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PHS 6317 Nanoengineering of thin films

Course schedule – Winter 2024

12 January Introduction – Scientific and technological challenges

19 Fabrication methods – Vacuum physics and vapor-phase techniques

26* Fabrication methods – Plasma processes and process optimization

2 February Fabrication methods  - Plasma-surface interactions and diagnostics

9**         Fabrication methods – Thermal/Plasma spray technologies 

16* Optics of thin films 1, optical characterization, Miniquiz 1 (5%)

23* Optics of thin films 2, design of optical filters

1*** March     Presentations – Emerging fabrication techniques (30%)

March 4-8 - Winter/Spring break 

15** Tribomechanical properties of films and coatings

22** Electrochemical properties – corrosion and tribo-corrosion(filter-20%)

5  April Passive functional films and coatings, Miniquiz 2 (5%)

12 Active functional films and coatings

16 Life cycle analysis and environmental impact

19*** Presentations – Emerging applications of nanostructured films (40%)



Deadlines:
Project #1 – Fabrication technique:

 Choice of the subject: 26 January

 Abstract and references: 9 February

 Report and presentation: 1st March

Projet #2 – Design of an optical filter:

 Choice of the subject: 23 February

 Report: 22 March

Projet #3 – Application of nanostructured thin films:

 Choice of the subject: 16 February

 Abstract and references: 15 March 

 Report and presentation: 19 April
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Deadlines

Choice of filter:  February 23

Report: ………  March 22
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Project 2: Design of an optical filter (20%)

Specific requirements:

Deliverables: Report, maximum 8 pages (letter size paper, 2 cm margins, 

Times New Roman 12 pts).

Structure and contents:

- Introduction – describe the choice of the specific filter and its application

- Optical specifications of the filter: spectral characteristics in T and R, 

color coordinates, tolerances, etc.

- Methodology of the design: architecture, materials, optimization, etc.

- Discussion of the performance and sensitivity to the fabrication process

- Conclusions 
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8A – Thin-film optics - Overview

1. Introduction

2. Basics

• Waves

• Maxwell equations and electromagnetic waves

• Admittance

• Irradiance

• Reflection and transmission at an interface

• Reflection and transmission for a thin film

• Matrix approach

• Quarter-waves and half-waves

• Simple filters (antireflective, reflective)

• Oblique incidence
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8A – References

• Hugh Angus Macleod, Thin-Film Optical Filters, third edition, Institute of 
Physics Publishing, Bristol, UK, 2001. 

– This book covers practically all aspects of optical filters. Available at the 
library (QC 373 L5 M34 2001).

• Hugh Angus Macleod, Thin-Film Optical Filters, fourth edition, CRC Press, 
Boca Raton, USA, 2010.

• Max Born and Emil Wolf, Principles of optics, seventh edition (extended), 
Cambridge University Press, Cambridge, UK, 1999. 

– This book covers in much more detail light and matter interactions.

• Larouche, S., & Martinu, L. (2008). OpenFilters: open-source software for 
the design, optimization, and synthesis of optical filter. Applied Materials 
& Interfaces, 47(13), 219–230.

– Article which covers the software you will be using to design your own 
filters.
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8

8A - Where do these colors come from?

T. L. Tan, D. Wong and P. Lee, « Iridescence 
of a shell of mollusk Haliotis Glabra » Opt. 
Express, vol. 12, 2004, 4847-4854.

Wikipedia.org
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8A – Brief history of optics

• Robert Boyle (1663) and Robert Hooke (1665) describe Newton rings (1704).

• 1801: Young explains the interference phenomenon, supported by Fresnel (1816) 
who also explains diffraction.

• 1816: Fraunhofer fabricates the first antireflective filters by tarnishing glass.

• 1873: Maxwell publishes his famous equations.

• 1891: Taylor and Kollmorgen (1916) propose and develop the use of antireflective 
filters obtained through tarnishing in optical systems.

• 1913: Langmuir invents the diffusion pump.

• 1934: Bauer, who studies the properties of halides, deposits antireflective coatings.

• 1939: Strong produces antireflective filters using fluorides.

• World War II: the beginning of mass production of MgF2 antireflective coatings.*

• 1950s: Theoretical developments for filter designing.

• 1970s to present: design and fabrication of highly complex filters ( > 1000 layers) 
using computers and sophisticated coating systems.

*“…antireflection coatings were perfected in the early 1940's, and it was not long before the advantage of
"coated optics" was fully recognized. During World War II, Britain, Germany and the U.S. coated most of their
military optical equipment with such films. These coatings were considered to be so important that coating
machines were installed on U.S. battleships so that the optical elements in range finders could be recoated at
sea if necessary.” Baumeister and Pincus, Scientific American, 1970.
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8A - Interference

Wikipedia.org
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8A – Antireflective filters

The AR council (www.arcouncil.org)

www.allaboutvision.com
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8A - Microstructure

Pete Vukusic et J. Roy Sambles, «Photonic
structures in biology», Nature, vol. 424, 2003, 
952–855.

T. L. Tan, D. Wong and P. Lee, «Iridescence of 
a shell of mollusk Haliotis Glabra» Opt. 
Express, vol. 12, 2004, 4847–4854.

Butterfly Morpho 
rhetenor
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8A - Telecommunications

N.A. O’Brien et al., «Recent Advances in 

Thin Film Interference Filters for 

Telecommunications», SVC 44th Annual

Tech. Conf. Proc., 2001, 255–261.
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8A - Telecommunications

N.A. O’Brien et al., «Recent Advances 

in Thin Film Interference Filters for 

telecommunications», SVC 44th Annual

Tech. Conf. Proc., 2001, 255–261.

VIAVI Solutions (www.viavisolutions.com)

Graded index optics
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8A – Architectural glass

Paul Fisette, «Understanding Energy-Efficient 

Windows», Fine Homebuilding, no. 114, 68–

73.

Chair partner

of the FCSEL.
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8A – Optical security devices

First developed by 

J.A. Dobrowolski 

for the Bank of Canada

www.bankofcanada.ca
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8A – Decorative coatings

pcimag.comLexus Structural Blue

www.cbc.co.jp
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8A – LIGO

Phys.orgLIGO detector in Hanford, Washington 

Two arms, each 4 km long!

4000-5000X 
smaller than 

a proton!

www.ligo.caltech.edu

Gravitational wave from 
a binary black hole 

merger.

Laser Interferometer Gravitational-wave 
Observatory

Huge Michelson interferometer + 
Fabry-Perot cavities.

www.ligo.caltech.edu

LIGO dielectric
mirrors

(99.999% 
reflection, 0.5 
nm roughness, 
less than 1 ppm 
of losses, etc.)
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8A –Optical filter market

SMC030C Future for Optical Coatings, Business Communication Company, octobre 2006.

“The global market is projected to reach USD 10.17 Billion by 2020 at a CAGR of 7.1%. This 

growth is fueled by the technological advancements, increasing production capacities, rising 

development strategies, and growing application sectors globally.”

Published by MarketsandMarkets

“The global market for optical coatings is expected to reach $14.2 billion by 2021 from $9.5 
billion in 2016, rising at a compound annual growth rate (CAGR) of 8.3% from 2016 through 
2021.”
Optical Coatings: Technologies and Global Markets, 2017, BCC Research Report.



PHS6317 –
Nanoengineering of thin
films

Chapter 8A

Page 8A-20

© Stéphane Larouche
Engineering physics 2024

8A – Present research interests

• Filters on polymers (AR, UV protection, 
mechanical protection).

• Integration with electronic devices.

• Adjustable/active optics.

• High-power applications.

• Micro-opto-electro-mechanical systems 
(MOEMS), screens.

• Biomedical imagery.

• Manufacturability studies, process control.

• Multifunctional coatings.

• Infrared optics.

• Metasurfaces.

Dan Dalacu et al., «InAs/InP quantum-

dot pillar microcavities using 

SiO2/Ta2O5 Bragg reflectors with 

emission around 1.55 mm», Appl. Phys.

Lett., vol. 84, 2004, 3235–3237.
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8A – Waves

• Light is a wave which can be described 
by its length: wavelength .

• In vacuum, light travels at 

c = 299 792 458 m/s.

• The period of a wave is given by:

 which corresponds to a frequency of:

• In all other media than vacuum, light 
travels at a speed v < c, this changes 
the wavelength to:

 where N = c/v, the refractive index of 
the medium. Neither f nor t are 
affected.

Lawrence Berkeley National Laboratory

(www.lbl.gov)

c


t =

.
1

t

c
f ==

Nc

v 
 ==
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8A – Waves: Exponential representation

• A wave propagating in the x direction can be expressed as:

 

 where  = 2f is the angular frequency of the wave.

• Light waves, which are electromagnetic, are typically expressed by their 
electric field:

 However, to simplify calculations, we will use an exponential notation:

 where the real part (or imaginary) represents the electric field. 
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8A – The electromagnetic spectrum

Lawrence Berkeley National Laboratory (www.lbl.gov)

E.g.: Gamma rays detected in 2019 of 450 trillion eV.
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8A – Linear and non-linear optics

• A function is linear if:

• All the following optics we will cover is linear:

• We can separate the light spectrum into its individual spectral 

components and analyze them separately. 

• The light intensity does not influence the optical properties of 

the material.

• There exists many non-linear optical effects:
• Second-harmonic generation;

• Kerr effect;

• Raman scattering and Brillouin scattering;

• …

• These phenomena occur almost exclusively for high light 
intensities.

( ) ( ) ( ).BfAfBAf +=+



PHS6317 –
Nanoengineering of thin
films

Chapter 8A

Page 8A-25

© Stéphane Larouche
Engineering physics 2024

8A – Maxwell’s equations

• Light being an electromagnetic wave, it obeys Maxwell’s 
equations:

 

and the material equations:

where
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8A – The wave equation

• In the present case of optical materials, we will consider that there 
are no free charges ( = 0).

• One can solve the Maxwell equations to obtain an equation which 
only depends on the electric field (or magnetic field) :

• This equation accepts a harmonic solution of the form:

 where ê is a unit vector in the direction of the electric field.

• In vacuum, v = c,  = 0 = 8,854187817…  10-12 F/m, m = m0 = 4  
10-7 H/m and   = 0 and:
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8A – Refractive index

• For a material other than vacuum, we can divide

 by 2, multiply by c2 on the left and by 1/0 m0 = c2 on the right to obtain:

 where r = /0 and m r = m/m0 are, the relative permittivity and permeability 
of the material, respectively.

• We recognize the presence of the refractive index in this equation  N = c/v:

 where the refractive index is shown to be a complex number:
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8A – Refractive index continued

• By inserting the refractive index into the solution of the wave equation:

 we obtain:

• The imaginary part of the refractive index results in a real exponential 
describing a decrease in intensity of the wave. Therefore, the real part of 
the index describes the wave’s propagation and the imaginary part its 
absorption. 
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8A - Orthogonality

• Let us now suppose that the wave propagates in the direction 
described by the following unit vector:

• It can be demonstrated using Maxwell’s equations, that :

• We can observe that the electric field, magnetic field and 
propagation vector all are mutually perpendicular and follow the 
right hand rule.
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8A - Admittance

• Looking closely at the previous equations:

 we notice that:

 

 which we will call the optical admittance of the material. In vacuum, 

N = 1 and thus:

• In a material, mr = 1 at optical frequencies,

y
c

N

E

H
==

m




S 1065441872942
1 3

0

0

0

0
−=== .

c
Y

m



m

and    ˆ E
c

N
Hs



m
−= ( ) ,ˆ HEs

c

N 
=

m

0

r

NY
c

N

c

N
y

oo

===
mmm



PHS6317 –
Nanoengineering of thin
films

Chapter 8A

Page 8A-31

© Stéphane Larouche
Engineering physics 2024

8A – Poynting vector and irradiance

• The instantaneous rate of flow of energy across a unit area transported by an 
electromagnetic wave is given by the Poynting vector:

• Since optical frequencies are much too high to observe the variations of the 
energy flux, we typically will be interested in the average flux; we call this 
value the irradiance. In the case of a harmonic wave, the irradiance can easily 
be calculated using the complex form of the wave:

• Since we know that:

 we find that:
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8A – Simple boundary - continuity

• Let us now express two of the Maxwell equations in their integral form:

 

 where the first integral is taken on the contour of the surface of the second 
integral. In the absence of surface currents (j = 0) and for an infinitely thin 
contour, the surface integrals are null and the sides (P1P2 and Q1Q2) are 
negligible so that E et H are constant at P1Q1 et P2Q2. The integrals can then 
be approximated by:

 and therefore, we can easily observe that the parallel (tangential) 
components of the electric and magnetic fields are continuous:

Max Born and Emil Wolf, Principles of Optics,

7th (expanded edition), Cambridge University

Press, 1999.
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8A - Amplitude reflection and transmission at 
an interface

• Since the electric and magnetic 
field vectors are continuous at the 
interface,

• Using the admittance of the 
materials we can express the 
magnetic fields as a function of the 
electric fields:

• We can then replace either the 
transmitted or reflected beams and 
obtain:
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8A – Reflectance and transmittance

• The amplitude of the reflected and transmitted beams are respectively,

• The irradiances of the incident, reflected and transmitted beams are 
therefore:

• The reflectance and transmittance (reflection and transmission in irradiance) 
are then given by:

• It is simple to demonstrate that for a single interface, R + T = 1.

• R and T do not depend on the direction of the light (no absorption).
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8A – Change in phase upon reflection

• The amplitude reflection and transmission are given by:

• If the refractive indices are real, then the reflection and transmission 
coefficients are also real.

• The denominator is always positive.

• In the case of reflection, 

• the numerator is positive if N1 > N0, r is then positive; this corresponds to no 
change in phase upon reflection.

• the numerator is negative if N1 < N0, r is then negative; this corresponds to a 
phase change of  upon reflection.

• The numerator is always positive in the case of transmission and 
there is therefore no phase change in transmission at an interface. 

• Trick to remember:
• Low to high, phase shift ;
• High to low, phase shift 0.
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8A – Reflection and transmission of a 
thin film
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8A – Reflection and transmission of a 
thin film continued

• The wavelength in a thin film of index N1 is /N1. For a layer with 
thickness d, there are d/(/N1) waves which « fit » inside. A 
complete wave corresponds to a phase of 2, and therefore, for 
a thin film, the phase is given by:

• The amplitude reflection and transmission coefficients are then 
given by:
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• The obtain the resulting reflection from a thin film, one must add all 
of the reflected components:

 which are, with the exception of the first term, a geometric series:

Incidentally, the sum of a geometric series is given by:

And therefore,
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8A – Reflection and transmission of a 
thin film continued

• We can simplify this equation by first posing that r1→2 = -r2→1 and bringing 
all the elements under a common denominator:

 and noting that

we obtain (a similar approach can be taken for the transmission),
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• For the particular case where the 
exponential is equal to ±1. If ei2f = 1,

 and the thin-film has no impact on the 
reflection. This situation arises when:

 i.e. for a half-wave thin-film.

• If ei2f = -1,

 the reflection will be lower if N2 < N1 < 
N0 or  higher (for N1 > N0). This is the 
case of a quarter-wave thin-film,

Max Born and Emil Wolf, Principles of Optics,

7th (expanded edition), Cambridge University

Press, 1999. (Attention, la notation est

différente.)
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8A – The matrix approach

• The electric and magnetic fields being 
continuous at the interface, these 
values are of interest for optical filter 
calculations.

• At interface a,

 

 

where the + and – signs represent the 
waves propagating downwards and 
upwards in the thin film respectively. 
These fields at interface a are then given 
by:
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• The fields propagating in the positive direction undergo a 
phase shift of f while those propagating in the negative 
direction undergo a phase shift of –f:

and as a result,
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• Finally, we can express

or using a matrix form:
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8A – The matrix approach (reflection and 
transmission)

• In medium 0, only a positive wave is
propagating and thus,

and therefore, by dividing by Ea,

we can also define the admittance of 
the system:

and finally,
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8A – The matrix approach (multilayer system)

• For many interfaces, we can apply the 
matrix approach repetitively:

 

 

 so that

 and since ysystem = C/B then
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8A – The matrix approach (reflectance, 
transmittance and absorption)

• By dividing by the admittance of vacuum, Y0, and in the absence of a 
magnetic response, we can express the characteristic matrices as a function 
of the indices of the individual thin films:

 

 and Nsystem = C/B so that:

• We now know how to calculate r et t for an assemble of thin films. We 
previously saw that

 However, contrary to a simple interface, R + T can differ from 1 because of 
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8A – Quarter-wave layers

• When the optical thickness is equal to:

 the characteristic matrix simplifies to:

• In this case, we say that the layer is a quarter-wave.

• The admittance of a system composed of a quarter-wave is:

• If there are two quarter-waves,
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8A – Quarter-wave layers continued

• For three quarter-waves,

• For four quarter-waves,

• Therefore, for an odd number of quarter-waves:

 

While for an even number:
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8A – One layer antireflective filter

• We’ve seen how the reflection is minimized 
when using a quarter-wave layer with a 
refractive index given by N2 < N1 < N0. The 
index of such a system is given by:

 

and its reflection by

• The reflection is null if

• For glass (N0 = 1.52) in air (Nincidence = 1.00) 
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8A – Two-layer antireflective filter
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• The index of a two-layer filter 
composed of quarter-waves is

 and its reflection is given by

• Its reflection is null when

• Choosing N2 = 1.38 (MgF2), then
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8A – Quarter-wave reflector

• The effective index of a quarter-
wave stack made of two 
materials with indices NH et NL is

• The reflectance of such a system 
is

 where 2m + 1 is the total 
number of layers.

• To maximize the reflection, one 
needs to maximize the 
admittance y of the system; this 
can be done by maximizing the 
NH/NL ratio and/or by increasing 
the number of layers.
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8A – Quarter-wave reflector continued
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8A – Half-wave layer

• When the thickness of the layer is

 the characteristic matrix simplifies to

 which does not change the admittance of the system. 
These layers are simply « absent » and have no impact 
at the reference wavelength.

• When nd = /2, these layers are known as half-wave 
layers.
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8A – Three-layer antireflective filter

• Since adding a half-wave 
layer does not impact the 
reflection at the reference 
wavelength, one can add 
one to modify the shape of 
the spectrum.

• Adding a high index layer ( 
2.1) between the layers of a 
two-layer system, allows one 
to enlarge the minimum 
reflection region.
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8A – Snell’s law

• We’ve seen how the speed of light 
depends on the refractive index of the 
medium

 this entails a change in the wavelength

 where 0 is the wavelength in vacuum.

• If light arrives at an interface at an 
oblique angle,

 to ensure the continuity of the electric 
and magnetic fields at the interface. In 
fact, Ni sin i  is constant.
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8A - Polarization
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8A - Boundary conditions at oblique incidence

• Remember that the parallel (tangential) electric 
and magnetic fields are preserved at an 
interface:

• When considering oblique incidence, one must 
modify the reflection coefficients.

Max Born and Emil Wolf, Principles

of Optics, 7th (expanded edition),

Cambridge University Press, 1999.
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8A - Boundary conditions at oblique incidence 
continued

s polarization

• The continuity conditions for s
polarization are:

p polarization

• The continuity conditions for p
polarization are:
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8A – Reflection and transmission at an 
interface at oblique incidence

s polarization 

• The new continuity conditions result in a 
change of the reflection and transmission 
coefficients:

 

Which brings us to define the pseudo 
indices

And which allows one to write
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8A – Brewster angle
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8A – Matrix approach for oblique incidence

• The characteristic matrix can then be adapted for 
oblique incidence by using the pseudo indices:

 and by modifying the phase shift in the layers:
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