
PHS 6317 Nanoengineering of thin films

         Course schedule – Winter 2024

12 January     Introduction – Scientific and technological challenges
19         Fabrication methods – Vacuum physics and vapor-phase techniques
26*         Fabrication methods – Plasma processes and process optimization
2 February     Fabrication methods - Plasma-surfaces interactions and diagnostics
9** Fabrication methods – Thermal/Plasma spray technologies 
16*         Optics of thin films 1, optical characterization, Miniquiz1 (5%)
23*         Optics of thin films 2, design of optical filters
1*** March    Presentations – Emerging fabrication techniques (30%) 
           March 4-8 - Winter/Spring break 
15**         Tribomechanical properties of films and coatings
22**         Electrochemical properties – corrosion and tribo-corrosion(filter-20%)
 5  April         Passive functional films and coatings, Miniquiz 2 (5%)
12         Active functional films and coatings
16         Life cycle analysis and environmental impact
19***              Presentations – Emerging applications of nanostructured films (40%)



Deadlines:
Project #1 – Fabrication technique:

Choice of the subject: 26 January
Abstract and references: 9 February
Report and presentation: 1st March

Projet #2 – Design of an optical filter:
Choice of the subject: 23 February

Report: 22 March
Projet #3 – Application of nanostructred 

thin films:
Choice of the subject: 16 February
Abstract and references: 15 March
Report and presentation: 19 April
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Mohamed Ammari – HiPIMS (High Plasma Impulse Magnetron Sputtering) 
Veronika Cervenkova - Atomic layer deposition (ALD)
Emilien Martel – HVOF
Alexandre Lussier – DIBS
Gabriel Juteau - OMBE
Thomas Lapointe – Supersonic MBE
Luc Montpetit - …
Alexandre Fall - …
Arghavan Yazdanpanah Ardakani - ”PECVD”
Alexandre Pinel – ….
Izacard Bastien – Cold spray

Etienne Tremblay-Nathan Sasseville – PIII
Alexandre Gamache-Thomas Sicotte – PLD
Alexandre Carrière-Yusef Ben Mami – Langmuir-Blodgett

Project #1: Techniques for the fabrication 
of nanostructured films and coatings 
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Plasma system and process control

L. Martinu et al., Chapter 9 in “Handbook of Thin Film 
Process Technology”, P.M. Martin, ed., Elsevier, 2010.

PHS6317: 
Nanoengineering of 
Thin Films - W2024

Today:
Plasma-based processes and deposition approaches: PVD, CVD, PECVD
Plasma-based effect of frequency – DC, RF, MW
Atmospheric plasma processes



Inelastic collisions
Ionisation

Excitation

Dissociation

Dissociative ionisation

Dissociative attachement 

3-body recombination

Radiative recombinaison 

Charge transfer

Penning ionisation

e + A →A+ + 2 e

e + A →A* + e

e + AB → e + A + B

e + AB → 2 e + A+ +B

e + AB →A- + B

e + A+ + B →A + B

e + A+ →A + hν

A+ + B →A + B+

A* + B →A + B+ + e

e + N2 → N2
+ + 2 e

e + O2 → O2
* + e

e + SiH4 → e + SiH3 + H

e + TiCl4 → 2 e + TiCl3
+ +Cl

e + SiCl4 → Cl- + SiCl3

e + A+ + B →A + B

e + A+ →A + hν

Ar+ (f)+ Ar (s)→Ar(f) + Ar+(s)

He* + O2 → He + O2
+ + e

PHS6317: 
Nanoengineering of 
Thin Films - W2024



t el ex ion a µσ = σ + σ + σ + σ + σ

Cross-sections (Ar, O2)

Total cross-section:
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Ionisation cross-
sections in 
different gases
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Electron energy distribution [fe(E), EEDF]

PHS6317: 
Nanoengineering of 
Thin Films - W2024





Hybrid (combined) 
processes:

Ion plating
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Activated reactive evaporation - ARE
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Ion sources – Kaufman type

M.R. Wertheimer, L. Martinu, T. Liston, in “Handbook of Thin Film Process 
technology”,  D.A. Glocker and S.I. Shah, eds.,IoP, Bristol 1995.PHS6317: 

Nanoengineering of 
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• Broad ion beam sputtering source
• Energetic beam is neutralized by electron injection
• Low energy oxygen ion source for the film bombardment
• Interchangeable targets : e.g., SiO2 and Ta 
• Base pressure ~10-7 Torr

Dual ion beam sputtering (DIBS, IBS)

Neutralizer

Planetary Motion

Target

Neutralizer

DIBS from Veeco at LaRFIS, Polytechnique
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Magnetron sputtering

• Non-reactive sputtering (Ar,…)
• Reactive sputtering (O2, N2, …)
• Target material (Si, Metals, ….)
• Target power (DC, AC, Pulsed DC, RF, … 

• Base pressure 10-6 Torr
• Working pressure several mTorr
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Magnetron sputtering

a) Planar magnetron
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b) Cylindrical magnetron                      c) Sputtering « gun »
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d) Different magnetron 
configurations:

- Triode system 

- Hollow cathode: 
Gas flow sputtering
Electron pendulum effect

PHS6317: 
Nanoengineering of 
Thin Films - W2024



Gas flow sputtering process

Pendulum motion of electrons + restricted volume→ high 
discharge density, effective ionization of sputtered metal atoms, 
production of double-charged ions and metastables;
Pressure gradient pushes the high density, metal-rich plasma 
toward the substrate;
Reactive gas is added at the exit of the plasma plume.

Substrate

Housing 

Inert gas

Reactive
gas 

Target

Plasma
e- e- e-

Ar+Ti

Ar+Ti+N2

Substrate
Substrate

N2
inlet

GFS system at LaRFIS, Polytechnique
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Balanced and 
unbalanced
magnetrons
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Dual 
magnetron
systems
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Cathodic
arc
deposition

(Arc evaporation)
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Filtered cathodic arc deposition

• The arc, cathode spot: 1- 10 µm size 
• Current density in the spot: ~ 106 to 108 Acm-2

• Solenoidal elbow with magnetic and electric fields, filtration of macroparticles
• Target: Ti….
• Base pressure: 10-6 Torr
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S. Lee, P.V. Bharathy, T. Elangovan, D. Kim, J.-K. Kim, Chapter 17 in Nanotechnology 
and nanomaterials, F. Ebrahimi, ed., ISBN 978-953-51-0762-0, 2012 

S-shape filter
A. Anders

Filters for cathodic arc deposition
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Plasma impulse 
immersion 
implantation:

20-100 kV
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Pulsed laser deposition - PLD

Deposition process:

a) Optical absorption depth

 I(z) = I0 exp (-αx)

b) Thermal diffusion 
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Materials added to the surface - deposition
  Surface modification – interface engineering

Origin of the source material: a) Solid phase – Physical Vapor Deposition (PVD)
                  b) Gas phase – Chemical Vapor Deposition (CVD)

Physical Hybrid Chemical
Evaporation
• Joule effect
• Electron beam

Reactive evaporation Chemical vapor deposition (thermal CVD)
Plasma-Enhanced CVD (PECVD)

Sputtering
• Magnetron
• Ion beam

Reactive sputtering
Ion-assisted
deposition
(Plasma Immersion 
Ion Implantation –PIII)

Laser Assisted CVD (Laser CVD)
Atomic Layer Deposition (ALD)
New trends:
- Atmospheric pressure CVD

Molecular beam
epitaxy
Pulsed laser 
deposition
(PLD) 

Surface cleaning
Surface 
functionalization
(nitriding, carburizing, 
boriding, … 
Implantation
Patterning, …)

- Ion Beam Assisted CVD
- Hybrid methods:

a) PVD/CVD/PECVD
b) Duplex – Thin-on-Thick

Surface engineering
Vapor deposition of thin films and coatings
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Thermal CVD Process

Three step reaction:
- Initiation
- Propagation 
- Termination
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Rate-limiting steps during CVD

(a) Transport of gaseous reactants to the boundary layer surrounding the substrate (free  
and forced convection)

(b) Transport of gaseous reactants across the boundary layer to the surface of the  
substrate (diffusion and convection flows)

(c)  Adsorption of reactants on the surface of the substrate
(d)  Chemical reactions (surface reactions between adsorbed species, between adsorbed 

species and reactants in the vapor and/or between reactants in the vapor)
(e and f) nucleation (at least at the initial stage) and growth
(g)  Desorption of some of the reaction products from the surface of the substrate
(h)  Transport of reaction products across the boundary layer to the bulk gas mixture
(i)   Transport of reaction products away from the boundary layer
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CVD-based processes
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CVD-based processes (continued)

Ion beam assisted CVD – IBA-CVD
Fluidized bed CVD
Hollow cathode PECVDPHS6317: 

Nanoengineering of 
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Structure of a DRAM memory
Structure of a MOS transistor

Al-Cu, Ti/TiN, TiSi2 - PVD
Si3N4, W, SiO2 - CVD

Application: Microelectronics components
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Schematics of 
a CVD System

PHS6317: 
Nanoengineering of 
Thin Films - W2024



33

Types of reactors: hot and cold walls
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Reactor configurations
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Gas flow patterns
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Control of the CVD film microstructure
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Example: CVD of hard coatings

APCVD of SiO2

APCVD TiN and TiCN
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Riikka L. Puurunen, J. Appl. Phys. 97, 121301 (2005)

ALD principles

http://dx.doi.org/10.1039/C3CS60370A
T. Wang et al., Chem. Soc. Rev., 2014, 43, 7469-7484

Deposition of Al2O3
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ALD of TiN

See also:
Atomic Layer 
Etching - ALE

Challenges:
a) Can one apply CVD 
    at low temperature?
b) Can one better control  
    the microstructure?
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Laser enhanced CVD - LECVD
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Examples of applications of CVD films also PVD)

 Microelectronics industries use CVD for growth of epitaxial layers (vapor-phase epitaxy (VPE)) and for 
making films serving as dielectrics (low and high k), conductors, passivation layers, diffusion barriers, 
oxidation barriers, etc. 

 Semiconductor lasers of GaAs/(Ga,AI)As and InP/(In,Ga)As. These materials are also used in microwave 
devices and solar cells.

 Optical fibers for telecommunication. Optical fibers are produced by coating the inside of a fused silica tube 
with oxides of silicon, germanium, boron, etc., for obtaining the correct refractive index profile. After the 
deposition, a fused silica tube is collapsed to a rod and the rod is then drawn into a fiber.

 Solar energy conversion by the utilization of selective absorbers and of thin film solar cells of silicon and 
gallium arsenide, and dye sensitized solar cells.

 Carbon nanotubes for advance electronic, biological and chemical devices and detectors.
 Wear-resistant coatings have wide industrial applications. Coatings of TiC, TiN and Al2O3 on cemented 

carbide cutting-tool inserts and of TiC on steels (punches, nozzles, free wheels, etc.) are used extensively.
 Friction-reducing coatings for use in sliding and rolling contacts, for example.
 Corrosion-resistant coatings (Ta, Nb, Cr, etc.).
 Erosion-resistant coatings (TiC, Cr7C3, B4C, etc.).
 Heat-resistant coatings (Al2O3, SiC, Si3N4, etc.).
 High temperature superconductors for use in medical, power grid, high-energy physics applications. 
 Fibers for use in fiber-reinforced materials (fibers of boron, silicon carbide, boron carbide, etc.).
 Structural shapes (tubes, crucibles, heating elements, etc.) of, for example, tungsten and silicon carbide.
 Decorative coatings of TiN (gold color) on watches, for example.
 Conductive coatings for integrated circuit interconnects, display applications, solar control, electrochromic

windows, automotive windows.
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Advanced fabrication techniques for the deposition of 
the nanostructured thin films:

Examples of possible subjects for Project 1
• High power impulse magnetron sputtering (HIPIMS)
• Atomic layer deposition (ALD)
• Dual ion beam sputtering (DIBS)
• Distributed electron cyclotron resonance (DECR) PECVD
• Plasma impulse chemical vapor deposition (PICVD)
• Plasma immersion ion implantation (PIII)
• Hollow cathode plasma processing
• Cold spray deposition
• High velocity oxy-fuel (HVOF) deposition
• Flash evaporation
• Pulsed laser deposition
• Langmuir Blodgett (LB) film deposition
• Cluster beam deposition
• Filtered cathodic arc deposition
• Organic molecular beam epitaxy
• Supersonic molecular beam epitaxy
• Inkjet printing …
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Plasma system and process control

L. Martinu et al., Chapter 9 in “Handbook of Thin Film 
Process Technology”, P.M. Martin, ed., Elsevier, 2010.
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Today:
Plasma-based processes and deposition approaches
Plasma-based techniques: effect of frequency - DC, RF, MW
Atmospheric plasma techniques: Corona, APGD, Fluidized bed CVD
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Types of discharges according to the excitation frequency

- Mouvement in an alternating field: me dx2/dt2 = -q εo sin ωt

- Maximum displacement:

- Maximum energy:

Critical discharge frequencies:

• DC and alternative discharge :                            f < fci = (1/π) (q2ne/miεo ) 1/2

• Mobility-controlled discharge: fci < f < fce = (1/π) (q2ne/meεo ) 1/2

(Radiofrequency – RF, e.g., 13.56 MHz)
• Discharge controlled by ambipolar diffusion: f > fce

(Microwaves – MW, e.g., 2.45 GHz)
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Efficient operation of low pressure nonequilibrium plasma



Distribution of the 
potentials in the  
plasma
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Potentials in the plasma and in the sheath

Surface potential (of the sheath): Vs = Vp - Vf

• n* - nb. of electrons that cross the sheath
• Vp – plasma potential
• Vf – floating potential (5-30 V)
• ds – sheath thickness
• potential barrier : q (Vp – Vf)

Ion current across the sheath:

Child-Langmuir equation

Colision-less sheath (limited by the space charge):

Collisional sheath (limited by the mobility): 
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Sheath characteristics

Debye length: λD ~ 100 µm

ds ~ [q(Vp - Vf) / kBTe]a λD

2/3 < a < 3/4; ds ~ 10 λD
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Structure and properties of the sheath
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1. Components of an RF plasma system (13.56 MHz)

Plasma systems – reactor configuration

M.R. Wertheimer, L. Martinu, T. Liston, in “Handbook of Thin Film Process 
Technology”,  D.A. Glocker and S.I. Shah, eds., IoP, Bristol 1995.
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DC and RF systems (capacitive coupling)
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Physical model of an RF reactor
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Sheath in an RF plasma:
Capacitive coupling
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(After J. S. Logan in Handbook of Plasma Processing Technology)

RF COAX

CATHODE 
SHIELD

CATHODE

SHIELDED
MATCHING
NETWORK

VACUUM 
CHAMBER

GROUNDED 
SUBSTRATE

V1 / V2 = (CS2 / CS1)

where 1 < K < 4, usual experimental value for collisional sheaths is K ≈ 2.5 

Capacitively coupled RF reactor

f = 13.56 MHz

ωpi < 2πf < ωpe

~

CB

CS1

CS2

plasma Vp

VB

V1 / V2 = (A2 / A1)K

)(
0

ts
AC ε

=

VB = Vp (1 + (A2 / A1)K)

A1 , V1

, V2A2
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Capacitively
coupled RF reactors:

Electrode configurations

M.R. Wertheimer, L. Martinu, T. Liston, in “Handbook 
of Thin Film Process technology”,  D.A. Glocker and
S.I. Shah, eds.,IoP, Bristol 1995.
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High frequency (RF) coupling
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RF

Gas (O2, Ar, …)

RF coil

Precursor    gas

Parallel plate
RF system

Inductively coupled
RF plasma



Examples of RF 
plasma systems
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Microwave plasma system (2.45 GHz)

M.R. Wertheimer, L. Martinu, T. Liston, in “Handbook of Thin Film Process 
technology”,  D.A. Glocker and S.I. Shah, eds.,IoP, Bristol 1995.PHS6317: 
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Microwave 
applicators
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Antenna

M

Quartz window
MW power

Gas 
shower 
headMW applicator

Quartz window

Gas (O2, Ar, …)

MW
power

Precursor    
gas

MW power

Quartz jar

Electron 
cyclotron 

Resonance:
ECR

Distributed ECR:
DECR

RF

MW applicator

Quartz window

MW linear
antenna array

M

Microwave plasma – different ways of excitation

Direct MW coupling

Dual MW/RF plasma

SurfatronSlotted MW applicator
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Post-discharge reactor - afterglow

M.R. Wertheimer, L. Martinu, T. Liston, in “Handbook of Thin Film Process 
technology”,  D.A. Glocker and S.I. Shah, eds.,IoP, Bristol 1995.PHS6317: 
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Plasma system and process control

L. Martinu et al., Chapter 9 in “Handbook of Thin Film 
Process Technology”, P.M. Martin, ed., Elsevier, 2010.
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Today:
Plasma-based processes and deposition approaches
Plasma-based film fabrication techniques: DC, RF, MW
Atmospheric plasma techniques: Corona, APGD, Fluidized bed CVD



Hydrophobic treatment of wood
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AP Plasma Polymerization with Inert Carrier Gas
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For example: Prof. T. Gervais (Poly): Surface modification for microfluidics (commercial system)

Plasma jet surface treatment
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Atmospheric rf plasma deposition of superhydrophobic coatings using 
tetramethylsilane precursor

D.J. Marchand et al, The Pennsylvania State University, 
Surface and Coatings Technology 2013

AP plasma deposition
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Fig. 1. Schema of the AP-PECVD experimental setup: a laminar
gas blade of 5cm length is injected between the two plasma zones
having the same length

Fig. 2. Pictures of a-SiNx:H coating made in a) static mode:
coatings are an image of the plasma zones, b) dynamic
mode: the sample displacement allows to uniformly coat the
entire surface.

Fig. 7. Evolution of the refractive index and growth rate as a 
function of the gas residence time determined from the position 
on the film and the mean gas velocity. 

AP plasma deposition
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Atmospheric pressure microwave microplasma microorganism deactivation
D. Czylkowski et al, Polish Academy of Sciences, Gdańsk, Poland

Surface and Coatings Technology 2013

AP microwave microplasma
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Linearly extended DC arc

AP PECVD using a linearly extended DC arc for adhesion promotion
L. Kotte et al, Fraunhofer IWS, Dresden, Germany, Surface and Coatings Technology 2013

AP plasma arcs
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Influence of the Cu(TMHD)2 mole 
fraction on the growth rate of 
TiO2–Cu films (T = 683 K).

AP direct liquid injection CVD
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Fluidization regimes

Fluidized bed materials processing at AP
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Vibration strength

Λ= A (2πf)2 / g 

where A and f are the amplitude and the 
frequency of vibration, respectively

Assisting Method to Smoothen Fine Particles 
Fluidization: Mechanical Vibration

Xu, et al, Powder Technology, 2006. 161(2): p. 135-144.
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Atmospheric pressure thermal spray techniques:
Thick coatings
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Thermal spray deposition

Multipass deposition:  
Particles (heated or fused), 

splats, oxides, pores

Two main processes:
Plasma (electric)

Combustion (flame)

Material is heated, accelerated and deposited

www.ofic.co.jp
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PHS 6317 Nanoengineering of thin films

         Course schedule – Winter 2024

12 January     Introduction – Scientific and technological challenges
19         Fabrication methods – Vacuum physics and vapor-phase techniques
26*         Fabrication methods – Plasma processes and process optimization
2 February     Fabrication methods - Plasma-surfaces interactions and diagnostics
9* Fabrication methods – Thermal/Plasma spray technologies 
16***         Optics of thin films 1, optical characterization, Miniquiz1 (5%)
23*         Optics of thin films 2, design of optical filters
1* March        Presentations – Emerging fabrication techniques (30%) 
           March 4-8 - Winter/Spring break 
15***         Tribomechanical properties of films and coatings
22**         Electrochemical properties – corrosion and tribo-corrosion(filter-20%)
 5  April         Passive functional films and coatings, Miniquiz 2 (5%)
12         Active functional films and coatings
16         Life cycle analysis and environmental impact
19***              Presentations – Emerging applications of nanostructured films (40%)



Deadlines:
Project #1 – Fabrication technique:

Choice of the subject: 26 January
Abstract and references: 9 February
Report and presentation: 1st March

Projet #2 – Design of an optical filter:
Choice of the subject: 23 February

Report: 22 March
Projet #3 – Application of nanostructred 

thin films:
Choice of the subject: 16 February
Abstract and references: 15 March
Report and presentation: 19 April
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Mohamed Ammari – HiPIMS (High Plasma Impulse Magnetron Sputtering) 
Veronika Cervenkova - Atomic layer deposition (ALD)
Emilien Martel – HVOF
Alexandre Lussier – DIBS
Gabriel Juteau - OMBE
Thomas Lapointe – Supersonic MBE
Luc Montpetit - …
Alexandre Fall - …
Arghavan Yazdanpanah Ardakani - PECVD
Alexandre Pinel – ….
Izacard Bastien – Cold spray

Etienne Tremblay-Nathan Sasseville – PIII
Alexandre Gamache-Thomas Sicotte – PLD
Alexandre Carrière-Yusef Ben Mami – Langmuir-Blodgett 

Project #1: Techniques for the fabrication 
of nanostructured films and coatings 
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