Modern Techniques For Query Evaluation on
Highly Connected Datasets

Amine Mhedhbi
Feb. 29th, 2024

Research Overview

I aim to design and implement data systems capable of

efficient graph data management.

User

Study Optimization Execution Storage

Modeling Application Data As Graph is Ubiquitous

Modeling Application Data As Graph is Ubiquitous

World Trade 1994
Residuals Model 1

Social Networks Trade & Financial

Connections

< International E-Road Network

4 e e oo fraxe Y\wwg Ferex Scom e
b A / N

Biological Networks Linked Data e.g. Wiki Road Networks

Modeling Application Data As Graph is Ubiquitous

World Trade 1994
Residuals Model 1

4
1 i—

Relationships between entities are central to data analysis
&
Structure of the relationships provides insight

T eeronn
e
7/ P02

~

Pwriey
\ Can
" oire
o

Biological Networks Linked Data e.g. Wiki

Road Networks

Modeling Application Data As Graph is Ubiquitous

World Trade 1994
Residuals Model 1

Trade & Financial

Social Networks :
Connections

< International E-Road Network

4 e e oo fraxe Y\wwg Ferex Scom e
b A / N

Biological Networks Linked Data e.g. Wiki Road Networks

Examples of Applications

Social Networks Payment Services

Twitter Recommendation Example

Social Networks Payment Services

twitterd
y\

L 4 . 4
-

WTEF: The Who to Follow Service at Twitter. Gupta et al. WWW 2013.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=0EWw1z8AAAAJ&citation_for_view=0EWw1z8AAAAJ:u-coK7KVo8oC

Twitter Recommendation Example

Social Networks Payment Services

twitterd

WTEF: The Who to Follow Service at Twitter. Gupta et al. WWW 2013.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=0EWw1z8AAAAJ&citation_for_view=0EWw1z8AAAAJ:u-coK7KVo8oC

Alipay Fraud Detection Example

Social Networks Payment Services

E2 Alipay

10

Alipay Fraud Detection Example

Social Networks Payment Services

E2 Alipay

Criminal Merchant

Real-time Constrained Cycle Detection in Large Dynamic Graphs. Qiu et al. VLDB 2018.

11

Alipay Fraud Detection Example

Social Networks Payment Services

E2 Alipay

Crlmlnal Merchant

Bank

O«? "
transfer
&

Real-time Constrained Cycle Detection in Large Dynamic Graphs. Qiu et al. VLDB 2018.

12

Alipay Fraud Detection Example

Social Networks Payment Services

E2 Alipay

Criminal Merchant

/o%
transfer * tw
transfer
SIS

Real-time Constrained Cycle Detection in Large Dynamic Graphs. Qiu et al. VLDB 2018.

13

Examples of Applications

Social Networks Payment Services

twitterd E2 Alipay

14

Graph Usage Study

15

Graph Usage Study

The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Ozsu
David R. Cheriton School of Computer Science
University of Waterloo

{s3sahu,amine.mhedhbi,semih.salihoglu.jimmylin,tamer.ozsu}@uwaterloo.ca

ABSTRACT

Graph processing is becoming increasingly prevalent across many
application domains. In spite of this prevalence. there is little re-
search about how graphs are actually used in practice. We conducted
an online survey aimed at understanding: (i) the types of graphs
users have: (ii) the graph computations users run; (iii) the types
of graph software users use: and (iv) the major challenges users
face when processing their graphs. We describe the participants’
responses to our questions highlighting common patterns and chal-
lenges. We further reviewed user feedback in the mailing lists, bug
reports, and feature requests in the source repositories of a large
suite of software products for processing graphs. Through our re-
view, we were able to answer some new questions that were raised
by participants’ responses and identify specific challenges that users
face when using different classes of graph software. The partici-
pants’ responses and data we obtained revealed surprising facts
about graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often ve
and scalability and visualization are undeniably the most pressing
challenges faced by participants. We hope these findings can guide
future research.

PVLDB Reference Format:

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu. Jimmy Lin, and M.
Tamer Ozsu. The Ubiquity of Large Graphs and Surprising Challenges of
Graph Processing. PVLDB. 11(4): 420 - 431, 2017.

DOI: https://doi.org/10.1145/3164135.3164139

1. INTRODUCTION

Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology. and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
systems [3([8][1)/53]. RDF engines [38]/64)[67
software [6]46]. visualization software [13

. query languages [28]

[52}55]), and distributed graph processing systems [17,21][27]. In
the academic literature. a large number of publications that study
numerous topics related to graph processing regularly appear across
a wide spectrum of research venues.

Despite their prevalence, there is little research on how graph data
is actually used in practice and the major challenges facing users
of graph data, both in industry and research. In April 2017, we
conducted an online survey across 89 users of 22 different software
products, with the goal of answering 4 high-level questions:

(i) What types of graph data do users have?

(ii) What computations do users run on their graphs?

(iii) Which software do users use to perform their computations?

(iv) What are the major challenges users face when processing their
graph data?

Our major findings are as follows:

e Variety: Graphs in practice represent a very wide variety of enti-
ties, many of which are not naturally thought of as vertices and
edges. Most surprisingly. traditional enterprise data comprised
of products. orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

o Ubiquity of Very Large Graphs: Many graphs in practice are
very large. often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that
large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

e Challenge of Scalabiliry: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.

o Visualization: Visualization is a very popular and central task

ing pipelines. After scalability,
participants indicated visualization as their second most pressing
challenge, tied with challenges in graph query languages.

e Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

The ubiquity of large graphs and surprising challenges of graph
processing: extended survey

Siddhartha Sahu' @ - Amine Mhedhbi' . Semih Salihoglu' - Jimmy Lin' - M. Tamer Ozsu’

Received: 21 January 2019 / Revised: 9 May 2019/ Accepted: 13 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Graph processing is becoming increasingly prevalent across many application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories. and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have: (ii) the graph computations users run: (iii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants’ responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, scalability and visualization are undeniably the
most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

Keywords User survey - Graph processing - Graph databases - RDF systems

1 Introduction prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13.20.26.49.65.73.90]. RDF engines [52.96]. linear alge-
bra software [17,63], visualization software [25.29], query
languages [41.72,78]. and distributed graph processing sy
tems [30,34.40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research
venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. In April 2017, we conducted an online survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

Graph data representing connected entities and their relation-
ships appear in many application domains. most naturally in
social networks, the Web, the Semantic Web, road maps,
communication networks, biology. and finance, just to name
a few examples. There has been a noticeable increase in the

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00778-019-00548-x) contains
supplementary material, which is available to authorized users.

Siddhartha Sahu
s3sahu@uwaterloo.ca

Amine Mhedhbi
amine.mhedhbi @uwaterloo.ca

Semih Salihoglu
semih.salihoglu@uwaterloo.ca

16

Graph Usage Study

The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Ozsu
David R. Cheriton School of Computer Science
University of Waterloo

{s3sahu,amine.mhedhbi,semih.salihoglu.jimmylin,tamer.ozsu}@uwaterloo.ca

ABSTRACT
- Objectives

n
SUILE U1 SUIWAIC PIUUUGE 1UL PIUCEISIIE Blapiis. §uugi vul 1o
view, we were able to answer some new questions that were raised
by participants’ responses and identify specific challenges that users
face when using different classes of graph software. The partici-
pants’ responses and data we obtained revealed surprising facts
about graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often ve
and scalability and visualization are undeniably the most pressi
challenges faced by participants. We hope these findings can guide
future research.

PVLDB Reference Format:

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M.
Tamer Ozsu. The Ubiquity of Large Graphs and Surprising Challenges of
Graph Processing. PVLDB, 11(4): 420 -431.2017.

DOI: https://doi.org/10.1145/3164135.3164139

1. INTRODUCTION

Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology, and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
system }[48/53]. RDF engines [}8;;(;4“,\67]. linear algebra
software [6[46]. visualization software [13]16]. query languages [28}

5. and distributed graph processing systems [17}21]27]. In

VI WY HHILH SURLWAIS U USTED USC WU POLIVEIE LICH CUITPULAUULS -
(iv) What are the major challenges users face when processing their
graph data?
Our major findings are as follows:
e Variety: Graphs in practice represent a very wide variety of enti-
ties, many of which are not naturally thought of as vertices and
st surprisingly, traditional enterprise data comprised
. orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

Ubiquity of Very Large Graphs: Many graphs in practice are
very large. often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that

large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

Challenge of Scalability: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.

.
=
B~
17
=
B
=
B
S
E
=
&
<
[}
-
2
S
=5
B
g
5
a
o
e
£
17
=

pé n as their second most pressing
challenge, tied with challenges in graph query languages.
Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

The ubiquity of large graphs and surprising challenges of graph

processing: extended survey
Siddhartha Sahu'

Received: 21 January 2019 / Revised: 9 May 2019/ Accepted: 13 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

- Amine Mhedhbi' . Semih Salihoglu' - Jimmy Lin' - M. Tamer Ozsu’

Graph processing is becoming increasingly prevalent across many application domains. In spite of this prevalence, there is little

racanrch ahant haw aranhe ara actnally ncad in nractica Wa narfarmad an avtanciva chudy that cancictad af an anlina cnryey

What kind of graph data, computations, software, and major challenges industry users have?

<

most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

Keywords User survey - Graph processing - Graph databases - RDF systems

1 Introduction

Graph data representing connected entities and their relation-
ships appear in many application domains. most naturally in
social networks. the Web, the Semantic Web, road maps,
communication networks, biology. and finance, just to name
a few examples. There has been a noticeable increase in the

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00778-019-00548-x) contains
supplementary material, which is available to authorized users.

B39 Siddhartha Sahu
s3sahu@uwaterloo.ca

Amine Mhedhbi
amine.mhedhbi @uwaterloo.ca

Semih Salihoglu
semih.salihoglu@uwaterloo.ca

prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13.20.26.49.65.73.90]. RDF engines [52.96]. linear alge-
bra software [17,63], visualization software [25.29], query
languages [41.72,78]. and distributed graph processing sy
tems [30,34.40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research

venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. In April 2017, we conducted an online survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

17

Graph Usage Study

The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Ozsu
David R. Cheriton School of Computer Science
University of Waterloo

{s3sahu,amine.mhedhbi,semih.salihoglu,jimmylin,tamer.ozsu}@uwaterloo.ca

The ubiquity of large graphs and surprising challenges of graph

processing: extended survey
Siddhartha Sahu' - Amine Mhedhbi' - Semih Salihoglu® . Jimmy Lin' . M. Tamer Ozsu’

Received: 21 January 2019 / Revised: 9 May 2019/ Accepted: 13 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
ABSTRACT S35). and distibuted graph procesing sysems (T, In | | P BrorenatE e e B D et ettt e plinc ey
G ey
- Objectives
. What kind of graph data, computations, software, and major challenges industry users have?
1

SUILE U1 SUILWAIS PIVULLE 1UE PIULESSINE Blapiis. §Uugt uul 1o
view -
by

Some Major Findings

[

1.

Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology, and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
systems [38]14]3548|53]. RDF engines [38]64/67]. linear algebra
software [6/46]). visualization software [13]16], query languages [28]

V1) WY HILH SUILWAIT UU USEED UST WU POLIVEI WICH CULIPULAUUIES ©

. 1. Graphs are very large!
2. Scalability is the most pressing challenge! |
3. ML on graphs is very popular (> 85% of respondents have ML workloads)!

e Challenge of Scalabiliry: ility is unequivocally the most
pressing challenge faced by participants. The ability to process

Visualization: Visualization is a very popular and central task
in participants’ graph processing pipelines. After scalability,
participants indicated visualization as their second most pressing

challenge, tied with challenges ir
Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

h query languages.
query guag

most pressing challenges faced by participants. and data integration. recommendations, and fraud detection are very popular

of
PUDLLCAUUN UL SWUUY HULLICIUUD LUPILS ICIALCU W grapn pro-
cessing regularly appear across a wide spectrum of research

LISUU VI SUpPISIISIGl y SHaLS @ LU VLG VULSIUI U S s
(https://doi.org/10.1007/s00778-019-00548-x) contains
supplementary material, which is available to authorized users.

venues.

Siddhartha Sahu
s3sahu@uwaterloo.ca

Amine Mhedhbi
amine.mhedhbi@uwaterloo.ca

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. In April 2017, we conducted an online survey across
Semih Salihoglu 89 users of 22 different software products, with the goal of

semih.salihoglu@uwaterloo.ca answering 4 high-level questions:

18

Apps Store Facts or Events

19

Apps Store Facts or Events (Modeling Choice)

Property Graph Data Model

(FROM, TO)

(0, 1)
(0, 2)
(0, 5)

Relational Model

20

Apps Store Facts or Events (Modeling Choice)

(FROM, TO)

(0, 1)
(0, 2)
(0, 5)

Property Graph Data Model Relational Model

Relational algebra primitives!

> Emphasis on workload i.e., queries and dataset characteristics.

21

Workload Characteristics

Highly Connected Dataset

1. Highly Connected data:

Lots of many-to-many relationships (N-to-M cardinality) !!

22

Workload Characteristics

o ‘ () ‘ e
_ - < - A~
(a) (d)
SIA - N
S o /f (¢
Ner ~w
(ar -P(\b)
e (’a\r- -Hj:)\r- -H:c:)
Highly Connected Dataset Structure-based Queries

1. Highly Connected data:

Lots of many-to-many relationships (N-to-M cardinality) !!

23

Workload Characteristics

o ‘ () ‘ e
_ . < - A~
(a) (:) _
\A\ . /,\ (C\)
Ner ~w
<’ ”\ N
(a r—»(\b)
Q oo
l (ar—-»lbr—+»{c |
"
Highly Connected Dataset Structure-based Queries

1. Highly Connected data:

Lots of many-to-many relationships (N-to-M cardinality) !!

24

Workload Characteristics

Highly Connected Dataset Structure-based Que

1. Highly Connected data:

Lots of many-to-many relationships (N-to-M cardinality) !!

25

Workload Characteristics

Highly Connected Dataset Structure-based Que

1. Highly Connected data:

Lots of many-to-many relationships (N-to-M cardinality) !!

2. Structure-based Queries:

Queries enumerate graph patterns (complex many-to-many joins)

26

Workload Characteristics

(0 O o Q @
_ - < - A~
(a) (d)
SIA - N
S o /f (¢
Ner ~w
&
(ar -P(\b)
e (a- -Hj:)\r- -H:c:)
Highly Connected Dataset Structure-based Queries
N J

~
Colloquially called “graph workloads” aka Querying

27

Workload Characteristics

(0 O o Q @
. <> A~
(a) (d)
SIA - N
S o /,\ (¢
Ner ~w
(ar -P(\b)
e (’a\r- —H\B\r- -»(:c:;
Highly Connected Dataset Structure-based Queries
N J

~
Colloquially called “graph workloads” aka Querying

Interest in performance 1issues.
Challenging workload due to complex many-to-many joins

> Existing data systems come short.

28

Workload Challenges - Many-to-many Joins

29

Workload Challenges - Many-to-many Joins

On a financial network, find the accounts whose transactions
are facilitated by user with account ID N?

Transactions

src | dst | amount | date

30

Workload Challenges - Many-to-many Joins

On a financial network, find the accounts whose transactions (@ - (B »(C)

N 7 1 S N 7

are facilitated by user with account ID N? : "

Transactions i@i

src | dst | amount | date

31

Workload Challenges - Many-to-many Joins

On a financial network, find the accounts whose transactions
are facilitated by user with account ID N?

Transactions

src | dst | amount | date FROM Transactions T1l, Transactions T2

WHERE Tl.dst = T2.src

32

Workload Challenges - Many-to-many Joins

T1 T2
DY - N -N

On a financial network, find the accounts whose transactions (B - oD - @D
are facilitated by user with account ID N? had had had

Transactions

src | dst | amount | date FROM Transactions T1l, Transactions T2

WHERE Tl.dst = T2.src

33

Workload Challenges - Many-to-many Joins

T1 T2
DY - N -N

On a financial network, find the accounts whose transactions (B - oD - @D
are facilitated by user with account ID N? had had had

Transactions

src | dst | amount | date FROM Transactions T1l, Transactions T2

WHERE Tl.dst = T2.src
AND Tl1l.dst = N

34

Workload Challenges - Many-to-many Joins

T1 oooee T2
On a financial network, find the accounts whose transactions (’}.-%,4"FL.,4’X
are facilitated by user with account ID N? DA ii P
Transactions i(:::)

src | dst | amount | date FROM Transactions T1l, Transactions T2

WHERE Tl.dst = T2.src
AND Tl1l.dst = N

35

Workload Challenges - Many-to-many Joins

T1 ocemee T2

On a financial network, find the accounts whose transactions (@ - {(D-- (@)

are facilitated by user with account ID N? D ii ' had
Transactions SELECT Tl.src as a, T2.dst as c i(:::)

src | dst | amount | date FROM Transactions T1l, Transactions T2
WHERE T1l.dst = T2.src
AND Tl1l.dst = N

36

Workload Challenges - Many-to-many Joins

T1 ocemee T2

On a financial network, find the accounts whose transactions (@ - {(D-- (@)

are facilitated by user with account ID N? D ii ' had
Transactions SELECT Tl.src as a, T2.dst as c i(:::)

src | dst | amount | date FROM Transactions T1l, Transactions T2
WHERE T1l.dst = T2.src
AND Tl1l.dst = N

37

Workload Challenges - Many-to-many Joins

T1 ocemee T2

On a financial network, find the accounts whose transactions (@ - {(D-- (@)

are facilitated by user with account ID N? D ii : had
Transactions SELECT Tl.src as a, T2.dst as c i(:::)

src | dst | amount | date FROM Transactions T1l, Transactions T2

WHERE Tl.dst = T2.src
AND Tl1l.dst = N

(1, 101)
(1, ...) > 100 tuples
(1, 200)

38

Workload Challenges - Many-to-many Joins

Tl T2
On a financial network, find the accounts whose transactions (@ - {(D-- (@)
are facilitated by user with account ID N? < i ii i <
Transactions SELECT Tl.src as a, T2.dst as c i(:::>
src | dst | amount | date FROM Transactions T1, Transactions T2 |

WHERE T1.dst = T2.src
AND T1.dst = N

(a, c)

(1, 101)

(1, ...)

(1, 200)
(100, 101)
(160, ...) > 100 tuples
(100, 200) | |

39

Workload Challenges - Many-to-many Joins

Tl T2
On a financial network, find the accounts whose transactions (@ - {(D-- (@)
are facilitated by user with account ID N? < i ii i <
Transactions SELECT Tl.src as a, T2.dst as c @
src | dst | amount | date FROM Transactions T1, Transactions T2 |

WHERE T1.dst = T2.src
AND T1.dst = N

(a, c)
(1, 101)
(L; ---) 200 edges > 10,000 !!!
(1, 200)
(100, 101)
(100, ...)
(100, 200)

40

Workload Challenges - Many-to-many Joins

On a financial network, find the accounts whose transactions (é}.-%,(r}.>(é,

are facilitated by user with account ID N? had : ii , =
Transactions SELECT Tl.src as a, T2.dst as c i(:::)
src | dst | amount | date FROM Transactions T1, Transactions T2 |
WHERE Tl1l.dst = T2.src
AND Tl.dst = N
(a, c)
(1, 101) 200 edges > 10,000 !!!
(1, ...) Explosion in intermediate
(1, 200) results size!!!
(100, 101)
(100, ...)
(100, 200)

41

DBMSs Evaluating Graph Workloads

teradata.
ORACLE M y S @RL_
DATABASE
qob SNO\ /'r‘m/(; P
S snowflake ostgreSQL
WS/4 HANA

Analytical RDBMSs do not
optimize for graph workloads

42

DBMSs Evaluating Graph Workloads

teradata.

Amazon RDS ORACLE
DATABASE

@ i“o:g snowflake PostgreSQL

FXY'S/4 HANA

Analytical RDBMSs do not
optimize for graph workloads

9} TigerGraph
B 0 Dgraph
‘ggj I'I!E? s s

Amazon Nej;;une 4 JanusGraph

aalo

df ¢>r)s:\phf/ow

New graph DBMSs (GDBMSs)
optimize for graph workloads

43

DBMSs Evaluating Graph Workloads

teradata.

Amazon RDS ORACLE M HE:@L
DATABASE
dob snowflake P
@ o< snowflake ostgreSQL
TY's/4 HANA

Analytical RDBMSs do not
optimize for graph workloads

s

Amazon Neptune

dﬁﬂ?phﬂow

New graph DBMSs (GDBMSs)
optimize for graph workloads

High-level Research Question - How

(DBMSs) be architected to optimize

should Database Management Systems

for analytical graph workloads?

44

Revisiting DBMS Components

Query in Declarative Language e.g., SQL, Cypher, etc.

Parser

0pt1m1zer

L

Storage

| J
| J
(e J
st

45

Revisiting DBMS Components (Example)

FTTTNFL L F2
(@rr»br-»C)

46

Revisiting DBMS Components (Example)

Cypher . (@ - >(b)- - ~©

Optimizer

|
|

3
|

L

Storage

~———) N N

47

Revisiting DBMS Components (Example)

Cypher (el r-+{C)
MATCH (a)-[Follows]->(b), |

i i ;
(b)-[Follows]->(c)

Optimizer

]

Executor

L

Storage

— N N N
U S) S

43

Revisiting DBMS Components (Example)

Cypher (el r-+{C)
MATCH (a)-[Follows]->(b), |

"
(b)-[Follows]->(c) § |
WHERE a.ID = 0 g |

Optimizer

]

Executor

L

Storage

— N N N
U S) S

49

Revisiting DBMS Components (Example)

Cypher (,-}-»(b - - »(C)
MATCH (a)-[Follows]->(b), |

N

(b)-[Follows]->(c) § §

WHERE a.ID = 0 i |
RETURN b.ID, c.ID et ' ‘

Optimizer

]

Executor

L

Storage

— N N N
U S) S

50

Revisiting DBMS Components (Example)

Cypher (@r+-+(br-+{C) SQL
MATCH (a)-[Follows]->(b), |

N

(b)-[Follows]->(c) § §

WHERE a.ID = 0 i |
RETURN b.ID, c.ID et ' ‘

Optimizer

|
|

3
|

L

Storage

~———) N N

51

Revisiting DBMS Components (Example)

Cypher E' (@r 7' »(br-»{C) SQL
MATCH (a)-[Follows]->(b), | |

i
(b)-[Follows]->(c) ;:
WHERE a.ID = © N_| FROM Follows F1,
RETURN b.ID, c.ID | "~ ‘ Follows F2

Optimizer

]

Executor

L

Storage

— N N N
U S) S

52

Revisiting DBMS Components (Example)

Cypher ((3
MATCH (a)-[Follows]->(b), | |

. H

(b)-[Follows]->(c)
WHERE a.ID = © N_| FROM Follows F1,
RETURN b.ID, c.ID | "~ ‘ Follows F2

WHERE F1.FROM = 0
AND F1.T7TO0 = F2.FROM

r%—-»(b\)---b(C\; SQL

Parser

Optimizer

]

Executor

L

Storage

— N N N
U S) S

53

Revisiting DBMS Components (Example)

Cypher

MATCH (a)-[Follows]->(b),
(b)-[Follows]->(c)

WHERE a.ID = 0
RETURN b.ID, c.ID

Parser

Optimizer

J
J

3
|

L

Storage

— N N N

SELECT F2.FROM

Follows
Follows
F1.FROM

as b,
as c
F1,

F2

= 0
F2.FROM

Revisiting DBMS Components (Example)

FTTTNFL L F2
(@rr»br-»C)

55

Revisiting DBMS Components (Example)

FTTTNFL L F2
(@rr»br-»C)

(" 1
I Parser | 4
\ - —_— In-memory
1 —_—D Representation
(Join Query Graph)

~

Revisiting DBMS Components (Example)

U FL F2
i (a;-,-->lb;- -HC)

-

| Optimizer |

\ _ _)
1—>[Query Plan]
[Executor J

[Storage J

\ad

57

Revisiting DBMS Components (Example)

U FL F2
i (a;-,-->lb;- -HC)
i

-

Operator n []
Parser

e (-=-- - ,

T | Optimizer |

|)
Operator 3 1_>[Query Plan]

———

Operator 2

!

Operator 1 [Storage J

\ad

58

Revisiting DBMS Components (Example)

U FL F2
i (a;-,-->lb;- -HC)

1
! 1
! 1
! 1
! 1
: 1
1
! 1
\
N e — - /

Operator n []
Parser

e (-=-- - ,

T | Optimizer |

|)
Operator 3 1_>[Query Plan]

———

Operator 2 ‘

Scan recordsI [Storage J

from a file

59

Revisiting DBMS Components (Example)

U FL F2
i (a;-,-->lb;- -HC)

1
! 1
\
N e — - /

Operator n []
Parser

R |

(-~~~ 1

T | Optimizer |

|)
Operator 3 1_>[Query Plan]

———

Operator 2 ‘

Scan recordsI [Storage J

from a file

60

Revisiting DBMS Components (Example)

U FL F2
i (a;-,-->lb;- -HC)

1
! 1
! 1
! 1
! 1
: 1
1
! 1
\
N e — - /

Operator n []
Parser

e (-=-- - ,

T | Optimizer |

|)
Operator 3 1_>[Query Plan]

———

Operator 2

oL

Scan recordsI [Storage J

from file

\ad

61

Revisiting DBMS Components (Example)

U FL F2
i (a;-,-->lb;- -HC)

Operator n

!

Operator 3

1 I Operator 2 |

Scan records
from file

1
! 1
\
N e — - /

J

[Parser
(- -
| Optimizer |

\ _ _]
1—>[Query Plan]

1

Executor

J

J

62

Revisiting DBMS Components (Example)

U FL F2
i (a;-,-->lb;- -HC)

Operator n

!

Operator 3

2 I Operator 2 |

e e e e — J

f

Scan records
from file

1
! 1
\
N e — - /

J

[Parser
(- -
| Optimizer |

\ _ _]
1—>[Query Plan]

1

Executor

J

J

63

Revisiting DBMS Components (Example)

F VF1 __ F2 _

-

Operator n

i

2 I Operator 3 |

e e e e — J

A

Operator 2

!

Scan records
from file

1
! 1
\
N e — - /

(@rr»br-»C)

|

Parser

J

(-~~~ 1

| Optimizer |

\ -

=

__1
—>[Query Plan]

|

Executor

\ad

|

Storage

J
]

64

Revisiting DBMS Components (Example)

F VF1 __ F2 _

-

Operator n

i

3 I Operator 3 |

e e e e — J

f

Operator 2

!

Scan records
from file

1
! 1
\
N e — - /

(@rr»br-»C)

|

Parser

J

(-~~~ 1

| Optimizer |

\ -

=

__1
—>[Query Plan]

|

Executor

\ad

|

Storage

J
]

65

Research Overview

User

Study Optimization Execution Storage

66

Research Overview

User
Study

Optimization Execution

N

~

Novel Join Algorithms
VLDB 2019,

TODS 2021

Compressed Representations

VLDB 2021

Storage

67

Query Processing Techniques Overview

Insights

1. Use novel join algorithms to remove unnecessary intermediate results!

2. Use compression to reduce the size of necessary intermediate results!

68

Query Processing Techniques Overview

Insights

1. Use novel join algorithms to remove unnecessary intermediate results!

2

Traditional Joins are
suboptimal!

Novel Join Algorithms
correct the suboptimality

Use compression to reduce the size

Cyclic Pattern/Join Query

- -~
(C\) x(\b,h"
PN a’) (d)
-~ N A — -
(?Cr—»(yp *{cﬂ/’\

N -

of necessary intermediate results!

69

Query Processing Techniques Overview

Insights

1. Use novel join algorithms to remove unnecessary intermediate results!

Traditional Joins are Cyclic Pattern/Join Query

suboptimal!

- N
=\ (E‘X(\b)‘(?.
Novel Join Algorithms (,’\ -»(?3\ R 7
correct the suboptimality W "W ‘l\c{r

2. Use compression to reduce the size of necessary intermediate results!

Large results part of the Acyclic Pattern/Join Query

final output

S \

- - S N - N =

Contain a lot of - « MP i 4

- -\ N2 - e
: @ N4

redundancy > compression <

70

Query Processing Techniques Overview

Insights

1. Use novel join algorithms to remove unnecessary intermediate results!

2. Use compression to reduce the size of necessary intermediate results!

71

Query Processing Techniques Overview

Insights

1. Use novel join algorithms to remove unnecessary intermediate results!

2. Use compression to reduce the size of necessary intermediate results!

Our approach provides:

1. Up to ~10-70x speedups over State-of-the-art!

2. Queries run to completion!

72

Query Processing Techniques Overview

Insights

1. Use novel join algorithms to remove unnecessary intermediate results!

2. Use compression to reduce the size of necessary intermediate results!

Our approach provides:

1. Up to ~10-70x speedups over State-of-the-art!

2. Queries run to completion!

é

Py N —
GraphScope ’/\‘ Nan

Alibaba

73

e Novel Join Algorithms
> Worst-case Optimal Joins

e Compressed Representations
> Factorized Representations

74

e Novel Join Algorithms
> Worst-case Optimal Joins

75

Traditional Binary Joins Example

uer
(::\)
R; 7°%R,
P \=ps
(ar--»ib,
< - Rl N~ -

Dataset

76

Traditional Binary Joins Example

Dataset

(ay, b) > | (by €) > | (a, €)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
(3\1— -HB\; (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\1
(b (a,

~ - <o 77

Traditional Binary Joins Example

(ay, b) (b, c) (a, c)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
-~ -~ L -~
‘\a/,—R_»(\bz, (\c¢’VR\2’ . 33 \,(\C’l
(b’l (\a,)

78

Traditional Binary Joins Example

Dataset

(ay, b) > | (by €) > | (a, €)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
(3\1— -HB\; (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\1
(b (a,

~ - <o 79

Traditional Binary Joins Example

Query
(’3
R, £7°%R,
P \=
(af——-»lb\;
(a, b, ¢) e Rl e
-\
(\C,l (G) n, n+l)
%R,
\e=an
(aﬁ——-»(b»
! (n-1, n, 2n) Dataset

(ay, b) > | (by €) > | (a, €)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
(3‘;—-»(3\, (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\1
(b (a,

~ - <o 80

Traditional Binary Joins Example

(a, b, c)
-\
(fi' (0, n, n+tl)
%R,
\~
(a‘;——-»(b:;
1 (n-1, n, 2n)

(ay, b) > | (by €) (a, c)

(0, n) (0, n) (0, n)

(n, 2n) (n, 2n) (n, 2n)

(@ —P(B) (::\)R R (2\1

<’ R1 <o \,V\Z’\ ’3\‘\1
(b,' (\a,)

Dataset

-~ -~

/7 \ /7

([O ¢ Hn+1\n
\ /

/

\ /7 ,"\
N\ / \
N TN ’

N r ~ -

~-X
N\

N\

\
-~
[2n 1
\\’/

N J

81

Traditional Binary Joins Example

(ay, b, c)
(fi' (0, n, n+l)
\32 > N2 tupl
(a‘;——-»(b:; o . uptes
1 (n-1, n, 2n)
/

(ay, b) > | (by €) > | (a, €)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
(E\\t— -Hj):) (E\IRZ R, (::\)
< - R1 \IV\’\ ’\x\’
(b ﬂ?t

(’3
R, 7R,
o/ \=
(a;——-»lbﬁ
< - Rl N~ -
Dataset
AN AN
[O 1 »{Nn+11
\ /
\ ’ -~
\ AR
4L-~," glnt2)
N TN /
N r ~ -
<X
\ eo e
\
N\
% -
[2N
\\’/
N N C J g y
N N

82

Traditional Binary Joins Example

Query
(’3
R, A KR,
(af——-»l\b\;
(ay, b, c) e Rl -
N
(’C\) (0, n, n+l)
%R, R
fa‘;——-»ﬁ:\; > N tuples
! (n-1, n, 2n)) Dataset

(ay, b) > | (by €) > | (a, €)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
(3‘;—-»(3\, (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\1
(b (a,

~ - <o 83

Traditional Binary Joins Example

R, SoNR, | (@5 b, ©)

Dataset

(n, 2n) (n, 2n) (n, 2n)
(3\1— -HB\) (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\1

(b (a,

~ 7

N 84

Traditional Binary Joins Example

e (a, b, c) . . .
R, ~“wxR, » Problem With Binary Join Plans
2 P Prohibitively large # intermediate
@y --»b) y &
<o R, ¢ (@, n, n+l) results for some Q.

For triangles, AGM bound is N3/2
[FOCS 2008, PODS 2012]

Dataset
AN D
- ------- »>{n+1i
S ’
(ay, b) > | (by €) > | (a, €) \ y

(0, n) (0, n) (0, n) @\ S

(n, 2n) (n, 2n) (n, 2n) @/ \@
(3‘;—-»(7:\; (A N

(
N 7 Rl g \,VZ 3\‘\/

<’ <o 85

Traditional Binary Joins Example

(23 (a, b, c) . . .
R, ~“wxR, » Problem With Binary Join Plans
- Mo Prohibitively large # intermediate
(ar--»lb) y g
< <~ (0, n, ntl) results for some Q.

For triangles, AGM bound is N3/2
[FOCS 2008, PODS 2012]

> Worst-case optimal joins correct

for the suboptimality (Generic Join)
SIGMOD Record [Ngo et al. 2013]

Dataset
AN >
- ------- »>{n+1i
S ’
(ay, b) > | (by €) > | (a, €) \ ’

(e, n) (e, n) (e, n) @\ %

(n, 2n) (n, 2n) (n, 2n) @/ \@
(3‘;—-»(5\; A N

(
N 7 Rl g \,VZ 3\‘\/
~ - <’ 86

Worst-case Optimal Joins (WCOJs) Example

87

Worst-case Optimal Joins (WCOJs) Example

88

Worst-case Optimal Joins (WCOJs) Example

(ay, b) > | (by €) (a, c)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
-~ -~ L -~
(\a,l—é-b(\b,) (\CI'VR\Z’,\ 33\,(5,'
(b (a,

<o 89

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)

[a,b,c] Quer;:
i @
1. Find set of a’s Rsﬂ"’kRz
. . = \=as
2. Given an (a), find b’s (\a/r-—R-N\b,;
1

3. Given an (a,b), find c’s

(ay, b) > | (by €) > (a, €)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
(3‘;—-»(3\, (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\1
(b (a,

~ - <o 90

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

(ay, b) > | (by €) > (a, €)

(0, n) (0, n) (0, n)

(n, 2n) (n, 2n) (n, 2n)

(E\\t— -Hj):) (E\IRZ R, (::\)

< - R1 \IV\’\ ’\x\’
(b ﬂ?t

91

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

(a,|b) (b, c) (a,|c)
(0,]n) (0, n) (0,|n)
(n,|2n) (n, 2n) (n,|2n)
-~ -~ L -~
(fir§:Q[t (515&\ Eiéfa)
(b (a,

~ - <o 92

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

(a,|b) (b, <) (a,) \
(0, [n) (0, n) (0, [n) A

\ /
-~ - n
(n,|2n) (n, 2n) (n,|2n) -~
In-1)
(a\r-ﬂb\; lc\;R R (c\; =T
(b (a)

~ - <o 93

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

uer
(a (c)
\/' R3ﬂ\’kR2
o/ N\
(a '——R_N*b’
(a) 1
(0)
Dataset
(n)
/"\
(0
\\’
(a, b) (b, c) (a, c)
(OJ n) (OJ n) (Oa n) @\(‘n\\/@
(n, 2n) (n, 2n) (n, 2n) @/ \@
-~ -~ - -\
(fir§:Q[t (515&\ Eiéfa)
(b (a)

~ - <o 94

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)

[a,b,c]
® &0
(a)
(0)
(n)
(ay, b) (b, c) (a, c)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
(3‘;—-»(3\, (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\1
(b’l (\a,)

95

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)

[a,b,c]
® &0
(a)
(0)
(n)
(ay, b) (b, c) (a, c)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
(3‘;—-»(3\, (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\1
(b’l (\a,)

96

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

uer
(¢
P \=
(av)——R—P(\b\l
(a) 1
(0)
(n)
(a,| b) (b, c) (a, c)
(0, n) (0, n) (0, n)
(n,| 2n) (n, 2n) (n, 2n)
(E\\t— -Hj):) (E\IRZ R, (::\)
< - R1 \IV\’\ ’\x\’
(b (a,

~ - <o 97

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

uer
(¢
P \=
(av)——R—P(\b\l
(a) 1
(0)
(n)
(a,| b) (by|c) (a, c)
(0, n) (0,]n) (0, n)
(n,| 2n) (n,|2n) (n, 2n)
(E\\t— -Hj):) (E\IRZ R, (::\)
< - R1 \IV\’\ ’\x\’
(b (a,

~ - <o 98

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

uer
(¢
@ \ grue R, ~°xR,
P \=
(av)——R—P(\b\l
(a) 1
(0)
(n)
N
/TN
(a,| b) (by|c) (a, c)
(0,] n) (0,]n) (0, n)
(n,| 2n) (n,|2n) (n, 2n)
(3\1— -HB\; (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\1
(b (a,

~ - <o 99

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

uer
-~ o - (f\’
@ \ grue R, £~°%R,
-~ N
(a '——R_N*b’
(a) 1
(0)
Dataset
(n)
N Lo
/N KD
(a,| b) (b,|c) (a, c) \\\
\
(OJ n) (OJ n) (Oa n) @\(n\\/@
(n,| 2n) (n,|2n) (n, 2n) & E
-~ “ N s —
(fir§:Q[t (515&\ Eiéfa)
(b (a,

~ - <o 100

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

uer
- - - (’\’
@ Y. @ R, A~“%R,
s =
(a '——R_N*b’
(a) (a, b) 1
(0) (0, n)
(n) Dataset
n
[0 Fr-------
'/ \‘ \’(\ @
(a,| b) (b,|c) (a, c) S .
\\ //
(0, n) 0, |n) (0, n) @\ 8
(n,| 2n) (n,|2n) (n, 2n) @/ \@
-~ -~ - -\
(fir§:Q[t (515&\ Eiéfa)
(b (a)

~ - <o 101

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

uer
(¢
@ \ grue R, ~°xR,
P \=
‘ av)— —R-”\b\’
(a) (a, b) 1
(0) (0, n)
(n)
(ay, b) (b, c) (a, c)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
(3\1— -HB\; (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\1
(b (a,

~ - <o 102

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)

[a,b,c]

® &0
(a) (a, b)
(0) (0, n)
(s N)

(n)

(a, b) (b, c)
(0, n) (0, n)
(n, 2n) (n, 2n)
&-® @

~ 7

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

uer
a @ - -~ (<
\/’ \/'— \z’ R3ﬂ\’kR2
s =
(ar--»ib,
N <’ R A
(a) (a, b) 1
(0) (0, n) ~ N
(s M) |
(n)
(a, b) (b, c) (a, c)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
-~ T LN -~
‘\a/,—R_»(\bz, (\c¢’VR\2’ . 33 \,(\C’l
(b (a,

~ 7

N -

104

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)

[a,b,c] "\, uer
R, 4~"%R, _
(a @ - -»ib @ - > w
\/' \/'—R \J’ \/'—R \J’ R3ﬂ\’kR2
1 1 o/ s
(a '——R_N*b’
(a) (a, b) 1
(0) (0, n) ~ N
(s N)
(n)
(a, b) (b, c) (a, c)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
-\ -~ - -\
‘\az,—R_»(\bz, (\cglyR\Z’ . 33 \,(\C,l
(b (a,

~ 7

< 105

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

("' uer
R, £~°XR, _
(a @ - - @ - > w
\/' \/'—R \J’ \/'—R \J’ R3ﬂ\’kR2
1 1 o/ s
(ar--»ib,
N <’ R N -
(a) (a, b) 1
(0) (0, n) ~ N
(s 1) |
(n)
N
DA N
(a, b) (b,| c) (a,| c)
(0, n) (0,] n) (0,| n)
(n, 2n) (n,[2n) (n,| 2n)
(3‘;—-»(3\, (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\z

(b (a,
~ - <o 106

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

& Query
R, 7°%R, _—
(a @ - -»(d @%- - B> o d
\/' \/'—R \J’ \/'—R \J’ R3ﬂ\’kR2
1 1 o/ s
(a '——R_N*b’
(a) (a, b) (a, b, c) 1
(0) (0, n) (0, n, n+l)
(wy N)
Dataset
(n)
D D
- ------- »>{n+1i
(a, b) (b, c) (a, c) N .
\ //
(0, n) (0, n) (0, n) X
(n, 2n) (n, 2n) (n, 2n) @/ \@
(3‘;—-»(3\, (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\z
(b (a)

~ - <o 107

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

("' uer
R, £~°R, _
(a @ - »® @- - -»iB 2
\/' \/'—R \J’ \/'—R \J’ R3ﬂ\’kR2
1 1 o/ s
(a '——R_N*b’
(a) (a, b) (a, b,) 1
(0) (0, n) (0, n, n+l)
(s N)
(n)
(ay, b) (b, c) (a, c)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
(3‘;—-»(3\, (::\;R R (::\)
<’ R1 <o \,V\Z’\ ’3\‘\z
(b (a,

~ - <o 108

Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]

WCO0Js correct for sub-optimality
For all join attribute orderings.

(’3
Rsf“\fz
(a\; (a r---»f b\) (af——-»l b\)
<o <o Rl S <o Rl S
(a) (a, b) (a, b, c)
(0) (0, n) (0, n, n+l)
(s N)
(n)
(ay, b) (b, c) (a, c)
(0, n) (0, n) (0, n)
(n, 2n) (n, 2n) (n, 2n)
-~ -~ L -~
(ftr§:Q{t (515&\ Eiéfa)
(h} ﬂ?t

> No advice on how to pick JAOs

Dataset

109

Research Questions

110

Research Questions

Given an input Query,

1) How to pick good join attribute orderings?

M1

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

12

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

(é\r —>{ ’b\)- —>{ E\;
N 7 N \I/
A .

Y

A -
q}+4g}«4gj

13

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WCOJ
Eval.

(éﬂ--»(Bﬁ-—»(Eﬂ

J _ y
(j}+4g}«4g}

14

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WCOJ
Eval.

(éﬂ--»(Bﬁ-—»(Eﬂ (9}

J _ y
(j}+4g}«4g}

15

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

116

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WwCO3J
Eval.
l\a\)- (b —H\C\; {\a," "(\b," '”\C,'

A -
l\f:n- -(\e:n— -l\d\;

'

17

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WCOJ
Eval.
@ (B »(© Cé}“’{?}"’(é}
\f/ <7 \:/ ’:
@j«4§}«4g} (d

18

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WCOJ
Eval.

)
<

- - - -\ TN -\
(2 (b -»(C o9
A , l

A - -~ N
‘\f:"- -‘\e:N— -(\d\' ‘\e/N— -(\d/'

'

19

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WCOJ

Eval.
léﬂ——»(Bﬁ-—»(Eﬂ Cé}“’{?}"’(é}
A :
e B D (j:: e+ e ra-4d)

120

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

wCOJ Binary Join
Eval. Eval.
@ > »(©) {:a:" 'Hj:):” '”:C:'

121

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WCOJ Binary Join
Eval. Eval.
@r +(B- > (é)__>{?>__>ﬁé} Cé)__>(§>
< - <’ \Iz A |
f 1 1 :
L Bre @@
(-F\N- « e\)"‘ ~ d\l ‘\ /N_ -‘\e/N— -l\dt'

122

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

wCOJ Binary Join
Eval. Eval.
@ (B »©) {:a:" —Hj:):r '”:C:' ‘:a:" —Hj:):r "‘:C:'
<’ < <° A I
! - - '
A - 1:\ o N
(Ore (B -) (Eregr-+d)

123

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

wCOJ Binary Join
Eval. Eval.
@ -p- -0 &-G-9
s :
e B 45\, ‘j::"- {€r--+d} (d)

124

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

wCOJ Binary Join
Eval. Eval.
@ -p- -0 &-G-9
< f/ < \:z f ’: ’:
e B 45\, ‘j::"- {€r--+d} (d)
T (€re- 4

125

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

wCOJ Binary Join
Eval. Eval.
@ -p- -0 &-G-9
s :
e B 45\, ‘j::"- {€r--+d} (d)

(j”n- {E«- -@h

126

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

wCOJ Binary Join
Eval. Eval.
@ -5 S8 E-G-C
< A/ < \:z f : ‘é\ :
! r & ¥
e B 45\, (D@ 4 (d)

J - -
(j}+4g}«4g}

127

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

wCOJ Binary Join
Eval. Eval.
@ -5 S8 E-G-C
< A/ < \:z f : ‘é\ :
| P < > y
e B 45\, (D@ 4 (d)

J - -
(j}+4g}«4g}

128

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

wCOJ Binary Join
Eval. Eval.
@ »(B- -~ ‘:a:" "‘I:):F "‘: :' (:a:,- —Hj:):r —H: :;
A S \I' A 1 A |
4 ! 1 ! I I
JI - ’ 1:\ L SN gF\ [N N
‘ f\"_ -‘ e\"— -(d\' ‘\ IN- -‘\ez,‘— -l\d/' ‘\ IN- -‘\ez,‘— -(\d/,

129

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WwCO3J Binary Join Hybrid
Eval. Eval. Eval.
@ »(B- -~ ‘:a:" "‘I:):F "‘: :' (:a:,- —Hj:):r —H: :;
<7 S \I' A 1 A |
4 | | ! I |
JI ’ J -\ N J [N N
‘ -F\N_ -"e\"— -(d\' ‘\f:ﬂ- -‘\ez,‘— -l\d/' ‘\f:ﬂ- -‘\ez,‘— -(\d/,

130

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WwCO3J Binary Join Hybrid
Eval. Eval. Eval.
(2 b -»(C) ‘\é:" "‘ID:” '”: X (:a o "‘ID:” "{: X
\A/ S \I' A : A :

1 | |
A p A p
(j::,‘_ (B \a':, e Ea-d EeAee--d)

”

131

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WwCO3J Binary Join Hybrid
Eval. Eval. Eval.
&~ B0 -G @
A od <7 \I' A 1 A |
A 1 | 1 I 1
JI — ’\ 1:\ -\ d\ ff;\ -\ d\
‘ f\"_ -‘ € re- -(d J ‘\ IN- -‘\ez,‘— -(\ /' ‘\ IN- -‘\ez,‘— -(\ /'

132

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WwCO3J Binary Join Hybrid
Eval. Eval. Eval.
@ > (B »@ @r+Br-~C (@B~ @b
\At g \:z f : f :
JI — ’\ 1:\ -\ d\ ff;\ -\ d\
‘ f\"_ -‘ € re- -(d J ‘\ IN- -‘\ez,‘— -(\ /' ‘\ IN- -‘\ez,‘— -(\ /'

133

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WwCO3J Binary Join Hybrid
Eval. Eval. Eval.
Gl ® @B O G ® @O
\At L g \:z f : f :
JI — ’\ 1:\ -\ d\ ff;\ -\ d\
‘ f\"_ -‘ € re- -(d J ‘\ IN- -‘\ez,‘— -(\ /' ‘\ IN- -‘\ez,‘— -(\ /'

134

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WwCO3J Binary Join Hybrid
Eval. Eval. Eval.
G- -® @O G- @B
A A/ A \:I f : f :
I o
J - J - y (C)
B e (< _(a'\, (Fre 484Dy (Fre- 4+ had

135

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WCOJ Binary Join Hybrid
Eval. Eval. Eval.
G- -® @O G- @B
\AI N \:I f : f :
I ~ N\
J - J - ’ (C)
B e (< _(é‘, (e 4Eia-Hd) (e +Ee--d) <
W N w N7 N7 N7 N7 N7 N 7 1

136

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WwCO3J Binary Join Hybrid
Eval. Eval. Eval.
G- -® @O G- @B
<’ <o S A | A 1
A | | 1 | |
I o
P - J - y (C,
(%\N- {€ e é\, (Tre 4 era-+d) (Fre 4€e-+d) i
W N w N N A N A N 7 1
- y
(era--d)

137

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WwCO3J Binary Join Hybrid
Eval. Eval. Eval.
Gl ® @B O G ® @O
<’ <o \I' A | A 1
A | | 1 | |
I o
A - A - ‘ C]
(%\N- {€ e é\, (Tre 4 era-+d) (Fre 4€e-+d) > i
W N w N N A N A N 7 1
- y
(era--d)

138

Research Questions

Given an input Query,
1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

WwCO3J Binary Join Hybrid

Eval. Eval. Eval.
B ® @B ® G ® @B O
< A/ < \:z f : f : :
JI - ’ - - > 1:\ o S -~ oY
(B (B« e @@ Ee@ed (Sre- 4D}

139

Research Questions

Given an input Query,

1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?

(éﬂ--»(Bﬁ-—»(Eﬂ

~ 7 N7

A -
l\f:n- -(\e:n— -l\d\;

'

Binary Join
Eval.
(:a\;-). —H: y

A I

J _ y
(j}+4g}«4g)

140

How to Pick Good Join Attribute Ordering (JAO)?

141

WCOJ Evaluation Overview

uer
(b
<7 \\’ ~
I (@ r-+»{d)
J\ L~ <o
Output (c*

Plan [a,b,c,d]
142

WCOJ Evaluation Overview

uer
(b
JHE =
I -)
J\ L~ <o
Output l\C};‘

Plan [a,b,c,d]
143

WCOJ Evaluation Overview

uer

Plan [a,b,c,d]
144

WCOJ Evaluation Overview

Plan [a,b,c,d]

uer

145

WCOJ Evaluation Overview

uer

(a,b) =(0,1)

J

(’\
[\/,V\(’\] >SCan (a,b)’s={(®,l),(0,2),(0,5),...}

Plan [a,b,c,d]
146

WCOJ Evaluation Overview

uer
®w.
Output l\c:;"
(a,b,c,d)’s
B,
| B—®
(A’
(‘—’_ _____ -‘\ A (a,b):(O,l)
,v"\r\ . c’s: fwd(a=0) N fwd(b=1)
| y I {1,2,5,.}Nn{2,3,6,..}
I(‘/ I
L AR — .
il i
(
[\/,V\("] > Scan (a,b)’s={(0,1), (0,2), (0,5), ..}
]
N - J
Plan [a,b,c,d]

147

WCOJ Evaluation Overview

uer
®w.
Output l\c:;"
(a,b,c,d)’s
B,
| B
(A’
(‘—’_ _____ -‘\ A (a,b):(O,l)
,v"\r\ . c’s: fwd(a=0) N fwd(b=1)
| y I {1,2,5,.}Nn{2,3,6,..}
I(‘/ I
L AR — .
f {2,7,9, ..}
(
[\/,v\("] > Scan (a,b)’s={(0,1), (0,2), (0,5), ..}
]
N - J
Plan [a,b,c,d]

148

WCOJ Evaluation Overview

uer
®w.
Output l\c:;"
(a,b,c,d)’s
B,
| B
(A’
(‘—’_ _____ -‘\ A (a,b):(O,l)
,v"\r\ . c’s: fwd(a=0) N fwd(b=1)
| y I {1,2,5,.}Nn{2,3,6,..}
I(‘/ I
L AR — .
f {2,7,9, .}
(
[\/,v\("] > Scan (a,b)’s={(0,1), (0,2), (0,5), ..}
]
N - J
Plan [a,b,c,d]

149

WCOJ Evaluation Overview

((TD\DV \

I \I’ \\’\ ’\l

Ly &)

I (@4 l
\‘_’__f___/
TN

O,

Plan [a,b,c,d]

J

-

c’s:

uer
(b
\I/ \\’ —-
1 (ar-+»{d
J\ L~ <o
(cr

(a,b,c)=(0,1,2)

(a,b) =(0,1)

fwd(a=0) N fwd(b=1)
{1,2,5,.}N{2,3,6,..}

{2,7,9, .}

> Scan (a,b)’s={(0,1), (8,2), (8,5), .}

150

WCOJ Evaluation Overview

uer
B,
| @@

Output l\C};‘

(a,b,c,d)’s
':\———?———'~)
((b)y 1
N, 7 \\’\ ’\I —
: "o o >(a,b,C) (0,1,2)
y ~° ~- d’s: fwd(a=0): {1,2,5,..}
I (c* l
\‘_’__f___/ y
"\) (a,b):(O,l)
v"\r\ \ c’s: fwd(a=0) N fwd(b=1)
(\C:/,’ {1,2,5,.}n{2,3,6,..}

T ~ {2,7,9,.}
(b
"\(— > Scan (a,b)’s=1{(0,1), (0,2), (0,5), ..}
]
N - J

Plan [a,b,c,d]

151

WCOJ Evaluation Overview

(a,b,c,d) uer
(0, 1, 2, 1) (*.:"\
I ?é)-—-Ha)
J\ L~ <o
Output l\C};‘
(a,b,c,d)’s

((TD\DV \
I 7 e -~ | ,b, =(0,1,2
Ly By (20002 O
y . d’s: fwd(a=0): {1,2,5,..}
I (c 4 /'
"\ f) (a,b):(O,l)
v"\r\ | oSt fwd(a=0) N fwd(b=1)
/]
L {1,2,5,.}Nn{2,3,6,..}
o
T ~ {2,7,9,.}
— N
(b’
["N\(’\,] > Scan (a,b)’s={(0,1), (0,2), (0,5), .}
N - J
Plan [a,b,c,d]

152

WCOJ Evaluation Overview

(a,b,c,d) uer
(0, 1, 2, 1) (*.:"\
(0, 1, 2, 2) v (@ - »id)
J\ L~ <o
Output l\C};‘
(a,b,c,d)’s

((TD\DV \
I 7 e -~ | ,b, =(0,1,2
|y By (00012
y . d’s: fwd(a=0): {1,2,5,..}
I (c 4 /'
"\ f) (a,b):(O,l)
v"\r\ | oSt fwd(a=0) N fwd(b=1)
/]
L {1,2,5,.}Nn{2,3,6,..}
o
T ~ {2,7,9,.}
— N
(b’
["N\(’\,] > Scan (a,b)’s={(0,1), (0,2), (0,5), .}
N - J
Plan [a,b,c,d]

153

WCOJ Evaluation Overview

(ayb,c,d) uer
(0) l) 2’ l) (\:'v\
| N7 -
(0, 1, 2, 2) y @@
Output (0, 1, 2, 5) (\C:"
(a,b,c,d)’s

(b 1
|\:"V\?’\ ’d\,l > (a,b,c)=(®,l,2)
ly < &N Mg fwd(a=0): {1,2,5,..}
I (c 4 '
\‘_’__f___/ y
"\ A (a,b):(O,l)
v"\r\ | oSt fwd(a=0) N fwd(b=1)
/]
= {1,2,5,.}Nn{2,3,6,..}
(\c/;/
T ol {2,7,9,.}
— N
(b
["\(—] > Scan (a,b)’s={(0,1), (0,2), (0,5), ..}
]
N - J
Plan [a,b,c,d]

154

WCOJ Evaluation Overview

(a,b,c,d) uer
0, 1, 2, 1) (::,,\
(0, 1, 2, 2) y B @
Output 0, 1, 2, 5) (cA”
(a,b,c,d)’s

':\———?———'~)

(@, ‘

I : ?’\ ’d\,: > (a,b,c)—(O,l,2) @

'y _~= ~- d’s: fwd(a=0): {1,2,5,.}

I (c 4 l

\‘_’__f___/ y

"\) (a,b):(O,l)

v"\r\ \ c’s: fwd(a=0) N fwd(b=1)

(\C:/,’ {1,2,5,.}n{2,3,6,..}

T ~ {2,7,9,.}
(b
"\(— > Scan (a,b)’s=1{(0,1), (0,2), (0,5), ..}
]
N - J
Plan [a,b,c,d]

155

WCOJ Evaluation Overview

(a,b,c,d) uer
(0, 1, 2, 1) (B
r \\’ -
(0, 1, 2, 2) y @@
Output (0, 1, 2, 5) (cA”
(a,b,c,d)’s

®w.

| B

(A’

(‘—’_ _____ -‘\ A (a,b):(O,l)

,v"\r\ . c’s: fwd(a=0) N fwd(b=1)

| y I {1,2,5,.}Nn{2,3,6,..}

Yo !

L AR — .

f {2,7,9, .}
(
[\W\("] > Scan (a,b)’s={(0,1), (0,2), (0,5), ..}
]
N - J
Plan [a,b,c,d]

156

WCOJ Evaluation Overview

(a,b,c,d) uer
(0, 1, 2, 1) (B
r \\’ -
(0, 1, 2, 2) y @@
Output (0, 1, 2, 5) (cA”
(a,b,c,d)’s

®w.

| B

(A’

(‘—’_ _____ -‘\ A (a,b):(O,l)

,v"\r\ . c’s: fwd(a=0) N fwd(b=1)

| y I {1,2,5,.}Nn{2,3,6,..}

Yo !

L AR — .

f {2,7,9, .}
(
[\W\("] > Scan (a,b)’s={(0,1), (0,2), (0,5), ..}
]
N - J
Plan [a,b,c,d]

157

How to Pick Good Join Attribute Ordering (JAO)?

Impact of JAO:
1) Number of intermediate results
2) Direction of Adj. Lists Intersected

158

How to Pick Good Join Attribute Ordering (JAO)?

Impact of JAO:
1) Number of intermediate results

159

1. JAO — Number of intermediate results

uer
(b
<7 \\’ -
I (@ r-+»{d)
J\ L~ <o
Output (c*

Plan [a,b,c,d]
160

1. JAO — Number of intermediate results

uer
(b
\I/ \\’ —-
I (@ r-+»{d)
J\ L~ < -
Output Output (\C,;‘
(a,b,c,d)’s (a,b,c,d)’s
lTD\pv (TD\tv
\I/ \\’\ - N, \\’\ —
j @—d) } (@ - »(d)
(\c:;" (.
(B, (B,
} ?’\) ?’\)—P(\a\)

(b (b
e] [N

Plan [a,b,c,d] Plan,[a,b,d,c]

161

1. JAO — Number of intermediate results

TN TN
Ev, Ev,
4 L)-»@Z (F-ﬂgﬂ
(\c:;" (\c:
TN TN
Oy, O,
(3 (\‘f——»{gﬂ

Plan [a,b,c,d]

Plan,[a,b,d,c]

uer
(b
JHE =
| -)
J\ L~ <o
(cr¥
Int. | Runtime
Dataset | Plan Results | (secs)
Epinions | Plan, 4M 0.9
v=ToK Pl 55M 56.6
an .
= 2
E=508K (13.8x) | (62.9x)

162

How to Pick Good Join Attribute Ordering (JAO)?

Impact of JAO:

2) Direction of Adj. Lists Intersected

163

2. JAO — Direction of Adj. Lists Intersected

164

2. JAO — Direction of Adj. Lists Intersected

BN
Output (@r-->(b)
(a,b,c)’s

—

\
/

Fay

@ - >

(:a‘,—uj)‘,

Planl
[a,b,c]

165

2. JAO — Direction of Adj. Lists Intersected

uer
(ch
<"y
/7 \
/\ >\
Output Output @r->j
(a,b,c)’s (a,b,c)’s
(E\; (’\)
N
(\a:;- - ->(\b:) (\a:;—ﬂ\b:)
(:C\;
(@—p) (b
Planl Plan2
[a,b,c] [b,c,al]

166

2. JAO — Direction of Adj. Lists Intersected

S
Output Output Output (@r-»b)
(a,b,c)’s (a,b,c)’s (a,b,c)’s

-\

(C) (C)H (’)
f ’\ / "\ /4\ ’\
DY DY AN > DY /\ AN
(:C\; /::C:;
(@—b) by @
Planl Plan2 Plan3
[a,b,c] [b,c,al] [a,c,b]

167

2. JAO — Direction of Adj. Lists Intersected

uer
@
s A 4
/ \
/\ >\
Output Output Output @r->j
(a,b,c)’s (a,b,c)’s (a,b,c)’s
(E\; (’:)‘ 4(:\)
/\4\ /\\ /\4\ PR 2L \\ Dataset | Plan ZAFI J List R(l;r;t(:;n)e
? ? ? Plan, | 0.5B 2.6
BerkStan -
(C) (C) V=685K | Plan, |55B (113.8x) | 15.2 (5.8x)
/ == oM 1 B (114.0x) | 31.6 (12.2
(:a: E):l (\b:, (\a:, Plan, | 55B (114.0x) .6 (12.2x)
Plan, Plan, Plan,
[a,b,c] [b,c,al] [a,c,b]

168

How to Pick Good Join Attribute Ordering (JAO)?

Impact of JAO:
1) Number of intermediate results
2) Direction of Adj. Lists Intersected

> Account for impact in cost model

169

Cost Metric - Intersection Cost (I-Cost)

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Output
(a,b,c)’s

?
(’C\l

LN

(\a}- -+b

170

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider each tuple

Output
(a,b,c)’s Z
(’C\l t€Qk-1

LN

(\a}- -+b

171

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider each tuple

Output

(a,b,c)’s Z

(— _(’C\l_ -\ tEQk_l
|

|

I[/\\I Qk

(@r->(bl

g \//

172

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider each tuple

2

te€EQr 1

t = (a,b)
(0, 1)
(0, 2)
(1, 5)

173

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider each tuple’s adj lists

Output
(a,b,c)’s ' ‘
n > > |t[i].dir]
AR FeQii (Bdiv)eAn g
I - | s.t. (i, dir) is accessed
| /\4\/\\ I Qk
l(\a/'-_-»‘\b/,ll t = (a,b)
-} (0, 1)
Q (0, 2)
oz k-1
(\a{.—»{\b{» (1, 5)
Plan
[a,b,c]

174

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider the # input tuples

Output
(a,b,c)’s P
n > S |tfi].dir]
(" _(E‘»_ A t€EQ K1 ('i',d;_r))'eAk_l :
| s.t. (1, dir) 1S accesse
If\ A
1 Q
| 4 ~ k
l(\a/'-_-»‘\b/,ll t = (a,b)
-} (0, 1) | fwd(0) | + |fwd(1) |
(0, 2)
(’a\D—HBl Qk_l
el =7 (1, 5)
Plan
[a,b,c]

175

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider the # input tuples

Output
(a,b,c)’s -
n > S |tfi].dir]
(—_(’C\»_-‘ te€EQr 1 (i?ddi'r))'EAk_ld
| s.t. (1, dir) 1s accesse
If\ A
1 Q
| 4 ~ k
l(\a/'-_-»‘\b/,ll t = (a,b)
-? (0, 1) | fwd (0) | + |fwd(1) |
0 (0, 2) | fwd (0) | + |fwd(2) |
D & k-1
(\a{.—»{\b{» (1, 5)
Plan
[a,b,c]

176

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider the # input tuples

Output
(a,b,c)’s -
n > S |tfi].dir]
(—_(’C\»_-‘ te€EQr 1 (i?ddi'r))'EAk_ld
I /4\’\ I s.t. (i, dir) is accesse
1 Q
| 4 N k
l(\a/'-_-»‘\b/,ll t = (a,b)
_? (6, 1) | fwd (0) | + |fwd(1) |
Q (0, 2) | fwd (0) | + |fwd(2) |
. b k-1
& o (1, 5) | fwd (1) | + [fwd(5) |
Plan
[a,b,c]

177

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider the # input tuples

Output
(a,b,c)’s P
n > > t[i].dir|
(— _(’C\,_ A te€EQr 1 (i?d(;;'r))'EAk_l 3
| s.t. (1, dir) 1s accesse
If\ A
1 Q
I 4 > k
l(\a/'-_-»‘\b/,ll t = (a,b)
-} (0, 1) | fwd (0) | + [fwd(1) |
+
0 (0, 2) | fwd(0) | + |fwd(2) |
(’a\ B\ k-1 +
ar—>b (1, 5) | fwd (1) | + |fwd(5) |
Plan +
[a,b,c]

Operator I-cost

178

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Output
(a,b,c)’s

A > > » t[4].dir|

Y Qi 1€Q3---Qm—1 t€Qky (B, dir)EAL_4

/\ ,\ s.t. (1, dir) 1s accessed
DY

(\a}- -+b

179

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Output
(a,b,c)’s

A > > » t[4].dir|

Y Qr-1€Q2---Qm—1 t€EQEK1 (i,dir)EAL 4
/\ ,\ s.t. (1, dir) 1s accessed
N ~ \ J
(\a{»— - ->(\b/) Y
? 1) number of

intermediate results

180

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Output
(a,b,c)’s

A > > » t[4].dir|

Y Qr-1€Q2---Qm—1 t€QE1 (i,dir)€Ag
/\ ,\ s.t. (1, dir) 1s accessed
(\a:»- - > \b:l ‘ Y J\ Y l
? 1) number of 2) size of adj. lists
intermediate results dir. of adj. lists
Bl
Plan,
[a,b,c]

181

Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Output
(a,b,c)’s

A > > » t[4].dir|

Y Qr-1€Q2---Qm—1 t€QE1 (i,dir)€Ag
/\ ,\ s.t. (1, dir) 1s accessed
(\a:;- - > \b:) ‘ Y J\ Y l
? 1) number of 2) size of adj. lists
intermediate results dir. of adj. lists
a —»(t
— b I-Cost captures both effects!
Plan, Estimated using a sampling based approach.
[a,b,c]

182

Mixing Binary and Worst-case Optimal Joins

183

Mixing Binary and Worst-case Optimal Joins

Consider
2-join
attributes

e LT e

184

Mixing Binary and Worst-case Optimal Joins

Consider
3-join
attributes
4 ;"L N
@
NS A/
4 ;J'.)

@

_ A/

J \\1"' A/

4 "' N ["' N

_

Mixing Binary and Worst-case Optimal Joins

Consider

4 "Pk\ I

‘.

=

4 ,"L N N\ /;%q. N\ /"'L N

@ @@ - O

\ L “'Y;.!,:,‘;ﬂi’ J \,‘iy;.' J

4 ;J'. N [N [‘q' I /"k\ I [:]
&y 3 - @ L
N VRN “" L ‘ib VRN J "Y

186

Mixing Binary and Worst-case Optimal Joins

At each level:
e Consider the next Join Attribute

e Consider binary joins

Consider
4-join
attributes

-

Mixing Binary and Worst-case Optimal Joins

At each level:
e Consider the next Join Attribute

e Consider binary joins

Consider
4-join
attributes

-

Mixing Binary and Worst-case Optimal Joins

At each level:
e Consider the next Join Attribute
e Consider binary joins

Consider
4-join
attributes

® & é-®
J ‘/ \\"/

4 "' N ["' N
J \\‘1" %

4 "l N ". N ‘ll N

N
N

189

Mixing Binary and Worst-case Optimal Joins

At each level:

e Consider the next Join Attribute
e Consider binary joins

Consider

4-join
attributes

® & é-®
J ‘/ x\"/

4 "' N ["' N
J \\‘1" %

4 "l N "l N ‘ll N

-
N
4

190

Example Graphflow Hybrid Plan

ol o Dynamic Programming
Gra P hf/ ow Query & Dataset
o /60 Cost-Based Optimizer

191

Example Graphflow Hybrid Plan

Qe o Dynamic Programming
Gra P hf/ ow Query & Dataset
o /o0 Cost-Based Optimizer

&, s

192

Example Graphflow Hybrid Plan

aels

dﬁ,gphﬂow

Dynamic Programming
Query & Dataset
Cost-Based Optimizer

193

Example Graphflow Hybrid Plan

at-o Dynamic Programming
Gra P hf/ ow Query & Dataset

o /oP Cost-Based Optimizer
O
I/ - N, 7
1 (C\; :
Y r~=_ Y _ WCOJ
(\b}\f ‘(Ae,; Subplan
YT
__ ~o
4 —
(\a:r\ ,(: D
! \(, v :’ __ Binary
Y =~) Join
(br™ e,
(é\ ,l El‘;
\:/ \(’ . (’ V, \:/
y P /, Sy
(\b\/ ‘l\e\;
~ =~/ [wco3
Subplan
(\a}» ,(\d:l
|| @
(b
\ N / \ /

194

Example Graphflow Hybrid Plan

Dynamic Programming

0.al-0
Gra P hf/ ow Query & Dataset
/o Cost-Based Optimizer

(é\ El‘;
\I/ \’ . - V’l\ll
JI (C) (,i !I

Y ,\ - = N

(\b,/ ‘l\e)

(:a:; ,(:d\)
} (cY

(b\)

> J

soA Generalized Hypertree Decomposition
Query Cost-Based Optimizer

195

Example Graphflow Hybrid Plan

A Generalized Hypertree Decomposition
Query Cost-Based Optimizer

ol o Dynamic Programming
Gra P hf/ ow Query & Dataset
o /60 Cost-Based Optimizer TYHEADED

(;* 208\ This is leads to a specific
SN d)
g join plan.

Example Graphflow Hybrid Plan

ol o Dynamic Programming
Gra P hf/ ow Query & Dataset
SR Cost-Based Optimizer

é\l ,(’d\;
N I/

A Generalized Hypertree Decomposition
Query Cost-Based Optimizer

w0] [0, o)

Generates only WCOJ subplans
followed by multiple binary joins

197

Example Graphflow Hybrid Plan

A Generalized Hypertree Decomposition
Query Cost-Based Optimizer

Dynamic Programming

0.al-0
Gra P hf/ ow Query & Dataset
/o Cost-Based Optimizer "VHEADED

<r \,\,’lxla' Cost: maximum AGM bound of any of the leaves.
= | > Minimize cost!

N N 4 198

Example Graphflow Hybrid Plan

Generalized Hypertree Decomposition

Dynamic Programming
Query Cost-Based Optimizer

0.al-0
Gra P hf/ ow Query & Dataset
o’/ L0

Cost-Based Optimizer 'TYHEADED
((a:;\ @) (/:al\ 4 d
.y e | 3
b:\f ya), Join (\b:\f e
FH A
K A / - K ~ /'x j
* / L
(é\ ,(L& b (é‘;\ ’d‘;
J\ ,\ - J N - e
(\b,/ ‘(\e:; Subplan (\b:\/ " p Y é\)
z E ‘l?\) (:Ptx
(an P d)
i . Py ~7
LA R
(br e
@ D
: (cY
J\ <7
(b)
D 199

Example Graphflow Hybrid Plan

Generalized Hypertree Decomposition

Dynamic Programming
Query Cost-Based Optimizer

0.al-0
Gra P hff ow Query & Dataset
o’/ L0

Cost-Based Optimizer [EADED
(/a\;\ d\\, é\\ ,(d\\;
< \(’C < il \(Ev T
' !y Binary : R
Y y . = Y y
b:\f ‘(Ae\; Join (\b:\f ‘(Ae‘;
&) &
L 7 o~
&) d & d
y ,\z: y WCOJ B |) oy
(br™ e, Subplan (b'r ‘lé‘;
g N\ N
z 5 p Y i
- — - \ SN2/ N7)
(an . d
R W P
y O @&y
(b\/,\ e Amazon Graphflow 24.7 secs
V=403K | EmptyHeaded (EH) > 30 mins
oy - E=3.4M
‘\?}' y(\d,' EH in Graphflow | 5.8 mins (14x)
!I (\Cj
(b
>z 200

Graphflow and EmptyHeaded Plan Spaces

Subgraph Queries: 14 queries

Dataset Domains: social networks, web, product co-purchasing

Differ in several structural properties:

(1) size

(2) how skewed their adjacency lists distribution 1s
(3) average clustering coefficients

201

Graphflow and EmptyHeaded Comparison

Subgraph Queries: 14 queries

Dataset Domains: social networks, web, product co-purchasing

Joins 1-3 4-6 7+

el s
Graphf/o
2P flow

+ Best JAO orderings

202

Graphflow and EmptyHeaded Comparison

Subgraph Queries: 14 queries

Dataset Domains: social networks, web, product co-purchasing

(/éh ,(’d}

-\ -\ g \f ~
P i (/a N » d) : C\/ |
- S ~r \’\’ < J
(a, L (€)1 | () / \(e)
SEA J\ ,\/\ J\ N .
‘(\C’) &b,f ‘l\e,; _ Y 'F ,K
Joins 1-3 4-6 7+
Qo‘ﬂ 1.8-3.2x% Runs to
Graphf/OW Faster completion

T -
10-25x 1n 4-40 mins
rare cases | 72x speedup

1.5-2x Timeout
faster > 48 hrs

+ Best JAO orderings

203

WCOJs Research Impact

WCOJ Adoption

1.
2.
3.

Plan Space
Cost Model (I-Cost)

Cardinality estimator

$
‘ GraphScope
Alibaba

204

e Compressed Representations
> Factorized Representations

205

Flat Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 7 \CI
~ ~ A d

206

Flat Representation Example

Join Attribute Ordering (JAO): [b,a,c]

(b, a, c)

207

Flat Representation Example

(b, a, c)

21T /6\ 21T
{ | IR | - —pl \]
\al \ 7 \CI
~ ~ A d

208

Flat Representation Example

(b, a, c)

21T /6\ 21T
{ | IR | - —pl \]
\al \ 7 \CI
~ ~ A d

209

Flat Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 4 \C/
~ ~ A d

(b, a, c)
(n, 0, ntl)
(n, 0, ...)
(n, 0, 2n)

} n tuples

210

Flat Representation Example

-

-

-

-

~ AN N A~ A~ o~
kP O O o

n+1)

2n)
n+1)

2n)

> n tuples

> n tuples

Flat Representation Example

(b, a, c)

(n, 0, n+tl)
(n, 0, ...)

(n, 0, 2n)

(n, 1, n+tl)
(n, 1, ...)

(n, 1, 2n)

(n, n-1, n+l)
(n, n-1, ...)
(n, n-1, 2n)

> n tuples

> n tuples

n tuples

212

Flat Representation Example

> n tuples

> n tuples

n tuples

213

Flat Representation Example

n, n-1, n+l)

n, n-1,

n, n-1,

> n tuples

> n tuples

n tuples

214

Flat Representation Example

21T 200 21T (b, a, C)
&Y Cny, 0, n+1) |)
(n, 0, ...) > n tuples
(n, 0, 2n) p
(n, 1, n+tl) A
(n, 1, ...) > n tuples
(n, 1, 2n))
n+1)
.. n tuples
2n)

215

Flat Representation Example

(b, a, c)

(n, 0, n+tl)
(n, 0, ...)

(n, 0, 2n)

(n, 1, n+tl)
(n, 1, ...)

(n, 1, 2n)

(n, n-1, n+l)
(n, n-1, ...)
(n, n-1, 2n)

> n? tuples

216

Conditional Independence

a and c are
conditionally independent on b!!

VARRN 2T VERRN (b, a, C)
\ar- e Co 0, mn) |)
(n, 0, ...)
(n, 0, 2n)
(n, 1, n+l)
Cny 1,) > n? tuples
(n, 1, 2n)
(n, n-1, n+l)
(n, n-1,)
(n, n-1, 2n) y

217

Factorized Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 7 \CI
~ ~ A d

/N

218

Factorized Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 4 \C/
~ ~ A d

219

Factorized Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 4 \C/
~ ~ A d

" /N

220

Factorized Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 4 \C/
~ ~ A d

" /N

{0,1,..,n-1} {n+l,n+2,..,2n}

221

Factorized Representation Example

" /N

{0,1,..,n-1} {n+l,n+2,..,2n}

Y
2n+1 fields
VS.
3n? fields (flat)

222

Factorized Representation Example

f-tree
f-representation b

" /N

X X

{0,1,..,n-1} {n+l,n+2,..,2n}

. J
Y

2n+1 fields
VS.
3n? fields (flat)

223

Theory on F-Representations

Theory of factorization:
0(Q) = AGM(Q)

where

In some cases,

o(Q) < AGM(Q)

0(Q): worst-case size bound
over f-representations.

f-tree
f-representation b
n
/// \\\
/ \ a C
X X
{0,1,..,n-1} {n+l,n+2,..,2n}
1\ J
Y
2n+1 fields
Vs.

3n? fields (flat)

224

User
Study

J

~

Fin.

Questions?

Best Paper
Award
VLDB 2018

VLDBJ 2020

Optimization Execution Storage
_ 2N
Y Y
Novel Join Algorithms Specialized
VLDB 2019, TODS 2021 Graph-Native
Compressed Representations ICDE 2021
VLDB 2021 VLDB 2021
Q f‘Q 0
o

O/O |
d SIGMOD 2017

