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Outline

 Introduction to thermal spray processing
 Plasma spray
 Air plasma spray
 Suspension plasma spray

 Combustion processes: 
 Flame
 HVOF / HVAF

 Arc Spray
 Cold spray / Kinetic spray
 Applications
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What Is Thermal Spraying?
 A family of processes in which a finely divided surfacing 

material is sprayed in a molten or semi-molten state on a 
prepared substrate to form a coating.

Carrier gas 
or liquid Plasma jet

Molten droplets
(T, v)

Component
(substrate)

Feedstock
(powder, wire)
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What Is Plasma Spraying?

 The flame is a thermal plasma jet heated by a high intensity dc 
current arc between the anode and cathode (300-800 A, 30-80V)

Coating cross-section showing the 
lamellar structure
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Thermal Spray Markets
 Global market estimated at $7.5 billion US(Dorfman, MS&T 2011) 

Aero
25%

Industrial 
Gas Turbine

35%

Auto
15%

Other 
Industries

25%

Other Industries

 Printing, pulp and paper

 Biomedical

 Mining, metal processing

 Petrochemical

 Electronics

 Etc.

*Images courtesy of NRC Canada  
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Plasma Spraying

 The plasma torch is scanned in front of the substrate as many times as 
necessary to get the required coating thickness (10 microns –
millimetres)

Substrate 
Cooling

Substrate
*Image courtesy of National Research Canada  
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Coating Structure

 Coatings are built by the accumulation of molten or partially 
molten particles impacting on the substrate surface

• Lamellar structure
• Pores and cracks
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Thermal Spray Processes:
Particle Characteristics

Cold Spray

HVOF

Plasma

Arc

Flame
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In-flight Particle Diagnostics: Commercial Sensors

 Detection of thermal radiation emitted by the hot particles

 Camera for monitoring the orientation, width and intensity of the particle jet

 Commercial systems for monitoring particle jet characteristics:

DPV 2000

Accuraspray/PlumeSpector

SprayWatch

PFI 



11

Plasma Spray
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Plasma Spray

Air Plasma Spray
Concordia
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Plasma Spraying

 Particle characteristics
 temperature ~ 800-3500°C
 speed ~ 100-350 m/s

 Materials - ceramics, metals and cermets
 deposition efficiency ~ 30 to 70 %
 spray rate ~ 1 to 3 kg/hour

 Coating characteristics
 density ~ 5 to 20% porosity

 The plasma temperature reaches 10,000K and more. Thus any material that can melt without decomposition 
or sublimation can be sprayed
 Well adapted for ceramics and refractory metals
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Spray Parameters

Parameters Torch Plasma Jet Spray 
Particles

Substrate

Input • Current
• Primary and 

secondary gas flow
rate

• Cooling water flow

• Feed rate
• Carrier gas flow 

rate

• Surface preparation
• Heating/cooling
• Motion relative to 

the torch
• Spray distance

Operating • Voltage
• Voltage fluctuations
• Thermal 

efficiencies

• Plasma jet T and v
• Plasma jet stability

• Particle injection 
speed

• Particle trajectories
• Particle T, v and 

flux

• Substrate
temperature

• Deposition
efficiency

Other • Torch assembly
• Electrode wear

• Particle
characteristics 
(size, shape, etc.)

• Substrate material
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Equipment and Process Parameters

Thermal Spray Fundamentals, Fauchais et al., 2014 Images courtesy of NRC Canada
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Plasma Torch

 Integral energy balance (integrated over the radial 
coordinate): 

 Energy balance for the torch:
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Key Properties of Plasma Gases
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Plasma Torches

 Numerous different torches are available on the marketplace 
with different characteristics (power 15-200 kW, spray rate, size, 
radial or axial injection, etc.)

 Oerlikon Metco F4 Praxair SG100

Thermal Spray Fundamentals, Fauchais et al., 2014 
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Plasma Jet Stability

• The arc root moves along the 
anode surface under the influence 
of:

 drag force exerted by the cold flow 
in the boundary layer

 Lorentz forces due the magnetic 
field induced by the curvature of the 
current flow.

• The voltage (and power) changes 
with the length of the arc

• Arc fluctuation frequency typically 
observed between 2-5 kHz

Thermal Spray Fundamentals, Fauchais et al., 2014 
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Plasma-particle Interaction

 The plasma fluctuations induced 
variations in the temperature and 
velocity of the spray particles 

P. Fauchais, Understanding plasma spraying. J Phys 
D Appl Phys 37 (2004) 86–108

JF Bisson et al., J Therm. Spray Technol., 12 
(2003)38–43
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Recent Developments
• More stable plasma torches typically operating at lower 

current and higher voltage:
 Cascaded torch
 Current is carried through 3 separate arcs 

Triplex, Oerlikon Metco Axial III, Mettech Corp.

Thermal Spray Fundamentals, Fauchais et al., 2014 
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Average Plasma Characteristics Downstream the 
Torch Exit
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Turbulent Plasma Flow 
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Powder Injection and Trajectories

 Forces: inertia, drag (gravity negligible) 
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Heat Transfer



26

In-flight Particle Characteristics
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Feedstock - Powders

• Powder characteristics must be controlled tightly as they 
influence the particle injection and trajectories in the plasma 
and the resulting coating characteristics:
 Particle size distribution
 Particle shape
 No segregation
 Low humidity
 Etc.
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Powder Characteristics



29

Surface Preparation 

• Adhesion mostly mechanical

• Majority of coating failures 
due to poor surface 
preparation

• Grit blasting
 36 to 60 grit Al2O3
 Sand blasting is NOT 

acceptable

• Water Jet 
• Laser cleaning Progressive Technologies
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Plasma-sprayed Ceramic Coatings

Thermal Barrier Coating: Yttria partially stabilized 
zirconia 

Clyne et al., Acta Metal., 2008



31

Effect of Substrate Temperature

after C.J. Li et al., J. Mat. Science 32 (1997) 997

400°C25°C

after Fukomoto et al., Proc. Int. Thermal 
Spray Conf., Kobe, 1995, p.353-8
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20 µm

Polished Etched

W Coating Structure – Cu infiltrated

S. Boire-Lavigne et al., J Therm. Spray Technol., 
4 (1995) 261-267
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Thermal Conductivity of W Coatings
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34

Lamellar Structure

S. Boire-Lavigne et al., J Therm. Spray Technol., 
4 (1995) 261-267
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Nanostructured YSZ TBCs 
 Nanostructured porous powders and coatings

R. Lima and B. Marple, Mat. Sci. & Eng. A, 485 
(2008) p. 182-193 
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Nanostructured YSZ TBCs 

 Lower thermal diffusivity
 Lower elastic modulus

R. Lima and B. Marple, Mat. Sci. & Eng. A, 485 
(2008) p. 182-193 
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Substrate and Coating Temperature

 Influence on:
 interface quality between lamellae
 residual stresses
 crack formation
 thermal conductivity
 elastic modulus, etc.

 Measuring techniques:
 one- or two-color pyrometer
 infrared camera

Images courtesy of NRC Canada
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Spray Booth

Oerlikon Metco : http://www.oerlikon.com/metco/en/products-services/coating-
equipment/thermal-spray/systems/plasma/
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Safety Consideration

 Safety issues:
• Noise

• UV light

• Dust and fumes

• Heat

• Robot

• Electrical shocks

More at: http://tss.asminternational.org/portal/site/tss/SafetyGuidelines/

Measures:
• Adequate thermal spray 

booth design
• Personal protection
• Adequate gas and fuel 

handling infrastructure 
• Adequate operation 

practices

http://tss.asminternational.org/portal/site/tss/SafetyGuidelines/
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Suspension Thermal Spraying
• Fine droplets formed by injection of submicron powders (STS) in the flame
• Cooling rates exceeding 10 million ºC/sec → formation of nanograins

Grain size range
(20-80nm)

VanEvery et al., JTST, Vol. 20 (2011) p. 817*Image courtesy of NRC Canada  

*
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Suspension/Jet Interaction

 Complex phenomena occur sequentially:
• Primary and secondary atomization
• Liquid evaporation
• Sintering and melting of the spray material 

L. Pawlowski, Surface and Coating Technol. 203 (2009) 2807-2829
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Modelling and Simulation
• Atomization behaviour of multiphase fluids containing nanoparticles. 

Nanoparticle/ fluid thermal interaction
• Determination of in-flight particle characteristics by numerical 

modelling
• Multiscale modeling of nanomaterials properties

Modeling of an
effervescent atomizerLiquid jet in cross flow

SPS particle size and 
temperature

 at 9 cm stand off



Reduced Particle Impact Velocity
 Critical to control the microstructure 

Isothermal 22% H2 in Ar,  
µ = 0.000128 kg/sec at 3300°C, 400 m/sec.

Distance above substrate (cm)
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Gas Flow Simulation with CFD 2000
Adaptive Research® 

 Highly sensitive to particle size and material density
 Higher free stream velocities can dramatically increase the impact 

velocity of small particles 

J. Oberste-Berghaus, et al., ITSC Proceedings 2005, Basel (Switzerland)
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Coating Build-up 
 STS typical microstructure 

formation depends strongly on the 
particle velocity at impact:
 Normal direction
 Parallel direction

K. VanEvery, et al., JTST, 20 (2011) 817-828

P. Fauchais, et al., JTST, 17 (2008) 31-59

Deflection of the particle 
trajectory depends on the Stokes 

number St:

𝑆𝑆𝑆𝑆 =
𝜌𝜌𝑝𝑝𝑑𝑑𝑝𝑝2𝑣𝑣𝑝𝑝
𝜇𝜇𝑔𝑔𝑙𝑙𝐵𝐵𝐵𝐵
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Controlling SPS Coating Structure

 A designed cooling system allows:
• driving out the low-velocity particles before their impact onto the 

substrate
• maintaining the nominal temperature of the substrate by playing on 

the cooling gas flow rate

A. Joulia, et al., Published online 8 Nov. 2014
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Suspension Plasma Spraying for
Thermal Barrier Coatings (TBCs)

 Promising coating process:
 SPS coating structures comparable 

with EB-PVD coatings
 Important potential cost savings

 After Z. Tang, H. Kim, I. Yaroslavski, G. Masindo, Z. Celler and D. Ellsworth, 
« Novel Thermal Barrier Coatings Produced by Axial Suspension Plasma 
Spray », ITSC 2011, Hamburg, Germany
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Superhydrophobic Coatings for Reduction of Ice 
Accumulation

 APS and SPS 
TiO2 coatings 
treated with 
stearic acid 
solution

SPS Contact angle ≈ 167°APS Contact angle ≈ 145°

N. Sharifi,  at al., ITSC 2015, Long Beach (California)
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Combustion Processes
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Combustion Temperature
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Combustion with Air and Oxygen
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Combustion: Spray Processes History
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Flame Spray: Powder and Wire
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Flame Spaying

 Particle characteristics
 temperature ~ 300-3000°C
 speed ~ 30-50 m/s

 Materials - polymers, metals and ceramics
 spray rate ~ 2 to 3 kg/hour

 Coating characteristics
 density ~ 5 to 15% porosity
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HVOF: Gas and Liquid Fueled

High Velocity Oxy-Fuel (HVOF) Solutions, Oerlikon Metco: 
http://www.oerlikon.com/ecomaXL/files/metco/oerlikon_HVOFSolutions_EN6.pdf&download=1

http://www.oerlikon.com/ecomaXL/files/metco/oerlikon_HVOFSolutions_EN6.pdf&download=1
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HVOF: Gas and Liquid Fueled

High Velocity Oxy-Fuel (HVOF) Solutions, Oerlikon Metco: 
http://www.oerlikon.com/ecomaXL/files/metco/oerlikon_HVOFSolutions_EN6.pdf&download=1

http://www.oerlikon.com/ecomaXL/files/metco/oerlikon_HVOFSolutions_EN6.pdf&download=1
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HVOF Guns

Images courtesy of NRC Canada

Progressive Surface: https://www.youtube.com/watch?v=BS10TaQK0ss&t=4s

https://www.youtube.com/watch?v=BS10TaQK0ss&t=4s
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HVOF: Noise (dB)

 Can reach 125 dB

Occupational Safety & Health Administration
https://www.osha.gov/dts/osta/otm/new_noise/#decibles

https://www.osha.gov/dts/osta/otm/new_noise/#decibles
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Modeled Gas Characteristics
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High Velocity Oxy-Fuel (HVOF)

 Particle characteristics
 temperature ~ 1500-3000°C
 speed ~ 300-900 m/s

 Materials - metals and cermets
 deposition efficiency ~ 45-80%
 spray rate ~ 1 to 5 kg/hour

 Coating characteristics
 high density (< 2% porosity)
 tensile or compressive stress (thick coatings possible)
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Residual Stress

 In thermal spray coatings, residual stress results from:
 Rapid quenching and concomitant shrinkage of the solidified splat during cooling to the 

deposition temperature (quenching stress; always in tension
 Differential thermal contraction stress: when coating and substrate cool together from 

the deposition temperature to room temperature
 Volume change due to phase transformation
 Peening effect
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Quenching Stress

After Kuroda and Clyne, Thin Solid 
Film, 200 (1991) 49-66
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Quenching Stress: Relaxation

After Kuroda and Clyne, Thin Solid 
Film, 200 (1991) 49-66
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Residual Stress

After Kuroda and Clyne, Thin Solid 
Film, 200 (1991) 49-66
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Residual Stress

 In HVOF, the peening effect is large due to the high impact velocities of the spray 
particles

 Resulting residual stresses can be in:
 Compression (liquid fuel)
 Neutral (gas fuel)
 Tension (gas fuel)
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HVOF Coating 
 Wear-resistant WC-Co coating
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 Optimum region for coating production:
 high abrasion resistance
 robust parameters (small change in performance for large changes in particle 

conditions

Abrasion Maps for WC-CO Coatings 
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Images courtesy of NRC Canada
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HVOF Coatings

 Metals
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High Velocity Air-Fuel (HVAF)

 Air is used instead of oxygen
 Many versions developed by Browning

http://uniquecoat.com/
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Arc Spray
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Arc Spray

Courtesy of Praxair - Tafa
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Atomization Process
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Primary and Secondary Gas Flows

Typical Spray Conditions
 Arc voltage: 20–40 V
 Arc current: 100–400 A
 Wire feed speed: 7–10 m/min
 Standoff distance: 10–20 cm
 Gases: Air, nitrogen, CO2
 Gas flow rates: 800–2,400 slm
 Gas supply pressure: 0.27–0.6 MPa
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Arc Spray
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Arc Spraying

 Particle characteristics
 temperature ~ 1500-3000°C
 speed ~ 50-200 m/s

 Materials - metals and cermets
 spray rate ~ 5 to 50 kg/hour

 Coating characteristics
 density ~ 5 to 20% porosity
 Relatively high oxide content
 Low cost
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Wire for Arc Spray

 Metals, alloys and cored wires
 Examples from Praxair:

https://www.praxairsurfacetechnologies.com/en/materials-and-equipment/materials/wires
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Cold Spray
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Cold Spray: A Solid State Deposition 
Process

 A high-velocity low-temperature gas jet 
accelerates particles 

 The impact velocity is high enough for 
“cold welding” the particles forming a 
coating

 Main advantages:
 Very low oxidation
 No grain growth or phase 

transformation

Gas

Powders

After CGT GmbH
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Impact Deformation and Welding

F. Gärtner, et al.

Adiabatic shear instability
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Operation Parameter

Stagnation jet pressure, MPa (psi) 1–4 (145–600)

Stagnation jet temperature, °C (°F) 0–1000 (32–1832)

Gas flow rate, m3/min (ft3/min) 1–2 (35–70)

Powder feed rate, kg/h (lb/h) 2–8 (4–18)

Spray distance, mm (in.) 10–50 (0.4–2)

Power consumption, kW (for heating gas) 5–25

Particle size, μm 1–50

After ASM Handbook 5A p. 55
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Cold Spray Deposition

*Courtesy of NRC Canada  
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Cold Spray

 Particle characteristics
 temperature ~ 0-100°C
 speed ~ 400-1000 m/s

 Materials - metals and cermets
 spray rate ~ 3 to 5 kg/hour

 Coating characteristics
 density ~ 1-10 % porosity
 No oxidation, no phase change
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Low and High Pressure Cold Spray Systems

Low Pressure Cold Spray: 
After J. Villafuerte, 
Centerline Canada

High Pressure Cold Spray
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One-dimensional Isentropic Flow

 Well described in “Gas Dynamic Principles of Cold Spray, 
R.C. Dykhuizen and M.F. Smith, JTST 7(1998)205-2012

P0, T0

P*, T*

P, T

0 = stagnation
* = Throat

 𝑚̇𝑚 = mass flow rate fixed
  = ratio of specific heats (1.66 or 

1.4 for monoatomic or diatomic 
gases)

 M = Mach number
 R = Universal gas constant/gas

molecular weight



85

One-dimensional Isentropic Flow

 At the throat M = 1 (choked flow)

 At the nozzle exit (assuming P < atm, overexpanded flow)
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Particle Acceleration

 Particle acceleration due to drag force:

 For low values of the spray particle velocity (as compared to 
the gas velocity):
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Cold Spray Modeling
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Cold Spray Modeling
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Shear Instability

T. Schmidt et al., JTST, 18 (2009) 794–808
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Critical velocity (d=25 µm)

T. Schmidt et al., Acta Materialia, 54 729-742, (2006)

F1, F2: empirical factors
σTS: tensile strength
Ti, TR, Tm :initial, reference 
and melting temperatures
cp: specific heat  

Fundamental investigation of impact behavior

Assadi et al., Acta Materialia, 51, 4379–4394 (2003)
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Fundamental investigation 
of impact behavior

Critical velocity (experiment vs modeling)

T. Schmidt et al., Acta Materialia, 54 729-742, (2006)
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Effect of Particle Size

T. Schmidt et al., JTST, 18 (2009) 794–808
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T. Schmidt et al., JTST, 18 (2009) 794–808
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Fundamental investigation 
of impact behavior

Ductile to Brittle Transition
T. Schmidt et al., Acta Materialia, 54 729-742, (2006)

Exemple:

Ta: Ttrans = -270 °C

Fe: Ttrans = -30 °C

Mo: Ttrans = 30°C

W: Ttrans = 300°C

Exemple: Tin

Ttrans=13°C

Temperature range 
50-200 °C

At 50 °C 
 v ~ 150-340 m/s

At 200 °C 
v ~ 70-150 m/s

WS = Window of sprayability
PIC = Particle impact condition
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Effect of angle of deposition

C. J. Li et al. ITSC 2003: International Thermal Spray Conference, pp.pp. 91-96, (2003)

Cu

Ti
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Coating Structure: Aluminum



97

Coating Structure: 316L Steel
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Coating Properties
Hardness

Steel:
Microhardness
As sprayed : 193 HK
Annealed (1100C 24h): 105-115 HK
Mild steel sheet : 120 HK

Cu:
Microhardness
As sprayed : 153 HK
Annealed (650C 24h): 52 HK

Cu

CS Coatings have higher hardness than wrough materials
probably due to cold work hardening during plastic deformation

W. Y. Li and C. J. Li, ITSC2005
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Vacuum Cold Spray – Aerosol Spray

J. Akedo, JTST, 17 (2008) 181-198
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Applications
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Aerospace Applications

*Walser B (2003), Spraytime 10(4) pp 1-7
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Thermal Barrier Coatings

 Main function:  Protect the underlying component from high 
temperature gases

 Operating temperature (TBC surface):  Up to ~1200°C ⇒
temperature drop of up to ~150°C

Component
Bond coat

Top coat

Combustion
gases

Cooling
gas

Te
m

pe
ra

tu
re•Bond coat

•MCrAlY
•Top coat

•Y-Stabilized ZrO2
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Thermal Barrier Coating System

Zirconia topcoat

MCrAlY bondcoat

substrate

pores

Oxide stringers

Imbedded grit



transition piece 

combustion liner 
Courtesy of General Electric Courtesy of Praxair Tafa 

Thermal Barrier Coatings
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Plasma Spraying: Internal Surfaces

Applications:
- Combustion 

chamber, 
transition ducts 
in gas turbines

- Cylinders 
bores of ICE Al 
blocks 

Video courtesy of NRC Canada
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Automotive Applications

*Walser B (2003), Spraytime 10(4) pp 1-7
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Pulp and Paper

• Coatings applied for wear and 
corrosion protection

Thermal Spray Fundamentals, Fauchais et al., 2014 
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Biomedical Applications

 Thermal spray hydroxyapatite (HA) 
coatings for improved bone adhesion 
for hip and dental implants

 HA is the main inorganic bone 
constituent

Thermal Spray Fundamentals, Fauchais et al., 2014 
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Reduction of component and overall manufacturing cost for next-
generation Solid Oxide Fuel Cells (SOFC).

 Highly efficient devices to convert chemical energy into 
electrical energy and heat with low environmental impact
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Solid Oxide Fuel Cell

*Images courtesy of NRC Canada  
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Cold Spray Applications

• Coatings for wear, corrosion and 
oxidation protection

• Repair (magnesium components)
• Additive manufacturing
 2D printing  (busbars on tin oxide 

coated glass)
 3D manufacturing

Heat Exchangers: Brayton Energy Canada

Current Trends in Cold Spray Technology: 
Looking at the Future in Metal 
finishing.com; 8 Jan 2010
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Final Comments

 Thermal spray processes are used intensively in the industry and the market is 
rapidly growing

 Spray materials have unique properties that can be tailored according to the 
targeted application

 Innovative processes, such as suspension plasma spray and cold spray, are in active 
development and stimulate important research efforts for new high performance 
coatings and new applications
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