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Research Overview

I aim to design and implement data systems capable of

efficient graph data management.
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Modeling Application Data As Graph is Ubiquitous
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Examples of Applications

Social Networks Payment Services



Twitter Recommendation Example

Social Networks Payment Services
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WTEF: The Who to Follow Service at Twitter. Gupta et al. WWW 2013.
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Alipay Fraud Detection Example

Social Networks Payment Services

E2 Alipay

10



Alipay Fraud Detection Example

Social Networks Payment Services
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Criminal Merchant

Real-time Constrained Cycle Detection in Large Dynamic Graphs. Qiu et al. VLDB 2018.
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Alipay Fraud Detection Example
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Real-time Constrained Cycle Detection in Large Dynamic Graphs. Qiu et al. VLDB 2018.
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ABSTRACT

Graph processing is becoming increasingly prevalent across many
application domains. In spite of this prevalence. there is little re-
search about how graphs are actually used in practice. We conducted
an online survey aimed at understanding: (i) the types of graphs
users have: (ii) the graph computations users run; (iii) the types
of graph software users use: and (iv) the major challenges users
face when processing their graphs. We describe the participants’
responses to our questions highlighting common patterns and chal-
lenges. We further reviewed user feedback in the mailing lists, bug
reports, and feature requests in the source repositories of a large
suite of software products for processing graphs. Through our re-
view, we were able to answer some new questions that were raised
by participants’ responses and identify specific challenges that users
face when using different classes of graph software. The partici-
pants’ responses and data we obtained revealed surprising facts
about graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often ve
and scalability and visualization are undeniably the most pressing
challenges faced by participants. We hope these findings can guide
future research.
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1. INTRODUCTION

Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology. and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
systems [3([8][1 )/53]. RDF engines [38]/64)[67
software [6]46]. visualization software [13

. query languages [28]

[52}55]), and distributed graph processing systems [17,21][27]. In
the academic literature. a large number of publications that study
numerous topics related to graph processing regularly appear across
a wide spectrum of research venues.

Despite their prevalence, there is little research on how graph data
is actually used in practice and the major challenges facing users
of graph data, both in industry and research. In April 2017, we
conducted an online survey across 89 users of 22 different software
products, with the goal of answering 4 high-level questions:

(i) What types of graph data do users have?

(ii) What computations do users run on their graphs?

(iii) Which software do users use to perform their computations?

(iv) What are the major challenges users face when processing their
graph data?

Our major findings are as follows:

e Variety: Graphs in practice represent a very wide variety of enti-
ties, many of which are not naturally thought of as vertices and
edges. Most surprisingly. traditional enterprise data comprised
of products. orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

o Ubiquity of Very Large Graphs: Many graphs in practice are
very large. often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that
large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

e Challenge of Scalabiliry: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.

o Visualization: Visualization is a very popular and central task

ing pipelines. After scalability,
participants indicated visualization as their second most pressing
challenge, tied with challenges in graph query languages.

e Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

The ubiquity of large graphs and surprising challenges of graph
processing: extended survey

Siddhartha Sahu' @ - Amine Mhedhbi' . Semih Salihoglu' - Jimmy Lin' - M. Tamer Ozsu’

Received: 21 January 2019 / Revised: 9 May 2019/ Accepted: 13 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Graph processing is becoming increasingly prevalent across many application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories. and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have: (ii) the graph computations users run: (iii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants’ responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, scalability and visualization are undeniably the
most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

Keywords User survey - Graph processing - Graph databases - RDF systems

1 Introduction prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13.20.26.49.65.73.90]. RDF engines [52.96]. linear alge-
bra software [17,63], visualization software [25.29], query
languages [41.72,78]. and distributed graph processing sy
tems [30,34.40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research
venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. In April 2017, we conducted an online survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

Graph data representing connected entities and their relation-
ships appear in many application domains. most naturally in
social networks, the Web, the Semantic Web, road maps,
communication networks, biology. and finance, just to name
a few examples. There has been a noticeable increase in the
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the web, the semantic web, road maps, communication networks,
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5. and distributed graph processing systems [17}21]27]. In
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(iv) What are the major challenges users face when processing their
graph data?
Our major findings are as follows:
e Variety: Graphs in practice represent a very wide variety of enti-
ties, many of which are not naturally thought of as vertices and
st surprisingly, traditional enterprise data comprised
. orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

Ubiquity of Very Large Graphs: Many graphs in practice are
very large. often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that

large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

Challenge of Scalability: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.
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What kind of graph data, computations, software, and major challenges industry users have?

<

most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.
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prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13.20.26.49.65.73.90]. RDF engines [52.96]. linear alge-
bra software [17,63], visualization software [25.29], query
languages [41.72,78]. and distributed graph processing sy
tems [30,34.40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research

venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. In April 2017, we conducted an online survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:
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Some Major Findings

[

1.

Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology, and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
systems [38]14]3548|53]. RDF engines [38]64/67]. linear algebra
software [6/46]). visualization software [13]16], query languages [28]
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. 1. Graphs are very large!
2. Scalability is the most pressing challenge! |
3. ML on graphs is very popular (> 85% of respondents have ML workloads)!

e Challenge of Scalabiliry: ility is unequivocally the most
pressing challenge faced by participants. The ability to process

Visualization: Visualization is a very popular and central task
in participants’ graph processing pipelines. After scalability,
participants indicated visualization as their second most pressing

challenge, tied with challenges ir
Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

h query languages.
query guag

most pressing challenges faced by participants. and data integration. recommendations, and fraud detection are very popular

of
PUDLLCAUUN UL SWUUY HULLICIUUD LUPILS ICIALCU W grapn pro-
cessing regularly appear across a wide spectrum of research

LISUU VI SUpPISIISIGl y SHaLS @ LU VLG VULSIUI U S s
(https://doi.org/10.1007/s00778-019-00548-x) contains
supplementary material, which is available to authorized users.

venues.

Siddhartha Sahu
s3sahu@uwaterloo.ca

Amine Mhedhbi
amine.mhedhbi@uwaterloo.ca

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. In April 2017, we conducted an online survey across
Semih Salihoglu 89 users of 22 different software products, with the goal of

semih.salihoglu@uwaterloo.ca answering 4 high-level questions:

18



Apps Store Facts or Events

19



Apps Store Facts or Events (Modeling Choice)

Property Graph Data Model

(FROM, TO)

(0, 1)
(0, 2)
(0, 5)

Relational Model
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Apps Store Facts or Events (Modeling Choice)

(FROM, TO)

(0, 1)
(0, 2)
(0, 5)

Property Graph Data Model Relational Model

Relational algebra primitives!

> Emphasis on workload i.e., queries and dataset characteristics.
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Workload Characteristics

Highly Connected Dataset

1. Highly Connected data:

Lots of many-to-many relationships (N-to-M cardinality) !!
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Workload Characteristics

Highly Connected Dataset Structure-based Que

1. Highly Connected data:

Lots of many-to-many relationships (N-to-M cardinality) !!

2. Structure-based Queries:

Queries enumerate graph patterns (complex many-to-many joins)
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Workload Characteristics
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Colloquially called “graph workloads” aka Querying

Interest in performance 1issues.
Challenging workload due to complex many-to-many joins

> Existing data systems come short.
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Workload Challenges - Many-to-many Joins
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Workload Challenges - Many-to-many Joins

On a financial network, find the accounts whose transactions
are facilitated by user with account ID N?

Transactions

src | dst | amount | date
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Workload Challenges - Many-to-many Joins

On a financial network, find the accounts whose transactions (@ - (B »(C)

N 7 1 S N 7

are facilitated by user with account ID N? : "

Transactions i@i

_______

src | dst | amount | date
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Workload Challenges - Many-to-many Joins

On a financial network, find the accounts whose transactions
are facilitated by user with account ID N?

Transactions

src | dst | amount | date FROM Transactions T1l, Transactions T2

WHERE Tl.dst = T2.src
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Workload Challenges - Many-to-many Joins

T1 T2
DY - N -N

On a financial network, find the accounts whose transactions (B - oD - @D
are facilitated by user with account ID N? had had had

Transactions

src | dst | amount | date FROM Transactions T1l, Transactions T2

WHERE Tl.dst = T2.src
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Workload Challenges - Many-to-many Joins

T1 T2
DY - N -N

On a financial network, find the accounts whose transactions (B - oD - @D
are facilitated by user with account ID N? had had had

Transactions

src | dst | amount | date FROM Transactions T1l, Transactions T2

WHERE Tl.dst = T2.src
AND Tl1l.dst = N
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Workload Challenges - Many-to-many Joins

T1 oooee T2
On a financial network, find the accounts whose transactions (’}.-%,4"FL.,4’X
are facilitated by user with account ID N? DA ii P
Transactions i(:::)

_______

src | dst | amount | date FROM Transactions T1l, Transactions T2

WHERE Tl.dst = T2.src
AND Tl1l.dst = N
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Workload Challenges - Many-to-many Joins

T1 ocemee T2

On a financial network, find the accounts whose transactions (@ - {(D-- (@)

are facilitated by user with account ID N? D ii ' had
Transactions SELECT Tl.src as a, T2.dst as c i(:::)

_______

src | dst | amount | date FROM Transactions T1l, Transactions T2
WHERE T1l.dst = T2.src
AND Tl1l.dst = N
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Workload Challenges - Many-to-many Joins

T1 ocemee T2

On a financial network, find the accounts whose transactions (@ - {(D-- (@)

are facilitated by user with account ID N? D ii ' had
Transactions SELECT Tl.src as a, T2.dst as c i(:::)

_______

src | dst | amount | date FROM Transactions T1l, Transactions T2
WHERE T1l.dst = T2.src
AND Tl1l.dst = N
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Workload Challenges - Many-to-many Joins

T1 ocemee T2

On a financial network, find the accounts whose transactions (@ - {(D-- (@)

are facilitated by user with account ID N? D ii : had
Transactions SELECT Tl.src as a, T2.dst as c i(:::)

_______

src | dst | amount | date FROM Transactions T1l, Transactions T2

WHERE Tl.dst = T2.src
AND Tl1l.dst = N

(1, 101)
(1, ...) > 100 tuples
(1, 200)
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Workload Challenges - Many-to-many Joins

Tl T2
On a financial network, find the accounts whose transactions (@ - {(D-- (@)
are facilitated by user with account ID N? < i ii i <
Transactions SELECT Tl.src as a, T2.dst as c i(:::>
src | dst | amount | date FROM Transactions T1, Transactions T2 |

WHERE T1.dst = T2.src
AND T1.dst = N

(a, c)

(1, 101)

(1, ...)

(1, 200)
(100, 101)
(160, ...) > 100 tuples
(100, 200) | |
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Workload Challenges - Many-to-many Joins

Tl T2
On a financial network, find the accounts whose transactions (@ - {(D-- (@)
are facilitated by user with account ID N? < i ii i <
Transactions SELECT Tl.src as a, T2.dst as c @
src | dst | amount | date FROM Transactions T1, Transactions T2 |

WHERE T1.dst = T2.src
AND T1.dst = N

(a, c)
(1, 101)
(L; ---) 200 edges > 10,000 !!!
(1, 200)
(100, 101)
(100, ...)
(100, 200)
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Workload Challenges - Many-to-many Joins

On a financial network, find the accounts whose transactions (é}.-%,( r}.>(é,

are facilitated by user with account ID N? had : ii , =
Transactions SELECT Tl.src as a, T2.dst as c i(:::)
src | dst | amount | date FROM Transactions T1, Transactions T2 |
WHERE Tl1l.dst = T2.src
AND Tl.dst = N
(a, c)
(1, 101) 200 edges > 10,000 !!!
(1, ...) Explosion in intermediate
(1, 200) results size!!!
(100, 101)
(100, ...)
(100, 200)
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DBMSs Evaluating Graph Workloads

teradata.
ORACLE M y S @RL_
DATABASE
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Analytical RDBMSs do not
optimize for graph workloads
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DBMSs Evaluating Graph Workloads

teradata.

Amazon RDS ORACLE
DATABASE

@ i“o:g snowflake PostgreSQL

FXY'S/4 HANA

Analytical RDBMSs do not
optimize for graph workloads

9} TigerGraph
B 0 Dgraph
‘ggj I'I!E? s s

Amazon Nej;;une 4 JanusGraph

aalo

df ¢>r)s:\phf/ow

New graph DBMSs (GDBMSs)
optimize for graph workloads
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DBMSs Evaluating Graph Workloads

teradata.

Amazon RDS ORACLE M HE:@L
DATABASE
dob snowflake P
@ o< snowflake ostgreSQL
TY's/4 HANA

Analytical RDBMSs do not
optimize for graph workloads

s

Amazon Neptune

dﬁﬂ?phﬂow

New graph DBMSs (GDBMSs)
optimize for graph workloads

High-level Research Question - How

(DBMSs) be architected to optimize

should Database Management Systems

for analytical graph workloads?
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Revisiting DBMS Components

Query in Declarative Language e.g., SQL, Cypher, etc.

Parser
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Revisiting DBMS Components (Example)
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Revisiting DBMS Components (Example)

Cypher . (@ - >(b)- - ~©

Optimizer
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Revisiting DBMS Components (Example)

Cypher ( el r-+{C)
MATCH (a)-[Follows]->(b), |

i i ;
(b)-[Follows]->(c)

Optimizer

]

Executor

L

Storage

— N N N
U S ) S
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Revisiting DBMS Components (Example)

Cypher ( el r-+{C)
MATCH (a)-[Follows]->(b), |

"
(b)-[Follows]->(c) § |
WHERE a.ID = 0 g |

Optimizer

]

Executor

L

Storage

— N N N
U S ) S

49



Revisiting DBMS Components (Example)

Cypher ( ,-}-»(b - - »(C)
MATCH (a)-[Follows]->(b), |

N

(b)-[Follows]->(c) § §

WHERE a.ID = 0 i |
RETURN b.ID, c.ID et ' ‘

Optimizer

]

Executor

L

Storage

— N N N
U S ) S

50



Revisiting DBMS Components (Example)

Cypher (@r+-+(br-+{C) SQL
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1. Use novel join algorithms to remove unnecessary intermediate results!

2. Use compression to reduce the size of necessary intermediate results!
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Insights

1. Use novel join algorithms to remove unnecessary intermediate results!
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Traditional Joins are
suboptimal!

Novel Join Algorithms
correct the suboptimality

Use compression to reduce the size

Cyclic Pattern/Join Query
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Query Processing Techniques Overview

Insights

1. Use novel join algorithms to remove unnecessary intermediate results!

2. Use compression to reduce the size of necessary intermediate results!

Our approach provides:

1. Up to ~10-70x speedups over State-of-the-art!

2. Queries run to completion!
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Traditional Binary Joins Example
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Traditional Binary Joins Example
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Traditional Binary Joins Example

e (a, b, c) . . .
R, ~“wxR, » Problem With Binary Join Plans
2 P Prohibitively large # intermediate
@y --»b) y &
<o R, ¢ (@, n, n+l) results for some Q.

For triangles, AGM bound is N3/2
[FOCS 2008, PODS 2012]

Dataset
AN D
- ------- »>{n+1i
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Traditional Binary Joins Example

(23 (a, b, c) . . .
R, ~“wxR, » Problem With Binary Join Plans
- Mo Prohibitively large # intermediate
(ar--»lb) y g
< <~ (0, n, ntl) results for some Q.

For triangles, AGM bound is N3/2
[FOCS 2008, PODS 2012]

> Worst-case optimal joins correct

for the suboptimality (Generic Join)
SIGMOD Record [Ngo et al. 2013]

Dataset
AN >
- ------- »>{n+1i
S ’
(ay, b) > | (by €) > | (a, €) \ ’
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Worst-case Optimal Joins (WCOJs) Example
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Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)

[a,b,c] Quer;:
i @
1. Find set of a’s Rsﬂ"’kRz
. . = \=as
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Worst-case Optimal Joins (WCOJs) Example

Join Attribute Ordering (3JAO)
[a,b,c]
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Join Attribute Ordering (3JAO)
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Join Attribute Ordering (3JAO)
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Join Attribute Ordering (3JAO)
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Join Attribute Ordering (3JAO)
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Join Attribute Ordering (3JAO)

[a,b,c]
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(ay, b) (b, c) (a, c)
(0, n) (0, n) (0, n)
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Join Attribute Ordering (3JAO)
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Join Attribute Ordering (3JAO)
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Join Attribute Ordering (3JAO)
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Join Attribute Ordering (3JAO)
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Join Attribute Ordering (3JAO)
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Join Attribute Ordering (3JAO)
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Join Attribute Ordering (3JAO)
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Research Questions

Given an input Query,

1) How to pick good join attribute orderings?

2) How to generate efficient plans that mix binary
joins and worst-case optimal joins (WCOJs)?
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(:C\; /::C:;
(@—b) by @
Planl Plan2 Plan3
[a,b,c] [b,c,al] [a,c,b]
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2. JAO — Direction of Adj. Lists Intersected

uer
@
s A 4
/ \
/\ >\
Output Output Output @r->j
(a,b,c)’s (a,b,c)’s (a,b,c)’s
(E\; (’:)‘ 4(:\)
/\4\ /\\ /\4\ PR 2L \\ Dataset | Plan ZAFI J List R(l;r;t(:;n)e
? ? ? Plan, | 0.5B 2.6
BerkStan -
(C) (C) V=685K | Plan, |55B (113.8x) | 15.2 (5.8x)
/ == oM 1 B (114.0x) | 31.6 (12.2
(:a: E):l (\b:, (\a:, Plan, | 55B (114.0x) .6 (12.2x)
Plan, Plan, Plan,
[a,b,c] [b,c,al] [a,c,b]
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How to Pick Good Join Attribute Ordering (JAO)?

Impact of JAO:
1) Number of intermediate results
2) Direction of Adj. Lists Intersected

> Account for impact in cost model
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Cost Metric - Intersection Cost (I-Cost)

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Output
(a,b,c)’s

?
( ’C\l

LN

(\a}- -+b
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider each tuple

Output
(a,b,c)’s Z
(’C\l t€Qk-1

LN

(\a}- -+b
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider each tuple

Output

(a,b,c)’s Z

(— _(’C\l_ -\ tEQk_l
|

|

I[/\\I Qk

(@r->(bl

g \//
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider each tuple

2

te€EQr 1

t = (a,b)
(0, 1)
(0, 2)
(1, 5)
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider each tuple’s adj lists

Output
(a,b,c)’s ' ‘
n > > |t[i].dir]
AR FeQii  (Bdiv)eAn g
I - | s.t. (i, dir) is accessed
| /\4\/\\ I Qk
l(\a/'-_-»‘\b/,ll t = (a,b)
-} (0, 1)
Q (0, 2)
oz k-1
(\a{.—»{\b{» (1, 5)
Plan
[a,b,c]
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider the # input tuples

Output
(a,b,c)’s P
n > S |tfi].dir]
(" _(E‘»_ A t€EQ K1 ('i',d;_r))'eAk_l :
| s.t. (1, dir) 1S accesse
If\ A
1 Q
| 4 ~ k
l(\a/'-_-»‘\b/,ll t = (a,b)
-} (0, 1) | fwd(0) | + |fwd(1) |
(0, 2)
(’a\D—HBl Qk_l
el =7 (1, 5)
Plan
[a,b,c]
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider the # input tuples

Output
(a,b,c)’s -
n > S |tfi].dir]
(—_(’C\»_-‘ te€EQr 1 (i?ddi'r))'EAk_ld
| s.t. (1, dir) 1s accesse
If\ A
1 Q
| 4 ~ k
l(\a/'-_-»‘\b/,ll t = (a,b)
-? (0, 1) | fwd (0) | + |fwd(1) |
0 (0, 2) | fwd (0) | + |fwd(2) |
D & k-1
(\a{.—»{\b{» (1, 5)
Plan
[a,b,c]
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider the # input tuples

Output
(a,b,c)’s -
n > S |tfi].dir]
(—_(’C\»_-‘ te€EQr 1 (i?ddi'r))'EAk_ld
I /4\’\ I s.t. (i, dir) is accesse
1 Q
| 4 N k
l(\a/'-_-»‘\b/,ll t = (a,b)
_? (6, 1) | fwd (0) | + |fwd(1) |
Q (0, 2) | fwd (0) | + |fwd(2) |
. b k-1
& o (1, 5) | fwd (1) | + [fwd(5) |
Plan
[a,b,c]
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Within an operator, consider the # input tuples

Output
(a,b,c)’s P
n > > t[i].dir|
(— _(’C\,_ A te€EQr 1 (i?d(;;'r))'EAk_l 3
| s.t. (1, dir) 1s accesse
If\ A
1 Q
I 4 > k
l(\a/'-_-»‘\b/,ll t = (a,b)
-} (0, 1) | fwd (0) | + [fwd(1) |
+
0 (0, 2) | fwd(0) | + |fwd(2) |
(’a\ B\ k-1 +
ar—>b (1, 5) | fwd (1) | + |fwd(5) |
Plan +
[a,b,c]

Operator I-cost
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Output
(a,b,c)’s

A > > » t[4].dir|

Y Qi 1€Q3---Qm—1 t€Qky (B, dir)EAL_4

/\ ,\ s.t. (1, dir) 1s accessed
DY

(\a}- -+b
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Output
(a,b,c)’s

A > > » t[4].dir|

Y Qr-1€Q2---Qm—1 t€EQEK1 (i,dir)EAL 4
/\ ,\ s.t. (1, dir) 1s accessed
N ~ \ J
(\a{»— - ->(\b/) Y
? 1) number of

intermediate results

180



Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Output
(a,b,c)’s

A > > » t[4].dir|

Y Qr-1€Q2---Qm—1 t€QE1 (i,dir)€Ag
/\ ,\ s.t. (1, dir) 1s accessed
( \a:»- - > \b:l ‘ Y J\ Y l
? 1) number of 2) size of adj. lists
intermediate results dir. of adj. lists
Bl
Plan,
[a,b,c]
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Cost Metric - Intersection Cost

Cost of a WCOJ plan is total -Hdntersection-cost of all operators.
I-cost: size of intersected adj lists throughout execution.

Output
(a,b,c)’s

A > > » t[4].dir|

Y Qr-1€Q2---Qm—1 t€QE1 (i,dir)€Ag
/\ ,\ s.t. (1, dir) 1s accessed
( \a:;- - > \b:) ‘ Y J\ Y l
? 1) number of 2) size of adj. lists
intermediate results dir. of adj. lists
a —»(t
— b I-Cost captures both effects!
Plan, Estimated using a sampling based approach.
[a,b,c]
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Mixing Binary and Worst-case Optimal Joins
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Mixing Binary and Worst-case Optimal Joins

Consider
2-join
attributes

e LT e
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Mixing Binary and Worst-case Optimal Joins

Consider
3-join
attributes
4 ;"L N
@
NS A/
4 ;J'. )

@

\_ A/

J \\1"' A/

4 "' N [ "' N

\_




Mixing Binary and Worst-case Optimal Joins

Consider

4 "Pk\ I

‘.

=

4 ,"L N N\ /;%q. N\ /"'L N

@ @@ - O

\ L “'Y;.!,:,‘;ﬂi’ J \,‘iy;.' J

4 ;J'. N [ N [ ‘q' I /"k\ I [ :]
&y 3 - @ L
N VRN “" L ‘ib VRN J "Y
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Mixing Binary and Worst-case Optimal Joins

At each level:
e Consider the next Join Attribute

e Consider binary joins

Consider
4-join
attributes
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Mixing Binary and Worst-case Optimal Joins

At each level:
e Consider the next Join Attribute

e Consider binary joins

Consider
4-join
attributes
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Mixing Binary and Worst-case Optimal Joins

At each level:
e Consider the next Join Attribute
e Consider binary joins

Consider
4-join
attributes

® & é-®
J ‘/ \\"/

4 "' N [ "' N
J \\‘1" %

4 "l N ". N ‘ll N

N
N
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Mixing Binary and Worst-case Optimal Joins

At each level:

e Consider the next Join Attribute
e Consider binary joins

Consider

4-join
attributes

® & é-®
J ‘/ x\"/

4 "' N [ "' N
J \\‘1" %

4 "l N "l N ‘ll N

-
N
4
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Example Graphflow Hybrid Plan

ol o Dynamic Programming
Gra P hf/ ow Query & Dataset
o /60 Cost-Based Optimizer
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Example Graphflow Hybrid Plan

Qe o Dynamic Programming
Gra P hf/ ow Query & Dataset
o /o0 Cost-Based Optimizer

&, s
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Example Graphflow Hybrid Plan

aels

dﬁ,gphﬂow

Dynamic Programming
Query & Dataset
Cost-Based Optimizer
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Example Graphflow Hybrid Plan

at-o Dynamic Programming
Gra P hf/ ow Query & Dataset

o /oP Cost-Based Optimizer
O
I/ - N, 7
1 ( C\; :
Y r~=_ Y _ WCOJ
(\b}\f ‘(Ae,; Subplan
YT
\__ ~o
4 —
(\a:r\ ,(: D
! \(, v :’ __ Binary
Y =~ ) Join
(br™ e,
( é\ ,l El‘;
\:/ \(’ . (’ V, \:/
y P /, Sy
(\b\/ ‘l\e\;
~ =~/ [ wco3
Subplan
(\a}» ,(\d:l
|| @
(b
\ N / \ /
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Example Graphflow Hybrid Plan

Dynamic Programming

0.al-0
Gra P hf/ ow Query & Dataset
/o Cost-Based Optimizer

( é\ El‘;
\I/ \’ . - V’l\ll
JI (C) ( ,i !I

Y ,\ - = N

(\b,/ ‘l\e )

(:a:; ,(:d\)
} (cY

( b\)

> J

soA Generalized Hypertree Decomposition
Query Cost-Based Optimizer
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Example Graphflow Hybrid Plan

A Generalized Hypertree Decomposition
Query Cost-Based Optimizer

ol o Dynamic Programming
Gra P hf/ ow Query & Dataset
o /60 Cost-Based Optimizer TYHEADED

(;* 208\ This is leads to a specific
SN d)
g join plan.




Example Graphflow Hybrid Plan

ol o Dynamic Programming
Gra P hf/ ow Query & Dataset
SR Cost-Based Optimizer

é\l ,( ’d\;
N I/

A Generalized Hypertree Decomposition
Query Cost-Based Optimizer

w0 ] [0, o)

Generates only WCOJ subplans
followed by multiple binary joins
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Example Graphflow Hybrid Plan

A Generalized Hypertree Decomposition
Query Cost-Based Optimizer

Dynamic Programming

0.al-0
Gra P hf/ ow Query & Dataset
/o Cost-Based Optimizer "VHEADED

<r \,\,’lxla' Cost: maximum AGM bound of any of the leaves.
= | > Minimize cost!

N N 4 198



Example Graphflow Hybrid Plan

Generalized Hypertree Decomposition

Dynamic Programming
Query Cost-Based Optimizer

0.al-0
Gra P hf/ ow Query & Dataset
o’/ L0

Cost-Based Optimizer 'TYHEADED
((a:;\ @) (/:al\ 4 d
.y e | 3
b:\f ya), Join (\b:\f e
FH A
K A / - K ~ /'x j
* / L
( é\ ,( L& b ( é‘;\ ’d‘;
J\ ,\ - J N - e
(\b,/ ‘(\e:; Subplan (\b:\/ " p Y é\)
z E ‘l?\) (:Ptx
(an P d)
i . Py ~7
LA R
(br e
@ D
: (cY
J\ <7
(b)
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Example Graphflow Hybrid Plan

Generalized Hypertree Decomposition

Dynamic Programming
Query Cost-Based Optimizer

0.al-0
Gra P hff ow Query & Dataset
o’/ L0

Cost-Based Optimizer [EADED
(/a\;\ d\\, é\\ ,( d\\;
< \(’C < il \(Ev T
' !y Binary : R
Y y . = Y y
b:\f ‘(Ae\; Join (\b:\f ‘(Ae‘;
&) &
L 7 o~
&) d & d
y ,\z: y WCOJ B | ) oy
(br™ e, Subplan (b'r ‘lé‘;
g N\ N
z 5 p Y i
- — - \ SN2/ N7 )
(an . d
R W P
y O @&y
(b\/,\ e Amazon Graphflow 24.7 secs
V=403K | EmptyHeaded (EH) > 30 mins
oy - E=3.4M
‘\?}' y(\d,' EH in Graphflow | 5.8 mins (14x)
!I (\Cj
(b
>z 200




Graphflow and EmptyHeaded Plan Spaces

Subgraph Queries: 14 queries

Dataset Domains: social networks, web, product co-purchasing

Differ in several structural properties:

(1) size

(2) how skewed their adjacency lists distribution 1s
(3) average clustering coefficients
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Graphflow and EmptyHeaded Comparison

Subgraph Queries: 14 queries

Dataset Domains: social networks, web, product co-purchasing

# Joins 1-3 4-6 7+

el s
Graphf/o
2P flow

+ Best JAO orderings
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Graphflow and EmptyHeaded Comparison

Subgraph Queries: 14 queries

Dataset Domains: social networks, web, product co-purchasing

(/éh ,(’d}

-\ -\ g \f ~
P i (/a N » d) : C\/ |
- S ~r \’\’ < J
(a, L (€)1 | () / \(e )
SEA J\ ,\/\ J\ N .
‘(\C’) &b,f ‘l\e,; \_ Y 'F ,K
# Joins 1-3 4-6 7+
Qo‘ﬂ 1.8-3.2x% Runs to
Graphf/OW Faster completion

T -
10-25x 1n 4-40 mins
rare cases | 72x speedup

1.5-2x Timeout
faster > 48 hrs

+ Best JAO orderings
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WCOJs Research Impact

WCOJ Adoption

1.
2.
3.

Plan Space
Cost Model (I-Cost)

Cardinality estimator

$
‘ GraphScope
Alibaba
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e Compressed Representations
> Factorized Representations
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Flat Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 7 \CI
~ ~ A d
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Flat Representation Example

Join Attribute Ordering (JAO): [b,a,c]

( b, a, c)
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Flat Representation Example

( b, a, c)

21T /6\ 21T
{ | IR | - —pl \]
\al \ 7 \CI
~ ~ A d
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Flat Representation Example

( b, a, c)

21T /6\ 21T
{ | IR | - —pl \]
\al \ 7 \CI
~ ~ A d
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Flat Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 4 \C/
~ ~ A d

( b, a, c)
( n, 0, ntl)
(n, 0, ...)
( n, 0, 2n)

} n tuples
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Flat Representation Example

-

-

-

-

~ AN N A~ A~ o~
kP O O o

n+1)

2n)
n+1)

2n)

> n tuples

> n tuples




Flat Representation Example

(b, a, c)

( n, 0, n+tl)
(n, 0, ...)

( n, 0, 2n)

( n, 1, n+tl)
(n, 1, ...)

( n, 1, 2n)

( n, n-1, n+l)
( n, n-1, ...)
( n, n-1, 2n)

> n tuples

> n tuples

n tuples
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Flat Representation Example

> n tuples

> n tuples

n tuples
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Flat Representation Example

n, n-1, n+l)

n, n-1,

n, n-1,

> n tuples

> n tuples

n tuples
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Flat Representation Example

21T 200 21T ( b, a, C)
&Y Cny, 0, n+1) | )
(n, 0, ...) > n tuples
( n, 0, 2n) p
( n, 1, n+tl) A
(n, 1, ...) > n tuples
( n, 1, 2n) )
n+1)
.. n tuples
2n)
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Flat Representation Example

(b, a, c)

( n, 0, n+tl)
(n, 0, ...)

( n, 0, 2n)

( n, 1, n+tl)
(n, 1, ...)

( n, 1, 2n)

( n, n-1, n+l)
( n, n-1, ...)
( n, n-1, 2n)

> n? tuples
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Conditional Independence

a and c are
conditionally independent on b!!

VARRN 2T VERRN (b, a, C)
\ar- e Co 0, mn) | )
(n, 0, ...)
( n, 0, 2n)
( n, 1, n+l)
Cny 1, ) > n? tuples
( n, 1, 2n)
( n, n-1, n+l)
( n, n-1, )
( n, n-1, 2n) y
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Factorized Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 7 \CI
~ ~ A d

/N
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Factorized Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 4 \C/
~ ~ A d
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Factorized Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 4 \C/
~ ~ A d

" /N

220



Factorized Representation Example

21T /6\ 21T
{ | IR | - —pl \]
\al \ 4 \C/
~ ~ A d

" /N

{0,1,..,n-1} {n+l,n+2,..,2n}
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Factorized Representation Example

" /N

{0,1,..,n-1} {n+l,n+2,..,2n}

Y
2n+1 fields
VS.
3n? fields (flat)
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Factorized Representation Example

f-tree
f-representation b

" /N

X X

{0,1,..,n-1} {n+l,n+2,..,2n}

. J
Y

2n+1 fields
VS.
3n? fields (flat)
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Theory on F-Representations

Theory of factorization:
0(Q) = AGM(Q)

where

In some cases,

o(Q) < AGM(Q)

0(Q): worst-case size bound
over f-representations.

f-tree
f-representation b
n
/// \\\
/ \ a C
X X
{0,1,..,n-1} {n+l,n+2,..,2n}
1\ J
Y
2n+1 fields
Vs.

3n? fields (flat)
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User
Study
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~

Fin.

Questions?
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