

PHS 6317 Nanoengineering of thin films

Course schedule – Winter 2024

12 January	Introduction – Scientific and technological challenges
19	Fabrication methods – Vacuum physics and vapor-phase techniques
26*	Fabrication methods – Plasma processes and process optimization
2 February	Fabrication methods - Plasma-surface interactions and diagnostics
9**	Fabrication methods – Thermal/Plasma spray technologies
16*	Optics of thin films 1, optical characterization, Miniquiz1 (5%)
23*	Optics of thin films 2, design of optical filters
1*** March	Presentations – Emerging fabrication techniques (30%)
March	4-8 - Winter/Spring break
15**	Tribo-mechanical properties of films and coatings
22**	Electrochemical properties – corrosion and tribo-corrosion(<i>filter-20%</i>)
5 April	Functional films and coatings – Part 1, Miniquiz 2 (5%)
12	Functional films and coatings – Part 2
16	Life cycle analysis and environmental impact, visits
18***	Presentations – Emerging applications of nanostructured films (40%)

Deadlines:

Project #1 – Fabrication technique:

Choice of the subject: **26 January**

Abstract and references: 9 February

Report and presentation: 1st March

Projet #2 – Design of an optical filter:

Choice of the subject: 23 February

Report: 22 March

Projet #3 – Application of nanostructured thin films:

Choice of the subject: **16 February** Abstract and references: **15 March** Presentation: **18 April p.m.** Report: **22 April at 23:59**

Project #3: Applications of nanostructured films and coatings

Thomas Sicotte and Alexandre Gamache - Cellules photovoltaïques à pérovskite

- Alexandre Lussier Fenêtres intelligentes thermochromiques
- Mohamed Ammari Thermal barrier coatings for aerospace gas turbine engine
- Luc Montpetit Passivation of CdZnTe for x-ray detectors
- Veronika Cervenkova Solar-thermal energy conversion Transition metal nitrides
- Émilien Martel Electrochromic, photochromic and gasochromic coatings for consumer optics
- Étienne Tremblay et Nathan Sasseville Couches minces pour l'électronique organique OLEDs
- Thomas Lapointe Photodétecteurs et leur conception/optimisation à l'aide des couches minces
- Alexandre Carrière et Youssef Ben Mami Électrodes transparentes pour la fabrication des cellules solaires
- Arghavan Yazdanpanah Ardakani Nanoengineering thin-films to produce hydrophobic coatings for aircraft surfaces
- Mathieu Bruzzese Oxidation-resistance barrier coatings for aerospace applications
- Bastien Izacard Atomic oxygen barrier coatings for satellites
- Alexandre Fall Carbon nanotubes for sodium-ion batteries
- Alexandre Pinel Couches minces d'hydroxyapatites pour les implants en biomedical
- Christelle Abou Zeidan Carbon nanotubes for flexible electronics

Plasma system and process and materials control

PHS6317: Nanoengineering of Thin Films - W2024

L. Martinu et al., Chapter 9 in "*Handbook of Thin Film Process Technology*", P.M. Martin, ed., Elsevier, 2010.

Control of the properties through the microstructure: Film-substrate system

Multisectorial character of advanced materials

Automobile Industry Aerospace /Defense Energy Space Biotechnology Nanoengineered thin films VLSI **Optical films** MEMS Manufacturing Architecture

Nanostructured functional and multifunctional thin films

The concept of nanostructured functional and multifunctional coatings

"We are limited only by our imagination"

Challenges

Main/complementary properties <u>I</u> Compatibility (substrate, process,...) Process control Stability Industrial scale, cost

Deposition technologies New materials:

- passive functional
- active smart,
- compounds, nano-materials, nanocomposites

Coating architectures:

- single layers
- (discrete) multilayers
- graded layers
- nanostructures
- control of interfaces

The holistic approach to surface engineering

Development of passive thin films

Optical coatings:

- Choice of the fabrication technique
- New technologies

Gas and vapor diffusion barriers:

- Thin films on plastics

Optical coatings

The AR council (www.arcouncil.org)

Bank of Canada

Optical coatings – from design to manufacture

Requirements for optical films

1. Optical properties – complex refractive index

- 2. Mechanical and tribological properties
- 3. Environmental stability (T, RH, ...)
- 4. Functional properties (hydrophobicity/hydrophilicity, electrical conductivity, gas/vapor permeation barriers ...)
- 5. Active properties (electrochromic, thermochromic, photochromic and other properites)

PHS6317:

Nanoengineering of Thin Films - W2024

Refractive index of optical coatings

L. Martinu and D. Poitras J. Vac. Sci. Technol. A 18, 2619-2645 (2000)

L. Martinu et al., Chapter 9 in the "Handbook of Film Deposition Technologies", P.M. Martin, ed., Elsevier 2010

Requirements:

Choice of n_H and n_L

Compatibility with substrates

Durability and environmental stability

Compatibility with other process technologies

Material Medium High Low TiO₂ pc-D Nb₂O₅ TiO₂:Ē:Ŭ BaTiO₂ SrTiO Ta₂O₅ SnO₂ SiN₁₃ SIO N PFC PPÔŚ PPHC Al₂O₂ SiO SiO₂:F PPFC TiO₂ Nb₂O₅ Ta₂O₅ SiÑ_{1,3} ZrO₂ **PVD** ITŌ Y203 Al₂O₂ SiO MgF₂ PET PC SiO₂ glass Substrate **PMMA** SiO₂ quartz 2.2 2.4 1.4 1.6 1.8 2.0 2.6 Refractive index n @ 550 nm

Microhardness of different coatings

L. Martinu and D. Poitras J. Vac. Sci. Technol. A, 18 (2000) 2619

L. Martinu et al., Chapter 8 in "Handbook of Film Deposition Technologies,P. Martin, ed., Elsevier 2010

J.E. Klemberg-Sapieha et al., Appl. Optics 43 (2004) 2670

Comparison of different deposition techniques

J.E. Klemberg-Sapieha et al., Appl. Opt., 43 (2004) 2670

- L. Martinu et al., in 50 Years of Vacuum Coatings, SVC, 2007
- L. Martinu et al., in Handbook of Thin Film Deposition Technology, Elsevier, 2010

Deposition techniques and parameters

Deposition	Coating	Conditions						
technique		<i>p</i> [Torr]	τ _s [°C]	<i>V</i> _B [V]	E _i [eV]	/ [μΑ/cm²]	r _D [nm/s]	
	SiO ₂	6.0x10 ⁻⁵	60	0	200	100	0.15	
	TiO ₂	1.1x10 ⁻⁴	100	0	150	185	0.07	
	SiO ₂	1.2x10 ⁻⁴	60	0	115	65	0.20	
IBAD 2	Ta₂O₅	1.5x10 ⁻⁴	100	0	115	65	0.20	
	TiO ₂	1.3x10 ⁻⁴	80	0	105	100	0.35	
MS	SiO ₂	3.1x10 ⁻⁴	80	0			0.23	
	Ta₂O₅	3.5x10 ⁻⁴	80	0			0.25	
	TiO ₂	3.8x10 ⁻⁴	80	0			0.13	
DIBS	SiO ₂	2.4x10 ⁻⁴	100	0	300	200	0.37	
	Ta₂O₅	2.4x10 ⁻⁴	100	0	300	200	0.53	
PECVD	SiO ₂	6.0x10 ⁻²	30	600	240	80	2.30	
	Ta₂O₅	2.5X10 ⁻²	30	600	300	90	0.80	
	TiO ₂	2.5x10 ⁻²	30	450	225	70	0.60	
FCAD	TiO ₂	2.6x10 ⁻³	30	120	50	2500	1.70	

Thickness *d* ~ 1000 nm

Two types of pre-characterized substrates: c-Si (50 mm diameter) and FS (25 mm diameter)

Refractive index dispersion curves

Comparison of n_{550} values

Residual stress

Load-displacement curves

Hardness and Young's modulus

Elastic recovery

Wear test

Reference: K_{FS} = 10.6 ± 0.9 [10⁻⁶ mm³/Nm]

Wear rate

Energetic conditions during the film growth

Tochnique	SiO ₂		Ta ₂ O ₅		TiO ₂	
rechnique	<i>E</i> i [eV]	$\Phi_{\rm i}/\Phi_{\rm N}$	<i>E</i> i [eV]	$\Phi_{\rm i}/\Phi_{\rm N}$	<i>E</i> i [eV]	$\Phi_{\rm i}/\Phi_{\rm N}$
IBAD-1	200	1.8	-	-	150	5.2
IBAD-2	100	0.9	100	1.7	100	0.6
MS	10 ?	1?	10 ?	1?	10 ?	1 ?
DIBS	300	1.5	300	2.1	-	-
PECVD	240	0.1	300	0.6	225	0.2
FCAD	-	-	-	-	50	2.9

Energy per deposited particle:

 $E_p \sim E_i \frac{\Phi_i}{\Phi_N} \qquad \Phi_N = r_D \frac{\rho N_A}{m_A}$

- $\Phi_{\rm N}$ flux of condensed particles
- ρ density
- m_A molecular weight

Energetic conditions during the film growth

High Power Impulse Magnetron Sputtering - HiPIMS

New coating properties due to:

- high density plasmas films obtained from ionized species
- high ion fluxes toward the substrate
- effect of ion bombardment on the microstructural evolution

Pulsed discharges

Nomenclature for pulsed discharges

Recent review articles and comparisons:

- J.T. Gudmundsson, N. Brenning, D. Lundin and U. Helmersson, J. Vac. Sci. Technol. A 30 (2012) 030801-1-35 (above)
- A. Anders, Surf. Coat. Technol. (2011), J. Vac. Sci. Technol. A 28 (2010) 783
- -K. Sarakinos et al., Surface & Coatings Technology, 204 (2010) 1661
- MPP vs. HiPIMS: M. Hala et al, SCT 2012, JPD-AP, 45 (2012) 055204

HiPIMS process optimization

OES diagnostics – from the target to the substrate

Reactive HiPIMS: Pure O₂ typical in optical coatings

HIPIMS: Optical filters for species-resolved imaging Filter performance and application

HIPIMS with a Cr target: Discharges in Ar, N₂, and in Ar/N₂ mixtures

Sputtering of Cr

Two spectral regions of interest selected

- neutral chromium emission lines
- neutral gas emission lines and bands

PHS6317: Nanoengineering of Thin Films - W2024 M. Hala et al., IEEE Trans. Pl. Sci., 38 (2010) 3035

Dynamics of the HiPIMS discharge in Ar

Comparison of n_{550} values

Comparative study:

Pre-characterized substrates – c-Si, FS Coating thickness: 1 μm Characteristics suitable for high-end optical filters

HiPIMS vs other techniques:

Comparison with J.E. Klemberg-Sapieha et al., Appl. Opt., 43 (2004) 2670

Hardness and Young's modulus

HiPIMS vs other techniques:

Comparison with J.E. Klemberg-Sapieha et al., Appl. Opt., 43 (2004) 2670

Residual stress

HiPIMS vs other techniques: Comparison with: J.E. Klemberg-Sapieha et al., Appl. Opt., 43 (2004) 2670

of Thin Films - W2024

Nanocomposite AI-Si-N films

Reactive UBM sputtering from AI and Si targets

AIN to AI-Si-N with up to 23 at.% Si

Formation of nanocomposite at [Si]> 6 at.% $AI_{0.88}Si_{0.12}N$ with Si_3N_4

Structural evolution of Al-Si-N films

A. Pélisson, Doctoral thesis, University of Basel, Basel, 2009

Mechanical properties of AI-Si-N

Hardness of AI-Si-N depends on composition:

- Solid soluton hardening
- Nanocomposite, small grain size. but structural similarities of AIN and Si₃N₄:
 no sharp interfaces?
- Approaching the hardness of Si₃N₄

A.Pélisson, M. Parlinska-Wojtan, H.- J. Hug, J. Patscheider, *Surf. Coat. Technol.* 202 (2007) 884–889

PHS6317: Nanoengineering of Thin Films - W2024

Al-Si-N with 9 at.% of Si deposited at 200 ^oC

H/E - elastic strain to failure *H/E* = 0.12 H^3/E^2 - resistance to plastic deformation H^3/E^2 = 0.43 GPa *R* ~ 80%

Wear resistance of Al-Si-N films

PHS6317: Nanoengineering of Thin Films - W2024 J.E. Klemberg-Sapieha, ... J. Patscheider, ..., SVC Ann. Tech. Conf., Santa Clara, May, 2012.

Thermo-elastic characteristics of films and coatings Thermal expansion coefficient & Poisson's ratio

Two substrate method: Thermo-elastic constants of the films were obtained from the σ - *T* plots

Total $\sigma(T)$ in the film:

$$\sigma(T) = \sigma_i + (\alpha_s - \alpha_f)(\frac{E_f}{1 - \nu_f})(T - T_d)$$

Assumption: E_{f} and α_{f} - independent of T σ_{i} - independent of substrate $\left(\frac{d\sigma}{dT}\right)_{s1} = \frac{E_{f}}{1 - v_{f}} (\alpha_{s1} - \alpha_{f}) \longrightarrow \alpha_{film} = \frac{\alpha_{s2} (\frac{d\sigma}{dT})_{s1} - \alpha_{s1} (\frac{d\sigma}{dT})_{s2}}{(\frac{d\sigma}{dT})_{s1} - (\frac{d\sigma}{dT})_{s2}}$ $v_{film} \longrightarrow v_{f} = \left(\frac{1}{E_{r}} - \frac{1 - v_{i}^{2}}{E_{i}}\right) \frac{d\sigma}{dT} \frac{1}{\alpha_{s} - \alpha_{f}} - 1$

PHS6317: Nanoengineering of Thin Films - W2024

E. Çetinörgü et al., Applied Optics, 48 (2009) 4536

Coefficient of thermal expansion & Poisson's ratio

σ -*T* plots : Nb₂O₅, Ta₂O₅ and SiO₂ prepared by DIBS

Heating and cooling cycles (3 x) 1.5 °C/min in N₂ ambient

Substrate: c-Si, GaAs CTE : α_{Si} = 2.6×10⁻⁶ °C⁻¹ and α_{GaAs} = 5.12×10⁻⁶ °C⁻¹

Results were used to calculate:

Coefficient of thermal expansion, CTE

• Poisson's ratio, v_f

$$\alpha_{film} = \frac{\alpha_{s2} (\frac{d\sigma}{dT})_{s1} - \alpha_{s1} (\frac{d\sigma}{dT})_{s2}}{(\frac{d\sigma}{dT})_{s1} - (\frac{d\sigma}{dT})_{s2}}$$

$$v_f = \left(\frac{1}{E_r} - \frac{1 - v_i^2}{E_i}\right) \frac{d\sigma}{dT} \frac{1}{\alpha_s - \alpha_f} - 1$$

Results – Comparison with published data

Film Material	<i>E_f/</i> (1- <i>n_f) (GPa)</i>	<i>E_f</i> (GPa)	<i>СТЕ</i> ×10 ⁻⁶ (°С ⁻¹)	$ u_{\phi}$	References
	139	130	4.9	0.22	This work
	—	-	1.52	-	[33]
Nb_2O_5	—	60	5.8	0.20	[34]
	—	_	-2.0	_	[35]
	—	125	—	0.23	[39]
	143	136	4.4	0.27	This work
	1549	_	2.45	-	[17]
Ta ₂ O ₅		—	2.3 to 5.6	1	[36] [37] [38]
	1549	_	2.42	_	[1] [36]
	_	_	6.72	_	[38]
	93	87	2.1	0.11	This work
SiO ₂	3257		0.38	_	[17]
	—	86	3.10		[21]
	_	75	0.55	0.16	[34]
	_	72	_	0.17	[39]

1. Thien et al OC **198** 2001.

- 17. Lee et al RSI **72**(4) 2001.
- 21. Thielsch et al AO **41**(16)2002.
- 33. Thien et al JMO **47**(10) 2000.

34. Chen et al JAP 101, 2004.

- 35. Choosuwan et al, JAP **91**, 2002.
- 36. Weyant et al, J. Am. Ceram. Soc. 88, 2005.
- 38 al J. Mater Sci. 41, 2006.
- 39. Chudoba et al Surface Coat. Technol. 127, 2000.

Development of passive thin films

Optical coatings:

- Choice of the fabrication technique
- New technologies

Gas and vapor diffusion barriers:

- Thin films on plastics

Applications of optical coatings on plastics

lenses optical components

flexible electronics

optical security devices

PHS6317: Nanoengineering of Thin Films - W2024

displays

flexible solar cells

aerospace

Why plastics?

- Cost
- Flexibility
- High strength-to-weight ratio
- Lightweight
- Safety
- Roll based processing

Problem: Coating-substrate compatibility

Properties of selected optical plastics

Dolymor	п	ρ	WA	СТЕ	ST	H (DSI)	Ε
rorymer	[@550nm]	[g/cm ³]	[%]	[µm/m°C]	[°C]	[GPa]	[GPa]
PC	1.58	1.20	0.15	68-70	122-132	0.2;118*-122*	2.1-2.3
PMMA	1.49	1.17-1.19	0.30-0.45	52-60	71-91	0.2;63*-93*	1.7-3.0
PET	1.66	1.40	0.05	59	80-100	130*	3.8
PTFE	1.35	2.17	0.03	86	260-290	58*	0.5
FEP	1.34	2.10	0.01	140	60-204	25*	0.4
PVDF	1.42	1.78	0.03	140	68-170	75*	1.8
PS	1.59	1.04	0.1	90	80	110*	2.4
PEN			< 0.05		155	0.2	5.0
СОР	1.53	1.01	< 0.01	60-70	125		
COC	1.53	1.02	< 0.01	60-70	75-170	184*	3.1
Fused silica	1.46	2.20		0.40		9.5	110
Glass	1.52	2.18		0.75		7.2	68
Diamond	2.42	3.52		1.80		98	980

 n_{550} refractive, ρ density, *WA* water absorption, *CTE* coefficient of thermal expansion @20°C, *ST* service temperature, *H* (DSI) depth sensing indentation hardness; *Rockwell hardness, *E* elastic modulus.

Inorganic optical films on plastic substrates

Problem: Significant mismatch between the mechanical properties of inorganic layers (e.g., anti-reflective (AR) coatings) and plastics substrates (e.g., for ophthalmic applications) may lead to pre-mature failure including cracking, delamination and other adverse effects.

Mechanical sollicitation \rightarrow deformation of substrate

Need:

- Tailor mechanical properties of AR layers: make them "deformable" (less brittle)
- Good adhesion (at all interfaces)
- "Perfect" transparency

Strain to failure of oxides < ~ 2 %

- Good durability (vs. "crazing", scratches, stress cracking...)
- Environmental stability (UV, humidity, temperature...)

Methods to improve adhesion of coatings to polymeric surface

- Wet chemical treatment
- Mechanical treatment
- Exposure to flames
- UV treatment
- Ion beams
- Corona treatment
- Low pressure plasma treatment

Plasma effects to improve adhesion

- **1. Surface cleaning** (*removal of organic contamination from the surfaces*)
- **2.** Ablation (*removal of <u>W</u>eak <u>B</u>oundary <u>L</u>ayer, WBL*)
- 3. Surface crosslinking:

CASING – <u>Crosslinking via Activated</u> Species of <u>Inert</u>

<u>Gases</u> (creation of free radicals on polymer surfaces via ion bombardment, VUV photons)

4. Surface chemistry modification (incorporation of chemical functionalities on

polymer surfaces)

- 5. Surface electric charge
- 6. Deposition of intermediate layers
- 7. Atomic interface mixing

Adhesion of Si₃N₄ films on plastics: Case study of PC and PMMA

Martinu and Klemberg-Sapieha: "Optical coatings on plastics", in "Optical Interference Coatings", Springer 2003

PMMA/SiN_{1.3} interface

AFM images of scratch track profiles

Refractive index depth profile for PMMA - spectroellipsometry

J. E. Klemberg-Sapieha et al, TSF 1998

Interphase

J.E. Klemberg-Sapieha et al., SVC Proc., 2000

Challenges in coating plastics

Properties of selected plastics and coatings

U. Schulz, Appl. Opt.. 2006

Polymer	ρ [g/cm³]	CTE [µm/m°C]	<i>H</i> [GPa]	<i>E</i> [GPa]
PC	1.20	70	0.2	2.0
PMMA	1.18	60	0.2	1.8
PET	1.40	59	0.3	3.8
COP	1 01	70		
Zeonor	1.01	70		
SiO ₂	1.98	2.1	9.5	85
Ta_2O_5	8.20	4.4	7.0	135
Nb ₂ O ₅	4.50	4.9	6.0	125

Solution: Tailoring the interfacial region

Interference Coatings, Springer, 2003

Permeation barriers on polymer substrates

OTR and WVTR requirements for different applications and the barrier performance provided by available materials.

OLED and AMOLED

AMOLED (active-matrix organic light-emitting diode) is a <u>display device</u> technology used in <u>smartwatches</u>, <u>mobile devices</u>, laptops, and televisions. <u>OLED</u> describes a specific type of thin-film-display technology in which <u>organic compounds</u> form the <u>electroluminescent</u> material, and <u>active matrix</u> refers to the technology behind the addressing of <u>pixels</u>.

As of 2008, AMOLED technology has been used in mobile phones, media players and digital cameras, and continued to make progress toward low-power, low-cost and large-size (for example, 40-inch or 100-centimeter) applications

Flexible displays and flexible touch screens continue to grow; it is expected that flexible, curved and foldable displays will have over \$75 billion revenue in 2027.

Jennifer Colegrove, Touch Display Research, private communication, May 2019

WVTR and OTR tests

Standard "MOCON" test

Ca test

- Standard "Mocon" test
- Calcium test
- QMS measurements (vacuum)
- OLED lifetime test
- Others

Critical thickness, d_c

* From: H. Chatham, Surface and Coatings Technology 78, 1 (1996).

Defect-controlled permeation

Coating – substrates interphase

PECVD SiO₂ (200nm)/PET

Sample	Stretching	OTR cm ³ /m ² day	
	0 %	159	
13 µm PET	4 %	163	
	0 %	0.3 - 1.1	
	2 %	0.7 - 1.0	PVD
	3 %	2.2 - 3.3	
	4 %	10.3 - 97	
SiO ₂	4.8%	117	
	5 %	137	
	6 %	160	
	8 %	160	

Films Stretching:

Test carried out using peel-tester 3M90, Instrumentors Inc.) Stretching speed : 0.056 mm/s Samples width : 9 cm or 2 cm.

G. Czeremuszkin et al., Proc. SVC 46th An. Tech. Conf. (2003)

Interfacial region - Interphase

- * Thin coatings thinner interphase 5 ~10 nm;
 * Depends on process parameters;
- * Interphase: complex structure:

Likely composed of:

- A. Gradient transition layer (silica/substrate) with chemical bonding;
- B. Modified substrate layer (UV, VUV, lons);

PECVD

Improved adhesion; Increased stretchability; Increased "bendability" of coated films.

PHS6317: Nanoengineering of Thin Films - W2024

Comparison of compositional depth profiles of the SiO₂/substrate by ERD:

- (a) PECVD (320 nm) and PVD (120 nm);
- (b) Thermal CVD (200 nm) SiO₂ on c-Si

Da Silva-Sobrinho AS, Schüler N, Klemberg-Sapieha JE, Wertheimer MR, Andrews M, and Gujrathi SC J V S T, A 16 (1998) 3190.

Ultra-high barriers

corresponds to **0.006 monolayer per day !**

In line vacuum polymer deposition (courtesy of Vitex System)

P. Martin, Vacuum Technology & Coating, 2009.

PHS6317: Nanoengineering of Thin Films - W2024 M.E. Gross et al., SVC, 2006.

Ultra-high barriers

Roll-to-roll technology for transparent barrier

Schematic system which combine: plasma treatment, polymer evaporator, sputtering and e-beam evaporator around the central drum of web coater. M.E., Gross et al., SVC, 2006.

Pilot roll coater novel Flex 600. N. Schiller et al., Vacuum Technology & Coating, 2009.

AC, RF, MW, AC/RF, RF/MW INEXPENSIVE, FLEXIBLE, **HIGH QUALITY COLOR DISPLAY** Ink jet printing, Encapsulation Stamping **Roll to Roll processing**

G. Czeremuszkin et al., SVC, 2003

Flexible, curved and foldable display market share

It is foreseen that flexible, curved and foldable display will have over \$75 billion revenue, which will be about 36% market share in 2027.

Jennifer Colegrove, Touch Display Research, private communication, May 2019

PHS 6317 Nanoengineering of thin films

Course schedule – Winter 2024

12 January	Introduction – Scientific and technological challenges
19	Fabrication methods – Vacuum physics and vapor-phase techniques
26*	Fabrication methods – Plasma processes and process optimization
2 February	Fabrication methods - Plasma-surface interactions and diagnostics
9**	Fabrication methods – Thermal/Plasma spray technologies
16*	Optics of thin films 1, optical characterization, Miniquiz1 (5%)
23*	Optics of thin films 2, design of optical filters
1*** March	Presentations – Emerging fabrication techniques (30%)
March	4-8 - Winter/Spring break
15**	Tribo-mechanical properties of films and coatings
22**	Electrochemical properties – corrosion and tribo-corrosion(<i>filter-20%</i>)
5 April	Functional films and coatings – Part 1, Miniquiz 2 (5%)
12	Functional films and coatings – Part 2
16	Life cycle analysis and environmental impact, visits
18***	Presentations – Emerging applications of nanostructured films (40%)

Deadlines:

Project #1 – Fabrication technique:

Choice of the subject: **26 January**

Abstract and references: 9 February

Report and presentation: 1st March

Projet #2 – Design of an optical filter:

Choice of the subject: 23 February

Report: 22 March

Projet #3 – Application of nanostructured thin films:

Choice of the subject: **16 February** Abstract and references: **15 March** Presentation: **18 April p.m.** Report: **22 April at 23:59**

Project #3: Applications of nanostructured films and coatings

Thomas Sicotte and Alexandre Gamache - Cellules photovoltaïques à pérovskite

- Alexandre Lussier Fenêtres intelligentes thermochromiques
- Mohamed Ammari Thermal barrier coatings for aerospace gas turbine engine
- Luc Montpetit Passivation of CdZnTe for x-ray detectors
- Veronika Cervenkova Solar-thermal energy conversion Transition metal nitrides
- Émilien Martel Electrochromic, photochromic and gasochromic coatings for consumer optics
- Étienne Tremblay et Nathan Sasseville Couches minces pour l'électronique organique OLEDs
- Thomas Lapointe Photodétecteurs et leur conception/optimisation à l'aide des couches minces
- Alexandre Carrière et Youssef Ben Mami Électrodes transparentes pour la fabrication des cellules solaires
- Arghavan Yazdanpanah Ardakani Nanoengineering thin-films to produce hydrophobic coatings for aircraft surfaces
- Mathieu Bruzzese Oxidation-resistance barrier coatings for aerospace applications
- Bastien Izacard Atomic oxygen barrier coatings for satellites
- Alexandre Fall Carbon nanotubes for sodium-ion batteries
- Alexandre Pinel Couches minces d'hydroxyapatites pour les implants en biomedical
- Christelle Abou Zeidan Carbon nanotubes for flexible electronics