I zð Þ ¼ 1

jV j
Z
V

1Z xð Þ, z dx ð6:2Þ

Our goal will be its estimation for one or more values of z, or even for all possible
values of z, from observations Z(x1), . . . , Z(xN) at data points x1, . . . , xN.
The optimum estimator is the conditional expectation E[I(z) | data], where
“data” represents the conditioning data Z(x1), . . . , Z(xN). The function I(�) is
a random c.d.f. (throughZ), and determining the conditional expectation of I(z)
amounts to determining the conditional c.d.f.

Fx z j datað Þ ¼ PrfZ xð Þ, z j datag ð6:3Þ

where x represents a uniform random point of V. Indeed

PrfZ xð Þ, z j datag ¼ E½1Z xð Þ, z j data� ¼ E½I zð Þ j data�
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Any other estimator I*(z) can be considered as an approximation F̂x z j datað Þ
to the conditional distribution. The distinction between the conditional dis-
tribution and its approximation is important, especially when the objective is to
define confidence limits. Indeed, if we know the conditional c.d.f. Fx z j datað Þ, a
conditional confidence interval for Z xð Þ at level α is

Z xð Þ 2 F�1
x

α
2
j data� �

,F�1
x 1� α

2
j data� �h i

This interval covers a proportion 1�α of actual situations. But if the estimator
I*(z) is only an approximation to the conditional probability, the interval�
I�

�1 α
2

� �
, I�

�1

1�α
2

� ��
does not necessarily cover a proportion 1�α of situations.

Switzer and Xiao (1988) present a simple example (Gaussian SRF, four
data points at the vertices of a square, I*(z) obtained by kriging of the indicator
1Z(x),z) for which the interval

�
I�

�1

0:05ð Þ, I��1

0:95ð Þ�, which could be expected
to cover the true value in 90% of the cases, contains it only in 79% of the cases
(results obtained by Monte Carlo simulation): Extreme situations are more
likely than expected on the basis of I*(z). Additional results can be found in
Lajaunie (1990), who started from this example.

Let us point out that our stated goal is different from the estimation of the
probability that Z(x) remains less than z at every point of V (i.e., that
the maximum of Z(x) in V remains less than z): That is a sensitive and difficult
problem that will be considered in the case of random functions displaying
extreme values (Section 6.11).1 Our goal also differs from the estimation of the
probability that the mean value of Z(x) in V is less than z, a problem that will
be examined later. However, formula (6.2) shows that the estimation of I(z)
derives directly from the estimation of 1Z(x),z at any point x of V. In terms of
conditional distribution, (6.3) can be written as

Fx z j datað Þ ¼ 1

jV j
Z
V

Fx z j datað Þdx

where Fx(� | data) is the conditional c.d.f. of Z(x) at a fixed point x. Generally,
the difference between the case where V is reduced to a point and that where
V is really a volume will be of the same nature as point kriging and block
kriging. To simplify the presentation, we will only consider here the case where
the studied domain V is reduced to a point x0. Rather than (6.2), the function
I(z) that we try to estimate is simply

1 In the old days, air pollution standards were often defined by reference to peak values, a typical

rule being that at each station where it is monitored, the pollution level should not exceed a

prescribed threshold. Naturally, this is an incentive not to monitor. The statistician’s recommenda-

tion to make the threshold dependent on the number of monitoring stations was regarded as unfair

by politicians who contended that pollution standards should be the same for everyone. Nowadays,

standards have become quite sophisticated.
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I zð Þ ¼ 1Z x0ð Þ, z

Phrased differently, we will seek (an approximation to) the conditional distri-
bution

Fx0 z j datað Þ ¼ PrfZ x0ð Þ, z j datag
rather than the distribution (6.3). Before reviewing a few classic estimators I*
that constitute approximations to the conditional distribution, let us examine the
conditional distribution itself. In its most general form, it is poles apart from
the simple estimators that we consider here. But in practice it is applied only to
Gaussian RFs (up to a transform), namely in a framework in which all
multivariate distributions are entirely determined by their second-order
moments—in other words, by the structural characteristics of linear geostatistics.

6.3.2 Conditional Expectation

General Case

Consider N sample points {xα : α¼ 1, . . . , N} and the target point x0, and
denote by F(z, z1, . . . , zN) the (Nþ 1)-dimensional distribution defined by

F z, z1, : : : , zNð Þ ¼ PrfZ x0ð Þ, z,Z x1ð Þ, z1, : : : ,Z xNð Þ, zNg
From this distribution we can deduce

� the marginals F0(z)¼Pr{Z(x0), z}, F1(z)¼Pr{Z(x1), z}, . . . , FN(z)¼
Pr{Z(xN), z};

� the conditional distribution F0(z | z1, . . . , zN) of Z(x0) when the Z(xα) are
set to values zα.

The optimum estimator of I(z) at the point x0—that is, the conditional
expectation of 1Z x0ð Þ, z—is precisely F0(z 7 z1, . . . , zN).

This method is not practical in the general case because the inference of the
multivariate distribution is beyond reach (if the interval of variation of Z is
discretized in p classes, there are pNþ1 probabilities to estimate, e.g., 1011 values
for only 10 classes and 10 samples; the conditional expectation itself is an
element of a functional space of dimension 1010, and we cannot seriously claim
to be optimizing in a space of such dimension!). Hence the absolute need to
specify a model, despite the risks inherent to this.

The Multi-Gaussian Model

In practice the Gaussian model is sought for its good properties. Suppose that
we transform the variables Z(x0), Z(x1), . . . , Z(xN) to Nþ 1 standard normal
variates Y(x0), Y(x1), . . . , Y(xN) by means of an appropriate transformation ϕ
such that Z(xi)¼ϕ(Y(xi)). The crucial hypothesis of the multi-Gaussian model
is to assume that the (Nþ 1)-dimensional vector (Y(x0), Y(x1), . . . , Y(xN))’ has

c06 30 January 2012; 17:32:44

394 NONLINEAR METHODS



a multivariate Gaussian distribution, and is therefore characterized by the
matrix of covariances {σij : i, j¼ 0, 1, . . . , N}. The conditional distribution of
Y(x0) is then Gaussian. More specifically,

Y x0ð Þ7fY xαð Þ ¼ yα : α ¼ 1, � � �,Ng ¼ y�SK þ σSKU

where y�SK is the simple kriging estimate of Y(x0) and σSK the associated kriging
standard deviation; U is an independent standard normal deviate (standardized
kriging error).

We then have

PrfZ x0ð Þ, z7datag ¼ G
y� y�SK
σSK

� �
with y ¼ G�1ðF zð ÞÞ ð6:4Þ

where “data” represents the conditioning data Z(xα)¼ zα, or equivalently
{Y(xα)¼ yα : α¼ 1, . . . , N}. More generally, the conditional expectation of
any function of Z(x0), expressed as a functionψ of Y(x0), is obtained as

E ψ Y x0ð Þð Þ 7data½ � ¼
Z

ψ y�SK þ σSKu
� �

g uð Þ du

The conditional variance

Var ψ Y x0ð Þð Þ 7data½ � ¼ E ψ2 Y x0ð Þð Þ 7data� �� fE ψ Y x0ð Þð Þ 7data½ �g2

can be obtained in a similar manner. It depends on the data values and not only
on the data configuration with respect to the target point; therefore, it is a more
realistic measure of the dispersion of the true value around its estimate than the
nonconditional variance. Confidence intervals for Z(x0), for example, are more
realistic than those that would be obtained by a direct kriging of Z(x0) from
data Z(xα). Working with Gaussian transformed data thus provides a dis-
tinctive advantage over a direct study of Z(x), provided that the multivariate
Gaussian assumption is sensible.

All calculations can be conveniently carried out by working with expansions
of the function ψ into Hermite polynomials, as shown by Emery (2005a) (also
see useful formulas at the end of Section A.5.2).

All conditioning information is concentrated in the kriging estimate y�SK. The
multi-Gaussian model strongly determines the form of the estimator, and it
hardly allows the data “to speak” for themselves. The assumption on which
it relies is practically unverifiable, but one can at least verify that bivariate
distributions are Gaussian (see Section 6.4.4) and implement a validation
procedure.

If Z(x) is only locally stationary, with a slowly varying mean in the zone of
interest, the same is generally true for Y(x). So one can think of substituting
ordinary kriging for simple kriging of Y(x). But then the kriging estimate and
variance no longer define the conditional distribution of Y(x0). Emery (2005a)
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shows, however, that an unbiased estimator of Y(x0) is obtained if we substitute
y�OK for y�SK and σ2

OK þ 2μ for σ2
SK, namely with

ψ� ¼
Z

ψ y�OK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
OK þ 2μ

q
u

� �
g uð Þ du

where μ is the Lagrange parameter of the ordinary kriging system. The proof is
similar to that presented in the framework of the discrete Gaussian model in
Section 6.8.3.

The multi-Gaussian model is usually used under the assumption that the
spatial distribution of the RF Y(x) is Gaussian (i.e., all finite-dimensional
distributions are Gaussian), so that we could simply call it “the Gaussian
model.” We will, however, use its usual denomination, which emphasizes that
we are working under a stricter assumption than with the bi-Gaussian model
presented later.

Case of a Lognormal SRF

If Z(x) is an SRF with a lognormal spatial distribution,2 let us consider Y(x)¼ logZ(x), which
is a Gaussian SRF. With y�SK and σ2

SK now denoting the simple kriging estimate and variance
of this Gaussian, relation (6.4) becomes

PrfZ x0ð Þ, z 7 datag ¼ G
log z� y�SK

σSK

� �
In other words the conditional distribution of Z(x0) remains lognormal. As we have seen in
Section 3.4.11, its arithmetic mean is the simple lognormal kriging estimator

Z�SLK ¼ exp Y�
SK þ 1

2
σ2
SK

� �
and its logarithmic variance is σ2

SK.
If Y(x) is only locally stationary and if the local mean is unknown, the conditional dis-

tribution is not known but we have seen in Section 3.4.11 that an unbiased estimator of Z(x0)
is

Z�OLK ¼ exp Y�
OK þ 1

2
σ2
OK þ 2μ

� �� �
This result is similar to the preceding one, with the ordinary kriging estimator Y�

OK replacing
the simple kriging estimator Y�

SK and the sum σ2
OK þ 2μ of the ordinary kriging variance and

the Lagrange parameter replacing the simple kriging variance σ2
SK. The ordinary lognormal

kriging Z�OLK is thus equal to the mean of a lognormal distribution with logarithmic mean
Y�

OK and logarithmic variance σ2
OK þ 2μ; nevertheless, that distribution is not the conditional

distribution of Z(x0) and can only be considered as an approximation to it.

2A lognormal RF is a random function of the form Z xð Þ ¼ exp Y xð Þð Þ, where Y(x) is a Gaussian

SRF. Its marginal distribution has two parameters. In applications we sometimes have to add a

translation parameter and to consider that Z xð Þ ¼ bþ exp Y xð Þð Þ. Because the properties of the

three-parameter lognormal distribution are easily deduced from those of the two-parameter

distribution, we will only consider the latter.
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6.3.3 Indicator Methods

Indicator Kriging

We still wish to estimate I zð Þ ¼ 1Z x0ð Þ, z from data {Z(xα) : α¼ 1, . . . , N}. For
a given threshold z, the indicator 1Z(x),z, regarded as a function of x, is a
random function, and our objective can be restated as the estimation of this RF
at the point x0 from the data Z(xα). Indicator kriging, proposed by Journel
(1982), consists of estimating I zð Þ ¼ 1Z x0ð Þ, z by kriging the corresponding
indicator RF 1Z(x),z. We are thus back to a classic problem, one of simple
kriging, given two successive simplifications:

� Replacement of the initial data Z(xα) by indicator data 1Z xαð Þ, z.

� Replacement of conditional expectation by kriging.

While the second step may be regarded as an inevitable approximation to solve
the problem within the scope of two-point statistics, the first step constitutes a
clear loss of information.

In theory, if Z(x) can be considered as an SRF with known marginal F(dz),
since F(z) is by definition the mean of the RF 1Z(x),z one can use simple kriging
with an additional term for the mean

I� zð Þ ¼ 1�
XN
α¼1

λα

 !
F zð Þ þ

XN
α¼1

λα1Z xαð Þ, z

without introducing an unbiasedness constraint. In practice, however, the
marginal is not always known, and one uses ordinary kriging

I� zð Þ ¼
XN
α¼1

λα1Z xαð Þ, z

under the condition
PN

α¼1 λα ¼ 1.
Note that if the objective is the c.d.f. of Z(x) in a volume V rather than at a

point x0 (i.e., if I(z) is defined by an expression such as (6.2)), it suffices to
modify the right-hand sides of the kriging systems as indicated in Section 3.5.2.
In both cases kriging must of course be done using the covariance of the
indicator at the given threshold (which in general changes with z). Indicator
kriging has a number of advantages:

� It takes into account the structure of each indicator 1Z(x),z.

� It produces an estimation variance.

� It does not require prior modeling of the theoretical distribution F.

� It does not require global stationarity, but only local stationarity.
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However, it has some drawbacks:

� There are as many variograms to model as there are levels z considered,
and of course as many kriging systems to solve.

� Since kriging does not guarantee, except in special circumstances, that the
weights λα are nonnegative, we are exposed to getting estimates I*(z) that
are negative or greater than 1. Even if for each level z the weights λα are
positive, there is no assurance that the estimates of I(z) at the various
levels satisfy the order relations of a c.d.f. (z, z0 . I(z) # I(z0)). This
problem is resolved, for example, by using a quadratic correction
(Sullivan, 1984): From initial estimates I�n ¼ I� znð Þ at the different levels
zn, define consistent estimators I��n by

X
n

wn½I��n � I�n �2 minimum

under the condition that monotonicity is achieved. The positive weighting
coefficients wn are selected according to the relative importance of the
various levels zn.

A simplification often made is to use the same variogram for all levels, for
example, the variogram of Z(x) or the variogram of the indicator of the
median, as suggested by Journel (1983). In reality, this is justified only if all
variograms are proportional. Matheron (1982b) showed that such property is
true for all levels only in the very special case of the mosaic model.

Case of a Mosaic SRF

For such a random function, either Z(x) and Z(x0) are equal with probability ρ(x0 � x), and
the distribution of their common value is F, or else they are independent and have this same
distribution F. In other words, the space is partitioned into random compartments, and the
values assigned to the compartments are independent random variables with the same dis-
tribution F. It is immediately seen, denoting by m and σ2 the mean and variance of F, that the
centered covariances of Z(x) and 1Z(x),z are

Cov Z xð Þ,Z xþ hð Þð Þ ¼ σ2ρ hð Þ,
Cov 1Z xð Þ, z, 1Z xþhð Þ, z

� � ¼ F zð Þ 1� F zð Þð Þ ρ hð Þ

In this very special model, indicator kriging is equivalent to kriging with the covariance of Z
(x). Furthermore, in this model, indicator cross-covariances for two different levels z and z0

are also proportional to ρ(h):

Cov 1Z xð Þ, z, 1Z xþhð Þ, z0
� � ¼ F min z, z0ð Þð Þ 1� F max z, z0ð Þð Þ½ � ρ hð Þ

The set of indicators associated with various threshold levels thus conforms to a proportional
covariancemodel, andwe have seen in Section 5.6.4 that kriging is then equivalent to cokriging.

But aside from the mosaic case, the shape of an indicator variogram usually changes with the
level. In theGaussian case, for example, a “destructuring” of the indicator variogram is observed
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as the threshold departs from themedian (e.g., seeFigure 2.24). The indicator variogram tends to
the nugget effect model so that at extreme levels local estimation of an indicator by kriging
becomes useless.

Estimation of a Conditional Variable

Once we have an approximation I*(z) to the conditional c.d.f. of Z(x0), it is possible to
approximate any function ψ Z x0ð Þð Þ by the expected value

ψ� ¼
Z

ψ zð Þ I� dzð Þ

Consider, for example, for a fixed threshold z0, the variables T0 ¼ 1Z x0ð Þ$ z0 and
Q0 ¼ Z x0ð Þ1Z x0ð Þ$ z0 : In mining, if z0 is the cutoff grade, these variables represent the indi-
cator of ore at point x0 and the corresponding quantity of metal (counted zero when the grade
is less than z0). They can be estimated by

T� ¼ 1� I� z0ð Þ and Q� ¼
Z N

z0

z I� dzð Þ

In the scope of a mosaic model, or simply if we are content to use the same variogram model
(up to a multiplicative factor) for all thresholds z, it can be seen that these estimators are of
the form

T� ¼
XN
α¼1

λα1Z xαð Þ$ z0 and Q� ¼
XN
α¼1

λα Z xαð Þ 1Z xαð Þ$ z0

where the λα are kriging weights. We can estimate T0 and Q0 by direct kriging of the variables
T xð Þ ¼ 1Z xð Þ$ z0 and Q xð Þ ¼ Z xð Þ1Z xð Þ$ z0 and the corresponding ore grade (the conditional
variable Z(x0) |Z(x0). z0) by the ratio m̂ ¼ Q�=T�. Just as in Section 3.5.5, m̂ is a weighted
average (i.e., with weights adding up to one) of Z data above the threshold z0. This would not
be the case if different variograms were used for the estimation of T0 and Q0.

Indicator Cokriging

Indicator kriging takes into account the position of a value relative to the
threshold but not its proximity: A value just slightly above the threshold is not
distinguished from a very large value. A way to incorporate more information is
to consider the value of the variables relative to a series of thresholds zn. Rea-
soning in a multivariate context, it is logical to seek to estimate I(zn) by cokriging
using not only the indicators 1Z xαð Þ, zn but also the indicators at all other levels
1Z xαð Þ, zm . This is indicator cokriging. The estimator is then of the form

I� znð Þ ¼ λ0 þ
X
m

XN
α¼1

λmα 1Z xαð Þ, zm

Again one can either consider cokriging with a known mean, that is, find the
λmα by simple cokriging and let

λ0 ¼ F znð Þ �
X
m

F zmð Þ
XN
α¼1

λmα

" #
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or use ordinary cokriging with the unbiasedness constraints

λ0 ¼ 0,
XN
α¼1

λnα ¼ 1,
XN
α¼1

λmα ¼ 0 if m 6¼ n

From a theoretical standpoint, this method is clearly more powerful than indi-
cator kriging, since it incorporates the information that a sample value is slightly
above the threshold zn (1Z xαð Þ, znþ1

¼ 1) or well above the threshold (e.g.,
1Z xαð Þ, zm ¼ 0 for all levels considered), while in both cases 1Z xαð Þ, zn ¼ 0. But it
has a downside: It requires estimation and modeling of covariances and cross-
covariances of all the different levels, not to mention solving very large systems.

One might be tempted to take the same model for all these covariances, up to
a scaling factor. But this leads to a proportional covariance model where, with all
variables being sampled at the same points, cokriging is equivalent to kriging. It
is therefore seen that the advantage of indicator cokriging over plain kriging
relies on a fine modeling of all direct and cross-covariances. Unfortunately, we
do not have theoretical models available for representing a set of indicators in a
consistent manner. Journel and Posa (1990) give necessary but not sufficient
conditions, and we have seen in Section 2.5.3 that the problem is already not
simple when a single indicator is considered. The implementation of indicator
cokriging thus remains difficult, which explains why the method has been pre-
sented many times since mentioned by Journel (1983), but apparently seldom
applied to estimation problems, except in studies of a methodological nature,
such as by Liao (1990); Goovaerts (1994, 1997), studying concentrations of
chemical elements in the soil, obtains inferior results with indicator cokriging
than with plain indicator kriging, which emphasizes this difficulty. This has
motivated the development of probability kriging (Sullivan, 1984), which consists
of cokriging each indicator with a single secondary variable: the rank obtained by
simple sorting of the data or, equivalently, the variableR(x) =F(Z(x)) where F is
the c.d.f. of Z. In fact, true cokriging of the whole set of indicators is achieved by
disjunctive kriging, as will be shown in the next section. Indicator cokriging
seems to be more used to build conditional simulations (see Section 7.7.1).

Elementary Comparisons

Let Z(x) be an SRF whose marginal distribution is continuous and with median zero. We are
interested in the indicator RF 1Z(x) $ 0. More specifically, we want to evaluate the indicator of
the event Z(x0) $ 0 at the point x0¼ x1þ h given the value Z(x1)¼ z. Indicator kriging
proposes to approximate this indicator by

I� ¼ 1
2 þ r 1z$ 0 � 1

2

� �
where r is the correlation coefficient of the indicator values at x0 and x1. This problem can
cover very different situations with the following extremes:

1. Z(x) is a mosaic SRF. Indicator kriging coincides with conditional expectation and is
the appropriate answer.
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2. Z(x) is a Gaussian SRF (and therefore with mean zero). The correlation coefficient
ρ of Z(x0) and Z(x1) is related to the indicator correlation r by ρ ¼ sin π

2
r

� �
(see (2.77)).

The distribution of Z(x0) conditionally on Z(x1)¼ z is Gaussian, with mean ρ z and
variance (1� ρ2) σ2, where σ2 denotes the variance of Z. Denoting by G the standard
Gaussian c.d.f. we have

E½1Z x0ð Þ$ 0 7Z x1ð Þ ¼ z� ¼ Pr½Z x0ð Þ$ 0 7Z x1ð Þ ¼ z� ¼ G
ρz

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p !

Figure 6.2 depicts the conditional expectation in the Gaussian case as a function of z and its
approximation by indicator kriging for σ¼ 1, ρ¼ 0.707 and r¼ 1/2, which is seen to be rather
crude, and hence the interest of indicator cokriging and more precisely of disjunctive kriging
(which would here coincide with conditional expectation).

Note that neither the conditional expectation nor the kriged indicator assume the values
0 or 1. This is inherent to the mean square error minimization criterion. If we force
the classification by using a decision rule based on the sign of the simple kriging estimator
Z*(x0)¼ ρZ(x1), the resulting probability of misclassification is given by

E
�
1Z*ðx0Þ$ 0 � 1Zðx0Þ$ 0

�2 ¼ 1

2
� 1

π
arc sinðj ρ jÞ ¼ 1

π
arc cosðj ρ jÞ

In this formula ρ is the correlation between Z(x0) and Z(x1) and j ρ j represents the correlation
between Z(x0) and its simple kriging estimator Z*(x0), which is the parameter of interest when
applying (2.77). Since the kriging variance of Z(x0) is σ

2
SK¼ (1�ρ2) σ2, the formula can be

written as

E½1Z*ðx0Þ$ 0 � 1Zðx0Þ$ 0�2 ¼ 1

π
arc sin

σSK

σ

	 

This result applies for simple kriging estimation of Z(x0) from any number of points. As
intuition suggests, the classification is perfect when σSK¼ 0 and worst when σSK¼σ (the
maximum), where it becomes completely random and therefore wrong half of the time.

6.4 LOCAL ESTIMATION BY DISJUNCTIVE KRIGING

We have just seen that it is not easy to estimate the indicator I zð Þ ¼ 1Z x0ð Þ, z by
cokriging of indicators associated with a number of thresholds, if only because

0

0.25

0.50

0.75

1

�3 �2 �1 0 1 2 3

z

I*

Conditional expectation
Indicator kriging I*

Probability

FIGURE 6.2 Estimates of the probability that Z(x0) $ 0 conditionally on Z(x1)¼ z as a function

of z when the bivariate distribution of Z(x0) and Z(x1) is a standard normal with correlation

coefficient 0.707: comparison between conditional probability and indicator kriging.
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of the difficulty to represent direct and cross-covariances in a consistent way.
But as mentioned in Section 2.5.3, the knowledge of direct and cross covar-
iances of the indicators of an SRF for all possible levels is equivalent to the
knowledge of the bivariate distributions of the SRF, since

PrfZ xð Þ, z and Z xþ hð Þ, z0g ¼ E½1Z xð Þ, z 1Z xþhð Þ, z0 � ¼ Czz0 hð Þ
where Czz0(h) is the noncentered cross-covariance between the indicators
associated with the thresholds z and z0. We are now going to examine the
approach based on a direct modeling of bivariate distributions, namely disjunc-
tive kriging (Matheron, 1973b, 1976a).

6.4.1 Disjunctive Kriging

Objective

Let Z(x) be a random function which for the time being we do not assume nec-
essarily stationary. We haveN sample points {xα : α¼ 1, . . . ,N} and thereforeN
data Zα¼Z(xα). We wish to estimate I zð Þ ¼ 1Z x0ð Þ, z, or more generally a
quantity Z0 ¼ f0 Z x0ð Þð Þ. The approach is to carry out the estimation of Z0 by
cokriging of the indicators. If the domain of variation of Z(x) is partitioned into
classes Bm, we can associate to Z(x) the indicators 1Bm

Z xð Þð Þ. Cokriging Z0 from
indicators amounts to seeking an estimator of the form

Z� ¼ λ0 þ
X
m

X
α

λmα 1Bm
Zαð Þ ð6:5Þ

If the line is partitioned into infinitely small intervals Bm,Z* is in fact of the form

Z� ¼
XN
α¼1

fα Zαð Þ ð6:6Þ

where the fα aremeasurable functions. The problem thus amounts to the estimation
ofZ0byasumofunivariatemeasurable functionsof thedata.This isan intermediate
objective between kriging (Z� ¼ λ0 þ

PN
α¼1 λαZα, linear functions fα only) and

conditional expectation (Z� ¼ f Z1, : : : ,ZNð Þ, a single functionofall thedata).This
objective is called the disjunctive kriging of Z0 (abbreviation DK), since in the
expression (6.5) of Z* the indicators 1Bm

Z xð Þð Þ achieve a disjunctive coding of
information, in the sense that at a point xα one and only one of the indicators is
nonzero. Such type of coding is classic in correspondence analysis (Benzécri et al.,
1973). Aswewill see, knowledge of the bivariate distributions of {Z0,Z1, . . . ,ZN} is
sufficient to solve the problem.Thedeterminationof these distributions is not out of
reach when we have enough data. Revisiting the example of Section 6.3.2, if
the interval of variation is discretized into p classes and if disjunctive kriging is
carried out from N data, we must determine (Nþ 1) (Npþ 2) p/2 probabilities
compared with pNþ1 for conditional expectation and (Nþ 1) (Nþ 2)/2 for
simple kriging. So, still with p¼ 10 and N¼ 10, we find that disjunctive kriging
requires the inference of 5610 values, against 66 for simple kriging and 1011 for
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conditional expectation. With regularly spaced data, stationarity assumptions
reduce the required numbers for kriging by a factor of the order of N/2, and this
is further reduced to a few parameters by modeling the covariance functions.

General Equations of Disjunctive Kriging

Weassume that the randomvariables {Zα :α¼ 1, . . . ,N} andZ0 have second-order
moments. Thus they belong to a Hilbert space equipped with the scalar product
hX ,Yi ¼ E½XY �.We denote byHα the subspace generated by randomvariables of
the form fα(Zα) with a finite second-order moment, where fα is a measurable
function. LetH be the subspace of randomvariables of the form

PN
α¼1 fα Zαð Þ. The

disjunctive kriging ofZ0—inotherwords, the optimal estimator of the form (6.6)—
is simply the projection ofZ0 ontoH. By the projection theorem (cf. Section 1.1.2),
the DK estimator Z* is characterized by the orthogonality property

hZ� � Z0,Xi ¼ 0 ’X 2 H ð6:7Þ

Any random variable of the subspace H being of the form X ¼PN
α¼1 fα Zαð Þ

orthogonality must be satisfied in particular for any random variable belonging
to one of the subspacesHα, thus of the form X¼ fα(Zα), and on the other hand,
the linearity of the scalar product ensures that this condition is also sufficient to
achieve (6.7).3 Consequently, (6.7) is equivalent to

hZ�,Xi ¼ hZ0,Xi for all X of the form fα Zαð Þ
By the characteristic formula (1.3) for conditional expectation this condition is
equivalent to

E½Z� 7Zα� ¼ E½Z0 7Zα�, α ¼ 1, : : : ,N

Therefore the functions fα corresponding to the DK Z� ¼PN
α¼1 fα Zαð Þ are

characterized by

XN
β¼1

E½fβ Zβ
� �

7Zα� ¼ E½Z0 7Zα�, α ¼ 1, : : : ,N ð6:8Þ

This system involves the conditional distributions of Z0 and of Zβ given Zα and
only requires knowledge of bivariate distributions.

It follows from (6.7) that the DK estimation variance is

σ2
DK ¼ E½Z� � Z0�2 ¼ Var½Z0� � Var½Z�� ¼ Var½Z0� � Cov½Z0,Z

��
These results are interpreted like those of simple kriging (Section 3.3.2).

3Note that the Hα are not disjoint since all contain the constant random variables. Also, the

projection theorem assumes that the spaceH is closed, which is not proven. However, this question

is not blocking since in the isofactorial models, used in practice, the projection can be found and is

of the correct form.
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Disjunctive Kriging Equations for a Transformed Isofactorial Model

There are SRFs for which the solution of the system (6.8) is greatly simplified,
namely those whose bivariate distributions are isofactorial, the best known
example being SRFs with Gaussian bivariate distributions. We will see shortly
that this circumstance is far from being general. It can be extended, however, to
the case where Z(�) is the transform of an SRF Y(�) with isofactorial bivariate
distributions. We will present later the general properties of isofactorial models
and the main models used in geostatistics.

Let us denote by G(dy) the marginal distribution of the SRF Y(x) and
consider transforms ψ Y xð Þð Þ where ψ is square-integrable for G. The main
property of an isofactorial model is that there exists a set of functions {χn(y) :
n¼ 0, 1, . . . } (the factors) such that the transform ψ Y xð Þð Þ can be decomposed
into a sum

PN
n¼0 ψn χn Y xð Þð Þ whose coefficients ψn are given by

ψn ¼
Z

ψ yð Þχn yð ÞG dyð Þ ð6:9Þ

where the factors χnðY xð ÞÞ are uncorrelated SRFs satisfying

E½χmðY xð ÞÞχnðY xþ hð ÞÞ� ¼ δmn Tn hð Þ ð6:10Þ

and Tn(h) is the covariance of the SRF χnðY xð ÞÞ with Tn(0)¼ 1. From the
characteristic property (1.3) it follows that (6.10) is equivalent to

E½χnðY xþ hð ÞÞ 7Y xð Þ� ¼ Tn hð Þ χnðY xð ÞÞ ð6:11Þ

One of the factors, ascribed the index 0, is the constant function χ0(y) � 1. The
corresponding (noncentered) covariance is T0(h) � 1.

Let us now reformulate our problem in the DK framework:

1. The SRF Z(x) of interest is a transform ZðxÞ ¼ ϕðYðxÞÞ where Y(x) is an
SRF with isofactorial bivariate distributions.

2. We wish to estimate a function of Z(x0) that we consider of the form
Z x0ð Þ ¼ ψ ðY x0ð ÞÞ. Typically, the objective is the estimation of 1Z x0ð Þ, z.
It is equivalent to the estimation of 1Y x0ð Þ, y where y¼ϕ�1(z), since
applying the threshold z on Z is the same as thresholding Y at y¼ϕ�1(z).

3. We have data {Z(xα) : α¼ 1, . . . ,N} or, equivalently, data {Y(xα) :
α¼ 1, . . . ,N}.

To simplify notations, let Y0¼Y(x0) and Yα¼Y(xα), and let us rewrite our
objective as being the estimation of Z0¼ψ(Y0) by an estimator of the form

ψ� ¼
XN
α¼1

fα Yαð Þ
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ψ(Y0) and the fα(Yα) can be decomposed on the basis of the factors χn as

ψ Y0ð Þ ¼
XN
n¼0

ψn χn Y0ð Þ,

fα Yαð Þ ¼
XN
n¼0

fαn χn Yαð Þ
ð6:12Þ

The coefficients ψn, defined by (6.9), are known, since the function ψ is
given. The coefficients fαn are to be determined. The disjunctive kriging system
(6.8) is written here as

XN
β¼1

E½ fβ Yβ
� �

7Yα� ¼ E½ψ Y0ð Þ 7Yα�, α ¼ 1, : : : ,N

As a consequence of (6.11) and (6.12) and by interchanging the summation
order, we obtain

XN
n¼0

XN
β¼1

fβn Tn xβ � xα
� �

χn Yαð Þ ¼
XN
n¼0

ψn Tn x0 � xαð Þχn Yαð Þ, α ¼ 1, : : : ,N

Since the χnðY �ð ÞÞ are uncorrelated SRFs, these equations can be broken up
into a distinct system for each value of n: The coefficients {fαn : α¼ 1, . . . ,N}
are solutions of the system

XN
β¼1

fβn Tn xβ � xα
� � ¼ ψn Tn x0 � xαð Þ, α ¼ 1, : : : ,N ð6:13Þ

Tn(h) being the covariance of the SRF χnðY xð ÞÞ, this is the simple kriging
system of ψn χn(Y0) from the χn(Yα). For n¼ 0 this system is degenerate, and it

suffices to take any fα0 such that
PN

α¼1 fα0 ¼ ψ0.

The advantage of the isofactorial model is that cokriging of factors reduces
to kriging of each factor separately. We could say in an incorrect but illustrative
manner that disjunctive kriging of Z0¼ψ(Y0) is equivalent to a combination of

simple kriging of Y0 from the Yα, of Y
2
0 from the Y2

α, and so on (the image is

incorrect because the factors are usually not monomials). Note that if the
objective is the mean value of ψðY xð ÞÞ in a volume V and not at a point x0
[e.g., if it is the c.d.f. I(z) defined in (6.2)], it suffices in the systems (6.13) to
replace the point covariance Tn(x0� xα) on the right-hand side by the mean
value of Tn(x� xα) over V (cf. Section 3.5.2).

At this point let us recapitulate the DK procedure in the typical case of the
estimation of I zcð Þ ¼ 1Z x0ð Þ, zc where for clarity the index c is used to denote a
fixed cutoff or threshold:
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1. Transform the data Z(xα) into isofactorial Y(xα) defined by Z xαð Þ ¼
ϕðY xαð ÞÞ.

2. Translate the objective I(zc) into a function ofY(x0): ψðY x0ð ÞÞ ¼ 1Y x0ð Þ, yc

with yc¼ϕ�1(zc).

3. Compute the coefficients ψn of the expansion of the function ψ using
(6.9); in this case this simplifies to ψn ¼

R yc
�N χn yð ÞG dyð Þ.

4. Solve the systems (6.13) to obtain the weights fnα.

5. Compute the estimate as I� zcð Þ ¼ PN
α¼1

PN
n¼0

fnα χn Y xαð Þð Þ.

Expression of Disjunctive Kriging from Estimates of the Factors

The simple kriging of the factor χn(Y0) is

χ�n ¼
XN
α¼1

λnα χn Yαð Þ ð6:14Þ

with weights λnα solution of the system (6.13) written with ψn¼ 1 (in λnα we
deliberately reverse the order of the indexes):

XN
β¼1

λnβ Tn xβ � xα
� � ¼ Tn x0 � xαð Þ, α ¼ 1, : : : ,N ð6:15Þ

By linearity, we can then form the DK estimate of any function ψ(Y0) using the
formula

ψ� ¼ ψ0 þ
XN
n¼1

ψn χ
�
n ð6:16Þ

Pseudo Conditional Distribution

Starting from (6.16) and replacing the coefficients ψn by their expression in
(6.9), we get

ψ� ¼ ψ0 þ
Z

ψ yð Þ
XN
n¼1

χn yð Þχ�n
 !

G dyð Þ

which amounts to the expected value of ψ(Y0) with respect to the pseudoprob-
ability distribution

G� dyð Þ ¼ 1þ
XN
n¼1

χn yð Þχ�n
 !

G dyð Þ
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This distribution is an approximation to the conditional distribution of Y0

given the Yα. It sums to one. However, there is no guarantee that G*(dy) is
positive for any value of y.

Disjunctive Kriging Variance

The estimation variance of χn(Y0) is the simple kriging variance

σ2
n ¼ Var½χ�n � χn Y0ð Þ� ¼ 1�

X
α

λnαTn x0 � xαð Þ ð6:17Þ

It is of course zero for n¼ 0, since the factor χ0(Y0) � 1 is estimated without
error. The DK variance of Z0¼ψ(Y0) is the sum of the kriging variances of the
factors ψn χn(Y0):

σ2
DK ¼ Var½ψ� � ψ Y0ð Þ� ¼

XN
n¼1

ψ2
n σ

2
n ð6:18Þ

6.4.2 Definition and General Properties of an Isofactorial Model

The isofactorial representation of the bivariate normal distribution has been
known for a long time [e.g., Cramér (1945, p. 290)]. More generally, isofactorial
bivariate models have first been introduced in quantum mechanics; they
appeared in the field of stochastic processes with the study of Markov chains
[e.g., Karlin and McGregor (1957, 1960)]; they are at the basis of correspon-
dence analysis (Benzécri et al., 1973). Their introduction in geostatistics and the
systematic study of a large number of models are due to Matheron (a pre-
sentation of most models, along with references to the original technical
reports, can be found in Armstrong and Matheron, 1986a�c). Let us examine
in more detail the properties of the isofactorial models that will be useful to us.
Our presentation will concern the bivariate distributions of the (Y(x), Y(xþ h))
pairs from an SRF (of order 2).

Hilbertian Basis

Let Y(x) denote an SRF with marginal distribution G (not necessarily Gauss-
ian). By definition, the system of functions {χn(y) : n¼ 0, 1, . . . } is a Hilbertian
basis for the space L2(G) if

1. The functions χn(y) form a complete countable system for the marginal
distribution G: Any measurable function ψ such that

R
ψ yð Þ2G dyð Þ,N

can be represented by the series

ψ yð Þ ¼
XN
n¼0

ψn χn yð Þ ð6:19Þ
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with

ψn ¼
Z

ψ yð Þχn yð ÞG dyð Þ ð6:20Þ

2. The functions χn(y) are orthonormal for the distribution G, namelyZ
χm yð Þχn yð ÞG dyð Þ ¼ δmn ð6:21Þ

or, in probabilistic terms,

E½χm Y xð Þð Þχn Y xð Þð Þ� ¼ δmn

The functions χn are the factors. For most models in use, one of the factors,
ascribed the index 0, is a constant function. Since its norm is 1, its value is either
�1 or þ1. The value þ1 is usually selected:

χ0 yð Þ � 1

We will restrict ourselves to this case, because all the isofactorial models we will
present satisfy this condition.4 Letting m¼ 0 in (6.21), it is seen that all the
other factors have zero expectation:Z

χn yð ÞG dyð Þ ¼ 0 or E½χn Y xð Þð Þ� ¼ 0 n. 0ð Þ

Note that relation (6.21) simply expresses that at the same point x, χm Y xð Þð Þ
and χn Y xð Þð Þ are uncorrelated (m 6¼ n).

Definition of an Isofactorial Model

By definition, the bivariate distributions of an SRF Y(x) with marginal distri-
butionG(dy) constitute an isofactorialmodel if the followingproperty is satisfied:

� For any two points x and xþ h, the bivariate distribution of the pair (Y(x),
Y(xþ h)) can be factorized in the form

Gh dy, dy0ð Þ ¼
XN
n¼0

Tn hð Þχn yð Þχn y0ð ÞG dyð ÞG dy0ð Þ ð6:22Þ

for some Hilbertian basis {χn : n¼ 0, 1, . . . } of the space L2(G).

The factorsχn are the same for all h, hence the denomination “isofactorialmodel.”

4 It is, however, easy from such a basis to derive a basis without constant function, such as by

substituting χ0 �ð Þ � χ1 �ð Þð Þ= ffiffiffi
2

p
and χ0 �ð Þ þ χ1 �ð Þð Þ= ffiffiffi

2
p

to χ0 and χ1.
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Properties of an Isofactorial Model

The following properties can be verified:

� Formula (6.22) expresses that the conditional distribution of Y(xþ h)
given Y(x)¼ y is

PN
n¼0 Tn hð Þχn yð Þχn y0ð ÞG dy0ð Þ. As a consequence we

recover (6.11)

E½χn Y xþ hð Þð Þ 7Y xð Þ� ¼ Tn hð Þχn Y xð Þð Þ
which can be taken as an alternative definition of an isofactorial model. It
is a little more general than definition (6.22), because it allows us, for
example, to incorporate the case where Y(x) and Y(xþ h) are equal and
have a correlation of þ1.

� From (6.22) we also haveZZ
χm yð Þχn y0ð ÞGh dy, dy0ð Þ ¼ δmn Tn hð Þ

or, in probabilistic terms,

E½χm Y xð Þð Þχn Y xþ hð Þð Þ� ¼ δmn Tn hð Þ

which is (6.10). In other words, when m 6¼ n, χm Y xð Þð Þ and χn Y xð Þð Þ are
not only orthogonal at the same point, as expressed by (6.21), but also
spatially orthogonal; that is, χm Y xð Þð Þ and χn Y xþ hð Þð Þ are orthogonal
for all h. The random functionsχn Y xð Þð Þ are therefore stationary (at order 2)
and uncorrelated, and they have as respective covariances the Tn(h)
functions. These covariances in fact are correlograms, since the factors are
normalized. In particular, T0(h) � 1, since χ0(y) � 1 (the other factors have
zero expectation, so T0 is the only noncentered covariance).

� Given that χ0(y) � 1, that the other factors have zero expectation, and
that all these factors constitute an orthonormal system, it is easy to show
that the mean and variance of the SRF ψ Y �ð Þð Þ can be related to the ψn

defined by (6.20) by

E½ψ Y xð Þð Þ� ¼ ψ0, Var½ψ Y xð Þð Þ� ¼
XN
n¼1

ψ2
n ð6:23Þ

and that its covariance takes the form

Cov ψ Y xð Þð Þ,ψ Y xþ hð Þð Þð Þ ¼
XN
n¼1

ψ2
n Tn hð Þ ð6:24Þ

Likewise, if ϕ is another measurable function whose expansion has
coefficients ϕn, the cross-covariance of ϕ Y xð Þð Þ and ψ Y xþ hð Þð Þ can be
written in the form
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Cov ϕ Y xð Þð Þ,ψ Y xþ hð Þð Þð Þ ¼
XN
n¼1

ϕn ψn Tn hð Þ ð6:25Þ

Special Case of Polynomial Factors

Some models have polynomial factors and share the following additional
properties:

� χn is a polynomial of degree n.

� Denoting the mean and standard deviation of Y(x) by mY and σY, the
factor χ1 is (with an arbitrary choice of sign)

χ1 yð Þ ¼ y�mYð Þ=σY

� As a consequence, T1(h) coincides with the correlogram ρ(h) of Y(x).
� Since the above expression of χ1 can be inverted as y¼mYþσY χ1(y), the
conditional expectation of Y(xþ h) is a linear regression:

E½Y xþ hð Þ7Y xð Þ� ¼ mY þ ρ hð Þ½Y xð Þ �mY �

� The coefficients of the polynomial χn are related to the moments of order k
of the distribution G, k # 2n.

� The expansion (6.19) truncated to any order nmax is the best approxima-
tion of ψ(y) by a polynomial of degree nmax, in the least squares sense

measured by G(dy)—that is, such that
R ½ψ yð Þ �Pnmax

n¼0 ψn χn yð Þ�2G dyð Þ is a
minimum. However, if ψ(y) is bounded, the expansion limited at the order
nmax deviates indefinitely from ψ(y) for |y|-N: The approximation of
ψ((y) by a finite-degree polynomial can only be valid over a bounded
domain of y.

Formore information on families of orthogonal polynomials the reader is referred
to Szegö (1939), Hochstrasser (1972), Beckman (1973), and Chihara (1978).

Additional Remarks

It seems easy to construct isofactorial models, since it is easy to construct a
systemof orthonormal polynomialsχnover the distributionG, provided that this
distribution has moments of all orders. This apparent simplicity is misleading:

1. If functions χn constitute an orthonormal system, nothing proves, even
for fixed h, that there exist values Tn such that a bivariate distribution can
be expanded as in (6.22).

2. Conversely, there can exist a system of nonpolynomial functions χn such
that the bivariate distribution has the expansion (6.22). A simple example
is that of a truncated bivariate Gaussian distribution: Starting from two
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independent standard normals Y and Y0, we keep only the part of the
bivariate distribution where Y and Y0 have the same sign. The marginals
remain standard normal and the bivariate p.d.f. is

gtrunc y, y0ð Þ ¼ 1þ signðyÞ signðy0Þð Þ g yð Þ g y0ð Þ
where g is the univariate p.d.f. of the standard normal. The two factors of
the bivariate density gtrunc are χ0(y)� 1 and χ1(y)¼ sign(y), which is not a
polynomial.

3. Even if we find a system of functions χn enabling the expression of the
bivariate distribution for fixed h as (6.22), the model is isofactorial only
if the factors χn do not depend on h, which cannot be taken for granted
[cf. discussion in Matheron (1989)].

6.4.3 Main Isofactorial Models

The class of bivariate distributions of an SRF coincides with the class of
(noncentered) direct and cross-covariances of indicators obtained by thresh-
olding the random function. Since a generalization of Bochner’s theorem
characterizing direct and cross-covariances of indicators does not exist, the
same is true for bivariate distributions, and this remains the case in the limited
scope of isofactorial models. The main source of models is derived from special
random functions whose bivariate distributions can be written down in closed
form: When these are isofactorial, the model obtained is isofactorial by con-
struction. Unsurprisingly, there is a large number of special models that more
or less overlap. It is not possible to give a complete inventory here (Matheron
alone devoted over 600 pages to these models). We will present one model akin
to the mosaic model and the classic models with polynomial factors, which have
been used in most applications. Since in practice the isofactorial model does not
directly concern the raw variable Z but a transform Y, we will assume, without
loss of generality, that the transformed variable is standardized, and we will
only consider this type of marginal distribution (standard normal, for exam-
ple). Let us start with two simple examples that correspond to random func-
tions we have already encountered, the bi-Gaussian and the mosaic models.

Bi-Gaussian Model

The normalized Hermite polynomials χn yð Þ ¼ Hn yð Þ= ffiffiffiffi
n!

p
form an orthonormal

basis with respect to the standard normal distribution. Hermite polynomialsHn

are defined by Rodrigues’s formula5

5 In most textbooks the definition includes a (�1)n factor, which leads to odd-order Hermite

polynomials of the opposite sign. We have kept the present definition for consistency with the

geostatistical literature.
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Hn yð Þg yð Þ ¼ dn

dyn
g yð Þ

and are easily calculated by the recurrence relation

Hnþ1 yð Þ ¼ �yHn yð Þ � nHn�1 yð Þ

The bivariate normal distribution Gρ(dy, dy 0) with correlation coefficient
ρ (�1, ρ, 1) has the bivariate p.d.f.

gρ y, y0ð Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p exp � y2 � 2ρ y y 0 þ y 02

2 1� ρ2ð Þ
� �

It can be represented by the series

gρ y, y0ð Þ ¼
XN
n¼0

ρn χn yð Þχn y 0ð Þg yð Þg y 0ð Þ ð6:26Þ

It is an isofactorial model, and the covariances Tn are equal to ρn. Therefore, if
(Y, Y0) is a pair of random variables with bivariate density function gρ, relation
(6.11) takes the simple form

E½χn Y 0ð Þ7Y � ¼ ρn χn Yð Þ ð6:27Þ

Similarly, if Y(x) is an SRF with correlogram ρ(h), whose pairs (Y(x), Y(xþ h))
are Gaussian, their bivariate distributions are of the form (6.22) with
Tn(h)¼ ρ(h)n and

E½χn Y xþ hð Þð Þ 7Y xð Þ� ¼ ρ hð Þn χn Y xð Þð Þ

The possibility to develop the bivariate p.d.f.s as well as the functionals of Y(�)
can be exploited for covariance calculations. An interesting example is the cal-
culation of the covariance of indicators obtained by thresholding Y (Matheron,
1975b). From (A.10) the indicator 1Y(x),y can be represented by the series

1Y xð Þ, y ¼ G yð Þ þ g yð Þ
XN
n¼1

χn�1 yð Þffiffiffi
n

p χn Y xð Þð Þ ð6:28Þ

By application of (6.25), the cross-covariance of the indicators 1Y(x),y and
1Y(xþh),y0 associated with thresholds y and y0 is

Cyy0 hð Þ ¼ g yð Þ g y0ð Þ
XN
n¼1

χn�1 yð Þχn�1 y0ð Þ
n

ρ hð Þn ð6:29Þ

c06 30 January 2012; 17:32:47

412 NONLINEAR METHODS



This expression can be used directly for numerical computations. From an
analytical point of view, for fixed y and y0 this is a function of ρ � ρ(h), whose
derivative is

dCyy 0

dρ
¼ g yð Þg y 0ð Þ

XN
n¼1

χn�1 yð Þχn�1 y 0ð Þρn�1

We recognize the isofactorial expansion of the bivariate density gρ(y, y
0). By

integration from 0 to ρ(h), we obtain

Cyy 0 hð Þ ¼
Z ρ hð Þ

0

gu y, y 0ð Þdu

In the special case y¼ y0, the direct covariance of the indicator is found to be

Cy hð Þ ¼ 1

2π

Z ρ hð Þ

0

exp � y2

1þ u

� �
duffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p

which establishes formula (2.76).

Mosaic Model

In the case of amosaic random function, the random variablesY(x) andY(xþ h)
are equal with probability ρ(h), or uncorrelated with probability 1� ρ(h). Their
bivariate distribution is

Gh dy, dy 0ð Þ ¼ ρ hð ÞG dyð Þ δy dy 0ð Þ þ ½1� ρ hð Þ�G dyð ÞG dy 0ð Þ

where G(y) is the marginal c.d.f. of Y(�) and ρ(h) is its correlogram. If ϕ(�) is a
measurable function, letting mϕ ¼ R ϕ yð ÞG dyð Þ we have

E½ϕ Y xþ hð Þð Þ7Y xð Þ� ¼ ρ hð Þϕ Y xð Þð Þ þ ½1� ρ hð Þ�mϕ

In particular, if {χn(y) : n¼ 0, 1, . . . } constitutes an orthonormal set of factors
for the distribution G, the relations (6.11) are satisfied with Tn(h)¼ ρ(h) for
n. 0 (and T0(h) � 1). The mosaic model is therefore an isofactorial model.
However, its isofactorial representation brings nothing new, at least as long as
it is not complemented by a change-of-support model.

Why Other Models?

The two preceding models correspond to extreme cases. For the same expo-
nential covariance, the first one can represent a Gaussian diffusion process with
continuous realizations, whereas the second one represents a random partition
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into Poisson polygons or polyhedra. One can think of describing other situa-
tions by introducing a transformation to an SRF with a Gaussian marginal. But
experience has shown that a Gaussian transformation is not always desirable
nor even possible. Besides, even if we can obtain an SRF with a Gaussian
marginal, it does not follow that its bivariate distributions are Gaussian or
mosaic. Therefore we need to broaden the class of possible models.

We will only give a glimpse of the two approaches that have received most
attention (there are many others). The first one is to extend the mosaic model to
less systematic effects, leading to the model with orthogonal indicator residuals,
whose factors are not polynomials. On the contrary, the second approach is to
develop models with polynomial factors. First, by a systematic study of dif-
fusion processes we will identify all the classic marginal distributions that can
be considered to construct isofactorial models with polynomial factors. Next,
for each of these marginals we will characterize the class of isofactorial models
that can be associated with it—in other words the general form of covariances
Tn(h).

Model with Orthogonal Indicator Residuals

A mosaic random function shows abrupt changes between low and high values.
It has no edge effect in the sense that when a threshold is applied, the proximity
to the boundaries of the threshold level set has no influence on the values
assumed. It is therefore suitable to represent a deposit where we pass without
transition from clear-cut waste to rich ore, or to model a pollution that remains
concentrated near the contamination sources. However, even among models
displaying abrupt changes, the mosaic model is an extreme case. The model
with orthogonal indicator residuals, which belongs to the same class, has been
developed by Rivoirard (1988, 1989) to capture more diverse spatial structures.
We will give a glimpse of this model and refer the interested reader to either of
Rivoirard’s papers, as well as to the slightly different presentation given by
Matheron (1989).

This model includes notably some Boolean integer-valued random functions
like those presented in Figure 7.31 (Section 7.7.1). In these examples, Y(x) is
obtained by superimposition of independent random sets A1, . . . ,AN. Starting
from a situation where all points are assigned a zero value, we set to 1 all points
that belong to the random set A1, and then we set to 2 all points that belong to
A2, and so on, until we set to the value N the points that belong to AN (at each
update the preceding values are overridden). Realizations of the random
function are therefore piecewise constant and do not display edge effects when
moving from high to low values (due to the construction, any lower value can
be met when leaving the set of high values), but do show edge effects when
moving from low to high values.

In this model the marginal distribution of Y(x) is Fn ¼ PrfY xð Þ, ng ¼QN
m¼n Prfx =2Amg and the regression of 1Y(x),n on 1Y(x),nþ1 is (Fn /Fnþ1)

1Y(x),nþ1. The residuals from that regression are
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Rn xð Þ ¼ 1Y xð Þ, n � Fn

Fnþ1
1Y xð Þ, nþ1 ¼ Fn

1Y xð Þ, n

Fn
� 1Y xð Þ, nþ1

Fnþ1

� �
So letting

χn yð Þ ¼ 1y, n

Fn
� 1y, nþ1

Fnþ1
, n ¼ 1, 2, : : : ,N�1,

χN yð Þ ¼ 1y,N

FN
� 1,

χNþ1 yð Þ ¼ 1

the normalized indicator 1Y(x),n /Fn takes the form

1Y xð Þ, n

Fn
¼ χn Y xð Þð Þ þ 1Y xð Þ, nþ1

Fnþ1
¼
XNþ1

p¼n

χp Y xð Þð Þ

Any function of Y(x) can therefore be expressed as a function of the χn(Y(x)):
The χn constitute an orthogonal basis for the marginal distribution defined by
the Fn. Moreover, it can be shown that the random functions χn(Y(x)) are
uncorrelated. The functions χn(y) therefore constitute the factors of an iso-
factorial representation of the bivariate distributions of pairs (Y(x), Y(xþ h)).

The direct and cross-variograms of indicators are no longer all identical, up
to a multiplicative factor, as is the case for a mosaic RF. However, the cross-
variogram of two indicators is proportional to the direct variogram of the
higher indicator, which allows an easy check of the suitability of the model for a
given data set. This model captures a destructuring of low grades (the structure
of the random set A1 is altered by the superimposition of the other random
sets). It is well-suited when high values constitute hot spots (local concentration
of pollution or high-grade ore).

In applications where a destructuring of high grades is observed, the model is
constructed in the reverse manner; that is, all points are initialized with the
value N and random sets associated with decreasing values are superimposed.
The cross-variogram of two indicators is then proportional to the direct var-
iogram of the lower indicator. High values are found in areas not covered by
the random sets, which can be seen as the pores when the random sets are made
of grains. This model is well-suited to situations inheriting from this kind of
geometry—for example, vein-type deposits and pollutions transferred by a
circulation of fluids in the porous space.

Diffusion Models

Diffusion models are the prototype of models with edge effect, in the sense that to go from a
value to another all intermediate values must be visited. Such model is appropriate, for
example, in the case of a diffuse pollution or a deposit where there is no clear-cut discontinuity
between the waste and the ore. From a theoretical standpoint, diffusion processes are
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symmetric continuous-time Markov processes and as such have isofactorial bivariate dis-
tributions (Matheron, 1989). In the continuous case, namely when they take their values in R,
they satisfy a diffusion equation similar to the heat equation (Feller, 1968, Section XIV.6;
Feller, 1971, Section X.4 and X.5; Matheron, 1975b; Armstrong and Matheron, 1986a). Dis-
crete diffusion processes, also named birth-and-death processes (Feller, 1971, Section XIV.6),
take their values inN and only progress by unit jumps (þ1 or�1). Their general study from the
point of view of isofactorial properties is due to Matheron (1975c, 1984e, 1989). The system
being in state i at time t (which means that Y(t)¼ i), in the interval ]t, tþ dt] goes to state iþ 1
with probability ai dt, goes to state i� 1 with probability bi dt, and stays in state i with
probability 1� (aiþ bi) dt. The birth rates ai and death rates bi are called the diffusion coef-
ficients of the process. The marginal distribution G of the stationary process Y(t) associated
with these diffusion coefficients, defined by the probabilities pi¼Pr{Y(t)¼ i}, satisfies

ai pi ¼ biþ1 piþ1, i ¼ 0, 1, 2, : : :

It is shown in the general case that the covariances Tn(h) of the factors of a diffusion process
are of the form exp(�λn 7 h 7 ). The process itself therefore has for covariance an exponential
function (when the factors are polynomials) or a sum of exponentials (in the general case).
The parameter λ0 is zero, and the others are positive and increase with n. Their more or less
rapid growth characterizes the destructuring of the factors with n. In the case where the
marginal is Gaussian, λn¼ n, and we recover covariances Tn(h) of the form ρ(h)n; however,
this circumstance is not general.

Diffusion processes are defined in one dimension. They are extended to higher dimensions
by the substitution method. If Y(t), t2R, is a diffusion process and if T(x), x2Rp, is a
random function with strictly stationary increments and an unbounded variogram, the RFeY xð Þ ¼ Y T xð Þð Þ is an SRF whose bivariate distributions are isofactorial. It has the same
marginal and same factors χn as the diffusion process Y(t), but their covariances change: The
covariances eTn hð Þ (h2Rp) of the factors of the RF eY xð Þ are

eTn hð Þ ¼ Cov
�
χn

� eY�x��,χn

� eY�xþ h
��� ¼ E½exp �λn7T xþ hð Þ � T xð Þ7ð Þ�

In practice, the studied SRF is assumed to be of the form eZ xð Þ ¼ ϕ eY xð Þ
	 


. If the function

ϕ(y) can be expanded as
PN

n¼0 ϕn χn yð Þ, the covariance of eZ is

CeZ hð Þ ¼
XN
n¼1

ϕ2
n
eTn hð Þ ¼ E

XN
n¼1

ϕ2
n exp �λn7T xþ hð Þ � T xð Þ7ð Þ

" #
¼ E CZ 7T xþ hð Þ � T xð Þ7ð Þ½ �

where CZ(�) is the covariance of the stationary process Z tð Þ ¼ ϕ Y tð Þð Þ. Additional results on
random functions obtained by substitution can be found in Section 7.7.6.

It can also be shown that any set of covariances of the form eTn hð Þ ¼ exp �λnγ hð Þð Þ, where
γ(h) is any unbounded variogram in Rp, leads to a valid model. This type of model can be used
to define numerically the bivariate distributions of discrete diffusive SRFs. But the inference
of the parameters of the underlying diffusion process and of the variogram γ(h) requires
specific tools and is very tricky (Lajaunie and Lantuéjoul, 1989).

For applications the preferred approach is to consider diffusion processes with polynomial
factors known explicitly (Rodrigues formula definition, calculation of χnþ1(y) from χn(y) and
χn�1(y) using a recurrence relation whose parameters are known explicitly). Only eight classes
of diffusion processes meet this condition. Three of them have a continuous marginal:

� The Gaussian model with Hermite polynomials.

� The gamma model with Laguerre polynomials. The gamma distribution, defined for
positive variables, broadens the scope of the Gaussian model.
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� The beta model with Jacobi polynomials, which has hardly ever been used
in geostatistics so far (the beta distribution with parameters α and β is that of
X1/(X1þX2), where X1 and X2 are two independent gamma random variables, with
the same scale and respective parameters α and β).

The five other classes of models are associated with a discrete marginal distribution:

� The binomial model with Krawtchouk polynomials, which is the discrete equivalent of
the Gaussian model.

� The negative binomial model with Meixner polynomials, which is the discrete equivalent
of the gamma model.

� The Poisson model with Charlier polynomials, which can be obtained as limit of the
preceding ones.

� The discrete Jacobi-type model with discrete Jacobi polynomials, which is the discrete
equivalent of the continuous model with a beta distribution.

� The discrete anti-Jacobi-type model which is related to the Jacobi one but has no
continuous equivalent.

Other well-knownmodels that are special cases of the above are of course to be included. Thus for
α¼β the Jacobi polynomials are ultraspherical polynomials and, in particular, the Chebyshev
polynomials for α¼β¼ 1/2 and the Legendre polynomials for α¼β¼ 1; in this latter case the
beta distribution is the uniform over [0, 1]. Diffusion models with a binomial, negative binomial,
andPoisson distribution canbe obtained as limits of the Jacobi-typemodel. Continuous diffusion
models (Gaussian, gamma, beta) can also be obtained as limits of this model.

For the Gaussian, gamma, binomial, negative binomial, and Poisson models, λn is propor-
tional to n, so that the Tn(h) are of the form ρ(h)n. For the beta and discrete Jacobi models the
decrease ofTn(h) with n is faster than that of ρ(h)

n, whereas it is slower for the anti-Jacobimodel.
The main properties of the polynomials associated with the Gaussian, gamma, or negative

binomial distributions, which are the most common target marginals, are summarized in the
Appendix. The reader is referred to Beckman (1973) for additional results on most of these
families of polynomials, as well as Armstrong and Matheron (1986b) and Matheron (1984a,
1984c, 1984e, 1989) for isofactorial models.

Pure Models with Isofactorial Factors

We call a pure model a model for which the Tn(h) are of the form ρ(h)n. We have seen that
diffusion processes with a Gaussian marginal are of this type with an exponential correlogram
ρ(h). By substitution they provide SRFs that remain of this type with a broader choice of
correlograms satisfying ρ(h). 0 ’h. We have likewise seen that random functions with a
Gaussian spatial distribution, and thusGaussian bivariate distributions, also haveTn(h) of type
ρ(h)n but without restriction on the correlogram ρ(h). What for other marginal distributions?
Grouping the results obtained by Beckman (1973, Section 6.2 and Appendix I) for continuous
variables and by Matheron (1980) for discrete distributions, we obtain the following result.

Given a marginal distribution and its associated orthonormal polynomials, the coefficients
Tn¼ ρn do define a bivariate distribution under the following conditions:

� For any ρ2 [�1, 1] if the marginal is Gaussian, binomial, or beta with α¼β.
� Provided that ρ2 [0, 1] if the marginal is gamma, beta (α 6¼ β), negative binomial, or
Poisson.

For a random function a model Tn(h)¼ ρ(h)n is valid, provided that ρ(h) satisfies the above
condition for all h and is a correlogram (this being sufficient to ensure that ρ(h)n is a
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covariance for all n). Such a model shows a rapid destructuring of the factors as n increases,
commensurate with the decrease of ρ(h)n with n.

Mixture of Pure Models: Hermitian, Laguerre, and Meixner Models

The univariate distribution of Y(x) may be Gaussian and not its bivariate distributions. If the
SRF Y(x), with marginal G(dy), has a system of orthonormal polynomials χn(y) and iso-
factorial bivariate distributions, this does not imply that the covariances Tn(h) of the factors
are of the form ρ(h)n (i.e., assuming that such a model is valid, which we do not know in the
discrete Jacobi or anti-Jacobi case). For a pair of variables, when the pure model associated
with Tn¼ ρn exists, it can be generalized by randomization of the correlation coefficient ρ,
namely by taking Tn of the form

Tn ¼
Z

rn ϖ drð Þ ð6:30Þ

The support of the distributionϖmust be included in the interval of permissible values of ρ—
that is, the interval [�1, 1] if the marginal is Gaussian or binomial and [0, 1] if the marginal is
gamma, negative binomial, or Poisson. Conversely, at least in the case of a Gaussian, gamma,
or negative binomial marginal, any isofactorial distribution with polynomial factors can be
expressed with coefficients Tn of the form (6.30) (Matheron, 1976a; Sarmanov, 1968; Math-
eron, 1984a, respectively). The corresponding isofactorial models are called by the name of
their associated polynomials: Hermitian model (Gaussian marginal), Laguerre model (gamma
marginal), andMeixner model (negative binomial marginal). It can be shown that ifT1 is a given
positive value ρ, Tn is minimal and equal to ρn when the distribution ϖ is concentrated on the
value ρ. In other words, pure models have the property of corresponding to the maximum
destructuring.

Considering an SRF and not only a pair of random variables, the distribution ϖ asso-
ciated with the Tn(h) usually depends on h. We will denote it by ϖh. Restrictions must be
placed on the family of distributionsϖh to guarantee that Tn(h) is a covariance function for all
values of n. In applications, in order to keep statistical inference simple, one limits the choice
to distributions ϖh such that the Tn(h) can be expressed as functions of the correlogram ρ(h).

Example of Bi-Gamma Distributions

By analogy with the bi-Gaussian case, there are two ways of defining a bi-gamma distribution.
But unlike in the bi-Gaussian case, these two definitions do not coincide. The first way is to
define the bi-gamma distribution as a pure isofactorial model with Tn of the form ρn. We have
seen that the bivariate distributions of gamma diffusion processes are of this type. The second
way is to start from three independent unit-scale gamma random variables X0, X1, and X2,
with respective parameters ρα, (1� ρ)α, and (1� ρ)α, with 0, ρ, 1, 0,α, 1, and define

Y1 ¼ X0 þ X1,

Y2 ¼ X0 þ X2

Y1 and Y2 are two unit-scale gamma random variables, with the same parameter α and cor-
relation coefficient ρ (see Appendix, Section A.6.1). Matheron (1973b) shows that their
bivariate distribution can be written in the isofactorial form (6.22) with normalized Laguerre
polynomials and coefficients

Tn ¼ Γ αð Þ
Γ αþ nð Þ

Γ α ρþ nð Þ
Γ α ρð Þ
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This quantity is the nth-order moment of the beta distribution with parameters ρα and
(1� ρ)α, thus with mean ρ, and is therefore of the form (6.30). This result can be immediately
transposed to negative binomial random variables [e.g., see Feller (1968, p. 285)]. SRFs with
this type of bivariate distribution can be obtained by regularization of a stationary orthog-
onal random measure with gamma or negative binomial distribution. When applied to ran-
dommeasures with a Gaussian or Poisson distribution, this procedure leads, however, to pure
bivariate models (Matheron, 1973b; Armstrong and Matheron, 1986a).

Other Isofactorial Models

Let us recall that the factors of isofactorial models are not necessarily polynomials. For
example, the uniform distribution over [0, 1] can be associated with various bivariate dis-
tributions with different factors (Matheron, 1975c):

� Legendre polynomials.

� Trigonometric factors cos(2πnθ) and sin(2πnθ) (e.g., Brownian motion on the circle).

� Walsh functions (nonpolynomial); this model exists in continuous and in discrete
versions.

� Factors of the form χn G�1 zð Þ� �
, obtained by the change of variable Z �ð Þ ¼ G Y �ð Þð Þ,

starting from a model with factors χn(y) and an absolutely continuous marginal G(dy).
These factors are generally not polynomial functions.

6.4.4 Practice of Disjunctive Point Kriging

In the case of discrete variables, there have been attempts to check the adequacy
of an isofactorial approach or to numerically define the isofactorial model from
the data (Lajaunie and Lantuéjoul, 1989; Subramanyam and Pandalai, 2001).
The task ismore difficult when dealingwith continuous variables. In practice, one
uses theoretical models. Isofactorial models are very diverse, but in fact only a
few have been used. The methodology has, naturally, first been developed for the
Hermitian model (Maréchal, 1976). After a preliminary transformation to nor-
mal, this model can represent a large class of variables with a continuous, pos-
siblymildly skewed, distribution. Nevertheless, we can only deplore that so many
applications have used the bi-Gaussian model, which is quite special indeed,
without questioning the validity of this choice. The application methodology for
the Laguerremodel is essentially due toHu andLantuéjoul (1988) andHu (1988).
This model extends the capabilities of the bi-Gaussianmodel to distributions that
exhibit a cluster of values near the origin and a long distribution tail. As for the
Meixner model, it makes it possible, at the price of a discretization, to properly
account for a large proportion of zero values or to study a discrete variable
directly (Demange et al., 1987; Kleingeld, 1987). The Hermitian, Laguerre, and
Meixner models comprise a range of bivariate distributions that go from the
mosaic to the pure diffusivemodel. Thus we have elected to limit our presentation
of the practice of disjunctive kriging to these three models. Table 6.1 presents
their main features: The left-hand columns give for each type of marginal dis-
tribution the model used and the corresponding family of polynomials, and the
right-hand columns give the names of the bivariate distributions that can be
associated with them. Other than that, the main model that has been applied, to
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our knowledge, is the model with orthogonal indicator residuals [Bordessoule
et al. (1988, 1989); Rivoirard, (1994), in particular the application of Chapter
13)]. In the case of discrete variables, Subramanyam and Pandalai (2001) give a
characterization of isofactorial models; it can be used to check whether such a
model is adequate, on the basis of the empirical distributions.

Choice of the Transformed Marginal Distribution

In applications, the data are seldom obliging enough to have a histogram
matching one of the classic marginals. We have to use a transformation in which
the variable of interest Z(�) is assumed of the form Z xð Þ ¼ ϕ Y xð Þð Þ, and Y(�) is
supposed to conform to an isofactorial model whose marginal is one of the
classic distributions. As will be shown later, the transformation function ϕ is
used through the coefficients ϕn of its expansion in the basis of orthonormal
polynomials χn(y). If the marginal distributions G of Y(�) and F of Z(�) have
similar shapes, few terms need to be retained in this expansion. This explains why
a transformation to a uniform, which at first glance would seem appealing, is
rarely advisable, since it would “pack” extreme data too much, with the con-
sequence that a large number of Jacobi polynomials would be required to rep-
resent the transformation function.

When the data histogram reflects a continuous, not too skewed, distribution,
a Gaussian transformation is appropriate. But if the data histogram is very
skewed, with a large proportion of low values and a long tail, a Gaussian
transformation will limit the amplitude of large values, which may be the goal,
but also magnify unimportant differences between low values. To resolve this
problem, it is better to transform to a skewed variable. The gamma distribution
is particularly interesting for its diverse behaviors. A positive random variable
Y follows a (standard) gamma distribution with parameter α. 0 if its density is

gα yð Þ ¼ 1

Γ αð Þ e
�y yα�1 y. 0ð Þ

TABLE 6.1 Main Isofactorial Models with Polynomial Factors Classified by Type

of Marginal and Bivariate Distributions

Marginal Distribution Bivariate Distribution

Type Distribution Polynomials Tn¼ ρn Intermediate Tn¼ ρ

Continuous

symmetric

Gauss Hermite Bi-Gaussian Hermitian

model

Mosaic

Gaussian

Continuous

skewed

Gamma Laguerre Pure

gamma

Laguerre

model

Mosaic

gamma

Discrete Negative

binomial

Meixner Pure

negative

binomial

Meixner

model

Mosaic

negative

binomial
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where Γ(�) is the gamma function (A.1). The shape of the density gα depends on
α: If α, 1, gα is a decreasing function, unbounded at the origin; if α. 1, gα is a
bell-shaped curve that tends to the Gaussian for large values of α; in the
intermediate case α¼ 1, g1 is the density of the exponential distribution.

The data histogram can have an atom at the origin. For example, if Z
represents the thickness of a geological formation that is sometimes absent, this
is reflected in a proportion p0. 0 of zero values. If Z is a mineral grade, there
may be a nonnegligible proportion p0 of zero values (or at least considered as
such because below the detection limit). This is called the zero effect. In the case
of a Gaussian (or gamma) transformation, ϕ still exists but is not one to one, so
we do not know which value of Y should be associated with a zero value of Z;
we only know that Y belongs to the interval ]�N, G�1(p0)]. This problem
disappears if we choose for Y a discrete distribution such that Pr{Y¼ 0}¼ p0.
On the other hand, we must discretize the continuous part of the distribution of
Z, which is not a major hurdle if we can master this discretization. The negative
binomial distribution is a good candidate, because it enables the representation
of both a zero effect and a strong skewness of the rest of the distribution that
generally comes with it. The negative binomial distribution with parameters
α. 0 and p2 [0, 1] is defined by

pi ¼ 1� pð Þα Γ αþ ið Þ
Γ αð Þ

pi

i!
, i $ 0

The caseα¼ 1 corresponds to the geometric, or Pascal, distribution pi¼ (1� p) pi,
which is the discrete version of the exponential distribution. In general, the neg-
ative binomial distribution appears as a discrete version of the corresponding
gamma distribution with the same parameter α.

In these last two cases, one problem is the choice of the parameter α (in the
case of the negative binomial the choice of the parameter p results from
the probability p0 to be matched). It seems reasonable to choose a low value for
α when the histogram is skewed and the relative variance high. Demange et al.
(1987) choose for α the value that also preserves the ratio of the cutoff grade to
the mean grade. A similar criterion is the preservation of the ratio of the median
to the mean. Hu (1988) proposes to preserve a parameter that characterizes the
relative dispersion of the distribution—for example, the relative variance or
the selectivity index presented in Section 6.5.1.

Expansion of theTransformation Function into Factors

Having selected the marginal distribution G(dy) of Y(x), we have to make
explicit the form of the transformation function ϕ such that Z xð Þ ¼ ϕ Y xð Þð Þ.
Suppose that the c.d.f. F(z) of Z, modeled as seen in Section 6.2, is discretized
by a series of points {(zp, Fp) : p¼ 0, 1, . . . ,P}, where the Fp¼F(zp) increase
with p from F0¼ 0 to FP¼ 1; z0 and zP are the minimum and maximum possible
values for z. The value of Y associated with zp is yp¼G�1(Fp). If y0¼�N
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(respectively, yP¼þN), this is replaced by a large negative (respectively, pos-
itive) value (e.g., �4 and +4 in the case of a Gaussian transformation). The
transformation function ϕ satisfies ϕ(yp)¼ zp. Suppose that the discretization
of F is fine enough for an approximation of ϕ by a piecewise linear function to
be acceptable. ϕ is then defined by

ϕ yð Þ ¼ ap þ bp y with bp ¼ zp � zp�1

yp � yp�1
and ap ¼ zp � bp yp,

y 2 �yp�1, yp�, p ¼ 1, : : : ,P

We will need ϕ(y) in the form of its expansion into factors χn(y):

ϕ yð Þ ¼
XN
n¼0

ϕnχn yð Þ

According to (6.9) the coefficients ϕn are given by

ϕn ¼
Z

ϕ yð Þχn yð ÞG dyð Þ ¼
XP
p¼1

Z yp

yp�1

ap þ bp y
� �

χn yð ÞG dyð Þ

In the case of a Gaussian or gamma transformation, apþ bp y can be expressed
linearly as a function of the Hermite or Laguerre polynomials of degrees 0 and
1, so that the integral in the above expression can be calculated analytically
using relations (A.9) and (A.11), or (A.17) and (A.18).

The polynomial expansion is truncated to an order nmax. It is usually not
monotone and thus takes meaningless values for extreme values of y. We select
nmax so that ϕ is monotone in the actual domain of variation of y and the sum
of the ϕ2

n, for n varying from 1 to nmax, is close to the variance of Z(x). Usually
one to a few dozen terms are sufficient.

Once the transformation has been defined, the data Z(xα) are transformed
into data Y(xα) by application of the transformation ϕ�1.

Choice of Isofactorial Model

Having defined the marginal distribution of Y and the transformation that
leads to it, there remains to define the bivariate distributions. This is achieved
by specifying the isofactorial model through the covariances Tn(h) of the factors
χn(Y(x)) for all n. 0 (in all cases T0(h)� 1). Because the models considered
here have polynomial factors, the covariance T1(h) is simply the correlogram
ρ(h) of the SRF Y(x). This correlogram is related to the variogram γ(h) of Y(x)
obtained by a classic structural analysis of the transformed data Y(xα) by

γ hð Þ ¼ C 1� ρ hð Þ½ �
where the sill C is equal to 1 in the Gaussian case, to α in the gamma case, and
to αp/(1� p)2 for a negative binomial transformation.
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We have seen in Section 6.4.3 [relation (6.30)] that for the Hermitian,
Laguerre, and Meixner models the covariances of the factors are of the form

Tn hð Þ ¼
Z

rn ϖh drð Þ

whereϖh is a probability distribution concentrated on the interval [�1, 1] in the
Hermitian case and on the interval [0, 1] for Laguerre and Meixner models. In
practice, one limits the choice to isofactorial models where the covariances
Tn(h) are functions of ρ(h) and where ρ(h) is nonnegative. Four isofactorial
distribution models are used most (Figure 6.3):
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FIGURE 6.3 Scatterplot of 100 pairs (Z(x), Z(xþ h)) with standard normal marginal distribu-

tions for a value h such that ρ(h)¼ 0.5: (a) Gaussian bivariate distribution; (b) mosaic model;

(c) barycentric model with β ¼ 1/2; (d) beta model with β ¼ 2.
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1. The pure diffusive model, with a distributionϖh concentrated on the single
value ρ(h):

Tn hð Þ ¼ ρn hð Þ, n$ 0

The covariances of the factors tend to a pure nugget effect when n
increases.

2. The mosaic model, which corresponds to a distribution ϖh concentrated
on the values 0 and 1, with respective probabilities 1� ρ(h) and ρ(h):

Tn hð Þ ¼ ρ hð Þ, n. 0

All factors have the same covariance.

3. The barycentric model, which is a mixture of the preceding two, in
proportions β and 1� β: The distribution ϖh is concentrated on the
values 0, ρ(h) and 1, respectively, with probabilities (1� β) (1� ρ(h)), β
and (1� β) ρ(h), where β is a parameter between 0 and 1, so that

Tn hð Þ ¼ β ρn hð Þ þ 1� βð Þρ hð Þ, n. 0

4. The beta model, which is a mixture of all pure models associated with a
positive correlation coefficient, since ϖh is a beta distribution with para-
meters β ρ(h) and β (1� ρ(h)), where β is a positive parameter; it leads to

Tn hð Þ ¼ Γ βð Þ
Γ β þ nð Þ

Γ β ρ hð Þ þ nð Þ
Γ β ρ hð Þð Þ , n$ 0

For an SRF with gamma marginal, this model generalizes the second type
of bi-gamma distribution presented in Section 6.4.3. It has variants [see
Hu (1988)].

In principle, the justification of the use of an isofactorial model and the choice of
the model itself must proceed from the study of the regression curves
χn Y xþ hð Þð Þ as a function ofY(x) or ofχn Y xð Þð Þ [cf. relation (6.11)]. In practice,
it would be tedious to examine lagged scatterplots (or h-scattergrams) for all
values of n until nmax and for various classes of lag h, although it is advisable to
inspect a few for validation [e.g., Goovaerts (1997)]. These models have the
advantage of being distinguishable simply by inspection of the variogram of
order 1 (or madogram) of Y(x), defined as we have seen in Section 2.5.3 by

γ1 hð Þ ¼ 1
2 E 7Y xþ hð Þ � Y xð Þ7½ �

Its sill C1 is in all cases the dispersion indicator S of the marginal distribution of
Y, as results from definition (6.32), but its shape depends on the model. Taking
as structure functions the normalized variograms of order 1 eγ1 hð Þ ¼ γ1 hð Þ=C1

and of order 2 (the usual variogram) eγ hð Þ ¼ γ hð Þ=C ¼ 1� ρ hð Þ, we have
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eγ1 hð Þ ¼

ffiffiffiffiffiffiffiffiffieγ hð Þp
for the pure diffusive model,

eγ hð Þ for the mosaic model,

β
ffiffiffiffiffiffiffiffiffieγ hð Þp þ 1�βð Þeγ hð Þ for the barycentric model with parameter β,

Γ βð Þ
Γ
�
βþ 1

2

�Γ�βeγ hð Þþ 1
2

�
Γ βeγ hð Þð Þ for the beta model with parameterβ

8>>>>>>>>>>><>>>>>>>>>>>:
These relations express very simple links between the madogram and the var-
iogram of Y(x). In particular, by plotting eγ as a function of eγ1, we obtain a
straight line for the mosaic model, a parabola for the pure diffusive model, and
intermediate behaviors for the other models (Figure 6.4).

The final choice of the model can be validated by comparing the variogram
of the initial variable Z(x) with the theoretical variogram calculated from the
covariances Tn(h) using relation (6.24) with ψn¼ϕn (that is, if the variogram of
Z(x) is robust enough). It can also be validated with indicator variograms
whose theoretical expression is also given by (6.24) where the ψn are now the
coefficients of the expansion of the indicator (these are provided below).

The examination of indicator variograms may call into question the choice
of the reference distribution. Indeed, in the case of random functions with bi-
gamma distributions (pure diffusive version), Emery (2005b) shows that low
grades are less structured than high grades. This means that the indicator
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FIGURE 6.4 Relationship between the variogram and the madogram of an SRF with Gaussian,

gamma, or negative binomial marginal for the main isofactorial models (both variograms are

normalized): (a) barycentric model; (b) beta model. The extremes correspond to the pure diffusive

model (parabola) and the mosaic model (straight line).
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associated to the threshold G�1
α pð Þ, p, 0.5, has larger nugget effect or a shorter

range than that related to the threshold G�1
α 1� pð Þ. This phenomenon is all the

more pronounced as the marginal distribution is skewed (low α value). This is
not really surprising, because in such a case low grades are very similar, so that
the contour of the random set associated with a low threshold is fairly erratic.
A different character may preclude the use of a gamma distribution with a low
value of α (for a large α the gamma distribution tends to the normal, and then
low and high grades are similarly destructured).

For completeness, let us mention another tool proposed by Journel and
Deutsch (1993) to summarize bivariate distributions: the bivariate entropy
function E(h). It gives the entropy of the bivariate p.d.f. gh(y, y

0) of the (Y(x),
Y(xþ h)) pair as a function of h:

E hð Þ ¼ �
Z þN

�N

Z þN

�N
gh y, y0ð Þ log gh y, y0ð Þð Þ dy dy0

(the integral is in fact limited to the support of gh). Among unbounded SRFs
with the same covariance, Gaussian random functions correspond to maximum
entropy, or “maximum disorder” [relation (6.30) has already shown that, for a
given marginal, the maximum destructuring is obtained with the pure diffusive
model]. But this entropy function cannot be determined experimentally, except
if we have a complete image.

An Example of Structural Analysis

In a vein of the open-pit Salsigne gold mine (France), zones to be mined are
delineated on the basis of boreholes on a 5-m� 5-m grid. The data from
1-m-long cores have been studied in detail (Liao, 1990; Chilès and Liao, 1993).
Figures 6.5a and 6.5b display the histogram and the empirical c.d.f. of core gold
grades. It has 30% of zero values and a long tail (grades spread out to 400 g/t,
for a mean of 10 g/t). This suggests a gamma transformation. This choice is
confirmed by the examination of the indicator variograms associated with two
complementary proportions, namely 30% (threshold: 0.5 g/t) and 70%
(threshold: 8.5 g/t). Figures 6.6a and 6.6b show that the indicator associated
with the higher threshold has a much lower nugget effect than the other. This is
not compatible with a Gaussian transformation but is consistent with a gamma
transformation. Choosing the parameter α so that the percentage of waste is
matched (59% of data below 5 g/t 	 0.5 mZ), we obtain α¼ 0.34, which cor-
responds to a very skewed distribution. If we only kept the first term in the
expansion of the transformation function, which amounts to assuming that
grades follow a gamma distribution (up to a shift), we would already account
for 89% of the variance (ϕ2

1=σ
2
Z ¼ 0:89). In practice, the expansion is truncated

to nmax¼ 16 Laguerre polynomials so that over 99% of the variance is repro-
duced. Figure 6.5c shows the transformation function ϕ associated with the 16
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FIGURE 6.5 Salsigne deposit: gold grade distribution and gamma transformation: (a) histogram;

(b) empirical c.d.f. and fit G�ϕ�1; (c) transformation function ϕ obtained with 16 Laguerre

polynomials. [From Liao (1990).]
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FIGURE 6.6 Variograms of gold grades and of transformed data: (a) variogram of the indicator

associated with a threshold of 0.5 g/t (30% data below that value); (b) variogram of the indicator

associated with a threshold of 8.5 g/t (70% data below that value) (c) scatterplot of gamma

transformed pairs Y(x) and Y0 ¼Y(xþ h) for h¼ 1 m vertically; (d) relationship between normalized

variogram and madogram of gamma transformed data; (e) variogram and madogram of gamma

transformed data; (f) variogram of grades. [From Liao (1990) and Chilès and Liao (1993), with kind

permission from BRGM and Kluwer Academic Publishers.]
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Laguerre polynomials. Figure 6.5b shows that the theoretical c.d.f. it defines fits
the empirical c.d.f. perfectly. As a comparison, to achieve an equivalent preci-
sion with a Gaussian transformation requires 27 Hermite polynomials, and the
first term accounts for only 42% of the variance (i.e., the histogram of grades is
far from Gaussian).

Figures 6.6d�f show the sample variogram γ̂ and the sample madogram
γ̂1 of the gamma variable Y associated with Z, the graph of the relation between
the normalized variograms eγ1 and eγ (limited to zones where the variograms do
not fluctuate too much), as well as the variogram γ̂Z of grades. An empirical
bivariate distribution of Y data is displayed in Figure 6.6c. It is not easy to
interpret. By contrast, Figure 6.6d suggests an intermediate model between the
diffusive and mosaic models. A beta model with β¼ 1 has been chosen. The
theoretical variogram γ has then been selected to fit the three sample vario-
grams (Figures 6.6e and 6.6f ). Similar variograms can in fact be obtained
starting from a Gaussian transformation. But a comparison of the performance
of the two models (Hermitian and Laguerre) for predicting change-of-support
effects demonstrated, as expected, the clear superiority of the model based on
the gamma transformation.

Other examples can be found in Hu and Lantuéjoul (1988) (bi-Gaussian and
Laguerre models applied to uranium grades) and Emery (2006a) (Laguerre
model fitted to soil pollution data; negative binomial distribution modeling the
count of caterpillar larvae infesting sugar cane).

Performing Kriging

The disjunctive kriging estimate of Z0 ¼ ψ Y x0ð Þð Þ and the DK variance are
derived by relations (6.16) and (6.18) from the simple kriging estimates and
variances of the factors χn Y x0ð Þð Þ. These are obtained by solving the systems
(6.15) and applying (6.17). The generalization to the DK of the mean value of
ψ Y xð Þð Þ in a volume v is straightforward (cf. Section 3.5.2). The coefficients ψn

are obtained by application of (6.20). Let us mention a few classic cases (for
clarity the index c denotes a fixed cutoff or threshold):

� Disjunctive kriging of Z(x0). We simply have ψn¼ϕn. However, disjunctive
kriging is rarely used as a replacement of ordinary kriging because the
improvement is often minimal (Puente and Bras, 1986).

� Disjunctive kriging of I zcð Þ ¼ 1Z x0ð Þ, zc . Since 1Z x0ð Þ, zc ¼ 1Y x0ð Þ, yc with
yc¼ϕ�1(zc), we have

ψn ¼
Z yc

�N
χn yð ÞG dyð Þ

The explicit form of the integral is deduced from (A.9) in the case of a
Gaussian distribution and from (A.17) for a gamma distribution. For
example, in the case of a Gaussian transformation we have
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ψ0 ¼ G ycð Þ, ψn ¼
1ffiffiffi
n

p χn�1 ycð Þg ycð Þ, n ¼ 1, 2, : : :

where G and g are, respectively, the c.d.f. and p.d.f. of the standard
Gaussian and χn are the normalized Hermite polynomials.

� Disjunctive kriging of point-support recovery functions. By analogy with the
(deterministic) recovery functions defined in Section 6.5.1, these are
the (random) quantities

T zcð Þ ¼ 1Z x0ð Þ$ zc and Q zcð Þ ¼ Z x0ð Þ1Z x0ð Þ$ zc

which can be rewritten as

T zcð Þ ¼ 1Y x0ð Þ$ yc and Q zcð Þ ¼ ϕ Y x0ð Þð Þ1Y x0ð Þ$ yc

with yc¼ϕ�1(zc). Thus we have

ψn ¼
Z N

yc

χn yð ÞG dyð Þ for T zcð Þ

ψn ¼
Z N

yc

ϕ yð Þχn yð ÞG dyð Þ ¼
XN
m¼0

ϕm

Z N

yc

χm yð Þχn yð ÞG dyð Þ for Q zcð Þ

The Appendix provides elements for calculating the partial integrals
[relations (A.9) and (A.11) in the Gaussian case, relations (A.17) and
(A.18) in the gamma case].

The kriging systems (6.15) of the factors are constructed and solved iteratively,
and the corresponding DK variances (6.17) are calculated; since two successive
systems are very similar, the solution of system n can be taken as an initial
solution of system nþ 1, and an iterative improvement of the solution quickly
converges to the exact solution.

Truncation of the Expansion

In the case whereTn(h)¼ ρn(h), the off-diagonal terms of the left-hand sidematrix
of system (6.15) as well as the right-hand side terms tend rapidly to zero as n
increases so that the estimator of χn(Y0) also tends rapidly to zero with increasing
n. This allows us to limit the expansion to a finite number of terms n0. For themore
complex models presented above, the left-hand side matrix tends toward a matrix
that is no longer the identity matrix. Still simplifications can be implemented.
Indeed, denote by T̂ hð Þ the limit of Tn(h) when n-N, by {λ̂α : α¼ 1, . . . ,N} the
solution of the kriging system (6.15) written with T̂ hð Þ instead of Tn(h), and by

χ̂n ¼
XN
α¼1

λ̂α χn Yαð Þ

the nonoptimal estimates of the factors χn(Y0) associated with these weights.
Expressing the optimal estimates by reference to the nonoptimal ones, relation
(6.16) can be written
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ψ� ¼ ψ0 þ
XN
n¼1

ψn χ̂n þ
XN
n¼1

ψn χ�n � χ̂n

� �
Replacing χ̂n by its definition, we obtain

ψ� ¼ 1�
XN
α¼1

λ̂α

 !
ψ0 þ

XN
α¼1

λ̂αψ Yαð Þ þ
XN
n¼1

ψn χ�n � χ̂n

� � ð6:31Þ

The first two terms are finite sums and the infinite sum can be truncated as soon as
the difference χ�n � χ̂n becomes negligible. This is a nice result because the
objective ψ(Y(x0)) is often a strongly nonlinear function of Y(x0)—typically, an
indicator function—so a satisfactory expansion ofψwould require a large number
of factors (muchmore than the nmax factors of the expansionof the transformation
function ϕ). Figure 6.7 shows the approximation of an indicator function by
50, 100, and 500 Hermite polynomials. The convergence to the indicator function
is very slow.With 100 terms, this approximation is not acceptable at the extremes,
andwith 500 terms there remains a significant discrepancy (an indicator cannot be
represented exactly by a finite number of polynomials). The application of relation
(6.31) enables us to only consider a relatively small number of factors.

Locally Varying Mean

So far we have been assuming that Z(x) is an SRF with a known mean, and
even with a known marginal distribution. In practice, we only know an estimate
of it, and it may also be that stationarity is only local. It is tempting, then, for
calibration on the local characteristics of Z(x), to (a) impose the unbiasedness

�3 �2 �1 0 1 2 3 y

ψ

1

0.5

n0 � 50

n0 � 100

n0 � 500

n0 � �

FIGURE 6.7 Approximation of the indicator function ψ(y)¼ 1y,1 by a finite number n0 of

Hermite polynomials.
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condition of ordinary kriging to the kriging of factors and (b) substitute for all
n. 0 the ordinary kriging system to the simple kriging system (6.15):

XN
β¼1

λnβTn xβ � xα
� �þ μn ¼ Tn x0 � xαð Þ, α ¼ 1, : : : ,N,

XN
β¼1

λnβ ¼ 1

8>>>>><>>>>>:
In this case beware that if the off-diagonal covariances on the left-hand side as
well as those on the right-hand side tend to 0 when n increases, the estimator χ�n
no longer tends to 0 but to the average value of the χn(Yα). Thus, in principle, it
is necessary to compute all χ�n . Rivoirard (1994, Chapter 9) proposes an elegant
trick to limit the expansion to a finite number of terms n0. This trick is equivalent
to (6.31) except that the estimators of the factors now correspond to ordinary
kriging rather than simple kriging. As a consequence, the first term of the right-
hand side disappears, so that the estimator no longer depends on ψ0, which was
our objective. However, the replacement of simple kriging of factors by ordinary
kriging requires caution. Assuming that locally the χn Y xð Þð Þ are no longer with
zero mean (n. 0) amounts to questioning the marginal distribution, thus the
orthogonality of the factors and the bivariate distributions, and therefore the
optimal character of disjunctive kriging.

6.4.5 Applications

The first implementations of disjunctive kriging were made in the scope of a
bi-Gaussian isofactorial model (Jackson and Maréchal, 1979; Young, 1982). In
mining, predictions obtained by disjunctive kriging from exploration surveys
have been compared with the reality of exploitation as known from numerous
blast-holes. The following conclusions can be drawn:

� Concerning the estimation of the grade at a point, or the mean grade of a
panel, disjunctive kriging usually brings little improvement over simple or
ordinary kriging. This is confirmed by various case studies, including
electrical conductivity data (Yates et al., 1986), contamination of under-
ground water (Yates and Yates, 1988), and soil geochemistry (Webster
and Oliver, 1989). Yates et al. observe, for example, a reduction of
estimation variance of about 5% for point kriging and 10% for block
kriging. Therefore, disjunctive kriging is seldom used as a substitute for
ordinary kriging to estimate the observed value Z itself.

� If we look for zones where Z has a chance greater than 50% to exceed a
threshold zc, it is better to estimate the indicator 1Z$ zc by DK than select
the zones where the kriging estimate of Z exceeds the threshold, especially
if the distribution of Z is skewed [Webster and Oliver (1989) for grades in
agricultural soils; Wood et al. (1990) for physical properties of soils].
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� Point-support recoverable resources in a large panel corresponding to the
zone of influence of a borehole can be predicted with an error of about
10%, which is considered as quite good compared to the results obtained
using conventional methods (Jackson and Maréchal, 1979).

� Disjunctive kriging and indicator cokriging are theoretically equivalent, up
to discretization effects (number of factors in one case, number of thresholds
in the other). Liao (1990) verified this empirically on a data set from a gold
deposit by applying (a) indicator cokriging with fits of all covariances and
cross-covariances and (b) disjunctive kriging using a model fitted from the
data. Let us mention that various studies have compared the performance of
bi-Gaussian disjunctive kriging and indicator kriging by trying them on real
or synthetic data sets. Some have concluded that indicator kriging could give
better results than bi-Gaussian disjunctive kriging [e.g., Carr and Deng
(1987) for earthquake ground motion data]. This should not be surprising,
since none of these twomethods is optimal.DK loses its optimality character
if used with an arbitrary isofactorial model (in this case the bi-Gaussian
model), and indicator kriging is poorer than indicator cokriging. Since these
two methods are not equivalent, either one may outperform the other under
given circumstances (e.g., diffusive or mosaic model).

� This shows the importance of an appropriate model selection. However, if
the variable under study is poorly structured (strong nugget effect, short
range compared with the data spacing), the choice of a model and amethod
(Gaussian or gamma transformation, disjunctive of indicator kriging) is of
limited importance. Local estimations of the point distribution will lack
sharpness [as defined by Gneiting et al. (2007b)], so that predictions will be
meaningful only after aggregation of a large number of point results.

Disjunctive kriging can be easily generalized to disjunctive cokriging if a
consistent set of bivariate distributions can be modeled. It is the case, for
example, when all bivariate distributions are Gaussian. Muge and Cabeçadas
(1989) developed such a model to study the short- and medium-term evolution
of the pollution of a lake by eutrophication. The model takes into account the
time delay of some variables and allows the estimation of the “probability” to
exceed a threshold value in a given period of time.

6.5 SELECTIVITY AND SUPPORT EFFECT

We now turn to change-of-support problems. These are always tricky pro-
blems, especially when only point-support data, or those considered as such,
are available, which will be our working assumption here. We will adopt the
terminology used in mining, which historically has been the most important
field of application. But selectivity problems may be posed in similar terms for
the management of fish stock, agricultural land, or the remediation of con-
taminated areas. Before considering estimation problems, we will first define
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the concepts of selectivity, support effect and information effect. This presen-
tation summarizes results presented by Matheron (1984b) and Lantuéjoul
(1990), to which the reader is referred for more details.

6.5.1 Selectivity

Let us first review a number of tools characterizing probability distributions and
their dispersion, which will be useful to study support and information effects.

Selectivity Curves

Consider a nonnegative random variable Z representing, for definiteness, the
grade of a block v selected uniformly among identical blocks discretizing a
panel V. The distribution of block grades is defined by the cumulative distri-
bution function

F zð Þ ¼ E 1Z, z½ �
Let us assume that for mining we only select blocks whose mean grade exceeds a
cutoff value z. F(z) represents the proportion of blocks regarded as waste (i.e.,
whose mean grade is below the cutoff grade). In practice, one is more interested
in the blocks selected and in the mineral they contain, and the following auxiliary
functions named recovery functions or selectivity curves are defined (Figure 6.8):

� The ore tonnage at cutoff z, normalized by the total tonnage (i.e., with no
cutoff)

T zð Þ ¼ E 1Z$ z½ � ¼ 1� F zð Þ

� The quantity of metal residing in this ore, normalized by the total tonnage
(of ore)

Q zð Þ ¼ E Z 1Z$ z½ � ¼
Z N

z

u F duð Þ

� The mean grade of selected ore

em zð Þ ¼ E Z 7Z$ z½ � ¼ Q zð Þ
T zð Þ

� The conventional income

B zð Þ ¼ E Z � zð Þ1Z$ z½ � ¼ Q zð Þ � z T zð Þ

This last function has an economic significance. Let us assume that the selection
of blocks above the cutoff grade z is entirely free; that is, we can leave in place
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any block with a mean grade below the cutoff and mine any block with grade
above the cutoff. Let us also assume that the cutoff grade z is chosen so that the
quantity of metal recovered from a block of grade z pays for its marginal
mining and processing costs. In other words, z is the marginal cutoff; it can be
considered as a variable in the sense that it depends on the selling price of the
recovered metal and on available technology. Denoting by c the selling price of
metal (per unit weight) and by d the density of ore (assumed to be constant and
thus independent of grade, making tonnage equivalent to volume), the mar-
ginal income from a block with mean grade Z is cd 7v7 (Z� z) if Z is greater
than or equal to z, and is zero otherwise (no stripping and removing of the
block). Thus B(z) represents, up to a normalization, the operating income
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FIGURE 6.8 Probability density f(z) and selectivity curves T(z), Q(z), emðzÞ, and B(z). Example of

a lognormal distribution with logarithmic mean 0 and logarithmic variance 1. σ2 is the variance of
the lognormal variable.
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before depreciation and fixed costs as a function of the marginal grade z. This
function can also be written as

B zð Þ ¼
Z N

z

T uð Þ du

The definitions of Q(z) and B(z) can be read on the graph of T(�), as shown in
Figure 6.9: Q(z) is the area of the domain under the tonnage curve defined by
points with ordinates less than T(z), whereas B(z) is the area of the domain
defined by points with abscissas greater than z.

We will present without proof the main properties of recovery functions. The
functions T and Q each characterize the distribution F. They are not necessarily
continuous, except if the distribution F has a density, and they are both non-
increasing. Their values at the origin are T(0)¼ 1 and Q(0)¼m, mean of Z, and
they vanish at infinity. The function em is not necessarily continuous and is
nondecreasing. Its value at the origin is em 0ð Þ ¼ m.

B is a more interesting function because it is convex, and therefore continuous
on ] 0, þN[, and nonincreasing. It assumes the value m at zero and vanishes at
infinity. Its slope at the origin is equal to �(1� p0), where p0¼F(0þ) represents
the proportion of zero values. B also characterizes the distribution F.

Because T is a nonincreasing function of z, z is a nonincreasing function of
T. It is thus possible to eliminate z and reparameterize Q, em, and B as functions
of the ore tonnage T (Figure 6.10). Q(T ) is a concave function, and thus
continuous on ] 0, m [, and nondecreasing. em Tð Þ is a nonincreasing function. In
particular, one has

dQ

dT
¼ z Tð Þ. 0,

d em
dT

¼ � em Tð Þ � z Tð Þ
T

¼ �B Tð Þ
T2

# 0

The functions B(z) and Q(T) are related by the duality formulas

BðzÞ ¼ sup
T

QðTÞ � zTf g QðTÞ ¼ inf
z

BðzÞ þ zTf g
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FIGURE 6.9 Graphical reading of Q(z) and B(z) from the graph of T(�).
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As a consequence the function Q(T ), just as the function B(z), characterizes
the distribution F. Similar concepts are used in econometrics to study the
concentration of income in the population [the fraction x¼F(z) of the people
with income smaller than z earns a fraction y¼ 1�Q(z)/m of the global income:
Lorenz curve; Atkinson (1970); Rothschild and Stiglitz (1973); Shorrocks
(1983)].

Interpretation in Terms of Geochemistry

Recovery functions were introduced by Lasky (1950) to represent grade�tonnage relationships
for porphyry copper deposits.Laskyuseda lawof the form em Tð Þ ¼ α 1� log Tð Þ. It corresponds
to an exponential distribution of grades, where T zð Þ ¼ exp �z=αð Þ and em zð Þ ¼ zþ α. In other
words, to get ore with mean grade above m1, it suffices to mine at the cutoff grade z¼m1�α.

Recovery functions have been used in geochemistry at the global scale to model grades in
the earth’s crust. Ahrens (1954), on the basis of numerous examples, stated a “law” according
to which the distribution of grades is lognormal. We have seen with the de Wisjian model that
this type of distribution can be obtained by a process of enrichment of half of the ore and
depletion of the other half, the phenomenon being repeated for each half over and over
(multiplicative cascade); in the language of fractals, this is a multifractal model (Feder, 1988).
Using a statistical approach, Vistelius (1960) reached much more circumstantiated conclu-
sions, interpreting some long-tailed distributions as mixtures of Gaussians. Unsurprisingly,
Ahrens’ model has inspired a number of generalizations [e.g., de Wijs (1976)]. Turcotte
(1986), working in the scope of fractal models, claimed that grades follow a Pareto distri-
bution (power law) obtained by Rayleigh distillation where successive crystallizations enrich
the still liquid fraction of the magma, and he proposed a multiplicative cascade model that is a
variant of the de Wisjian model: After each subdivision, only the half with larger concen-
tration is further subdivided into halves with enriched and depleted concentrations, respec-
tively. Reexamining these different points of view in the light of geochemistry, Allègre and
Lewin (1995) conjectured that distributions of fractal or multifractal type result from geo-
chemical differentiation processes, whereas the other distributions can be explained by geo-
chemical mixing processes. A synthesis of the various models is presented by Turcotte (1997)
and Agterberg (2007). A nice example of fitting of a multiplicative cascade to arsenic data is
detailed by Gonçalves (2001). Nature is of course more complex than these conceptual models
would suggest. While such models are important for the understanding of the origin of
deposits and thus mineral exploration, in geostatistics our objective is more modestly to fit the
distribution actually observed in the area of interest.
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Dispersion Indicator and Selectivity Index

The dispersion indicator of the distribution F of a random variable Z with
values in R (not necessarily positive) is defined by

S ¼ 1

2

Z þN

�N

Z þN

�N
F dzð Þ7z0 � z7F dz0ð Þ ¼

Z þN

�N
F zð Þ 1� F zð Þ½ �dz ð6:32Þ

This can be compared with the variance

σ2 ¼ 1

2

Z þN

�N

Z þN

�N
F dzð Þ z0 � zð Þ2F dz0ð Þ ¼

Z þN

�N
z�mð Þ2F dzð Þ

where m ¼ RþN
�N zF dzð Þ is the mean. S and σ2 both summarize the dispersion of

the distribution F, but S is more robust than σ2: up to the factor 1/2, S is the
mean of the magnitude of Z 0� Z when Z and Z 0 are two independent random
variables with the same distribution F, while σ2 is the mean square value of
Z0 �Z. The dispersion indicator S has a finite value if and only if the mean m
exists (i.e., E[7Z 7],N), whereas this condition does not guarantee that the
variance σ2 is finite. It can be shown that S and σ are related by the inequality
S#σ=

ffiffiffi
3

p
. Equality is obtained when F is uniform over a bounded interval. For

a Gaussian distribution we have S ¼ σ=
ffiffiffi
π

p
, a value close to the maximum. The

normality index ν ¼ ffiffiffi
π

p
S=σ can also be defined, and it is a dimensionless

parameter with value 1 for a Gaussian distribution. S is related to the
interquantile distance associated with p and 1� p by the following inequality
which justifies the name dispersion indicator given to S:

z1�p � zp #
S

p 1� pð Þ p, 1
2

� �
In order to include the case of a distribution with discontinuities, it is under-
stood that zp is the smallest value such that F(zp) $ p and z1� p is the largest
value such that F(z1�p) # 1� p.

When Z is a nonnegative variable, which we assume from now on, then S is
strictly less than m. The selectivity index s¼S/m, named Gini coefficient in
econometrics (Gini, 1921), therefore belongs to the interval [0, 1[. In the case of a
lognormal distribution, for example, this index is related to the logarithmic
standard deviation σ 0 by s ¼ 2G σ0=

ffiffiffi
2

p� �� 1 and can take any value in [0, 1[.
The selectivity index s is more robust than the coefficient of variation σ/m, which
can be infinite. In applications, however, the second-order moments need to be
known—and therefore the coefficient of variation—since the variance is the only
parameter whose evolution under a change of support can be predicted exactly.
In this perspective, Matheron (1985) examines, for a number of distributions, to
which extent the coefficient of variation can be related to the selectivity index.
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The interest of the dispersion indicator and the selectivity index, aside from
their robustness, appears clearly when considering the graphQ(T). Selectivity is
maximal if we can recover all the metal while mining only a minute fraction of
the ore. This would be the case, for example, if we could pick the nuggets in a
gold deposit. The graph of Q(T) would reach its upper limit m already for
a very low value of T. Conversely, no selectivity is possible if the ore has a
uniform grade equal to the mean grade m. The function Q(T) then coincides
with the straight line of equation Q¼m T. Generally, it is shown that the area
between this line and the graph of Q(T) is equal to S/2 (Figure 6.10):Z 1

0

Q Tð Þ �mTð Þ dT ¼ 1
2
S

The variance satisfies a similar property, but its interpretation in terms of
selectivity is not so clear (Figure 6.8): The area between the graph of B(z) and
the straight line B¼m� z (the tangent at the origin if there is no zero effect) is
equal to σ2/2: Z N

0

B zð Þ � m� zð Þ1z#mð Þdz ¼ 1
2σ

2

6.5.2 Support Effect and Information Effect

Support Effect

Let us now consider an RF Z(x), for example, representing a grade, and the
grades of blocks with support v. The distribution of block grades

Zv ¼ 1

7v7

Z
v

Z xð Þdx

depends of course on their size v, with the general tendency being that the
dispersion decreases as the size of the support increases: Very low as well as
very high grades can be observed on cores, whereas the mean grades of large
panels have a low contrast (see Figure 6.11). At the same time, selective mining
is all the more difficult as the support v of the selection unit is large. In the limit,
when v is very large, all blocks have grades very close to the mean m of Z, and
no real selectivity is possible. From a probabilistic viewpoint, these facts can be
explained by the three following properties:

1. The block mean grade (no cutoff) is independent of block size (it is the
mean m of Z(x)).

2. The marginal distribution Fv(�) of block grades gets narrower around the
mean as the support gets larger, according to the variance (2.33)
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σ2
v ¼

1

7v72

Z
v

Z
v

C x0 � xð Þ dx dx0 ð6:33Þ

where C(h) is the covariance of the SRF Z(x).

3. Fv(�) tends to become Gaussian when the support v tends to infinity in all
directions, provided that the covariance of Z has a finite integral range
(central limit theorem).

To improve the comparison of the two distributions, let us introduce a defi-
nition and a theorem.

Definition. If Z1 and Z2 have distributions F1 and F2 with the same mean m, we
say that the distribution F1 is more selective than F2 if the associated recovery
functions satisfyQ1(T)$Q2(T) for any T2 [0, 1], or B1(z)$ B2(z) for any z$ 0
(the two definitions are equivalent given the duality between B(z) and Q(T)).
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with the size of the support. From the cores to the blocks, and again from the blocks to the panels,

the variance is reduced by a factor of 4.
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To know whether a given distribution is more selective than another, we can
use a general functional analysis theorem established by Cartier [see Alfsen
(1971, Section 3)]:

Theorem. The c.d.f.F1 is more selective than the c.d.f. F2 if and only if there exists
a bivariate distribution F12(dz1, dz2) with marginals F1 and F2 and such that

E Z1 7Z2ð Þ ¼ Z2 ð6:34Þ
or equivalently if and only ifZ

ϕ zð ÞF1 dzð Þ$
Z
ϕ zð ÞF2 dzð Þ ð6:35Þ

for any convex function ϕ.

Relation (6.34) is called Cartier’s relation. By application of (1.4) and (1.5),
this implies that F1 and F2 have the same mean and

Var Z1ð Þ ¼ Var Z2ð Þ þ Var Z1 � Z2ð Þ ð6:36Þ

Coming back to the support effect, if x is a uniform random point in a block
v with grade Zv, it is easy to show that

E Z xð Þ j Zv½ � ¼ Zv ð6:37Þ
Likewise, if v is a block randomly selected among blocks with support v
forming a partition of a panel V with mean grade ZV, we have

E Z vð Þ 7ZV½ � ¼ ZV

By Cartier’s theorem the distribution FV of panels is less selective than the
distribution Fv of blocks, which is itself less selective than the distribution F of
cores (considered as points). This phenomenon, which is fundamental in
geostatistics, is known as the support effect. Selectivity relations between
the distributions FV, Fv, and F also entail that the dispersion indicator and the
selectivity index decrease as the support increases (at least for nested supports).

The first two properties (preservation of themean and reduction of the variance
according to (6.33)) and the fact that Fv is less selective than F are not enough to
characterize the marginal distribution of block grades. Indeed, that distribution
depends on the complete spatial distribution of the SRFZ(x), and not only on its
marginal and its covariance. In practice, the rigorous calculation of Fv(z) is only
possible in a few special cases, and we have to resort to change-of-support models
based on assumptions that are only approximately verified. Several models are
presented in Sections 6.6 to 6.9. All are consistent in that they honor the above
properties (but not necessarily the convergence to a Gaussian distribution when v
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gets larger and larger), which does not mean that they are always suitable. Any
validation, even if partial, is useful; for example, one can construct composite
samples (groupmetric cores into 10-m composites) and verify that their histogram
is correctly predicted from the point-support histogram (core samples). It should
be noted that these global change-of-support models determine the block distri-
bution, and thus global recoverable resources, without associated uncertainty.

Information Effect

In selective mining, as elsewhere, people have to make decisions based
on incomplete information. When only point-support data or regarded as
such are at hand (core samples or blast holes), the decision to accept or reject a
block v must be based on an estimated value since the block true grade
is unknown. The best one can do is consider the conditional expectation
Z�

v ¼ E Zv7Zα : α ¼ 1, : : : ,N½ �. It is a conditionally unbiased estimator:

E Zv 7Z�
v

� � ¼ Z�
v ð6:38Þ

It follows from Cartier’s theorem that the distribution of Z�
v is less selective

than that of Zv. In particular, by application of (6.36), estimated grades are less
dispersed (smoother) than actual grades: For a high cutoff grade there will be
far fewer blocks accepted on the basis of Z�

v than on Zv. Even if one considers a
cutoff for which the bias on the ore tonnage is negligible, there will be a loss due
to bad selection:

� Poor blocks are selected because estimated rich.

� Rich blocks are rejected because estimated poor.

In all cases this translates into a degradation of the value of the exploited ore,
which increases with the dispersion of the scatterplot Zv,Z

�
v

� �
around the first

bisector. This degradation is called the information effect: Selection based on
estimates rather than the true block values always results in a degradation of
the conventional income.

In our reasoning we have overlooked a difficulty that deserves further
explanation. Even though the selection is made on the basis of the estimated
value Z�

v , the grade of a mined block is the true grade Zv and not Z�v [“We do
not send estimated values to the mill” (David, 1977)]. Therefore the ore tonnage
and the quantity of metal of the selected blocks are

T zð Þ ¼ E
	
1Z*

v $ z



, Q zð Þ ¼ E

	
Zv 1Z*

v $ z



ð6:39Þ

However, when the estimator Z�
v is conditionally unbiased, we have that

E
	
Z�

v 1Z*
v $ z



¼ E

	
Zv 1Z*

v $ z



¼ Q zð Þ
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This is an extremely desirable property: The true mean grade of the selected
blocks is equal to the mean grade of their estimated values (in expectation).
This justifies the calculation of selectivity curves directly from the distribution
of Z�

v . This simplification of course is no longer legitimate if we use an esti-
mator that is not conditionally unbiased.

Selection on Kriged Grades

In practice, we cannot find the conditional expectation, and we do the selection
on simpler estimators, such as the grade of a sample in the block or a kriging
estimate from samples in the block and its surrounding. But kriging only
guarantees unbiasedness, not conditional unbiasedness. This results in an
additional loss. For example, if the regression E Zv 7Z�v

� �
is linear, we have

E Zv 7Z�
v

� � ¼ mþ r Z�
v �m

� �
(i.e., actual increment¼ r � expected increment in view of the selection)

where

r ¼ ρ
σv

σ�v
, σ2

v ¼ Var Zv½ �, σ�2v ¼ Var Z�v
� �

, ρ ¼ Corr Zv,Z
�
v

� �
If Z�

v is simply the grade of a sample taken in the block v, one has σ�v .σv, and
thus r, 1. For Z�

v .m one tends to select an ore that is less rich than expected.
At the other extreme, for very scattered grades and a small support v, when each
panel is kriged with a very large neighborhood, it is possible to get σ�v ,, σv and
r. 1 and reach the wrong conclusion that the deposit is uneconomic.

To evaluate the quantity of metal that is actually recovered, it is convenient
to introduce the regression between true and estimated grades:

H zð Þ ¼ E Zv 7Z�
v ¼ z

� �
The quantity of metal is then

Q zð Þ ¼ E
	
Zv 1Z*

v $ z



¼ E

h
E
	
Zv 1Z*

v $ z 7Z
�
v


i
¼ E

	
H Z�v
� �

1Z*
v $ z



If the function H is increasing, which is a reasonable assumption, the tonnage
and the quantity of metal can be written as

T zð Þ ¼ E
h
1H Z*

vð Þ$H zð Þ
i
, Q zð Þ ¼ E

h
H Z�

v

� �
1H Z*

vð Þ$H zð Þ
i

Therefore

T zð Þ ¼ eT H zð Þð Þ, Q zð Þ ¼ eQ H zð Þð Þ
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where eT zð Þ and eQ zð Þ stand for the recovery functions associated with H Z�v
� �

.
Provided that we replace z by H(z), the curves of the recovered tonnage and
quantity of metal are identical to those of H Z�

v

� �
. As a consequence,

Q Tð Þ ¼ eQ Tð Þ. In other words, to quote a figurative expression of G. Matheron
(1984b), “we may say that we are mining conditional expectations rather than
true grades.” [An alternative point of view is to replace the conditionally biased
estimate Z�v by the conditionally unbiased estimate Z��

v ¼ H Z�v
� �

and select
on the basis of Z��

v . The result is unchanged if we replace the cutoff z by the
cutoff H(z).] The actual calculation of the recovery functions requires
the knowledge of the conditional distribution of H Z�

v

� � ¼ E Zv 7Z�v
� �

, which
amounts to knowing the bivariate distribution of Zv and Z�

v . This is not
accessible from the data and requires a model. We will see that this is possible in
the framework of the discrete Gaussian model and its extensions (provided of
course that the model is applicable).

A Comparison of Support and Information Effects

To compare these two effects, Matheron (1984b) presents a simple example that
can be solved explicitly: The decision to mine the block v is made in view of
the grade of a single sample, randomly located in the block, and the bivariate
distribution of the block and the sample is lognormal. We denote by σ2

v the
logarithmic variance of the block grade Zv, by σ2 the logarithmic variance of
the sample grade Z, and by m the common arithmetic mean of Z and Zv. Car-
tier’s relation E(Z 7Zv)¼Zv entails that the correlation coefficient of log Z
and log Zv is ρ ¼ σv=σ. The conditional expectation H¼E(Zv 7Z) is also log-
normal with arithmetic mean m and logarithmic variance σ2

H ¼ ρ2σ2
v ¼ σ4

v=σ
2

(seeAppendix, SectionA.9). The different selectivity curves can then be calculated
from the lognormal distributions. Form¼ 1, σ2 ¼ 1, and σ2

v ¼ 1=2, for example,
the selectivity index goes from 0.521 for point-support grades to 0.383 for block-
support grades and to 0.276 for blocks selected on the basis of estimates. The first
loss is due to the support effect—that is, selecting from true grades ismore efficient
at a point support than at a block support—and the second loss reflects the
information effect. Notice that the two effects can be of comparable importance.

To summarize, one should not base the selection on single samples from the
blocks and calculate the value of the deposit as if the grades of the selected
blocks were equal to those of their samples—the implicit methodology behind
an evaluation of recoverable resources by polygons of influence. Indexing the
recovery functions by

� “pol” for an evaluation by polygons of influence which would identify the
distribution of block grades with the distribution of the samples,

� “ide” for the ideal case of a selection based on true block grades,

� “opt” for a selection based on conditional expectation,

� “sub” for the actual selection based on suboptimal estimates,
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we obtain the following ranking of conventional incomes:

Bsub zð Þ#Bopt zð Þ#Bide zð Þ# B̂pol zð Þ ’z

The hat over B̂pol reminds us that it is a biased estimate (by excess) rather
than an evaluation susceptible to be reached. The loss from Bopt to Bsub is due
to the use of a suboptimal selection criterion; it could be reduced. The differ-
ence between Bide and Bopt is due to the information effect, and the difference
between B̂pol and Bide represents the support effect; these can only be reduced at
the cost of new data and a reduction of the volume v of the selection unit. The
loss Bsub � B̂pol shows how illusory our expected income is when it is calculated
with polygons of influence and the histogram of the blocks is confused with that
of the samples.

6.6 MULTI-GAUSSIAN CHANGE-OF-SUPPORT MODEL

We have seen in Section 6.3.2 that the conditional point distribution is seldom
rigorously accessible, with the noticeable exception of the multi-Gaussian
model where Z(x)¼ϕ(Y(x)) is a function of a Gaussian SRF Y(x). So we will
first consider the change of support in the multi-Gaussian model.

6.6.1 General Case

Let us first focus our interest on a given block v and seek the distribution of its
mean grade, denoted by Zv or Z(v), conditioned on the data Z(xα) or, equiv-
alently, on the corresponding {Y(xα) : α¼ 1, . . . ,N} (in practice, only a subset
of the data, inside the block or close to it, are taken into account). Due to the
change of support, we know that distribution in special cases only (e.g., when
the SRF Z is itself Gaussian). The multi-Gaussian approach can still be used if
we approximate the block grade by the mean grade of M points xi discretizing
the block. Then

Fv zjdatað Þ ¼ Pr

(
1

M

XM
i¼1

Z xið Þ, z jZ xαð Þ : α ¼ 1, : : : ,N

)

¼ Pr

(XM
i¼1

ϕ Y xið Þð Þ,Mz jY xαð Þ ¼ yα : α ¼ 1, : : : ,N

) ð6:40Þ

Because the SRF Y(x) is assumed Gaussian, the vector of conditional expec-
tations of the Y(xi) given the Y(xα) is Gaussian and is obtained by linear
regression. Its distribution is entirely determined by the vector of conditional
means and the conditional covariance matrix, which are the vector of the simple
kriging estimates y�(xi) and the covariance matrix of the simple kriging errors.
The distribution (6.40) generally cannot be calculated analytically. It is
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calculated by the Monte Carlo method: We draw a large number of vectors
{Y(xi) : i¼ 1, . . . ,M} from the conditional distribution and evaluate Fv (z7data)
numerically as the proportion of simulated vectors satisfying the conditionPM

i¼1 ϕ Y xið Þð Þ,Mz. The conditional mean of any functional of Z (v) can be

evaluated by the mean value of the functional on the simulations, or deduced
from the evaluation of the conditional distribution [see Emery (2006b) for more
details]. The conditional variance can be obtained in the same manner.

The multi-Gaussian approach is very powerful, because it can be extended
straightforwardly to any functional of the Z(xi). For example, it allows the
evaluation of indirect recoverable resources—that is, when the selection will be
based on a future estimate of the block grade. To this end, it suffices to com-
plement the set of points xi discretizing the block with points where future
information will be available.

In some situations, for example at the boundaries of an orebody, we want to
relax the assumption that the Gaussian random function has a zero mean and
switch to a model with a locally unknown mean. Emery (2006b) proposes an
approximation based on ordinary kriging instead or simple kriging and pro-
viding an unbiased estimation of any functional of Z(v).

The multi-Gaussian model has been proposed and applied by Verly (1983,
1984). Just like for point-support data, it is recommended, before using this
method, to verify at least that the data are compatible with the hypothesis of
stationarity of the RF Y(x) and that the bivariate distributions of this SRF can
be considered Gaussian. Verly (1986) gives details on an application to a ura-
nium deposit; predictions made from limited information are validated by the
real grades of blocks (approximated by the mean of blast holes). In an appli-
cation to a copper deposit, Emery (2006b) compares the conditional expectation
(known mean) to the approximation with a locally unknown mean. The latter
seems to provide better results in border areas, but the differences remain small.

It should be noted that the nonconditional version of this model constitutes
a global change-of-support model.

Though rigorous, up to the discretization of the block and the computation
by theMonte Carlo method, the multi-Gaussian model is not used much because
of it computational requirements. However, the calculations can be simplified if
we are able to anticipate the shape of the nonconditional distribution Fv of Z(v).
This is possible, at the price of an approximation, in the lognormal case.

6.6.2 Permanence of Lognormality

In the lognormal case, it is often observed that the distribution of Z(v) is still
lognormal: There is permanence of lognormality. This permanence cannot be
strictly true: The average of two lognormal random variables is not a lognormal
random variable. However, numerical experiments show that the permanence of
lognormality is a sensible approximation as long as v remains small
[for definiteness, as long as the variance of logZ(x) is less than 1 and the size of v
does not exceed two-thirds of the range; see discussion at the end of Section 6.8.1.
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The characteristics of the lognormal random variableZ(v) are defined by two
relations: (i) Z(x) and Z(v) have the same mean, and (ii) the variance of Z(v)
derives from the covariance of the SRF Z according to (6.33). Since the mean,
variance, and covariance of the lognormal SRF Z are related to those of the
Gaussian SRF Y(x)¼ logZ(x) by the relations (2.78), let us take as main
parameters the meanm, variance σ2, and covarianceCY(h) ofY. Similarly, let us
characterize the random variable Z(v) by the mean mv and variance σ2

v of
Yv¼ logZ(v). (Note thatYv is not the mean value ofY(x) in v.) Combining these
relations, we get

mv þ 1
2σ

2
v ¼ mþ 1

2σ
2,

exp σ2
v

� � ¼ 1

7v72

Z
v

Z
v

exp CY x0 � xð Þð Þdx dx
0 ð6:41Þ

from which σ2
v and mv can be deduced immediately. The reduction of variance

on the Gaussian variables can be characterized by r2 ¼ σ2
v=σ

2 , 1.
We now turn to the local problem—that is, finding the distribution of the

mean grade Z(v) of a specific block v conditional on {Z(xα) : α¼ 1, . . . ,N}.
The vector of transformed data Y(xα)¼ log Z(xα) is Gaussian, and under the
simplifying assumption of permanence of lognormality, Yv¼ log Z(v) is a
Gaussian random variable. The multi-Gaussian approach is greatly simplified
by going one step further and assuming that the joint distribution of
Yv, Y(x1), . . . ,Y(xN) is multivariate Gaussian. Indeed, in that case there is no
need to discretize the block v: The conditional distribution of Yv is Gaussian; its
mean is the simple kriging estimate Y�

SK from the data Y(xα), and its variance is
the simple kriging variance σ2

SK: In particular, like in the point-support case,
the conditional expectation of Z(v) is the simple lognormal kriging estimator

Z�SLK ¼ exp Y�
SK þ 1

2
σ2
SK

� �
When carrying out this kriging, we should remember that Yv and Y(x) do not
have the same mean. To implement the calculations, we need, in addition to the
knowledge of the point covariance of the SRF Y, the covariances of Yv and
Y(xα). With the same approach as for the determination of σ2

v we get

exp Cov Yv,Y xð Þð Þð Þ ¼ 1

7v7

Z
v

exp CY x0 � xð Þð Þ dx0

If strict stationarity of Y(x) is not assured, the conditional distribution is not
known but, exactly like for a point support, the ordinary lognormal kriging

Z�
OLK ¼ exp Y�

OK þ 1
2
σ2
OK þ 2μ

� �� �
is an unbiased estimator of Z(v). As explained for the point-support case, the
lognormal distribution with logarithmic mean Y�

OK and logarithmic variance
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σ2
OK þ 2μ can only be considered as an approximation to the conditional

distribution of Z(v).
When performing the ordinary kriging of Yv, the relation (6.41) between the

(local) means of Y(x) and Yv must be taken into account so that m only is con-
sidered unknown. Details of this method can be found in Journel (1980).6 This
procedure should be used with caution because it lacks robustness if the data
depart from a lognormal distribution.Matheron (1974a) presents several variants
of this approach; also see Dowd (1982), Rivoirard (1990), and Gessie (2006).

Parker et al. (1979) present an application to a uranium deposit, including a
cross-validation of local point-support recovery functions. The uranium grade is
not strictly stationary; the authors have thus used ordinary lognormal kriging
and have carefully calibrated the sill of the variogram of Y(x) (using a local
calibration). Rendu (1979) presents a validation of lognormal kriging and of the
calculation of the conditional distribution of blocks for a gold deposit in South
Africa. The study shows an excellent agreement between the results predicted by
geostatistics and reality. Because the mean is well known, the results obtained by
simple kriging of Yv are better than those obtained by ordinary kriging. How-
ever, forcing the lognormal formalism to data whose histogram is spread out but
not lognormal can lead to real disasters (David et al., 1984).

6.7 AFFINE CORRECTION

Global Affine Correction

IfZ(x) is aGaussianSRF,withmeanm, varianceσ2, andcovarianceC(h), then the
mean valueZ(v) in the block v isGaussian,with the samemeanm, and variance σ2

v

given by (6.33). Therefore the following equalities hold in distribution:

Z xð Þ �m

σ
¼D Z vð Þ �m

σv
B N 0, 1ð Þ ð6:42Þ

The affine correction is to consider that even if the distribution of Z is not
Gaussian, the relation (6.42) remains valid, at least to a first approximation.
The model Fv of the block distribution is then derived from the model F of the
point distribution by

Fv zð Þ ¼ F mþ z�mð Þ=rð Þ with r ¼ σv=σ ð6:43Þ
The change-of-support coefficient r is less than 1 and decreases as the support v
gets larger. This model has the advantage of simplicity: Fv can be immediately
deduced from the sample histogram or any graphical fit of it without mathe-
matical modeling. This change-of-support model is consistent but only valid,
besides the Gaussian case, if the distribution of Z is continuous and if v is small

6 In the case of an unknown mean, Journel assumes that the conditional variance of Yv is equal to

the simple kriging variance σ2
SK; it must be changed to σ2

OK þ 2μ.

c06 30 January 2012; 17:32:53

448 NONLINEAR METHODS



compared to the range (in particular, the variogram of Z should not have a
nugget effect). Indeed:

1. It assumes a permanence of the distribution (F and Fv have the same type
of distribution, only the scale parameter changes). This permanence is
only true in the Gaussian case. We also know that if v becomes far larger
than the range, Fv must tend to a Gaussian distribution by virtue of the
central limit theorem, which is not the case in this model (except again if
the SRF is Gaussian).

2. The interval of definition of Z(v) narrows around the mean in the ratio r.
If the distribution of Z has an atom at 0, the distribution of Z(v) will have
one at m (1� r), which makes no physical sense.

Indicator Kriging and Local Affine Correction

Let us now consider a specific block v. If we cannot turn to the Gaussian case,
the calculation of conditional expectation is generally impossible. So is kriging,
or rather cokriging of the indicator 1Z(v),z from indicator data 1Zα , z0 , since
the v-support indicator is not the mean in v of point-support indicators.
A possible solution is to apply a local affine correction to the distribution
defined by kriging a series of indicators (for different cutoffs) of the point
variable Z(x0), where x0 is the center of the block v. Since this local distribution
has for mean the kriging estimate z�x0 of Z(x0), (6.43) becomes

F̂v zð Þ ¼ F̂x0 z�x0 þ z� z�x0

	 

=rx0

	 

where F̂x0 is the c.d.f. derived from the kriged indicators and r2x0 is the ratio
of the conditional variance for support v to the variance of the conditional
point-support distribution at x0. Because these variances cannot be calculated
in general, Journel (1984) proposes to approximate the conditional change-of-
support coefficient rx0 by the global change-of-support coefficient r.

Unfortunately, as shown by Emery (2008), the global coefficient is always
greater than the local one, at least in expectation (see Section 6.8.3), so this
approximation makes block grade distributions look more selective than they
really are and creates biases in the assessment of recoverable resources. In fact
this method very often produces results that are simply unacceptable (Liao,
1990; Rossi and Parker, 1994). Apart from exceptions, nonparametric methods
such as indicator kriging cannot capture a change of support. This requires
explicit modeling of bivariate distributions.

6.8 DISCRETE GAUSSIAN MODEL

Ideally we would like to have an isofactorial model in which all pairs of
Gaussian variables associated to point and block values have Gaussian
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bivariate distributions, or even in which the multivariate distribution of these
Gaussian variables is Gaussian. Indeed, this would make it easy to proceed
further with the calculation of recovery functions after a change of support,
including for indirect recovery functions (i.e., when the selection will be
based on a future estimate of the true value rather than on the true value itself).
Matheron (1976b) proposes two change-of-support models for RFs Z
that are transforms of an SRF Y with a Gaussian marginal. The first
one, the Hermitian model, is developed for an SRF Y whose bivariate
point�point distributions are Hermitian. It includes the special case where
the point�point distributions are Gaussian, but then the bivariate point�block
distributions are not (they are Hermitian). This model can be used at the global
scale but lacks flexibility for estimating local recovery functions. The other
model, the discrete Gaussian model (DGM), satisfies our requirements at the
cost of a few assumptions and, at least in its original version, of a discretization
of the location of the data. We will only present that model. It is by far the most
used model even if it is not applicable in all situations.

6.8.1 Global Discrete Gaussian Model

Let us consider an SRF Z(x) that can be expressed as the transform of an SRF
Y(x) with standard normal marginal distribution. (Note: Y must be strictly
stationary and not only of order 2; otherwise different blocks do not necessarily
have the same distribution.) It is therefore of the form Z(x)¼ϕ (Y(x)) with the
transform ϕ ¼ F�1G, where F is the marginal c.d.f. of Z(�) and G the standard
normal c.d.f. Consider a block v and a uniform random point x within v.
The random variable Z xð Þ has for c.d.f. the marginal distribution F of the
SRF Z(�) and can be expressed as the transform ϕ Y xð Þð Þ of the random variable
Y xð Þ. Similarly, we can consider that the mean gradeZ(v) of the block v is of the
form Z(v)¼ϕv(Yv), where Yv is a standard normal and ϕv the block transfor-
mation function, which we want to determine. The crucial assumption of the
discrete Gaussian model is that the bivariate distribution of the Y xð Þ,Yvð Þ pair is
Gaussian.7 It is characterized by a correlation coefficient r assumed positive. The
block transformation function and its distribution are then derived.

Cartier’s relation (6.37) is equivalent to

E ϕ Y xð Þð Þ 7Yv½ � ¼ ϕv Yvð Þ ð6:44Þ

Since the Y xð Þ,Yvð Þ pair is Gaussian, the conditional distribution of Y xð Þ
given Yv¼ yv is Gaussian with mean r yv and variance 1� r2. Hence

ϕv yvð Þ ¼
Z

ϕ r yv þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
u

	 

g uð Þdu ð6:45Þ

7 This assumption is usually an approximation: In the case of a Gaussian random function, the

bivariate distribution of Y xð Þ and Yv is a mixture of bivariate Gaussian distributions with different

correlation coefficients and therefore cannot be exactly Gaussian.
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It is interesting to note that (6.45) has the form of a convolution product:

ϕv yvð Þ ¼ ϕ�g1�r2 ryvð Þ
where g1�r2 is the p.d.f. of a zero-mean normal with variance 1� r2. There are
remarkable families of functions ϕ for which this convolution can be expressed
in a simple and exact manner. An example is the exponential transformation
(lognormal random functions): If ϕ is of the form ϕ yð Þ ¼ mZ exp σy� σ2=2

� �
,

the application of (6.45) leads to ϕv yvð Þ ¼ mZ exp rσyv � r2σ2=2
� �

—there is
permanence of lognormality. In usual cases the actual calculation of ϕv is
carried out using the expansions of the transformation functions into normal-
ized Hermite polynomials as

ϕ yð Þ ¼
XN
n¼0

ϕn χn yð Þ, ϕv yð Þ ¼
XN
n¼0

ϕvn χn yð Þ

The coefficients ϕn are assumed known, and the ϕvn are to be determined.
Applying relation (6.27), Cartier’s relation (6.44) is expanded into

XN
n¼0

rn ϕn χn Yvð Þ ¼
XN
n¼0

ϕvn χn Yvð Þ

Since the χn constitute an orthonormal basis, we have ϕvn¼ rn ϕn for all n, so

ϕv yð Þ ¼
XN
n¼0

ϕn r
nχn yð Þ ð6:46Þ

There remains to determine r. Two options are available. The first (referred to
as DGM1), proposed by Matheron, is based on the fact that the variance
defined by the block distribution must be consistent with the block variance σ2

v

deriving from the covariance C(h) of the SRF Z(x). The former is the sum of
the squared coefficients ϕvn for n $ 1, while the latter is given by application of
(6.33) with the covariance C of Z. Therefore, r is the solution of the equation

XN
n¼1

ϕ2
n r

2n ¼ 1

7v72

Z
v

Z
v

C x0 � xð Þ dx dx0 ð6:47Þ

The left-hand side is an increasing function of r, going from 0 to σ2 as r
increases from 0 to 1, where σ2¼C(0) is the variance of Z(x); since the variance
σ2
v is itself comprised between 0 and σ2, this equation has indeed one and only

one solution. The solution r is named the change-of-support coefficient. Its value
tends to 0 when the support becomes very large (assuming a finite integral range
for C) and is equal to 1 when the support reduces to a point. The change of
support works all the better that v is small with respect to the range of C or,
equivalently, that r is close to 1.
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The second option (DGM2), proposed by Emery (2007a), is simpler but
requires the additional assumption that the bivariate distribution of Y xð Þ and
Y x0ð Þ for two independent random points within the same block v is Gaussian.
In that case, r2 is the block variance of the SRF Y(�):

r2 ¼ 1

7v72

Z
v

Z
v

ρ x0 � xð Þ dx dx0 ð6:48Þ

where ρ is the covariance of the SRF Y(�). Moreover, Yv is simply the average
Y(v) of Y(�) in the block v, rescaled to a unit variance by the change-of-support
coefficient r:

Yv ¼ Y vð Þ=r ð6:49Þ

Proof. We need to be precise about notations. Concerning the original variable, we may
indifferently denote by Z(v) or Zv the average of Z(x) in v. But the Gaussian random variable
Yv we have associated with that average is not the average of Y(x) in v. We must therefore
carefully distinguish the average Y(v) of Y(x) in v, which is a random variable with mean zero
and variance smaller than 1, and the standard normal RV Yv associated with Z(v). We recall
that r is the correlation coefficient of the Y xð Þ,Yvð Þ pair and is also its covariance since Y and
Yv have unit variances.

Let us now consider a second uniform random point x 0 within v, independent of x, and
assume that the bivariate distribution of Y xð Þ and Y x 0ð Þ is also Gaussian. The covariances
between Z xð Þ, Z x 0ð Þ, and Z(v) can be obtained by applying the following transposition of
relation (6.25) to the transforms ϕ(Y) and ψ(Y0) of two standard normals Y and Y0 whose
bivariate distribution is Gaussian with correlation coefficient ρ:

Cov ϕ Yð Þ,ψ Y 0ð Þð Þ ¼
XN
n¼1

ϕn ψn ρ
n ð6:50Þ

Using (6.46), this gives

Cov Z xð Þ,Z vð Þð Þ ¼
XN
n¼1

ϕ2
n r

n Cov Y xð Þ,Yvð Þð Þn,

Cov Z xð Þ,Z x 0ð Þð Þ ¼
XN
n¼1

ϕ2
n Cov Y xð Þ,Y x 0ð Þð Þð Þn

which entails that

Cov Y xð Þ,Y x 0ð Þð Þ ¼ r Cov Y xð Þ,Yvð Þ ð6:51Þ

Since r is defined as the covariance of Y xð Þ and Yv, we have

Cov Y xð Þ,Yvð Þ ¼ r

Cov Y xð Þ,Y x 0ð Þð Þ ¼ r2

A random location has the same effect on covariances as an average value. The above
relations thus imply
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Cov Y vð Þ,Yvð Þ ¼ r,
Var Y vð Þð Þ ¼ r2

so that the correlation between the regularized variable Y(v) and the Gaussian variable Yv

attached to the block is equal to 1. So

YðvÞ ¼ rYv

and r2 is the block variance (6.48) of Y(v). &

Discussion

The discrete Gaussian model is by design a consistent change-of-support model.
Moreover, it is compatible with the central limit theorem: When r tends to zero,
the coefficients rn ϕn of the expansion (6.46) for n. 1 become negligible in
comparison with r ϕ1, so that Z(v) tends to be Gaussian. Nevertheless, DGM
models are only approximations. Indeed, model DGM1 is based on a hypothesis
(that the bivariate distribution ofY xð Þ andYv is Gaussian) which is not fully true
from a theoretical standpoint even though it is usually satisfied in practical
applications when v is relatively small compared with the variogram range.
Model DGM2 requires an additional assumption (that bivariate distributions of
random points are Gaussian) so that its validity is more limited.

The validity of the discrete Gaussian model has been checked in the log-
normal case by comparing the block transform ϕv predicted by the model with
the “true” block transform obtained from point-support simulations of a fine
grid discretizing the block: Matheron (1981b) for DGM1 in 1D, Emery (2007a)
for DGM2 in 2D, Chilès (2012) for DGM1 and DGM2 in 2D. Both models
give good results when the logarithmic variance is small, because then we
remain close to the Gaussian case. Figure 6.12 illustrates the results for a fairly
large logarithmic standard deviation of 1.5 (the coefficient of variation of Z(x)
is 2.91). They are based on 10 to 100 thousand simulations of a Gaussian SRF
Y(x) with a spherical variogram, transformed to a lognormal SRF Z(x). When
the block size is small with respect to the range—which is the usual situation in
practical applications—DGM1 and DGM2 give the same answer, very close to
the true one (Figure 6.12a for a block size of 1/10th the range). When the block
size is equal to the range, DGM1 continues to perfectly model the true block
transform whereas DGM2 deviates for high cutoff grades (Figure 6.12b).
Finally, for very large blocks (10 times the range in Figure 6.12c) DGM1 again
provides a very good answer except for extreme cutoffs, whereas DGM2 starts
diverging as soon as the cutoff on Y moves away from zero. In this example we
can conclude that DGM1 has a broader range of validity than DGM2. In both
cases the presence of a nugget effect extends the validity range.

From a practical viewpoint, the DGM model does not explicitly require that
the bivariate distributions of fixed-location point-support variables Y(x) and
Y(x0) be Gaussian. On the other hand, in model DGM1 the determination of the
change-of-support coefficient r requires the knowledge of the covariance of
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FIGURE 6.12 Comparison ofmodelsDGM1andDGM2 in the lognormal case. Each figure shows

the “true” Gaussian transformation ϕv of a block (determined from simulations) and its approxima-

tions by models DGM1 and DGM2. The support v is a square of side L. The variogram of the

Gaussian SRF is spherical with variance σ2 and range a. Comparison for σ¼ 1.5 (that is, σ2¼ 2.25)

and: (a)L/a¼ 0.1, (b)L/a¼ 1, (c)L/a¼ 10. The “true”ϕvwas determined from 10,000 simulations in

(a), from 100,000 simulations in (b) and (c).
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the SRF Z while model DGM2 requires the knowledge of the covariance of the
SRF Y. Good practice is to model both the variogram of Z and the variogram of
Y in a consistent manner by assuming that Y(�) has Gaussian bivariate dis-
tributions, so that the two covariances are related byC hð Þ ¼PN

n¼1 ϕ
2
n ρ hð Þð Þn. For

both models, if the data originate from regularly spaced drill holes, it is recom-
mended, as suggested by Maréchal (1976), to check the validity of the DGM
model by applying it to the prediction of the distribution of the average grade of a
group of four neighboring drill holes, which can be compared to the actual one.

6.8.2 Local Discrete Gaussian Model

A model in which all bivariate distributions are Gaussian can be obtained by
generalizing the global discrete Gaussian model. To this end we must accept to
discretize the deposit into a partition of small blocks of size v and forget the
exact position of each sample in its block.

Domain Discretization

The deposit is regarded as the union of nonoverlapping blocks vp which are
identical up to a translation. To simplify, we denote by Zvp the mean grade of
block vp, and v the support of these blocks. The random variables Zvp thus
constitute a discretized version of the deposit.

Concerning point-support grades, we will not attempt to consider their exact
position inside the block, and will denote by Zp ¼ ZðxpÞ the grade of a point xp

selected randomly in the block vp (uniform density) and independently of any
other point. Experimental data do not necessarily exist for all indexes p but for
a subset p1, . . . , pN.

Zp and Zvp are transforms of standard normals Yp and Yvp through the
transformation functions ϕ and ϕv defined for the global model:

Zp ¼ ϕ Yp

� �
, Zvp ¼ ϕv Yvp

� �
Specification of all Bivariate Distributions

The pairs Yp,Yvp

� �
are assumed to follow the Gaussian bivariate distribution

characterized by the correlation coefficient r determined for the global model.
For the isofactorial model to be completely specified, two additional hypoth-
eses are required:

� Given Yvp , Yp is independent of the other Yq, q 6¼ p, as well as the other
Yvq , q 6¼ p.

� The pairs Yvp ,Yvq

� �
are bivariate Gaussian.

All pairs of variables chosen among the random variables Yp and Yvp then have
Gaussian bivariate distributions. These are characterized by the corresponding
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correlation coefficients. If Rpq denotes the correlation coefficient between Yvp

and Yvq , the discrete Gaussian model is defined as follows:

� Block�block distribution : Cov Yvp ,Yvq

� � ¼ Rpq, ð6:52Þ
� Point�block distribution : Cov Yp,Yvq

� � ¼ r Rpq, ð6:53Þ
� Point�point distribution : Cov Yp,Yq

� �¼ r2 Rpq, p 6¼ q ð6:54Þ

Relation (6.54) is also valid for p¼ q if we consider two different random points
in vp. Otherwise the variance of Yp is of course equal to 1. The proof of these
relations is obtainedby expressing the covariances of the correspondingZ variables
in the form (6.50) and following lines similar to the proof establishing (6.51).

In this model, things are as though the main role was not held by the SRF
Z(x) but by a discretized version composed of the grades of the blocks vp, or
their Gaussian transforms Yvp :

This is at the origin of the name of the model, although it can now be used
without discretization. The samples, to be regarded as randomly located in each
block, have grades whose Gaussian transforms are of the form

Yp ¼ rYvp þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
εp ð6:55Þ

where the εp are standard normal variables uncorrelated among themselves and
with the Yvq (whether q is equal to p or not).

There remains to determine the correlation coefficients Rpq. In the approach
of model DGM1, this is achieved by inverting numerically the relation

Cov Zvp ,Zvq

� � ¼XN
n¼1

ϕ2
n r

2n Rn
pq

since the left-hand side canbe computed from the covarianceC(h) of the SRFZ(x):

Cov Zvp ,Zvq

� � ¼ 1

7v72

Z
vp

Z
vq

C x0 � xð Þ dx dx0

There is no guarantee that the matrix [Rpq] thus obtained is positive definite. If
this is not the case, a covariance model is fitted to the set of these numerical
covariances.

In the approach of model DGM2 the block variable Yvp is equal to the
average value of Y in vp, scaled by the change-of-support coefficient r defined
by (6.48): Yvp ¼ Y vp

� �
=r. Thus the covariances Rpq derive directly from the

covariance ρ(h) of the Gaussian SRF Y(x):

Rpq ¼ Cov Yvp ,Yvq

� � ¼ 1

r2
Cov Y vp

� �
,Y vq
� �� � ¼ 1

r27v72

Z
vp

Z
vq

ρ x0 � xð Þ dx dx0

The discrete Gaussian model is then consistent with respect to variances and
covariances and provides all elements required by disjunctive kriging, which
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can be carried out by duplicating the method described in Section 6.4.1. In
particular, this will provide the local recovery functions T(z) and Q(z), namely
for a selection based on the true grades of the blocks. Matheron (1976b) pre-
sents an extension of the model enabling the incorporation of the information
effect, even if the ultimate information is not yet available. This can be done
more easily in the framework of the fully Gaussian model presented hereafter.

Conditional Distribution of a Block

Instead of using DK, the conditional distribution can be determined directly if
we accept the framework of a full Gaussian model: Assuming that the vector of
the Yvp is multivariate Gaussian, so is also the vector of the Yvp and Yp.
The conditional distribution ofYv

0
for a target block v0 is then aGaussian whose

conditional expectation and variance coincide with the simple kriging estimate
and variance of Yv

0
from the data Yp of the informed blocks p¼ p1, . . . , pN.

The assumption of multivariate rather than bivariate Gaussianity is of
course more restrictive but has the advantage of providing a true conditional
distribution rather than a pseudoconditional distribution as obtained by DK.
The calculation can be done with model DGM1 or DGM2.

6.8.3 Local Model in a Multi-Gaussian Framework

A last step is to assume that the joint distribution of Yv and the transformed
data Y(x1), . . . , Y(xN) is multivariate Gaussian. It is not clear that this is far
more restrictive than the assumption of a multivariate Gaussian distribution
for the vector of the Yvp and Yp, and it has the distinctive advantage that there
is no more need to discretize the study domain and delocalize the data to get the
covariances between the Gaussian variables. Since the covariances between
the Gaussian data are given by the correlogram ρ(h) of Y and the variance of
Yv is by definition equal to 1, we only need to specify the covariances rαv
between the Y(xα) and Yv.

In the framework of model DGM1, these covariances are derived by
equating two formulas for the covariance of Z(xα) and Z(v): (i) the formula
based on the bivariate distribution of Y(xα) and Yv and (ii) the average
covariance of Z(xα) and Z(x) when x describes the block v, based on the
bivariate distribution of Y(xα) and Y(x). Since the coefficients of the expansions
of ϕ(y) and ϕv(y) into normalized Hermite polynomials are ϕn and rnϕn,
respectively, equating these two formulas leads to the equation

XN
n¼1

ϕ2
n r

n rnαv ¼
1

7v7

Z
v

XN
n¼1

ϕ2
n ρ x� xαð Þ½ �ndx

where r 2 [0, 1] is the solution of equation (6.47). For fixed r the lefthand side is
an increasing function of rαv 2 [0, 1]; therefore the equation has a unique
solution rαv when the covariance ρ(h) is nonnegative.
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Working in the framework of model DGM2 is even simpler: SinceYv¼Y(v)/r,
we have rαv¼ ραv/r, where ραv is the covariance of Y(xα) and Y(v).

The DGM1 approach corresponds exactly to the multi-Gaussian model devel-
oped in Section 6.6.2 for lognormal SRFs (the difference is that in the lognormal
case we have an analytical correspondence between the covariances of the RFs Y
and Z). This model has not been developed until now but is worth considering
because the domain of validity of model DGM1 seems to be wider than that of
model DGM2. For the rest of the presentation, we will adopt the latter since it is
simpler and has already been used, but it should be remembered that similar results
can be obtained with model DGM1, or even, as shown by Matheron (1976b) and
Lantuéjoul (1990), by remaining in the truly discrete model seen at the end of
Section 6.8.2 (i.e., multi-Gaussian after randomization of the location of the data).

The conditional distribution of Yv is then a Gaussian whose conditional
expectation and variance coincide with the simple kriging estimate and variance
of Yv. The simple kriging estimator of Yv is

Y�
v ¼

XN
α¼1

λαYα

with λα solutions of the system

XN
β¼1

λβ ραβ ¼ ραv
r

, α ¼ 1, : : : ,N

with

ραβ ¼ ρ xβ � xα
� �

and ραv ¼
1

7v7

Z
v

ρ x� xαð Þdx

and the kriging variance is

σ2
SKv ¼ 1� 1

r

XN
α¼1

λα ραv

The conditional distribution of Yv is Gaussian and given by

PrfYv , y jYα ¼ yα : α ¼ 1, : : : ,Ng ¼ G
y�

XN

α¼1
λα yα

σSKv

0@ 1A
This enables the estimation of local recovery functions for a future selection
based on the true grade of the block. At the other extreme we may be interested
in the recovery functions associated with a selection on the basis of the estimate
Y�

v (i.e., with the information currently available). They can be easily obtained
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as soon as the bivariate distribution of Yv and Y�
v is known. Since the estimator

Y�
v and the kriging error Y�

v �Yv are orthogonal and the target Yv has unit
variance, the variance of the kriging estimator is

σ*2 ¼ Var Y*
v

� � ¼ 1� σ2
SKv

and the covariance of Yv and Y�
v is also equal to σ�

2

: The pair Yv,Y
�
v =σ

�� �
is

therefore distributed as a standard bivariate Gaussian with correlation coeffi-
cient σ*, and its isofactorial representation is given by (6.26) with ρ¼σ*. In
practical applications, we are interested in the intermediate case of a selection
based on a future estimate; this is presented below.

Local Change-of-Support Correction

Intuitively the conditional distribution of Z(v) would be obtained by application
of a local change-of-support to the conditional point-support distribution of
Z xð Þ, or equivalently of Y xð Þ for a random point x in the specific block v. The
latter is Gaussian withmean the kriging estimateY� xð Þ ofY xð Þ and variance the
corresponding kriging variance σ2

SK xð Þ. The kriging estimator of Y xð Þ is
the average of the kriging estimator of Y(x) when x describes the block v.
By linearity of the kriging estimator, it coincides with the kriging estimator of
Y(v):

Y� xð Þ ¼ Y� vð Þ

While the kriging systems for Y xð Þ and Y(v) are identical, the kriging variances
differ by the term representing the variance of the objective. σ2

SK xð Þ is therefore
related to the kriging variance σ2

SK vð Þ of Y(v) by

σ2
SK xð Þ ¼ σ2

SK vð Þ þ 1� r2

According to (6.48), in model DGM2 the squared global change-of-support
coefficient is equal to the ratio between the a priori variances of Y(v) and Y xð Þ.
The local change-of-support coefficient would therefore be defined by

rx ¼ σSK vð Þ
σSK xð Þ

Since Yv¼Y(v)/r, this can also be expressed as

rx ¼ rσSKv

σSK xð Þ
where σ2

SKv is the kriging variance of Yv, and σ2
SK xð Þ can be written

σ2
SK xð Þ ¼ 1� r2 σ2

SKv � 1
� �
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This relation implies that σ2
SK xð Þ is larger than σ2

SKv and therefore that rx # r :
The local change-of-support coefficient is thus smaller than the global one.
Equivalently, the reduction of variance is more pronounced in the local
framework than in the global framework. Emery (2008) shows that this result is
general and not specific to the discrete Gaussian model.

One may note that the assumptions that have been introduced along the way
are on the whole not very different from those of the multi-Gaussian model
of Section 6.6.1. The discrete Gaussian model can thus appear as an approxi-
mation to the multi-Gaussian model. However, this latter model involves
calculations that are only approximate and much more cumbersome. More-
over, the estimation of recovery functions of a set of small blocks (in mining,
the selective mining units) can be obtained in a single run by another discrete
Gaussian method, uniform conditioning (see next Section), whereas the con-
ditional expectation requires the combination of block by block calculations.

Locally Varying Mean

In order to apply the methodology of the discrete Gaussian model, we assume
that Z(x) is of the form ϕ(Y(x)) for some SRF Y(x) with Gaussian bivariate
(or even multivariate) distributions; we model ϕ from all the data, and we model
the variogram of Z and/or Y from the original or Gaussian transformed data;
finally, from these parameters we deduce the change-of-support coefficient
r related to some block support v. But Z(�) and Y(�) may not be as stationary as
requested by the model, so that we would like to relax the stationarity constraint.
Let us consider the situation where we keep all the parameters as they have been
fixed, except that we assume that the local mean of Y in the neighborhood
of the block v we consider is not necessarily zero but some unknown value m,
while the local variance of Y remains equal to one.

Since Yv¼Y(v)/r, Yv now has mean mv¼m/r instead of zero. Therefore it is
easy to replace the simple kriging of Yv by its ordinary kriging from the Yα.
Due to the relation between the means of Y and Yv the sum of the weights must
be equal to 1/r. But contrarily to simple kriging, ordinary kriging does not
define the conditional distribution of Yv. However, as shown by Emery (2005a,
2006b), we can build unbiased estimators of local recovery functions. These
estimators are identical to those which would be obtained if Yv followed a
normal distribution with mean Y�

OKv and variance σ2
OKv þ 2μ, but this distri-

bution is only an approximation to the conditional distribution of Yv (Y�
OKv

denotes the ordinary kriging estimate and σ2
OKv represents the corresponding

kriging variance, while μ is the Lagrange parameter of the kriging system).

Proof. We consider a recovery function expressed as a functional ψ of Yv. Let us come back
to the situation where Y(�) has a zero mean. The conditional expectation ψ(Yv) is

E ψ Yvð Þ7data½ � ¼
Z

ψ Y�
SKv þ σSKv u

� �
g uð Þ du
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or equivalently

E ψ Yvð Þ7data½ � ¼ E ψ Y�
SKv þ σSKvU

� �
7Y�

SKv

� � ð6:56Þ
where U is a standard normal random variable independent of Y�

SKv. Since the SK estimator
and the kriging error are orthogonal and the target Yv has unit variance, the variance σ�

2

SK of
the kriging estimator Y�

SKv and the kriging variance σ2
SKv add up to one, so that (6.56) can also

be written

E ψ Yvð Þ7data½ � ¼ E ψ Y�
SKv þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ�

2

SKv

q
U

� � ����Y�
SKv

� 
In the case where the mean of Y(�) is unknown, let us consider the estimator obtained by
replacing Y�

SKv by Y�
OKv and σ�SK by σ�OK (we assume that σ�

2

OK # 1 even if it cannot be taken
for granted):

ψ� Yvð Þ¼
Z

ψ Y�
OKvþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�σ�

2

OK

q
u

� �
g uð Þdu¼E ψ Y�

OKvþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�σ�

2

OK

q
U

� �����Y�
OKv

� 
Its mean is

E ψ� Yvð Þ� � ¼ E ψ Y�
OKv þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ�

2

OK

q
U

� �� 
Since U is a standard normal random variable independent of Y�

OKv, Y
�
OKv þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ�2

OK

q
U has

mean mv and variance 1, thus the same distribution as Yv. Therefore

E ψ� Yvð Þ� � ¼ E ψ Yvð Þ½ �
and ψ*(Yv) is an unbiased estimator of ψ(Yv).

The variance of the ordinary kriging estimator Y�
OKv is

σ�
2

OK ¼ Var Y�
OKv

� � ¼ 1� σ2
OKv � 2μ

where μ is the Lagrange parameter of the kriging system, so that the unbiased estimator can
also be expressed in the form

ψ� Yvð Þ ¼
Z

ψ Y�
OKv þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
OKv þ 2μ

q
u

� �
g uð Þ du

This result is identical to that which would be obtained if Yv followed a normal distribution
with mean Y�

OKv and variance σ2
OKv þ 2μ. Note that this result assumes that σ2

OKv þ 2μ is
positive, which cannot be taken for granted [see (3.60)]. &

Selection on the Basis of Future Information

We have seen the case where the selection is based on the data currently
available (exploration drill holes). When designing an exploitation project, the
information which will be the basis for the final selection (blast hole data) is
usually not yet available but we want to anticipate the evaluation of the
recovery functions in order to choose technical parameters such as the size v of
the selection units, the spacing of the blast holes, the cutoff grade, and so on.
This is known as the problem of the indirect recovery functions.
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We assume that the decision to send a block to the mill or to the waste will be
taken on the basis on an estimator of the form

Z wð Þ ¼
XM
i¼1

wi Z xið Þ

where the weights wi are all positive and add up to 1. It is recommended to use
ordinary kriging weights (provided that they are positive), but this is not
mandatory. The M data points, denoted xi, are those that will be available in
the block and its neighborhood when the decision will be taken, and they must
be distinguished from the data points xα currently available.

The notation emphasizes the fact that the estimate is a weighted average of
Z(�). When going from the point support of the individual data to the support
of w (the set of the points xi), we carry out a change of support. The results
obtained for model DGM2 can be directly transposed to this change of sup-
port. To this aim, let us denote Z xð Þ the value of Z(�) at a point x chosen
randomly among the xi according to the weights wi. Z xð Þ can be considered as
deriving from Y xð Þ through the transformation function ϕ, and Z(w) can be
regarded as deriving from a Gaussian random variable Yw through some
transformation function ϕw to be determined.

In order to apply model DGM2, let us assume that the distribution of the
Y xð Þ,Ywð Þ pair is Gaussian with a positive correlation coefficient s and that
the bivariate distribution of Z(�) at two independent random points among the
data points xi is Gaussian. We obtain that

Yw ¼ Y wð Þ
s

with s2 ¼ VarY xð Þ ¼
XM
i¼1

XM
j¼1

wi wj ρ xj � xi
� �

and that the transformation function ϕw is

ϕw yð Þ ¼
XN
n¼0

ϕn s
n χn yð Þ

The pair (Yv, Yw) is therefore Gaussian, with a correlation coefficient ρvw equal
to that of Y(v) and Y(w):

ρvw ¼ CovðY vð Þ,Y wð ÞÞ
rs

¼ 1

rs

XM
i¼1

wi
1

v

Z
v

ρ x� xið Þ dx

In order to determine the indirect recoverable resources, we need to know the
bivariate distribution of the pair (Yv, Yw) conditional on the current data Yα.
Assuming that the multivariate distribution of Yv, Yw, and the current data Yα

is Gaussian, the conditional distribution of the pair (Yv, Yw) is Gaussian with
mean Y�

v ,Y
�
w

� �
, variance σ2

SKv,σ
2
SKw

� �
, and covariance σSKvw, where Y

�
v and Y�

w

are the simple kriging estimates of Yv and Yw from the Yα, σ2
SKv and σ2

SKw the
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corresponding kriging variances, and σSKvw the covariance of both kriging
errors (the correlation of the conditional variables is therefore ρSKvw¼σSKvw/
(σSKv σSKw). Note that the covariance of the kriging errors is

σSKvw ¼ E Y�
v � YvÞðY�

w � Yw

� �
¼ Cov Y�

v ,Y
�
w

� �� Cov Y�
v ,Yw

� �� Cov Yv,Y
�
w

� �þ Cov Yv,Ywð Þ

The first term is a double sum of covariances ρ(xβ� xα). Due to the kriging
equations, it is equal to the second as well as the third terms, which are simple
sums and therefore it need not be calculated.

It is straightforward to deduce the indirect recoverable resources from that
conditional bivariate distribution. By reasoning like for a selection based on
the data currently available, these results can be extended to the case where the
random function Y is considered as having a nonzero mean m in the vicinity of
block v [see Emery (2006b), for a presentation of the method and an application
to a copper deposit].

Estimation of Local Multivariate Recovery

In polymetallic deposits the selection of mined blocks is performed on the basis
of the grade of the main valuable constituent, but one still wishes to know
(a) the quantities of metal that will be recovered for the other constituents that
can be valorized and (b) the average grades of the substances that have an
impact on the ore processing or the value of the final product (presence of
impurities). All methods based on a bivariate or multivariate Gaussian
assumption can be extended to the case of several variables. This requires of
course that the Gaussian-transformed variables associated with the various
substances have bivariate (or multivariate) Gaussian distributions. With suit-
able assumptions the exercise presents no major difficulty, as shown by
Maréchal (1982) for disjunctive kriging.

Discussion

We developed the local discrete Gaussian model as an approximation to con-
ditional expectation. Which conditions are required for this approximation to
be accurate? A prerequisite is that the global model correctly reproduces the
true marginal block distribution; that question was discussed at the end of
Section 6.8.1. Concerning local estimation specifically, the only piece of work,
to our knowledge, is an experiment carried out by Cressie (2006) to study the
estimation of the block value Z(v) of a lognormal SRF. Cressie considers
unbiased lognormal estimators that are exponentials of the simple or ordinary
kriging estimators of Y(v), which amounts to the assumptions of model DGM2.
The experiment compares this ordinary lognormal kriging with conditional
expectation obtained by the method of Section 6.6.1. The experiment is carried
out with blocks composed of a finite number of points, so that the approxi-
mation due to the discretization of a true block in formula (6.40) is avoided.
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The results indicate that ordinary lognormal kriging performs well in situa-
tions where the block size is small with respect to the range, the lognormal
standard deviation is not too large, and the neighborhood is sparse. The first
two conditions are required for the global model to be efficient. The third one
expresses that conditional expectation makes better use of numerous data than
an estimator whose form is limited to the exponential of a linear combination of
the logarithms of the data.

To conclude, when Z can be regarded as the transform of a Gaussian SRF
Y, it is worth applying the multi-Gaussian approach of Section 6.6.1 when the
block and its neighborhood contain many data points. In usual applications
however, such as the estimation of selection mining units or of small panels
subject to a remediation process, we are not in this situation. Except in extreme
cases (very skewed distribution), we can work in the framework of model
DGM1 and even, when the distribution is moderately skewed and the range
much larger than the block size, in the framework of the simpler model DGM2.
These discrete Gaussian models provide a huge computational advantage over
the multi-Gaussian approach if we are interested in millions of blocks, as is the
case in many real-world applications.

6.8.4 Uniform Conditioning

In general, we are not interested in the distribution of the mean grade of a single
block v but in the distribution of small blocks of size v making up a panel V. If
we carry out the estimation by disjunctive kriging, the sum of the factors of the
blocks can be kriged directly. If we prefer to use the conditional expectation,
the result is obtained as a mixture of elementary distributions. If V is very large
compared with v, the calculation can become prohibitive, so approximations
are used, the most classic of which is uniform conditioning (Matheron, 1974c;
Rivoirard, 1994, Chapter 11). The method consists in conditioning the grades
of small blocks by the mean grade of the panel rather than by the samples in the
blocks (working on the Gaussian transforms).

To be more specific, let us assume that the discrete Gaussian model DGM1
remains valid up to the size V of the panel and that all bivariate distributions
are Gaussian. The mean grade Z(V) of the panel can thus be considered as the
transform of a Gaussian random variable YV through a function ϕV of the form

ϕV yð Þ ¼
XN
n¼0

ϕn R
n χn yð Þ ð6:57Þ

where the positive correlation coefficient R between Y at a random point in V
and YV is given by the relation

R2 ¼ 1

7V72

Z
V

Z
V

ρ x0 � xð Þ dx dx0

(Note that R is smaller than the block change-of-support coefficient r.)
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The panel is made of identical blocks vp, whose average grades are repre-
sented by random variables Yvp ¼ Y vp

� �
=r. Let us denote by v a random block

in the panel. Its grade is represented by a standard normal random variable Yv

through the same transform ϕv as the fixed blocks vp. Z vð Þ and Z(V) follow the
Cartier’s relation E Z vð Þ7Z Vð Þ½ � ¼ Z Vð Þ, which can be rewritten

E
�
ϕv

�
Yv 7YV

�� ¼ ϕV YVð Þ

In the Hermite polynomial expansions of ϕv and ϕV, the coefficients of the
nth-order term are thus identical up to a factor equal to the correlation
coefficient of Yv and YV raised to the power n. Because these expansions
are given by (6.46) and (6.57), this correlation coefficient, which is the
change-of-support coefficient from the block support to the panel support, is
equal to R/r.

Conditioning on a Panel Estimate

In the uniform-conditioning approximation, we condition by Yv
�, or equiva-

lently byY�
V , obtained by simple kriging, rather than by theY�

vp
attached to each

block vp. Let us work within the multi-Gaussian assumption, whereYv ¼ Y vð Þ=r
and YV¼Y(V)/R. Since v is a random block in the panel V, the simple kriging
estimator of Y vð Þ coincides with that of Y(V), but the kriging variance is dif-
ferent: The variance of the target, which appears in the variance formula (the
variance σ00 with the notations of Section 3.5.2), corresponds to the support of
the block v rather than the panelV—that is, to r2 instead ofR2.As a consequence,
with a reasoning similar to what has been derived for a fixed block v, the simple
kriging estimator of Yv is

Yv
� ¼

XN
α¼1

λαYα

with λα solutions of the system

XN
β¼1

λβ ραβ ¼ ραV
r

, α ¼ 1, : : : ,N

with

ραβ ¼ ρ xβ � xα
� �

and ραV ¼ 1

7V7

Z
V

ρ x� xαð Þ dx

and the kriging variance is

σ2
SKv ¼ 1� 1

r

XN
α¼1

λα ραV
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The conditional distribution of Yv is Gaussian and given by

PrfYv , y7Yv
� ¼ yv

�g ¼ G
y� yv

�

σSKv

 !
The sole change with respect to the case of a fixed block v is thus the
replacement of ραv by ραV. The generalization to a lack of stationarity and to
indirect recovery functions can be done easily by following the same lines as in
the case of a fixed block v. The method is of course a crude approximation with
respect to a mixture of block-by-block results but seems to produce sound and
robust results (Guibal and Remacre, 1984).

Remacre (1984, 1987), Rivoirard (1994, Chapter 12), and Deraisme et al.
(2008) present another uniform-conditioning approach, based on a condi-
tioning on an estimate Z*(V) of Z(V). That approach is taken in practical
applications to get recoverable resources estimates at zero cutoff consistent
with a previous ordinary kriging of the panel grades. It requires that Z*(V) is
conditionally unbiased.

Since it is based on a multivariate Gaussian framework, uniform condi-
tioning can also be extended to the recovery of several constituents, as shown
by Deraisme et al. (2008). The application presented by these authors compares
the multivariate Gaussian approach (Section 6.6.1) and the multivariate uni-
form conditioning; despite a notable dispersion in the results for the individual
panels, the global results are largely similar.

6.9 NON-GAUSSIAN ISOFACTORIAL CHANGE-OF-SUPPORT

MODELS

The discrete Gaussian model is very convenient but is not suited for all situa-
tions. Being developed for diffusive random functions, it is not adapted, for
example, to mosaic random functions and to variables displaying a large
proportion of zeroes. Even if the simplifications brought by multivariate
assumptions will no longer be possible, there is the need for other isofactorial
change-of-support models because they provide consistent solutions at the local
and global scales. Local models provide all covariances needed for disjunctive
kriging of any function of Yv0 (and thus of Zv0 ) from data Yα, by duplicating
the method described in Section 6.4.1.

6.9.1 General Form of Isofactorial Change-of-Support Models

Let us first consider that the variable of interest is directly the SRF Y(x) represented by an
isofactorial model. The case where Y(x) is a Gaussian SRF is a very special one, because then
Y(v) is also Gaussian. Such distributional permanence does not generally hold for other types
of random functions. For example, if Y1 and Y2 are two i.i.d. gamma random variables with
parameter α, their average follows a gamma distribution with parameter 2α and is thus more
regular. Therefore in the general case we need point�point, point�block, and block�block
isofactorial models for pairs of random variables whose marginal distributions may be of a
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different form. Considering also that we work on transformed data, the typical model is the
following:

� Point-support grades are of the form Z xð Þ ¼ ϕ Y xð Þð Þ, where Y(x) is an SRF with
marginal distribution G(dy).

� Average grades over a support v are of the form Z vð Þ ¼ ϕv Yvð Þ, where Yv has marginal
Gv (dy).

� The marginal distribution G has orthonormal factors χn(y), and Z(x) can be expanded
as

Z xð Þ ¼
XN
n¼0

ϕn χn Y xð Þð Þ

� The marginal distribution Gv has orthonormal factors χv
n yð Þ, and Z(v) can be expanded

as

Z vð Þ ¼
XN
n¼0

ϕvn χ
v
n Yvð Þ

� The bivariate point�point distribution of Y(x) and Y(x0) is of the form

Gxx0 dy, dy
0ð Þ ¼

XN
n¼0

Tn x,x0ð Þ χn yð Þ χn y0ð ÞG dyð ÞG dy0ð Þ

� The bivariate point�block distribution of Y(x) and Yv is of the form

Gxv 0 dy, dy0ð Þ ¼
XN
n¼0

Tn x, vð Þ χn yð Þ χv
n y0ð ÞG dyð ÞGv dy0ð Þ

� The bivariate block�block distribution of Yv and Yv0, where v and v0 have same shape
and dimensions, is of the form

Gvv 0 dy, dy0ð Þ ¼
XN
n¼0

Tn v, v0ð Þ χv
n yð Þ χv

n y0ð ÞGv dyð ÞGv dy0ð Þ

The transformation coefficients ϕn and ϕvn and the covariances Tn must verify consistency
relationships. The first ones originate in that randomizing x in v has the same effect on
covariances as averaging in v. Therefore:

Cov Z xð Þ,Z x 0ð Þð Þ ¼ Cov Z xð Þ,Z v0ð Þð Þ ¼ Cov Z vð Þ,Z v0ð Þð Þ
This is true even if v and v0 coincide, provided that the uniform random points x and x 0 are
independent. Expanding Z xð Þ and Z(v) as functions of Y xð Þ and Yv through the transfor-
mation functions ϕ and ϕv, one shows by identification of the terms of order n that

ϕvn ¼ ϕnTn x, vð Þ, ð6:58Þ

Tn x, v
0� � ¼ Tn x, vð ÞTn v, v

0� �
,

Tn x, x
0� � ¼ Tn x, vð Þ2 Tn v, v

0� � ð6:59Þ

In particular, when v and v 0 coincide (but the random points are chosen independently) we
obtain
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Tn x,x 0ð Þ ¼ Tn x, vð Þ2

In that model, the Tn of the point�point and point�block distributions derive from those of
the block�block distributions.

Proof. The expansions of the above covariances are

Cov Z xð Þ,Z x 0ð Þð Þ ¼ Cov ϕ Y xð Þð Þ,ϕ Y x 0ð Þð Þð Þ ¼
XN
n¼1

ϕ2
n Tn x, x 0ð Þ,

Cov Z xð Þ,Z v 0ð Þð Þ ¼ Cov ϕ Y xð Þð Þ,ϕv Yv 0ð Þð Þ ¼
XN
n¼1

ϕn ϕ
v
n Tn x, v 0ð Þ,

Cov Z vð Þ,Z v 0ð Þð Þ ¼ Cov ϕv Yvð Þ,ϕv Yv 0ð Þð Þ ¼
XN
n¼1

ϕv
n

� �2
Tn v, v 0ð Þ

If v and v0 are identical, we obtain (6.58). Inserting this relation in the above relations, we
obtain (6.59). &

Another consistency relationship concerns the variance ofZ(v): It can be calculated either with
(6.23) applied with ψn ¼ ϕv

n or with (6.33) applied to the covariance ofZ, which results itself from
the coefficients of ϕn and the Tn(x, x

0) through relation (6.24) with ψn¼ϕn. The two expressions
must give identical results.

In the special case of isofactorial models whose first factor is equal to 1 and whose second
factor is a linear function of y, Emery (2007a) shows that the random function Yv is linearly
related to the average Y(v). However, this does not lead to the simplifications of the discrete
Gaussian model (in its multivariate Gaussian framework) because the distribution of Y(v)
conditional on the data Y(xα) cannot be deduced from its simple kriging.

6.9.2 Some Specific Isofactorial Change-of-Support Models

Consistent models exist, and even a large number of them, nearly all developed by Matheron.
Their presentation is rather technical and would take too long, so we just refer the reader to
the literature.

In the context of Gaussian marginals, Emery and Ortiz (2005a) propose an extension of
the discrete Gaussian model to Hermitian bivariate distributions, provided that they are not
of mosaic type.

The discrete approach can also be extended to marginal distributions other than the
Gaussian. In the case of a gamma marginal, a gamma distribution with parameter α is chosen
for Y, and a less selective gamma distribution is chosen for Yv, namely with parameter αv $ α.
Hu (1988) and Emery (2007a) develop the model for Laguerre bivariate distributions.

Matheron (1984d) proposes an elegant construction of a mosaic random function model
which has simple isofactorial bivariate distributions (including for variables with different sup-
ports).Disjunctive kriging canbe carriedout very easily in thismodel, because it only requires the
resolution of a single system. The solution is more elaborate than an indicator kriging.

For the model with orthogonal indicator residuals, which is very useful in the case of a
nondiffusive variable, Matheron (1989) proposed a simple change-of-support procedure
which is also presented by Rivoirard (1988, 1989). Suppose that the random function Y(x) is
obtained by superimposition of random sets, as explained in Section 6.4.3, and that these
random sets are Boolean random sets. If we randomly select a proportion r, 1 of the primary
points, we obtain another random function Yr(x) with orthogonal residuals. It can be shown
that the bivariate distribution of (Y(x), Yr(x)) is isofactorial. This is exploited to define a
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change-of-support model where Yr(x) and Y(x) represent, up to a transformation, the grade
of a block and the grade of a random point within the block, respectively.

Matheron (1984e, 1989) provides solutions to an important and difficult problem, the
general theory of isofactorial change-of-support models for discrete variables. The special case
of a negative binomial marginal distribution was already addressed byMatheron (1980). These
models associate a discrete point-support variable with a block-support variable having the
same distribution (but different parameters). It is also interesting to be able to represent the
block characteristics by continuous variables. Mixed change-of-support models have been
developed to this effect, namely the negative binomial/gamma model (Matheron, 1984a).

6.10 APPLICATIONS AND DISCUSSION

The first implementations of disjunctive kriging with change of support were
made in the scope of the discrete Gaussian model. That model has gained in
simplicity with the new insight of Emery (2007a). In mining, predictions
obtained by disjunctive kriging from exploration boreholes have been com-
pared with reality (the actual grade of mined panels being seldom known, each
panel was discretized by the blast holes it contains; Jackson et al. 1979; Young,
1982). A number of authors have compared the performance of different
estimation methods of recoverable resources on real or synthetic data sets. Liao
(1990) and Chilès and Liao (1993) compared indicator cokriging (with affine
correction for change of support) and disjunctive kriging with Gaussian or
gamma transformation on data from three real deposits (including the Salsigne
gold mine). These studies arrive at the following conclusions:

� Concerning global recoverable resources, the discrete model (Gaussian or
gamma) generally produces acceptable results, as opposed to the affine
correction which is to be banned except if the nugget effect is small and if
the change of support remains moderate.

� Local recoverable resources can be predicted fairly well by disjunctive
kriging, if applied carefully (e.g., straight elimination of isolated blocks
and border areas if they are barren).

� Indicator kriging with affine correction can produce results close to those
of disjunctive kriging in some limited cases (mosaic model, moderate
support effect, and limited σ/m variability). It can even outperform
disjunctive kriging if the model used for DK is selected arbitrarily and
is ill-suited. It is not as good as disjunctive kriging with an appropriate
isofactorial model. It often comes with a strong bias, especially regarding
the estimation of the quantity of metal.

� Despite appearances the implementation of indicator kriging is no simpler
than that of disjunctive kriging, except if the same variogram is used for all
thresholds.

As emphasized earlier by Matheron (1985) and Lantuéjoul (1988), these works
demonstrate the importance of a correct choice of the model. Indeed the
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advantages of nonlinear methods vanish if applied blindly. The value of
modeling bivariate distributions lies in the availability of relatively varied
models, of diagnostic tools for choosing among these models, and of methods
for fitting their parameters and checking whether these models provide a rea-
sonable representation of the data. The DK approach provides consistent
change-of-support models. Of course it is ideal if both point-support data
(samples) and block data (grades of mined blocks) are available to validate the
model—and they can also be used for estimation.

6.11 CHANGE OF SUPPORT BY THE MAXIMUM (C. LANTUÉJOUL)

There are situations where the relevant quantity to estimate is not an average but aminimum or a
maximum over a domain. Typical examples include the chance that a pollutant does not exceed
some critical concentration at any point of a region, or that all parts of amechanical structure can
resist at a critical wind speed. This indicates that the work performed on averages should also be
performed on extrema. This is a difficult task. If the statistics of extremes nowbenefits froma large
body of theory, its extension to a spatial context is still in infancy. It is therefore not possible at this
point to give a set ofmethods andpractical toolsmeeting this objective.We simply give an account
of the status of research in that field.

This section starts with a comparison of the extrema distribution associated with different
supports. The case of large supports is then investigated. Like second-order stationary ran-
dom functions tend to become multi-Gaussian when averaged over larger and larger supports
and normalized, many stationary random functions tend to become max-stable when maxi-
mized over larger and larger supports and suitably normalized. From the general form of
their spatial distribution a number of independence properties can be derived. Several con-
structions of max-stable random functions are also proposed.

For simplicity, technical issues are left aside. For more information, see Beirlant et al.
(2004), de Haan and Ferreira (2006), and Resnick (2007).

6.11.1 Comparison of Extrema Distributions at Different Supports

Let Z be a stationary random function. For each bounded domain v, the infimum, the
average, and the supremum of Z over v are considered:

�Z vð Þ ¼ inf
x2vZ xð Þ, Z vð Þ ¼ 1

v

Z
v

Z xð Þ dx, Ẑ vð Þ ¼ sup
x2v

Z xð Þ ð6:60Þ

Their distribution functions are respectively denoted by �Fv, Fv, and F̂v.
Now, let v and V be two bounded domains. If v divides V, in the sense that V can be split

into subdomains congruent to v, then E Z vð Þ7ZV½ � ¼ ZV and the Cartier theorem applies
(Section 6.5.2), which implies in turnZ

ϕ zð Þ dFV zð Þ#
Z

ϕ zð Þ dFv zð Þ ’ϕ convex ð6:61Þ

Conversely, if formula (6.61) holds, then there exists a bivariate distribution F with marginals
Fv and FV such that E[X 7Y]¼Y for each pair of variables (X, Y) distributed like F.

Suppose now that V contains v. We clearly have Ẑ vð Þ# Ẑ Vð Þ, which implies
F̂V zð Þ# F̂v zð Þ for each z, and more generallyZ

ϕ zð Þ dF̂V zð Þ#
Z

ϕ zð Þ dF̂v zð Þ ’ϕ decreasing and bounded ð6:62Þ
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Conversely, it has been established by Strassen (1965) that if formula (6.62) holds, then there
exists a bivariate distribution F with marginals F̂v and F̂V such that X # Y for each pair of
variables (X, Y) distributed like F.

Applying these formulas to �Z, dual results are obtained for the infimum. In particular,
we have Z

ϕ zð Þ d �FV zð Þ#
Z

ϕ zð Þ d �F v zð Þ ’ϕ increasing and bounded

In general, the distribution of the maximum (or the minimum) of a random function over a
support is not mathematically tractable. The Boolean random function is a notable exception.
As illustrated in Figure 7.30, this is the superior envelope of a family of primary functions fi
located at Poisson points si:

Z xð Þ ¼ sup
i

fi x� sið Þ

The supremum of Z over the support v does not exceed a cutoff z if and only if the excursion
set X(z) of Z above z—that is, {x : Z(x). z}—avoids v. X(z) is a Boolean model, the objects of
which are the excursion sets of the primary functions above z and can be seen as independent
copies of a random set A(z). Then we have

PrfẐ vð Þ, zg ¼ PrfX zð Þ-v ¼ [g ¼ exp �λ E7A zð Þ"�v7ð Þ
where λ denotes the Poisson intensity of the Boolean random function and " represents
dilation.8

6.11.2 Large Supports

In the case of SRFs with finite variance, the average of a large number of i.i.d. SRFs is close to
Gaussian. Similarly, such an SRF tends to become Gaussian when averaged over larger and
larger supports. The latter result is more difficult to prove because of spatial correlations and
is subject to ergodicity conditions. The situation is similar when studying the maximum
instead of the average. We will therefore examine the case of the maximum of a large number
of random functions and admit that the situation is similar for a large support (which is
indeed the case).

Let (Zn, n$ 1) be a sequence of independent and identically distributed stationary random
functions. Put

�Z
nð Þ ¼ min Z1, : : : ,Znð Þ, Z nð Þ ¼ Z1 þ � � � þ Zn

n
, Ẑ

nð Þ ¼ max Z1, : : : ,Znð Þ

If the Zn’s have finite mean m and finite variance σ2, then the central limit theorem states that
the spatial distribution of the normalized random function

Y nð Þ ¼ Z nð Þ �m

σ=
ffiffiffi
n

p

tends to become standard Gaussian as n becomes very large. This means that all finite linear
combinations of variables tend to be normally distributed, that pairwise uncorrelated groups
of variables tend to be mutually independent, and so on. Moreover, all the statistical
properties of Y(N) are specified by the covariance function of the Zn’s.

8 The dilation A " B is the union of all translates of A by a vector of B [see Serra (1982)].
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Things are a little more complicated when the maximum is considered instead of the
average Z(n) (by duality, the case of the minimum can be treated exactly as the maximum and
is not treated here).

Clearly, some normalization is necessary to avoid degeneracy. To this end, let us introduce
a sequence (an) of real numbers and a sequence (bn) of positive numbers. If those sequences

have been suitably chosen, then the spatial distribution of ðẐ nð Þ�anÞ=bn tends to the spatial
distribution of a so-called max-stable random function. This terminology comes from the fact
that, when replacing a max-stable random function by the maximum of finitely many inde-
pendent copies of itself, its spatial distribution remains unchanged up to normalization.

By analogy, if suitable ergodicity conditions are met, the supremum ofZ(x) over a domainV
tends to amax-stable randomvariablewhen the domainV tends to infinity in all directions.Max-
stable RVs and RFs are attractors with respect to the maximum, like stable RVs and RFs are
attractors with respect to the average (Gaussian RVs and RFs in the case of a finite variance).

6.11.3 Max-Stable Random Functions

We now examine the main properties of stationary max-stable random functions and present
a structural tool playing a role similar to the variogram for SRFs. Let Z denote a max-stable
SRF. All marginals are equal to a generalized extreme distribution (Fisher and Tippett, 1928;
Gnedenko, 1943)

Pr Z xð Þ, zf g ¼ exp � 1þ ξ
z� μ
s

	 
�1=ξ
� 

þ

� �
where aþ denotesmax(a, 0), ξ andμ2 R, and s. 0.μ is a location parameter whereas s is a scale
parameter and ξ is a shape parameter. Such a distribution includes the three standard extreme
distributions, namely the Fréchet distribution

Φα zð Þ ¼
0 if z# 0

exp �z�αð Þ if z$ 0
α. 0ð Þ

(

the Gumbel distribution

Λ zð Þ ¼ exp �e�zð Þ
and the Weibull distribution

Ψα zð Þ ¼
exp �7z7αð Þ if z# 0

1 if z$ 0
α. 0ð Þ

(

Note with Embrechts et al. (1997) that the three distributions are closely linked. Indeed, if
X. 0, then

X has c:d:f : Φα3logXα has c:d:f : Λ3� X�1 has c:d:f : Ψα ð6:63Þ
By using these formulas, Z can be assumed to have standard Fréchet marginals, that is,
Pr{Z(x), z}¼ exp(1/z). This distribution has the inconvenience of having infinite mean and
variance, but also has the advantage of providing a simple expression for the multivariate dis-

tribution Pr{Z(x1), z1, . . . ,Z(xk), zk}, or more compactly Pr max
1# i# k

Z xið Þ
zi

, 1

� �
. Indeed,

this distribution takes the form

c06 30 January 2012; 17:32:56

472 NONLINEAR METHODS



Pr max
1# i# k

Z xið Þ
zi

, 1

� �
¼ exp �

Z
Sk

max
1# i# k

ωi

zi
dH ωð Þ

� �
ð6:64Þ

where the spectral measure H is a positive measure on the simplex Sk defined as

Sk ¼ fω ¼ ω1, : : : ,ωkð Þ : ω1, : : : ,ωk $ 0;ω1 þ � � � þ ωk ¼ 1g

Regarding the properties of H, apply (6.64) with zi finite and the other zj’s infinite. This gives

exp � 1

zi

� �
¼ Pr

Z xið Þ
zi

, 1

� �
¼ exp �

Z
Sk

ωi

zi
dH ωð Þ

� �
hence Z

Sk

ωi dH ωð Þ ¼ 1 ð6:65Þ

Since
P

ωi ¼ 1, the total mass of H is obtained by summing formula (6.65) over all possible
i values:

Z
Sk

dH ωð Þ ¼
Z
Sk

Xk
i¼1

ωi dH ωð Þ ¼ k

From formula (6.64) and its consequence (6.65), a number of statistical consequences can also
be derived. Since we have

Z
Sk

max
1# i# k

ωi

zi
dH ωð Þ#

Z
Sk

Xk
i¼1

ωi

zi
dH ωð Þ ¼

Xk
i¼1

1

zi

it follows that

Pr max
1# i# k

Z xið Þ
zi

, 1

� �
$
Yk
i¼1

Pr
Z xið Þ
zi

, 1

� �
ð6:66Þ

In other words, the variables of a max-stable random function are positively dependent. It can be
shown that the equality takes place when the Z(xi)’s are pairwise independent (Resnick, 1987;
Beirlant et al., 2004). Consequently, pairwise independent variables of a max-stable random
function are mutually independent.

The particular case k¼ 2 is of special interest. The bivariate distribution takes the simpler
form

Pr Z xð Þ, z,Z xþ hð Þ, tf g ¼ exp �
Z 1

0

max
ω
z
,
1� ω

t

� �
dHh ωð Þ

� �
whereHh is a positive measure on [0, 1] with a total mass of 2. Owing to (6.65), the integral of
ω is equal to 1. In the case where z¼ t, we can write

Pr Z xð Þ, z,Z xþ hð Þ, zf g ¼ exp � θ hð Þ
z

� �
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with

θ hð Þ ¼
Z 1

0

max ω, 1� ωð Þ dHh ωð Þ ð6:67Þ

Following Schlather and Tawn (2003), the function θ is called extremal coefficient function. It
always satisfies 1# θ(h)# 2. The extremal value θ(h)¼ 1 corresponds to the case where Z(x)¼
Z(xþ h), whereas θ(h)¼ 2 means that Z(x) and Z(xþ h) are independent. Regarding its
structural properties, Schlather and Tawn showed that θ(h)� 1 is a madogram. A simple proof
starts with

1
2
E71Z xð Þ, z � 1Z xþhð Þ, z7 ¼ 1

2
E 1Z xð Þ, z � 1Z xþhð Þ, z

� �2
¼ PrfZ xð Þ, zg � PrfZ xð Þ, z,Z xþ hð Þ, zg
¼ e�1=z � e�θ hð Þ=z

from which it follows that

lim
z-N

z

2
E71Z xð Þ, z � 1Z xþhð Þ, z7 ¼ lim

z-N
z e�1=z � e�θ hð Þ=z
h i

¼ θ hð Þ � 1:

The extremal coefficient function determines the variograms of the indicators associated to all
thresholds z. Conversely it can be fitted through any of these indicator variograms, which are
experimentally accessible. This can be used to check the max-stable character of Z, because
θ(h) should not depend on the threshold considered. The function θ(h) is thus a very useful
structural tool. It should be mentioned that other tools have been developed for character-
izing the dependence of extremes (Coles et al., 1999; Cooley et al., 2006; Falk and Michel,
2006; Naveau et al., 2009).

The distribution of the maximum of Z(x) over several points x1, . . . ,xk derives from
(6.64):

Prf
�

max
1# i# k

Z xið Þ, z

�
¼ exp � 1

z

Z
Sk

max
1# i# k

ωi dH ωð Þ
� �

This is of the form

Pr

�
max
x2K

Z xð Þ, z

�
¼ exp � θ Kð Þ

z

� �
where K represents the configuration {x1, . . . ,xk} up to a translation. The function θ(K)
generalizes the extremal coefficient function to more than two points. This result can be
extended to compact subsetsK (with sup replacingmax) and thus give the solution of the global
change of support by the supremum, provided however that θ(K) can be determined. This is the
case for some random function models. See Lantuéjoul et al. (2011) for more details.

6.11.4 Models for Max-Stable Random Functions

A Gaussian SRF with standard normal marginal is fully characterized by its correlogram
ρ(h). This is not as simple for max-stable SRFs because there is no unique max-stable SRF
model. This can be seen as either a drawback or an advantage (according to the application,
we can choose among several models with different features). Numerous models for max-
stable random functions can be found in the literature. Undoubtely, the most famous one is
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the storm process introduced by Smith (1990) and extended by Schlather (2002). Designed by
Schlather (2002), the so-called extremal Gaussian process is complementary. This section
focuses on these two models.

The Storm Process

Introduced for modeling local (convective) precipitations, this random function can be
defined as

Z xð Þ ¼ sup
s, tð Þ2Π

1

t
Ys, t x� sð Þ ð6:68Þ

where Π is a homogeneous Poisson point process with intensity μ in Rn�Rþ and (Ys,t, s 2Rn,
t2Rþ) is a family of independent copies of a positive random function Y on Rn. In simple
models, Y is a fixed deterministic function (Ys,t is thus independent of s and t) with local
influence—for example, the indicator function of a ball or a Gaussian function of the form
Y uð Þ ¼ exp �b7u72

� �
, b. 0. In the general case, such function is randomized: ball of random

diameter, Gaussian function with random b, Poisson polygons or polyhedra. Roughly
speaking, the realizations of Y represent the possible shapes that a storm can take. s is a
location parameter whereas 1/t specifies the magnitude of the storms. The value of the storm
process at point x is the largest magnitude of all storms affecting x. Figure 6.13 shows a simple
2D example of a storm process where the storms have a Gaussian shape; in this representation
the values of the storm process are transformed to a uniform marginal distribution (the three-
dimensional perspective effect that can be perceived is a mere consequence of the fact that this
function vanishes rapidly at infinity).

A remarkable feature with a storm process is that it is mathematically tractable. The
spatial distribution of Z is

Pr max
1# i# k

Z xið Þ
zi

, 1

� �
¼ exp �

Z
Rn

E max
1# i# k

Y xi þ sð Þ
zi

� 
ds

� �
ð6:69Þ

In particular, the margins of Z are either Fréchet or degenerate, depending on whether the
expected integral of Y is finite or not:

PrfZ xð Þ, zg ¼ exp �μ
z

Z
Rn

E Y sð Þ½ �ds
� �

FIGURE 6.13 Realization of a storm process with Gaussian storms. The simulation has been

transformed to a uniform distribution. The largest values are in white.
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When the margins are standard Fréchet, the extremal coefficient function depends only on μ
and the transitive madogram of Y:

θ hð Þ � 1 ¼ μ
2

Z
Rn

E7Y sþ hð Þ � Y sð Þ7ds

More generally let us denote by

ZK ¼ sup
x2K

Z xð Þ

the supremum of Z over a compact subset K of Rn. By the definition of the storm process, it
can also be written

ZK ¼ sup
s, tð Þ2Π

1

t
Yτ�sK

s, t

If we assume that the function s-E Yτ�sK½ � is finite and integrable for any K, the multivariate
distribution of the suprema over different supports can be determined. In particular, the
supremum of Z over K is also Fréchet distributed:

PrfZK , zg ¼ exp �μ
z

Z
Rn

E Yτ�sK
� �

ds

� �

Extreme Gaussian Process

This model is defined as

Z xð Þ ¼ sup
t2Π

Yt xð Þ
t

, x 2 Rn ð6:70Þ

where Π is a homogeneous Poisson point process with intensity μ on Rþ and (Yt, t2Rþ)
are independent copies of a stationary Gaussian random function Y on Rn. Since Y has a global
rather local character, this model is more appropriate for regional (cyclonic) precipitations.
Two examples are displayed in Figure 6.14.

FIGURE 6.14 Realization of two extreme Gaussian rocesses. The underlying Gaussian random

functions have exponential (left) and Gaussian (right) covariance functions. The simulation has

been transformed to a uniform distribution. The largest valus are in white.
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As stated by Schlather (2002), the Gaussian assumption is not strictly necessary and the
definition makes perfect sense for a large variety of stationary random functions for Y. The
spatial distribution of the associated process is given by the formula

Pr max
1# i# k

Z xið Þ
zi

, 1

� �
¼ exp �μ

Z N

0

Pr max
1# i# k

Y xið Þ
zi

$ t

� �
dt

� �
ð6:71Þ

from which it can be readily seen that Z is stationary. Its univariate distribution

PrfZ xð Þ, zg ¼ exp �μ
z

Z N

0

PrfY xð Þ$ tgdt
� �

ð6:72Þ

bears only the positive part Yþ¼max(Y, 0) of Y. Indeed it is concentrated at 0 if Y # 0. It is
also degenerate when the integral diverges. For that reason, Schlather (2002) assumes that the
quantitym¼E[Yþ(x)] satisfies 0,m,N, in which case Z(x) is Fréchet distributed with index
α¼μm.

In the standard Fréchet case (i.e., μm¼ 1), the extremal coefficient function is propor-
tional to the madogram of Yþ:

θ hð Þ � 1 ¼ μ
2
E7Yþ sþ hð Þ � Yþ sð Þ7

Now, it should be noted that the madogram is strictly less than the mean. From this, θ(h), 2
follows. Whatever the lag h considered, Z(x) and Z(xþ h) cannot be independent.

In this model the supremum of Z over a compact set K is ZK ¼ sup
t2Π

YK
t

t
, so formula (6.72)

can be generalized in

PrfZK , zg ¼ exp �μ
z

Z N

0

PrfYK $ tgdt
� �

Applications

In applications, it is possible to consider the random function under study as of the form
ϕ(Z(x)), where ϕ is an anamorphosis function and Z a max-stable random function. The
supremum of ϕ(Z(x)) over a compact K is then ϕ(ZK) so that the study of extreme values can
be carried out on Z.

When the multivariate distribution of fZKi : i ¼ 0, 1, : : : ,Ng for different supports Ki has
a mathematical expression, the conditional distribution of the supremum over K0 given the
suprema over the other Ki can be derived, at least in theory. When this direct approach is not
feasible, this objective is achieved with simulations (simulation algorithms are available for
most models; conditional simulation methods are in development).

These models have received applications to environmental problems such as precipitation
and temperature, to materials corrosion, and to the analysis of financial series.
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C H A P T E R 7

Conditional Simulations

Je suis un mensonge qui dit toujours la vérité.
—Jean Cocteau

7.1 INTRODUCTION AND DEFINITIONS

7.1.1 Introductory Example

As an introduction, let us consider the somewhat simplified problem brought up
by Alfaro (1979) and illustrated in Figure 7.1: A submarine cable is to be laid
on the seafloor between two cities, and we want to predict the length of the
cable. Measurements of the depth of the seafloor are available every 100m
(Figure 7.1a).

An easy solution is to estimate the depth by kriging at every point along the
profile and to compute the length of this kriged curve (Figure 7.1b). As an
example, the length obtained for the small portion of the profile shown in the
figure is L¼ 945 m. But this result is not quite convincing, since the actual
seafloor is far more complex than the kriged one (kriging has a smoothing
effect). As a result, the length computed from the kriged profile certainly
underestimates, perhaps quite severely, the actual length.

To get the exact solution, we need a continuous, or at least very dense,
survey of depth (Figure 7.1c). In the present case a survey with samples taken
every 10 m gives a length L¼ 1182 m. The previous estimate L¼ 945 m was
thus indeed too low. Is there a way of avoiding the costs of the second survey?
There is if we introduce a model.

The dependency between the length of a curve and the scale of investigation
is a key issue in fractal theory (Mandelbrot, 1975b, 1977, 1982). It is easy to see
that if the depth Z(x) is a Gaussian IRF�0 with variogram γ(h) and if the
distance D is sampled at the interval d, the length L has expectation

Geostatistics: Modeling Spatial Uncertainty, Second Edition. J.P. Chilès and P. Delfiner.

r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Kriged profile:  945 m

True profile:  1182 m

Simulated profile:  1154 m

FIGURE 7.1 Submarine cable: (a) seafloor survey with 100-m spacing; (b) kriging estimate of the

seafloor; (c) continuous survey (true profile); (d) conditional simulation based on the 100-m data,

and true profile. [From Alfaro (1979).]
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EðLÞ ¼ D

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2u2

p
gðuÞ du

where σ2¼ 2 γ(d)/d2 and g(u) denotes the standard Gaussian p.d.f. If the IRF is
not differentiable, the length L increases as the sampling interval used to
measure it becomes smaller, and it becomes so large as to be best considered
infinite. If the variogram is of type jhjα, the relationship between the lengths
L(d) and L(d0) is

LðdÞ � ðd=d0Þ
α
2
�1Lðd0Þ

provided that d and d0 are small enough. In reality, even if the length of the
seafloor along the profile were infinite, a cable has some rigidity. If we admit
that it can hang above the sea bottom over distances of about 10 m, then the
goal becomes an estimation of L(d) for d¼ 10 m.

The idea of conditional simulations is to build a representation of the phe-
nomenon that is consistent with the data observed at the 100-m sampling
interval, as kriging is, and yet reproduces the local fluctuations at the scale of
10 m. Clearly a conditional simulation is not reality but only a possible version
of it, among myriads of others. An example is shown in Figure 7.1d; the con-
ditional simulation differs from the real seafloor, often more than kriging does,
but has the same character. Not surprisingly, the cable measured on this sim-
ulation with a sampling interval of 10 m is very close to the true length:
L¼ 1154 m instead of L¼ 1182 m. Other features of the seafloor can also be
seen from the simulation, for example, the occurrence of large slopes. This is
what makes simulations interesting.

“You are trying to entangle us in your mathematical tricks!” shouted a
bewildered attendant at a presentation of conditional simulations. Likewise,
the reader may at this point have at least three questions in mind:

1. How can one claim to reproduce a profile at a 10-m sampling interval from
data at a 100-m sampling interval? By building a model at the 10-m scale,
derived either from similar cases or from additional sampling at the 10-m
interval. But this will not require a systematic survey of the seafloor every
10 m along the whole profile. A limited number of data at 10-m spacing
will suffice to evaluate the variogram at distances of 10 m and more.

2. How confident can one be in the result of the simulation? Had another
simulation been made, the cable length would have been different.
Indeed. Therefore several simulations are generated so as to determine
the probability distribution of the cable length.

3. Why not estimate the length L directly? The answer is that kriging—in its
linear version—only allows estimation of quantities that are linear in the
studied variable, such as the average depth along the profile. The length
L is not a linear functional of depth but essentially depends on local
fluctuations of the seafloor.
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7.1.2 Definition and Use of Conditional Simulations

Nonconditional Simulations and Conditional Simulations

A (nonconditional) simulation of the random function {Z(x) : x2Rn} is simply
a realization of Z(x), randomly selected in the set of all possible realizations. Its
construction requires the knowledge of the spatial distribution of the RF Z(x),
at least implicitly. In practice this poses two problems:

1. The random function Z(x) is usually defined so that some regionalized
variable {z(x) : x2D�Rn}, observed at sample points {xα : α¼ 1, . . . ,N},
can be considered as one of its realizations. Its finite-dimensional distribu-
tions can never be inferred from the data, even in a stationary framework.
The situation is very different from image analysis where the complete
image is available and allows, to some degree, an estimation of the
multivariate distributions.1 In geostatistics we can at best hope to obtain
bivariate distributions, and possibly a few multivariate distributions, if we
have data on a sufficiently regular grid.

2. Even if we knew the spatial distribution of Z(x), we would in general still
be unable to construct a simulation. The only truly general simulation
procedure is the sequential method presented later in this chapter.
However, this method has practical limitations and demands that we
are able to calculate the conditional distributions, which is unusual. On
the other hand, there are general methods for simulating Gaussian SRFs,
for all covariance models. The Gaussian case aside, there is a vast number
of random function models, each having particular spatial characteristics
and corresponding to a class of possible covariance functions.

In view of this, we can consider a definition at order 2: A (nonconditional)
simulation of the random function Z(x) is a realization of an RF S(x) chosen in
a class of RFs with the same second-order moments as Z(x), namely same
covariance, variogram, or generalized covariance.

The choice of the RF class must be justified and driven by the problem and
the data, although a certain measure of arbitrariness is inevitable. Whenever
possible, we will attempt to increase specificity by restricting the choice of S(x)
to a narrower class than that defined at order 2. In the stationary case, for
example, the marginal distribution of Z(x) can be known, at least approxi-
mately, from the data, and we will require that S(x) has the same marginal
distribution. The type of the bivariate distributions can often be determined
even from scattered data, and this can direct to specific RF models.

The random function S(x) has an infinite number of realizations. Among
them, some assume at the sample points the same values as those observed and

1This is the ideal case of image analysis. In practice, images often lack spatial homogeneity, so the

multivariate distributions remain unknown.
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thus can be considered to better represent the regionalized variable z(x). They
will be called conditional simulations. A conditional simulation is therefore a
realization randomly selected from the subset of realizations that match the
sample points. Equivalently, it is a realization of a random function with a
conditional spatial distribution.

Use of Conditional Simulations

Conditional simulations are useful qualitatively, to obtain realistic pictures of
spatial variability. Quantitatively, they are the tool of choice to evaluate the
impact of spatial uncertainty on the results of complex procedures, such as
numerical modeling of a dynamic system or economic optimization of the
development of a natural resource. Conditional simulations fall in the scope of
so-called Monte Carlo methods—they are in fact nothing but spatially consis-
tent Monte Carlo simulations. Section 7.10 presents simulation case studies in
mining and in petroleum.

The goal pursued here is not to reproduce the geological, physical or
chemical processes that generated the observed phenomenon. More modestly it
is simply to mimic its spatial variations as realistically as possible. The results of
a simulation must always be considered with a critical eye and checked against
the background of the application. This is very important when studying
problems such as connectivity, fluid flow, or transport, which compel us to
consider, explicitly or not, a model specified well beyond its second-order
moments. This is illustrated in Figures 7.2 and 7.3, showing 1D and 2D views of
nonconditional simulations of various SRFs with the same exponential
covariance function. They look very different (notice simulations in Figures
7.2a, 7.3a, and 7.3b: they are nonergodic provocations!). If we built 100 simu-
lations of each SRF instead of a single one to estimate a second-order moment
numerically, each SRF would lead to the same result, up to fluctuations. But it is
easy to imagine that the conclusions drawn with regards to connectivity or fluid
flow would be very different. Chilès and Lantuéjoul (2005) present three dif-
ferent random set models with the same bivariate, trivariate and, for some cases,
quadrivariate distributions. In practice it is impossible to discriminate these
models from scattered data points and yet they have very different connectivity
properties. Illustrative examples regarding fluid flow are given by Journel and
Deutsch (1993), Zinn and Harvey (2003), and Emery and Ortiz (2011). In this
respect, conditioning on the actual observations is a safeguard but does not
exempt us from choosing an adequate SRF model.

How Many Simulations Should We Generate?

The answer depends on the objective and on the structure of the phenomenon.
When modeling a stationary field over an area much larger than the range, a
single simulation can give a view of a variety of possible local situations. This is
often sufficient, for example, to assess the performance of a mining scenario that
depends mainly on the local variability of ore grades or thicknesses. Conversely,
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when studying a nonstationary field such as a petroleum reservoir, a single
simulation provides a single answer in terms of flow and production because
these are global problems. It is therefore necessary to build several simulations if
we want to assess the range of the possible results. Typically, 100 simulations
may be needed, but this number depends largely on the distribution of the
parameter of interest: If it is skewed and if we care even about extreme situa-
tions, a larger number of simulations is needed—but bear in mind that extreme
value predictions usually lack robustness. It must be pointed out that condi-
tional simulations are not equally probable; some are extreme and others are
“average”. Rather, they represent i.i.d. drawings from a (multivariate) condi-
tional distribution that has no reason to be uniform. For some applications,
simulations are ranked on the basis of a regional quantity computed from the
realization (e.g., the volume above a reference level).
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FIGURE 7.2 1D simulations of the same exponential covariance: (a) elementary spectral process;

(b) Ambartzumian process (dilution of Poisson germs); (c) dilution by a symmetric function;

(d) dilution by random segments; (e) Gaussian process; (f) mosaic process with Gaussian marginal

(partition into Poisson segments); (g) truncated Gaussian process; (h) mosaic random set (Poisson

segments set independently to 0 or 1). Note that the processes (a), (e), and (f) have the same

Gaussian marginal distribution and that the random sets (g) and (h) have the same mean 1/2. The

process (a) is not ergodic; and in practice, many elementary simulations are superimposed. Scale

parameter: 1/30th the length.

c07 30 January 2012; 17:37:47

7.1 INTRODUCTION AND DEFINITIONS 483



(a) (b)

(c) (d)

(e) (f)

FIGURE 7.3 2D simulations showing the same exponential covariance: (a) elementary spectral

RF; (b) elementary RF by turning bands with Gaussian marginal; (c) dilution by an isotropic

function; (d) dilution by random disks; (e) Gaussian RF; (f) mosaic RF with Gaussian marginal

(partition into Poisson polygons); (g) truncated Gaussian RF; (h) mosaic random set (Poisson

polygons set independently to 0 or 1); (i) sequential indicator simulation; (j) nonmosaic random set

(Poisson polygons set alternately to 0 or 1). Note that the RFs (a), (b), (e), and (f) have the same

Gaussian marginal distribution and that the random sets (g), (h), (i), and (j) have the same mean

1/2. The RFs (a) and (b) are not ergodic, and in practice, many elementary simulations are

superimposed. The irregularity of detail of (i) is an artifact of the simulation algorithm. Scale

parameter: 1/10th the grid size.
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Should We Simulate the Uncertainty on the Parameters?

When we build several simulations, a question is whether or not to include the
uncertainty on the parameters (mainly the histogram and the variogram). In our
approach, only regional parameters have an objective meaning. Since we use
models that are somehow stationary, we choose theoretical parameters close to
the empirical ones. But the latter may differ from the regional parameters. This
issue was addressed in Section 3.4.4 for kriging. Some solutions can be trans-
posed to conditional simulations. It is the case for the Bayesian approach: If the
prior density f (θ) of the parameter vector θ can be assessed, it is sensible to
sample θ for each simulation from the posterior density f (θ jZ) of θ given the
vector Z of the observations {Z(xα) : α¼ 1, . . . ,N}. It is not a simple task.

Sometimes there are not enough observations nor enough information on the
physical laws governing the studied phenomenon for us to choose among
candidate random function models or determine the behavior of the variogram
at the origin. Then modeling our ignorance by an a priori distribution may not
be an adequate solution. We prefer to generate simulations corresponding to
several scenarios. The specification of these scenarios must proceed from an
agreed methodology and cannot simply result from geostatistical considera-
tions. In case of complex projects, methods of elicitation of expert opinions may
be useful [e.g., Ayyub (2001)].

(g) (h)

(i) (j)

FIGURE 7.3 (Continued)
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7.1.3 A Classification of the Methods

From the point of view of applications, three broad categories of quantities are
to be simulated:

1. Continuous Variables. These are measurements of physical properties, such
as a mineral grade, the thickness of a geological layer, or the velocity of
sound. They are continuous variables in the sense of a continuous histo-
gram, and also in a spatial sense, the nugget effect, if any, being treated
separately. Continuous variables have a natural ranking and we can do
maths on them (e.g., add, subtract, multiply, divide, take logarithms).

2. Categorical Variables. These are discrete variables representing elements
of a classification. Typical examples are lithofacies types or indicators of
large genetic units. Categorical variables may or may not be rank
ordered, but in general we cannot do maths on them. The simulations
define a partition of the space into cells with a constant value—within
which physical variables can be simulated.

3. Objects. These represent entities of the application domain, whose mor-
phology is captured as a whole and simulated in one shot. For example, a
fracture is simulated as a disk with given dimensions and orientation, a
meandering channel as a sinusoidal strip with given wavelength, amplitude,
axis orientation, thickness, width, and optionally length. In contrast to
object-based simulations, the other types of simulations are generated point
by point and often referred to as pixel-based simulations.

The models used to represent these quantities do not quite follow this classifica-
tion, mainly because categorical variables can be simulated either directly or by
truncation of a continuous variable. We will distinguish four basic model types:

1. Diffusive Model. The simulations are continuous functions (almost
surely). The name originates from physical diffusion, the slow process
by which molecules spread out evenly. The prototypical example is the
Brownian motion, whose transition probabilities satisfy the celebrated
diffusion equation. In geology one can think of diffusive impregnation.
The most used diffusive model is simply the Gaussian RF model. By
analogy, in the case of an integer random function, a discrete diffusive
model is one that varies by unit jumps.

2. Jump Model. The simulations are piecewise constant and progress by
random jumps (usually noninteger). The prototype is the Poisson random
walk and in a wider sense the dilution random functions.

3. Mosaic Model. The simulated space is partitioned randomly into cells
within which the simulation is constant, and the values taken in the
various cells are drawn independently from the same distribution. A
typical example is a partition into Voronoi polygons or polyhedra based
on a Poisson point process.
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4. Random Set Model. The simulations assume the values 0 or 1 only,
representing the indicator of a random set (binary simulation). The
typical example is the Boolean model obtained by independent placement
of random sets.

Table 7.1 summarizes the various methods presented in this chapter, in the
order in which they are introduced, diffusive or jump models first, then mosaic
and indicator models. The following characteristics are considered:

� Covariance Model. Some methods are very general (but limited to the
Gaussian case), whereas others are limited to particular covariance
models; some are limited to R, whereas others are usable directly in Rn.

� Conditioning Method. For diffusive and jump models, the simulation
methods are mostly proven ones, and in the case of Gaussian RFs there
are simple methods for conditioning on data, either directly or in a
separate kriging step. For mosaic or random set models, some of the
simulation methods are recent, and there is no general method of
conditioning. However, most methods allow the construction of condi-
tional simulations, generally by use of iterative algorithms.

� Ergodicity and Reproduction of the Covariance. We generally wish each
simulation to have a sample mean close to the theoretical mean m and a
sample covariance close to the theoretical covariance C(h), especially if the
simulated domain is sufficiently large. This implies that all simulations are
drawn from the realizations of an RF that is ergodic in the mean value and
the covariance (second-order ergodicity). Some simulation methods do
not satisfy this condition (see the continuous spectral simulations of
Figures 7.2a and 7.3a). Nonergodic methods are in fact utilized by adding
a large number of independent simulations.

� Conditions of Use. Considerations are points on a systematic grid or not,
maximum number of simulated points, exact or approximate reproduc-
tion of the covariance, and possibility of carrying out several simulations
in parallel.

The methods for generating nonconditional simulations usually produce rea-
lizations of strictly stationary RFs with zero mean. It is interesting to note
that the addition, properly scaled, of a large number of such independent
simulations tends to a Gaussian RF. Specifically, if S1(�), S2(�), . . . , is a sequence
of independent zero-mean, finite-variance simulations with the same spatial
distribution, the spatial distribution of the random function Tk(�) defined by

TkðxÞ ¼ S1ðxÞ þ � � � þ SkðxÞffiffiffi
k

p

tends to a Gaussian RF as k-N. Indeed the central limit theorem (Feller,
1971, Section VIII.4) ensures that the distribution of any linear combination of
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the form λ1 Tk(x1)þ � � � þλM Tk(xM), whereM, λ1, . . . ,λM, and x1, . . . , xM are
arbitrary, tends to a Gaussian distribution as k-N, which means that any
finite-dimensional distribution of Tk(�) tends to a multivariate Gaussian
distribution.

In practice we select a finite value for k. An upper bound of the difference
between the marginal distribution of Tk and the Gaussian distribution is given
by the Berry�Esséen theorem (Feller, 1971) for SRFs with a zero mean, a finite
variance σ2, and a finite third-order absolute moment m3¼E[jSi (x)j3]: Under
these assumptions, there exists a constant c such that for all x and k

sup
y2R

jPrfTkðxÞ,σyg � GðyÞj, cffiffiffi
k

p m3

σ3

where G is the standard normal c.d.f. The constant c is greater than 0.4097. In
2011 the greatest known lower bound for c is 0.4794. Similar upper bounds can
be obtained for any linear combination of the values taken by the random
function at different locations. Other criteria are given by Lantuéjoul (2002,
Chapter 15).

7.2 DIRECT CONDITIONAL SIMULATION

OF A CONTINUOUS VARIABLE

In this section we consider two methods that directly generate conditional
simulations at a finite number of points: the sequential method and its variants,
and the covariance matrix decomposition method.

7.2.1 Sequential Simulation

Sequential Simulation in the General Case

Consider a vector-valued random variable Z¼ (Z1, Z2, . . . ,ZN)
0 for which a

realization of the subvector (Z1, Z2, . . . ,ZM)0 is known and equal to (z1, z2, . . . ,
zM)0 (0#M,N). The distribution of the vector Z conditional on Zi¼ zi,
i¼ 1, 2, . . . ,M, can be factorized in the form

PrfzMþ1 #ZMþ1 , zMþ1 þ dzMþ1, : : : , zN #ZN , zN þ dzN j z1, : : : , zMg
¼ PrfzMþ1 #ZMþ1 , zMþ1 þ dzMþ1 j z1, : : : , zMg

� PrfzMþ2 #ZMþ2 , zMþ2 þ dzMþ2 j z1, : : : , zM , zMþ1g
^

� PrfzN #ZN , zN þ dzN j z1, : : : , zM , zMþ1, : : : , zN�1g
ð7:1Þ
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We can therefore simulate the vector Z sequentially by randomly selecting Zi

from the conditional distribution Pr{Zi, zi j z1, . . . , zi�1} for i¼Mþ 1, . . . ,N
and including the outcome zi in the conditioning data set for the next step.

This procedure is absolutely general and can be used in particular for Zi

of the form Zi¼Z(xi), where Z(x) is an RF and where the xi are the sample
points (i¼ 1, 2, . . . ,M) and the points where we wish to simulate the RF
(i¼Mþ 1, . . . ,N). It makes possible the construction of both a nonconditional
simulation (M¼ 0) and a conditional simulation (M. 0). The procedure can be
applied to the cosimulation of several nonindependent RFs. It produces
simulations that match not only the covariance but also the spatial distribution.

The practical difficulty is that in general, we do not know how to calculate
the conditional probabilities involved in (7.1), except in the ideal case of a
Gaussian random vector, where the method is classically employed [e.g., see
Ripley (1987)]. It has been introduced in geostatistical applications by Alabert
and Massonat (1990) to simulate Gaussian RFs (small-scale log-permeability
variations).

Sequential Gaussian Simulation

The application of the above method to the simulation of a Gaussian RF,
known as sequential Gaussian simulation (SGS), is straightforward. Indeed for
a Gaussian RF with known mean, the conditional distribution of Zi is
Gaussian, with mean Z�i and variance σ2

Ki, where Z�i is the simple kriging
estimator of Zi from {Zj : j, i}, and σ2

Ki the associated kriging variance. In
principle the statistical properties of the simulation are independent of the
order in which the points xi, i.M are scanned, but in practice this is not the
case because the algorithm cannot be applied rigorously when N is large.
Indeed, even if the original data are few, the size of the kriging system grows
with the number of simulated points since these are progressively added to the
data set. Kriging at the point xi is then carried out with the nearest points
among {xj : j, i}. If the points xi are scanned in a random or quasi-random
order, the size of the neighborhood shrinks as the simulation algorithm pro-
ceeds. Consequently, the resulting simulation is only approximate. Emery
(2004a) details the properties of such simulations for a typical 2D example, a
spherical variogram with a range much shorter than the simulated domain and a
10% nugget effect: The behavior at the origin as well as the sill are correctly
reproduced but the junction to the sill is smoother than it should be, resulting in
a slight bias at intermediate distances. In order to limit such artifacts, Deutsch
and Journel (1992) recommend to scan the points xi in a semi-random order:
First simulate on a coarse grid, then on a finer grid until the final grid is reached.
Emery shows that this strategy produces no improvement because the main
artifacts arise at the fine-grid scale. The sole solution for limiting the artifacts is
to use sufficiently large neighborhoods (the bias does not exceed 10% with
neighborhoods of 20 conditioning values and is negligible with neighborhoods
of 100 conditioning values).
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When the mean cannot be considered known—for example, under an
assumption of local rather than global stationarity—ordinary kriging can be
substituted for simple kriging. The price to pay is some bias in the reproduction
of the covariance model. The variogram, however, is correctly reproduced
when kriging Zi from all Zj, j, i. In practice a subset of these Zj is used, which
may cause a significant bias in the variogram, larger than with SK. See Emery
(2004a, 2010a) for further details.

Ordinary kriging is therefore suited to genuine intrinsic random functions
whose mean and covariance are not defined (typically for an hα variogram).
The variogram is correctly reproduced by the simulations, up to the effects of
the restriction of the kriging neighborhood. That approach can be generalized
to Gaussian IRF�k by working with intrinsic kriging.

In general the variable to be simulated is not Gaussian. In the stationary
case, SGS is therefore applied after a preliminary Gaussian transformation of
the data (Section 6.2). The transformed data have by design a Gaussian mar-
ginal distribution, but their compatibility with the multi-Gaussian assumption
must be checked (Section 7.3.2).

In the next sections we will see more accurate—and also efficient—methods
for generating Gaussian conditional simulations. We now present two special
cases, both in 1D, where the sequential Gaussian simulation method is a perfect
and efficient solution due to a screening effect. The autoregressive processes
presented in Section 7.5.1 are another special case, of broader validity from
the covariance point of view, but limited to simulations on a regular 1D or
2D grid.

Special Case 1: Gaussian Stochastic Process
with an Exponential Covariance (1D)

Among stationary processes, this is the only case where the method can be
applied easily without any approximation, for any set of data points and of
simulated points, provided that the mean is known. Indeed, (1) as we consider
the Gaussian case, the conditional distribution of Zi given {Zj : j, i} is normal
(Z�

i , σ2
Ki), and (2) due to the screening effect property of the exponential

covariance in 1D (Section 2.5.1), the simple kriging estimator Z�
i only involves

the two adjacent data points. Constructing a nonconditional simulation is even
simpler: Proceeding by increasing values of xi, Z

�
i simply involves the previ-

ously simulated value Zi�1. For example, to simulate a covariance with scale
parameter a and sill σ2 at a regular spacing Δx, we select a first value Z1 from
the marginal distribution of Z, namely a Gaussian with zero mean and variance
σ2, and then apply the recurrence relation

Zi ¼ λZi�1 þUi i ¼ 2, 3, : : : ð7:2Þ
where λ¼ e�Δx/a and where the Ui are independent Gaussian random variables
with mean zero and variance σ2

K ¼ σ2ð1� λ2Þ. Autoregressive processes gener-
alize this construction to a slightly wider class of covariances (Section 7.5.1).
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Special Case 2: Brownian Motion (1D)

The Brownian motion, also named the Wiener process, is usually defined as
a process Z(x) with independent stationary increments, such that the increment
Z(xþ h) � Z(x) has a Gaussian distribution with mean zero and a variance
proportional to j h j.Hence, it is aGaussian IRF�0with a linear variogramγ(h)¼
b j h j (b. 0). Z(x) can also be regarded as the integral over [0, x] of a Gaussian
white noise.Among the randomprocesses satisfying the definition, only separable
versions are considered as Brownian motions. Almost every realization is con-
tinuous but nowhere differentiable [see, e.g., Blanc-Lapierre and Fortet (1953,
Section IV.5) and Doob (1953, Section VIII.2)]. This reflects the fractal behavior
of theBrownianmotion:Aswehave seen inSection2.5.1, itsHausdorff dimension
is 3/2. The simulation of a Brownianmotion for a set of points x0, x1, � � �, xN
starting from an arbitrary value z0¼Z(x0) at the origin x0 follows immediately
from its definition. It can be done iteratively using the relation

ZðxiÞ ¼ Zðxi�1Þ þUi

where Ui is a centered normal random variable with variance 2 b (xi � xi�1),
independent of the past. Figure 7.4 shows a simulation at a regular intervalΔx,
known as a random walk.

It is also possible to directly generate a conditional simulation of a Brownian
motion. Indeed, because it is a process with independent Gaussian increments,
the following two properties hold:

1. If we consider data points x0, � � �, xi, xiþ1, � � �, xN and an
unknown point x2 ]xi, xiþ1[, we have

PrfZðxÞ, z jZðx0Þ ¼ z0,Zðx1Þ ¼ z1, : : : ,ZðxNÞ ¼ zNg
¼ PrfZðxÞ, z jZðxiÞ ¼ zi,Zðxiþ1Þ ¼ ziþ1g

that is, the conditioning is only dependent on the two adjacent observa-
tions which are screening the influence of the other observations.

0 5 10 15 20 25 30

10

5

0

FIGURE 7.4 1D simulation of the Brownian motion or Wiener process (random walk) with

variogram 1
2
jhj.
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2. This conditional distribution is Gaussian; its mean is the ordinary kriging
Z* of Z(x), which amounts in this case to a linear interpolation between
xi and xiþ1; its variance is the ordinary kriging variance σ2

K, which is given
in Example 4 of Section 3.4.1.

Thanks to these properties, it is easy to implement a sequential algorithm for
simulating values between data points and/or refining a simulation between
previously simulated points. In the case of regularly spaced points, this is a
method popularized by applications of fractals under the name of random
midpoint displacement (Voss, 1985): If Nþ 1 points such that N¼ 2p are to be
simulated at a regular interval Δx, the two extreme points are simulated first,
by selecting the increment from a Gaussian distribution with mean zero and
variance σ2¼ 2 γ(NΔx)¼ 2 bNΔx. The above properties are then used for
simulating the midpoint so that the simulated points now define two intervals.
This method is used again for simulating the midpoints of each new interval,
and so on. After p such iterations, all points are simulated.

Sequential Simulation of Non-Gaussian Random Functions

When the random function is not Gaussian and is not the transform of a
Gaussian RF, the distribution of Zi conditional on {Zj : j, i}, is usually not
known. The simulation of Zi is then chosen from an approximation to the
conditional distribution. For example, if Z is a stationary random function
whose bivariate distributions can be modeled with an isofactorial model, the
pseudo-conditional distribution obtained by disjunctive kriging (Section 6.4.1)
is an approximation to the conditional distribution (Emery, 2002).

The sequential indicator simulation algorithm, which transposes SGS to the
simulation of indicators, is presented in Section 7.6.1. Alabert (1987) and
Journel (1989) use it to simulate variables with a continuous marginal distri-
bution. Nested indicators associated with increasing thresholds of the variable
under study (e.g., the deciles) are defined, and these indicators are simulated—in
fact this is a cosimulation. At any given point, what is obtained is not a specific
value but instead the interval between two successive thresholds to which this
value belongs. This is transformed into a specific value by random selection in
the interval. This method is general but cumulates the approximations of the
sequential indicator simulation algorithm and of the discretization of the mar-
ginal distribution. According to Gómez Hernández and Cassiraga (1994), this
approach does not yield a satisfactory representation of long distribution tails.

7.2.2 Covariance Matrix Decomposition

In the case of a zero-mean Gaussian vector the sequential simulation in fact
provides

Z1 ¼ σU1 Zi ¼
Xi�1

j¼1

λi jZj þ σKiUi ði. 1Þ ð7:3Þ
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The λi j are the simple kriging weights of Zi from {Zj : j, i}, σ2
Ki is the associated

kriging variance, and the successive Ui are independent standard normal ran-
dom variables. Reasoning by recurrence, Zi can also be expressed as

Zi ¼
Xi

j¼1

aijUj ð7:4Þ

The matrix A¼ [aij] is a lower triangular matrix such that A A0 ¼C, where
C¼[Cij] is the matrix of the N�N covariances.

Instead of performing a sequential simulation, we can first decompose the
final matrix C into the product AA0 [Cholesky decomposition; e.g., see Press
et al. (2007, Section 2.9)], then compute Z¼AU, where U is a vector of N
independent standard normal random variables. Since A is lower triangular
and A0 upper triangular, this method is known as that of the LU (lower�upper)
decomposition of the covariance matrix. Generating conditional simulations is
easy, since the conditional distribution remains multivariate Gaussian (see
Appendix, Section A.9).

This classic method [see Ripley (1987)] has been introduced in geostatistical
applications by Davis (1987). It can be used with ordinary covariances and
with covariances of locally stationary representations of IRF�k’s. It is appli-
cable as long as the Cholesky decomposition is feasible—that is, in general
for at most several thousand simulated points. For larger numbers of points,
matrix storage problems turn up and computing time can become excessive,
since it increases as N3. More efficient algorithms of Cholesky decomposition
are available when C is a band matrix, as shown, for instance, by Rue and Held
(2005, Section 2.4) (A has a lower bandwidth similar to that of C). This is the
case, for example, for a moving-average process of low order, thus with a short
range (but in this specific case it is easier to simulate it by just applying the
definition).

If C is not a band matrix but its inverse, the precision matrix B, is a band
matrix, the above method can be used to simulate a Gaussian vector Y with
covariance matrix B and then take Z¼CY. Denoting by LL0 the Cholesky
decomposition of B, the vector Z with covariance matrix C is obtained equiv-
alently by solving L0 Z¼U, where U is a vector of N independent standard
normal random variables. This can be done easily because L is lower-triangular.
This approach is advantageous when the precision matrix, rather than the
covariance matrix, is known, as is the case for the Gaussian Markov random
fields presented in Section 3.6.4 and, among them, for autoregressive processes.

When the vector Z has a high dimension, it may be more convenient to use
an iterative algorithm based on the Gibbs sampler, presented in Section 7.6.3,
which requires no inversion or decomposition of the covariance or the preci-
sion matrix. We now turn to methods that are more complex to implement
but enable the simulation of Gaussian (and some non-Gaussian) random
functions, at any point of a domain of Rn or at the nodes of a large regular 2D
or 3D grid.
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7.3 CONDITIONING BY KRIGING

In the rest of this chapter, several simulation algorithms are presented. Most of
them do not provide a direct construction of the conditional simulations.
However, there are general methods that can be used to transform noncondi-
tional simulations into conditional ones.

7.3.1 Conditioning on the Data

Let us first assume thatwe knowhow to construct a nonconditional simulation—
that is, a realization of a random function that has the same (generalized)
covariance as the studied phenomenon but is otherwise totally unrelated to the
sample data. The object of the present section is to show how to pass from a
nonconditional simulation to a conditional simulation which, while retaining the
structural features of the former, is calibrated on the sample data.

Consider an RF Z(�) known at N sample points {xα : α¼ 1, 2, . . . ,N}. Let us
assume that we have a nonconditional simulation S(�) independent of Z(�), with
the same covariance as Z(�). “Conditioning” is the operation by which we can
pass from S(�) to a simulation T(�) that matches the sample points.

The principle, due to G. Matheron, is quite simple. Let Z*(x) denote the
kriging estimator of Z(x) at the point x based on the data Z(xα), and let us start
from the trivial decomposition

ZðxÞ ¼ Z�ðxÞ þ ½ZðxÞ � Z�ðxÞ�
true value ¼ kriging estimator þ kriging error

The kriging error is of course unknown since Z(x) is not known. Now consider
the same equality for S(x), where S*(x) is the kriging estimator obtained as
if the simulation were known only at the sample points xα

SðxÞ ¼ S�ðxÞ þ ½SðxÞ � S�ðxÞ�

This time the true value S(x) is known and so is the error S(x)�S*(x). Hence
the idea of substituting, in the decomposition of Z(x), the unknown error by the
simulation of this error, as shown in Figure 7.5; this gives T(x) defined by

TðxÞ ¼ Z�ðxÞ þ ½SðxÞ � Z�ðxÞ� ð7:5Þ
conditional
simulation

¼ kriging
estimator

þ simulation of
kriging error

Since kriging is an exact interpolator, at a sample point we have Z*(xα)¼Z(xα)
and S*(xα)¼S(xα), so T(xα)¼Z(xα). Conversely, the effect of conditioning
decreases and finally vanishes when moving away from the data (at least when
conditioning by SK).
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There remains to verify that T(�) preserves the (generalized) covariance of
Z(�) and S(�). It is obvious in the case of simple kriging: Since Z(x)�Z*(x) is
uncorrelated with Z*(x0) for all x0 (Section 3.3.3), one has

Cov ZðxÞ,Zðx0Þð Þ ¼ Cov Z�ðxÞ,Z�ðx0Þ� �þ Cov ZðxÞ � Z�ðxÞ,Zðx0Þ � Z�ðx0Þ� �

(a)

(b)

(c)

FIGURE 7.5 Conditioning a simulation: (a) real curve (unknown), sample points and kriging;

(b) nonconditional simulation (known), sample points, and simulation of the kriging error; (c) kriging

errors are picked from the simulation and added to the kriged curve.
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Since S and Z are independent, the covariance of T is also the sum of the
covariance of Z* and that of S�S*, which equals that of Z�Z*. Hence

Cov TðxÞ,Tðx0Þð Þ ¼ Cov ZðxÞ,Zðx0Þð Þ

A general proof in the framework of IRF�k is presented byDelfiner (1976): Any
allowable linear combination has the same variance when applied to Z, S, or T.

In the important case of Gaussian random functions, preservation of the
covariance implies preservation of the spatial distribution (SRF with known
mean) or of any multivariate distribution of generalized increments (IRF�k).

Note (and this will be important) that in (7.5), conditional simulations are
only involved through kriging errors and therefore may be selected with
mean zero.

When considered conditional on the Z(xα), T(�) is no longer stationary. The
method of construction (7.5) entails that

E½TðxÞ jZðxαÞ : α ¼ 1, : : : ,N� ¼ Z�ðxÞ,
Var½TðxÞ jZðxαÞ : α ¼ 1, : : : ,N� ¼ Var½SðxÞ � S�ðxÞ� ¼ σ2

KðxÞ

The mean of a large number of independent conditional simulations at a given
point tends to the kriging estimate, and their variance tends to the kriging
variance. In figurative terms, a conditional simulation “vibrates” in between the
data points within an envelope defined by the kriging standard deviation.

A conditional simulation is meant to behave like the real variable but not to
estimate it: As an estimator of Z(x) a simulation T(x) would perform very
poorly, with a variance twice the kriging variance; indeed

TðxÞ � ZðxÞ ¼ ½Z�ðxÞ � ZðxÞ� þ ½SðxÞ � S�ðxÞ�

so that

E½TðxÞ � ZðxÞ�2 ¼ 2 σ2
KðxÞ

A conditional simulation is indeed, in the words of the poet Jean Cocteau, “a lie
which always tells the truth“: It lies about the values assumed by the actual
realization in between the data points, but it tells the truth about what a real-
ization should look like.

Let us now examine two important implementation questions:

1. Simulation of the Nugget Effect. All properties of conditional simulations
hold when the data are subject to nonsystematic measurement errors,
provided that kriging is done in the same manner for Z(x) and for the
nonconditional simulation: (i) An error term with the same variance (and
the same covariance if the errors are not independent) is added to the S(xα)
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when calculating S*(x); (ii) the cokriging system (3.68) including error
variances and covariances is used (note that the Sαβ of this cokriging
system represent the error variances and covariances). The situation is
similar in the presence of amicrostructure that we do not want to simulate,
because it is a purely random component of the phenomenon. On the
contrary, if we want to simulate it, the nugget-effect covariance associated
with the microstructure must be present on the right-hand side of (3.38)
and the nugget-effect variance must be added to the expression of the
cokriging variance.

2. Conditioning in Moving Neighborhood. The proof that the substitution of
errors preserves the covariance is valid for kriging with a global neighbor-
hood. If the number of data is too large, it is necessary to use local
neighborhoods. A careful design of the neighborhood search algorithm is
needed to avoid the introduction of spurious discontinuities due to
neighborhood changes, since these discontinuities cannot be easily distin-
guished from the normal jitter of most simulations. It is, for example,
advisable to use large overlapping neighborhoods. An alternative solution
is to use one of the approaches presented in Sections 3.6.3 to 3.6.6 for
ensuring the continuity of the interpolant.

Following a terminology introduced by Journel (1986), data that are specified
by a single value are often called hard data by contrast with soft data, which are
defined by inequalities or by a probability distribution. Conditioning on soft
data is more difficult but possible. This problem is commonly met when sim-
ulating indicator functions, and solutions are therefore presented in Sections
7.6.1 and 7.6.3.

7.3.2 Matching the Histogram

Many nonconditional simulation methods amount to a weighted moving
average of a large number of independent random numbers and produce
(approximately) Gaussian simulations. But the data are not obligated to be
Gaussian! If the variable has a drift, it constitutes the dominant feature of the
phenomenon, and the simulation reproduces it fairly well thanks to condi-
tioning; residuals may not have the correct distribution, but this correct dis-
tribution is not known and is quite difficult to infer from the data. By contrast,
in the stationary case the marginal distribution of the variable is an important
feature, which can be determined empirically. This distribution is not neces-
sarily reproduced by conditioning. For example, there may be a significant
amount of negative values, even though the studied variable is necessarily
positive.

The usual means to restore the observed histogram, first used by Journel
(1974a,b), is to work with the random function Y(x) obtained by Gaussian
transformation of the variable of interest Z(x), defined in Section 6.2. Let ϕ be
the transformation expressing Z(x) as a function of Y(x): Z(x)¼ϕ(Y(x)). The
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successive steps of the generation of a conditional simulation are the following
(Figure 7.6):

1. Transformation of the Z(xα) data into Y(xα) by the inverse transforma-
tion Y(xα)¼ϕ�1(Z(xα)).

2. Structural analysis of the Y(xα) data, or, better, joint structural analysis
of the Y(xα) and Z(xα) data, to obtain the variogram of Y(x).

3. Nonconditional simulation of Y(x), leading to SY(x), using a Gaussian
simulation method.

4. Conditioning of SY(x) on the Gaussian data Y(xα), leading to TY(x).

5. Application of the transformation TZ(x)¼ϕ(TY(x)).

This procedure is perfectly suited to any RF that can be considered as the image
of the transform of a zero mean Gaussian RF. Indeed, conditioning by simple
kriging amounts to sampling the conditional distribution of the Gaussian
RF Y(x) and, after the transformation ϕ, the conditional distribution of the RF
Z(x). Conditioning can be done by ordinary kriging if the mean of Y(x) may
deviate from zero. In that case, ordinary kriging only provides an approxi-
mation to the conditional distribution of the Gaussian RF.

One notices that the nonconditional simulation and the conditioning con-
cern the Gaussian RF Y(x) and not Z(x). Therefore structural analysis must be

Inverse
transform

Gaussian
transform

Actual data Gaussian data

Variogram
(Gaussian variable)

Non-conditional Gaussian
simulation

Final conditional
simulation

Conditional Gaussian
simulation

Joint structural analysis

Conditioning on Gaussian data

Simulation

FIGURE 7.6 Flowchart of the various stages of construction of a simulation matching the

histogram, the variogram, and the data.
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done on Y(x). Another possibility is to interchange steps 4 and 5, namely
transform the nonconditional simulation SY(x) into a nonconditional simula-
tion SZ(x)¼ϕ(SY(x)) and condition it on the Z(xα), using of course the var-
iogram of Z(x). But this is not recommended, since (1) the optimization
criterion of kriging (minimum mean square error) is well adapted to Gaussian
RFs and (2) conditioning generally does not preserve the histogram when the
studied random function and its nonconditional simulation are not Gaussian
random functions.

The transformation of the Z(xα) data into Y(xα) and the modeling of the
transform ϕ have been addressed in Section 6.2. The transformation to
Gaussian data deserves special care to ensure that their variogram has unit sill,
in order to avoid unrealistically large values in the Gaussian simulations in
areas weakly controlled by the data. The anamorphosis or transformation
function itself, and especially its tails, must be modeled carefully, because the
Gaussian simulations usually include larger values than the Gaussian data; an
expansion with Hermite polynomials is not recommended here.

We will conclude on this subject with three practical remarks:

1. Since we are using techniques that imply the framework of Gaussian
SRFs, it is advisable to at least check, using the methods of Section 6.4.4,
that the bivariate distributions of the transformed data Y(xα) can be
considered Gaussian:

� The scatterplot of (Y(xα), Y(xαþ h)), for fixed h, ought to be elliptical.

� The madogram γ1(h) and the variogram γ(h) of Y(x) ought to satisfy

γ1ðhÞ=γ1ðNÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðhÞ=γðNÞp

.

� The variograms of Z(x) and Y(x) ought to be in a relationship that
depends on ϕ.

2. If the Gaussian data include a nugget effect component σ2
ε, we may prefer

to simulate the continuous part of the variogram only, as explained
above. The transform ϕ, however, has been defined with data including
that random component. TZ(x) should therefore be calculated as the
mathematical expectation of ϕ(TY(x)þσεU), where U is an independent
standard normal random variable—that is, as

TZðxÞ ¼
Z

ϕ
�
TY ðxÞ þ σε u

�
gðuÞ du

where g is the standard normal p.d.f.

3. Conditioning should be made by simple kriging. However, if the size of
the data domain is modest relative to the covariance range, then the
sample mean, usually close to zero by design, can be considered as
unknown and ordinary kriging substituted for simple kriging. This
ensures the reproduction of the variogram rather than the covariance
and induces the generation of conditional simulations with a regional
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mean different from the sample mean of the Gaussian data. This was the
objective, but then the final simulation depends largely on the modeling
of the anamorphosis, and the procedure must be checked. An intermedi-
ate solution between conditioning by SK and OK is to consider the mean
of each simulation as a random variable in a Bayesian framework, the
random drift model presented in Section 3.4.10. Ordinary kriging can also
be adopted if strict stationarity is not assured—for example, in border
areas. See Emery (2007c) for further details and an example showing the
usefulness of a local conditioning by OK.

7.3.3 Probability-Field Simulation

We make a digression to present a simulation technique whose statistical
properties are not established but which is used for its speed and practicality.
The method is based on the well known fact that to draw a random number
from the distribution with c.d.f. F it suffices to draw a uniform random number
p between 0 and 1 and compute z¼F�1(p). Letting F and z depend on location
x, we have the relation zðxÞ ¼ F�1

x ½pðxÞ�. When the local distributions Fx are
known, it is therefore equivalent to simulate Z(x) or the probability field
(p-field) P(x).

Ideally, these local Fx are the conditional distributions given hard data and
possibly also soft data. In any case, P(x) is not stationary. The trick is to
simulate a surrogate stationary p-field. If Z is a stationary RF, the natural
candidate is the uniform transform U(x)¼F [Z(x)] which hopefully has the
same important spatial features of continuity and anisotropy as P(x). The
simulation algorithm comprises two steps: (1) a nonconditional simulation of
the surrogate p-field U(x), (2) the transformation TðxÞ ¼ F�1

x ½UðxÞ�. The sec-
ond step achieves automatic conditioning on hard data, since at a data point F
is concentrated on a single value and F�1 always returns that value. By design
the algorithm also reproduces the univariate distributions Fx. The spatial
correlation built in P(x) induces spatial correlation in the simulated Z(x), which
is the effect sought, but does not reproduce the nonconditional nor the con-
ditional covariance of Z.

The covariance of the uniform transform U(x) can be calculated theoreti-
cally by formula (6.24) in the case of an isofactorial model. In particular, if the
bivariate distributions of Z are Gaussian, the covariance of U is related to the
correlogram ρ(h) of Z by the simple formula

Cov½UðxÞ,Uðxþ hÞ� ¼ 1

2π
arc sin 1

2
ρðhÞ� �

In the interval of variation [�0.5, þ0.5] the arcsine function differs little from
a straight line so that, up to a scaling factor, the covariance of U is nearly
the same as ρ(h), and not smoother as might have been expected. In fact, if the
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distributions Fx are Gaussian with means μ(x) and standard deviations σ(x),
there is no need to go through U(x) and we can simulate directly

TðxÞ ¼ μðxÞ þ σðxÞYðxÞ

where Y(x) is a standard Gaussian field with correlogram ρ(h). Here p-field
simulation amounts to a local modulation of a stationary error field. This
reveals two limitations of the method. First, the covariance of T

Cov½TðxÞ,Tðxþ hÞ� ¼ σðxÞ σðxþ hÞ ρðhÞ

may not reflect the complexity of the nonstationarity pattern of the condi-
tional covariance of Z. Second, when there are only hard data, the simple
kriging estimate and standard deviation define μ(x)¼ z*(x) and σ(x)¼
σK(x); but considering the typical behavior of standard deviation maps, with
cusps at data points, passing on their shape to simulations is not really
desirable.

The p-field simulation technique has been proposed by Srivastava (1992) and
Froidevaux (1993). A retrospective is provided by Srivastava and Froidevaux
(2005). We see its value as a way to introduce spatial correlation in Monte
Carlo studies in which the intervals of variation are defined from external
knowledge.

7.4 TURNING BANDS

Some covariance models may be simulated directly in Rn. But it is often simpler
to use the turning bands method, which enables the construction of simulations
in space from simulations on lines. Thus methods of simulation on a line are of
prime interest even if the final goal is to simulate in 2D or 3D. The turning
bands method was first used by Chentsov (1957) in the special case of Brownian
random functions. The general principle of the method appears as a remark
in Matérn (1960, p. 16), but its development for simulations is due to Matheron
(1973a).

7.4.1 Presentation of the Method in the Plane

The method is usually employed for SRFs but can be used for IRF�k’s as well
and is presented here in this context. The turning bands method consists of
adding up a large number of independent simulations defined on lines scanning
the plane. Up to a scale factor, the value of the simulation at a point x of the
plane is the sum of the values assumed at the projections of x on the different
lines by the corresponding one-dimensional simulations. More specifically,
consider a system of nD lines emanating from the origin of space and scanning
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the plane regularly (Figure 7.7); the angle between two adjacent lines is π/nD.
We define the following:

� θt2 [0, π [ is the angle of the line Dt with the x axis.

� ut is the unit vector of Dt, with components cos θt and sin θt.
� st represents the abscissa on Dt, centered at the origin.

Independent zero-mean nonconditional simulations St(st) with (generalized)
covariance K1(h) are associated to the lines Dt.

Let us consider a point x¼ (x, y) in the plane. Its projection on Dt is a point
with abscissa

st ¼ , x, ut . ¼ x cos θt þ y sin θt

The simulation at x is then defined by

SðxÞ ¼ 1ffiffiffiffiffiffi
nD

p
XnD
t¼1

StðstÞ ð7:6Þ

The elementary simulations being independent and with the same (generalized)
covariance K1(h), the generalized covariance of S(x) is

K2ðhÞ ¼ 1

nD

XnD
t¼1

K1ð, h, ut .Þ

x D2

D1

D3

D4
D5D6

D7

D8

u8

u2

u1

FIGURE 7.7 The principle of turning bands in 2D.
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If the number of lines is large enough, the discrete sum is an approximation of
the integral

K2ðhÞ ¼ 1

π

Z π

0

K1ðjhjcos θÞ dθ ð7:7Þ

In practice, K2 is given, and we have to invert relation (7.7) to obtain K1.
Brooker (1985) has shown that for h$ 0, K1 is given by

K1ðhÞ ¼ K2ð0Þ þ
Z h

0

hðh2 � u2Þ�1=2 d

du
K2ðuÞ du ð7:8Þ

In particular, the usual spherical covariance (of R3) with sill C and range a is
obtained by using

K1ðhÞ ¼

C 1� 3π
4

jhj
a
� 1

2

jhj3
a3

0
@

1
A

2
4

3
5 if jhj# a,

C 1� 3

2

jhj
a
� 1

2

jhj3
a3

0
@

1
Aarc sin

a

jhj

0
@

1
A� 3

4

h2

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

h2

vuut
2
4

3
5 if jhj$ a

8>>>>>>>>><
>>>>>>>>>:

Note that, unlike K2, the covariance K1 reaches zero only asymptotically when
jhj-N. For other models, see Gneiting (1998).

In principle, random directions could be used instead of regular directions.
Theoretically, it even suffices to take a single line with an angle drawn at
random from a uniform distribution over [0, π [ to obtain the covariance (7.7)
exactly. However, such procedure will only ensure the correct covariance on
average over the ensemble of simulations, while none in particular would have
the desired properties. For example, simulations based on a single line exhibit a
zonal anisotropy even though the parent covariance model K2(h) is isotropic
(see Figure 7.3b). For a fixed value of the number of lines, it is advisable to use
a regular system of lines rather than random directions, for it ensures better
second-order ergodicity.

In the early implementation of the method, the simulations along each line
were discretized, so that the same value St(st) was assigned to a whole “band”
perpendicular to Dt and containing st. Hence the name turning “bands” given
to the method.

Note that as can be seen in Figure 7.7, S(x) at point x integrates the con-
tribution of the lines at their intersections with the circle of diameter jxj going
through the origin and the point x. Thus the turning bands algorithm can be
seen as a back-projection. Its formalism is similar to the formalism of Radon
transforms used in tomography.
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7.4.2 Generalization to n-Dimensional Space

The easiest way for generalizing the method is to take a simulation S1(s) with
(generalized) covariance K1(h) on a line and to define the direction of this line
in Rn by a random unit vector u, namely by a point on the unit sphere. The
simulation at a point x of Rn is then defined by

SðxÞ ¼ S1ð, x, u.Þ

where the scalar product ,x, u. stands for the projection of x onto the line. In
practice, just as in the plane, several lines are used rather than a single one; and
since opposite directions play the same role, the directions are selected over the
unit half-sphere (see next section).

Taking the expectation with respect to the random direction u, the (gener-
alized) covariance of S(x) is

KnðhÞ ¼ 1

Sn

Z
K1ð, h, u.Þ du

where the integration extends over the unit sphere of Rn and where Sn is
the surface area of this sphere. With this procedure, the covariance Kn(h)
is clearly isotropic though all realizations of S(x) are anisotropic. Using the
same notation Kn to denote this covariance as a function of r¼ jhj, we have
explicitly

KnðrÞ ¼ 2ffiffiffi
π

p Γðn
2
Þ

Γðn�1
2
Þ
Z 1

0

K1ðvrÞð1� v2Þðn�3Þ=2 dv ð7:9Þ

where Γ is the gamma function (A.1). If K1(h) and Kn(h) have spectral densities
f1(u) in R1 and fn(u) in Rn, respectively, f1 and fn are isotropic and can be
considered as functions of ρ¼ juj. Using the same notation fn to represent the
spectral density as a function of ρ, we can translate (7.9) in spectral terms:

fnðρÞ ¼ π�n=2 Γðn=2Þ ρ1�nf1ðρÞ

Similar relations are obtained for the spectral measure of isotropic generalized
covariances of IRF�k. Relation (7.9) has a very simple form when n¼ 3:

K3ðrÞ ¼
Z 1

0

K1ðvrÞ dv ¼ 1

r

Z r

0

K1ðuÞ du ð7:10Þ

Formula (7.9) associates an isotropic covariance Kn in Rn to every covariance
K1 in R1. In fact this formula can be identified with the general form of an
isotropic covariance in Rn (Matérn, 1960; Matheron, 1973a). Thus the corre-
spondence between K1 and Kn is one to one, and (7.9) can be inverted. As seen
in Section 7.4.1, the inversion of (7.9) is not easy for n¼ 2 (and similarly for
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n even). When n¼ 3, the inverse formula of (7.10) is particularly simple (and
generally so when n is odd):

K1ðrÞ ¼ d

dr
½r K3ðrÞ� ð7:11Þ

If K3 has a finite range a (i.e., K3(r)¼ 0 when r. a), K1 has the same property.
This is generally not the case for the covariance K1 associated with a covariance
K2 with finite range, as can be seen in (7.8) (and also for the covariance K1

associated with Kn when n is even). Since (7.11) is simpler than (7.8), it may be
better to generate a 2D simulation as the planar section of a 3D simulation than
to simulate directly in 2D (this is of course limited to the case where the
covariance K2 is also a valid model in R3).

The correspondence between K1 and Kn is also particularly simple, for all n,
in the case of a generalized covariance of type rα, α not even: The K1(v r) term in
the integral (7.9) is factorized as vα rα and Kn is of the form Bnα rα with

Bnα ¼ Γ
�
n
2

�
Γ
�
αþ1
2

�
Γ
�
1
2

�
Γ
�
αþn
2

� ð7:12Þ

Likewise, if K1 is a sum of Aα rα terms, Kn is a sum of Aα Bnα rα terms. In
particular, a polynomial generalized covariance in R1 generates by turning
bands a polynomial generalized covariance in Rn.

For k¼ 2 the explicit correspondence between the generalized covariance K1

in 1D and the generalized covariances K2 and K3 in 2D and 3D, respectively, is
given by

K1ðrÞ ¼ �b0 rþ b1r
3 � b2 r

5,

K2ðrÞ ¼ � 2

π
b0 rþ 4

3π
b1r

3 � 16

15π
b2 r

5,

K3ðrÞ ¼ � 1

2
b0 rþ 1

4
b1r

3 � 1

6
b2 r

5

Generalized covariances of type (�1)kþ1 r2k log r remain of that type after
application of the turning bands operator and formula (7.12) applies also to
that case with α¼ 2k. Specifically, one has Bn2¼ 1/n for the spline GC r2 log r,
and Bn4¼ 3/[n (nþ 2)] for the GC �r4 log r.

7.4.3 Efficient Selection of the Line Directions

As we have just seen, a single line of random direction produces, on the
average, the desired covariance. However, such a simulation is constant in all
hyperplanes orthogonal to the line so that its sample covariance is not that of
the model: The simulation is not ergodic in the covariance. In practice, as in
(7.6) we take the normalized sum of nD elementary simulations corresponding
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to nD lines of regularly distributed or random directions. Regarding ergodicity,
for fixed nD it is preferable to use lines with directions distributed as regularly as
possible rather than randomly.

In 2D, the choice of lines is simple: discretize the directions according to
θj¼ ( j� 1)π/nD, j¼ 1, . . . , nD; one may prefer a stratified random grid and
select θj randomly in the interval [( j� 1) π/nD, j π/nD]. One should take nD large
enough (from one hundred to a few hundred).

In 3D, the maximum number of regularly spaced directions is 15. These
directions are defined by the lines joining opposite edges of an icosahedron.
The first 3D simulations by turning bands were constructed from 1D simu-
lations on these 15 lines. But these 15 special directions show up on the rea-
lizations obtained. To go beyond 15 lines, one can take random directions, or
several groups of 15 lines. But drawing independent random directions from a
uniform distribution on the half-sphere does not provide a very regular dis-
cretization (Figure 7.8a). Quasi-random sequences give better results in this
respect (Figure 7.8b). Freulon and de Fouquet (1991) recommend the fol-
lowing method:

1. Simulate points with a uniform distribution on [0, 1]� [0, 1] using a quasi-
random sequence (they use the two-dimensional Van der Corput, or
Halton, sequence; cf. Section 7.9.4).

2. To each point with components U1 and U2, associate the direction of unit

vector ðcosð2πU1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�U2

2

q
, sinð2πU1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�U2

2

q
,U2Þ, which will then be

uniformly distributed over the unit half-sphere.

It is recommended to use several hundred lines.

(a) (b)

FIGURE 7.8 Schmidt equiareal projection of 256 points of the unit half-sphere, representing 256

directions in space: (a) random points; (b) quasi-random points derived from an equidistributed

Halton sequence.
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Finally, when using the turning bands method, the problem of simulating
S(x) in Rn boils down to the following two problems:

1. Find the covariance K1(h) defined in R1 associated with the isotropic
covariance Kn(r) to be obtained in Rn; Table A.2 gives the covariances
K1(h) associated with the most common models K3(r).

2. Simulate random functions on lines with the given covariance K1(h).

For example, to simulate the exponential covariance K3(r)¼σ2 exp(�r/a) in R3,
we have to simulate

K1ðhÞ ¼ σ2 1� j h j
a

	 

exp � j h j

a

	 


on the lines. We recognize, up to a factor 2 for the scale parameter, the
covariance (2.74) of the migration process presented in Section 2.5.3, which can
be simulated very easily. This method of construction is specific to this
particular model. Emery and Lantuéjoul (2006) propose specific solutions for
a broad range of covariance models, which all belong to the general methods
presented below.

7.5 NONCONDITIONAL SIMULATION

OF A CONTINUOUS VARIABLE

We now review the main simulation methods. Some may be used directly in Rn,
others only in R, but they may be extended to Rn by turning bands.

7.5.1 Autoregressive and Moving-Average Models

The two methods seen in Section 7.2 (sequential simulation and decomposition
of the covariance matrix), when applied to the simulation of Gaussian RFs,
differ essentially in presentation. The first one amounts to the application of
(7.3) and is of autoregressive type, whereas the second, corresponding to (7.4),
is based on moving averages. These methods are not applicable when the
number of points is large. But in the case of stationary discrete processes, they
can be adapted to summations over a finite number of terms. Box and Jenkins
(1976) have developed ARMA models with a view to fitting their parameters
directly from time series data, the covariance function being derived. We
present these models from our slightly different perspective: The covariance of
the phenomenon is known, from a structural analysis, and the parameters of
the ARMA model are derived.
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1D Autoregressive Process

Consider points at a regular interval Δx in 1D space, along with a “discrete-
time” process Zt¼Z(tΔx), t negative or positive integer. This definition recalls
that we consider Zt as a discrete version of a random process Z(x) defined over
the whole line. We will only consider processes that are stationary and have
mean zero. Due to the orthogonality property of simple kriging, Zt may be
considered as the sum of the simple kriging estimator from all past values Zt 0,
t 0 , t, and an uncorrelated random variable at with mean zero and variance σ2

K

(the kriging variance):

Zt ¼
XN
i¼1

αi Zt�i þ at ð7:13Þ

The process is said to be an autoregressive process of order p, or an AR(p)
process, when only the first p weights αj of (7.13) are nonzero:

Zt ¼ α1 Zt�1 þ � � � þ αp Zt�p þ at ð7:14Þ

This process has a memory of finite length p and evolves due to random
innovations at (the at are uncorrelated). Zt has the form of a regression on its
own previous values, hence the name autoregressive. This model generalizes the
algorithm (7.2) presented for simulating a stochastic process with an exponen-
tial covariance.

The coefficients α1, . . . ,αp of the AR(p) process are estimated very easily
using the covariance C(h) of the random function Z(x) for h¼ iΔx and
j i j ¼ 0, 1, . . . , p. Indeed, when we multiply both sides of (7.14) by Zt�i

and denote Ci¼C(i Δx) the covariance of Zt�i and Zt, we get

Ci ¼ α1 Ci�1 þ α2 Ci�2 þ � � � þ αp Ci�p ð7:15Þ

Doing the same for all i¼ 1, 2, . . . , p yields the p linear equations of the simple
kriging system:

Xp
j¼1

αj Ci�j ¼ Ci ði ¼ 1, 2, : : : , pÞ ð7:16Þ

These equations are also known as the Yule�Walker equations. The matrix of
the system has a special pattern: The elements on symmetric diagonals are
identical. Such a matrix is called a symmetric Toeplitz matrix, and an especially
efficient algorithm, the Levinson algorithm, may be used to solve system (7.16)
[e.g., Press et al. (2007, Section 2.8.2)].

The problem, when the covariance function is given, is whether it can be
considered as that of an AR(p) process. In practice, the choice of p is made by
considering the partial correlation φk, defined as the kth value αk obtained from
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the Yule�Walker equations with k terms. φk can be interpreted as the kriging
weight assigned to Zt�k when kriging Zt from Zt�1, . . . ,Zt�k. The covariance
terms Ci are those of an AR(p) model if φk¼ 0 for k. p. In practice, if φk does
not reach zero, p is chosen such that jφkj, ε for k. p, where ε is a given
threshold.

The knowledge of C0, C1, . . . ,Cp determines the coefficients α1, . . . ,αp.
These in turn determine Ci for i. p by iterative application of relation (7.15).
Box and Jenkins (1976) show that the general form of the covariance is then

Ci ¼
Xp
j¼1

Aj ðGjÞi ði$ 0Þ

where G�1
1 ,G�1

2 , : : : ,G�1
p are the complex roots of the characteristic equation

1�
Xp
i¼1

αi z
i ¼ 0 ðz 2 CÞ

and A1, A2, . . . ,Ap are complex coefficients (which depend on the covariance).
In the case of an SRF, the Gi satisfy jGi j, 1. Therefore the covariance is a

mixture of damped exponentials (Gi real) and damped sine waves (pair of
conjugate complex roots). For example, if p¼ 1, one has

Ci

C0
¼ C1

C0

	 
i

¼ αi
1

that is, an exponential model if α1. 0 and a damped sine wave if α1, 0 (in
both cases jα1j, 1). Thus the method is especially suited for exponentially
decreasing covariances. Other covariance models can be simulated only
approximately.

An AR(p) model can be simulated with a sequential algorithm:

1. Start with a random value Z0, drawn from the marginal distribution of
Z(�).

2. Simulate iteratively Z1, Z2, . . . ,Zp�1 by applying, respectively, the AR(1),
AR(2), . . . , AR(p� 1) recursions associated with the covariance of Z.

3. Simulate iteratively Zp, Zpþ1, and so on, by applying the AR(p) recursion.

The random variables at are usually chosen Gaussian so that the simulation is
Gaussian (see discussion at the end of this section).

2D Autoregressive Model

The generalization of definitions (7.13) and (7.14) to 2D is not unique because
the notions of “past” and “future” have no general meaning in this space.
Starting from the upper left corner of the simulated grid, Boulanger (1990)
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simulates in squares of increasing size from the neighboring previously simu-
lated nodes. He proposes a methodology to find the parameters ensuring the
reproduction of the covariance with a prespecified accuracy. Mignolet and
Spanos (1992) propose a fairly similar method where the grid is simulated
column after column.

The extension to 3D seems intractable except in special cases (e.g., separable
exponential covariance).

1D Moving-Average Process

As previously, we consider points at a regular interval Δx in 1D space, along
with a process Zt¼Z(tΔx), t negative or positive integer. But Zt is now defined
as a weighted moving average of a sequence of independent identically distrib-
uted (i.i.d.) random variables at with mean E[at]¼ 0 and variance Var½at� ¼ σ2,

Zt ¼
XþN

j¼�N

βj at�j ð7:17Þ

where the weights βj are such that
P

β2
j ,N. Zt is then a stationary process

with covariance

Ck ¼ σ2gk ð7:18Þ

where gk is the discrete covariogram of the weights

gk ¼
XþN

j¼�N

βj βjþk ð7:19Þ

Applications deal with the case where the number of nonzero weights is finite.
Since the resulting covariance is not altered by a translation of the βj, we may
consider that the first nonzero weight is β0 and that only the next q weights
β1, . . . ,βq are nonzero. Definition (7.17) then becomes

Zt ¼ β0 αt þ β1 αt�1 þ � � � þ βq αt�q ð7:20Þ

and the discrete covariogram (7.19) of the weights has a range equal to qþ 1, in
the sense that gk¼ 0 for jkj$ qþ 1.

Since the covariance is not modified if the βj are multiplied by the same
nonzero coefficient c, provided that the variance σ2 is divided by c2, we may
also fix β0¼ 1. We then obtain the moving average process of order q, or MA(q)
process, as defined by Box and Jenkins (1976). For a time process the physical
interpretation is that at time t “nature” produces a “shock” or “innovation” at
unrelated to shocks at all other times. These shocks are combined through a
filter characterizing the genetic mechanism of the phenomenon, and the output
is the observed signal Zt. In the sequel we will not impose β0¼ 1.
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In our approach, which differs from that of Box and Jenkins, we use such a
model for a covariance C(h) that has been already identified. Thus we have to
derive q and the coefficients βj such that the discrete covariance Ck given by
(7.18) and (7.19) is equal to C(kΔx). Unlike for AR models the discrete
covariance Ck is not linear in β0, β1, . . . ,βq but involves products of these
parameters, which makes estimation more difficult. Boulanger (1990) proves
two results:

1. If C(h) has finite range a, there exists a set of qþ 1 coefficients βj such that
Ck¼C(kΔx), where q¼ba/Δxc (integer part of a/Δx).

2. If the covariance only tends to zero when h tends to infinity but has a
finite integral range, it can be approximated to any prespecified precision
by the covariance of an MA(q) model. The order q is taken as
q¼ba 0/Δxc, where a 0 is the smallest distance such that jC(h)j, ε
whenever jhj. a 0, ε being a given threshold.

There remains to find the coefficients βj. An approximate method is often used
when the covariance function is of the form CðhÞ ¼ σ2gðhÞ, where g(h) is known
to be the covariogram of some function w(x) whose support has length a (see
Section 7.5.2). Since a translation of w does not change its autoconvolution
function, we may suppose without loss of generality that the support of w is
[0, a]. As an approximation we can take βj¼ jΔxj1/2 w( jΔx) and rescale these
coefficients so that σ2

P
jβ

2
j reproduces the desired variance C(0).

That approximation is usually satisfactory provided that the discretization
step Δx is small in comparison with the range. A rigorous method where the
coefficients βj are limits of series is also available (Boulanger, 1990).

In practice, MA(q) models are efficient when q has a low value, namely for
covariances with a short range. In this case each innovation at only has a local
effect on the simulation. Boulanger uses this property in a method for direct
conditioning.

2D Moving-Average Model

The generalization of definition (7.17) to 2D or 3D is obvious. But again there
is no unique generalization of definition (7.20). Boulanger (1990) shows that the
2D generalization of most of the results he obtained for the 1D case need a
causal model, namely a lexicographic moving average, where the nonzero βj1j2

weights are those such that

j1 ¼ 0 and 1# j2 # q,

1# j1 # q and �q# j2 # q

With this definition of a 2D MA(q) process, all the results of the 1D case can
be carried over to 2D, except that now in 2D a covariance with a finite range
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cannot necessarily be represented exactly by an MA(q) process with q finite [see
also Guyon (1993, Section 1.3.3)]; but as any covariance with a finite integral
range, it can at least be approximated by such a process.

Spanos and Mignolet (1992) propose a slightly different algorithm where the
moving-average domain is the rectangle defined by

�q1 # j1 # q1 and � q2 # j2 # q2

The coefficients are determined so as to minimize an error in the frequency
domain.

One important feature of moving-average methods is their local character.
Since innovations only have a local influence (defined by the parameter q), it is
possible to modify a realization in a local window without changing the other
regions. This feature is used by Le Ravalec et al. (2000) to match local non-
linear constraints (see Section 7.8.5).

Mixed Autoregressive Moving-Average Model

There does not necessarily exist an AR( p) orMA(q) model, with p or q finite and
not too high, that leads to the desired covariance. Box and Jenkins (1976)
introduced a mixture of the AR( p) and MA(q) models that provides more flex-
ibility. Amixed autoregressivemoving-average process, or ARMA(p, q) process,
includes a finite number of both autoregressive and moving-average terms

Zt ¼ α1 Zt�1 þ � � � αp Zt�p þ at þ β1 at�1 þ � � � þ βq at�q ð7:21Þ

The importance of this mixed model is that it permits a “parsimonious”
representation of a linear process; that is, it requires fewer parameters than a
model based on a purely autoregressive or purely moving-average process. The
point is obvious if one attempts to represent an AR(p) model as an MA, or an
MA(q) model as an AR: this is possible, but an infinite number of terms is
required.Mignolet and Spanos (1992) and Spanos andMignolet (1992) propose a
procedure to closely approximate an autoregressive model or a moving-average
model, respectively, by anARMAmodelwith fewer parameters (in 2D). Similarly,
Samaras et al. (1985) develop the use ofARMAmodelswith p¼ q, including in the
multivariate case. Further results can be found in Guyon (1993, Chapter I).

Spatial Distribution and Conclusion

The random variables at involved in the definition of ARMA(p, q) models are
usually chosen Gaussian, so that the simulation is Gaussian. If not, the finite-
dimensional distributions of MA(q) models tend to be Gaussian by virtue of the
central limit theorem, under appropriate conditions. The same applies for
AR(p) models since they are equivalent to moving-average models with an
infinite number of terms.
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The method has been extended to the simulation of random functions that
have an infinite variance, or even an infinite mean, notably stable distributions
(Boulanger, 1990).

In conclusion, autoregressive moving-average models offer the following
advantages:

� The multivariate distribution of the simulations can be exactly Gaussian.

� The autoregressive method can be directly used in 2D, and the moving-
average method in 2D or 3D, without the need for turning bands.

� It can be applied to large grids (for fixed p and q, and once the parameters
are known, the computation time is simply proportional to the number of
grid nodes).

� In the case of MA(q) models, it is possible to directly produce conditional
simulations.

� Moving average models allow for local updating.

Their limitations are the following:

� ARMA models cannot fit all covariance models: AR(p) models are for
exponentially decreasing covariances, and MA(q) models are for covar-
iances whose range is small compared with the simulated domain.

� Autoregressive models may present a spatial dissymmetry in 2D and
cannot be used efficiently in 3D.

� The simulation is limited to grid nodes.

7.5.2 Dilution of Poisson Germs

The Poisson point process has long been used to define random function models
[e.g., in R, Blanc-Lapierre and Fortet (1953, Chapter V) and in Rn, Matérn
(1960, Chapter 3)]. The method outlined here is a dilution of Poisson points
considered as germs and corresponds to processes called “moving average
models with constant or stochastic weight function” by Matérn and Poisson
shot noise by several authors. It is a good candidate for generating the sta-
tionary 1D simulations required by the turning bands method when the 1D
covariance has a finite range, as well as for directly generating simulations in Rn

with spatially variable parameters (anisotropy directions, ranges, and obviously
sill). The approach can also be extended to IRFs and IRF�k’s. Let us first recall
the definition and main properties of the Poisson point process.

Poisson Point Process

The Poisson point process in Rn corresponds exactly to the intuitive idea of
points distributed in space “at random.” The Poisson point process with
intensity, or density, λ (λ. 0) is characterized by the following properties:
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1. The number N(V) of points inside a domain V is a Poisson random
variable with parameter λ jV j, where jV j represents the measure of V
(length, surface, or volume)

PrfNðVÞ ¼ kg ¼ e�λ jV j ðλ jV jÞk
k!

,

E½NðVÞ� ¼ Var½NðVÞ� ¼ λ jV j

2. If Vi, i¼ 1, 2, . . . , p, are pairwise disjoint domains, the random variables
N(Vi) are mutually independent.

The Poisson point process has an important conditional property that corre-
sponds to the notion of random points: Given N(V)¼ nV, these points are
independently and uniformly distributed over V.

Thus a Poisson point process with intensity λ can be simulated within a
bounded domain V as follows:

1. Draw the number of points nV from a Poisson distribution withmean λjVj.
2. Draw the nV points independently from a uniform distribution within V.

This method can easily be applied to intervals of Rn (segments in R1, rectangles
in R2, parallelepipeds in R3). Combined with an acceptance-rejection technique,
it allows the simulation of a Poisson point process in a complex domain
assumed to be enclosed in a union of pairwise disjoint sets. In situations where
the acceptance ratio is too low, which may be the case in spaces of large
dimension (e.g., in design and analysis of computer experiments), iterative
methods are available [e.g., Lantuéjoul (2002, Section 8.3)].

In 1D, Poisson points delimit intervals whose lengths are independent ran-
dom variables with an exponential distribution with mean θ¼ 1/λ. This dis-
tribution has the following conditional property: If it is known that the interval
length T is larger than a given value t, the residual length T� t has the same
distribution as the a priori length T. In particular, the residual length from a
fixed origin to the next Poisson point has the same exponential distribution
as T. Hence another method for simulating a 1D Poisson point process from an
arbitrary origin, which without loss of generality we will place at x¼ 0:

1. Draw intervals Ti, i¼ 1, 2, . . . , as independent random variables from an
exponential distribution with mean θ¼ 1/λ.

2. Define the successive Poisson points Xi, i¼ 1, 2, . . . , associated with these
intervals byX1¼T1 and the recurrence relationXi¼Xi�1þTi, i¼ 2, 3, . . . .

The Poisson point process can be defined also on ]�N, 0] by inverting the
method of construction. In all cases the origin x¼ 0 is not a Poisson point.
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Dilution by a Fixed Function

Let w(x) be a square integrable function on Rn and g(h) its covariogram (2.30)

gðhÞ ¼ ðw��wÞðhÞ ¼
Z

wðxÞ wðxþ hÞ dx ð7:22Þ

For the sake of simplicity, we will assume that w(x) is integrable. We assign a
constant “dose” μ to each of the points Xi of a Poisson point process with
intensity λ and dilute it by the influence function w (Figure 7.9). At a point x the
sum of the contributions of all Xi defines a random function

ZðxÞ ¼ μ
X
i

wðx� XiÞ ð7:23Þ

A variant is to assign independent random doses ai with mean μ and variance
σ2, which corresponds to the definition

ZðxÞ ¼
X
i

ai wðx� XiÞ ð7:24Þ

Note that (7.23) can be considered as the special case σ¼ 0. With this con-
vention,Z(x) is an SRF with meanm and covarianceC(h) given in both cases by

m ¼ λμ
R
wðxÞdx

CðhÞ ¼ λ ðμ2 þ σ2ÞgðhÞ ð7:25Þ

Heuristic proofs of these results are easy. A rigorous proof can be found in
Blanc-Lapierre and Fortet (1953).

Some results persist with point models other than Poisson points. Consider,
for example, the transposition of definition (7.24) to a regular grid of points Xi

with a random origin

ZðxÞ ¼
X
i2Zn

ai wðx� X0 � iΔxÞ ð7:26Þ

where the vector Δx represents the grid spacing and X0 a random origin within
a grid cell centered at the origin of the axes. If μ¼ 0, it is easy to prove that

Z

Xi x

w

x

(a) (b)

FIGURE 7.9 Construction of a simulation by dilution of Poisson germs: (a) dilution function;

(b) Poisson points and the construction of the simulation.
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formula (7.25) remains valid with λ¼ 1/jΔxj. This model constitutes the
generalization of moving-average models to the continuous case. For fixed
X0¼ x0, the RF Z(x) is not stationary, and therefore many independent
simulations must be added to achieve stationarity. This model is very conve-
nient to build the numerous 1D simulations involved in the use of the turning
bands method when the support of w is bounded: By selecting Δx equal to the
length of this support, the value of Z(x) at any given x involves only one
dilution point.

Now the problem is the following: Given a covariance function C(h), does
there exist an integrable function w(x) such that w��w ¼ C? Since w(x) has a
Fourier transform, which we denote by ϕ(u), w��w has the Fourier transform
jϕ(u)j2, and therefore the answer is limited to covariances that possess a spectral
density f(u) (in the sense of ordinary functions). Any function w(x) whose
Fourier transform satisfies jϕ(u)j2¼ f(u) has C(h) as autoconvolution function,
as the following diagram shows, where F represents the Fourier transform and
F�1 its inverse:

wðxÞ �!w��w CðhÞ

FkmF�1 FkmF�1

ϕðuÞ �!j ϕ j2
f ðuÞ

This is the case, for example, for w ¼ F�1j f j1=2 if j f j1/2 is integrable. This
function is real and symmetric, but does not necessarily have a bounded sup-
port when the support of C(h) is bounded, which would be a desirable property.
Other functions may therefore be more appropriate than F�1j f j1=2. In a very
thorough paper, Ehm et al. (2004) seek the conditions under which a covariance
with range a (i.e., such that C(h)¼ 0 whenever j h j$ a) can be expressed in the
form (7.22) with a real function w satisfying w(x)¼ 0 for j x j$ a/2. In the 1D
case, this is always possible. In n-dimensional space, n. 1, this is possible
for isotropic covariances if and only if a series of conditions involving the zeros
of the analytic continuation of the radial part of the spectral density f are met
(the function w is then isotropic, up to a translation). For example, the
spherical covariance, defined as the autoconvolution of the indicator function
of the sphere of R3 with diameter a, cannot be expressed as an autoconvolution
in R2.

Example 1: Simulation of Classic Models on the Line and in Space

Most stationary covariance models can be expressed as the autoconvolution
w��w of a simple function, which makes them very easy to simulate on a line.
Table A.1 gives the function w associated with some covariance models con-
sidered in R (i.e., no turning bands method is applied). Table A.2 gives the
function w for the covariance C1(h) in R associated with some covariance
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models C3(h) in R3 by the turning bands relation (7.11). Isotropic covariances
with a finite range a in R3 are associated with covariances with the same finite
range in R. The latter can be efficiently simulated in the form (7.26) with
Δx¼ a, as proposed by Lantuéjoul (1994; 2002, Chapter 15) for the spherical
covariance.

Note that in R the exponential covariance is obtained with a dilution
function which is itself exponentially decreasing (but equal to zero for nega-
tive values of x). The consequence is that the process Z(x) decreases expo-
nentially at the same rate as the covariance, except at the Poisson points where
it has a unit jump (Figure 7.2b). It is an Ambarzumian process (Matheron,
1969b).

Note also that some models can be simulated directly in Rn, n. 1, as shown
by Matérn (1960, p. 30): the Matérn model (2.56) can be expressed as an
autoconvolution function. A special case of this model, the exponential
covariance (2.51), can be obtained in Rn with

wðxÞ ~ ðjxj=aÞ� n�1
4 Kn�1

4
ðjxj=aÞ ð7:27Þ

but w(x) is infinite at the origin [Kν is the modified Bessel function of the second
kind (A.4)]. Figures 7.2c and 7.3c are 1D and 2D sections of a 3D simulation
built with this dilution function, which takes the form

wðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πa3

p expð�jxj=aÞ
jxj=a

Another procedure, based on a mixture of spherical models, will be considered
later. It is more convenient than a dilution by the deterministic function (7.27),
since the spherical models are the easiest ones to simulate in Rn, as shown
below.

The Gaussian model (2.54) can also be expressed as an autoconvolution by
the function

wðxÞ ~ expð�2x2=a2Þ ð7:28Þ

for all n.

Example 2: Simulation of Spherical Models

The indicators of simple sets are among the most convenient dilution functions.
In particular, the spherical model of Rn can be obtained from the indicator of a
sphere with diameter a:

wnðxÞ ¼ 1 if jxj# a=2;
0 if jxj. a=2

�
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If a simulation has to be built over a domain V, the Poisson point process must
be simulated over the dilated2 set V"S�w , where S�w is the support of the
function �wðxÞ ¼ wð�xÞ. In R3 the steps are then the following:

1. Define a domain D that includes V"S �w . If the final objective is a
conditional simulation, do not forget that V must include all the
conditioning data points; in practice, take the smallest parallelepiped
containing all the points to be simulated and all the data points, and
extend it by a/2 on all sides (or take the smallest sphere that contains all
these points, and increase its radius by a/2).

2. Generate ND from a Poisson distribution with mean λ jDj.
3. Select ND independent random points Xi from a uniform distribution

within D.

4. At each of these points, set up a sphere with diameter a weighted by an
independent random value with mean μ and variance σ2.

5. Compute the value of the simulation at any given point x as the sum of
the weights of the spheres containing x.

The resulting simulation has a spherical variogram with range a and sill
π
6
λðμ2 þ σ2Þa3.
As seen in Section 2.5.1, the functions of Rn�2q deduced from wn by Radon

transform of order 2q allow the simulation of the integrated spherical models
(2.48) associated with random functions which are differentiable q times in
Rn�2q. For example, integrating w5 along two coordinate axes yields

w5�2ðxÞ ¼
π
	
a2

4
� x2



if jxj# a=2,

0 if jxj. a=2

8><
>:

which generates the “cubic” model (2.49).
The method can be adapted to reproduce local variations in the variogram

parameters. For example, a geometric anisotropy of variable amplitude can be
simulated by forming ellipsoids whose shape, size, and orientation depend on
location. Likewise, the second moment μ2þσ2 can be adjusted if the sill varies.

Dilution by a Stochastic Function

Figure 7.10a illustrates the construction of the spherical model of R2, namely
the circular variogram (2.46). This construction is based on random disks of
equal size. The circular variogram is cumbersome, and the spherical model ofR3

is often used even when working in R2. The simulation method described above
amounts to (a) picking random points in the slice delimited by the two planes

2The dilation V " S is the union of all translates of V by a vector of S [see Serra (1982)].
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parallel to the simulation plane and at distance a/2 from it and (b) forming
spheres with constant diameter a. This is equivalent to picking random points
in the plane (with a 2D intensity λ2¼ a λ3 where λ3 represents the 3D intensity
of sphere centers) and forming disks with random diameters drawn from
the c.d.f. Fa(d) of the diameters of random planar sections of a sphere with
diameter a

FaðdÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

a2

vuut if d# a

1 if d$ a

8>><
>>:

(a)

(b)

FIGURE 7.10 2D simulation of circular and spherical covariances by dilution: (a) circular

covariance (identical coins); (b) spherical covariance (random coins).
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This method has been popularized by Alfaro (1980) under the name of the
random coins method (Figure 7.10b). However, it had been already shown by
Matérn (1960, p. 36) that the spherical model of Rmþn can be simulated in
Rn with

FaðdÞ ¼ 1�
	
1� d2

a2


m=2

if d# a,

1 if d$ a

8><
>:

By using other distributions F for d, the method can be extended to other
covariance models with a linear behavior at the origin, and in particular to the
exponential model in Rn. For example, in R the exponential covariance
exp(�jhj/a) can be simulated by random segments with lengths drawn from
the c.d.f.

FðdÞ ¼ 1� e�d=a

and a choice of λ, μ, and σ2 such that λ (μ2þσ2)¼ 1/a. A practical problem
arises here, as for other covariances that tend only asymptotically to zero so that
the distribution of d extends to infinity: Even if the simulated domain is bounded,
it is theoretically necessary to implement germs in the whole spaceRn, but most of
the spheres associated with these germs will not intersect the simulated domain.
Hammersley and Nelder (1955) have given a thorough general solution in Rn

and detailed its use for the exponential model for n¼ 1, 2, 3. The procedure is
defined so that a finite number of spheres intersect the simulated domain and is
built so as to only generate these spheres. Figure 7.2d shows a simulation on the
line (with random segments) and Figure 7.3d a simulation in the plane (random
coins). This method allows the simulation of any completely monotone covari-
ance in Rn for all n, since such a covariance can be expressed in the form (2.28) as
a mixture of exponential models.

Stochastic dilution functions other than indicators of spheres can of course
be used. Since any isotropic covariance model valid in Rn for all n can be
considered as a mixture of Gaussian covariances according to relation (2.27),
such a model can in principle be simulated with dilution functions (7.28) with a
random scale parameter a [e.g., see Matérn (1960, p. 33) for the Matérn and
Cauchy models].

1D Extension to IRFs

The simulation by dilution of Poisson germs requires, in principle, square
integrable functions and only permits the simulation of ordinary covariances.
This method can, however, be extended to functions w(x) such that

GðhÞ ¼ 1

2

Z
½wðxþ hÞ � wðxÞ�2dx ð7:29Þ
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exists. Reasoning along the same lines as before, one obtains an IRF�0 with
the variogram γ(h)¼λ G(h).

Consider now the case of an jhjα model in R. As shown by Mandelbrot and
Van Ness (1968), the functionG(h)¼ b jhjα can be written in the form (7.29) with

wðxÞ ¼
0 if x# 0,ffiffiffiffiffiffiffiffiffiffiffi

b=Rα
p

xðα�1Þ=2 if x. 0

(

and

Rα ¼ 1

2α
þ 1

2

Z N

0

ð1þ uÞðα�1Þ=2 � uðα�1Þ=2
h i2

du

Mandelbrot (1975a) uses a weighting function related to the above one by
antisymmetry (i.e., w(x)¼�w(�x) for x, 0; Rα is then modified). In both
cases, Rα is finite provided that 0,α, 2, which is precisely the condition for
jhjα to be a variogram. Since the support of w is infinite, even Poisson points at
a large distance from the simulated domain have an influence on the simulated
values within that domain. In practice, only Poisson points up to a certain
distance from the simulated domain are considered, which results in a minor
approximation. As shown by Chilès (1995), a large number of Poisson points is
necessary to achieve ergodicity (typically 10,000 Poisson points).

Special Case of a Poisson Random Walk

An important special case is α¼ 1. Then w(x) is simply a step function, so
Poisson germs falling outside the simulated domain only contribute a constant
value and do not modify the increments: There is no need to simulate these
germs. The RF model, known as the Poisson random walk, is usually defined
on [0, þN[ without reference to dilution:

1. Consider the Poisson points {Xi : i¼ 1, 2, . . . } of a 1D Poisson point
process with intensity λ defined on [0, þN[.

2. Consider a series of i.i.d. random variables {ai : i¼ 1, 2, . . . } with mean
0 and variance σ2.

3. Define Z(x) as being equal to 0 in the interval [0, X1[, jumping by ai at the
point Xi, and remaining constant in the interval [Xi, Xiþ1[, i¼ 1, 2, . . . .

Z(x) can be defined for negative x values by inverting the construction method.
Z(x) is a step function: It increases by i.i.d. random jumps at the Poisson points
and remains constant between successive discontinuity points. Z(xþ h) � Z(x),
h. 0, is then equal to the sum of the N([x, xþ h [ ) random jumps that occur
between x and xþ h. By the properties of the Poisson point process and because
the random jumps are independent, Z(x) is a process with independent and
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strictly stationary increments [e.g., Doob (1953)]. In particular, since
N([x, xþ h [ ) is a Poisson random variable with parameter θ¼λjhj and the
random jumps have mean 0 and variance σ2, the Poisson random walk has no

drift and a linear variogram γðhÞ ¼ 1
2
λσ2jhj.

Figure 7.11 displays such simulations for a Poisson random walk with
intensity λ¼ 1 and random jumps equal to �1 or þ1 (top), or to a standard
normal variable (bottom); they have the same variogram as the Brownian
motion of Figure 7.4. Note that Z(x) is not a Gaussian IRF�0, even though the
jumps are Gaussian: For example, since Z(x) is piecewise constant, an incre-
ment Z(xþ h) � Z(x) has a nonzero probability to be equal to 0 (this proba-
bility is at least equal to e�λjhj, the probability that no Poisson point falls
between x and xþ h). Finally, note that since Z(x) is a step function without
accumulation points, its Hausdorff dimension is 1: Z(x) has a linear variogram
and yet is not fractal.

1D Extension to IRF-k with a Polynomial Generalized Covariance

The requested 1D IRF�k can be obtained by linear combination of successive
integrations of a processW0(x) with a linear variogram γ(h)¼ jhj—for example,
a Poisson random walk or a Brownian motion, as we have seen in Section 4.5.8.

0 5 10 15 20 25 30

25

10

20

15

5

0

FIGURE 7.11 1D simulations of the Poisson random walk with random jumps þ1 or �1 (top)

and with Gaussian jumps (bottom). They have the same linear variogram 1
2
jhj as the Brownian

motion of Figure 7.4.
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A special choice for the process W0(x) in an interval [�R, R] is to use a single
discontinuity, selected from a uniform distribution in that interval, and a step
function whose value is zero in the half line containing the origin and a random
value with mean zero and variance 4R in the other half line. Denoting by X0

the random point and by a the random step, the pth integral ofW0 has the simple
form

WpðxÞ ¼

a ðx� X0Þp
p!

1x,X0
if X0 , 0,

a ðx� X0Þp
p!

1x$X0
if X0 $ 0

8>>>><
>>>>:

To be more explicit, if we limit ourselves to k¼ 2, any IRF�k with generalized
covariance

KðhÞ ¼ �b0jhj þ b1jhj3 � b2jhj5

can be obtained with

ZðxÞ ¼ c0W0ðxÞ þ c1W1ðxÞ þ c2W2ðxÞ

where the coefficients c0, c1, c2 are deduced from b0, b1, b2 by

c0 ¼
ffiffiffiffiffi
b0

p
, c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
120b2

p
, c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6b1 þ 2c0c2

p

Note that the terms under the square roots are positive or zero; this results from
the conditions on the coefficients b0, b1, b2 to ensure that K(h) is a valid
generalized covariance in R.

Obviously, this simulation (with a single discontinuity) is not ergodic. Thus a
large number of such simulations, properly scaled, must be added.

Extension to n-Dimensional IRFs with Turning Bands or Poisson Hyperplanes

Simulations of a linear, power, or polynomial generalized covariance in Rn can
be easily obtained by turning bands from independent 1D simulations gener-
ated as shown above, since the corresponding 1D generalized covariances
remain of the same type.

If the directions normal to the turning bands are random and each 1D sim-
ulation contains a single germ, as seen above for a linear variogram, the method
is equivalent to a simulation based on Poisson hyperplanes (see Section 7.6.5 for
their definition and main properties). We will use the 2D terminology (with
Poisson lines) for simplicity, but the generalization to Rn, n. 2, is straightfor-
ward. Consider a disk with radius R enclosing the simulation domain and the
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lines of a Poisson line process that intersect this disk. Consider each of these lines
as a fault subdividing the plane into two half-planes. More precisely, associate
with line number i a random function Wi (x) equal to zero in the half-plane
containing the origin (the center of the disk) and to an independently selected
random variable ai with mean 0 and variance σ2 in the other half-plane.
Define Z(x) as the sum of all the Wi (x) (the sum always contains a finite
number of nonzero terms). Since the intersections of a Poisson line process
with a given line is a Poisson point process whose intensity λ characterizes
the Poisson line process, the values taken by Z(x) along any line are those of
a Poisson random walk, and hence Z(x) is an IRF�0 with linear variogram
γðhÞ ¼ 1

2
λσ2jhj.

The cross-sectional profile of the faults is a step function. If we replace it by a
profile proportional to w(s) (s is the abscissa along the perpendicular to the
fault, the origin being on the fault), we get a method that has been proposed by
Mandelbrot (1975a) for simulating an jhjα variogram in Rn, but now we must
also consider the Poisson lines that do not intersect the disk. Figure 7.12 shows
a 2D simulation of a linear variogram.

Spatial Distribution and Conclusion

The dilution method allows the simulation of specific types of random func-
tions. If the simulations are generated according to formula (7.23) with a
constant dose μ¼ 1 and a fixed indicator function w with support Sw, they have
a Poisson marginal distribution with parameter θ¼λ jSwj. The function w is
determined by the target covariance and λ is chosen so as to lead to the desired
value of θ. Lantuéjoul (2002, Section 14.1) provides an iterative algorithm to
condition such simulations. Stable random functions can also be simulated
using stable random numbers (Boulanger, 1990).

FIGURE 7.12 2D simulation with a linear variogram, constructed from Poisson lines.
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Otherwise a Gaussian simulation is often desirable. One would think it can be
obtained by using definition (7.24) with i.i.d. normal ai. This is a double mistake:

1. The dilution of a Poisson point process cannot provide an RF whose
marginal distribution is exactly Gaussian. Indeed, limiting the discussion
to SRFs, when the support of w is finite—which it always is in practice—
the expression (7.24) reduces to a sum of N i.i.d. random variables, where
N is distributed as a Poisson variable with parameter θ¼λ jSwj, with Sw

being the support of w. Denoting by χ(u) the characteristic function of
the random variable ai w(x�Xi), the characteristic function of Z(x) is
E[exp(i uZ)]¼ exp[�θ (1�χ(u))]. It cannot be of the form exp(�σ2

Z u
2/2),

which is the characteristic function of a Gaussian distribution
with variance σ2

Z (necessarily jχ(u)j# 1). The conclusion is the same with
stochastic dilution functions.

2. On the other hand, it can be shown that the distribution of ai that
provides the best approximation of the marginal distribution of Z(x) by a
Gaussian is not the Gaussian but the discrete distribution ai¼6σ with
equal probability. The larger the λ, the better the approximation.

In fact, when w(x) is an indicator function, the space is partitioned by the
functions w(x�Xi) into zones where the simulation is constant. To get simu-
lations that look continuous rather than piecewise constant at medium scale
and that are ergodic in the covariance, it is necessary to use a sufficiently large
value for λ. Gaussian simulations are obtained as the limit when λ-N and
(μ2þσ2)- 0 so that λ (μ2þσ2) remains constant (thus producing an infinite
number of infinitely small “discontinuities” within any bounded domain). This
is also true for simulations based on Poisson hyperplanes.

To summarize, the advantages of the dilution method are the following:

� The method can be directly used for simulating in 2D or 3D (or higher
dimension) without the need for turning bands (at least for SRFs).

� The simulation can be calculated exactly at any point and not only at grid
nodes.

� The method is very flexible and can be adapted to a regionalization of the
covariance parameters—for example, to variations of the ratio and/or
directions of an anisotropy, in the framework of a local or global model
(see end of Section 2.6.1).

� It can generate a large class of non-Gaussian random functions.

Its limitations are the following:

� The simulations can be Gaussian only asymptotically.

� Finding an appropriate dilution function may be difficult if an unusual
covariance model is considered.
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� Approximations are necessary when the support of the dilution function is
unbounded.

7.5.3 Continuous Spectral Method

Continuous Spectral Simulation of Stationary Random Functions

Since any SRF has a spectral representation (Sections 1.1.5 and 2.3.3), simu-
lating an SRF with a given covariance can be achieved by applying (2.16)—that
is, by simulating an orthogonal random spectral measure satisfying (2.17). This
can be obtained by simulating two uncorrelated real random measures satis-
fying (1.9) (e.g., in R, two uncorrelated processes with independent increments
over [0, þN[ ). But this sets up discretization problems, and the basic simula-
tion algorithm, first proposed by Khinchin (1934), is as follows:

LetU be a random vector of Rn with probability distribution F(du)/σ2, where
σ2¼ R

F(du) (random frequency), and let Φ be a random variable with uniform
distribution over [0, 2π [ (random phase), independent of U. Then the random
function in Rn defined as

ZðxÞ ¼ σ
ffiffiffi
2

p
cosð2π,U, x. þ ΦÞ ð7:30Þ

is stationary (wide sense) with mean 0 and covariance C(h) given by (2.14):

CðhÞ ¼
Z

e2πi, u, h.FðduÞ ¼
Z

cosð2π, u, h.Þ FðduÞ

Indeed, for fixed U¼ u, the covariance of Z(�) is

CðhÞjU¼u ¼ σ2 cosð2π, u, h.Þ

Randomizing U with the distribution F(du)/σ2 yields the covariance C(h).
Obviously, such simulations are not ergodic: The covariance of a particular
realization is a cosine function and the desired covariance is reproduced (up to
the usual fluctuations) only on the average over many realizations. Therefore,
in practice, one uses a sum, appropriately scaled, of many basic simulations.
This point will be examined at the end of this section.

In the isotropic case in Rn, n. 1, choosing the random frequency vector U
amounts to independently choosing its modulus and its orientation. It is then
apparent that the continuous spectral method is equivalent to turning bands
with a single random line and a 1D spectral simulation on this line. In practice,
to achieve ergodicity, it is preferable to sum basic simulations based on lines
with directions distributed as regularly as possible rather than randomly, which
amounts to use the turning bands method with a large number of lines, and 1D
spectral simulations on these lines.
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Table A.1 gives the spectral density (2.18) associated with the most common
covariance models in R, which will be used for 1D simulation of these models.
Table A.2 gives the spectral density of the covariances in R associated by
turning bands with the most common models in R3. Mantoglou and Wilson
(1982) present simulations combining turning bands and 1D spectral simula-
tions. Early presentations of the spectral method directly in Rn with applica-
tions to turbulent velocity fields and hydrology are due to Shinozuka (1971)
and to Mejı́a and Rodrı́guez-Iturbe (1974), respectively (with an extension to
space-time phenomena).

Extension to Intrinsic Random Functions

As we have seen in Section 2.3.3, the spectral representation of an IRF�0 is
very similar to that of an SRF. The main difference is that the spectral measure
F(du) 	 χ(du)/(4π2juj2) associated with the variogram is no longer necessarily
finite: The low frequencies can have infinite variance. To circumvent this
problem, Emery and Lantuéjoul (2008) propose an extension of the usual
algorithm (7.30) which limits the probability density of low-frequency con-
tributions and in counterpart increases their amplitude. The basic random
function is defined as

ZðxÞ ¼ θðUÞ cosð2π,U, x. þ ΦÞ ð7:31Þ
whereU is a random vector of Rn with a symmetric probability density function
f(u) (random frequency), Φ is a random variable with uniform distribution over
[0, 2π [ (random phase), independent of U, and θ(u) is an amplitude depending
on u. Since we are interested in the simulation of isotropic random functions,
θ(u) can be considered as an isotropic function. Moreover, since the kinship of
definition (7.30) with turning bands remains true for definition (7.31), we only
need to examine the one-dimensional case. Definition (7.31) then amounts to

ZðxÞ ¼ θðUÞ cosð2πUxþ ΦÞ
where U is a positive random variable with probability density function f(u), Φ
is a random variable with uniform distribution over [0, 2π [, independent of U,
and θ(u) is a function of u. Since U and Φ are independent, the increment
Z(xþ h) � Z(x) has zero mean and a semivariance equal to

1

2
E½Zðxþ hÞ � ZðxÞ�2 ¼ E½θ2ðUÞ sin2ðπUhÞ� ¼

Z N

0

θ2ðuÞ 1� cosð2πuhÞ
2

f ðuÞ du

This variance only depends on h; hence, Z(�) is an IRF�0. According to the
spectral representation (2.21) of a variogram, for Z(�) to have the variogram
γ(h) and the associated measure χ(du) it suffices to choose f and θ such that

1
2
θ2ðuÞ f ðuÞ du ¼ χðduÞ

2π2u2
ð7:32Þ
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In the sequel we will only consider power variograms or generalized covar-
iances, as well as log-polynomial generalized covariances, which remain of the
same type after application of the turning bands operator.

InR and for the power variogram b jhjα, b. 0, requirement (7.32) amounts to

1
2
θ2ðuÞ f ðuÞ ¼ � 2Γðαþ1

2
Þ

παþ1=2Γð� α
2
Þ

b

uαþ1
ðu. 0Þ

The choice of f and θ is not unique. Emery and Lantuéjoul consider the pair

f ðuÞ ¼ sinðπα=2Þ
π

1

ð1þ uÞ uα=2 , θðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b Γðαþ 1Þ

ð2πÞα
1þ u

uα=2þ1

s
ðu. 0Þ

This function f is the probability density function of a beta random variable
U of the second kind with parameters (1 �α/2, α/2). Equivalently, U is the ratio
of two independent standard gamma random variables with shape parameters
1�α/2 and α/2, respectively, the simulation of which can be achieved by
acceptance�rejection algorithms.

Extension to IRF�k

The above method can easily be extended to IRF�k with a power gener-
alized covariance like (�1)kþ1 jhjα, 2k,α, 2kþ 2, because this is the gen-
eralized covariance of the kth integral of an IRF�0 with a variogram in
jhjα�2k (whose exponent is between 0 and 2) and the kth integral of a sine or
cosine function remains of that type. The above method can be applied with
the density f associated to α� 2k and the function θ associated to α.

Other choices are possible for f and θ. For instance, f is the probability
density function of a beta random variable U of the second kind with para-
meters (1/2, 1/2) and therefore does not depend on α:

f ðuÞ ¼ 1

πð1þ uÞ ffiffiffi
u

p , θðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 4πb Γðαþ1

2
Þ

Γð� α
2
Þ

1þ u

ðπuÞαþ1=2

s
ðu. 0Þ

By successive integrations, IRF�k’s with a power generalized covariance in
(�1)kþ1 jhjα, 2k,α, 2kþ 2 are obtained with

f ðuÞ ¼ 1

πð1þuÞ ffiffiffi
u

p , θðuÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b

π1=2�α

22k�2

Γðαþ1Þ
Γðα�2kþ1Þ

Γðαþ1
2
�kÞ

Γðk� α
2
Þ

1þu

uαþ1=2

s
ðu.0Þ

This choice is well suited to the simulation of IRF�k’s with a spline generalized
covariance. Indeed, as seen in Section 4.5.6, the generalized covariance
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(�1)kþ1 jhj2k log(jhj) can be obtained as a limit of power generalized
covariances

ð�1Þkþ1jhj2k logðjhjÞ ¼ lim
α-0

ð�1Þkþ1 jhj2kþα � jhj2k
α

" #

Since a generalized covariance of order k is defined up to an even polynomial of
order 2k, an IRF�k with that covariance is obtained with

f ðuÞ ¼ 1

πð1þ uÞ ffiffiffi
u

p , θðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b Γð2kþ 1Þ

ð2πÞ2k�1

1þ u

u2kþ1=2

s
ðu. 0Þ

Spatial Distribution and Conclusion

The random function defined by (7.30) or (7.31) is not second-order ergodic: its
realizations are sinusoidal functions in R1, cylinders with a sinusoidal base in
R2, and so on (Figures 7.2a and 7.3a); the covariances of these realizations are
cosine functions so that none of them has the desired covariance C(h) or gen-
eralized covariance K(h) (except of course if C(h) itself is a cosine covariance).
Simulations of this random function will only have the correct (generalized)
covariance on the average. Therefore, in practice, one uses the sum, appropri-
ately scaled, of a large number of independent basic simulations to approximate
joint normality and ergodicity. Lantuéjoul (1994) shows that in the case of an
exponential covariance, several thousand basic simulations must be added to
correctly reproduce the bivariate Gaussian distributions (a relative error crite-
rion, which is very stringent, was used).

The advantages of this method are the following:

� A simulation can be produced for any covariance function (provided that
its Fourier transform can be computed).

� The exact value of the simulation can be computed at any location.

Its limitations are the following:

� Ergodicity is very slow to reach.

� The method may be computationally tedious if many random frequencies
are superimposed in order to approximate joint normality and ergodicity
(the cosine terms are all different).

In practice, the method is suitable when the spectrum is not widely spread,
namely for differentiable SRFs, whose covariance have a parabolic behavior at
the origin. In the discrete case with spacing Δx, it may be more convenient to
consider the corresponding infinite series Zn¼Z(nΔx), n2Z, with discrete

c07 30 January 2012; 17:37:55

530 CONDITIONAL SIMULATIONS



covariance Cm¼C(mΔx), m2Z, and its spectral representation (which is
periodic with period 1/Δx). In 1D and for a continuous spectrum, one has, for
example, the correspondence

fΔxðuÞ ¼
XþN

m¼�N

Cm expð�2πi muΔxÞ,

Cm ¼ Δx

Z þ1=ð2ΔxÞ

�1=ð2ΔxÞ
expð2πi muΔxÞ fΔxðuÞ du

where i denotes the unit pure imaginary number. But, in practice, the simulated
sequence is finite, and discrete Fourier transforms provide a more efficient
algorithm that can be used for most covariance models and produces Gaussian
simulations.

7.5.4 Discrete Spectral Method

The discrete spectral method is designed to simulate SRFs on a finite regular
grid in n-dimensional space. It is often presented by considering the specific
form of the covariance matrix of the vector of the values taken by the SRF
at the grid nodes (Wood and Chan, 1994; Dietrich and Newsam, 1993, 1997).
In 1D this covariance matrix is a Toeplitz matrix (it is constant along any line
parallel to the upper-left to lower-right diagonal), and even a circulant matrix
in the periodic case (each line is identical to the preceding one up to a unit
circular shift). In the latter situation simplifications occur so that the method
amounts to simulation algorithms based on the discrete Fourier transform. The
n-D case, n. 1, leads to similar simplifications. To benefit from these simpli-
fications, the covariance to be simulated is embedded in a periodic one, hence
the denomination of circulant embedding given to the method. We will adopt
another viewpoint, developed independently, which directly considers the dis-
crete spectrum of the discrete version of the SRF. The algorithm was presented
by Pardo-Iguzquiza and Chica-Olmo (1993)—earlier approximate algorithms
existed—whereas Chilès and Delfiner (1996) have shown how to cope with the
limitations of the method.

Discrete Spectral Representation of a Stationary Random Function in 1D

Let us first examine the 1D case. If the simulation is computed only at equally
spaced points x¼ x0þ nΔx, n¼ 0, 1, . . . ,N�1, over an interval of finite length
L¼NΔx, it is convenient to apply the formalism of discrete Fourier transforms
(DFT). Since this formalism pertains to periodic series, the series Zn¼Z(nΔx)
is considered as a stationary process on Z with period N, for which it suffices to
consider the values over a single period {0, 1, . . . ,N� 1}.

The smallest observable frequency is Δu¼ 1/(NΔx), and all other frequen-
cies are a multiple of Δu, with a maximum of 1/(2Δx)¼ (N/2) Δu. There is a
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dual correspondence between the series Zn¼Z(nΔx) and its discrete Fourier
transform Yk¼Y(kΔu),

Yk ¼
XN�1

n¼0

Zn e
�2πi kn=N ð7:33Þ

Zn ¼ 1

N

XN�1

k¼0

Yk e
2πi kn=N ð7:34Þ

and between the covariance series Cm¼C(mΔx) and its discrete Fourier
transform Fk¼F(kΔu),

Fk ¼
XN�1

m¼0

Cm e�2πi km=N ð7:35Þ

Cm ¼ 1

N

XN�1

k¼0

Fk e
2πi km=N ð7:36Þ

In this section i denotes the unit pure imaginary number. Assuming E(Zn)¼ 0,
the Yk satisfy EðYkYk0 Þ ¼ 0 if k 6¼ k0, and EjYkj2¼NFk.

These two relationships can be obtained as a discrete approximation to the
Fourier relationships (2.18) of the continuous case. But they also constitute an
exact result that can be proved without any reference to the continuous case.

Since the covariance is real and symmetric, the Fk are also real and symmetric.
Note that the periodicity and the symmetry about 0 imply a symmetry aboutN/2,

CN�m ¼ C�m ¼ Cm

FN�k ¼ F�k ¼ Fk

A key property of the Fk is to be nonnegative, which is equivalent to the
assumption that the Cm constitute a valid discrete covariance model.

Since the Zn are real random variables, the Yk are complex random variables
that satisfy the Hermitian symmetry YN�k ¼ Yk. This means that their real and
imaginary parts Uk and Vk satisfy UN�k¼Uk and VN�k¼�Vk. In particular,
V0¼ 0, and VN/2¼ 0 if N is even, which will usually be assumed in the sequel.
The orthogonality property is equivalent to the following two properties:

1. Uk andVk are uncorrelated and have the same varianceσ2
k ¼ NFk=2, except

for k¼ 0 and for k¼N/2 where Uk has variance σ2
k ¼ NFk and Vk¼ 0.

2. The Uk (k¼ 0, . . . ,N/2) and Vk (k¼ 1, . . . ,N/2�1) are mutually
uncorrelated.

Hence there are in fact N independent real variables (U0, . . . ,UN/2, V1, . . . ,
VN/2�1 when N is even) corresponding to N data points. Thus, by simulating
independent zero-mean random variables Uk and Vk with the appropriate
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variances σ2
k and combining them through (7.34), it is possible to generate a

process Z(x) at discrete points x¼ n Δx so that its covariance at lags mΔx
exactly reproduces a series of covariance terms Cm. Formula (7.34) should not
be generalized to calculate Z(x) at points other than the nodes.

Discrete Spectral Simulation in 1D

In practice, the calculation flow chart is as follows:

Cm - Fk -Yk -Zn

1. Compute the covariance terms Cm¼C(mΔx), m¼ 0, . . . ,N/2, and com-
plete by symmetry.

2. Compute the Fourier transform of the Cm’s using (7.35) to obtain the
Fourier coefficients Fk and the corresponding variances σ2

k.

3. Simulate U0, Uk and Vk for 0, k,N/2, and UN/2 with the variances
σ2
k; then complete by symmetry for the Uk’s and by antisymmetry for

the Vk’s.

4. Invert the sequence Yk¼Ukþ i Vk using the inverse Fourier transform
(7.34) to get the Zn’s.

5. Discard the last (or the first) N/2� 1 points Zn. There are variations on
this strategy, as explained below.

The reason for chopping off part of the simulated sequence lies in the cir-
cular character of the DFT. The simulated covariance is periodic with period
L¼NΔx, and since the interval considered for m is [0, N� 1] rather than
[�N/2, N/2� 1], the graph looks like the one shown in Figure 7.13a. Here we
have assumed that the covariance has a finite range a (C(h)¼ 0 for jhj$ a) and
that L$ 2a. One sees that correlations vanish and then pick up again for lags
h.L�a. To avoid this spurious effect due to the DFT formalism, it is neces-
sary to limit the simulated sequence Zn (also periodic with period L) to a length
no greater than L� a.

The other case L, 2a is depicted in Figure 7.13b. A section of length L is
cut out from the covariance, symmetrically about the origin, and repeated
periodically. Within the interval [0, L] the periodic covariance coincides with
the original in the interval [0, L/2], and therefore one must restrict the simulated
sequence to a length of L/2, or N/2þ 1 points.

To summarize, if we want to generate a simulation of Zn over an effective
interval length l (after discard), we must first consider a simulation over an
interval of length L¼min(lþ a, 2l).

Limitations on Covariance Models and Solutions

The method was sometimes used with a variant of steps 1 and 2 where
the values Fk are obtained by discretizing the spectral measure F(du) of
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the continuous covariance function C(h) [e.g., Shinozuka and Jan (1972), whose
method is in fact intermediate between the continuous and the discrete cases as
they are presented here]. Such a technique, however, differs in a subtle but
important manner from the correct procedure in that the discrete spectrum Fk is
not simply the value of F(du) at frequency kΔu. Rather, it represents an aliased
version of the spectral density in which the contributions of frequencies
(kþ pN) Δu for all integers p2Z are folded in the interval [0, (N�1) Δu] and
added. Through this mechanism a correct representation of N covariance terms
can be achieved with just N spectral terms, whereas a far greater number of
terms may be required for an adequate representation of F(du). It is only for
covariances with high regularity at the origin, and thus short spectral spread,
that the two approaches may coincide.

There is another important difference with the continuous case: The Fourier
transform of C(h) automatically produces a nonnegative spectral measure
F(du); in the discrete case, this is not always true because the periodic repetition
of Cm does not necessarily lead to a valid covariance model. There are,

�L/2 0 L/2

Cm

Cm

hNΔx � L

�L/2 0 L/2 hNΔx � L

(a)

(b)

FIGURE 7.13 Periodically repeated covariance: (a) L$ 2a; (b) L, 2a. [From Chilès and Delfiner

(1997), with kind permission from Kluwer Academic Publishers.]
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however, two cases where the Fk are necessarily nonnegative because the
periodic repetition of C(h) with period L is itself a valid covariance:

1. If L$ 2a (whatever the shape of C(h)).

2. If C(h) is a convex function for h2 [0, L/2].

We have already seen that there is no problem in the first case, shown in
Figure 7.13a. In the second case (Figure 7.14a), let us consider the symmetric
function which is equal to C(h)�C(L/2) when jhj#L/2 and to zero beyond this
interval. This function decreases to zero and is convex for h2 [0,N[. It is thus
a covariance function according to Pólya’s theorem (Section 2.3.3), and it has a
range equal to L/2. We are thus back to the first case. Since C(h) differs from it
only by the addition of the constant C(L/2) when jhj#L/2, the conclusion also
holds for C(h) and the truncated covariance can be extended to the whole line
by periodic repetition.

CL

CL

(a)

Singularity

(b)

�L/2 0 L/2 hNΔx � L

�L/2 0 L/2 hNΔx � L

FIGURE 7.14 Periodic repetition of a truncated covariance: (a) periodic repetition of a truncated

convex covariance gives a valid covariance; (b) periodic repetition of a truncated Gaussian

covariance does not produce a valid covariance. [From Chilès and Delfiner (1996).]
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In other cases, such as covariances with a parabolic behavior at the origin or
a hole effect, negative Fk’s may be found, especially in the absence of a nugget
effect (otherwise the nugget variance is included in all Fk). The problem can be
best illustrated by a counterexample in the continuous case. Consider a
Gaussian covariance C(h)¼ exp(�h2/a02), which reaches zero only asymptoti-
cally when h tends to infinity. Consider now the restriction of C(h) over the
interval [�L/2, L/2], and extend it to the whole line by periodic repetition,
producing CL(h) as shown in Figure 7.14b. This “covariance” is twice differ-
entiable at the origin and hence should be twice differentiable everywhere; in
fact it is not differentiable for jhj ¼L/2 and thus cannot be a valid model for a
covariance.

The problem is not so severe in the discrete case, for the number of terms Fk

is finite. But negative values for the spectrum may be found. There are then
three solutions:

1. Extend the length L of the simulated domain. Indeed, if the discrete
covariance C(mΔx), m2Z, has a finite integral range and a strictly
positive spectral density, then the terms Fk are nonnegative if L is
sufficiently large (Wood and Chan, 1994). We have seen that this is the
case if the covariance has a finite range a and L$ 2a. If the covariance
reaches the value zero only asymptotically, increasing L will either solve
the problem or limit its extent to some low negative values. The other two
solutions can then be used.

2. Simply set the negative terms to zero. This will of course produce a bias,
but this bias will be small if the above solution is also used, and it can be
evaluated by inverting the corrected spectrum using formula (7.36).

3. Simulate the “time-aliased” covariance ~CðhÞ defined as the sum of shifted
versions of the original covariance [e.g., on time aliasing, see Oppenheim
and Shafer (1989)]

~CðhÞ ¼
XþN

p¼�N

Cðhþ pLÞ

~CðhÞ and its discretized version are periodic with period L¼NΔx. Using
formula (7.35), the discrete spectrum ~Fk of ~Cm is found to be

~Fk ¼
XþN

p¼�N

XN�1

m¼0

CmþpN e�2πi km=N ¼
XþN

m¼�N

Cm e�2πi km=N

~Fk coincides with the spectrum of the complete covariance Cm (calculated
at the frequencies k Δu) and is therefore nonnegative. Thus ~Cm is always
a valid covariance. When L$ 2a, ~Cm and Cm coincide over the interval
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[�L/2, L/2], which explains why there is no problem. Otherwise, ~CðhÞ and
C(h) are different, but it is easy to see if the difference is acceptable. This
correction ought to be used only when C(h) is low for h.L/2. If this is
not the case, it is necessary to first increase L. Experimentation shows
that aliasing performs very well for differentiable covariances, whereas
setting negative spectrum terms to zero works better for covariances with
a linear behavior at the origin.

Extension to Intrinsic Random Functions

By design, the discrete spectral method is concerned with SRFs with periodic
covariances. We will show the following extension: In R any IRF�0 whose
variogram γ(h) is concave over [0, L/2] possesses a locally stationary repre-
sentation with a periodic covariance of period L, and can therefore be simu-
lated by the discrete spectral method at grid nodes discretizing the segment of
length L/2.

Indeed, given a variogram γ(h) that is concave over [0, L/2], consider the
function C(h) defined on [�L/2, L/2] by C(h)¼ γ(L/2)� γ(h) and extended to
the whole line by periodic repetition with period L. C(h) is convex in the
interval [0, L/2], decreases from γ(L/2). 0 to zero in this interval, and therefore
is a valid periodic covariance. An SRF with covariance C(h) is a locally sta-
tionary representation of the IRF�0 on [0, L/2].

In practice the discrete spectral simulation will be made over a segment of
length L, but only the first half is used in view of the symmetry introduced by
periodic repetition. Also note that the definition of C(h) on [�L/2, L/2] can be
replaced by C(h)¼A� γ(h), provided that A$A0 where A0 is the smallest
value ensuring that C(h) remains a covariance (A0 is usually smaller than
γ(L/2)). Since the choice of A simply affects the value F0 of the discrete spec-
trum, it suffices in the application of the discrete spectral method to replace
C(h) by �γ(h) and set to zero the negative value that will be found for F0.

In view of this, it is always possible to simulate the variogram γ(h)¼ b jhjα by
the discrete spectral method:

� If α# 1, b jhjα is a concave variogram, and the discrete spectral method
can be applied directly.

� If α. 1, the increments of the IRF�0 have a convex covariance, and the
discrete spectral method can be used to simulate these increments.

At first glance, one might wonder why we couldn’t just use the fact that γ(h) has
the locally stationary representation (4.33) and simulate that by the spectral
method. The reason is that the periodic repetition of this local covariance
beyond the interval [�L/2, L/2] yields a function that is not positive definite
when α. 1 (the Fourier series has negative terms). There remains to show that
the increments Rn¼Zn�Zn�1, n¼ 1, 2, . . . , have a convex covariance. Z(x)
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being an IRF�0, these increments define a stationary random sequence, whose
covariance can be expressed as a function of the variogram γ(h) of Z(x) by

CovðRn,RnþmÞ ¼ γ ðm� 1ÞΔxð Þ � 2γðmΔxÞ þ γ ðmþ 1ÞΔxð Þ

When γ(h)¼ b jhjα, this discrete covariance is convex for m2N if and only
if α. 1, the case we are considering. The proof is purely technical and will
not be reproduced. It can be obtained easily if we start from the following result:

If a1, . . . , ap are positive numbers, 1
p

Pp
i¼1a

α
i

h i1=α
is an increasing function of α.

We can therefore construct a simulation of the increments Rn by the discrete
spectral method and deduce a simulation of the Zn by taking Z0¼ 0 and
Zn¼Zn�1þRn, n¼ 1, 2, . . . Figure 7.15 shows 1D simulations obtained for
α¼ 1/3, 2/3, 1, 4/3, 5/3.
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α = 1/3

α = 2/3

α = 1

α = 4/3

α = 5/3

FIGURE 7.15 1D simulations of fractional Brownian motions with variograms of type jhjα, for
α¼ 1/3, 2/3, 1, 4/3, 5/3, by the discrete spectral method. The simulations are built at 1025 discrete

points. All variograms are equal to 1 for h¼ 512. The fractal dimension of these simulations is

D¼ 2�α/2.
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Extension to IRF�k

This method can be partly extended to IRF�k with a power generalized
covariance, k. 0, by iterating the procedure. Indeed the discrete covariance of
increments of order 2 of a GC of the form b jhjα is convex if 3#α# 4. The
discrete covariance of increments of order 3 of a GC of the form �b jhjα is
convex if 5#α# 5.672.

The approach based on increments can also be used for an IRF�1 with
the spline generalized covariance K(h)¼ b h2 log jhj. Indeed in that case the
increments Rn form an intrinsic random sequence whose variogram is

1
2
VarðRnþm � RmÞ ¼

b
�ðmþ 1Þ2 logðmþ 1Þ � 2m2 logmþ ðm� 1Þ2 logðm� 1Þ�ðΔxÞ2 ðm$ 1Þ

This is a concave function of m$ 1. The same procedure can be used for
simulating an IRF�2 with the generalized covariance K(h)¼�b h4 log jhj
by starting from second-order increments (their variogram is concave).
Figure 7.16 shows simulations obtained in this way. Conversely, the variogram
of the third-order increments of an IRF�3 with generalized covariance K(h)¼
b h6 log jhj is not concave and cannot be simulated in this way.

The locally stationary representations proposed by Stein (2001) for
0,α, 2 kþ ν0 for some some ν0� 1.6915 have the nice property that their
covariance can be extended to a covariance of R by symmetrization and peri-
odic repetition. They can therefore be simulated by the discrete spectral
method. The case 2 kþ ν0,α, 2 kþ 2 can be simulated by working in the
framework of an IRF�(kþ 1). Stein proposes an alternative when remaining
at the order k. That solution, however, includes a random drift of degree
kþ 1, so that the simulations are not ergodic and honor the covariance on
average only.

Extension to 2D and 3D

The spectral method can also be extended to R2 and R3 (or higher dimensions):
x, Δx, N and their associated indexes simply have to be replaced by vectors
with the corresponding dimension, the product kn in e2πi kn/N by the scalar
product,k, n., and the simple summations by multiple summations. The only
problem is to correctly define the independent variables Uk and Vk due to the
relations UN�k¼Uk and VN�k¼�Vk and the variances σ2

k. Borgman et al.
(1984) present the correct algorithm in 2D (but unfortunately apply it by
replacing the discrete spectrum by a discretization of the spectral density
function). Pardo-Iguzquiza and Chica-Olmo (1993) detail the algorithm in 2D
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and in 3D. For example, in 2D, for N¼ (N1, N2), N1 and N2 even, and k¼
(k1, k2), the independent variables are

� U0 0,U0 N2=2,UN1=2 0, and UN1=2 N2=2, with σ2
k1k2

¼ N1N2Fk1k2

� Uk1k2 and Vk1k2 for fk1 ¼ 0; k2 ¼ 1, : : : ,N2=2� 1g, fk1 ¼ 1, : : : ,N1=2� 1;
k2 ¼ 0, : : : ,N2 � 1g, fk1 ¼ N1=2; k2 ¼ 1, : : : ,N2=2� 1g, with σ2

k1k2
¼

N1N2Fk1k2=2:

Dietrich and Newsam (1993, 1997) and Wood and Chan (1994) present the
n-D case.

The method allows the simulation of several covariance components in a
single step. Each component may have its own geometric anisotropy, or its own
zonal anisotropy along or perpendicular to a coordinate axis. One of these
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WL 1

WL 2

Spline 1

Spline 2

FIGURE 7.16 1D simulations of an IRF�k with a generalized polynomial or spline covariance

by the discrete spectral method: direct simulation of a locally stationary representation (covariance

of type (�1)kþ1 jhj2kþ1, labeled WL k) or simulation of finite differences and discrete integration

(generalized covariance of type (�1)kþ1 jhj2k log jhj, labeled Spline k).
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components can be a nugget effect. Like in 1D the Fk are all nonnegative if the
size of the simulated domain is such that the covariance reaches zero in all
directions before symmetrization and periodic repetition. When this is not the
case, the limitations due to negative terms for the spectrum are more serious
than in the 1D case: Even convex covariances may lead to negative terms in the
discrete spectrum.

Gneiting et al. (2006) explore an approach initiated by Stein (2002) for
extending the possibility of an exact simulation of some covariance models C(h)
when standard embedding does not yield a valid covariance. Suppose that we
want to simulate a 2D isotropic covariance over a square domain of size l� l in
a situation where some terms of the spectrum are negative. The principle of the
method is to replace the covariance C(h) by another isotropic covariance C1(h)
equal to C(h) when jhj, l and to 0 when jhj exceeds some range a1$ l. The
simulation is then performed on a square of size 2a1� 2a1, from which a square
of size l� l is extracted. The method is all the more efficient as a1 is small. Such
a covariance C1 does not always exist. Gneiting et al. (2006) give some general
sufficient conditions and apply them to the Matérn and stable covariance
models. Stein (2002) considers the 2D and 3D simulation of a power variogram.

When that approach is not possible, the solutions presented for the 1D case
can provide quite satisfactory approximations, even for unbounded vario-
grams. Figure 7.17 shows, for example, that the behavior of an isotropic
Gaussian covariance at the origin is perfectly reproduced if L/2 is equal to (or
greater than) the distance where the covariance is 5% of the variance and the
aliased covariance is used.
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FIGURE 7.17 Approximation of a 2D isotropic Gaussian covariance Cm as results from the

truncated spectrum Fk of the original covariance and from the spectrum ~Fk of the aliased

covariance: (a) in absolute scale; (b) in terms of relative error on the variogram. The grid is N�N

with N¼ 256 and is used up to N/2. Note that the aliased covariance associated with ~Fk perfectly

reproduces the covariance Cm at the origin, which is not the case for the covariance deduced

from the truncated spectrum Fk. The graphs were computed for the main directions of the grid

(the approximation is better in the other directions).
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Conditional Simulation

Conditioning can be achieved as usual by means of a separate kriging. Dietrich
and Newsam (1996) present a conditioning implementation specific to the
discrete spectral method, where the data points need not be located at grid
nodes but must remain within the simulated domain. Yao (1998) has a different
approach: In fact, conditioning on the value at a grid node amounts to intro-
duce a linear constraint on the random variables {Uk : k¼ 0, . . . ,N/2} and
{Vk : k¼ 1, . . . ,N/2� 1}. Each pair {Uk, Vk} can be equivalently represented
by a random amplitude and a random phase. Because the covariance depends
only on the amplitudes, Yao proposes to condition a nonconditional simula-
tion by iteratively modifying the phases of the pairs {Uk, Vk}.

FFT Algorithms

The direct and inverse Fourier transforms can be calculated with the fast
Fourier transform algorithm (FFT). It is advantageous to select N as a power
of 2. The discrete Fourier transform can then be computed in O(N log N)
operations. In 2D and 3D, very large grids often have to be simulated. From a
practical point of view, it may become impossible to store the whole complex
array in core memory, as required by the standard FFT algorithm. Special
algorithms achieve parallelism and allow versatile memory management.
Algorithms have been developed that do not require N to be a power of 2, but a
product of small prime numbers. This may be very useful; for example, if we
need a 3D simulation with N1¼N2¼N3¼ 72, the standard algorithm requires
that we extend the size to N1¼N2¼N3¼ 128, thus multiplying the global size
of the array by a factor of about 6, which can be avoided by these algorithms.
The interested reader is referred to the review of Press et al. (2007, Chapter 12).

Spatial Distribution and Conclusion

Themethod presented here can also be regarded as a moving average method [see
Ripley (1987)]. In its standard application, the Uk and the Vk are selected from
Gaussian distributions so that the method, by definition, produces a simulation
whose multivariate distribution is Gaussian. Other choices are possible. Selecting
Uk and Vk independently from a Gaussian distribution with variance σ2

k ¼ Fk=2
amounts to selecting a random amplitude with mean Fk and a random phase with
a uniform distribution over [0, 2π [. If we fix the amplitude to

ffiffiffiffiffi
Fk

p
and only

randomize the phase, we produce simulations whose sample covariance coincides
with the covariance Cm (for each realization and not only on the average over a
large number of realizations). But this is true for the periodic covariance of the
infinite sequenceZn andnot for the sample covariance of the finite sequencewhich
is retained.Nevertheless, this makes it possible to build simulations whose sample
variograms display much lower fluctuations around the simulated model than
Gaussian simulations (Chilès and Delfiner, 1997).
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(a) (b)

(c) (d)

(e)

(g)

(f)

FIGURE 7.18 Examples of simulations of 2D Gaussian SRFs by the discrete spectral method:

(a) spherical covariance; (b) exponential covariance; (c) stable covariance with shape parameter

α¼ 0.5; (d) hyperbolic covariance; (e) Gaussian covariance; (f) cardinal-sine covariance;

(g) covariance sin π
2
expð�jhj=aÞ� �

. Practical range: 1/8th the grid size. Note that (c) and (d) are

almost identical.
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In conclusion, the discrete spectral method is a very powerful method of
simulation of Gaussian random fields on a regular grid. It offers the following
advantages:

� The multivariate distribution of the simulations is exactly Gaussian (in its
standard use).

� The method is completely general and allows an exact simulation of any
covariance with a finite range, and either an exact simulation or an
approximate one to a desired accuracy if the range is infinite.

� It can be extended to variograms and generalized covariances.

� The method can be directly used for simulating in 2D or 3D (or higher
dimension), without the need for turning bands.

� It is possible to simulate nested structures, as well as geometric aniso-
tropies, zonal anisotropies parallel or orthogonal to the axes, and a nugget
effect, in a single step.

� The FFT algorithms are computationally very efficient; variants saving
memory storage make it possible to process large 2D or 3D grids without
losing much efficiency.

Its limitations are the following:

� Some covariance models cannot be simulated exactly: those for which the
periodic repetition from the simulated domain to the whole space does not
lead to a valid covariance.

� It is not possible to extend a previous simulation to a larger domain: the
whole simulation must be recomputed and will not be consistent with
the previous one.

� The simulation is limited to grid nodes.

These limitations are usually mild compared to the advantages. Figure 7.18
displays 2D examples of simulations of Gaussian SRFs built with the discrete
spectral method.

Simulation with Wavelets

For completeness we will briefly mention simulation methods based on wavelets [e.g., Flandrin
(1992) and Zeldin and Spanos (1996)]. The motivation for wavelets is to introduce spatial
localization in the classic Fourier analysis. Indeed the sine waves used for Fourier analysis are
perfectly localized in frequency but not at all in space, so the Fourier coefficients give no clue on
the position of local features such as the contours in an image. By contrast, a wavelet decom-
position uses a basis of carefully chosen functions that typically vanish outside a compact
support and are obtained by scaling and shifting a basic function ψ(x), themother wavelet. The
simplest example is the Haar function ψ(x) equal to þ1 for 0# x, 1/2, to �1 for 1/2#x, 1,
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and to 0 outside the interval [0, 1[. By dilation and translation, it yields the family of step
functions

ψjnðxÞ ¼ 2�j=2 ψð2�jx� nÞ, j, n 2 Z

which is a discrete and orthonormal basis of L2(R) (square integrable functions). The support
of ψjn(x) is the interval of length 2 j starting at n 2 j. Thus j is a scale index, and n is a translation
index (2 j is analogous to a wavelength and 2�j to a frequency). All wavelets sum to zero. The
Haar function is well-localized in space but not in frequency, since its Fourier transform
decays only like 1/juj. Wavelets more regular than the Haar function are often used, notably
the compactly supported Daubechies wavelets (Daubechies, 1992; Cohen, 1992; Meyer, 1993).
They have higher moments that vanish as well.

Associated with the mother wavelet is the “father wavelet,” or “scaling function,” φ and
the family

φjnðxÞ ¼ 2�j=2 φð2�jx� nÞ, j, n 2 Z

Here φ is used to calculate the approximation of Z(x) at a given resolution 2J, while ψ is used
to represent the details, namely the difference between two successive approximations.
Equivalent terms are trend and fluctuations [see Meyer (1993, p. 40)]. A scaling function sums
to one. For the Haar function, for example, we have φ(x)¼ 10#x,1. Specifically, for any given
resolution 2J, the following decomposition holds:

ZðxÞ ¼ 2�J=2
XþN

n¼�N

aJn φJnðxÞ þ
XJ
j¼�N

2�j=2
XþN

n¼�N

djn ψjnðxÞ

The coefficients aJn and djn are obtained as scalar products of Z(x) with φJn(x) and ψjn(x)
but can also be computed recursively (recurrence in J or j). Recurrence relations also make
it possible to exactly reconstruct Z(x) if an initial (coarser) approximation aJn and the
different sequences of details djn at finer scales j# J are given. This is the basis of simu-
lations with wavelets. When Z(x) is an SRF, the sequences aj� and dj� are stationary random
sequences. The wavelet functions form an orthonormal basis, but contrary to spectral
representations, the random sequences dj. are not uncorrelated. To simulate an SRF with a
given covariance function, it is therefore necessary to derive the direct and cross-covariances
of the various random sequences and to simulate them accordingly. The problem seems to
be more complex than it was at the beginning. Fortunately, many covariance terms are
negligible, and iterative algorithms can be developed if the mother wavelet is chosen ade-
quately. Zeldin and Spanos (1996) present some 1D and 2D examples where the covariance
function of the wavelet representation at a given scale approximates the desired covariance
quite closely.

When ψ (x) is the Haar function, the wavelet method is equivalent to the simulation
via local average subdivision (Fenton and Vanmarcke, 1990): The average value over the
whole domain (a segment in 1D) is simulated; then the region is subdivided in two sub-
domains, whose average values are simulated conditionally on the first average value, and
so on.

The wavelet method has been designed from the beginning to simulate fractional Brownian
random functions. The success of the algorithm, namely the possibility to efficiently truncate
the infinite sum to a limited number of terms, depends critically on the adequate choice of the
wavelet family; for example, see Flandrin (1992), Elliott and Majda (1994), and Sellan (1995).
This method achieves rigorously what is only approximated by the random displacement
method. It includes as a particular case the simulation via local average subdivision, applied to
the fractional Brownian random function by Fenton and Vanmarcke (1990).
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Finally, let us mention the Fourier-wavelet method (Elliot and Majda, 1994; Elliot et al.,
1997). Instead of using expansions in the physical space, it deals with expansions in the
spectral domain, using the Fourier transforms of the {φJn(�), n2Z} and {ψjn(�), j2Z, j# J,
n2Z} as complete orthonormal basis of L2(R). Kurbanmuradov and Sabelfeld (2006)
compare the two approaches for multivariate random fields.

To summarize, wavelet algorithms are fairly complex but offer the possibility of zooming
over many decades of scaling behavior in a simulation done at a low resolution (10 to 15
decades are reported for fractional Brownian random functions).

7.6 SIMULATION OF A CATEGORICAL VARIABLE

The simplest categorical variable is one that only assumes the values 0 or
1—that is, the indicator of a set, which we consider here as random. But the
covariance function is an extremely poor tool for describing the geometric
properties of these very special random functions. For example, the covariance
does not give any information on the connectivity of the medium. In fact the
covariance is the same for the random set considered and its complement
(e.g., grains and pores), while their connectivities are generally very different.
Richer tools have been developed in mathematical morphology, but these can be
determined only if we have a continuous image of a realization of the random
set. Since this book deals essentially with phenomena that are not measured
continuously, nor even necessarily on a regular grid, we will not dwell long on
the theory of random sets and its applications in mathematical morphology and
stochastic geometry. We refer the reader to the literature on this subject—in
particular, Kendall andMoran (1963), Matheron (1967, 1975a), Kendall (1974),
Serra (1982), Stoyan et al. (1987), and Molchanov (2005). This presentation is
limited to the main random-set models that can be of use for geostatistical
simulations and to simple generalizations allowing the represention ofm-valued
indicators (m. 2; e.g., facies number) or the construction of mosaic RFs: ran-
dom tessellations, Boolean models, and marked point processes.

Conversely, some indicator simulation methods derive from standard
geostatistical methods, since they involve an underlying continuous variable.
This continuous variable can have a physical meaning, for example when we
study the indicator associated with a certain cutoff grade or contamination
threshold. It can also be a conventional feature of the model; for example,
nested indicators (e.g., lithological facies) can be obtained by slicing a Gaussian
variable at successive levels. These methods will also be presented: truncated
Gaussian method, and substitution random functions.

In this section we first consider the sequential method, as adapted to indica-
tors, which allows a direct construction of conditional simulations, at the cost of
someapproximations.Next,weoutline the iterative algorithmsbasedonMarkov
chains, which are often used for conditioning indicator simulations or generating
constrained simulations. Finally, we review themainmodels, except object-based
methods and constrained simulations which will be studied in the next sections.
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7.6.1 Sequential Indicator Simulation

Sequential indicator simulation (SIS) is the application of the general sequential
simulation method to the case of an indicator function, or more generally of
several nested indicators. The method has been developed by Alabert (1987)
and Journel (1989). Let us consider for the moment the case of a single indi-
cator, the generalization to the case of several nested indicators being
straightforward. We recall that the principle of the sequential method is to
sequentially draw the value at each new simulated point from the conditional
distribution given the data and the values simulated previously. In the case of
an indicator, the values are 0 or 1, and the conditional distribution is therefore
defined by its conditional expectation, but this in general is not known. Alabert
and Journel propose to replace it by the simple kriging estimate of the indi-
cator. This approximation preserves the mean and the covariance structure of
the RF when the data are randomized (provided, however, that kriging pro-
duces estimates that lie in the interval [0, 1]).

Basic Algorithm

More formally we denote by I(x) the indicator, which is assumed to be an SRF
with mean p, variance σ2¼ p (1� p), and covariance C(h). Assume that I(x) is
known at the sample points {xα : α¼ 1, . . . ,M}. Let xMþ1 be the first point
where we set out to simulate I(x). The simple kriging estimator of I(xMþ1) from
I(x1), . . . , I(xM) is of the form

I� ¼ pþ
XM
α¼1

λα IðxαÞ � pð Þ ð7:37Þ

where the λα are the solutions of the system

XM
β¼1

λβCðxβ � xαÞ ¼ CðxMþ1 � xαÞ, α ¼ 1, : : : ,M

Let us draw the simulated value TMþ1 of I(xMþ1) from the Bernoulli distri-
bution with mean I*. For simplicity, we refer to the set {I(x1), . . . , I(xM)} of
conditioning data simply as “data.” Conditionally on these data, we have

E½TMþ1 j data� ¼ I�,

E½T2
Mþ1 j data� ¼ I�,

E½IðxαÞTMþ1 j data� ¼ IðxαÞI�

Thus, given expression (7.37) of I*, we obtain the following upon randomizing
the data:
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E½TMþ1� ¼ E½I�� ¼ p,

E½T2
Mþ1� ¼ E½I�� ¼ p,

Var½TMþ1� ¼ pð1� pÞ,

E½IðxαÞTMþ1� ¼ p2 þ
XM
β¼1

λβ E IðxαÞ � pð Þ I xβÞ � p
� �� ��

The (centered) covariance of I(xα) and TMþ1 is therefore

Cov½IðxαÞ,TMþ1� ¼
XM
β¼1

λβ Cðxβ � xαÞ ¼ CðxMþ1 � xαÞ

This simulation method therefore does match the mean and the covariance
function of I(x). This property, proved for all the points x1, . . . , xM, xMþ1,
remains true by iteration when we add xMþ2, and so on, provided that at each
step the point previously simulated is included in the data set.

Note that the conditional variance of TMþ1 is

Var½TMþ1 j data� ¼ I�ð1� I�Þ

It is not equal to σ2
K as for standard conditioning but takes a value that

fluctuates around σ2
K, its expectation being σ2

K. Indeed

E½VarðTMþ1jdataÞ� ¼ E½I�ð1� I�Þ�

¼ p� p2 �
XM
α¼1

XM
β¼1

λα λβ Cðxβ � xαÞ

¼ Cð0Þ �
XM
α¼1

λα CðxMþ1 � xαÞ

¼ σ2
K

The only theoretical problem with this method is that I* can be less than 0 or
greater than 1. This can occur in one dimension with very common models
(e.g., the spherical covariance), as well as in a space of more dimensions for
practically any covariance other than a pure nugget effect. When this occurs,
we obviously set I* to 0 or 1 accordingly, but then the covariance is no longer
reproduced exactly. Note that nothing prevents us from using the algorithm
with a covariance model that is not a genuine indicator covariance, but then
the covariance of the simulated indicator cannot match the (inappropriate)
input covariance.
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Conditioning no longer matches the covariance nor even the variogram if
we condition by ordinary kriging. Indeed, going through the above steps, we
obtain, for example,

Cov½IðxαÞ,TMþ1� ¼ CðxMþ1 � xαÞ � μ

or

1
2
E½IðxαÞ � TMþ1�2 ¼ γðxMþ1 � xαÞ þ μ

0

where μ and μ0 are the Lagrange parameters of the kriging systems (3.17)
and (3.19).

Generalization to Nested Indicators

The method can easily be extended to nested indicators I1(x), . . . , Im(x) satis-
fying the characteristic property

IiðxÞ ¼ 1 . IjðxÞ ¼ 1 ’j, i

Such indicators are obtained, for example, by applying increasing thresholds to
an RF Z(x):

IiðxÞ ¼ 1ZðxÞ, zi , where z1 , � � �, zi�1 , zi , � � �, zm ð7:38Þ

These indicators can be estimated at the point xMþ1 by cokriging, and the
estimates define a cumulative distribution function provided that the usual
order relationships between indicators are also satisfied by the cokriging
estimates. We then draw T from this distribution. The implementation of this
method raises some practical difficulties, which are discussed in Section 6.3.3
(modeling of the direct and cross-covariances, possible nonmonotonicity of the
estimated c.d.f.).

When the indicators derive from an RF Z, the simulation method can be
applied, through an appropriate coding shown in Figure 7.19, to account for
data given in the form of an interval, an inequality, or an a priori distribution
function, namely “membership” data (between 0 and 1)

Yðxα; ziÞ ¼ PrfZðxαÞ, zi j local information at xαg

(Journel, 1989; Journel and Alabert, 1989). The local information can be the
value taken on by an auxiliary variable at this point xα such as a geological
facies type, or an expert’s opinion on the value z(xα).

Journel and Alabert (1989) apply this methodology to an exhaustive sam-
pling of a 2-ft� 2-ft sandstone section by 40� 40 permeability data, repre-
sented in eight gray levels. SIS is used to simulate the nested indicators
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corresponding to the gray levels, either from 16 hard data only or from these
16 hard data plus a regular grid of 12� 12 soft data (the soft information
indicates that the permeability value at the data point belongs to one of three
large intervals that divide the whole range of permeability values). The com-
parison of these simulations with the exhaustive image shows that the soft data
provide a clear improvement.

The spatial distribution of the simulations generated by the sequential indi-
cator algorithm has been studied by Emery (2004b). Even if each node were
simulated conditional on all previously simulated nodes, the multivariate dis-
tribution of the simulation would depend on the visiting sequence. The covari-
ance and therefore the bivariate distributions are not reproduced correctly in the
case of a random set if kriged values I* below 0 or above 1 are found, which is
almost always the case, with the special exceptions of a pure nugget effect in n-
dimensional space and of the exponential covariance in 1D. Figure 7.3 i shows a
2Dsimulationof an exponential covariance; it does not reproduce thebehavior of
the variogram at the origin. The bivariate distributions of categorical variables
associated with a mosaic random function or nested indicators are likewise not
reproduced correctly, with similar special exceptions (Markov processes, pure
nugget effect). The method treats a random set and its complement in the same
way and therefore is not suitable for simulating a medium made of pores and
grains, which usually play very different roles.

In conclusion, the sequential indicator method is very flexible but requires
approximations (conditioning from neighboring data only, monotonicity cor-
rections) which produce simulations without a clear status and which usually
do not meet their objective. According to Daly and Caers (2010), they display a
characteristic “blob” geometry and do not capture the actual shape and con-
nectivity of the permeable formations of petroleum reservoirs. An additional

0 0 0 1 1 1 1 1 Y (xα; zi)

z1 z2

z1 z2

z1 z2

(a)

0 0 ? ? ? 1 1 1 Y (xα; zi)

(b)

0 0.4 0.5 0.7 0.9 1 1 1 Y (xα; zi)

zizm

zizm

zizm

(c)

FIGURE 7.19 Coding of the information in view of sequential simulation of nested indicators

associated with a continuous variable: (a) exact value (all indicators are filled in); (b) value defined

by an interval (indicators in the interval are left blank); (c) value defined by a distribution (c.d.f.

values are used). [From Journel (1989).]
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shortcoming, mainly when nested indicators are simulated, is that a result is
obtained even if the model defined by the indicator direct and cross-covariances
is inconsistent.

7.6.2 Iterative Methods Based on Markov Chains

Simulation methods other than the sequential method do not directly provide
conditional simulations of indicators. Unlike for SRFs whose realizations are
continuous, there is no general conditioning algorithm as simple as adding a
simulated kriging error. This algorithm can of course be used with a non-
conditional indicator simulation and will indeed preserve the covariance.
However, the conditional simulation will not be an indicator function: It could
take any value between 0 and 1 (and even values outside this interval). Iterative
methods make it possible, at least for some SRF models, to condition indicator
simulations while preserving the binary character of the simulations. They are
also used for the construction of simulations by simulated annealing. The
basic methods rely on Markov chains and have been developed after the work
of Metropolis et al. (1953) to simulate complex physical systems and solve
optimization problems. The reader will find complementary results in Ripley
(1987).

General Framework

Iterative methods are mainly used to produce or condition simulations on a
grid. The general principle is to start with a simulated grid that does not fulfill
all the requirements in terms of spatial variability or conditioning and then to
update it step by step until these requirements are met. More precisely, let us
consider the simulation of a random function Z(x) in the following situation:

1. The points where the simulation is to be built constitute a set of N sites
x1, . . . , xN (usually the nodes of a regular grid).

2. Z can take p discrete values 1, 2, . . . , p (e.g., it is a binary variable, a
categorical variable, or a class of a distribution of a continuous variable).

The realizations of Z(x) satisfy Z(x1)¼ z1, . . . ,Z(xN)¼ zN, where z1, . . . , zN
assume one of the p discrete values. Any particular grid of values—that is, any
particular value of the vector z¼ (z1, . . . , zN)

0—will be called a state and
denoted by s (we do not distinguish two realizations of the random function
Z(x) if they coincide at the N sites). The vector Z¼ (Z(x1), . . . ,Z(xN))

0 can take
pN states si (i¼ 1, . . . , pN). Its N-dimensional probability distribution is a par-
ticular finite-dimensional distribution of the random function, and it defines
the monodimensional probability distribution π that assigns the probability
πi. 0 to state si (we consider for the sake of simplicity that any of the pN

possible states has a nonzero probability of occurrence; otherwise, the number
of possible states must be decreased accordingly). Simulating Z(x) over the
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N sites amounts to drawing a vector Z from its N-dimensional distribution, or
equivalently drawing a state s from the probability distribution π. The number
of possible states can be very large, and the calculation of each probability πi
impossible, so particular methods are necessary. The present section describes
iterative methods to sample from π: Starting with an initial simulated state S(0)

from an arbitrarily chosen distribution, we construct a sequence of random
states S(k), k¼ 1, 2, . . . , whose probability distribution converges to π when k
increases. This method derives from the properties of Markov chains [e.g., see
Feller (1968, Chapter XV)]: The successive S(k) are obtained as Markov tran-
sitions from one state to the next.

The transition from S(k) to S(kþ1) is defined by the transition matrix P¼ [pij],
which is independent of k:

pij ¼ PrfSðkþ1Þ ¼ sj j SðkÞ ¼ sig

The chain defined by the matrix P is said irreducible if every state can be
reached from every other state in a finite number of transitions. A Markov
chain with transition matrix P has the invariant distribution π if and only if

X
i

πi pi j ¼ πj ’j ð7:39Þ

and this chain is reversible if and only if the detailed balance conditions

πi pi j ¼ πj pj i ’i 6¼ j ð7:40Þ

are satisfied. Note that (7.40) implies (7.39). The invariant distribution π
of an irreducible Markov chain is unique, and the distribution of S (k) will
converge to π (we assume that all states are ergodic, that is with a recurrence
time which has a finite mean and is not systematically a multiple of some period
t. 1).

Drawing a state s randomly from the distribution π can be achieved by
selecting a Markov chain with transition probabilities satisfying (7.40), building
a Markov chain S(k) up to a sufficiently large k value for the chain to have
reached the equilibrium, and retaining this final state. Details about the sta-
bility and convergence of Markov chains can be found in Meyn and Tweedie
(1993). Now the problem reduces to finding a matrix P satisfying (7.40). Two
choices for P are commonly used:

1. The Metropolis algorithm (a generalization of the algorithm used by
Metropolis et al., 1953). We start by choosing a symmetric transition
matrix Q. At each step k, denoting the current state by si, the matrix Q is
used to generate a candidate state sj from the conditional probability qi
(vector of the qi j for this value of i). This candidate is accepted always if
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πj$πi, and with probability πj/πi if πj,πi. Otherwise, we remain in state si.
This defines the transition probabilities

pij ¼ min

	
1,

πj

πi



qij if i 6¼ j,

pii ¼ qii þ
X
j 6¼i

max

	
0, 1� πj

πi



qij

which are seen to satisfy (7.40). The invariant distribution is unique and
the Markov chain converges to it if π is not constant and Q is irreducible.

2. Barker’s algorithm (Barker, 1965). It is similar to the Metropolis algo-
rithm, except that min(1, πj/πi) is replaced by πj/(πiþπj). Equation (7.40)
is still satisfied. The invariant distribution is unique, and the Markov
chain converges to it if Q is irreducible.

Hastings (1970) removes the symmetry condition on Q by letting

pij ¼ min

	
1,

πj qj i

πi qi j



qij if i 6¼ j,

pii ¼ qii þ
X
j 6¼i

max

	
0, 1� πj qj i

πi qi j



qij

These algorithms can be used even if πi and πj are not explicitly known, pro-
vided that their ratio can be calculated. An introductory exposition of the
Metropolis-Hastings algorithm can be found in Chib and Greenberg (1995).

Special Case of Conditional Simulations

In the case of conditional simulations, not all states are permitted. Let us
denote the space of all states by Ω and the subset of permitted states by Ωc. The
conditional probability of the permitted states is

~πi ¼ πi

πðΩcÞ ði 2 ΩcÞ with πðΩcÞ ¼
X

j: sj2Ωc

πj

A way to generate a conditional simulation is to restrict the transition kernel
to Ωc: starting with a state sj belonging to Ωc, we generate a new state sj as
above but accept it only if it belongs to Ωc and otherwise remain in state si, and
so on. This method is not always valid, because the transition kernel between
states of Ωc induced by this algorithm may not satisfy the conditions (7.39)
and (7.40). This is the case, for example, if we can find two states of Ωc

which cannot communicate without a transition by a state not belonging to
Ωc. Conditions ensuring the correctness of the algorithm are given, for
example, by Lantuéjoul (2002, Chapter 8). Simulated annealing provides a
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solution in the other cases. Since this is primarily an optimization algorithm, it is
presented in Section 7.8.4.

Spin Exchange

A particular case of Hasting’s method, introduced by Flinn (1974) to simulate
phase separation on a grid with two types of atoms, is usually known as the
“spin exchange” method: Each transition involves only two sites that exchange
their values. The algorithm is the following:

1. Select two sites at random, independently (or the second one in a
neighborhood of the first one). If the values at these sites are equal, redraw
the second site.

2. Pass from the present state si to the state sj defined by the exchange of the
values at these sites, with the probability min(1,πj/πi) (Metropolis
algorithm) or πj/(πiþπj) (Barker’s algorithm).

The Markov chain produced is only irreducible over the set of states with the
same marginal distribution: The permutations do not change the histogram of
the values over the N sites. So the initial state must be selected so as to match
the marginal distribution.

Local Replacement: Gibbs Sampler

Another particular case is when each transition involves a single site: Q is
chosen such that qij. 0 only if si and sj are states that differ in value at a single
site. If si and sj differ only by their values ir and jr at site xr,

πj

πi
¼ PrfZðxrÞ ¼ jr, restg

PrfZðxrÞ ¼ ir, restg ¼ PrfZðxrÞ ¼ jr j restg
PrfZðxrÞ ¼ ir j restg

The simplest case is when Z(x) can take only two different values (p¼ 2). The
values ir and jr are then the only possible ones for Z(xr) so that

PrfZðxrÞ ¼ jr j restg ¼ πj

πi þ πj

If the site is chosen at random, Barker’s algorithm reduces to drawing its value
from the conditional distribution given the values at the other sites.

This method can be extended to the case where Z(x) can take p. 2 dif-
ferent values, or even has a continuous distribution. The following iteration is
performed:

1. Select a site, say xr, at random or by a systematic scan of all the sites.

2. Choose the new value for this site from the conditional distribution of
Z(xr) given the other values Z(xs), s¼ 1, . . . , r� 1, rþ 1, . . . ,N.
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Usually this conditional distribution is assumed to depend on the neighboring
values only. Thus we are able to simulate the joint distribution at all sites by
successive simulations of conditional univariate distributions. This method was
developed by Geman and Geman (1984), who call it the “Gibbs sampler”
because, when the sites constitute a square lattice, Z can be considered as a
Markov random field with a Gibbs distribution. Casella and George (1992) give
an intuitive presentation of the Gibbs sampler, showing that it “can be thought
of as a practical implementation of the fact that the knowledge of the condi-
tional distributions is sufficient to determine a joint distribution (if it exists!).”

Multiple Metropolis�Hastings Algorithm

Sénégas (2002a) presents special cases and generalizations of theMetropolis and
Gibbs algorithms. Let us focus on the generation of simulations conditioned on
noisy data. If all states remain permitted, conditional simulations can be gener-
atedwith theMetropolis algorithmby selecting the candidate state from the state
distribution, whatever the current state. But a large proportion of candidate
states may be rejected. Sénégas therefore extends the algorithm to a selection
among a set of candidate states. Let π(z) be the marginal distribution of Z and
~πðzÞ¼π(z | data) be its conditional distribution given the noisy data.UsingBayes
relation, the latter can be expressed with the conditional distribution of the data
given Z¼ z and with the marginal distributions of Z and of the data:

~πðzÞ ¼ πðz j dataÞ ¼ πðdata j zÞ πðzÞ
πðdataÞ

The application, developed when Z is a Gaussian random vector, is based on
the following property: If Z1 and Z2 are two i.i.d. Gaussian random vectors
with mean zero, Z1 cos θþZ2 sin θ is a random vector with the same distri-
bution.3 It is then easy to build a set of Gaussian random vectors by combi-
nation of two vectors only.

Denoting the current state by z
current, the multiple Metropolis�Hastings

algorithm of each iteration is the following:

1. Select a state vector z from the state distribution, independently of the
current state vector.

2. Build the K candidate states

zcandk ¼ zcurrentcos 2π
k

K

	 

þ z sin 2π

k

K

	 

, k ¼ 0, 1, : : : ,K � 1:

3 Let us mention a more general theorem due to Matheron (1982b): If Z1(x) and Z2(x) are two

independent zero-mean unit-variance Gaussian SRFs with the same covariance ρ(h) and if Θ(x)

is an IRF with strictly stationary increments, independent of Z1 and Z2, then the random function

Z1(x) cos Θ(x)þZ2(x) sin Θ(x) is second-order stationary with Hermitian bivariate distributions

with Tn(h)¼ ρn(h) E[(cos(Θ(xþ h)�Θ(x))n].
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3. Compute

pk ¼ πðdata 7 zcandk Þ, k ¼ 0, 1, : : : ,K � 1,

at least up to a multiplicative factor, and norm them so that they define a
probability distribution.

4. Select k from that distribution and set znew ¼ zcandk .

Note that the candidate states include the current state (k¼ 0), as well as state z
if K is a multiple of 4. Sénégas (2002a,b) applies this algorithm to stereovision.
The vector Z represents a topographic grid and the conditioning stereographic
pair amounts to a grid of the form f(Z)þ ε, where ε is an error vector with i.i.d.
components.

7.6.3 Application of the Gibbs Sampler to the Simulation

of a Gaussian Vector

Let us come back to the simulation of a Gaussian vector. The Gibbs sampler is
the basis for several iterative methods to simulate Gaussian RFs or categorical
variables linked to Gaussian RFs. Suppose that we want to simulate a Gaussian
N-vector Z for a given distribution. In this section {Zi : i¼ 1, . . . ,N} denote the
components of Z (Zi can be of the form Z(xi), but this is not necessary), and a
realization z of the random vector represents a state. Without lack of generality
we assume that the Zi’s are standard normal, so Z has mean vector 0 and given
covariance matrix ρ¼ [ρij] with ρii¼ 1.

Simulation of a Gaussian Vector with the Gibbs Sampler

Let us start with the direct application of the Gibbs sampler, which is
straightforward. Indeed, after the initialization step (e.g., by the vector 0), the
iterative procedure of the Gibbs sampler can be rewritten as:

1. Select a component, say i, at random or by a systematic scan of all the
components.

2. Choose the new value for this component from the conditional distribu-
tion of Zi given the other values {Zj : j 6¼ i}.

The conditional distribution of Yi is Gaussian with mean the SK estimate z��i of

Zi from the current values of {Zj : j 6¼ i} and variance the SK variance σ2
Ki. As

we have seen in Section 3.6.4, the kriging estimate and variance are

z��i ¼ � 1

Bii

X
j 6¼i

Bij zj and σ2
Ki ¼ Bii
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where B¼ ρ�1 is the precision matrix. Step 2 then amounts to changing the
current value zcurrenti of Zi to

znewi ¼ z��i þ σKi U

where U is an independent standard normal random variable.
This method can obviously generate conditional simulations by fixing the

values assigned to the known components and scanning only the other
components.

However, it is not used to simply generate a nonconditional or conditional
simulation because that would require inverting the matrix ρ. If the inverse of ρ
can be calculated, it is more efficient to use the Cholesky decomposition
method presented in Section 7.2.2. If not, it is tempting to krige Zi from a
subset of the {Zj : j 6¼ i}—for example, from the neighboring nodes when the
Zi’s represent values on a grid—but the algorithm may diverge, and severely.
The noticeable exception is that of Gaussian Markov random fields (Besag,
1974, 1975; Rue and Held, 2005; see Section 3.6.4), which are actually defined
by their precision matrix B. That matrix is supposed to be sparse, so an iter-
ation of the Gibbs sampler is not computationally demanding.

In the case of the simulation of a Gaussian vector the real value of the Gibbs
sampler in fact lies in the following two generalizations.

From the Gibbs Sampler to a Gibbs Propagation Algorithm

The following implementation requires neither the inversion of the covariance
matrix nor the knowledge of the precisionmatrix and can therefore be applied to
vectors of large dimension (at least several tens of thousands components). This
algorithm is due to Lantuéjoul (2011), who had the brilliant idea of reversing the
viewpoint. The precision matrix B¼ ρ�1 is also a covariance matrix. It is very
easy to simulate a Gaussian random vector Y with mean 0 and covariance
matrix B, because the Gibbs sampler requires B�1, which is nothing but ρ. Since
ρii¼ 1, the kriging estimate of Yi given all values ycurrentj of Yj for j 6¼ i is

y��i ¼ �
X
j 6¼i

ρi j y
current
j

and the kriging variance is equal to 1. In the iterative algorithm the new value
of Yi takes the simple form

ynewi ¼ y��i þU

where U is an independent standard normal random variable. Once the final
vector Y is obtained, it suffices to set Z¼ ρ Y to obtain a Gaussian vector with
the covariance matrix ρ, which was the target. Indeed,

E½ZZ
0 � ¼ E½ρYY

0
ρ� ¼ ρ B ρ ¼ ρ
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Note that Y and Z satisfy the relation E[Y Z0]¼ I, where I is the identity matrix,
or equivalently E[Yi Zj]¼ δij.

Lantuéjoul goes one step further and rewrites the algorithm by initializing
both Z and Y (e.g., to 0) and, during the iterative process, by immediately
propagating the change in the component Yi to the whole vector Z. Indeed,
since

P
j ρi j y

current
j is nothing but zcurrenti the expression of y��i can be written

y��i ¼ ycurrenti � zcurrenti

so the change in Yi can be written

ynewi � ycurrenti ¼ U � zcurrenti

This induces changes

znewj � zcurrentj ¼ ρj iðU � zcurrenti Þ, j ¼ 1, : : : ,N

and in particular znewi ¼ U. Finally the iterative algorithm can be written as
follows:

1. Select a component, say i, at random or by a systematic scan of all the
components.

2. Select a new value znewi .

3. Update the other components so that

znewj � zcurrentj ¼ ρj iðznewi � zcurrenti Þ, j 6¼ i

The vector Y no longer needs to be considered. Moreover, Lantuéjoul shows

that the distribution of Znew
i need not be independent of Zcurrent

i . It must only

be standard normal and conditionally independent of {Zcurrent
j : j 6¼ i} given

Zcurrent
i . If we want to avoid the abrupt changes resulting from selecting Znew

i

independently of any other value, we can take, for example, Znew
i ¼ rZcurrent

i þffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
U with a positive correlation r.

This simulation algorithm achieves what seemed mission impossible at first:
UpdateZwithout inverting the covariance matrix ρ. Lantuéjoul applies it to the
simulation of a Cox process conditionally on count data on different supports.

Conditioning on Indicator Values or on Inequalities

Section 7.6.1 showed how the sequential indicator simulation algorithm can be
adapted to condition a simulation of an SRFZ(x) on inequalities when this SRF
is discretized and replaced by a series of nested indicator functions. This
approach is only approximate. We describe here another method where no dis-
cretization of the interval of variation of Z is necessary. It is limited to Gaussian
SRFs, but this is an important special case because some random set models are
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based on Gaussian SRFs. We remain in the framework of the simulation of a
Gaussian random vector Z whose components Zi are of the form Z(xi) for some
random function Z(x), but this is not mandatory. We suppose that we have:

� hard data i¼ 1, . . . ,M, where Zi is exactly known: Zi¼ zi;

� soft data i¼Mþ 1, . . . ,N, where Zi is only known to belong to an interval
of R: Zi2Ai, where Ai is of the form [ai, bi], ]�N, bi], [ai, þN[, or the union
of a finite number of such intervals.

We have only to address the simulation of the soft data conditional on the
hard and soft data. Indeed, once these components have been simulated, sim-
ulating a vector of size N0 .N whose additional components are unknown
amounts to generating a conditional simulation given hard data for i¼ 1, . . . ,N.
This can be done with the Gibbs sampler but if the Zi’s represent the values
Z(xi) of an SRF Z(x), some of the usual conditional simulation methods may be
more efficient.

Freulon and de Fouquet (1993) propose to simulate {Zi : i¼M þ1, . . . ,N}
conditional on the hard and soft data with the Gibbs sampler. Their algorithm
canbepresentednowas a simple adaptationof the first algorithmpresented in this
section. The initial state is obtained by assigning the hard data values zi to com-
ponents i¼ 1, . . . ,M, and selecting a random value withinAi for each component
i¼Mþ 1, . . . ,N, from the Gaussian p.d.f. truncated by Ai. The initial state is
consistent with all the data (hard and soft) but not with the spatial structure.
The Gibbs sampler permits the introduction of the spatial structure while still
honoring the data. Specifically, the following sequence is iterated:

1. Select a component, say i, among the soft data (randomly or by a
systematic scan).

2. Ignore the value of Zi and determine its kriging estimate z��i from the
values zj of all the other components; also compute the corresponding
kriging variance.

3. Replace the current value of Zi by the kriged value, plus a Gaussian
residual with variance equal to the kriging variance, randomly selected so
as to match the inequality Ai. An acceptance�rejection technique is
preferred to the inverse Gaussian c.d.f. which has numerical problems for
the large arguments associated with small kriging variances.

When the number of iterations becomes very large, the distribution of the
simulated state tends to the conditional distribution of {Zi : i¼ 1, . . . ,N} given
the hard and soft data. This result is obtained under the assumption that Zi is
kriged from all other values, otherwise the algorithm can diverge. A counter-
part is that the algorithm seems to be robust when simple kriging is replaced by
universal kriging [Chilès et al. (2005), in applications to 3D geological modeling
by the potential field method].
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(a)

(b) a cut-off

(c) a Poisson noice

(d) a noisy 1D regularization

FIGURE 7.20 Simulation of a Gaussian SRF conditional on a truncated or noisy image:

(a) initial image; (b) truncated image in black and white (threshold y1¼ 0) (left) and simulation

of the (unknown) initial image conditional on the truncated image (right); (c) image corrupted by

Poisson noise (left) and simulation of the (unknown) initial image conditional on the corrupted

image (right); (d) image corrupted by noise and deformed by linear averaging along lines (left) and

simulation of the (unknown) initial image conditional on the corrupted and deformed image (right).

[From Freulon (1994), with kind permission from Kluwer Academic Publishers.]
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An alternative would be to use the Gibbs propagation algorithm instead of
the Gibbs sampler to avoid the inversion of the covariance matrix. We should
then only allow small perturbations that ensure that all inequality conditions
remain satisfied (this excludes situations when hard data are available). The
convergence of the algorithm has not yet been assessed.

Freulon and de Fouquet (1993) demonstrate the use of the method for
simulating a 2D gray-tone image conditioned on a black-and-white image. The
problem is this: Produce a continuous gray-tone image with the correct
covariance such that after thresholding it coincides with the given black-and-
white image. Freulon (1994) extends the method to other types of conditioning:
(1) on an image corrupted by Poisson noise, where the value at grid node xi is
not Zi but an integer random value selected from a Poisson distribution with
mean Zi, and (2) on an image corrupted by noise and deformed by linear
averaging along lines. The results, shown in Figure 7.20, are impressive.

As is shown next, this method can be extended to the simulation of a series of
nested indicator functions that can be considered as the result of applying
thresholds to a common Gaussian SRF (a single indicator function corre-
sponding to the case of a single threshold).

7.6.4 Truncated Gaussian Simulation

Consider an indicator or a series of indicators that originate from applying one
or more thresholds to a standard Gaussian RF Y(x),

IiðxÞ ¼ 1yi�1#YðxÞ,yi with �N¼ y0,y1, � � �,yi�1,yi, � � �,ym ¼þN

ð7:41Þ

This is known as a truncated (or thresholded) Gaussian simulation (TGS) and
constitutes a straightforward generalization of the notion of y-level excursion
set (the random set where Y(x)$ y). The thresholds yi are chosen so as to match
the proportions pi of the various indicators

yi ¼ G�1

	Xi

j¼1

pj



, i ¼ 1, : : : ,m� 1

Once the correlogram ρ(h) of the underlying Gaussian Y(x) is known, the direct
and cross-covariances of the various indicators are known (see Sections 2.5.3
and 6.4.3). The simulation of the indicators Ii reduces to that of Y. In appli-
cations we choose directly ρ(h) such that the theoretical variograms of the
indicators, deduced from ρ(h) by the relation (2.76) or (6.29), fit the sample
variograms well. Indeed these relations are not easily inverted, except if the
cutoff is at y¼ 0. Furthermore, while any correlogram ρ(h) gives a valid model
of indicator covariance by application of (2.76), it is not certain that conversely,
the inversion of this relation is a valid correlogram model, even if we start from
an indicator covariance: indeed an indicator covariance is not necessarily the
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covariance of a truncated Gaussian SRF, as we have seen in Section 2.5.3.
Figure 7.21 shows indicator simulations obtained by thresholding Gaussian
simulations at y¼ 0. Figure 7.22a shows an example with three facies.

Let us now examine the construction of conditional simulations. If we are
dealing with Y data directly, we are in the standard case of conditioning by
kriging. If, on the other hand, we are dealing with indicator data, we proceed in
four steps:

1. Global structural analysis of the direct and cross-variograms of the
different indicators, with a fit to a model of the form (6.29) derived
from a correlogram ρ(h).

2. Simulation of Y(x) at the data points conditional on the indicator values,
using the method for conditioning on inequalities.

3. Simulation of the whole grid conditional on these simulated hard data.

4. Transformation of the simulation of Y into a simulation of the indicators.

This method can easily be adapted to a regionalization of the proportions of the
different indicators and of the corresponding thresholds. There are also
adaptations for including connectivity constraints (Allard, 1994). TGS was
initially designed for simulating lithofacies of petroleum reservoirs (Matheron
et al., 1987, 1988). Felletti (1999) applies it in the scope of a thorough geological
and geostatistical study of a turbiditic system.

Truncated Pluri-Gaussian Simulation

TruncatedGaussian simulations are of diffusive type, in the sense that given (7.41),
the facies i can be surrounded only by facies i� 1 and iþ 1. Themethod, however,
has been generalized to facies that do not follow one another in a fixed order by
using twoGaussian SRFsY1 andY2. The arrangement of the facies is represented
by a facies substitution diagram, as shown in Figure 7.22b. The horizontal axis
representsG(y1), whereas the vertical axis representsG(y2), both varying from 0 to
1, and the diagram shows the thresholds transforming the pair (y1, y2) into a facies.
It also shows which facies can be in contact. The areas associated with the facies
correspond to their proportions if the random functions Y1 and Y2 are indepen-
dent. In the example of Figure 7.22b all facies can be in contact. The method is
known as truncated pluri-Gaussian simulation, or simply pluri-Gaussian simu-
lation (PGS): Galli et al. (1994) and Le Loc’h and Galli (1997).

Figure 7.22c shows an example obtained with correlated Gaussian SRFs.
This approach has been used to represent the complex internal architecture of
carbonate depositional systems—for example, the geometric relation between
algal mound formations with an irregular rounded shape and beds of sediments
onlapping the mound relief (Van Buchem et al., 2000). There are other
extensions of PGS to model a transition zone [oxydo-reduction front; Langlais
et al. (2008)], a joint simulation of a categorical variable and a continuous
variable (e.g., lithology and grade), or a joint simulation of two correlated
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(a) (b)

(c) (d)

(e)

(g)

(f)

FIGURE 7.21 Examples of simulation of indicators by thresholding a Gaussian simulation.

These examples correspond to the threshold y1¼ 0 of the simulations of Figure 7.18. Note that (g)

has an exponential covariance.

c07 30 January 2012; 17:38:2

7.6 SIMULATION OF A CATEGORICAL VARIABLE 563



categorical variables (e.g., lithology and diagenesis). The applications, origi-
nally in reservoir characterization, extend now to mining. A complete presen-
tation of the method, its variants, and its applications is given by Armstrong
et al. (2011).

When the proportions vary spatially, which is always the case in geological
applications, the current practice is to model these variations empirically, as
shown in the case study of Section 7.10.2. Haas and Formery (2002) propose a
Bayesian approach for modeling the proportions. In the case of two facies with
given proportions and a given number N of independent samples, the distri-
bution of the numbers N1 and N2 of data in facies 1 and 2, respectively, follow a
binomial distribution. Conversely, given the number of data in each facies and
assuming complete ignorance on the proportion of facies 1 (uniform prior on
[0, 1]), the posterior distribution of this proportion is a beta distribution. This
can be generalized to more than two facies, with multinomial and Dirichlet
distributions, respectively. It is also possible to take account of prior geological
information through a prior distribution of the proportion vector. If a prior
Dirichlet distribution is assumed, the posterior distribution has the remarkable
property of remaining of that type. The authors extend this model to spatial
variations of the proportions and propose an algorithm for simulating the
proportions. The simulation of a PGS could thus include a preliminary step for
sampling the proportions from the posterior distribution.

(a) (b) (c)

FIGURE 7.22 Truncated Gaussian and pluri-Gaussian simulations, and corresponding facies

substitution diagrams. (a) TGS with three facies obtained by applying two thresholds to a single

SRF: the white and black facies cannot be in contact. (b) PGS with facies defined by thresholding

two independent Gaussian SRFs: each facies is in contact with the others. (c) PGS with facies

obtained by thresholding two correlated SRFs: the black facies is more often in contact with the

gray facies than with the white facies (the threshold separating the gray and white facies is a fixed

value; the facies diagram represents it with an oblique shape to show the effect of the correlation of

the two SRFs; this effect can also be obtained with two independent Gaussian SRFs Y1 and Y2 and

a variable threshold on Y2 depending on the value of Y1).
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7.6.5 Tessellation

A tessellation is a partition of space into nonoverlapping cells (usually convex
polygons or polyhedra). By extension, it denotes a mosaic model based on that
partition.

General Principle

Let us consider a stationary partition of Rn in cells Pi (usually convex poly-
hedra). A characteristics of this partition is the function

PðhÞ ¼ Prfx and xþ h belong to the same cellg ð7:42Þ

Now assign i.i.d. random values ai to these cells (independently of the cells),
and define Z(x)¼ ai for x2Pi. Z is by definition a stationary mosaic random
function: Two values Z(x) and Z(xþ h) are equal with probability P(h), or i.i.d.
with probability 1�P(h). If we denote by m and σ2 the mean and variance of
the random variables ai and suppose that they are finite, the random function
Z(x) has mean m and stationary covariance

CðhÞ ¼ σ2PðhÞ ð7:43Þ

If the ai are chosen Gaussian, Z(x) has a Gaussian marginal distribution (but its
joint distributions are notGaussian). Categorical variables are obtained by using
discrete distributions. Random sets correspond of course to random variables
equal to 1 with probability p or 0 with probability 1 � p, thus to σ2¼ p (1� p).

Ergodic arguments show that P(h)¼ g(h)/g(0), where g(h) is the geometric
covariogram of the typical cell (i.e., the limit of the average of the geometric cov-
ariograms of the cells in a domain V that tends to infinity). Conversely, a
covariance may be proportional to some geometric covariogram and yet not
be associated with a random tessellation. For example, the spherical covariance
cannot be the covariance of a random tessellation ofR3 (Emery, 2010b); however,
it can be the covariance of a random tessellation of R, as the covariance of a
renewal process. Let us now review some stationary tessellation models.

Renewal Processes

In 1D a renewal process is a point process for which the lengths Ui of the
intervals between successive events are independently and identically distrib-
uted with a common probability distribution F(du) [e.g., see Feller (1971,
Chapter XI)]. There is no restriction on F other than to be concentrated on
[0,N[ and to have a finite mean μ. Thus

μ ¼
Z N

0

u FðduÞ ¼
Z N

0

½1� FðuÞ� du
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Since, in general, the origin is not a point of the process, the distribution of the
interval separating the origin from the first event to the right plays a special
role. The choice of initial distribution that ensures stationarity of the process is
the density

f0ðuÞ ¼ 1

μ
1� FðuÞð Þ

This is also the distribution of the residual waiting time between an arbitrary
point x and the next point of the process. The probability that x and xþ h
belong to the same interval is simply the probability that the residual waiting
time exceeds h and is therefore 1 � F0(h). Thus

PðhÞ ¼ 1

μ

Z N

h

½1� FðuÞ� du ð7:44Þ

The simplest case is the Poisson point process with intensity λ. Here F and F0

coincide, F(u)¼F0(u)¼ exp(�λu), u. 0, μ¼1/λ, and from (7.43) Z(x) has the
exponential covariance

CðhÞ ¼ σ2 expð�λjhjÞ ð7:45Þ
with scale parameter 1/λ. If the random variables ai of the mosaic model take
their values within a finite space of states (e.g., integers from 1 to N), the
resulting processZ(x) is a continuous-time homogeneousMarkov chain [a jump
process in the sense of Feller (1971, Section X.3)]. An example is shown in
Figure 7.23a,b for N¼ 2.

Coming back to the general case, the covariance (7.44) is convex, positive,
and linear at the origin. Conversely, any covariance function that satisfies these
properties can be simulated with a renewal process by taking

FðuÞ ¼ 1� C 0ðuÞ
C 0ð0Þ , σ2 ¼ Cð0Þ, F0ðuÞ ¼ 1� CðuÞ

Cð0Þ

(a)

(b)

(c)

FIGURE 7.23 1D random sets associated with a Poisson point process: (a) Poisson points;

(b) 2-state Markov process (base partition defined by segments between Poisson points);

(c) Voronoi process (base partition defined by segments joining interval midpoints).
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The following algorithm may be used to simulate the renewal process over the
segment [0, L]:

1. Select the first point of the process to the right of the origin from the
distribution F0.

2. Simulate the next segments independently from the distribution F until
the end point L is reached.

Generalization to a Concave Unbounded Variogram

We note that if C(L) is not equal to 0, there is a nonzero probability that the first point on the
right side of the origin falls after L. In this case the simulation is constant over [0, L]. To avoid
this, a slight modification is introduced so that the first point always belongs to the interval [0,
L]. To obtain this without introducing a bias on the covariance, Matheron (1988) showed that
it suffices to use the previous algorithm with

FðuÞ ¼ 1� γ 0ðuÞ
γ 0ð0Þ , σ2 ¼ γðLÞ, F0ðuÞ ¼ γðuÞ

γðLÞ

where γ(h)¼C(0) � C(h) is the variogram of Z(x).
The algorithm has a broader application domain than convex covariances with a linear

behavior at the origin: It can be applied to simulate any concave variogram with a linear
behavior at the origin, even if this variogram is not bounded. It has been generalized by
Matheron (1988) to simulate any concave variogram, even if not linear at the origin. In this
case it is necessary to consider a generalization of renewal processes to point processes with
accumulation points, and the simulation is built at discrete points. The simulations obtained
with this algorithm are fractal, but with Hausdorff dimension D¼ 2 � α instead of 2 � α/2
for a Gaussian IRF�0 with the same variogram (fractional Brownian random function).

The generalization of renewal processes to Rn, n. 1, is simple only in the case of Poisson
processes. We will examine now the two types of generalization based, respectively, on
Poisson point processes in Rn and Poisson hyperplanes.

Voronoi Tessellation

Consider points {xi : i¼ 1, 2, . . . } in Rn, and associate to each xi the set Pi of all points x inR
n

that are closer to xi than to any other xj, j 6¼ i. In 1D the Pi’s are the segments joining the
midpoints of the intervals [xi, xi+1] if the xi’s are ordered by increasing values. In 2D they are
the convex polygons delimited by the perpendicular bisectors of the segments joining
neighboring points (Figure 7.24a). These polygons are usually named Voronoi polygons
(metallogeny), or in other contexts polygons of influence (mining), Thiessen polygons
(hydrology), cellular networks, Dirichlet polygons [see Stoyan et al. (1987)]. More generally,
in Rn the Pi’s are convex polyhedra. If we randomize the xi’s into a stationary random point
process of points Xi, the Pi’s define a partition of space into a stationary random set of
polyhedra, from which we can build a mosaic random function whose covariance is given by
(7.43). Figure 7.24b exhibits an RF with a Gaussian marginal distribution, and Figure 7.24c
exhibits a random set.

The problem is to obtain the function P(h) defined by (7.42). Matérn (1960, p. 40) derives
it when the Xi’s form a Poisson point process in Rn. The result has a simple expression in the
1D case (Figure 7.23c). Each Voronoi segment joins the midpoints of two consecutive
intervals of the Poisson point process; hence the lengths of the Voronoi segments are
gamma random variables with parameter α¼ 2 and scale b¼ 2λ, where λ is the Poisson
point intensity. Two successive Voronoi segments contain one-half of the same Poisson
interval, and therefore they are not independent and do not define a renewal process.
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(a)

(b)

(c)

FIGURE 7.24 2D mosaic simulations associated with a Voronoi partition: (a) Voronoi polygons;

(b) mosaic RF with Gaussian marginal; (c) mosaic random set (p¼ 0.5). The initial point process is

made of Poisson points.
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However, formula (7.44) remains applicable—it can be derived directly by a geometric
argument involving only stationarity—and combined with (7.43) yields the covariance

CðhÞ ¼ σ2ð1þ λjhjÞ expð�2λjhjÞ
In R2, Poisson�Voronoi polygons, namely Voronoi polygons associated with a planar
Poisson point process, pave the plane with quasi-hexagonal polygons and are therefore of
great interest in many applications. Their main properties were derived by Miles (1970). Other
results have been obtained by Crain (1978) by Monte Carlo techniques. Miles (1972) presents
the properties of the Poisson�Voronoi polyhedra in R3.

The nonconditional simulation of a Voronoi tessellation is straightforward provided that
border effects are taken into account. Generating simulations conditioned on point data
requires different algorithms if themarginal distribution is continuous (two data pointswith the
same value belong to the same cell) or discrete (data points with the same value may belong to
different cells). Lantuéjoul (2002, Chapter 12) proposes iterative algorithms for both situations.

Poisson Hyperplanes

Instead of starting from random points in the plane or in space, one can start from “random
lines” or “random planes.” This permits the simulation of random functions with an expo-
nential covariance (or a linear variogram; see Section 7.5.2).

The principle for generating Poisson lines in R2, Poisson planes in R3, and more generally
Poisson hyperplanes in Rn is to start from a Poisson point process with intensity λn dω on a
line Dω going through the origin of space and with direction the central direction of the solid
angle dω. Through each of these points we erect a line, plane, or hyperplane perpendicular to
Dω, and we repeat this for all directions ω of the unit half-sphere. Thus we obtain a network of
lines or planes that appear random because no orientation or region of space is favored
(generalizations are of course possible). Mathematical developments are beyond our present
scope and can be found in Miles (1969) and Matheron (1971a, 1975a).

The intersection of a subspace Rm with a Poisson hyperplane process of Rn (m, n) pro-
duces a Poisson hyperplane process of Rm. In particular, the intersection of a line with a
Poisson hyperplane process forms a Poisson point process whose intensity is independent of
the line considered. The intensity λ of the induced Poisson point processes on lines may be
taken as the parameter of the Poisson hyperplane processes in Rn and its subspaces.4

Consider now the case where we want to simulate Poisson hyperplanes within a hyper-
sphere with diameter D centered at the origin. Each hyperplane is characterized by two
parameters (Figure 7.25):

1. Its distance d to the origin.

2. The direction ω of the unit vector orthogonal to the hyperplane, directed from the
origin to the hyperplane.

Equivalently the hyperplane is characterized by the vector joining the origin to the projection
of the origin onto the hyperplane. Now rotate the vectors associated with the Poisson
hyperplanes so as to align themwith the positive side of the first coordinate axis. The end points
of the rotated vectors define a point process on the positive part of this axis. This process is also
a Poisson point process. A geometric argument shows that its intensity is λSn/Vn�1, where Sn is
the surface area of the unit-radius sphere of Rn and Vn its volume [as results from formulas
(A.5), the ratio Sn/Vn�1 is equal to 2, π, or 4 when n equals 1, 2, or 3, respectively]. Hence we

4 Starting from different definitions, Matheron and Serra use one-half of this λ as the main

parameter, and Miles uses a third parameter.
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have the following procedure for simulating the Poisson hyperplanes that intersect a hyper-
sphere with diameter D:

1. Generate a 1D Poisson point process with intensity λ Sn/Vn�1 over the segment [0,D/2].

2. To each point Xi of this Poisson process, associate a random orientation ωi drawn
independently from a uniform distribution over the unit hypersphere, and erect the
hyperplane characterized by the distance di¼ jXi j and the orientation ωi.

This model can be easily extended to a nonuniform distribution of the orientations ωi.

Poisson Polyhedra Tessellation

Poisson lines form a partition of the plane into random convex polygons (Figure 7.26).
Similarly, Poisson hyperplanes divide the space Rn into random convex polyhedra. Let us
assign a constant value to all the points of a polyhedron and draw this constant independently
from a distribution with variance σ2. Since the intersection of the Poisson hyperplanes with
any line defines a 1D Poisson point process with intensity λ, this mosaic random function is
an SRF with covariance

CðhÞ ¼ σ2 expð�λjhjÞ ð7:46Þ

0

d

ω

FIGURE 7.25 Parameters defining a line (2D): direction ω2 [0, 2π] and distance d.

FIGURE 7.26 Simulation of Poisson lines and Poisson polygons tessellation.
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This is covariance (7.45), but this time h belongs to Rn. Figure 7.3f shows an RF with a
Gaussian marginal distribution, and Figure 7.3h shows a random set. The hyperplanes stand
out because the boundaries of the random sets are aligned on them. In figurative terms,
Voronoi models consider crystals that grew from germs, whereas Poisson polyhedra are based
on a network of faults. The typical polygons obtained in 2D have very different features than
those of Voronoi polygons; in particular, the mean number of vertices of these polygons is
equal to 4 instead of 6 for Voronoi polygons. Results can be found in Miles (1964, 1973, in R2;
1972 in R3; 1971 in Rn), Matheron (1971a, 1972a, 1975a) in R2, R3, and Rn, and also Stoyan
et al. (1987).

Let us mention a variant, the alternating random set, which is simulated as follows: Draw
at random, with equal probability, the value m�σ or mþ σ (0 or 1 for a random set, with
m¼σ¼ 1/2) for the polygon or polyhedron that contains the origin; assign the alternate value
to the polyhedra that have a face in common with this polyhedron; and iterate. Z(x) and
Z(xþ h) have therefore identical or alternating values depending on whether the number of
Poisson hyperplanes intersecting the segment joining x to xþ h is even or odd. Simple
probabilistic calculations show (Blanc-Lapierre and Fortet, 1953, pp. 187�191) that the
centered covariance is

CðhÞ ¼ σ2 expð�2λjhjÞ
By dividing the intensity by a factor of 2, we obtain the same covariance as in (7.46) for
simulations that look very different (Figure 7.3j). But we have lost one degree of freedom,
since the proportion associated with the value 1 is always p¼ 1/2.

Like for Voronoi tessellations, Lantuéjoul (2002, Chapter 12) proposes two iterative
algorithms for generating simulations conditioned on point data for, respectively, a contin-
uous marginal distribution and a discrete one.

Voronoi tessellation and Poisson polygon tessellation represent two extreme cases, the
former without aligned edges and the latter with systematically aligned edges. The STIT
tessellation (Nagel and Weiss, 2005; Nagel et al., 2008), also defined in Rn, proposes an
intermediate behavior and is of interest to model crack patterns.

7.6.6 Substitution Random Functions

Definition and Properties

Substitution random functions (Matheron, 1989; Lantuéjoul, 1991, 1993, 2002,
Chapter 17) are the multidimensional generalization of the subordinated pro-
cesses defined by Feller (1971, Section X.7). The shift in terminology empha-
sizes the stereological content of the construction, which transfers certain
properties of a coding process to a random function.

An RF Z(x) is said to be a substitution random function if it is of the form
ZðxÞ ¼ YðTðxÞÞ, where T(x) is a random function of x2Rn and Y(t) is a
stochastic process of t2R. T(x) is called the directing function, and Y(t) is the
coding process. Since all kinds of models for T(x) and Y(t) can be used,
the substitution method gives rise to a broad variety of random functions. If
T(x) and Y(t) are continuous RFs, the level sets of T(x) remain level sets of
Z(x): The substitution simply changes the level set values. If T(x) is constant
over domains that partition Rn, so is also Z(x): The substitution simply changes
the values assigned to the various domains. So the most interesting case is when
T(x) is a continuous RF and Y(t) a discrete-state process. We will restrict this
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presentation to the case studied in detail by Lantuéjoul (1993), where T(x) has
strictly stationary increments, Y(t) is a stationary continuous-time Markov
chain with covariance C(h), and T(x) and Y(t) are independent. This model is a
generalization of the discrete diffusion random functions of Section 6.4.3,
whose nice properties carry over in a straightforward manner:

� Z(x) is ergodic, provided that T(x) is not stationary (if it were stationary,
this would restrict the range of the variations of T around the mean, and
lead to the use of a small portion of the definition domain of Y(t)).

� Z(x) has the same univariate distribution as Y(t).

� Z(x) is second-order stationary:

Cov½ZðxÞ,Zðxþ hÞ� ¼ E½CðjTðxþ hÞ � TðxÞjÞ�

an expression that does not depend on x since T has stationary increments.

� If Y(t) has an isofactorial expansion, Z(x) has an isofactorial expansion
with the same factors as Y(t).

Examples

Lantuéjoul (1991, 1993, 2002) shows several 2D examples of such substitution
random functions that demonstrate the capability of this model to represent
very different morphologies. A simple model is the following:

� The directing function T(x) is a 2D IRF�0 associated with random jumps
on Poisson lines, defining a linear variogram, as explained in Section 7.5.2.

� The coding process Y(t) is a two-state continuous-time Markov chain,
whose sojourn time distributions in the states 0 and 1 have densities
b0 exp(�b0 t) and b1 exp(�b1 t), respectively (more than two states can also
be considered).

The intensity of Poisson lines is a scale factor, whereas the distribution of the
random jumps has a large influence on the character of the simulation:

� Figure 7.27 shows a simulation of Z(x) when the discontinuities have a
stable distribution, namely a characteristic function ΦðuÞ ¼ expð�jujαÞ
with α¼ 0.47. It gives a strong impression of homogeneity, like a texture.
This is due to the fact that the intensity of random lines is high and
the jump distribution is heavy-tailed, so very different values of T may be
assigned to two neighboring points.

� Figure 7.28a displays a similar simulation when the discontinuities take
the values �1 and þ1 only, with equal probability, as in the standard
simulation of a linear variogram. Here the coding process is an eight-state
continuous Markov chain. Because a very large number of Poisson lines
has been used (about 50,000) and the coding process produces exponen-
tially distributed sojourn times in the various states, structures emerge at
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all scales although, strictly speaking, this random function is not fractal.
Figures 7.28b and 7.28c are obtained by changing the rule attributing the
discontinuity values in the directing simulation. Similar color images were
produced by Lantuéjoul (1991).

(a)

(b) (c)

FIGURE 7.28 Simulation of a substitution RF by Markov coding of an RF with discontinuities

equal to 61: (a) stationary isotropic RF; (b) stationary anisotropic RF; (c) nonstationary RF.

[From C. Lantuéjoul, personal communication.] (See color insert)

FIGURE 7.27 Simulation of a substitution RF byMarkov coding of an RF whose discontinuities

have a stable distribution with index α¼ 0.47. [From Lantuéjoul (1993), with kind permission from

Kluwer Academic Publishers.]
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We note that two variants of the same algorithm can lead to very different
results. The first one (Figure 7.27) gives a covariance with a finite integral range
(this is true when α, 0.5), whereas the second one (Figure 7.28a) leads to an
infinite integral range.

Conditioning

The nonconditional simulation of a substitution random function follows
directly from its definition, provided of course that we know how to simulate
the independent underlying random functions T(x) and Y(t). But conditioning
such a simulation is not so simple. If the conditioning data at each sample point
xα were the values tα¼T(xα) of the directing function and zα¼Y(tα) of the
coding process, we could meet our objective in two conditioning steps:

1. Conditional simulation of T(x) given the data T(xα)¼ tα.

2. Conditional simulation of Y(t) given the data Y(tα)¼ zα.

Note that from a practical point of view, T(x) must be simulated at the nodes of
the simulated grid, whereas Y(t) must be simulated at the points defined by the
values taken by T(x). In practice, however, the conditioning has to be based on
the data zα¼Z(xα) only. Before applying the two conditioning steps,
a preliminary step is to simulate the T(xα). The principle is to first build a non-
conditional simulation ofY(t), and then simulate theT(xα) under the constraints
that Y(T(xα))¼ zα. Such a constraint means that T(xα) belongs to one of the
intervals whereY(t) is in the state zα. This is a case of conditioning on inequalities
except that we are considering unions of intervals rather than single intervals.
For Gaussian RFs the solution proposed in Section 7.6.3 can be extended to the
present case. Lantuéjoul (1993, 2002) presents an example of such conditioning.

7.7 OBJECT-BASED SIMULATIONS: BOOLEAN MODELS

We are considering here a class of models, the Boolean models and their var-
iations, obtained by combining objects placed at random points. These models
can also be considered as marked point processes, in the sense that they are
based on a point process and marks (here the objects) attached to the points of
the process (Stoyan et al., 1987, Section 4.2). They constitute a family of very
flexible models and are sometimes used on the basis of a physical or genetic
interpretation which defines the objects of the particular model used. They are
also used without reference to any plausible physical interpretation when they
produce an acceptable fit of the observations.

7.7.1 Boolean Models

Boolean Random Set

ABoolean random set corresponds to the intuitive idea of the union of randomly
located objects. The main theoretical results are due toMatheron (1967, 1975a),
though special forms have been used earlier [see Stoyan et al. (1987, p. 68)].

c07 30 January 2012; 17:38:5

574 CONDITIONAL SIMULATIONS



Consider a process of Poisson points Xi in Rn, i¼ 1, 2, . . . , and let Ai,
i¼ 1, 2, . . . , be i.i.d. random objects (elements of volume, or more precisely
compact—i.e., closed and bounded—subsets of Rn). The union of the Ai shifted
to points Xi constitutes by definition a Boolean random set X:

X ¼
[
i

τXi
Ai ð7:47Þ

where τh denotes the operator of translation by a vector h. Definition (7.47)
is the set formulation of the dilution approach (7.23).

(a)

(b)

(c)

FIGURE 7.29 Realizations of Boolean random sets in 2D. The objects are: (a) disks; (b) Voronoi

polygons; (c) Poisson polygons (Delfiner, 1970). [From C. Lantuéjoul, personal communication.]
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The points Xi of the Poisson process are referred to as germs and the
compacts Ai as primary objects. In this model the germs grow independently
until they form primary objects that can overlap. The space Rn is thus divided
into two phases, the objects X which is the union of the primary objects, and its
complement, the background.

A very simple example consists of taking spheres with a given diameter for
the objects. Variants presented in the framework of the dilution methods
apply here also: for example, spheres with random and independent diameters
(Figure 7.29a). Figures 7.29b and 7.29c present two 2D simulations where the
objects are Voronoi polygons and Poisson polygons, respectively.

A Boolean model X depends on two parameters, the intensity λ of the
Poisson point process and the probability distribution of the primary objects.
In general, a random closed set X is characterized by its Choquet capacity, or
hitting functional, namely the mapping T that associates to each compact subset
B of Rn the probability that B hits X:

TðBÞ ¼ PrfX-B 6¼ [g
In the case of Boolean random sets, instead of evaluating T(B) directly, we
evaluate the probability Q(B)¼ 1�T(B) that B is contained in the background.
It can be shown that this is (Matheron, 1967; Serra 1982)

QðBÞ ¼ e�λ EjA" �Bj ðA" �B ¼
[
y2B

A�yÞ

where �B denotes the symmetric of B with respect to the origin. If B is
reduced to a single point, we obtain the background probability of the
Boolean model

q ¼ e�λEjAj ð7:48Þ

If B¼ {x, xþ h} is a pair of points, then jA" �Bj ¼ jA,A�hj ¼ 2jAj � jA-A�hj.
Denoting byK(h)¼EjA-A�hj the mean geometric covariogram of the primary
objects, the bivariate distribution of the background of the Boolean model is

Prfx 2 X , xþ h 2 Xg ¼ q2eλKðhÞ ¼ qe�λ½Kð0Þ�KðhÞ� ð7:49Þ

Therefore the covariance of the background, which is also that of the objects, is

CðhÞ ¼ q e�λ½Kð0Þ�KðhÞ� � e�λKð0Þ
h i

ð7:50Þ

If B is a segment or a ball, the explicit calculation of jA" �Bj is possible only if
A is almost certainly convex. If so, it can be shown, for example (take for B a
segment), that the distribution of background intercepts is exponential. We
note that, contrary to dilution SRFs, the mean and the covariance of a Boolean
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random set do not depend linearly on λ. The intensity λ is therefore an essential
parameter of a Boolean random set.

These results are useful for testing the validity of a Boolean model with
convex primary objects and for attempting the statistical inference of its
parameters. When we study a random set in Rn, we frequently examine the
intersection of the random set with a hyperplane. The overall study is made
easier by the fact that the intersection of a Boolean random set with a hyper-
plane is still a Boolean random set. On the other hand, in the subspace of this
hyperplane, this intersection can be a Boolean random set of convex objects
without this being the case in Rn. In practice, even if we have a complete image,
statistical inference is tricky due to edge effects, and various methods have been
developed to deal with this [see Serra (1982, Section XIII.B.8), Stoyan et al.
(1987, Section 3.3), and Lantuéjoul and Schmitt (1991) for a comparison of
more recent methods]. Complementary information is available in the book
of Molchanov (1997) devoted to the Boolean model.

Boolean random sets can be extended easily to a regionalization of the
intensity λ as well as to a regionalization of the distribution of the primary
objects. A typical problem is that different intensity functions and different
distributions for the primary objects can lead to the same model. Schmitt and
Beucher (1997) and Beucher et al. (2005) address the inference of the intensity
of a model with a regionalized intensity from a 2D image and in the 3D case of
well data, respectively.

Boolean Random Functions

A generalization of Boolean random sets to RFs is to set up at each point Xi of the Poisson
point process a realization of a nonnegative random function fi, called primary function,
drawn independently from one point to another. Instead of cumulating the effects of these
functions as for dilution RFs, we now take the maximum and let

ZðxÞ ¼ sup
i

fiðx� XiÞ ð7:51Þ

The graph of the Boolean random function Z(x) is the envelope of the subgraphs of the
primary functions (Figure 7.30). Each primary function delimits a geometric object in Rn+1

defined as the space below the graph of the function. If these objects are convex, it is possible
to calculate the covariance of Z(x). In particular, if they are cylinders, the covariance includes

Z

Xi x

f

x
(a) (b)

FIGURE 7.30 Construction of a simulation of a Boolean RF (1D): (a) primary function (a cone);

(b) resulting simulation with cones with random height.
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a linear term at the origin. If they are cones, Z(x) is much more regular, and its covariance is
parabolic at the origin. More generally, consider the random primary object defined by the
cutoff z on the primary function f,

Az ¼ fx 2 Rn : f ðxÞ$ zg
The union of all such primary objects set up at Poisson points Xi forms a Boolean random set
whose background probability is by (7.48),

FðzÞ ¼ PrfZðxÞ, zg ¼ expð�λEjAzjÞ
Furthermore, it can be shown that the bivariate distribution function is given by

Fhðz1, z2Þ ¼ PrfZðxÞ, z1,Zðxþ hÞ, z2g ¼ Fðz1ÞFðz2ÞexpðλEjAz1-τhAz2 jÞ

which generalizes (7.49).
The case of cylindrical objects corresponds to functions fi of the form

fiðxÞ ¼ ai1Ai
ðxÞ

and can already be used to describe a variety of situations. The Ai can belong to several classes
of objects, that we number 1, 2, and so on. If ai is the class number of the object Ai, we obtain
a simulation where the objects of a class override the objects of the lower classes. However,
if the ai are i.i.d. random variables, there is no hierarchy between the objects. In both cases, if
the ai take a finite number of possible values, corresponding, for example, to a facies number,
two adjacent facies do not necessarily have consecutive facies numbers (Figure 7.31). The
bivariate distributions of such simulations follow an isofactorial model with orthogonal
indicator residuals (see Section 6.4.3).

One of the attractions of Boolean random functions is that they are well-adapted to the
change of support by the maximum (dilation in the case of random sets). This type of change
of support occurs, for example, if the ai represent a pollutant level rather than a facies number
(although this level may depend on the facies) and if we characterize the pollution of a zone by
the highest local concentration in this zone.

Simulating such RFs is very simple [relation (7.51)]. The difficulty is elsewhere, namely the
design of criteria to establish that this model is compatible with the available observations and
the identification of its parameters (intensity of the Poisson point process, choice of the family
of primary functions, and distribution of its parameters). Boolean RFs have been introduced
by Jeulin and Jeulin (1981) to model the roughness of metallic fractures. The theory is
developed by Serra (1988). The characterization and quantification of Boolean RFs from
images is studied by Préteux and Schmitt (1988). A presentation can be found in Chautru
(1989). Further references and variations about this model are given by Jeulin (1991).

Dead-Leaves Models and Sequential Random Functions

If the objects of a Boolean random set are of nonzero size and if the intensity λ tends to
infinity, the objects end up occupying all the space. This is the basis for the dead-leaves
model (Matheron, 1968b; Serra, 1982, Section XIII.C.2; Lantuéjoul, 2002, Chapter 14).
In this terminology the objects are leaves, which progressively cover the ground, hiding
parts of leaves fallen previously. Looked at from above at a fixed time, this defines a
partition of the space whose classes are the visible portions of the leaves not entirely hidden
by the subsequent ones (Figure 7.32a). A mosaic model may then be defined from this
tessellation, whose covariance is proportional to K(h) / [2K(0)�K(h)], where K(h) is the
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mean geometric covariogram of the primary leaves. A variation is the multi-dead-leaves
model (Jeulin, 1979) where the leaves belong to different populations (based on type of tree,
or color), which defines a multiphase tessellation (Figure 7.32b). The simplest way to
simulate a dead-leaves model is to reverse time, as proposed by Kendall and Thönnes
(1999): Simulate the last fallen leaf, then the previous one, and so on. The simulation is
ended when the ground is no longer visible. This is a typical case of exact simulation, in
the sense of Propp and Wilson (1996), because the simulation does not require an infinite
number of iterations to perfectly sample the desired model. [Note that the simulation is
biased if we do not reverse time and stop the simulation once the ground is completely
covered by leaves, because the ultimate leaf that covers the last hole has more chances to be
large; see Lantuéjoul (2002, Section 14.3).]

A similar generalization of Boolean random functions to dead-leaves random functions is
proposed by Jeulin (1989). All these models can be considered as sequential random functions
if we look at their evolution as the leaves are falling. Jeulin (1991, 1997) presents additional
models of sequential random functions as well as methods for their statistical inference from
an image.

(a)

(b)

FIGURE 7.31 Realizations of Boolean RFs. The subgraphs of the primary functions are cylinders

with three types of base (ellipse, large disk, small disk): (a) with hierarchy—the cylinder height (i.e.,

the value attached to the base) is a function of the base type (here highest for small disks, and lowest

for large disks); (b) without hierarchy—the cylinder height is independent of the base type.
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Let us also mention the transparent dead leaves, which form a family of models ranging
from the dead-leaves model to Gaussian random functions (Galerne, 2010): A random value
is associated with each leaf. When a leaf is added, the new value of the simulation in the
domain covered by the leaf is a fraction α2 ] 0, 1] of the value attached to the leaf, plus the
fraction 1�α of the current value of the simulation. α is a transparency coefficient. The dead-
leaves model corresponds to α¼ 1, whereas a Gaussian random function is obtained when α
tends to 0.

7.7.2 Stationary Point Processes

Procedures to construct random sets or random functions from Poisson point processes can
be generalized to other stationary point processes. For example, we can define dilution
random functions and Voronoi tessellations based on an arbitrary distribution of points.
But this generalization is mainly applied to Boolean models and is therefore presented
here. There are so many models of point processes that we will not try to be exhaustive.

(b)

(a)

FIGURE 7.32 Realizations of mosaic random functions derived from dead-leaves models:

(a) single-dead-leaves model (black poplar) with independent assignment of a value to each leaf;

(b) multi-dead-leaves model with value assignment depending on leaf species (alder, elm, oak,

poplar). (See color insert)
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The interested reader is referred to the point process literature, such as Bartlett (1963, 1975),
Krickeberg (1974), and Ripley (1977, 1981) and to the random set literature, such as
Serra (1982) and Stoyan et al. (1987). We will only present some simple models shown in
Figure 7.33 and a structural tool for identifying them: the K-function.

(a)

(b) (c)

(d) (e)

FIGURE 7.33 Simulation of point processes: (a) Poisson points; (b) Cox process (the intensity is a

lognormal RF); (c) Poisson cluster process (the crosses are the cluster centers); (d) hard-core

process; (e) Poisson alignments.
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Cox Process

The Poisson point process can be generalized immediately to the case where the intensity λ is
not constant but is a measurable function λ(x) with positive values. The number of points
falling in V is a Poisson random variable with mean

λðVÞ ¼
Z
V

λðxÞ dx

These points are distributed independently according to the probability density function λ(x)/
λ(V), x2V. The covariance between N(V) and N(V 0) is

Cov½NðVÞ,NðV 0Þ� ¼ λðV-V 0Þ
This process is not stationary. To make it stationary, it suffices to replace the regionalized
intensity λ(x) by a nonnegative stationary random functionX(x) called the potential. We then
obtain the Cox process or doubly stochastic Poisson process (Cox, 1955; Figure 7.33b). N(V) is
distributed as a Poisson with random parameter

XðVÞ ¼
Z
V

XðxÞ dx

The probabilities and the noncentered moments are obtained by randomizing the expressions
obtained for the Poisson process with regionalized intensity. In the end, and denoting
respectively by m and C(h) the mean and the covariance function of the potential X, we get

E
�
NðVÞ� ¼ m jV j,

Cov
�
NðVÞ,NðV 0Þ� ¼ mjV-V 0j þ

Z
V

Z
V 0
Cðy� xÞ dx dy

Then, even if V and V0 do not overlap, N(V) and N(V 0) are generally not independent. Their
covariance is the sum of two terms: The first one accounts for the Poisson distribution of the
points once the intensity is fixed, while the second captures the intensity fluctuations. This
hierarchic character is not rare in applications. A typical example, studied by Kleingeld and
Lantuéjoul (1993), is that of an alluvial deposit of precious stones where the gems are trapped
in anfractuosities of the terrain. Where the terrain is regular, one expects to find few precious
stones, whereas in rugged terrain one may find a cluster of stones.

The Cox process has a number of remarkable properties. For example, if N(V) follows a
negative binomial distribution, then the potential follows a gamma distribution [Feller (1971,
pp. 55�57); the negative binomial distribution is termed “the limiting form of the Pólya
distribution”]. Similarly, if N(V) follows a Sichel distribution, then the potential follows an
inverse Gaussian distribution [see Sichel (1973) for the Sichel distribution; Jørgensen (1982)
for the inverse Gaussian distribution; and also Matheron (1981d)].5 These properties allow
Kleingeld et al. (1997) to carry out the statistical inference of a Cox process. Simulations
of point processes often have to be generated conditional on count data. While this is
straightforward for the Poisson point process, at least when the count data are relative to
disjoint supports [otherwise, see Lantuéjoul (2002, Section 11.2)], this is not a trivial task for
the Cox process. The authors propose an iterative algorithm based on the discrete Gaussian
model and the Gibbs sampler when the potential is the transform of a Gaussian random
function. Lantuéjoul (2011) extends it to count data relative to different support sizes.

5 The Sichel distribution and the generalizations proposed by Matheron are very useful for

modeling discrete distributions with a very long tail, typically the distribution of the number of

precious stones in a given volume.
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Shooting Process or Cluster Process

The shooting process or cluster process was defined by Neyman and Scott (1958) for repre-
senting clusters of galaxies (they also considered clusters of clusters and their evolution with
time, which we will not do). The properties of this model were studied by Neyman and Scott
(1972). Each pointXi of a primary Poisson process with intensity λ0 is considered as a target at
which ν shots are fired. The number of shots is a random variable, and the impact of each shot is
a secondary point, randomly and independently located around the target. The shooting
process is formed of all the secondary points (Figure 7.33c). Another terminology, often used
when modeling natural phenomena, is parent�daughter model: The primary points represent
the location of parents (e.g., plants) and the secondary points are their daughters (e.g., seed fall
locations). Note that this process can also be seen as a particular case of the Boolean model
where each random object associated with a Poisson point is in fact a cluster of objects.

This model has been generalized to cluster processes with regionalized or random intensity
(Deverly, 1984b). But this only makes sense if we specify the scale of the phenomena taken
into account by the two aspects (clusters and regionalization), for example, by giving the
clusters a local extension and considering that the intensity changes slowly in space. This
problem is already there when we choose to use the Cox process or the cluster process, since
we can consider the presence of clusters as zones of high intensity, and vice versa. It can be
shown that a cluster process where the number of points per cluster has a Poisson distribution
is a Cox process.

Hard-Core Models

Hard-core models represent some kind of inhibition between the points. There are many
models. A simple one is introduced byMatérn (1960, p. 47). Consider a realization of a Poisson
point process with intensity λ0 as a primary process. As a realization of the hard-core process,
keep every point of the primary process whose nearest neighbor (in the primary process) is at a
distance at least equal to a given minimum distance R (Figure 7.33d).

Poisson Alignments

Serra (1982) proposes this model to represent aligned points. A realization of this process
in 2D is composed of all the intersections of the lines of a realization of Poisson lines
(Figure 7.33e). This model can be extended to Rn by considering the intersections of hyper-
planes of dimension n� 1.

A Structural Tool: The K-Function

For all the above point processes, we know how to calculate the mean and the variance of
N(V) and also the covariance of N(V) and N(Vh). This covariance can be used as a structural
tool to differentiate these models and fit their parameters, but it is not very powerful. For-
tunately, there are other tools which derive from the fact that the spatial distribution of a
point process can also be determined by its Palm distribution, where the point process is
observed from a moving point of the process [for an exact definition of the Palm distribution,
see Stoyan et al. (1987, Section 4.4) or Cressie (1991, Section 8.3.4)]. An example of such tool
is the distribution of the distance from a point of the process to its nearest or kth nearest
neighbor, particularly useful when the point process is isotropic. We will focus on the main
tool used in this case, which is the K-function.

The point processes presented above are isotropic provided that the random intensity
function (Cox process) or the clusters (shooting process) are isotropic. In this case Krickeberg
(1974) and Ripley (1976) propose to replace the covariance by the K-function, which has a
more geometric interpretation and permits an easier discrimination of the various models.
The knowledge of this function, which is also called the “second reduced moment function,”

c07 30 January 2012; 17:38:7

7.7 OBJECT-BASED SIMULATIONS: BOOLEAN MODELS 583



is equivalent to that of the covariance. First, consider the points of the point process that
belong to the sphere of radius r centered at an arbitrary point x (this point almost surely does
not coincide with a point of the process); the count of these points has for mathematical
expectation λK0(r) with K0(r)¼Vn r

n, where Vn is the volume of the unit-radius sphere of Rn

(as usual, λ is the intensity of the point process). Consider now a typical point xi of the point
process, and let λK(r) be the expected number of points of the process within the sphere of
radius r centered at the point Xi, which is itself not counted. λK(r) usually differs from
λK0(r), a noticeable exception being the Poisson point process. Hence λ [K(r)�K0(r)] is the
average excess of points belonging to the sphere of radius r centered at a point of the process
(this point excluded) over and above the average number.

Figure 7.34 shows the behavior of K1(r)¼K(r) � K0(r) for the various models presented
above. They are very different, except again for the Cox process and the cluster process which
cannot be easily differentiated: For these models, K1 is positive, whereas it is equal to zero for
a Poisson point process and is negative for a hard-core process. Since the function K1(r) can
be estimated directly [see Ripley (1976) and Cressie (1991)] and its theoretical expression for
the various models is known, it is a good structural tool. Note that like the covariance, the
K—or K1—function summarizes the variances and covariances of point counts, namely
second-order moments, and thus it does not represent all the information about a stationary
isotropic point process: Two different processes can have the same K-function. Baddeley and
Silverman (1984) show a 2D example of a point process that is very different from a Poisson
point process and yet has the same K-function.

When studying a random set from discrete sampling, the boundaries of the individual
objects are usually unknown, which makes the inference of the underlying point process
difficult.

7.7.3 Conditional Simulation of a Boolean Model

Conditioning a Boolean Random Set: The Example of Fracture Networks

The simulation of a Boolean random set is straightforward once its parameters
are known: intensity of the Poisson point process and probability distribution
of the primary objects (type, size, orientation). But conditioning a simulation
by observations is less straightforward, except in simple cases, as we now show
for fracture networks.

When modeling 3D fracture networks, fractures are usually considered as
planar objects. Fracture networks are often represented by Poisson models:

FIGURE 7.34 Shape of the function K1(r) for different models of point processes: (a) Poisson

points; (b�c) Cox process and cluster process; (d) hard-core process; (e) Poisson alignments. [From

Serra (1982), with permission of Academic Press Limited, London.]
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Poisson planes for fractures that are infinite at the scale of the study, random
disks for finite fractures [i.e., a 3D Boolean model of 2D disks (Baecher et al.,
1977)]. The latter model has been generalized to a parent�daughter model with
a regionalized intensity [i.e., a 3D Boolean model of disk clusters built on a Cox
process (Chilès, 1989a,b)]. The fractures are usually divided into several sets
corresponding to different average fracture orientations. Each set is charac-
terized by a distribution of the fracture orientation (the unit vector normal to
the fracture) and of the fracture size (disk diameter). The data are fracture
intersections with boreholes or fracture traces on drift walls or outcrops. The
orientation of each fracture is measured, but its extension is not always known.
These data are affected by several types of bias (censoring, truncation, size).
Specific methods have been developed to handle fracture data. 3D fracture
network simulations are often used for fluid flow studies. Since actual fractures
are not pairs of parallel plates, flow is often seen to be channelized. 2D Boolean
models of random segments are therefore simulated within each fracture, and
flow is studied in the resulting 3D channel network, as shown in Figure 7.35
(Long and Billaux, 1987; Billaux, 1989). The reader is referred to Chilès and de
Marsily (1993) for an overview of these methods with references to other
authors. More general marked-point processes are also used [e.g., Wen and
Sinding-Larsen (1997)]. These models have been developed for networks of
joints (discontinuities created without lateral displacement) in fairly isotropic
media, typically granitic formations. Other models are used for subvertical

Borehole

(a) (b)

FIGURE 7.35 3D simulation of a Boolean set of random disks and channels: (a) network of

random disks (for reasons of legibility, not all the disks encountering the simulated domain are

shown), and random segments simulated on each disk; (b) network of random channels (only the

channels connected to a small borehole located at the center of the block are shown). [Reprinted

from Billaux (1989), in V. Maury and D. Fourmaintraux, eds., Rock at great depth—Rock

mechanics and rock physics at great depth/Mécanique des roches et physique des roches en

condition de grande profondeur/Felsmechanik und Felsphysik in großer Tiefe/Proceedings of an

international symposium, Pau, 28-31.08.89. 1989, 1620 pp., 3 vols.]
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joints controlled by the bedding of stratiform formations (Chilès et al., 2000).
Fault networks often have a different organization (Castaing et al., 1996).
Other approaches try to incorporate mechanical rules and to model the frac-
turing process. Our purpose is not to cover the large field of fractured media
modeling but simply to illustrate the conditional simulation of Poisson fracture
networks.

Conditioning simulations of Poisson planes or disks on observed fractures is
easy because all points, lines, or planes of a Poisson process are mutually
independent. The procedure consists in independently simulating the fractures
that intersect the surveyed lines or surfaces (step 3) and those that do not (steps
1 and 2):

1. Construct a nonconditional simulation.

2. Reject all the fractures that intersect the surveyed lines or surfaces, and
retain all those that do not intersect.

3. Add the actual fractures that have been observed.

The simplest case is the Poisson plane model because fractures are infinite. The
conditioning procedure is represented in Figure 7.36, in 2D for simplicity,

FIGURE 7.36 Conditioning of a 3D simulation of Poisson lines by drill-hole data. [From Chilès

(1989a,b), with kind permission from Battelle Press and Kluwer Academic Publishers.]
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the data being the intersections with a borehole (location of the intersections
and fracture orientation). This procedure has been suggested by Andersson
et al. (1984). In the case of the random disk model, step 3 introduces a slight
complication because the extension of a fracture must be determined from an
observed intersection or trace. In other words, we have to simulate the whole
fracture from the joint distribution of disk diameter and disk center location
conditional on the observation (point or trace). This conditional distribution
results from geometric probability calculations. Rejection techniques make it
possible to condition a fracture on additional observations, for example, the
intersection by another borehole or a trace on another drift wall, but the user
must be able to “correlate” the two intersections of the fracture. An example,
based on actual data surveyed on drift walls, is presented by Chilès et al. (1992).

The same approach can be used with a Boolean model of disk clusters, but
since the random objects associated with the Poisson points are the clusters,
the rejection defined in step 2 and the completion of the observed intersec-
tions or traces in step 3 must be applied at this level (see Figure 7.37).
This is also feasible (Chilès, 1989a,b). The main constraint is practical: The
user must be able to define from the data which fractures belong to the same
cluster.

FIGURE 7.37 Conditioning of a 3D simulation of clusters of random disks by drill-hole data.

[From Chilès (1989a, b), with kind permission from Battelle Press and Kluwer Academic Publishers.]
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Conditional Simulation a Boolean Random Set in the General Case

Conditioning a simulation of fracture network in Rn is possible for two reasons:
(1) The primary objects are elements of a subspace of Rn so that any point
belonging to the fracture network belongs to a single primary object (we neglect
fracture intersections); (2) we can determine that two observations are from the
same object (fracture or cluster, according to the model). In the general case,
one point of the random set may belong to several objects. Moreover, several
data points may belong to a common object, but we have no simple means of
knowing this. Therefore the method used for fracture networks cannot be
transposed to the general case [see, however, Haldorsen (1983) and Chessa
(1995) for a similar approach for simulating the geometry of a petroleum res-
ervoir conditional on the observations in wells].

An iterative Markov procedure, suggested by G. Matheron in 1990 and
presented by Lantuéjoul (1997, 2002, Chapter 13), gives a general solution,
provided that the objects have a strictly positive measure and the number of
conditioning points, known to belong to the background or the objects, is
finite. This algorithm is valid for Boolean sets based on Poisson point processes
with a regionalized intensity λ(x) that is integrable:

R
λðxÞdx ¼ λ1 ,N. The

standard Boolean random set (λ(x) constant) does not fulfill this condition, but
as we will simulate it in a finite domain V, we can limit the support of λ(�) to
V" �A if all the objects are identical to A, or to V" �S where S is a sphere large
enough to include any elementary object.

For a simple presentation of the algorithm, it is convenient to define a
λ-object as a primary object with a random location according to the density
λ(x)/λ1. Clearly, a Boolean random set is the union of a Poisson number (with
mean value λ1) of independent λ-objects. The principle of the algorithm is the
following: At time t¼ 0, start with an initial simulation, composed of primary
objects, that is simply compatible with the data (but does not claim to represent
a Boolean random set). Then, denoting by ϕ(t) the pattern of objects at time t
and by jϕ(t)j the number of objects of this pattern, in each elementary time
interval ]t, tþ dt], add a random object with probability λ1dt, remove an object
with probability jϕ(t)jdt, and do nothing with probability 1� (λ1þ jϕ(t)j) dt.
The objects are removed and added randomly but under the constraint that the
simulation always remains consistent with the data. The implementation of the
algorithm is the following (Lantuéjoul, 1997, 2002, Chapter 13):

1. Initialization. Set t¼ 0, and simulate a pattern ϕ of λ-objects that respects
the conditions on the objects and on the background.

2. Moving Forward in Time. Simulate an exponential holding time T with
parameter λ1þ jϕj, and add T to t (where jϕj is the number of points of
the pattern ϕ).

3. Transition to the Next State. Simulate a random variable U equal to þ1
with probability λ1/(λ1þ jϕj), or �1 with the complementary probability
jϕ j/(λ1þ jϕj), and
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� if U¼þ1, simulate a λ-object and insert it in ϕ provided this does not
violate the conditioning on the background;

� if U¼�1, randomly select one of the jϕj present λ-objects and remove
it, provided that this does not violate the conditioning on the objects.

4. Go to (2).

Note that this algorithm tends to equalize jϕj with λ1: when jϕj,λ1, objects are
added more often than removed, and the other way around when jϕj.λ1.
Time plays no role here but will be useful for generalizations.

The following procedure can be used to initialize the process:

1. Set ϕ ¼ [

2. Simulate a λ-object A.
3. If A does not hit the conditioning points that belong to the background

and hits at least one of the conditioning points belonging to the objects
not yet covered by ϕ, insert A in ϕ; else go to (2).

4. If ϕ does not cover all the conditioning points belonging to the objects,
go to (2).

The initialization step requires a finite though possibly large number of
operations, unless the data are not compatible with the model (the number
of iterations needed gives an indication on the adequacy of the model to the
data). The main algorithm never ends but, in practice, must be stopped after a
finite time, which raises problems of convergence. First note that the general
algorithm can be used even in the nonconditional case (no conditioning point),
starting from an empty set. Then jϕj evolves according to a birth-and-death
process that is known to converge to the desired Poisson variable (Feller, 1968,
Section XVII.7). The proof of the convergence of the conditional algorithm is
established in Lantuéjoul (1997). In both cases the convergence rate is an
exponentially decreasing function of time. Figure 7.38 shows four conditional
simulations of a Boolean set of channels.6

If the objects are not identical, some random objects centered in the dilated
part of V" �S will not intersect V. This may involve the simulation of many
useless objects if the size distribution of the objects is very broad. The algorithm
proposed by Lantuéjoul (2002) simulates only the necessary objects. To this
end, when a Poisson point is implemented at location x, the random object is
taken in the distribution of the random object under the condition that it
intersects V. The density of the Poisson process at x is decreased accordingly.

6 If the objects (e.g., the channels) are regarded as a permeable phase, there is a critical value of the

proportion of area occupied by the objects for which the system percolates, in the sense that a

connected component much larger than the others suddenly connects two opposite boundaries. This

proportion is called the percolation threshold and has been studied extensively by Allard (1993) and

Allard et al. (1993).
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Conditional Simulation of Other Boolean Models

The Markov procedure of the above algorithm is a very simple one: We pass from one state to
the next by adding or removing one object, and the objects are independent. A similar
algorithms allows the simulation of Boolean random functions (Lantuéjoul, 2002, Chapter
14). The algorithm of Boolean random sets lends itself to several generalizations while
remaining in the convenient setting of Markov models. Spatial birth-and-death processes,
in particular, model more complex patterns of points or objects than Boolean models
(Preston, 1975; Stoyan et al., 1987, Section 5.5.5; Møller, 1989; Guyon, 1993, Section 6.5;
Lantuéjoul, 1997).

7.8 BEYOND STANDARD CONDITIONING

Reproducing the histogram and the covariance of a phenomenon and condi-
tioning on sample points is not always sufficient to provide realistic simula-
tions. Indeed, we have seen that different random function models sharing the

FIGURE 7.38 Conditional simulations of Boolean channels modeled as sinusoidal strips, con-

strained by six points in the objects and six points in the background.
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same histogram and covariance can display very different behaviors. When we
select a random function model, we implicitly specify all finite-dimensional
distributions. If the data permit, for example if we have a complete image, it is
sensible to check that some of these distributions are compatible with the data.
If this is not the case we have to look for a suitable alternative random function
model. Unfortunately the geostatistician’s toolbox may not contain one. To
overcome that problem some approaches avoid the need of an explicit random
function model, either by simulating the physical processes generating the field
of interest, or by exploiting a training image. Adaptive methods may also
provide a solution honoring given constraints: a standard simulation matching
only the histogram and the covariance, for example, is adapted iteratively until
it matches the imposed constraints.

An important contribution of geostatistics, and especially of conditional
simulations, has been the development of tools for converting observations such
as, for example, seismic cubes or production history into information about the
physical parameters of the system, a process known as inversion. Stochastic
inversion has been considered for a long time in hydrogeology, geophysics, and
petroleum engineering. In hydrogeology, see the synthesis paper of Carrera et al.
(2005) and, from a geostatistical perspective, the review of Chilès (2001). Sto-
chastic inverse modeling is now a vast domain beyond the scope of this book,
with Tarantola (2005) as a major reference. We will simply focus on three
contributions of stochastic methods to inverse modeling: simulated annealing,
which is a popular optimization method, the gradual deformation method,
which offers much flexibility, and the Bayesian framework used to incorporate
general geological knowledge when the probabilistic model cannot be completely
inferred from the data. We will not revisit data assimilation, presented in Section
5.8.4, which updates simulations (“ensemble members“) of a physical system by
assimilating data provided by repeated surveys.

7.8.1 Stochastic Process-Based Simulation

Given the difficulty to define random function models providing realistic rea-
lizations of complex geological environments, an alternative is to model the
geological, physical, or chemical processes that generated the geological
architectures we observe now. Early on, Matheron (1969b) and Jacod and
Joathon (1971, 1972) developed stochastic process-based models where the
sedimentation process is governed by a differential equation relating sediment
thickness to influx of sedimentary material and sea depth. A variety of situa-
tions can be simulated reflecting the choice of the parameters (rate of influx of
sedimentary material, compaction, subsidence, meandering): for example,
continuous layers, lenses, and migration of channels. Very realistic images are
now generated with simulators mimicking the erosion, transport and deposi-
tion of clastic sediments (Tetzlaff and Harbaugh,1989; Watney et al., 1999) or
the meandering of channels (Cojan et al., 2005; Pyrcz et al., 2009). Stochastic
process-based models can be conditioned, at least approximately, on global and
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local constraints (facies proportions, drill hole data). The genetic hypotheses
give an explanatory value to the model and not just a descriptive one.

7.8.2 Multipoint Simulation

Like process-based models, multipoint simulation (MPS) avoids the need of
choosing a random function model and identifying its parameters. To this end,
it adopts a nonparametric approach based on training images. It was first
designed for simulating geological facies in a petroleum reservoir when a
training image of an analogue of the reservoir is available. The objective is to
generate a numeric model inheriting the geometry of facies associations seen in
the training image while honoring the data on the reservoir. When only two
facies are considered, the studied variable Z(x) is the indicator of one of the
facies, otherwise it is a categorical variable representing the facies number. Let
T(x) represent the similar variable in the training image. The domains where
Z and T are defined are different, but we only assume that the two variables
display similar spatial variations. The simulation algorithm uses the sequential
method presented in Section 7.2.1. To simulate Zi¼Z(xi) knowing the simu-
lation at points xj, j, i (hard data and previously simulated points), the algo-
rithm searches the training image for all configurations identical to {x1, x2, . . . ,xi}
up to a translation vector τ and satisfying, Tðx1 þ τÞ ¼ z1,Tðx2 þ τÞ ¼
z2, : : : ,Tðxi�1 þ τÞ ¼ zi�1. The sample conditional histogram of T(xiþ τ)
is then computed for these configurations, Z(xi) is assigned a random
value zi drawn from that histogram, and the outcome zi is included in the
conditioning data set for the next iteration.

In practice, like for usual sequential simulations, conditioning is limited to a
subset of the current data. Indeed, the training image, even if large, is finite, so
that it will provide no configuration fitting all the conditioning data as soon as
i gets large. The geometrical configuration defined by this subset is called a
template. The resulting simulation of course depends on the choice of
the templates. From the computing time point of view, it depends also on the
implementation. The method was first proposed by Guardiano and Srivastava
(1993) for simulating a sandstone formed by alternating fine, relative imper-
vious sediments and coarser, more permeable sediments. The simulation of this
medium by MPS, with neighborhoods of at most 16 points, led to images which
were closer to the morphology of the training image than realizations obtained
by sequential Gaussian simulation but not yet fully convincing. Since this early
application, MPS has benefited from many improvements.

Scanning the image each time a pixel is to be simulated being computa-
tionally slow, Strebelle (2002) proposed an algorithm where training data
events are classified and stored in a search tree prior to simulation. Data events
considered correspond to given templates, and among them to only those
combinations of indicator or categorical values present in the training image. If
some templates lead to too poor statistics, simpler templates are used. Harding
et al. (2005) introduced a sub-grid approach to save computing time and better
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simulate large structures: A coarse grid is simulated first, then a finer grid, and
so on, until the final grid is simulated. Templates differ from one grid to the
next.

It is not always easy to adequately reproduce the spatial continuity of the
training image with a pixel by pixel procedure. Zhang et al. (2006), as well as
Arpat and Caers (2007), patch a pattern of several pixels rather than only the
central pixel i. To reduce the dimensionality of the training data events, they are
classified on the basis on a limited number of criteria (Zhang et al.) or indexed
in a list (Arpat and Caers). A distance function is introduced to compare a data
event in the training image with the conditioning data, and the training
data event with the smallest distance is selected. That approach also allows the
simulation of continuous variables.

Mariethoz and Renard (2010) revert to a pixel-by-pixel simulation but use a
different algorithm: To simulate a pixel, they define a random path through the
training image and select the first similar training event whose distance to
the conditioning data event is smaller than some threshold. This is equivalent
to scanning the whole training image for all data events similar to the condi-
tioning data event and then selecting one of them, while not requiring the
preliminary storage of the training image events in a tree structure.

A number of other improvements have been tailored to specific needs.
Because of the sequential procedure, multipoint simulations can easily be
constrained by auxiliary variables—for instance, local facies proportions, or
local density and anisotropy of objects (Chugunova and Hu, 2008). They can
also meet spatial constraints (global facies proportions, connectivity between
wells). Finally, MPS can be coupled with the gradual deformation method or
the probability perturbation method to integrate hydrodynamic data (pro-
duction data of a petroleum reservoir). The interested reader is referred to the
comprehensive reviews of Hu and Chugunova (2008) and Daly and Caers
(2010). Figure 7.39 shows a 2D gray-tone training image of an arrangement of

FIGURE 7.39 Training image (left) and multipoint simulation with 100 randomly located

conditioning data (right). Positions of conditioning data are marked by circles whose gray levels

indicate the values of the data. [From Mariethoz and Renard (2010).]
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stones and an MPS simulation based on 100 conditioning points (Mariethoz
and Renard, 2010). Although the result shows some differences with the
training image—in particular, the presence of smaller stones—the resemblance
is pretty impressive!

Ideally, the method requires a number of training images of a much larger
size than the domain to be simulated. However, it is sometimes used with a
single, possibly incomplete, training image. Contrary to random function
models, which implicitly include an infinite number of training images in an
infinite domain, the empirical conditional distributions of the MPS approach
do not generally constitute a consistent set of conditional distributions. Indeed
an MPS can be interpreted as a Markov random field, as noted by Daly (2005),
but unlike classic Markov RF modeling in which the conditional distributions
are obtained by an inference procedure that ensures a consistent mathematical
model, the assignment of the conditional distribution is purely empirical for
MPS, which usually leads to theoretical inconsistencies. The exact status
of MPS is therefore unclear. Each simulation reproduces the training images up
to a point depending on the templates selected. There are all intermediates
between simulations obtained by patching large patterns of the training image
and simulations based on small templates and taking more freedom with the
training image. There is of course no guarantee that a set of such simulations
spans the domain of the possible realizations of the phenomenon. From that
point of view, MPS belongs more to stochastic imaging than to stochastic
simulation.

Despite these shortcomings, MPS offers much flexibility for generating
simulations that display complex features such as those encountered in geology
and constrain them by auxiliary information. This requires of course that the
training images are relevant and representative of the spatial heterogeneity and
that their essential features can be characterized by statistics defined on a
limited point configuration. Outcrops provide natural training images, but their
extension to 3D is not straightforward. For this reason, 3D training images are
often standard nonconditional simulations—for instance, Boolean simulations
based on realistic objects and association rules—so that MPS is used as a proxy
for a true conditioning. Very realistic training images are also generated with
stochastic process-based simulators.

7.8.3 Stochastic Seismic Inversion

Bortoli et al. (1993), Haas (1993), and Haas and Dubrule (1994) propose a
method for constructing 3D simulations of acoustic impedance (the product
ρV of rock density ρ and seismic velocity V) that are consistent with both
seismic and well data. Well logs provide acoustic impedance measurements
with a high vertical resolution while seismic provides spatial coverage but with
a much lower resolution due to frequency limitations.

The principle of the method is to simulate by geostatistical means a vertical
impedance profile at each seismic grid node (x, y) in 2D space, and from this
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profile derive a synthetic seismic trace that is compared to the real seismic trace.
If the agreement is good, the impedance profile is accepted and incorporated in
the data; else another impedance profile is tried. Specifically, the following
sequential algorithm is used:

1. Select a node (x, y) at random among those where the impedance profile is
unknown.

2. Construct nS simulations of acoustic impedance along the profile to the
vertical of the node (x, y) conditionally on the traces already known.

3. Transform the nS impedance profiles into synthetic seismic traces
obtained by convolving the reflection coefficients derived from acoustic
impedance with the source wavelet.

4. Compare each of the nS simulated seismic traces with the measured trace
(the criterion used is the correlation coefficient or the variance of
discrepancies); the impedance profile that provides the simulated trace
closest to the measured trace is selected.

5. Add the selected profile to the data, and if all the profiles have not yet
been simulated, return to step 1 for another profile.

The validity of the above rests on three main assumptions: (i) that the con-
volution model applies, (ii) that the source wavelet is constant, and (iii) that
geostatistical stationarity is achieved. In the end this method of simulation
performs an inversion of the seismic data. For quality results the various steps
must be carefully calibrated and validated. In particular, considering uncer-
tainties on seismic traces, the choice of the required degree of similarity between
the simulated synthetic trace and the real trace is critical. The degree of
similarity obtained is a function of nS. Using too high a value for nS would lead
to overconstraining the simulation. In the present case a value between 10 and
100 seems sufficient, as we can see in Figure 7.40 showing a simulated seismic
section for three different values of nS (1, 10, 100) and also the real seismic
section. The real seismic is poorly reproduced by the simulated seismic when
nS¼ 1—in other words, for an ordinary simulation (the correlation coefficient
is less than 0.4)—whereas it is well reproduced, except for a few local anom-
alies, with nS¼ 100 (the correlation coefficient reaches 0.8).

Stochastic inversion has evolved with the introduction of linear approx-
imations to the Zoeppritz equations for seismic waves by Buland and Omre
(2003a). It is no longer an optimization scheme that requires several trials to
generate a single realization but is instead a process generating at once several
realizations that honor the seismic measurements. It also enables pre-stack
inversion, and has been extended from models based on a regular sampling of
impedance in time to layered models operating directly in a stratigraphic grid
(Escobar et al., 2006; Williamson et al., 2007).

Sancevero et al. (2005) compare stochastic seismic inversion with standard
deterministic inversion on a synthetic turbiditic reservoir. Deterministic inversion
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is much cheaper to run but only reproduces thick sand bodies and tends to
exaggerate reservoir connectivity.Ashley (2005) reaches the sameconclusionswith
other examples and likens deterministic inversion to kriging, with the same lim-
itations when cutoffs are applied, and he likens stochastic inversion to conditional
simulations. Phrased differently, deterministic inversion is an inversion at
the seismic scale constrained by well logs, whereas stochastic inversion is an
inversion at the log scale constrained by seismic. Stochastic inversion incorporates
the variability below seismic resolution and is a valuable tool for fieldswith critical
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(b)

100

0 30

100

0 30
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100
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FIGURE 7.40 Geostatistical inversion of seismic data and comparison with reality on a

seismic section: (a) simulation with nS¼ 1; (b) simulation with nS¼ 10; (c) simulation with nS¼ 100;

(d) real section. [From Haas (1993).]
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flow heterogeneities at that scale. Realizations constrained by seismic provide
realistic views of the spatial distribution of heterogeneities and give access to
information about possible connected volumes. The word “views” is important
here because a particular realization is not a good local predictor, no matter
how carefully selected, and should not be used as a basis for a deterministic
reservoir model.

Now acoustic impedance is not the final target. It is useful through
its correlation with reservoir properties such as porosity, lithology, and fluid
content. Regression equations may be established from borehole data, or
more complex methods based on rock physics models may be used (Caldwell
and Hamman, 2004; Bachrach, 2006). Direct petrophysical inversion methods
in terms of reservoir properties have been proposed as an alternative to elastic
inversion of impedances (Bornard et al., 2005; Buland et al., 2008). This has
several advantages, notably that it is easier to introduce constraints in the
petrophysical world of porosity and the likes than in the petro-elastic world of
density and velocities. The argument for elastic inversion is that it remains close
to the seismic data and permits intermediate quality checks. Which approach is
better is an ongoing debate among geophysicists.

7.8.4 Simulated Annealing

Simulated annealing is a powerful, but heuristic, means of building conditional
simulations subject to complex constraints (Hegstad et al., 1994). Simulated
annealing was introduced by Kirkpatrick et al. (1983) as a device to obtain
improved solutions of a variety of combinatorial optimization problems.
Annealing is a manufacturing process by which a molten metal is cooled very
slowly to produce a stress-free solid. At high temperature the molecules of the
molten metal move relatively freely and reorder themselves into a very low
energy crystal structure. Nature is able to find this minimum energy state for
slowly cooled systems. If the liquid metal is cooled quickly, it does not reach
this state but ends up in a polycrystalline or amorphous state with a higher
energy. So the essence of the process is slow cooling, allowing ample time for
redistribution of the atoms as they lose mobility. In statistical physics the p.d.f.
of a state s with potential energy U(s) at absolute temperature T. 0 is of
the form

fTðsÞ ~ exp �UðsÞ
kT

	 

ð7:52Þ

where Boltzmann’s constant k relates temperature to energy. Such a distribu-
tion is known as a Gibbs, or Bolzmann, distribution. A system in thermal
equilibrium at temperature T has its energy probabilistically distributed among
all different states s. Even at a low temperature, there is a positive probability
for the system to be in a high energy state. It is this probability that gives the
system a chance to get out of a local energy minimum and to find a more global
one later. However, the probability for the system to be in a high-energy state
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decreases when T tends to 0, since the p.d.f. fT concentrates progressively on
the set Smin of the states s that have the minimum energy Umin. The annealing
process achieves a configuration of atoms with energy near or at the minimum
of U when T returns to a low value.

Simulated annealing mimics the metallurgical process to optimize a grid of
values so that it honors given constraints. A first image of the grid, which does
not honor the constraints, is iteratively relaxed: A new image is proposed by
swapping two pixels or using another algorithm exploring the possible images
independently of the constraints, and it is selected with an acceptance�rejection
technique; as in the metallurgical process, the change for the new image will
more often than not reduce the energy. In order to develop the analogy with
annealing, the energy function U(s) associated with any configuration or state s
of the image is defined as some measure of the difference between the desired
features and those of the candidate realization s. The analogy with (7.52)
suggests defining a p.d.f. on all images by

fλðsÞ ~ πðsÞ e�λUðsÞ

where π(s) is the prior distribution of states independently of the constraints
and λ plays the role of 1/T and so increases progressively to infinity.

Sampling from fλ is made in two steps:

1. Using the notation of Section 7.6.2 and denoting the current state by si,
we choose a new state sj according to the transition matrix P associated
with the distribution π; to this end a Metropolis-type algorithm is used
(which implies a first acceptance test).

2. The change from state si to state sj is confirmed if U(sj),U(si), and it is
randomized with probability expð�λ½UðsjÞ �UðsiÞ�Þ in the opposite case.

When λ remains fixed, an iterative use of this algorithm samples the states s
from f λwithout being attracted by a local minimum. By “cooling” progressively,
namely by increasing λ sufficiently slowly, one approaches a sampling of the set
Smin. In practice, λ is changed at each step. Convergence to a uniform sampling
of Smin is ensured if λk¼ (1/c) log (kþ 1) is taken for the value of λ at step k. In
this formula, c represents the minimum increase in energy required to get out of
any local minimum of U(s) that is not a global minimum and enter the
neighborhood of a state with a lower energy (Hajek, 1988). Such convergence
to infinity for λk is very slow. In practice, λk¼λ0 /α

k is commonly used (e.g.,
α¼ 0.90 or 0.95), but convergence is no longer assured.Millions of iterations are
often required to approach a low-energy state. Therefore simulated annealing
will be efficient only if U(sj) can be obtained easily by updating U(si).

Simulated annealing was designed to solve optimization problems such as
the famous traveling salesman problem of finding the shortest itinerary for
visiting his clients [e.g., Press et al. (2007, Section 10.12)]. Along this line, it is
used for the optimization of sampling design [see, e.g., Romary et al. (2011) for
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the design of an air survey network when explanatory variables such as
road traffic and population density are available, the objective being the min-
imization of the average kriging variance]. In a domain closer to the simulation
of random functions, Geman and Geman (1984) applied simulated annealing
combined with the Gibbs sampler to the restoration of images that have been
degraded by an additive or multiplicative noise, a nonlinear transformation,
and/or blurring.

In the pioneering applications of simulated annealing to aquifers and oil
reservoirs, the distribution π was simply the marginal distribution [Farmer
(1992) for rock facies; Deutsch (1993) and Langlais and Doyle (1993) for
permeability; Srivastava (1994) for the indicator of a fracture network]. The
initial state was obtained by independently selecting the value of each site from
that marginal distribution, and the candidate states were obtained by swapping
two pixels or changing the value at a single pixel. Spatial features were therefore
enforced through a function U(s) made of terms representing square differences
between the sample variogram value of state s for a given lag and the desired
variogram value taken from a variogram model or from the sample variogram
of a training image. This a “brute force” use of simulated annealing because, in
principle, the statistical properties of the random function should be captured
by the prior model π and not by the energy function. Such use gives poor results
at a very high computational cost. For example, the variogram lags entered in
the energy function are overfitted, whereas the variogram lags not considered
in U(s) may become unrealistic. Simulated annealing can be advantageously
replaced by sound simulation methods when the random function model is
specified, or by multi-point simulation if one intends to simply reproduce a
training image.

Some of the early applications also sought to constrain simulations on
complex data. For example, to condition on the effective permeability derived
from a well test, Deutsch (1993) supplemented the variogram terms of U(s) by
an additional term representing the square difference between the effective
permeability computed numerically for state s and the true effective perme-
ability. Additional information on these early applications can be found in
Deutsch and Cockerham (1994) and Ouenes et al. (1994). Since the spatial
features are only considered through the energy function, the exact status of the
simulations remains unclear. When several simulations are generated, it is hard
to know if a correct level of fluctuation is reached and if all possible situations
have been correctly sampled.

To correctly sample states satisfying additional constraints, π should be
the distribution of states prior to considering the constraints; this means that
the initial state and the candidate states are nonconditional simulations, or
conditional simulations in the usual sense if conditioning point-support data
are available. The energy function is of the form

UðsÞ ¼ ½μðsÞ � μobs�0 V�1 ½μðsÞ � μobs� ð7:53Þ
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where the vector μ(s) � μobs measures the discrepancy between some geological
or engineering properties μp(s) calculated on the simulation and their desired
values μobs

p observed or measured by physical experiments and V is the
covariance matrix of measurement errors. In applications to aquifers and oil
reservoirs, μ(s) is obtained by running a flow simulator; this requires a
significant computational effort that cannot be repeated for millions of
iterations. Simulated annealing can therefore be applied only with a limited
number of unknown variables and an optimized sequence of states. Romary
(2009, 2010) develops such an approach for constraining simulations of
permeability or rock facies of synthetic oil reservoirs on production data
(water cut curves). This is made in a Gaussian context, modeling either log-
permeability as a Gaussian SRF or rock facies as a truncated Gaussian RF.
Several improvements to the usual algorithms are introduced:

� Dimension Reduction. The Karhunen�Loève theorem (Loève, 1955) states
that a stochastic process Z(x) can be represented in a compact domain D
by an infinite linear combination of orthogonal functions:

ZðxÞ ¼
XN
p¼1

Xp φpðxÞ, x 2 D

where the functions φp depend on the domain D and on the covariance
of Z and where the Xp are random variables. If Z is Gaussian, the Xp are
independent. By truncating the infinite sum to some maximum value, Z(x)
can be approximated with a random vector X of moderate dimension.

� Adaptation to the Temperature. The transition matrix is adapted to the
temperature to allow global changes at high temperature and local
changes at low temperature.

� Parallel Interacting Markov Chains [Iba (2001) in statistical physics;
Andrieu et al. (2007) in statistical mathematics]. The principle is to run
several chains in parallel, each at a different temperature, and to allow
them to exchange information, swapping their current states. This is not
only a means to speed up the calculations by parallel computing, but also
to improve the sampling of states.

Finally, let us mention that simulated annealing may succeed in conditioning
simulations when simpler conditioning methods do not apply. A case in point is
the conditioning of random functions with a negative binomial marginal dis-
tribution and Meixner isofactorial bivariate distributions, with an illustration
in forestry (Emery, 2005c).

7.8.5 Gradual Deformation

Simulated annealing is very computationally demanding, especially when
the energy function cannot be updated easily, because it requires a large
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number of iterations. This is unfortunately often the case when we want to
constrain on global characteristics such as dynamic production data of a
petroleum reservoir or an aquifer.

Hu (2000a) proposes an alternative method that is approximate but very
efficient. The idea is, at each iteration, to propose a continuous series of can-
didate states instead of a single one, as well as to select the candidate state
minimizing the objective function. In comparison with simulated annealing and
with the multiple Metropolis�Hastings algorithm of Section 7.6.2, the method
is approximate because (i) it selects the candidate state with the lowest objective
function rather than randomly from a likelihood function, and (ii) it does not
include a cooling process.

The method was first developed for Gaussian random functions. Suppose
that we want to model a grid of values represented by a Gaussian random vector
Z¼ (Z1, . . . ,ZN)

0 with mean vector m¼ 0 for simplicity and covariance matrix
C. Like the multiple Metropolis�Hastings algorithm, the method is based on the
fact that if Z1 and Z2 are two i.i.d. Gaussian random vectors with mean zero,
Z1 cos tþZ2 sin t follows the same distribution.

A state is a realization z of the random vector Z. In order to account for
indirect data such as production data, we define an objective function U(z) to
be minimized, similar to the energy function U(s) defined by (7.53) for simu-
lated annealing. Denoting the current state by z

current, the algorithm of each
iteration is the following:

1. Select a state vector z from the distribution of states, independently of the
current state vector.

2. Consider the continuous series of candidate states:

zcandðtÞ ¼ zcurrentcos tþ z sin t, t 2 ½0, 2π½

3. Determine the value topt minimizing U(zcand(t)) and set zcurrent¼ z
cand(topt).

The value topt can always be found by discretizing t and evaluating the function
U for each value of t. It is in fact usually obtained by numerical techniques that
require fewer calculations of U(z) than a systematic or random scan—for
example, gradient-based methods if U is differentiable with respect to t [see Hu
and Le Ravalec-Dupin (2004)]. The process is stopped when U is low enough
for the fit to be considered good.

A variant is to independently select several states z1, . . . , zp, and to select the
linear combination z

cand(t1, . . . , tp)¼λ0 z
currentþλ1 z1þ � � � þλp zp with

λ0 ¼ L
p

j¼1

cos tj , λi ¼ sin ti L
p

j¼iþ1

cos tj, i ¼ 1, : : : , p� 1, λp ¼ sin tp

leading to the lowestU. This is more satisfactory than the standard method, but
the determination of the optimal linear combination is more difficult.
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Since the method is approximate, it may lead to a significant structural drift
from the initial stochastic model when the number of iterations increases. Hu
(2002) proposes improvements to the standard method. He also proposes a
modified algorithm to deform conditional simulations.

The state z selected at step 1 can be generated by any nonconditional sim-
ulation method. However, a moving-average simulation method has the
advantage that the gradual deformation can be applied locally and not neces-
sarily globally. Indeed, using for simplicity the 1D notation, suppose that Zi is
simulated as

Zi ¼
Xp
j¼�p

βjUiþj

where the Uj are independent standard normal random variables. Simulating
the vector Z of the Zi’s then amounts to simulating the vector U of the Uj’s.
Since Uj only has a local influence on the Zi’s and since the Uj’s are
independent, we can fix the local state in an area where we have a correct fit
to indirect data and continue the deformation in other areas. Le Ravalec et al.
(2000) propose a variant of the discrete Fourier method enabling an efficient
calculation of moving averages.

This approach is obviously applicable to any random function expressed as
the transform of a Gaussian random function: The gradual deformation
is applied to the Gaussian random function, and the objective function is
expressed as a function of the Gaussian. Typical applications concern the
calibration of simulations to well-pressure data in the study of a permeability
field with a lognormal spatial distribution (Hu, 2000a; Hu and Le Ravalec-
Dupin, 2004) or geological facies in the framework of the truncated Gaussian
model (Le Ravalec et al., 2000).

The gradual deformation method has applications other than Gaussian
simulations. Let us consider the elementary case where we want to deform the
position of a random point over the unit square: Its coordinates are defined by
two independent random variables U and V with uniform distribution on [0, 1].
We can transform them into independent random variables X and Y with
standard normal distribution by letting X¼G�1(U) and Y¼G�1(V), where G is
the standard normal c.d.f. With two independent random points (U1, V1) and
(U2, V2), we can define a gradual deformation X(t)¼X1 cos tþX2 sin t, Y(t)¼
Y1 cos tþY2 sin t and transform it into a gradual migration U(t)¼G(X(t)),
V(t)¼G(Y(t)). The point (U(t), V(t)) describes a trajectory that is symmetric
with respect to the center of the square, as shown in Figure 7.41, which achieves
a strong mixing of possible states. More generally, any random variable can be
subjected to gradual deformation through a preliminary Gaussian transfor-
mation. This enables the gradual deformation of a Boolean model by gradual
migration of the Poisson points or gradual change of object sizes (Hu, 2000b;
Hu and Jenni, 2005). Similarly, Verscheure et al. (2012) condition fractal
simulations of subseismic faults on production history. The main difficulty is to
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develop a model with smooth deformation: A slight migration or extension of a
simulated fault may have a large impact on the local connectivity of the fault
network, not to speak about the suppression or the addition of a fault.

Gradual deformation may also be used for inference of parameters such as
variogram range or object size. These parameters are treated as random vari-
ables, transformed to Gaussian, and calibrated by the gradual deformation
method (Hu, 2000a), which constitutes a simplified alternative to a Bayesian
approach to parameter uncertainty.

In summary, the gradual deformation method can provide a series of
simulations honoring complex constraints. The status of these simulations is
not clear but, due to the strong mixing properties of the method, they should
explore distinct areas of the state space, without guaranteeing a thorough
sampling of the conditional distribution. We leave aside the debate of deciding
whether it is better to apply a fully consistent method such as simulated
annealing, requiring great simplification of the system size and the physical
model, or to use a more heuristic method such as gradual deformation
requiring less simplification.

7.8.6 Bayesian Approach

We sometimes have so few data that we cannot infer the covariance or vario-
gram with any confidence, which is already a problem if we intend to perform
kriging, and even more so if we want to construct a simulation. This situation is

FIGURE 7.41 Trajectories of gradual deformation of a set of i.i.d. points (black dots) uniformly

located in the unit square. [From Hu (2000b).]
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common in the study of petroleum reservoirs. Bayesian methods provide
a framework for dealing with such problem, using knowledge input by the
geologist. It is assumed that (1) from geological considerations the geologist
can specify the type of reservoir, namely, in geostatistical terms, the type of RF
model describing the reservoir properties of interest (e.g., lithology, porosity,
permeability, oil saturation), (2) this RF model is of a type that we know how to
simulate, and (3) an expert, reasoning by analogy or otherwise, can specify a
prior distribution for the RF parameters.

The reservoir is usually represented by a vector-valued random variable of
high dimensionality which will be denoted by R. The set of parameters of the
distribution of R is a vector-valued random variable of low dimensionality
which will be denoted by Θ. Our model is then a set of RFs indexed by the
possible values θ of Θ. Let us give some examples:

1. R is a Boolean model of channels, namely a set of random points
with their marks (length, width, direction, curvature of the channel). Θ
comprises the Poisson intensity (fixed or regionalized) and the parameters
of the distribution of the channel marks.

2. R comprises an indicator or categorical RF (facies number) and a
Gaussian RF (logarithm of permeability), discretized at the nodes of
a grid.Θ comprises the parameters of the categorical variable (proportion
of each facies, range) and those of the Gaussian RF (logarithmic mean
and variance of permeability in each facies, nugget effect, ranges).

3. Model with Constraints. A binary function I(r) specifies whether or not
the reservoir R¼ r is possible. The situation is similar to the previous ones
except that the p.d.f. of R is multiplied by I(r), up to a normalizing factor.

Denoting by f (θ) the prior p.d.f. of Θ and by f (r j θ) the prior p.d.f. of
R when Θ¼ θ is fixed, the prior p.d.f. of R is

f ðrÞ ¼
Z

f ðr j θÞ f ðθÞ dθ

A nonconditional simulation of R is simply a vector r selected from this
p.d.f. In practice it is usually difficult to express f (r) analytically and to simulate
R directly, and the simulation is generated in two steps:

1. Select θ from the p.d.f. f (θ), which is a standard problem of sampling
from a vector-valued random variable of low dimensionality.

2. Select r from the conditonal p.d.f. f (r j θ); that is, generate a noncondi-
tional simulation with known parameters θ, which is a standard problem.

This amounts to sampling both R and Θ. In applications we have a set of
observations, represented by a vector-valued random variable referenced to as
data, and we are interested in simulations conditional on these data. For the
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same reason as above, we will sample R from the posterior p.d.f. f (r j data) by
sampling both R and Θ from f (r, θ j data). From the Bayes’s rule, this posterior
p.d.f. is

f ðr, θ j dataÞ ¼ f ðdata j r, θÞ f ðr, θÞ
f ðdataÞ ð7:54Þ

Given the reservoir propertiesR¼ r, the distribution of the data does not depend
on θ so f (data j r, θ) is a function of r only. Equation (7.54) is thus of the form

f ðr, θ j dataÞ ¼ const � f ðdata j rÞ f ðr j θÞ f ðθÞ ð7:55Þ

where const denotes 1 / f (data) which usually cannot be computed (it would
require the double integration of the right-hand side in θ and r). This
method requires, however, that we know f (data j r) for any r. Since the observa-
tions usually comprise direct data of the reservoir properties in wells and indirect
observations such as seismic or production history, this amounts to postulating
that we are able to solve the forward problem—that is, compute the indirect
observations knowing the reservoir properties everywhere. The results depend on
unknowndata acquisition parameters (e.g., the depth of investigation of a logging
tool, or the exact signature of a seismic source), so they are represented by a
probability density function, namely f (data j r). Actually, the determination of
f (data j r) is not a simple matter, especially when scale effects are present.

Now the problem is to sample from (7.55). A standard technique for
drawing from a probability distribution known up to a normalizing constant
is the acceptance�rejection method. If we know a majorization A(data) of
f (data j r) over all possible values of r, we can construct a conditional simu-
lation of R by adding the following third step to steps 1 and 2:

3. Let p¼ f (data j r)/A(data); accept r with the probability p, or reject it with
the complementary probability 1� p and go back to step 1.

But this method is very inefficient. When p is low, which it is when f (data j r) is
not flat, a large number of simulations obtained with great effort end up being
rejected. For example, with standard conditional simulations where observa-
tions are exact values of the reservoir properties, data is a subset of R. There is a
very low, if not zero, probability that a nonconditional simulation (r, θ) fits the
observations, so step 3 will almost surely lead to rejection. The conclusion is
the same if only some of the observations are exact values of reservoir prop-
erties. Other algorithms must be used.

In simple cases the simulation can be carried out with standard techniques.
For example, Doyen et al. (1994), assuming θ known, define a sequential
algorithm that combines a local prior distribution of lithology (sand/shale
indicator) obtained by indicator kriging with a function representing the p.d.f.
of a local seismic attribute (indirect variable) given the lithological facies. Such
simplification is not possible in more complex situations, and another method is
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used, the Metropolis�Hastings algorithm. This requires to cast the problem in
terms similar to those of Section 7.6.2. For example, the reservoir (a state in the
terminology of Markov fields) is represented by a multivariate grid of values, or
by an array of coordinates, sizes, and orientations of Boolean objects. Con-
straints like those in Example 3 are accounted for by simulated annealing
techniques. It may be a good idea to initialize the iterative process with a
conventional simulation conditioned on the observations of reservoir proper-
ties. The method must be tailored to each application and is clearly compu-
tationally intensive despite numerous approximations. Details can be found in
Omre and Tjelmeland (1997).

This approach has been initiated byHaldorsen andLake (1984) in a simplified
version, and it has been developed further by Georgsen and Omre (1993)
(combination of marked point processes and Gaussian RFs, including spatial
interaction), Eide et al. (1997) (GaussianRFs, uncertainty in the data acquisition
parameters), Lia et al. (1997) (a variety of data types andRFmodels), to cite only
a few. An achievement of this method is to produce, in principle, images that are
consistent with the observations and constitute a reliable basis for quantitative
evaluations. However, we basically get what we put in. If there are plenty
of data, the results are reliable regardless of the prior distribution; if there are few
data—which is the working assumption here—the results mainly reflect the
prior model. This may be dangerous if the prior model is not consistent with
the available data.

Recent work has focused the attention on seismic processing. Indeed in
petroleum reservoir evaluation there are usually large amounts of seismic data
with good spatial coverage. Seismic data only capture contrasts in the media
and appear with considerable convolution; moreover, the signal-to-noise ratio
may be poor. Bayesian approaches are well-suited for reservoir characteriza-
tion based on these types of unprecise data. In a series of papers, Buland and
Omre (2003a�c) and Buland et al. (2003), Bayesian Gaussian inversion, cor-
responding to Bayesian kriging, is used for seismic inversion into continuous
reservoir properties like elastic material properties. The concept is further
generalized into Bayesian skew-Gaussian inversion in Karimi et al. (2010)
where marginal p.d.f.’s with skewness can be modeled.

Recent developments in seismic inversion into categorical lithology-fluid
classes can be found in the review paper of Bosch et al. (2010). Furtherwork along
this line including spatial coupling of the lithology-fluid classes is presented in
Ulvmoen andOmre (2010),Ulvmoen et al. (2010), andRimstad andOmre (2010).

7.9 ADDITIONAL TOPICS

7.9.1 Simulation of Anisotropies and Space-Dependent Variograms

So far we have considered only simulations with a stationary and, for some
methods such as turning bands, isotropic covariance. Let us now examine
some generalizations.
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Simulation of Anisotropies

A covariance (ordinary or generalized) may have several components, and each
may have its own anisotropy. Some methods allow a direct construction of
simulations with the desired covariance; this is the case of the sequential
method and the discrete spectral method (provided any zonal anisotropy is
oriented parallel to the axes). In other cases the RFs studied can be considered
as the sum of independent RFs associated with the various components of the
covariance, so we simulate each component separately. The simulation of
the anisotropies is not a problem:

� Simulating a zonal anisotropy is the same as making a simulation in a
subspace of the observation space.

� A geometric anisotropy can always be reduced to the isotropic case by
means of a simple geometric transformation; however, some methods,
such as the dilution of Poisson germs, can be used to directly simulate
anisotropies using anisotropic dilution functions (i.e., ellipsoids will give a
spherical covariance with a geometric anisotropy).

These solutions cannot be used with object-based models displaying a more
complex anisotropy than a global geometric anisotropy: For such models the
anisotropy must be modeled at the level of the objects.

Simulation of a Locally Stationary Random Function

When we study a domain of large extent, it is rarely homogeneous and with the
same covariance everywhere. But generally, we can consider the phenomenon
as locally stationary (or locally intrinsic), with a covariance that changes slowly
in space. In the neighborhood of a point x0, we have, for example, a variogram
of the form

γx0ðhÞ ¼ cðx0Þ γ0
h

aðx0Þ
	 


where the sill c(x0) and the scale parameter a(x0) vary slowly with x0 at the scale
of the distances considered for h. It is important to match these structural
parameters.

In the case of Gaussian variables, the variations of the sill (or more generally of
a multiplicative factor) can be handled easily: To obtain a nonconditional sim-
ulation displaying these variations, it suffices to perform a simulation of the basic
model with variogram γ0(h), then multiply it by

ffiffiffiffiffiffiffiffiffi
cðxÞp

at each point simulated.
The variations of the scale parameter are more difficult to deal with, unless we
can directly use a dilution method. To simulate, for example, a spherical model
with variable local range a(x0), we dilute the Poisson germs by spheres of
suitable diameter: The germ i located at the point Xi¼ x is diluted by a sphere
with diameter a(x).
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In the case of object-based models, we can in the same manner locally adapt
the Poisson point density and/or the size of the objects.

7.9.2 Change of Support

In applications we often need simulations of block values rather than point
simulations. For example, the simulation of mining methods is based on
simulations of average grades over blocks whose size corresponds to the
selection unit.

Discretization by a Point Simulation

Some simulation methods define the simulation continuously, but it is usually
not possible to integrate it analytically over a block. In practice, the simplest
method for simulating a block is usually to discretize it into a fine enough grid
and simulate the nodes by point simulation. The simulated block value is the
mean of its simulated discretization points. The resulting approximation is
acceptable if the variability is small at the scale of the discretization grid. This
approach offers two advantages:

� We get both the point and the block simulations. For a simulation of
mining methods, we can therefore simulate at the same time an additional
reconnaissance survey (e.g., pre-mining drill-holes) and mining blocks
(selection units).

� It is very fast to generate a simulation for a new block size, or simulate
blocks of variable dimension (e.g., patchwork grid for hydrogeologic
calculations).

Direct Simulation of Blocks

If we have to simulate a large number of small blocks, the discretization method
may become prohibitive. In the case of a Gaussian SRF we can easily perform a
direct simulation of the blocks, assuming that they are all of the same size v.
From the point covariance C(h) of Z(x), we can deduce the regularized
covariance Cv(h) of the block values Zv(x). Simulating blocks with the point
model C(h) simply amounts to simulating points with the regularized model
Cv(h). We can also derive the covariances between point data Z(xα) and block
values Zv(x) and therefore condition by a separate kriging.

In the case of a non-Gaussian SRF we can also propagate the change of
support to the probability distribution if the discrete Gaussian model of change
of support is applicable (cf. Section 6.8). In this model the SRFs Z and Zv are
considered as deriving from two SRFs Y and Yv with Gaussian marginal dis-
tributions by two transformations ϕ and ϕv. The characteristics of the SRF Zv

(transformation function ϕv, covariance functions of Zv and of Yv) are deduced
from those of the point-support SRF Z (transformation function ϕ, covariance
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functions of Z and of Y, themselves related). We therefore have all the elements
needed to simulate Yv and then Zv.

7.9.3 Upscaling

Variables such as permeability (or hydraulic conductivity) are not additive:
The permeability of a block is not the mean value of the permeabilities of the
samples taken in the block. There is a problem of scale. As a consequence, it is
usually not possible to simulate block hydraulic conductivity conditional on
data at another scale. One notable exception is when block permeability can be
considered as the geometric average of “point-support” permeability in the
block. If we take as main variable the logarithm of permeability, the log-
permeability of the block is the average of point-support log-permeability in
the block: Upscaling of permeability K amounts to change of support for log K,
so block log-permeability can be simulated directly with the methods dedicated
to a change of support. It makes sense to work with log-permeability rather than
permeability because flow equations can be rewritten with log K rather than K.

The assumption that the change of scale on permeability follows a geometric
average is never true for a finite-size block but can be an acceptable approxi-
mation for large blocks in specific circumstances. Indeed, regarding “point-
support” permeability as a realization of a stationary and ergodic random
function K(x) (more generally, it is a tensor) and considering the case of
uniform flow, Matheron (1967, ch. VI) shows the emergence of an effective
permeability Keff when the domain becomes large enough with respect to the
range of the permeability variogram. Such effective permeability is an intrinsic
quantity independent of the conditions at the domain boundaries. It is always
comprised between the harmonic and arithmetic means of the point-support
permeabilities (Wiener bounds):

½EðK�1Þ��1 #Keff #EðKÞ

Exact expressions are available in special cases only. One of them is when K is a
lognormal RF with isotropic covariance; then Keff is given by

logKeff ¼ EðlogKÞ þ 1

2
� 1

n

	 

σ2 ð7:56Þ

where n is the space dimension and σ2 the variance of log K. This formula
shows that Keff increases with n: As the number of dimensions increases, a
greater number of possible flow paths are offered to the fluid to go around low
permeability zones.7 In 2D, this equation reduces to an averaging of log K.

7 Formula (7.56) is true in 1D independently of the lognormal assumption. It has been established in 2D

byMatheron (1967). In 3D the result was conjecturedbyLandau andLifshitz (1960) in electrodynamics

and by Matheron (1967) in hydrology; Nœtinger (2000) shows that it is a mean-field approximation.
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The 2D case is worth of interest because in sedimentary environments hydraulic
conductivity is usually integrated on the height of the aquifer, so modeling
hydraulic conductivity in 3D amounts to modeling transmissivity in 2D.

Formula (7.56) can be rewritten in the equivalent form

Keff ¼ ½EðKαÞ�1=α ð7:57Þ
where α¼�1 in 1D (harmonic mean), α¼ 0 in 2D (geometric mean), and
α¼ 1/3 in 3D. In the anisotropic case, the averaging exponent α may be related
to a global anisotropy ratio involving the vertical to horizontal permeability
ratio Kv/Kh and the ratio of correlation lengths Lv/Lh (Nœtinger and Haas,
1996). Given the stratified nature of sedimentary geology, the exponent α is
generally closer to 0.7 than to 0.33.

In engineering practice one has to work at the intermediate scale of blocks,
where the conditions required for the emergence of an effective permeability are
not satisfied. A block permeability can be defined as the equivalent permeability
of a homogeneous block giving the same flow through the actual block (Rubin
and Gómez-Hernández, 1990). This permeability depends on the boundary
conditions and thus is not an intrinsic property of the block. It can be obtained
from point-support simulations, for specified boundary conditions, either by
solving the flow equations numerically for all blocks of interest, or by using an
approximation such as the popular power averaging formula (Journel et al., 1986)

KbðVÞ ¼ 1

V

Z
V

KðxÞα dx
� 1=α

� 1#α# 1

where the exponent α is fitted to match numerically computed blocks
permeabilities. In the case of a scalar isotropic lognormal permeability field,
consistency with the effective permeability formula is achieved with α¼ 1� 2/n.
Except when α ¼ 0 (geometric mean) or α ¼ 1 in 2D (arithmetic mean), Kb(V)
cannot be simulated directly: it is necessary to simulate K(x) on a fine grid and
then perform the upscaling.

Finally let us mention that block permeabilities are sought because they
constitute the basic input to flow models at the scale of the aquifer. However,
finite difference or finite element methods rely in fact on inter-block perme-
abilities, involved in the expression of the flow traversing the face common to two
adjacent blocks. In that case a better approach is to calculate directly the inter-
block permeabilities without going through the step of block permeabilities: see
Kruel-Romeu and Nœtinger (1995), Roth (1995), and Roth et al. (1996).

We refer the reader to the 1996 special issue of the Journal of Hydrology
dedicated to the determination of effective parameters in subsurface flow and
transport modeling. It notably includes review papers of Wen and Gómez-
Hernández on hydraulic conductivity and of Sánchez-Vila et al. on transmis-
sivity. Other references are the review of Renard and de Marsily (1997) and the
more recent article of Nœtinger et al. (2005).
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7.9.4 Cosimulation

So far we have considered the simulation of a single variable, although on
occasions we have mentioned possible ways of cosimulating several variables
and have given examples. Of course, the simulation of several variables
requires the knowledge of the multivariate RF model. While for most classic
models nonconditional simulation is easy, conditioning on the data is case-
dependent. Let us give two examples.

Parallel Simulations

In a multi-Gaussian context, possibly after a preliminary transformation, the
sequential method can be applied directly to simulate several variables. How-
ever, a two-step approach is often easier. Consider, for example, a p-variate
model in which all covariances are proportional. It suffices to start from
p independent simulations, which can be constructed sequentially, or better, in
parallel, if the algorithm lends itself to that (turning bands, discrete spectral
method), and then to combine them linearly so as to restore correlations between
variables. Conditioning is done afterward by cokriging, and it can be parallelized
as well. This method can be readily generalized to the case of the linear model of
coregionalization presented in Section 5.6.5, since the studied random functions
can be expressed as linear combinations of independent random functions.

Cascaded Simulations

A problem often encountered in geological applications is to simulate a cate-
gorical variable representing a facies type, along with one or several material
properties that depend on the facies type. A favorable case is when there is
a strong relationship between the physical property and the facies type and
when we can determine this facies type fairly reliably. A typical example is a
formation comprising two lithologies with very different permeabilities
(e.g., sand and shale). The simulation is then done in two steps: (1) univariate
conditional simulation of the facies type (indicator simulation, truncated
Gaussian simulation, or Boolean model), and (2) within each facies type,
conditional simulation of the material property using only the measurements in
that facies type. The implementation of the first step assumes that for each
measurement of the material property we know to which facies it belongs. If
not so, we must first assign a facies type to each measurement, conditionally on
the observed value (e.g., using a Bayesian method). If several simulations are
constructed, this assignment must be redone each time.

The other case is when the material property is independent of the facies
type; then both variables are simulated separately. In practice, of course,
the situation is rarely so clear-cut: there is some degree of dependence of the
material property on the facies type, and we must find an adapted method.

We may also have to deal with two or three categorical variables displaying
some relationship—for example, a lithological code, a diagenesis code, and a
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seismic attribute. The truncated pluri-Gaussian simulation method has been
extended to consistently simulate these codes (Armstrong et al., 2011, Chapter 2).

7.9.5 Generation of Pseudorandom or Quasi-random Numbers

Simulations of random functions are in fact based on simulations of random variables. The
construction of a simulation therefore implies that we have a generator of pseudorandom
numbers, or numbers that can be considered as realizations of i.i.d. random variables. The
problem is handled in practice in two steps (although there are of course variations):

� Generation of pseudorandom numbers with a uniform distribution over [0, 1].

� Generation of numbers with any given distribution from the previous numbers.

We usually choose a generator enabling the reproduction of a sequence of random numbers
generated earlier. It is then possible to reproduce a simulation already constructed (but not
saved), or to appreciate the repercussions of a modification of the structural parameters (scale
parameter, sill) by constructing several simulations corresponding to different parameters
while reusing the same pseudorandom numbers.

Pseudorandom Numbers with a Uniform Distribution

We expect from a pseudorandom-number generator that it delivers a sequence of numbers
xi2 [0, 1] such that the p-tuples (xi, xiþ1, . . . ,xiþp�1) are uniformly distributed over [0, 1]p for
p# pmax, where pmax depends on the application. And this should be the case whatever the
length of the simulated series. In the first edition of this book we presented the widely used
linear congruential method. It produces pseudorandom numbers that are in fact rationals of
the form xi¼ yi/m, where m is a fixed integer, and where the yi form a sequence of integers less
than m defined by the recurrence relation

yiþ1 	 ½a yi þ b� ðmod mÞ
The sequence is initialized by y0. The multiplier a, shift b, and initial value y0 are integers less
than m. Clearly the sequence yi can take at most m distinct values. After a certain time we
encounter a number already generated, and the same sequence is then reproduced over and
over. The sequence therefore has a period p#m. Besides it can have a pseudoperiod q, a
divisor of p, for which it is reproduced up to a constant (modulo m). This algorithm is very
simple, and it is very easy to access any pseudorandom number in the series. But it has
weaknesses with respect to the above requirement. We gave some criteria for choosing values
a and b enabling us to “fix” these weaknesses, without totally eliminating them.

Much better algorithms are available now and we refer the interested reader to Press et al.
(2007, Section 7.1). In view of the rapidly expanding digital storage capacity, these pseudo-
random number generators may well be replaced by databases of pseudorandom numbers
produced by physical white noise generators such as dongles.

Pseudorandom Numbers with a Given Distribution

We generally start with pseudorandom numbers distributed uniformly over [0, 1]. These
values xi can be transformed into pseudorandom numbers zi from a c.d.f. F by inversion of
F—that is, by taking zi¼F�1(xi). This method has the practical advantage that a single
uniform pseudorandom number suffices to generate a number from the desired distribution.
The ith pseudorandom number from distribution F is associated with the ith number of the
xi sequence.
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It is not always easy to invert the c.d.f. F, especially at the extremes of the distribution.
Other methods are available: acceptance�rejection, composition of several distributions,
quotient of uniform variables, and the like, plus an abundance of algorithms specific to some
distributions. A fairly complete presentation can be found in Devroye (1986), Knuth (1997),
and Press et al. (2007, Section 7.3). Lantuéjoul (2002, Section 7.2) summarizes the main
methods useful for geostatistical applications.

Quasi-random Numbers

Uniform random numbers permit the simulation of random points in a given domain D by
drawing the various coordinates independently. Random points produce sequences of points
x1, x2, . . . , that are equidistributed in D, in the sense that the proportion of points among x1,
x2, . . . , xi that belong to D0 �D tends to jD0j/jDj when i tends to infinity, this for any D0. But
random points are not homogeneously distributed: Clusters can be observed as well as large
zones without any point. When selecting the directions of the lines in the turning-bands
method, for example, we do not really need random points but simply equidistributed points
on the unit half-sphere; these can be generated from equidistributed points over a square
(Section 7.4.3).

There exist sequences of equidistributed points that are more homogeneously distributed
than random points. The construction usually relies on the intuitive principle that the ith
point of the sequence must be located within D as far as possible from the (i� 1) previous
ones. Press et al. (2007, Section 7.8) present several sequences that are equidistributed over a
square, and more generally over an n-dimensional hypercube.

A simple example is the Halton sequence, the n-dimensional generalization of the Van der
Corput sequence, which is defined as follows: The space dimensionality being n consider the
first n prime numbers pj (p1 =2, p2¼ 3, p3¼ 5, etc.). The number i2N is written in base pj :

i ¼ aj 0 þ aj1 pj þ � � � þ aj k p
k
j þ � � �

We set

ujðiÞ ¼ aj 0

pj
þ aj1

p2j
þ � � � þ aj k

pkþ1
j

þ � � �

The sequence of n-tuples xi¼ (u1(i), . . . , un(i)), i. 0, is equidistributed over ]0, 1[n.

7.9.6 Check of the Simulations

Just like the real phenomenon, a simulation is not a random function but a
regionalized variable that we regard as a realization of a random function. Its
actual structural characteristics (histogram, variogram, etc.), evaluated from its
values at the nodes of the discretization grid, differ more or less from the
characteristics of the theoretical model or those of the sample data. Therefore it
is useful to check that the characteristics of the simulation are not too far from
those sought.

Checking the simulations is all the more useful as their construction relies in
practice on pseudorandom numbers whose behavior cannot be totally
guaranteed. Furthermore, conditioning can introduce anomalies if the spatial
distribution of the simulated RF is not really compatible with the data. We
present below some general-purpose tests designed to verify that the
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simulations are technically correct. A validation of the physical correctness is
naturally required as well, but it is application-specific.

Check of a Single Simulation

Statistical tests designed for independent random variables are not applicable
here because the values taken by a simulation are obviously correlated. But we
can at least perform simple checks at various levels: for example, Gaussian
nonconditional simulation, Gaussian conditional simulation, and final simu-
lation. The checks concern the histogram of simulated values, their variogram,
and even the scatterplots between the values assumed at x and xþ h for a few
values of h. These graphs have a regional character at the scale of the simulated
domain, since they are calculated from a fine discretization of this domain.
We are therefore able to calculate the fluctuation variance of the spatial mean
of the simulation [according to (2.33), it depends only on the covariance] and,
in some cases (at least the Gaussian one), of the spatial variance of the simu-
lation and of its variogram (cf. Section 2.9.2). This enables us to see if the
deviations of these characteristics from their theoretical values are acceptable.

Check of a Set of Simulations

Several simulations of the same phenomenon are often generated in order to
exhibit multiple images of what reality might be or determine the conditional
distribution of some complex characteristics. In addition to the above checks
on individual simulations, two methods can be applied to make sure that the
different simulations are really (conditionally) uncorrelated:

1. Check of the Normed Sum. Consider N independent simulations (condi-
tional or not) Si(x) with the same variogram γ(h). Their normed sum

SðxÞ ¼ 1ffiffiffiffi
N

p
XN
i¼1

SiðxÞ

still has the variogram γ(h) (but the histogram becomes more Gaussian—
if it was not already Gaussian). We can check this using the methods
mentioned above.

2. Check of Simulated Errors. This test is concerned with the conditional
simulations obtained by adding to the kriging estimate a simulation of the
kriging error. Using the notations of Section 7.3.1 (Z, real field; Si,
nonconditional simulation number i; Ti, conditional simulation number i;
Z*, kriging of Z; Si*, kriging of Si; σK

2, kriging variance), the field

εiðxÞ ¼ TiðxÞ � Z�ðxÞ
σKðxÞ ¼ SiðxÞ � S�i ðxÞ

σKðxÞ
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is a standard error. If the nonconditional simulations Si(x) are Gaussian,
so is εi (x). This often remains true to a first approximation in the non-
Gaussian case, since the εi(x) are mixtures of random variables with the
same distribution. For a fixed i, the errors εi(x) are obviously spatially
correlated. On the other hand, for a fixed x, the errors εi(x), i¼ 1, . . . ,N,
must be independent, centered, standardized, and possibly Gaussian. We
can easily verify this for a few points of the simulation using classic tests
(e.g., the χ2 test). An example is given by Chilès (1977).

7.10 CASE STUDIES

7.10.1 Simulation of a Nickel Deposit

Conditional simulations were initially motivated by the study of mineral
deposits (Journel, 1973, 1974a,b). Kriging enables estimation of the resources
in place but not the evaluation of the recoverable resources, which is of prime
importance in feasibility studies. The nonlinear methods of Chapter 6 ignore
aspects that are rather simple from the mining engineer’s point of view; for
example, that in an open pit a block cannot be exploited without extracting the
blocks situated above it. The difficulty of evaluating recoverable resources is
due to the fact that this concept involves the mining method, its degree of
selectivity, and its flexibility, none of which can be reduced to linear operations;
it is also due to the fact that the result depends heavily on the local fluctuations
of the mineralization. To determine the optimal mining method and the cor-
responding recoverable resources, we would need to have knowledge of the
deposit at every point, which of course is never the case. A conditional simu-
lation is then very useful. It provides a numerical model that can be known at
every point. This model is used to simulate various mining methods or ore
processes, perform sensitivity studies, and optimize choices. To the extent that
the numerical model provided by the conditional simulation reproduces not
only the global aspect of the actual deposit but also its local variability, we can
reasonably consider that the method that proves optimal on the numerical
model remains optimal, by and large, for the real mineral deposit.

The simulation of mining methods based on a numerical model produced by
a conditional simulation constitutes a subject that was developed around 1980
and is beyond the scope of this book. The interested reader is referred to
Deraisme and Dumay (1979), Da Rold et al. (1980), Deraisme et al. (1983,
1984), Kim et al. (1982), Luster (1986), and Vieira et al. (1993). Deraisme and
van Deursen (1995) apply this approach to a standard civil engineering prob-
lem, the volumetric computation of dredging projects, and quantify the bias
incurred by cutting on a kriged estimate rather than on simulations. The area
estimate for blasting work above the cutting level is 273,500 m2 based on the
kriged model, whereas conditional simulations of the seabed and the geological
layers give an interval of 268,000 to 391,000 m2, with an average of about
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310,000 m2. Dimitrakopoulos et al. (2005), Whittle and Bozorgebrahimi (2005),
and Albor Consuegra and Dimitrakopoulos (2009) present original applica-
tions of multiple geostatistical simulations to the design of an open pit.
Dimitrakopoulos (2011) reviews the developments of the last decade in
mine planning. The following example, while focused on the description of
the methodology for generating conditional simulations, gives a glimpse of the
contribution of the approach to the choice of a mining method.

Orebody and Objective of the Simulation

The Tiébaghi nickel orebody (New Caledonia) is sampled by several hundred
drill-holes with an approximate grid spacing of 70 m� 70 m. The ore can be
subdivided into six categories, from top to bottom:

� The cover: C.

� Three categories of laterites: L1, L2, L3.

� Two categories of garnierites: G1, G2.

Below we find the bedrock. Figure 7.42 shows a typical drill-hole log.
The studied zone forms a plateau. The global resources in place have been

estimated by kriging and are known with good precision, namely within 8%,
using a conventional confidence interval of 62 standard deviations. Local
resources, however, are poorly estimated; a 70-m� 70-m panel can hardly be
evaluated better than up to 50%. Yet the choice of the mining method depends
on even more local characteristics, such as fluctuations of the top of the gar-
nierites or of the bedrock. It is not possible, even by halving the grid spacing
(a fourfold increase in the number of drill-holes), to estimate these surfaces with
reasonable precision. Hence the idea of constructing a conditional simulation.
We can then test various mining methods (bulk or selective mining, homoge-
nization stock piles, single or multiple working areas, etc.) and search for the
one that best matches the ore supply requirements of the processing plant
(homogeneity of the ore, regularity of supply) and also the economic criteria
(cutoff grade, undesirable side product).

The simulation is constructed over a fine grid (6.25 m� 6.25 m), which
enables us to visualize local fluctuations and, by grouping of 4� 4 points, to
simulate with good precision the mean characteristics of the 25-m� 25-m
panels. For each category of ore, we simulate its thickness and also the mean
grades of the various constituents (Ni, Co, Mg, Al). The grades are obtained in
fact by simulating the associated accumulations (i.e., average grade� thick-
ness). Naturally, thicknesses and accumulations are highly correlated and call
for the use of multivariate methods described in Chapter 5. Appropriate
adaptations are required to account for very special bivariate distributions of
thickness and metal accumulation (not reducible to the bi-Gaussian case). We
focus here on the simulation of thicknesses alone, which prove to be
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uncorrelated between ore categories. The task then involves the construction
of six different simulations. Chilès (1984) gives a more complete presentation of
the simulation procedure, including for grades.

Gaussian Transformation

To reproduce the sample distribution of the thickness of a given ore, we sim-
ulate the Gaussian variable associated with this thickness. Thus we start by
transforming the initial data into Gaussian data, and in the end we do the
reverse transformation on the Gaussian simulation.

5

10

15

20

25

30

35

40

Depth
0 2 4

Ni (%)

0 0.2 0.4

Co (%)

0 30 60

Fe (%)

0 10 20

Mg (%)

0 4 8

Al (%)

(m)

Ore

G2

G1

L3

L2

L1

C

FIGURE 7.42 Typical drill-hole log in the Tiébaghi nickel orebody. [From Chilès (1984), with

kind permission from Kluwer Academic Publishers.]
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The transformation function is deduced from the cumulated histogram.
Figure 7.43 shows as an example the histogram of the thickness of the L2 ore,
along with its graphic fit. We observe a discontinuity at the origin, due to
the fact that 32% of the time the L2 ore is absent. This creates a difficulty
for the transformation of the “waste” data into a Gaussian: To this zero
thickness we must associate a Gaussian value less than the limit y0¼G�1(0.32),
but which one? (G is the c.d.f. of the standard Gaussian.) We will come back to
this later.

Variography

Simulations are much more sensitive than kriging to the behavior of the var-
iogram near the origin. There is no hope of obtaining a realistic simulation at
a 6.25-m grid spacing if we do not know the variogram at less than 70 m.
Fortunately, some complementary data are available besides the 70-m spacing
data:

� A cross of drill-holes at 25-m spacing. This is located at the edge of the
plateau and must be corrected for a proportional effect.

� About 30 old drill-holes, located at about 5 m from drill-holes of the 70-m
grid. Since they are regularly spaced over the whole plateau, they provide
for a good estimation of the variogram at 5-m lag.

The variography is simplified by the fact that the variograms of laterites turn
out to be similar, as do those of garnierites. In order to compute the variograms
of the Gaussians, the zero thicknesses are transformed into the conditional
expectation of a Gaussian E[Y j Y, y0]. This entails a bias in the sample
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FIGURE 7.43 Graphic transformation of thickness of the L2 lateritic ore. [From Chilès (1984),

with kind permission from Kluwer Academic Publishers.]
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variogram. This bias can be calculated theoretically in the scope of a bivariate
Gaussian model for Y and is taken into account in the fit of a variogram model.
The main variability occurs in the first 200 meters for the laterites and in the
first 100 meters for the garnierites. The variograms of original thicknesses
provide a reference for checking the quality of the final simulation (after con-
ditioning and reverse transformation).

Construction of the Simulation

This involves three main steps:

1. Construction of Nonconditional Simulations of the Gaussians. This step is
straightforward; it is carried out independently for each ore category.

2. Conditioning on the Data. Ideally the conditioning kriging should be
carried out with a global neighborhood. This prevents the parasitic
discontinuities caused by neighborhood changes, which make it impossi-
ble to know whether the fluctuations of the conditional simulation
represent something real or are a mere artifact. Here the number of
data precluded conditioning with a global neighborhood. Therefore the
domain was divided into subzones, each being kriged with a global
neighborhood. Some overlap of the subzones was allowed to avoid
discontinuities at the boundaries. Conditioning on zero thicknesses—
that is, on Gaussian data for which all we know is that they are less than
the threshold u0—can be performed rigorously using the algorithm
presented in Section 7.6.3. At the time of the study, this method was
not yet known and zero thicknesses were just replaced, after Gaussian
transformation, by the conditional expectation of the Gaussian.

3. Reverse Transformation to Original Thicknesses. We now have condition-
al simulations of the Gaussians. By reverse transformation we obtain the
conditional simulations of the thicknesses. In this direction the transfor-
mation is straightforward.

Check of the Simulation

Checks are made at each step. In the final stage we check that histograms of
sample thicknesses are well-reproduced by the simulation, and we also check
that the same is true for the variograms. Figure 7.44 displays the sample var-
iogram of the total thickness of laterites along with that of the conditional
simulation. They seem fully compatible (the slight nugget effect seen on the
sample variogram, due to the uncertainty in the exact position of the interfaces,
is not simulated).

A more general check is provided by a comparison between simulation and
kriging. Indeed the characteristics of the real orebody lie within a range of 62
standard deviations about the kriged values (referring to the conventional 95%
interval). The simulation must fall in the same interval. To check this, the mean
thicknesses of the different ores are estimated directly by kriging. As Table 7.2
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shows, the simulation is fully compatible with kriging. We note that it corre-
sponds to an outcome relatively weak in laterites.

Results

Figure 7.45 displays a vertical section of the orebody obtained by kriging, and
the same vertical section derived from the conditional simulation. As in kriging,
the simulation matches the data (the two sections coincide at drill-holes loca-
tions). However, the striking difference is the character of these two sections. If
we based the mining method on the kriged section, we would be making a
serious mistake: The regular beds would suggest the use of an unselective bulk
mining technique (e.g., a dragline or a bucket wheel excavator), while if reality
exhibits variations similar to those shown by the simulation, more mobile and
more selective mining techniques are to be considered, at least for the gar-
nierites (shovels or backhoes).
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FIGURE 7.44 Sample variogram of the thickness of the laterites (a) and regional variogram of

the conditional simulation (b). [From Chilès (1984), with kind permission from Kluwer Academic

Publishers.]

TABLE 7.2 Comparison of Average Thicknesses of the Simulation and

of Kriging (in Meters)

Ore Simulation Kriging Standard Error

C 11.1 11.0 0.5

L1 4.5 5.1 0.5

L2 6.1 6.4 0.6

L3 3.7 4.3 0.6

G1 10.2 9.9 0.6

G2 2.9 3.1 0.4
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7.10.2 Simulation of an Oil Reservoir

After mining, the first applications of conditional simulations were in hydrol-
ogy (Delfiner and Delhomme, 1975) and petroleum (Delfiner and Chilès, 1977).
Applications to oil reservoirs grew with methods for simulating lithological
variations (Alabert, 1987; Matheron et al., 1987). A typical simulation of an oil
reservoir is a three-step procedure (Dubrule, 1993):

1. Simulation of the genetic units (fluvial channels, mouth bars, turbiditic
lobes).

2. Simulation of facies types within these units (sand, shale, sandstone).

3. Simulation of petrophysical variables within each facies type (porosity,
permeability, saturation, etc.).

These simulations reflect the heterogeneities and the complexity of the reservoir.
Their main application is realistic reservoir fluid flow and oil recovery simulation
from which a range of likely economic scenarios can be derived. Examples of the
complete sequence of steps for such simulation exercice are given by Hewett
and Behrens (1988) and Morelon et al. (1991), and a variety of case studies are
described in the book edited by Yarus and Chambers (1994).

Step 1 is modeled with object-based methods: genetic units are represented
as objects of random shape, size, and orientation randomly distributed in space.
Early applications by Delhomme and Giannesini (1979) modeled sandstone
reservoir units, drains, and shale breaks in the Hassi Messaoud field (Algeria).
More recent applications abound [e.g., references cited by Dubrule (1993)].
These methods offer the advantage of flexibility: The distribution of the
parameters can easily be adapted to local conditions. An alternative is to use
stochastic process-based models.

Step 3 involves the techniques developed for continuous variables. The first
application was the volumetric evaluation of the Lacq reservoir (Delfiner and
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FIGURE 7.45 Example of a vertical section through the Tiébaghi nickel orebody. Top: kriged

section; bottom: simulated section. [From Chilès (1984), with kind permission from Kluwer

Academic Publishers.] (See color insert)
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Chilès, 1977), which generalized a method based on a shortcut to simulations
proposed byHaas and Jousselin (1976). Since the reservoir is bounded by the top
of a dome and truncated below by an aquifer, its estimation is a nonlinear
problem, namely the estimation of the integral of ½zOWC � ZðxÞ�1ZðxÞ, zOWC

where
Z(x) is the depth to the reservoir top, counted positively downward, and zOWC is
the depth of the oil�water contact. Volume calculations were therefore based on
conditional simulations. Table 7.3 shows the results obtained using the first 25
wells drilled plus two other wells selected to constrain simulations realistically
(“pseudo” wells are often necessary to ensure closure of the reservoir). Because
there were in fact 84 wells drilled, these could be used to establish “true” values.

One can see that simulations give better estimates than kriging, which
systematically underestimates volumes. It is also possible to compute
volume histograms and determine the traditional P90, P50, P10 quantiles
(Pr{Volume.P90}¼ 90%). The method can be extended to the calculation of
oil in place by introducing porosity and fluid saturations. This type of proba-
bilistic reserves evaluation has become common in the oil industry. Small-scale
permeability variations can also be generated within the reservoir (Alabert
and Massonnat, 1990). A commonly used technique is the so-called cloud
transform which adds a stochastic component to the log-permeability estimates
obtained by regression on porosity, thereby maintaining the heterogeneity of
the permeability field (Deghani et al., 1997; Aly et al., 1999; Alqassab, 1999;
Kolbjørnsen and Abrahamsen, 2005). This amounts to simulating permeability
K conditional on porosity, but in a pure regression model, without any spatial
continuity on K.

The following example is focused on step 2, the simulation of facies types.
A common approach for such applications is sequential indicator simulation:
Journel and Gómez-Hernández (1989) use it to simulate the sand/shale distri-
bution in a clastic sequence, and Alabert and Massonnat (1990) use it to model
the spatial arrangement of sedimentary bodies (channels, turbiditic lobes,
slumps, laminated facies, etc.); Doyen et al. (1994) extend the method in a
Bayesian setting to incorporate seismic data in addition to well data. The
example presented below is based on the truncated pluri-Gaussian simulation
method (Section 7.6.4).

TABLE 7.3 Bulk Rock Volume Estimates Based on 27 Wells

Bulk Rock Volume (106 m3)

OWC Kriging Simulations σ Simulations “True” Value

620 m 302.8 324.6 44.7 331.4

630 m 362.7 394.9 54.5 397.6

640 m 430.0 473.2 65.3 470.6

Note: Volume from kriged depth; mean and standard deviation of 30 simulations; mean of 30

simulations based on 84 wells, regarded as the true value.
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Objective of the Simulation

The example considered by Matheron et al. (1987, 1988) is the Brent cliff (Great
Britain). It has been reworked for this presentation. This cliff comprises four
lithofacies types: shale, sandy shale, shaly sandstone, and sandstone exhibiting
local permeabilities that differ by orders of magnitude. They have been clearly
identified on a photograph of the cliff and in 35 neighboring wells. The
objective is to construct a 3D model based on these wells, by conditional
simulation, for the purpose of studying flows. (To this effect, a permeability
depending on the facies outcome is assigned to every node of the simulation.)
The data are preprocessed to make the beds horizontal.

Let us denote by Fi the facies and by Ii (x) their indicator functions, the index
i corresponding to shale, sandy shale, shaly sandstone, and sandstone,
respectively, when i varies from 1 to 4.

Relations Between Facies

The first hurdle when we wish to implement the pluri-Gaussian method is to
identify the relations between facies and summarize them in a facies substi-
tution diagram. A useful tool is the comparison of cross-variograms of
indicators with simple variograms. Let γi denote the variogram of Ii and let γi j
be the cross-variogram of Ii and Ij. Their ratio can be interpreted as a
conditional probability. Indeed, since we are considering indicators, for j 6¼ i
we have

γi jðhÞ
γiðhÞ

¼ E½Iiðxþ hÞ � IiðxÞ�½Ijðxþ hÞ � IjðxÞ�
E½Iiðxþ hÞ � IiðxÞ�2

¼ �Prfx or x þ h 2 Fi and the other 2 Fj j x or

xþ h 2 Fi and the other =2Fig

If the facies Fi and Fj are neighbors,�γij(h) / γi (h) as well as�γij(h)/γj(h) should
decrease with h, at least for short h; this is what we observe for sandy shale and
shaly sandstone, as well as for shaly sandstone and sandstone (Figure 7.46a).
On the contrary, if facies Fi and Fj are not in contact, these expressions should
increase with h; this is the case for sandy shale and sandstone (Figure 7.46b).
Finally, if facies Fi is superimposed on the others, the ratios γij(h)/γi(h), j 6¼ i,
should show no significant variation with distance h; this is what we observe for
shale (Figure 7.46c). We will therefore model the four facies with two Gaussian
SRFs: A threshold on Y1 will separate shale (facies F1) from the other facies,
whereas two thresholds on Y2 will delimit the other three facies conditional on
the fact that we are not in F1. This is synthetized in the substitution diagram of
Figure 7.47, where the areas attached to each facies correspond to their average
proportions. The ordering F2-F3-F4 (or equivalently F4-F3-F2) is natural here
because moving from F2 to F4 usually requires a transition by F3.
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FIGURE 7.46 Examples of behavior of the ratio �γi j(h)/γi(h) of facies indicator variograms for

some pairs (i, j): (a) pairs (3, 4) and (4, 3), showing a diffusive transition between shaly sandstone

and sandstone; (b) pairs (2, 4) and (4, 2), showing the absence of contact of sandy shale and

sandstone; (c) pairs (1, 2) and (1, 3), showing that shale is superimposed on the other facies. [From

H. Beucher, personal communication.]
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Local Proportions

Petroleum reservoirs cannot be represented by a stationary model. There are at
least vertical variations of facies proportions. In the present case, sandstones,
for example, are located essentially in the lower half, as shown in Figure 7.47,
which displays the proportions pi(x) of the four facies as a function of vertical
position of point x. Lateral variations are not considered here but are
usually present when modeling large domains. The thresholds, also functions of
location, or at least of vertical position, can then be determined. In this case
we have

� threshold on Y1 separating F1 from the other facies: y1ðxÞ ¼ G�1ðp1ðxÞÞ
� threshold on Y2 separating F2 from F3: y21ðxÞ ¼ G�1ðp2ðxÞ=ð1� p1ðxÞÞÞ
� threshold on Y2 separating F3 from F4: y22ðxÞ ¼ G�1ððp2ðxÞ þ p3ðxÞÞ=
ð1� p1ðxÞÞÞ

Variography

Since Y1 separates F1 from the other facies, its variogram is linked to
the variogram of I1. If the proportion p1 were constant, we would choose the
correlogram ρ1(h) of Y1 so that the variogram of the indicator I1, obtained by
application of relation (2.76), fits the sample variogram of the indicator. We
must take the variations of the proportion into account, and hence of the
threshold. Let us drop the facies index for the moment. We are considering a
Gaussian SRF Y(x) and the indicator I(x)¼ 1Y(x), y(x), where y(x)¼G�1(p(x))
is the threshold associated with the proportion p(x) at point x (here depending
on the vertical coordinate only). That indicator can be expanded into nor-
malized Hermite polynomials by applying (A.10):

IðxÞ ¼ GðyðxÞÞ þ gðyðxÞÞ
XN
n¼1

χn�1ðyðxÞÞffiffiffi
n

p χnðYðxÞÞ

The nonstationary covariance of the indicator at two data points xα and xβ is
therefore

Cðxα, xβÞ ¼ gðyαÞ gðyβÞ
XN
n¼1

χn�1ðyαÞ χn�1ðyβÞ
n

½ρðxβ � xαÞ�n ð7:58Þ

In practice we calculate the sample variogram or covariance of the indicator for
a given h using all pairs of sample points at a distance h apart, as we do in the
stationary case. The corresponding theoretical value is obtained by averaging
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FIGURE 7.47 Identification of the parameters of the pluri-Gaussian simulation model:

(a) vertical proportion curves; (b) facies substitution diagram; (c) sample variograms of facies

indicators and fits derived from the variograms of the two Gaussian SRFs. [Output from Isatiss.

From H. Beucher, personal communication.] (See color insert)
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(7.58) for the same pairs. It is a function of ρ(h). The correlogram ρ is then
selected so as to obtain a correct fit of the indicator sample variogram.

Indicators I2, I3, and I4 are the product of an indicator on Y1 (the comple-
mentary to I1) and an indicator on Y2. The nonstationary covariance of these
indicators is the product of two expressions similar to (7.58). ρ2 is selected so as
to obtain a satisfactory fit of the three indicator variograms of I2, I3, and I4.

Figure 7.47 shows the sample vertical indicator variograms obtained from
the borehole data and their fit associated to spherical models for the Gaussians
(two components, with vertical ranges of 4 and 15 m for Y1, 5 and 20 m for Y2,
and horizontal ranges 20 times larger). Note the nonstationary behavior
induced by proportion variations. The anisotropy ratios have been obtained
from the cliff data (they have a lower resolution than borehole data but give the
variogram behavior at short horizontal distance).

Simulation

The initial study (1987) was carried out with three facies only. A single
Gaussian SRF was necessary. The study used a separable exponential covari-
ance because that model has advantageous Markov properties which simplify
the calculation of the simulations. It is no longer necessary to stick to this
model. The simulations have thus been generated with the usual method.
This implies the following steps:

1. Transform the indicator data to interval data about Y1 and Y2 (note that
no information is provided about Y2 when I1¼ 1).

2. Simulate Y1(xα) at all data points (use the Gibbs sampler).

3. Simulate Y2(xβ) at the data points where interval data are available
(facies F2, F3, F4).

4. Simulate Y1(x) conditional on the Y1(xα) (standard conditional
simulation).

5. Simulate Y2(x) conditional on the Y2(xβ).

6. Transform (Y1(x), Y2(x)) into a facies according to the thresholds yi(x).

Step 1 is performed only once, while the others are repeated for each simulation.

Results

Figure 7.48 displays vertical cross-sections of two conditional simulations. The
simulation reproduces the main features seen on the cliff: strong lateral con-
tinuity of the sandstone and shaly sandstone bed at the base with local thinning
of the sandstone, more shaly intermediate streaks, scattered sandstone channels
near the top, local occurrences of shale in the middle and upper parts. It
is important to check if the simulations are representative of the reality as
regards flow properties. A calculation of the equivalent permeability on the
image of the real cliff and on simulations of 1987 showed deviations of only
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about 15%, a reasonably good result (Matheron et al., 1987). This equivalent
permeability has not been calculated on the new simulations, but the deviation
should be reduced since we now have more freedom in the choice of the
covariance model than in the 1987 study.
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N

FIGURE 7.48 3D conditional facies simulation of the Brent formation: 3D view and fence

diagram. Size of simulated domain: 1 km� 1 km� 30 m. [Output from Isatiss. From H. Beucher,

personal communication.] (See color insert)
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Appendix

This appendix gathers some classic definitions and results used in this book, as well as sim-
ulation formulas for a few covariance models.

A.1 MEASURE THEORY DEFINITIONS

Measures are encountered in many places of this book, especially in the context of spectral
theory. For readers not familiar with measure theory, we recall a few definitions, but without
going into mathematical details. Good sources are Royden (1968) and Neveu (1970).

Essentially a measure is a set function—that is, a function which assigns a number to
certain sets. The classic example is the Lebesgue measure that associates to each interval of
the line its length, or to a subset in 2D or 3D its area or its volume. But we need a more
general definition in order, for example, to assign a positive value to an isolated point
(an atom).

σ-Algebra. A collection of subsets A of a set Ω is a σ-algebra if it contains the empty set Ø
and is closed with respect to complementation and with respect to countable unions:

A 2 A . Ac 2 A; Ai 2 A . ,N
i¼1

Ai 2 A
From De Morgan’s laws it follows that A is also closed with respect to countable
intersections.

Borel Sets. The collection B of Borel sets of Rn is the smallest σ-algebra containing all of
the open sets of Rn (or equivalently, all finite or infinite intervals of the line, or n-dimensional
rectangles in Rn).

Measurable Function—Random Variable. Given a space (Ω, A), a real-valued function f :
Ω-R is said to be measurable if f �1(B)2A for every Borel set B of R. By definition a
random variable is a measurable function on (Ω, A). When the domain space Ω is R or Rn

(and A is B), measurable functions include all ordinary functions of practical interest.

Measure. A measure μ on a σ-algebra A of subsets of Ω is a set function mapping A onto
]�N, þN[ such that μ(Ø)¼ 0 and

Geostatistics: Modeling Spatial Uncertainty, Second Edition. J.P. Chilès and P. Delfiner.

r 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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μ
�
,n
i¼1

Ai

�
¼
Xn
i¼1

μðAiÞ ðσ-additivityÞ

for any sequence Ai of pairwise disjoint sets inA. The measure μ is positive if μ(A)$ 0 (A2A)
and bounded if

supfjμðAÞj : A 2 Ag,N

The measure μ is bounded if and only if μ(Ω),N. A positive measure μ is called finite if
μ(Ω),N.

Some authors name “measure” a positive measure and the others “signed measures.” It is
also possible to define a complex measure as a set function assigning a complex number to
each A2A.

Examples: The Lebesgue measure μ(A)¼ jAj is a positive measure, but it is not bounded.
A probability measure is a bounded positive measure such that μ(Ω)¼ 1.

DiracMeasure. TheDirac measure δ assigns the value 1 to any setB that contains the origin
of coordinates and 0 to any set that doesn’t. It corresponds to a unit mass placed at the point 0.
An equivalent definition is to consider δ as a pseudofunction δ(�) summing to one and equal to
zero everywhere, except at 0 where it is infinite (Dirac delta function). For any continuous
function ϕ we have

δðϕÞ ¼
Z
δðtÞ ϕðtÞ dt ¼ ϕð0Þ

Likewise, the measure δx corresponds to a unit mass at the point x, and we have

δxðϕÞ ¼
Z
δðx� tÞ ϕðtÞ dt ¼ ϕðxÞ

The above shows that δ is the identity operator for convolution, in the sense that δ*ϕ¼ϕ.

Support. The support of a measure μ on B is the smallest closed set F of B such that μ
vanishes in the complement of F. More precisely μ(O)¼ 0 for any open set O�B�F. The
support of the Dirac measure is a single point, and that of the Lebesgue measure the whole
space.

Absolute Continuity (Radon�Nikodym Theorem). A measure ν is absolutely continuous
with respect to the positive measure μ if μ(A)¼ 0 . ν(A)¼ 0. Then the measure ν has a
density function f such that νðAÞ ¼ RA f ðxÞ μðdxÞ for any A2A.

When μ is the Lebesgue measure, absolute continuity of ν means, in particular, that any
point {x} has measure zero ν({x})¼ 0 (no atom).

Almost Surely, Almost Everywhere. We say that an event E occurs “almost surely” if Pr
{E}¼ 1, and that a property holds “almost everywhere” if the set of points where it fails to
hold is of measure zero.

Orthogonal Complex Random Measure. The set function ξ(B) associating a finite variance
complex random variable to each B2B is an orthogonal random measure if it satisfies the
following properties:

E
�
ξðBÞ ξðB 0Þ� ¼ 0 if B,B 0 2 B, B-B 0 ¼ [

ξðB,B 0Þ ¼ ξðBÞ þ ξðB 0Þ if B,B 0 2 B, B-B 0 ¼ [

Bn k [ in B . EjξðBnÞj2-0

8<
:
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Examples

1. Consider a Poisson point process with intensity λ; the number of points N(B) that fall
in B minus its expected value defines the random orthogonal measure ξ(B)¼N(B)
�λjBj.

2. According to Chentsov (1957), Gaussian white noise is a random measure ξ(�) such that
(a) ξ(B) is normally distributed with mean 0 and variance λjBj, and (b) when B and B 0

do not intersect ξ(B) and ξ(B 0) are independent and ξ(B,B 0)¼ ξ(B)þ ξ(B 0).
3. In 1D, let U be a random variable with a symmetric probability distribution F(du), and

let Φ be uniform on [0, 2π[ and independent of U. The complex measure ξ(�) defined by

ffiffiffi
2

p
ξðBÞ ¼ expði ΦÞ δUðBÞ þ expð�i ΦÞ δ�UðBÞ

is random and orthogonal and satisfies Ejξ(du)j2¼F(du). It is the random spectral
measure of an SRF whose covariance is the Fourier transform of F(du).

A.2 GAMMA FUNCTION (EULER’S INTEGRAL)

The gamma function is defined for x. 0 by

ΓðxÞ ¼
Z N

0

e�uux�1du ðA:1Þ

It satisfies the recurrence relation

Γðxþ 1Þ ¼ x ΓðxÞ

Hence for a positive integer value x¼ n, one has

Γðnþ 1Þ ¼ n!

Forx, 0 the integral (A.1) diverges but the gamma function canbe calculated, forxnoninteger,
by the reflection formula

ΓðxÞ Γð1� xÞ ¼ π
sinπx

For the particular value x¼ 1/2, this formula gives

Γ 1
2

� � ¼ ffiffiffi
π

p

Another useful formula is the duplication formula

Γð2xÞ ¼ ΓðxÞ Γ�xþ 1
2

� 22x�1ffiffiffi
π

p

Finally let us also mention the link with the beta function

Bðx; yÞ ¼
Z 1

0

ux�1ð1� uÞy�1 du ¼ ΓðxÞ ΓðyÞ
Γðxþ yÞ x. 0; y. 0:
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A.3 BESSEL FUNCTIONS

Since there are some variations about the definition of Bessel functions, we give the definition
of the functions used in this book. It corresponds to the definitions used by Olver (1972).

The Bessel function of the first kind with index ν is defined by the development

JνðxÞ ¼ x

2

� �νXN
k¼0

ð�1Þk
k! Γðν þ kþ 1Þ

x

2

� �2k
ðA:2Þ

Two particular cases are

J�1=2ðxÞ ¼
ffiffiffiffiffiffi
2

πx

s
cos x, J1=2ðxÞ ¼

ffiffiffiffiffiffi
2

πx

s
sin x

The modified Bessel function of the first kind is defined by the development

IνðxÞ ¼ x

2

� �νXN
k¼0

1

k! Γðν þ kþ 1Þ
x

2

� �2k
ðA:3Þ

The modified Bessel function of the second kind is defined by

KνðxÞ ¼ π
2

I�νðxÞ � IνðxÞ
sin πν

¼ K�νðxÞ ðA:4Þ

A.4 UNIT SPHERE OF Rn

The surface area Sn and the volume Vn of the unit-radius sphere of R
n are given by

Sn ¼ 2πn=2

Γðn=2Þ Vn ¼ Sn

n
¼ πn=2

Γ
	
n

2
þ 1



ðA:5Þ

For example, S1¼ 2, S2¼ 2π, S3¼ 4π, V1¼ 2, V2¼π, and V3 ¼ 4
3
π.

A.5 GAUSSIAN DISTRIBUTION AND HERMITE POLYNOMIALS

A.5.1 Gaussian Distribution

The standard Gaussian (synonym: standard normal) probability density function is defined by

gðyÞ ¼ 1ffiffiffiffiffiffi
2π

p exp � y2

2

	 


It has mean 0, variance 1, and dispersion indicator S ¼ 1=
ffiffiffi
π

p
.

A.5.2 Hermite Polynomials

� The orthogonal polynomials associated with the standard Gaussian are the Hermite
polynomials Hn(y). They are defined by the Rodrigues formula
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HnðyÞ gðyÞ ¼ dn

dyn
gðyÞ ðA:6Þ

These polynomials satisfy

Z
HmðyÞHnðyÞ gðyÞ dy ¼ n! δmn

An orthonormal basis for the Gaussian distribution is defined by the normalized
polynomials

χnðyÞ ¼
1ffiffiffiffi
n!

p HnðyÞ

� For n$ 1 relation (A.6) can be written as

HnðyÞ gðyÞ ¼ d

dy

�
Hn�1ðyÞ gðyÞ

� ðn$ 1Þ ðA:7Þ

Since d
dy

gðyÞ ¼ �y gðyÞ, we deduce the explicit form of Hermite polynomials:

HnðyÞ ¼
Xbn=2c
i¼0

ð�1Þn�i n!

2i i! ðn� 2iÞ! y
n�2i

where bn=2c stands for the integer part of n/2. From this expression it follows that the
derivative of Hn(y) is proportional to Hn�1(y):

d

dy
HnðyÞ ¼ �n Hn�1ðyÞ ðA:8Þ

� Applying definition (A.7) to Hnþ1, we get

Hnþ1ðyÞ gðyÞ ¼ d

dy

�
HnðyÞ gðyÞ

� ¼ 	�y HnðyÞ þ d

dy
HnðyÞ



gðyÞ

whence

Hnþ1ðyÞ ¼ �y HnðyÞ þ d

dy
HnðyÞ

and given (A.8),

Hnþ1ðyÞ ¼ �yHnðyÞ � nHn�1ðyÞ

This recurrence relation allows an easy calculation of the Hn(y) from the first two
polynomials H0(y)¼ 1 and H1(y)¼�y. Thus, for example, H2(y)¼ y2� 1, H3(y)¼
�y3þ 3y, and so on. Notice that the definition of Hn given here differs from the most
common one by a factor (�1)n.

� Relation (A.7) is equivalent to

snðyÞ ¼
Z y

�N
HnðuÞ gðuÞ du ¼ GðyÞ if n ¼ 0

Hn�1ðyÞ gðyÞ if n. 0

�
ðA:9Þ

This formula permits an easy calculation of the coefficients of the expansion of 1y, y0 :
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1y, y0 ¼ Gðy0Þ þ gðy0Þ
XN
n¼1

Hn�1ðy0Þ
n!

HnðyÞ ðA:10Þ

� In applications we also need to know the incomplete integral:

SmnðyÞ ¼
Z y

�N
HmðuÞHnðuÞ gðuÞ du

Using relation (A.7) and integration by parts, and then relation (A.8), it can be shown that

SmnðyÞ ¼ mSm�1, n�1ðyÞ þHmðyÞHn�1ðyÞ gðyÞ ðA:11Þ
To initialize the recurrence calculation, we use the symmetry Smn(y)¼Snm(y) so as to
reduce the problem to the case n$m, and we start from S0, n�m(y)¼ sn�m (y), which is
given by (A.9).

� Let us also mention a useful expansion for studying lognormal distributions:

expðλyÞ ¼ exp
� 1
2
λ2
�XN

n¼0

ð�1Þn λ
n

n!
HnðyÞ ðA:12Þ

� Other useful formulas derived from Hochstrasser (1972, p. 786) and Matheron (1974c)
are the integrals

Z þN

�N
Hnðaþ yÞ gðyÞ dy ¼ ð�1Þnan

Z þN

�N
HnðbyÞ gðyÞ dy ¼

ð2kÞ!
2kk!

ðb2 � 1Þk if n ¼ 2k

0 if n ¼ 2kþ 1

8><
>:

Z þN

�N
Hnðaþ byÞ gðyÞ dy ¼ ð1� b2ÞnHn

affiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
	 


, jbj, 1

� Studying multivariate Hermite polynomials, Withers (2000) derives a simple and
powerful formula, which in our univariate case amounts to

HnðyÞ ¼ ð�1Þn E½yþ i U�n

where U is a standard normal random variable and i2¼�1, a formula already
mentioned by Hochstrasser.

Other properties of Hermite polynomials for geostatistical applications can be found
in Matheron (1974c, pp. 64�68) and in the literature on orthogonal polynomials (Szegö,
1939; Hochstrasser, 1972).

A.6 GAMMA DISTRIBUTION AND LAGUERRE POLYNOMIALS

A.6.1 Gamma Distribution

The standard gamma probability density functions are defined on ]0,N[ by

gαðyÞ ¼ 1

ΓðαÞ e
�yyα�1 ðy. 0Þ

where α is a positive parameter and Γ(�) is the gamma function (A.1).
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The shape of the density gα depends on α: If α, 1, gα is a decreasing function, unbounded
at the origin; if α. 1, gα is a bell-shaped curve, which tends to a Gaussian distribution for
large values of α; in the intermediate case α¼ 1, g1 is the exponential density.

The gamma distribution has moments of all orders:

E½Yn� ¼ Γðαþ nÞ
ΓðαÞ

In particular,

E½Y � ¼ α, Var½Y � ¼ α

Its dispersion indicator is

S ¼ 1ffiffiffi
π

p Γðαþ 1
2
Þ

ΓðαÞ ðA:13Þ

Its Laplace transform is

E½e�λY � ¼ 1

ð1þ λÞα

The standard gamma distribution corresponds to the case b¼ 1 of the general gamma dis-
tribution with parameter α. 0 and scale b. 0, whose density is

gα, bðyÞ ¼ bα

ΓðαÞ e
�by yα�1 ðy. 0Þ

If Y has the distribution gα,b, then bY has the distribution gα.
The sum of two independent gamma variables with the same scale parameter is also a

gamma varibale. Specifically

gα; b � gβ; b ¼ gαþβ; b

A.6.2 Laguerre Polynomials

� The orthogonal polynomials associated with the standard gamma distribution are
the Laguerre polynomials Lα

n ðyÞ, defined on ] 0,N[ like gα. They are defined by the
Rodrigues formula

Lα
n ðyÞgαðyÞ ¼

ΓðαÞ
Γðαþ nÞ

dn

dyn
½yn gαðyÞ� ¼ dn

dyn
gαþnðyÞ ðA:14Þ

These polynomials are orthogonal over the distribution gα but are not normalized:Z N

0

Lα
mðyÞ Lα

n ðyÞ gαðyÞ dy ¼ ΓðαÞ n!
Γðαþ nÞ δmn

To get an orthonormal basis, we thus take

χα
n ðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðαþ nÞ
ΓðαÞ n!

s
Lα
n ðyÞ
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� From definition (A.14) we get for n$ 1,

Lα
n ðyÞ gαðyÞ ¼

d

dy

�
Lαþ1
n�1 ðyÞ gαþ1ðyÞ

�
ðA:15Þ

Using the relations

gαþ1ðyÞ ¼ y

α
gαðyÞ and

d

dy
gαðyÞ ¼ gα�1ðyÞ � gαðyÞ

we deduce by recurrence that the explicit form of the nth Laguerre polynomial is

Lα
n ðyÞ ¼

Xn
i¼0

ð�1Þi
�
n
i

� ΓðαÞ
Γðαþ iÞ y

i

and that its derivative is, up to a multiplicative factor, the Laguerre polynomial of
degree n� 1 associated with the distribution with parameter αþ 1:

d

dy
Lα
n ðyÞ ¼ � n

α
Lαþ1
n�1 ðyÞ ðA:16Þ

� Laguerre polynomials with parameter α can easily be calculated from Lα
0 ðyÞ ¼ 1 and

Lα
1 ðyÞ ¼ 1� y

α via the recurrence relation:

ðαþ nÞ Lα
nþ1ðyÞ ¼ ð2nþ α� yÞLα

n ðyÞ � n Lα
n�1ðyÞ

� From (A.15) we get

sαn ðyÞ ¼
Z y

0

Lα
n ðuÞ gαðuÞ du ¼ GαðyÞ if n ¼ 0

Lαþ1
n�1 ðyÞ gαþ1ðyÞ if n. 0

(
ðA:17Þ

� The incomplete integral

sαmnðyÞ ¼
Z y

0

Lα
mðuÞLα

n ðuÞ gαðuÞ du

can be computed by recurrence, but in a somewhat more complex way than in the
Gaussian case because the recurrence also involves the parameters of the gamma
distribution. Setting (A.15) into the definition of Sα

mnðyÞ, integrating by parts, and then
using (A.16), we obtain

Sα
mnðyÞ ¼

m

α
Sαþ1
m�1, n�1ðyÞ þ Lα

mðyÞ Lαþ1
n�1 ðyÞ gαþ1ðyÞ ðA:18Þ

To initialize the recurrence calculation, we use the symmetry Sα
mnðyÞ ¼ Sα

nmðyÞ so as to

reduce the problem to the case n$m, and we start from Sαþm
0, n�mðyÞ ¼ sαþm

n�m ðyÞ.
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A.7 NEGATIVE BINOMIAL DISTRIBUTION

AND MEIXNER POLYNOMIALS

A.7.1 Negative Binomial Distribution

The integer random variable Y follows a negative binomial distribution if the probability that
Y is equal to i is

pi ¼ ð1� pÞα Γðαþ iÞ
ΓðαÞ

pi

i!
i 2 N

where α. 0 and 0, p, 1 are parameters and Γ(�) is the gamma function (A.1).
The negative binomial distribution may be considered as the discrete equivalent of the

gamma distribution. The shape of the distribution defined by the pi depends on α. In par-
ticular, if α, 1, the pi are decreasing. For α¼ 1 we get the geometric, or Pascal, distribution.

The negative binomial distribution has for generating function

E
�
sY
� ¼ 1� p

1� ps

	 
α

The negative binomial distribution has moments of all orders and, in particular,

E½YðY � 1Þ� � �ðY � nþ 1Þ� ¼ Γðαþ nÞ
ΓðαÞ

	
p

1� p


n

,

E½Y � ¼ αp=ð1� pÞ, Var½Y � ¼ αp=ð1� pÞ2

Its dispersion indicator is

S ¼ α
p

ð1� pÞ2 F
	
αþ 1,

1

2
; 2;�4

p

ð1� pÞ2



ðA:19Þ

where F represents the hypergeometric function (Lantuéjoul, personal communication).

A.7.2 Meixner Polynomials

The orthogonal polynomials associated with the negative binomial distribution with para-
meters α and p are the Meixner polynomials Mαp

n ðiÞ. These can easily be calculated from
M

αp
0 ðiÞ ¼ 1 and M

αp
1 ðiÞ ¼ 1� 1�p

p
i
α via the recurrence

pðαþ nÞMαp
nþ1ðiÞ ¼ ½nð1þ pÞ þ αp� ið1� pÞ�Mαp

n ðiÞ � nM
αp
n�1ðiÞ ðA:20Þ

Meixner polynomials satisfy the symmetry relation Mαp
n ðiÞ ¼ M

αp
i ðnÞ. An orthonormal basis

is obtained by taking

χαp
n ðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðαþ nÞ
ΓðαÞ

pn

n!

s
Mαp

n ðiÞ
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A.8 MULTIVARIATE NORMAL DISTRIBUTION

Let Y¼ (Y1, . . . ,Yp)
0 be a p-dimensional random vector with mean vector μ and covariance

matrix Σ, that is,

μ ¼ ðμ1, : : : ,μpÞ0, Σ ¼ EðY� μÞðY� μÞ0
If Y is multivariate normal (¼ Gaussian), its probability density is

f ðYÞ ¼ 1

jΣj1=2ð2πÞp=2
exp½� 1

2
ðY� μÞ0 Σ�1 ðY� μÞ�

where jΣj is the determinant of the p� p matrix Σ. Every linear combination

Y¼λ1Y1þ . . . þ λpYp is normally disributed with mean μ ¼Pp
i¼1 λi μi and variance

σ2 ¼Pp
i¼1

Pp
j¼1 λiλjσi j . This property characterizes the multivariate normal distribution.

Suppose now that Y, μ and Σ are partitioned as follows:

Y ¼ Y1

Y2

� 
, μ ¼ μ1

μ2

� 
, Σ ¼ Σ11 Σ12

Σ21 Σ22

� 

where Y1 is a q� 1 vector and all other vectors and matrix are dimensioned accordingly. Then
the conditional distribution of Y1 given Y2 is a q-variate normal with mean vector and
covariance matrix:

EðY1 jY2Þ ¼ μ1 þΣ12 Σ�1
22 ðY2 � μ2Þ, CovðY1 jY2Þ ¼ Σ11 �Σ12 Σ�1

22 Σ21

Two remarkable properties:

1. The regression of Y1 on Y2 is a linear function of Y2

2. The covariance matrix of Y1 given Y2 does not depend on Y2 (homoscedasticity)

As a consequence, if Y0, Y1, . . . ,YN are jointly normal and with means 0, the regression of Y0

on Y1, . . . ,YN is of the form

EðY0 jY1, : : : ,YNÞ ¼ λ1 Y1 þ � � � þ λNYN

and the conditional variance about this value does not depend on Y1, . . . ,YN.
For bivariate normal random variables X and Y with correlation coefficient ρ, we have

EðY jXÞ ¼ μY þ ρ
σY

σX
ðX � μX Þ, VarðY jXÞ ¼ ð1� ρ2Þ σ2

Y

For a trivariate normal X, Y, Z conditioned on Z, a useful relation is

CovðX ,Y jZÞ ¼ ðρXY � ρXZ ρYZÞ σX σY

This covariance is also the covariance of the residuals from the regressions of X on Z and of Y
on Z. Dividing this by the residuals standard deviations gives the partial correlation

ρXY :Z ¼ ðρXY � ρXZ ρYZÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ρ2XZÞð1� ρ2YZÞ

q
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A.9 LOGNORMAL DISTRIBUTION

By definition, the random variable Z is lognormal if Y¼ logZ is normal. Denoting by m and
σ2 the mean and variance of Y, the mean of Z is

M ¼ E½expðYÞ� ¼ exp mþ 1
2σ

2
� � ðA:21Þ

Likewise, the vector-valued random variable Z¼ (Z1, . . . ,Zp)
0 is lognormal if the vector-

valued random variable Y¼ (Y1, . . . ,Yp)
0, where Yi¼ log Zi, is normal (i.e., has a multivariate

Gaussian distribution).
The vector-valued random variable Z being assumed lognormal, let us consider the ran-

dom variable Z ¼ Zλ1

1 � � � Zλp
p . It is of the form Z¼ exp(Y) with Y ¼ λ1Y1 þ � � � þ λpYp. The

vector Y having a multivariate normal distribution, the random variable Y is normal, and Z is
lognormal.

This property, together with formula (A.21), allows, for example, the calculation of the
noncentered moments of a lognormal random variable and the noncentered covariance of
two lognormal variables. In particular, the variance of Z¼ exp(Y) is

Σ2 ¼ VarðZÞ ¼ M2½expðσ2Þ � 1� ðA:22Þ
and if Y1 and Y2 are bivariate Gaussian with means m1 and m2, variances σ2

1 and σ2
2, and

correlation coefficient ρ, the centered covariance of Z1¼ exp(Y1) and Z2¼ exp(Y2) is

CovðZ1,Z2Þ ¼ M1M2½expðρ σ1σ2Þ � 1� ðA:23Þ
where M1 and M2 are the means of Z1 and Z2.

Still in the bivariate lognormal case, it is interesting to look at the regression of Z2 on Z1.
The conditional distribution of Y2 given Y1 is normal with mean and variance

EðY2 jY1Þ ¼ m2 þ ρ
σ2

σ1
ðY1 �m1Þ VarðY2 jY1Þ ¼ ð1� ρ2Þσ2

2

Therefore the conditional distribution of Z2 given Z1 is lognormal with mean and variance
given by

EðZ2 jZ1Þ ¼ γ2ðZ1=γ1Þρ σ2=σ1 exp½ð1� ρ2Þσ2
2=2�

VarðZ2 jZ1Þ ¼ ½EðZ2 jZ1Þ�2 ½expðð1� ρ2Þσ2
2Þ � 1� ðA:24Þ

where γ1¼ exp(m1) and γ2¼ exp(m2). The regression curve is a power function and not a
straight line, except when ρ σ2/σ1¼ 1.

A.10 SIMULATION FORMULAS

Useful formulas for the simulation of common covariance models in R1 and R3 are presented
in Tables A.1 and A.2, respectively.
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Morphologie Mathématique, Fontainebleau, France.

Delfiner, P. (1973). Analyse objective du géopotentiel et du vent géostrophique par
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d’uranium en Australie. Industrie Minérale—Les Techniques, 83(10), 513�523.

Deraisme, J., C. de Fouquet, and H. Fraisse (1984). Geostatistical orebody model for

computer optimization of profits from different underground mining methods. In

Proceedings of the 18th International APCOM Symposium, Institution of Mining

and Metallurgy, London, pp. 583�590.

Deraisme, J., J. Rivoirard, and P. Carrasco-Castelli (2008). Multivariate uniform

conditioning and block simulations with discrete Gaussian model: Application to

Chuquicamata deposit. In Geostats 2008, Vol. 1, J. M. Ortiz and X. Emery, eds.

Gecamin, Santiago, Chile, pp. 69�78.

Desassis, N., and D. Renard (2011). Automatic variogram modeling by iterative least

squares—Univariate and multivariate cases. Technical Report, Center of Geo-

sciences and Geoengineering, MINES ParisTech, Fontainebleau, France.

bref 28 January 2012; 12:44:1

REFERENCES 653



Desbarats, A. J., and R. Dimitrakopoulos (2000). Geostatistical simulation of regional-

ized pore-size distributions using min/max autocorrelation factors. Mathematical

Geology, 32(8), 919�942.

Deutsch, C.V. (1993). Conditioning reservoir models to well test information. In
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d’AnalyseNumérique,No.231,Université Scientifique etMédicaledeGrenoble,France.

Duchon, J. (1976). Fonctions splines et espérances conditionelles de champs gaussiens.
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Emery, X., and C. Lantuéjoul (2008). A spectral approach to simulating intrinsic

random fields with power and spline generalized covariances. Computational

Geosciences, 12(1), 121�132.

Emery, X., and J. M. Ortiz (2005a). Internal consistency and inference of change-of-

support isofactorial models. In Geostatistics Banff 2004, Vol. 2, O. Leuangthong

and C.V. Deutsch, eds. Springer, Dordrecht, pp. 1057�1066.

Emery, X., and J. M. Ortiz (2005b). Histogram and variogram inference in the

multigaussian model. Stochastic Environmental Research and Risk Assessment,

19(1), 48�58.

Emery, X., and J. M. Ortiz (2007). Weighted sample variograms as a tool to better assess

the spatial variability of soil properties, Geoderma, 140(1�2), 81�89.

Emery, X., and J. M. Ortiz (2011). A comparison of random field models beyond

bivariate distributions. Mathematical Geosciences, 43(2), 183�202.

Escobar, I., P. Williamson, A. Cherrett, P. M. Doyen, R. Bornard, R. Moyen, and

T. Crozat (2006). Fast geostatistical stochastic inversion in a stratigraphic grid. In

Expanded Abstracts, 76th SEG Annual International Meeting, pp. 2067�2071.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic

model using Monte Carlo methods to forecast error statistics. Journal of Geophys-

ical Research, 99(C5), 10143�10162.

Evensen, G. (2009). Data Assimilation—The Ensemble Kalman Filter, 2nd ed. Springer,

Berlin.

Evertsz, C. J. G., and B. B. Mandelbrot (1989). Multifractal measures. In Chaos and

Fractals, H. O. Peitgen, H. Jürgens, and D. Saupe, eds. Springer, New York,

pp. 921�953.

Falk, M., and R. Michel (2006). Testing for tail independence in extreme value models.

Annals of the Institute of Statistical Mathematics, 58(2), 261�290.

Farmer, C. L. (1992). Numerical rocks. In Mathematics of Oil Recovery, P. R. King, ed.

Oxford University Press, Oxford, England, pp. 437�447.

Feder, J. (1988). Fractals. Plenum Press, New York.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. 1,

3rd ed. John Wiley & Sons, New York. First edition (1950).

Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2,

2nd ed. John Wiley & Sons, New York. First edition (1966).

Felletti, F. (1999). Quantificazione e previsione delle variazioni di facies in una successione

torbiditica. Integrazione tra analisi geologica e geostatistica (Fm. di Castagnola,

Bacino terziario piemontese). Doctoral thesis, Università degli Studi di Milano.
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A. Soares, ed. Kluwer, Dordrecht, pp. 73�83.

Fry, N. (1979). Random point distributions and strain measurements in rocks.

Tectonophysics, 60(1�2), 89�105.

Fujiwara, M. (2008). Identifying interactions among salmon populations from observed

dynamics. Ecology, 89(1), 4�11.

Furrer, R., M. G. Genton, and D. W. Nychka (2006). Covariance tapering for

interpolation of large spatial datasets. Journal of Computational and Graphical

Statistics, 15(3), 502�523.

Galerne, B. (2010). Stochastic Image Models and Texture Synthesis. Doctoral thesis,

Ecole normale supérieure de Cachan, France.

Galli, A., F. Gerdil-Neuillet, and C. Dadou (1984). Factorial kriging analysis: a

substitute to spectral analysis of magnetic data. In Geostatistics for Natural

Resources Characterization, Part 1, G. Verly, M. David, A. G. Journel, and
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métries en place, I; II. Annales des Mines, I: No. 11, 735�753; II: No. 12, 767�782.

bref 28 January 2012; 12:44:2

REFERENCES 661



Haas, A., P. Biver, and K. Altisen (1998). Constrained kriging and simulation of a well

layering towards a geophysical thickness map. In ECMOR VI Proceedings, 6th

European Conference on Mathematics and Oil Recovery, Peebles, Scottland, Paper

C-31.

Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of Operations

Research, 13(2), 311�329.

Haldorsen, H. H. (1983). Reservoir Characterization Procedures for Numerical Simula-

tion. Ph.D. dissertation, University of Texas, Austin.

Haldorsen, H. H., and L. W. Lake (1984). A new approach to shale management in

field-scale models. SPE Journal, August 1984, 447�457.

Halmos, P. R. (1951). Introduction to Hilbert Space and the Theory of Spectral

Multiplicity. Chelsea, New York.

Hammersley, J. M., and J. A. Nelder (1955). Sampling from an isotropic Gaussian process.

Mathematical Proceedings of the Cambridge Philosophical Society, 51(4), 652�662.

Handcock, M. S. (1994). Measuring the uncertainty in kriging. In Geostatistics for the

Next Century, R. Dimitrakopoulos, ed. Kluwer, Dordrecht, pp. 436�447.

Handcock, M. S., and J. R. Wallis (1994). An approach to statistical spatial-temporal

modeling of meteorological fields (with discussion). Journal of the American

Statistical Association, 89(426), 368�390.

Harding, A., S. Strebelle, M. Levy, J. Thorne, D. Xie, S. Leigh, and R. Preece (2005).

Reservoir facies modelling: New advances in MPS. In Geostatistics Banff 2004,

Vol. 2, O. Leuangthong and C. V. Deutsch, eds. Springer, Dordrecht, pp. 559�568.
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Mandelbrot, B. B. (1975a). Fonctions aléatoires pluri-temporelles: approximation
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Marsily, G. de, F. Delay, J. Gonçalvès, P. Renard, V. Teles, S. Violette (2005). Dealing

with spatial heterogeneity. Hydrogeology Journal, 13(1), 161�283.

Matérn, B. (1960). Spatial Variation—Stochastic Models and Their Application to Some

Problems in Forest Surveys and Other Sampling Investigations. Meddelanden från

Statens Skogsforskningsinstitut, Vol. 49, No 5, Almaenna Foerlaget, Stockholm.

Second edition (1986), Springer, Berlin.
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Mathématique de Fontainebleau, Fasc. 7, Ecole des Mines de Paris. Translation

(1989): Estimating and Choosing—An Essay on Probability in Practice. Springer,

Berlin.

Matheron, G. (1979a). Comment translater les catastrophes. La structure des F.A.I.
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Report N-732, Centre de Géostatistique, Fontainebleau, France.

Matheron, G. (1982b). La destructuration des hautes teneurs et le krigeage des

indicatrices. Technical Report N-761, Centre de Géostatistique, Fontainebleau,
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Serra, J. (1968). Les structures gigognes: Morphologie mathématique et interprétation
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Index

Accumulation, 96, 201

Additive renormalization, 256

Additivity

dispersion variances, 132

drift and residual, 181�183, 192,

209, 317

Affine correction, see Change-of-support

models

Aliasing, 534, 536

Allowable linear combination, 62,

164, 184

of order k (ALC�k), 245�250

variance and covariance, 63, 64

Alternating

process, 103

random set, 571

Ambartzumian process, 518

Anamorphosis, 390. See also

Transformation function

Anisotropy, 35, 55, 98�101, 112, 123,

606�607

geometric, 98�99, 371, 607

zonal (stratified), 99�100, 152,

371, 607

Annealing, see Simulated annealing

Area of influence, 51

Atom, 629, 630

Authorized linear combination, see

Allowable linear combination

Automatic structure identification, see

Generalized covariance estimation

Autoregressive

integrated moving-average

(ARIMA), 254

moving-average (ARMA), 209, 254, 513

process, 122, 508�510

Barker’s algorithm, 553

Bathymetry, 84, 216, 227, 478

Bayesian

conditional simulation, 603�606

covariance estimation, 117, 193

kriging, see Kriging

Berry�Esséen theorem, 489

Bessel

covariances, see Variogram models

functions, 632

Beta

distribution, 417

function, 631

Bias

in sample covariance, 32

in variogram of residuals, 125

Bi-gamma distribution, 418�419

Bi-Gaussian

distribution, 411�413

random function, 17

Bilognormal, 106, 639

Binomial isofactorial model, 417

Birth-and-death process, 416, 589, 590

Bivariate distribution, see Isofactorial

models

Geostatistics: Modeling Spatial Uncertainty, Second Edition. J.P. Chilès and P. Delfiner.
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Black-Scholes model, 167

Block average

distribution, see Change of support,

Change-of-support models

estimation, 130�131, 198

simulation, 608�609

BLUEPACK, 288

Bochner’s theorem, 66

Boolean

objects, 575

random function, 414, 471, 577�578

random set, 574�577, 587�589, 602

Bootstrap, 117, 175

Borel set, 629

Boundary conditions, 296, 610.

See also Kriging

Brownian motion, 93, 165, 167, 180,

491�493. See also Brownian

random function

fractional, 93, 263

integral of, 254, 523

representation of, 261, 273

Brownian random function, 242

fractional, 93, 545

Cardinal-sine covariance, see Variogram

models

Cartier’s relation, 441, 470

Categorical variable, 486, 546�574, 578,

579, 592, 623

Cauchy

algorithm, 66

covariance, see Variogram models

Change of support, 78�80, 387

by disjunctive kriging, 456, 466

by indicator kriging, 449

by maximum, 470�477, 578

Change-of-support models

affine correction, 448

isofactorial models, 449. See also

Discrete change-of-support models

mosaic, 468

multi-Gaussian, 445�446

permanence of lognormality, 446,

451, 453

Channel tunnel, 225�232

Charlier polynomials, 417

Cholesky decomposition, 170, 494

Choquet capacity, 576

Circulant embedding, 531

Circular covariance, see Variogram

models

Civil engineering, 128, 225�232, 615

Cloud transform, 622

Cluster process, 582�583, 584, 585

Clustered data, 45, 389

Codispersion, 336, 341

Cokriging

and regression, 316�318

collocated, 311�313

comparison with KED, 366

disjunctive, 433

indicator, 399�400, 433

indicator-rank, 400

of errors, see Filtering

ordinary, 307, 313

simple, 302�304

universal, 305�308

with nugget effect, 314

Cokriging equations

simple, 303

universal, 306

with cross-variograms, 337

with derivatives, 322

Cokriging variance, 303, 306, 311

Cokriging weights, 306, 308

Collocated cokriging, see Cokriging

Common part of two images, 352

Completely monotone covariance, 72,

234, 521

Compositional data, 368�370

Concave variograms, 70, 537, 567

Conditional distribution, 392

approximation to, 393, 407

Conditional expectation

as ideal estimator, 394

Conditional expectation (defined), 14

Conditional simulation (defined),

481�482

Conditioning

by indicator values or inequalities,

558�561

by kriging, 495�501

histogram, 498�501

Confidence interval, 161, 175, 194,

229, 393

inequality for, 176

Conjecture, 59, 67, 102, 107, 437
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Connectivity, 546, 562, 589

Consistency

change-of-support models, 439

variogram models, 101�107, 112

Continuity

in the mean square, 59

of realizations, 60

Conventional income, 434

Convex covariances, 69, 566

Coregionalization

bilinear model of, 360

linear model of, 345�348

matrix, 345

Correlation length, 77

Cosimulation, 611�612

Cospectrum, 335

Covariance function, 13

isotropic, 30, 71, 72

longitudinal, 323

on a river network, 108�109

on the sphere, 107�108

spectral representation, see Spectral

representation

tapering, 211

transverse, 323

Covariance matrix decomposition,

493�494

Covariance models, see Variogram models

Covariogram, 73�76

geometric, 75

transitive, 25

Cox process, 582, 583, 584, 585

Cross-covariance, 330�335

Matérn, 358

of indicators, 106, 400, 412

Cross-spectrum, 332

Cross-validation, 118�119, 214, 289�290

Cross-variogram, 335�337, 339

Cubic

covariance, see Variogram models

generalized covariance, see Generalized

covariance models: polynomial

Curvilinear distance, 48

DACE (computer experiments), 175, 188

Data assimilation, 361, 370, 380�385

De Wijs

formula, 95

variogram, see Variogram models

Dead-leaves

random function, 579

tessellation, 578�580

transparent, 580

Declustering, 45, 389

Derivative, 60

covariance of, 60, 323

directional, 320

estimation of, 321

estimation with, 321�324

physical validity, 324�326

Design, see DACE (computer

experiments), Sampling design

Destructuring, 398, 415, 416, 418, 426

Differentiability

in the mean square, 60, 70, 75, 76,

89, 265

of realizations, 61

Diffusive random function, 415, 486, 572

Dilation, 519

Dilution simulation method, 514�527

Dip, 320

Dirac measure (delta-function), 630

Discrete change-of-support models

gamma, 468

Gaussian, 449�464, 608

Hermite, 468

Laguerre, 468

Disjunctive cokriging, 433

Disjunctive kriging, 402�407

practice, 429�432

with change of support, see Change

of support

with unknown mean, 431

Disjunctive kriging equations

general case, 403

with isofactorial model, 405

Disjunctive kriging variance, 403, 407

Dispersion

absolute, 95

indicator, 438

variance, 95, 131�133

Distribution

empirical, 388

local, 392�394

modeling, 390

of extrema, 470�471

regional, 388

tail, 389, 390
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Doubly stochastic Poisson process, see

Cox process

Drift, 58, 122�130

defined, 13, 162, 264, 276

estimation, 177�181

nonpolynomial, 127

random, 188

Dual kriging, see Kriging

Econometrics, 437

Entropy, 121, 122, 426

Environmental studies, 51, 138, 433

Epistemology, 3, 22�24, 138

Equidistributed sequence, 613

Ergodicity, 19�22, 77, 572, 574

Error contrast, 247

Estimation variance, 130�131

Excursion set, 104, 561

Exploratory data analysis, 33, 41, 119

Exponential covariance, see Variogram

models

Extension variance, 131

External drift model, 162, 172, 362�365

External knowledge, 361, 390, 502

Extremal coefficient function, 474

Extreme

distribution, 472

Gaussian process, 476�477

value prediction, 393, 399, 483

Facies, see Categorical variable

Factor, 408

nonpolynomial, 410, 419

polynomial, 410

Factorial kriging analysis, 354�356

Factorized, see Separable

Fast Fourier transform (FFT), 38, 542

Fault, 55, 60, 210, 228, 365

network, 586, 602

Filtering

component, see Factorial kriging

analysis

polynomial, see Allowable linear

combination

positioning error, 218�219

random error, 216�218, 341�343

systematic error, 315�316

Finite differences, 248, 254, 281

Finite-dimensional distributions, 29

Fish abundance, 138

Forestry, 78, 139, 199�201, 315

Fourier-wavelet simulation method, 546

Fractals, 93, 97, 102, 437, 478, 492, 523

Fracture

network, 584�587, 602

single, 284, 331, 578

Fréchet distribution, 472

Frozen field, 373

Future information (selection based on),

446, 461�463

Fuzzy, see Kriging,Variogram

Gamma

covariance, see Variogram models

distribution, 416, 420, 634�635

function (Euler), 631

Gaussian

covariance, see Variogram models

distribution, 632

random function, 17

transformation, see Transformation

Gaussian Markov random fields, 91, 95,

211�213, 234, 494, 557

Gaussian vector simulation, 493, 494,

556�561

Generalized covariance function

definition and properties, 257�266

estimation, 286�293

spectral representation, see Spectral

representation

Generalized covariance models

polynomial, 267�268, 523�524

power law, 266, 529, 539

spline, 187, 235, 266�267, 529, 539

Generalized cross-covariance, 338�339

Generalized increment, see Allowable

linear combination

Generalized random function, 81, 160,

262, 296

Generalized variogram, 281�284

Geochemistry, 432, 437

Geology, 8, 48, 56, 225, 279, 324,

328�330, 562, 591, 592. See also

Fault, Fracture

Geophysics, see Gravimetry, Magnetism,

Seismic

Geo-regression, see Kriging with

external drift
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Geostatistical output perturbation, 385

Geostatistics (definition of), 2

Geothermal activity, 339�343

Germs, 514, 576

Gibbs

propagation algorithm, 557�558, 561

sampler, 236, 391, 554�555, 556�557,

559, 599

Global estimation, 25�26, 131,

133�138, 199

of block distribution, 450�455

of point distribution, 387�392

Gneiting class, 374

Gold deposits, 52, 96, 221, 426, 433,

448, 469

Gradient, see Derivative

Gradual deformation, 600�603

Grains, see Boolean objects

Gravimetry, 89, 128, 349�352

Guess field model, 361�362

Gumbel distribution, 472

Gy’s fundamental error, 82

h-scattergram, 34, 424

hα, see Variogram models: power law,

Generalized covariance models

Halton sequence, 507, 613

Hankel transform, 71

Hard data, 498

Hard-core process, 583

Hastings algorithm, 553

Hausdorff dimension, see Fractals

Heat equation, 416

Hermite

isofactorial model, 418, 423

change of support, 450, 468

polynomials, 411, 416, 632�634

Hilbert space, 158, 184, 203, 303, 403

defined, 14

Histogram, see Distribution

Hitting functional, 576

Hole effect, 55, 71, 97

Homoscedasticity, 161

Hydraulic conductivity, 609. See also

Permeability

Hydrogeology, 123, 127, 138, 298, 326,

432, 609�610

Hyperbolic covariance, see Variogram

models

Icosahedron, 507

Image restoration, 561, 599

Indicator, see Cokriging, Kriging,

Sequential indicator simulation,

Variogram

Inequality constraints, see Conditioning,

Kriging

Infill asymptotics, see Micro-ergodicity

Information effect, 387, 442�443, 444

Infrared catastrophe, 70, 263

Inhibition process, see Hard-core process

Integral range, 76�78, 574

Interpolation, 147. See also Kriging

Interpretive models, 8

Intrinsic correlation model, see

Proportional covariance model

Intrinsic properties, 256, 270

Intrinsic random function (IRF), 17, 30

Intrinsic random function of order k

(IRF�k), 252�254

abstract, 254�256

Invariance

under linear transformation of the

f ‘, 127, 183�184

under shifts, see Shift invariance

Inverse Gaussian distribution, 582

Inverse problem, 298, 591

Isofactorial models, 404, 407�419,

422�426, 572

barycentric, 424

beta, 417, 424

change of support, 466�468. See also

Change-of-support models

defined, 408

diffusive, 415�417

mixture of pure models, 418

mosaic, 413, 424

orthogonal indicator residuals,

414�415, 420, 578

properties, 408�410

pure, 417�418, 424

Iterated exponential covariance,

see Variogram models

Jackknife, 289

Jacobi

isofactorial model, 417

polynomials, 417

Jump model, 486, 566
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K-function, 583�584

Kalman filter, 383

ensemble (EnKF), 383�385

extended, 383

Karhunen�Loève theorem, 600

Krawtchouk polynomials, 417

Krige’s

regression effect, 196�197, 201

relationship, 133

Kriging

and regression, 160�161

and splines, 277�281

Bayesian, 188�193

disjunctive, see Disjunctive Kriging

dual, 186�187

fuzzy, 174

indicator, 397�398, 400,

433, 449

interpolation properties, 155�158,

171�173

intrinsic (IRF�k), 269�272

lognormal, 193�195, 396, 447

minimax, 174

of complex variable, 360

of spatial average, 198�199

ordinary, 161, 163�167, 185

Poisson, 219�220

probability, 400

random, 199

simple, 150�161

under boundary conditions,

326�328

under inequality constraints,

232�237

universal, 161�173

with external drift, 163, 168, 181,

363, 365

with nugget effect, 200, 207, 218

Kriging equations

Bayesian, 190, 191

dual, 158, 186

intrinsic (IRF-k), 270

dual, 278, 280

ordinary, 164

Poisson, 220

simple, 152

universal, 169

with filtering, 217

with variogram, 164, 171

Kriging neighborhood, 150

continuous moving, 214

global, 186, 215

moving, 204, 241

Kriging variance, 152, 174, 175, 176

use, see Confidence Interval

Kriging weights, 206�209, 233

L1 norm, 42

L2 norm, 14, 42

Lagged scatterplot, see h-scattergram

Lagrange multiplier, 164, 168, 178, 183,

184, 306

Laguerre

isofactorial model, 418, 423

change of support, 468

polynomials, 416, 635�636

Layer cake model, 367�368

Least squares

drift estimation, 178, 181, 182, 277

variogram fitting, 114�116

Leave-one-out method, see

Cross-validation

Lebesgue measure, 630

Legendre polynomials, 108, 417

Level set, 328

Levinson algorithm, 509

Linear congruential method, 612

Linear model of coregionalization,

see Coregionalization

Linear predictive coding, 206

Linear variogram, see Variogram models

Local average subdivision, 545

Local estimation, see Block average,

Cokriging, Disjunctive kriging,

Kriging

Locally

equivalent stationary covariance,

272�276, 276, 291

stationary random function, 113, 395,

396, 431, 446, 447, 460, 607

varying mean, 113, 162, 395, 431�432

Logarithmic variogram, see Variogram

models

Lognormal

blocks, see Change-of-support models

distribution, 639

grades, 58, 97, 437

kriging, see Kriging
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random function, 107, 113, 143, 146,

396, 446, 451, 453, 463, 609

variogram, 106�107

LU decomposition, see Covariance matrix

decomposition

Madogram, 93, 101, 106, 424

Magnetism, 89

Marching cubes, 329

Marked point process, 574

Markov

chain, 416, 552, 566, 572

process, 88, 416

property, 88, 95, 204. See also Screening

effect

random field, 555

Markov chain Monte Carlo, 551

Markov-type correlation model

MM1, 312, 344

MM2, 312, 333, 362, 366

Matérn covariance, see Variogram models

Maximum likelihood, 116

restricted, 116

Max-stable random function,

472�477

Measure theory, 629

Measurement error, 82�83, 216, 227, 497.

See also Filtering

Median unbiased, 194

Meixner

isofactorial model, 418, 423

polynomials, 417, 637

Meteorology, 35, 88, 94, 117, 123, 127,

324, 361

Metropolis algorithm, 552, 598, 606

multiple, 555�556

Micchelli’s theorem, 265

Micro-ergodicity, 22, 144�145, 284

Microstructure, 80�82

Migration process, 103, 508

Milankovitch cycles, 56

Min/Max Autocorrelation Factor (MAF),

356�358

Minimax, see Kriging

Minimum stress surface, 279. See also

Splines

Mining, 55, 113, 161, 185, 195, 196, 221,

426, 432, 446, 448, 469, 582,

615�620

Misclassification, 401

Monitoring data, 376, 378

Monte Carlo, 482

Montée, see Radon transform

Mosaic

isofactorial model, 413, 424

change of support, 468

random function, 398, 486, 565

Moving-average process, 511�512

Multidimensional scaling, 378

Multi-Gaussian model, 394�396,

445�446. See also Change-

of-support models

Multipoint simulation, 592�594

Multivariate

covariance model, 332

estimation, see Cokriging

Gaussian distribution, 638

recovery, 463, 466

Nearest neighbor, 583

Negative binomial

distribution, 421, 637

isofactorial model, 417, 419

change of support, 469

Nested structures, 51, 111. See also

Factorial kriging analysis

Net pay thickness, 201

Net-to-gross, 201

Neyman-Scott process, see Cluster process

Nickel deposits, 616

Non-Euclidean space, 48

Nonstationary covariance, 113,

189, 519

estimation, 376�378

Nonstationary mean, see Drift

Normal score transform, 390

Normality index, 438

Nugget effect, 52, 80�82, 109

multivariate, 317, 334

Objective property, 23, 144

Octant search, see Kriging neighborhood:

moving

Order relations, 398, 549

Ordinary kriging, see Kriging

Ore tonnage, see Selectivity curves

Orthogonal complex random

measure, 630
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Orthogonal indicator residuals, 414�415,

420, 578

change of support, 468

Orthogonal polynomials, 410

Orthogonality property, 158, 184, 304, 403

Outliers, 221

Palm distribution, 583

Parallel interacting Markov chains, 600

Parent-daughter process, see Cluster

process

Pareto distribution, 437

Percolation, 589

Periodicities, 56

Periodogram, 120

Permanence of lognormality, see Change-

of-support models

Permeability, 549, 609

block, 610

effective, 609

equivalent, 610

inter-block, 610

Petroleum, 320, 324, 352, 362, 367�368,

370, 550, 562, 588, 591, 592, 593,

594, 599, 601, 602, 604, 621�628

Pluri-Gaussian simulation, see Truncated

pluri-Gaussian simulation

Point process, 580�584

Poisson

alignment point process, 583

equation, 294�298

isofactorial model, 417

lines, 274, 524�525, 569�570, 572

planes, hyperplanes, 93, 524�525,

569�570, 585

point process, 514�515, 566, 584, 631

doubly stochastic, see Cox process

with regionalized intensity, 582,

585, 588

polygons, polyhedra, 570, 576

random walk, 522�523

shot noise, 514

Pólya’s theorem, 69, 70

Polygons of influence, 444, 567

Polynomial generalized covariance, see

Generalized covariance models

Positioning uncertainty, 83�84, 232

Positive definite, 62, 63

conditionally, 63

k�conditionally, 262

strictly, 62, 67, 152, 170

Potential field interpolation, 88,

328�330, 559

Power law model, see Variogram models,

Generalized covariance models

Power averaging, 610

Prediction, 148, 152

Principal component analysis (PCA),

355, 356

Principal irregular term, 61, 87, 88, 211

Prior distribution, 117, 485, 604

Probability-field simulation, 501�502

Process-based simulation, 591�592

Projection theorem, 14

Proportional covariance model,

343�345, 398

Proportional effect, 45, 58, 113

Pseudoconditional distribution, 406

Pseudorandom numbers, 612�613

Quadratic covariance, see Variogram

models

Quadrature spectrum, 335

Quantity of metal, see Selectivity curves

Quasi-random numbers, 507, 613

Radial basis function, 186

Radon transform, 75�76, 86, 89, 504

Random

error, see Filtering

function (defined), 12

noise, see White noise

set, 102�103. See also Boolean

walk, 492

Random coins method, 521

Random midpoint displacement,

493, 545

Range, 49, 111, 118, 154, 178, 207

integral, see Integral range

practical, 88

Rate data, see Kriging: Poisson

Rational quadratic covariance, see

Variogram models: Cauchy

Reality (comparison with), 199, 230�232,

432, 448, 469

Recovery functions, 434, 461

duality formulas, 436

isofactorial expansion, 430
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Regional

distribution, see Distribution

variogram, see Variogram

Regionalized variable, 2

Regression, 14, 148, 152, 178, 185, 287.

See also Kriging

Regularization, 78�80

Relay effect, 207�209

Renewal process, 565�567

Representation of an IRF�k, 255

internal, 257, 273

locally stationary, 272

stationary, 264, 276

Residual, 162, 249, 255, 262

Resistant, see Robust

Resources, reserves, 221, 443, 444, 461,

469, 615, 622

indirect, 446, 461�463

Risk assessment, 229

River network, 108�109

Robust, 39, 173, 222�225. See also

Variogram

Sample variance, 31, 38

Sampling

design, 110, 133�138, 372

error, 82

random, 135

square grid, 136

stratified random, 135

Scale

effect, 609. See also Upscaling

parameter, 72, 86, 88, 89, 90,

472, 607

Screening effect, 204�207, 312, 344, 372

Seismic, 192, 227, 352, 362�365, 367

inversion, 594�597

Selectivity, 434�439

curves, 434�437

index, 438

of a distribution, 440

Self-affinity, 93

Self-similarity, 93

Semivariogram, 31

Separable covariance, 100, 205�206,

372, 627

Separable random function, 13, 60

Sequential Gaussian simulation,

490�491

Sequential indicator simulation,

547�551

Sequential random function, 579

Shift invariance, 247

of kriging, 153, 172, 184

of polynomials, 250�251

Shooting process, see Cluster process

Sichel distribution, 582

Sill, 49, 111, 195

Simple kriging, see Kriging

Simulated annealing, 597�600

Skewed distribution, 42, 141, 146, 195,

221, 420

Slutsky’s condition, 21, 77

Smoothing. See also Splines

Smoothing filter, 209

Smoothing relationship, 155�156, 185

Soft data, 498, 501, 550, 559

Soil science, 195, 218, 429, 432

Spatial distribution, 12

Spatial uncertainty, 2

Spectral

density, 68, 73, 120

filtering, 351

measure, 66, 70, 263

random, 18, 67, 71, 527, 631

modeling, 120�122

Spectral representation

covariance, 18, 66�69

isotropic, 71�73

cross-covariance, 332

generalized covariance, 262�264

intrinsic random function, 70

stationary random function, 18, 67

variogram, 69�71

isotropic, 72

Spectral simulation method

continuous, 527�531

discrete, 531�544

Spectrum, see Spectral density

Spherical covariance, see Variogram

models

Spin exchange, 554

Spline generalized covariance, see

Generalized covariance models

Splines

biharmonic, 279

interpolating, 277�280

smoothing, 280�281
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Square root method, see Covariance

matrix decomposition

Stability properties (covariances and

variograms), 62, 63

Stable

covariance, see Variogram models

distribution, 94

random function, 514, 525

Stationarity

second-order (weak), 17

strict (strong), 16

Stochastic

differential equation, 91, 279,

294, 373

integral, 65

process, see Random function

Storm process, 475�476

Structure function, 33. See also Variogram

Subordinated process, 571

Substitution random function, 416,

571�574

Support, 150, 630. See also Change

of support

random, 399

variable, 201

Support effect, 439�442, 444

Surface area estimation, 26�27

Systematic effect, 162, 243

Systematic error, see Filtering

Taylor’s hypothesis, 373

Tessellation, 565�571

dead-leaves, 578�580

Poisson polyhedra, 570�571

STIT, 571

Voronoi, 567�569

Three perpendiculars theorem, 203

Time series, 152, 161, 217, 509, 511,

513, 531

spectral modeling, 120�122

Time trend, 380

Toeplitz matrix, 509, 531

Top-cut grades, see Truncation model

Topography, 78, 125, 290

Total uncertainty, 117, 138, 174, 485

Training image, 592

Transformation, 183, 195

gamma, 420, 426

Gaussian, 390�392, 498, 617

negative binomial, 421

uniform, 420, 501

Transformation function, 390

modeling, 390, 420�422, 426, 500, 617

Transition models, 75

Transitive theory, 24�27

Transmissivity, 610. See also Permeability

Trend, 58, 162, 238, 241�244, 263, 277

Triangular covariance,

see Variogram models

Triangular inequality, 101, 102

Truncated

Gaussian simulation, 561�564

pluri-Gaussian simulation, 562�564,

623�628

Truncation model, 222�225

Turbulence, 94

Turning bands, 502�508

Unbiasedness

conditional, 16, 161, 185, 196, 201, 443

conditions, 168, 305, 319, 322

price to pay for, 182

Uniform

conditioning, 464�466

isofactorial model, 419

Unit sphere, 632

Universal kriging, see Kriging

Universal kriging model, 162, 240�241,

247, 264, 276

Universality conditions, see Unbiasedness

Upscaling, 609�610

Uranium deposits, 113, 221, 313, 429,

446, 448

Van der Corput sequence, 507, 613

Variogram, 30

anisotropic, see Anisotropy

as generalized covariance, 260

behavior at origin, 52, 109, 118

box plot, 36

concave, see Concave variograms

estimation, 114�117, 138�143

fitting, 109�117

fluctuation, 143�146

fuzzy, 117, 174

generalized, see Generalized variogram

Huberized, 42

indicator, 103�106, 397, 413
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irregular terms, 61

map, 37

median, 43

misspecification, 110

nugget effect, see Nugget effect

of order 1, see Madogram

of order 1/2, 43

of order α, 101�102

of residuals, 123�125

proportional, 58

quantile, 43

raw, 122�123

regional, 29, 38�39, 122, 138

regularized, 79, 95

robust, 39�44, 104

sample, 29, 35�38, 138

slope at origin, 99, 111

spectral representation, see Spectral

representation

theoretical, 29, 31, 39, 59

underlying, 123

Variogram cloud, 34�35

Variogram models, 84�101

cardinal-sine, 97, 544

Cauchy, 73, 89�90, 349, 521

circular, 85, 105, 518, 519

cubic, 87, 519

exponential, 72, 88�89, 105, 206, 416,

482, 491, 508, 518, 521, 544, 566,

570, 571

gamma, 73

Gaussian, 72, 89, 174, 206, 324, 518,

536, 541, 544

hyperbolic, 73, 544

iterated exponential, 73

J-Bessel, 71, 97

K-Bessel, see Matérn

linear, 92, 165, 172, 180, 234, 492,

522, 525

logarithmic (de Wijsian), 94�97, 205

Matérn, 90�91, 204, 213, 518, 521, 541

multiquadric, 187

pentamodel, 88

periodic, 97

power law, 91�94, 127, 165, 233,

521�522, 529, 537

powered exponential, 94

spherical, 84�88, 103, 105, 107, 207,

234, 504, 517, 518, 519, 521, 544,

565, 607

stable, 94, 541, 544

triangular, 64, 68, 85, 105, 518

truncated power function, 63

Voronoi polygons, 567�569, 576

Wavelets, 544�546

Weibull distribution, 472

Weight on the mean, 183, 185

White noise, 52, 81, 631

Wiener bounds, 609

Wiener process, 492.

Also see Brownian motion

Wild horse, 195

Wildlife, 347

X-ray images, 346

Yule-Walker equations, 509

Zero effect, 392, 421
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