
Software and Systems Modeling
https://doi.org/10.1007/s10270-023-01123-3

REGULAR PAPER

Fault localization in DSLTrans model transformations by combining
symbolic execution and spectrum-based analysis

Bentley James Oakes1,2 · Javier Troya3 · Jessie Galasso1,4 ·Manuel Wimmer5

Received: 9 September 2022 / Revised: 5 May 2023 / Accepted: 25 July 2023
© The Author(s) 2023

Abstract
The verification ofmodel transformations is important for realizing robust model-driven engineering technologies and quality-
assured automation. Many approaches for checking properties of model transformations have been proposed. Most of them
have focused on the effective and efficient detection of property violations by contract checking. However, there remains the
fault localization step between identifying a failing contract for a transformation based on verification feedback and precisely
identifying the faulty rules. While there exist fault localization approaches in the model transformation verification literature,
these require the creation and maintenance of test cases, which imposes an additional burden on the developer. In this paper,
we combine transformation verification based on symbolic execution with spectrum-based fault localization techniques for
identifying the faulty rules in DSLTransmodel transformations. This fault localization approach operates on the path condition
output of symbolic transformation checkers instead of requiring a set of test input models. In particular, we introduce a
workflow for running the symbolic execution of a model transformation, evaluating the defined contracts for satisfaction,
and computing different measures for tracking the faulty rules. We evaluate the effectiveness of spectrum-based analysis
techniques for tracking faulty rules and compare our approach to previous works. We evaluate our technique by introducing
known mutations into five model transformations. Our results show that the best spectrum-based analysis techniques allow
for effective fault localization, showing an average EXAM score below 0.30 (less than 30% of the transformation needs to
be inspected). These techniques are also able to locate the faulty rule in the top-three ranked rules in 70% of all cases. The
impact of the model transformation, the type of mutation and the type of contract on the results is discussed. Finally, we also
investigate the cases where the technique does not work properly, including discussion of a potential pre-check to estimate
the prospects of the technique for a certain transformation.

Communicated by Perry Alexander.

B Javier Troya
jtroya@uma.es

Bentley James Oakes
bentley.oakes@polymtl.ca; bentley.oakes@umontreal.ca

Jessie Galasso
jessie.galasso-carbonnel@mcgill.ca;
jessie.galasso-carbonnel@umontreal.ca

Manuel Wimmer
manuel.wimmer@jku.at

1 DIRO, Université de Montréal, Montréal, Canada

2 GIGL, Polytechnique Montréal, Montréal, Canada

3 ITIS Software, Universidad de Málaga, Málaga, Spain

4 ECE, McGill University, Montréal, Canada

5 CDL-MINT, Department of Business Informatics - Software
Engineering, JKU, Linz, Austria

1 Introduction

As the adoption of model-driven engineering (MDE) [12]
progresses in academia and industry, the validation and ver-
ification of model transformations is becoming a must in
software and systems engineering. These transformations
offer a structured approach useful in many model-driven
engineering approaches, such as updating models to industry
standards [61] or code/documentation generation. However,
as these transformations are composed of multiple interact-
ing rules which can read and write over the same elements,
model transformation verification is complex to achieve [67].
Fault Localization Many approaches for checking certain
properties of model transformations have been proposed in
recent years [4, 21, 39, 43, 55].Most approaches focus on the
effective and efficient detection of property violations, such
as ensuring that final states in a state machine are always
transformed into a corresponding Place in a Petri Net [43].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01123-3&domain=pdf
http://orcid.org/0000-0001-7558-1434


B. J. Oakes et al.

However, there is still a research gap on the localization of
the model transformation rules to be modified based on the
verification feedback. In this context, fault localization is to
precisely identify the rules which contribute to the failure of
a test case on that transformation.

For example, consider a transformation rule which should
match an input model but instead contains a bug that invali-
dates a valid match. A test case consisting of an input model
and an output model can assist with correctly identifying that
the fault is in this rule as opposed to the other rules in the
transformation. Fault localization can present a ranked list
of the most likely rules to contain a bug, freeing the user
from manually inspecting and reasoning about all rules in
the transformation. This fault localization problem thus fits
within a comprehensive debugging process in model trans-
formation verification settings [67]. The research goal is for
the transformation engineer to be assisted in quickly locating
the faulty rule, as this reduces the overall time needed to fix
the bug.

In this paper, we focus on the spectrum-based fault local-
ization (SBFL) technique which has received high interest
in program debugging for the localization of bugs [3, 80].
In programming testing, SBFL combines the results of exe-
cuting test cases and their corresponding code coverage to
estimate the likelihood of each program statement of being
faulty. In the model transformation context, SBFL examines
which rules execute in a given test case, and then assigns
“blame” to those rules [69], as further explained in the back-
ground section (Sect. 2.4). We term this approach SBFL-Test
for its reliance on test cases.

While SBFL shows promising results for performing fault
localization in model transformations [68], the SBFL-Test
technique heavily relies on the quality of the test cases avail-
able to reach a good and (at the same time) diverse coverage
[80]. For example, Troya et al. generated 100 inputmodels for
each model transformation [69]. This imposes an additional
burden on the user, as these input models must be created
and maintained as the transformation evolves [10, 11].
Symbolic Execution To eliminate this need for developing
and maintaining comprehensive test suites for SBFL [69],
we integrate in this paper SBFL with a dedicated model
transformation verification approach based on symbolic exe-
cution. We term this approach SBFL-Verif, where the full
symbolic state space of a transformation is constructed by
reasoning about combinations of rule applications. Then,
user-defined contracts are proven over the state space to sep-
arate the rule combinations which satisfy the contracts from
the combinations which do not. This therefore allows the
transformation engineer to ensure that the transformation is
working as expected without the burden of having to define
or generate a single test case.

The particular symbolic execution tool we examine here
is SyVOLT [40, 48, 64]. SyVOLT takes as input a model

transformation and contracts, and will output whether or not
the contracts hold on the transformation. In the context of
fault localization, SyVOLT does offer some basic debug-
ging information on missing elements and rules present in
all failing state spaces to indicate why the contract does not
hold [51]. However, this information is not rigorous enough
to precisely identify the faulty rules and the transformation
engineer must still invest significant time and effort to per-
form fault localization.
Contributions and Research Questions This paper therefore
integrates SBFL techniques with the results of symbolic exe-
cution verification to create a fault localization approach
we term SBFL-Verif. The intention is to provide an alterna-
tive approach to creating and maintaining test cases for the
transformation, and instead use the static approach of sym-
bolically creating a transformation state space. Therefore,
the main contributions of this paper are: (a) an adaptation
of the SBFL approach to the symbolic execution verification
results, and (b) an empirical evaluation of the approach on a
set of example model transformations.

We will address the following three knowledge questions,
as further detailed in Sect. 4.1:

– RQ1—Is SBFL-Verif powerful enough to discover faulty
rules effectively?

– RQ2—How do the different inputs to SBFL-Verif (model
transformation, contracts and specific faults) affect the
results?

– RQ3—Is SBFL-Verif fast enough in practice to discover
faulty rules efficiently?

The remainder of this paper is structured as follows. In
Sect. 2, we provide the necessary background material on
symbolic execution of model transformations and SBFL in
model transformations. The proposed SBFL-Verif approach
and methodology is then presented in Sect. 3. Section4
details our research questions and study setup. In particular,
we describe the five model transformations used in the eval-
uation, along with the mutant generation procedure which
provides simulated bugs in each transformation. In Sect. 5,
we present the results of applying our approach and answer
the three research questions. Section6 discusses our findings,
positions our SBFL-Verif approach against SBFL-Test and
examines the threats to validity. Related work is discussed
in Sect. 7, while Sect. 8 concludes with an outlook on future
work.

2 Background

This section introduces the background necessary for this
paper. In particular, it briefly presents: (a) the model trans-
formation used as a running example, (b) the DSLTrans

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

transformation language used in our work, (c) the symbolic
execution verification approach for proving contracts and the
SyVOLT toolwhich takes as inputDSLTrans transformations
and (d) the basics of SBFL for model transformations.

2.1 Families2Persons_Extendedmodel
transformation

Our running example for explaining the background of our
approach is the Families2Person_Extended model transfor-
mation, which is an extended version of a transformation
used for other model transformation verification work [25,
50]. This transformation is composed of 19 rules, and takes
Families of Members who live in Countries and Cities, and
converts those elements into Men and Women who live in
Communities and work at TownHalls.

An excerpt from the transformation’s input and output
metamodels (language for the input and output models) is
presented in Fig. 1. We refer to [50] for a full description of
the transformation.

2.2 DSLTrans transformation language

As the model transformation language used for our verifica-
tion work, we here present the visual, graph-based DSLTrans
[9]. DSLTrans has a number of properties required for our
symbolic execution approach such as termination (the trans-
formation must finish) and confluence (the transformation
always produces the same output model for the same input
model). As well, DSLTrans is out-place, meaning that ele-
ments can be created but not rewritten. This ensures that the
symbolic state space of a DSLTrans transformation can be
made finite. Here, we present a sketch of the relevant seman-
tics of DSLTrans, while the full presentation of the language
is provided in [48].

Although the DSLTrans language has restricted expres-
siveness by design, previous studies have pointed out that the

Fig. 1 Excerpts of the source and target meta-models of the Fami-
lies2Persons_Extended transformation [50]

language is applicable to real-world transformation problems
which require translation or migration transformations [58,
59]. These transformations translate (or “evolve”) a model in
onemeta-model into anothermeta-model.An example of this
is the industrial transformation GM-to-AUTOSAR examined
in this work (Sect. 4.2.1) where the input model in a pro-
prietary language is translated into a model expressed in an
industry standard.

DSLTrans transformations operate on input models to pro-
duce output models through the application of rules arranged
in layers. Rules are the main building blocks of a DSLTrans
transformation. They specify the matching and production of
model elements in the input and output models, respectively.
The elements inside a rule are grouped by the MatchModel
and ApplyModel components, respectively. In Fig. 2, the
MatchModel is shown as the white rounded rectangle in
the top part, while the ApplyModel is depicted in the yel-
low rounded rectangle in the bottom part of the rule.

When a rule is executed, there is amatch step followed by
apply step. In thematch step, the elements in theMatchModel
of the rule arematched in the input model alongwith the con-
nected elements in the ApplyModel. In Fig. 2, this would be
the Country, Family and Child elements in the MatchModel
and theCommunity andWoman elements in the ApplyModel.

If thesematch elements are present, then the apply step can
begin. In this step, all the elements of the ApplyModel which
are not linked to theMatchModel are instantiated and added
to the output model. In Fig. 2, the persons association would
therefore be created between the matched Community and
Woman elements. Traceability information is also captured
by building traceability links between newly generated ele-
ments and their source elements, i.e., the matched elements
of the input model.

DSLTrans provides a backward link concept to define
rule dependencies by matching over traceability links. For
instance, Fig. 2 depicts a rule with two backward links (illus-
trated by two vertical dotted lines). One backward link is
tracing the relationship between the Country and Commu-
nity elements, and the other is doing the same for the Child
andWoman elements. These links require that previous rules

Fig. 2 A DSLTrans rule with backward links [48]

123



B. J. Oakes et al.

must have matched on the Country and Child elements and
produced the Community andWoman elements in a previous
layer of the transformation. The rule in Fig. 2 can then cor-
rectly create the persons association between the previously
created elements.

As mentioned, DSLTrans rules are divided into trans-
formation layers. DSLTrans can then guarantee confluence
through its semantics: (a) all rules of a given layer are fully
executed before the next layer is activated, and (b) rules in a
given layer cannot match any elements created in that layer
[48]. This rigid structure provides the basis for performing
layer-by-layer symbolic execution.

2.3 Symbolic execution and contract verification

Here, we describe the symbolic execution and contract verifi-
cation approach used in this work. As a brief summary, there
are two steps to this process. First, path conditions (PCs)
are created through repeated combination of transformation
rules, where the set of PCs for a transformation abstractly
represents all possible executions of that transformation.

Second, structural contracts (as explained momentarily)
given by the user are then proved on those PCs. If a contract
fails on a PC, then the rule execution represented by that PC
will not satisfy the contract either. Section3 will detail how
the information of which rules were executed in the failing
PC is used to localize faults in these rules.

2.3.1 Path conditions

Path conditions (PCs) represent the symbolic execution of a
set of transformation rules. Our symbolic execution approach
begins with the initial “empty PC” state which represents all
possible executions of the transformation. Then, this state
is divided by symbolically applying transformation rules on
PCs to create further PCs. These PCs thus contain the input
and output elements matched or produced by those rules,
and represent a set of transformation executions through
an abstraction relation [48]. Note that as DSLTrans is out-
place and therefore does not permit element modification or
deletion, the order of rule application does not need to be
considered.

Fig. 3 A path condition which represents the application of four trans-
formation rules [48]

Fig. 4 Pos_FourMembers contract [48]

For instance, the PC in Fig. 3 represents the symbolic exe-
cution of four rules where each rule is denoted by the dashed
boxes. Note that one rule is the application of the rule in Fig. 2
which connects the Community and Woman elements.

The top part of Fig. 3 represents the input graph of the
PC. That is, the elements which are present in the input
model to the transformation if these four rules have executed.
The bottom part of Fig. 3 represents the output graph of the
PC, representing the elements which would be present in the
output model. The traceability links between the input and
output graphs store how the output elements were created
from the input elements during the symbolic rule applica-
tions.

A PC can therefore be interpreted as: “If only these rules
in the transformation were executed, then (as a lower bound)
the elements of the input graph of the PC were present in
the input model, and the elements of the output graph of the
PC are present in the output model.” Though an abstraction
relation, which abstracts over (a) the number of times a rule
has been executed, and (b) the overlap between rule elements,
the set of created PCs represent the full state space of the
transformation’s execution [48].

2.3.2 Contracts and contract verification

The structural contracts used in our symbolic execution tech-
nique represent patterns on the input and output models of
a model transformation. Just as PCs represent the input and
output elements present on a particular branch of a transfor-
mation’s execution, so do the contracts check for the presence
of these elements. Thus, the structure of contracts is almost
identical to that of PCs, and contracts are composed of an
input graph and an output graph with (optional) backward
links connecting the two graphs.

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

Figure 4 shows the Pos_FourMembers contract. The input
graph contains a Family connected to four Members, while
the output graph contains a Community, two Men and two
Women. Thus, this contract represents the informal statement
“A Family with a father, mother, son and daughter should
always produce two Man and two Woman elements con-
nected to a Community”. The backward links (represented
by dashed lines) represent the dependency that the output
elements must have been produced by a rule that matched
over the connected input element.

Contracts are proved on the set of PCs created for a
transformation by matching the contract’s pre-condition and
post-condition using a graph morphism onto the PCs. For
example, the pre-condition of the contract in Fig. 4 is the ele-
ment in the top half of the contract, while the post-condition
is all elements. Our technique determines whether the pre--
condition and post-condition hold, which determine whether
or not the PC satisfies the contract.

That is, contracts are not applicable to all PCs, but only to
the ones whose pre-conditionmatches the elements in the top
half of the PCs. If a contract’s pre-condition does not hold
on a given PC, then that given PC is termed not applicable to
that contract [40]. Thus, the contract is neither satisfied nor
unsatisfied. For example, the pre-condition in Fig. 4 contains
four Members, but the PC in Fig. 3 only contains a Parent
and a Child. This contract therefore does not apply to the
PC, as it is not appropriate to say the contract is satisfied or
unsatisfied.

If the pre-condition of the contract holds on a PC, but the
post-condition does not hold, then the contract is unsatisfied
and the PC is a counter-example to the contract [40]. This
represents that the rule applications covered by the PC do not
satisfy the contract. If both the pre-condition and the post--
condition hold on a PC, then the contract is satisfied by that
PC. In this case, whenever the transformation’s input model
contains the pattern in the pre-condition, then the pattern
contained in the post-conditionwill hold in the corresponding
output model.

These contracts provide assurances for the transformation
engineer that patterns in the input model will be correctly
transformed into patterns in the output model. If a contract is
satisfied or not applicable for all PCs of the transformation,
then the contract holds. Otherwise, the user can be presented
with the counter-example PCs where the contract is unsatis-
fied.

The concept of negative contracts is also useful to a
transformation engineer. These contracts are designed to
be unsatisfied for a correct transformation. This offers
additional expressibility for a user to ensure that the transfor-
mation is operating as they expect [51]. In this article, wewill
not consider negative contracts and all contracts described are
expected to hold on a correct transformation.

2.3.3 Technique limitations

The symbolic execution nature of our technique implies cer-
tain restrictions on contract expressiveness. First, a PC only
represents theminimumnumber of times a rule has been sym-
bolically executed. For example, the PC in Fig. 3 represents
that each of those four rules has symbolically executed at
least once. Thismeans it is difficult or impossible to represent
multiplicity constraints. This is relevant in our UML-to-ER
example transformation (cf. Section4.2.1) where the con-
tracts found in [69] deal with individual elements and have
been heavily modified to fit the abstractions present in the
SyVOLT verification process.

Another restriction imposed by the symbolic execution
approach is the lack of validation of input or output attributes.
As the contract prover operates on the transformation spec-
ification and without a defined input model, PCs can only
refer to abstract input attributes. Therefore, a contract for the
Fam-to-Per-Ex transformation cannot validate that allFamily
elements have a lastName that starts with a capital letter.

2.4 SBFL inmodel transformations

As discussed in Sect. 1, SBFL for model transformations is a
technique to identify faulty rules based on failing test cases
[69]. These test cases are composed of an input model to the
transformation and an OCL assertion [73]. As this approach
relies on the creation of test input models, let us refer in the
remainder of this paper to the approach in [69] as SBFL-Test.

This section repeats the details of the SBFL-Test approach
to constructing test cases. The following section (Sect. 3)will
then highlight our contribution where the approach is mod-
ified to take the results of contract proof on path conditions
into account.

2.4.1 Building the coverage matrix and error vector

Table 1 depicts an illustrative example showing how SBFL-
Test is applied for model transformations. The rows of
Table 1 represent the rules in the transformationwherewe are
attempting to localize the fault. In this example, we assume
that the fault lies in the second rule tr2. The first half of
the table’s columns represent ten test cases, where each is
composed of an input model and the OCL assertion OCL2

[69].
If a cell in the table contains • then that test case executes

the transformation rule of the particular row. For example, in
the test case tc02, the transformation rules tr1 to tr8 execute
on the input model in that test case. This evaluation results
in the coverage matrix [1].

The last row of Table 1 represents the error vector [1]
stating the results of the OCL assertion in a test case on the
test model. For SBFL-Test, this error vector contains either

123



B. J. Oakes et al.

Table 1 Example
spectrum-based fault
localization in the SBFL-Test
approach. Replicated from [69]

Rule tc02 tc12 tc22 tc32 tc42 tc52 tc62 tc72 tc82 tc92 Susp Rank

tr1 • • • • • • • • • • 0.50 3

tr2 (BUG) • • • • • • • • • 1 1

tr3 • • • • • • • • 0.44 7

tr4 • • • • • • • • • • 0.50 3

tr5 • • • • • • • • • 0.47 6

tr6 • • • • • • • • • • 0.50 3

tr7 • • 1 1

tr8 • • • • • • 0.36 8

tr9 • • • 0.18 9

Test Result F S F F F F F F F F

successful (S) or failed (F). For example, the F result at the
bottom of the test case tc02 means that the OCL assertion
OCL2 failed on the input model in tc02.

This coverage matrix and error vector can then be used
to rank the transformation rules in order of suspiciousness.
This suspiciousness value is always in the range [0, 1] and
is calculated from the coverage of the rules by the test cases
as explained in Sect. 3. It is assumed that low suspicious-
ness values indicate a low probability to contain a fault
and high values indicate a high probability [69]. The sus-
piciousness value for each transformation rule in Table 1 is
displayed in the “Susp” columnwhich has been computed by
the well-known fault localization technique Tarantula [34].
The last column then provides a ranking of the rule’s suspi-
ciousness value where top-ranked transformation rules have
a higher probability to hold the fault. In this example, the
suspiciousness-assigning technique Tarantula [34] ranks the
faulty transformation rule tr2 as first, in a tie with another
rule tr7.

2.4.2 EXAM score: effectiveness of suspiciousness
techniques

The effectiveness of SBFL approaches, more specifically of
suspiciousness techniques, is frequently measured by the
EXAM score [81, 82]. The EXAM score in our setting is
defined as the percentage of rules in a transformation that
has to be investigated until the first faulty rule is found:

EXAMScore = Number of rules examined

Total number of rules

In our illustrative example in Table 1, the faulty rule tr2 is
tied in ranking first with the non-faulty rule tr7. Such equally
ranked rules may be selected for examination by the user in
different orders. For this study, we measure the effectiveness
of the techniques in the best-, average- and worst-case sce-
narios [80], i.e., in the best-case, the faulty rule is selected
first while in the worst-case it is selected last. The worst-
case EXAM score for this setting is therefore calculated as

2
9 = 0.Û2, whichmeans that 22.Û2% of the transformation rules
has to be investigated to find the faulty rule.

The SBFL-Test approach has showed good results for fault
localization in model transformations [69]. However, the
development of appropriate input models for the test cases
is challenging [10, 11]. This is the main motivation of the
approach we present next, where building these input mod-
els is no longer needed. Specifically, we explain how to use
our symbolic execution/contract proving technique to build
the coverage matrix and error vector for a transformation.

3 SBFL-verif approach andmethodology

This section presents the SBFL-Verif approach for model
transformation debugging with the verification feedback
obtained from an approach of constructing path conditions
and proving structural contracts. As opposed to the SBFL-
Test approach [69], we do not need test cases which include
input models for the transformation. Instead, we automat-
ically produce what we call satisfaction cases, which are
constructed from the path conditions produced in the veri-
fication process. For this reason, we refer to the approach
of this paper as SBFL-Verif, to make a distinction with the
SBFL-Test approach.

We first detail our contribution of constructing a cover-
age matrix and the error vector (see Sect. 2.4.1) based on
verification feedback from the path condition/contract prov-
ing approach. In addition, we describe the adaptation of
the suspiciousness calculation procedure for this verifica-
tion feedback. Subsequently, we present the methodology to
apply our approachwhen debugging amodel transformation.

3.1 Coveragematrix and error vector

This section describes the process for constructing the cov-
erage matrix and error vector required for SBFL from the
path conditions (PCs) and contracts in the symbolic execu-
tion verification process.

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

Table 2 Tarantula [34] suspiciousness values and ranking when contract c3 fails

Rule sc03 sc13 sc23 sc33 sc43 sc53 sc63 sc73 sc83 sc93 NCF NUF NCS NUS NC NU Susp Rank

tr1 • • • • • • 2 1 1 1 6 4 0.57 4

tr2 • • • • • • 3 2 2 0 6 4 0.5 5

tr3 • • • • • • 3 2 2 0 6 4 0.5 5

tr4 (BUG) • • • • • • 4 1 1 1 6 4 0.73 2

tr5 • • • • • 4 1 1 1 5 5 0.8 1

tr6 • • • • • 2 3 1 1 5 5 0.67 3

Test Result F S F N F N S F F N

First, the computation of the coverage matrix is based
on information about the rules abstracted by every PC, so
we take the set of PCs generated by the symbolic execution
approach (Sect. 2.3.1): PC = {pc0, pc1, . . . , pcn}. Second,
the oracle that verifies the PCs is a set of contracts developed
by the user (Sect. 2.3.2): C = {c1, c2, ..., cm}. As mentioned
in that section, these contracts define the expected elements
present in the input models to the transformation and the out-
put models produced by the transformation rule executions.

In our context, we consider a satisfaction case as a pair
consisting of a PC and a contract: sci j =< pci , c j >.
Therefore, our satisfaction suite is composed of the Carte-
sian product of PCs and contracts: S = PC × C =
{sc01, sc02, ..., scnm}. In this setting, the satisfaction case sci j
fails if PC pci fails to satisfy contract c j during the contract
proving step.

In the contract proving process, a correct model transfor-
mation is denoted by two conditions: a) all contracts must
be satisfied by at least one PC, and b) the contract must not
be unsatisfied by any PCs. Thus, a contract is not satisfied
by a model transformation when there exists at least one PC
which fails to satisfy the contract. For instance, for c1 to be
satisfied by a model transformation, it has to be satisfied (or
not applicable) by {sc01, sc11, ..., scn1}. This is reflected by
the error vector. Note that given a PC, not all contracts are sat-
isfied or fail for the PC. In fact, frequently a contract is simply
not applicable in a PC, since the contract’s precondition does
not match the PC (cf. Section2.3.2). This is a deviation from
the error vector obtained in SBFL-Test, where assertions can
only succeed or fail.

Thus from the output of the symbolic execution verifica-
tion step, we obtain information on which rules are involved
in each of the PCs built1 and the set of contracts that are
satisfied, not satisfied and not applicable by each PC.

1 The set of rules involved is stored for each PC during the symbolic
execution process.

In the example shown in Table 2, ten satisfaction cases
are aiming to check the correctness of contract c3: <

sc03, sc13, . . . , sc93 >.We can see in the last row, containing
the error vector, that satisfaction case sc03 fails (F), which
means that contract c3 is not satisfied by PC pc0; satisfaction
case sc13 is successful (S), meaning that contract c3 is satis-
fied by PC pc1; and satisfaction case sc33 is not applicable
(N), which means that the precondition of contract c3 did not
match on pc3, and therefore the PC is not applicable.

Note that our notion of non-applicability leads to an
important divergence regarding which cases are considered
satisfied in SBFL-Test and SBFL-Verif. In SBFL-Test, anOCL
assertion is checked against instantiated model elements and
defines the constraints these elementsmust satisfy. If anOCL
assertion is tested on an input model which does not contain
elements targeted by the assertion, then the assertion does
not fail and the test case is considered satisfied. However, in
SBFL-Verif, contracts which do not match the PC precondi-
tion are considered not applicable, and thus neither satisfied
nor not satisfied. To represent this case in the SBFL-Verif
approach, we explicitly place theN marking in the error vec-
tors of the coverage matrix. However, these markings are not
taken into account in the computation of the suspiciousness
score, as is discussed next.

3.2 Suspiciousness calculation

There exist several techniques which can be applied to rank
transformation rules with respect to their suspiciousness
scores based on the coverage matrix and error vector. Each
technique proposes a different formula for suspiciousness
computation (cf. Section4.2.4). However, all techniques use
the same variables in their formula. The values for these
variables are computed from the coverage matrix and error
vector.

In our case, we group satisfaction cases by contracts,
so whenever a contract ci fails in at least one PC (one in
{sc0i , sc1i , ..., scni }), we compute the values of these vari-
ables. The notation to refer to the variables is adapted from

123



B. J. Oakes et al.

SBFL in software programs [80] and from SBFL-Test [69]:

NCF # failed PCs exercising the rule
NUF # failed PCs not exercising the rule
NCS # successful PCs exercising the rule
NUS # successful PCs not exercising the rule
NC # PCs exercising the rule
NU # PCs not exercising the rule
NS # successful PCs
NF # failed PCs

Table 2 shows the values of NCF , NUF , NCS , NUS , NC

and NU for each transformation rule of our illustrative exam-
ple. As the values of NS and NF are always the same (two
and five, respectively), we do not list them in Table 2. With
the help of these values we can compute the suspiciousness
of each transformation rule. Let us take the technique used
in the table, Tarantula, which follows the intuition that state-
ments that are executed primarily by more failed test cases
are highly likely to be faulty, while statements that are exe-
cuted primarily by more successful test cases are less likely
to be faulty. The suspiciousness value in this technique is
computed as follows: (NCF/NF )/(NCF/NF + NCS/NS)).
The results are shown in the “Susp” column of the table. As
with the SBFL-Test approach, these suspiciousness values
can then be used to assign a ranking of the most likely rule
to contain a fault. As seen in Table 2, the faulty rule has been
ranked as second to be examined.

As the suspiciousness techniques have been created for
approaches like SBFL-Test where assertions can either suc-
ceed (S) or fail (F), they do not incorporate the information
that a contract may be not applicable (N) in their formu-
las. Examining the variables above, this would impact NC

and NU . However, the specific suspiciousness formulas we
examine in this work do not take these variables into account
(Sect. 4.2.4). Therefore, we leave as a question for future
work how to modify these formulas to take into account the
not applicable designation. At this time, we surmise that this
designation does not provide useful information for fault
localization, and we continue to use the unmodified suspi-
ciousness calculations found in the SBFL-Test approach.

3.3 Methodology

The methodology for applying SBFL-Verif, adapted from the
methodology of SBFL-Test [69], is illustrated in Fig. 5 and
explained step by step in the following:

1. The model transformation and contracts (cf. OCL asser-
tions in SBFL-Test) have to be provided.2

2 These transformations and contracts can be built using visual editors
previously developed [40, 48].

Fig. 5 Debugging process of the SBFL-Verif approach (adapted from
[69])

2. Our verification tool SyVOLT computes all path condi-
tions comprising the transformation’s state space, deter-
mines the rules that are abstracted by each path condition,
and checkswhich contracts are (not) satisfied by each path
condition.

3. If there is no failing contract, the process ends. Otherwise,
if at least one contract is not satisfied by at least one path
condition, the satisfaction cases, coverage matrix, error
vector for each non-satisfied contract are constructed from
the output of SyVOLT3 using our SBFL4PCs tool [63]
(cf. Section4.4). The suspiciousness-based rankings of
the model transformation rules for each failing contract
are returned.

4. The transformation developer investigates the ranking of
the rules for one of the failing contracts. Based on the
rule ranking and information about the failing contract,
the transformation developer aims to improve the trans-
formation by locating and fixing the bug.

– Note that SyVOLT also produces debugging output
to better identify which elements in the rules and
contracts are causing the fault [51]. Thus, our tech-
nique localizes faults at the rule level, while this
(preliminary) debugging information assists in local-
izing faults within the rule.

3 SyVOLT produces XML files containing each PC, the rules in each
PC, and the contracts which fail on each PC.

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

Once these four steps are performed, the user ends up with
a revised model transformation where our assumption is that
this version has less bugs than the initial version. Re-iterating
the process with the revised model transformation should
lead to fewer contracts violation until reaching a final version
where all contracts are fulfilled.

3.3.1 Methodology comparison to SBFL-Test

In the SBFL-Test approach, the input to the fault localization
process is the model transformation, the test suite of input
models and the set ofOCLassertionswhich provide contracts
on the transformation. In the SBFL-Verif approach, the path
conditions are built directly from the transformation itself.
Therefore, there is no need in SBFL-Verif to build ormaintain
a test suite of input models.

Recall from Sect. 2.4 that the test cases of the SBFL-Test
approach were composed of an input model and an OCL
assertion. In the SBFL-Verif approach, we instead create sat-
isfaction cases composed of a path condition and a contract.

Once the coveragematrix and error vector are constructed,
then the same suspiciousness techniques as in [69] are used
to produce the suspiciousness values and rankings.

3.3.2 Generalizing SBFL-verif for other transformation
languages

The SBFL-Verif approach has currently been implemented
only for the DSLTrans language and the SyVOLT contract
prover. However, there are no fundamental issues preventing
this approach from applying to other model transformation
languages. The only requirement is that the language and ver-
ification tool produce an analysis similar to path conditions,
where (i) the path conditions represent the execution of rules
in the transformation, and (i i) contracts are satisfied or not
satisfied on those path conditions.

To apply the SyVOLT tool itself to other model transfor-
mation languages, it is currently required to transform the
transformation under study into DSLTrans. In the case of
ATL, this can be performed using a higher-order transfor-
mation (HOT) which we have developed in previous work
[49, 50]. This HOT currently is sufficiently reliable to trans-
formmany examples from the ATL zoo. The rule application
of ATL is made explicit through the layered structure of
DSLTrans, and element attributes are represented by the con-
tract equation language present in DSLTrans [48]. For other
languages, another HOT would have to be developed from
the target language into DSLTrans. Note also that the struc-
ture of contracts is not specific to the SyVOLT approach, and
similar contracts can be written for other model transforma-
tions languages [29, 47].

4 Evaluation setup

This section sets up the evaluation of our approach by first
defining the research questions (RQs). Then, the experi-
mental setup is explained to detail the different example
transformations, contracts, mutants and techniques used for
suspiciousness-based rankings computations. The evaluation
metrics used for answering each RQ are explained, and the
prototype implementation and execution environment are
also introduced.

4.1 Research questions

Our main research interest is in studying how the techniques
of symbolic execution andSBFLcanbe combined together as
theSBFL-Verif approach to effectively identify faulty rules in
model transformations. Specifically, we consider that many
different variables can influence the quality of the results.
Therefore, we aim to answer the following RQs:

RQ1—Is SBFL-Verif powerful enough to discover faulty
rules effectively? In Sect. 5.1, we analyze how the SBFL-Verif
approach performs when being applied on the satisfaction
cases arising from our symbolic execution/contract proving
technique.

In particular, we aim to investigatewhether there exist sus-
piciousness formulas that provide accurate-enough
suspiciousness-based rankings.

RQ2—How do the different inputs to SBFL-Verif (model
transformation, contracts and specific faults) affect the
results?Asour approachhas different inputs (cf. Section3.3),
we wish to understand how characteristics of these inputs
might affect the quality of the results, i.e., the suspiciousness-
based rankings.More specifically, thisRQcanbe divided into
the following three sub-questions:

RQ2.1—How do the model transformations under test
affect the results quality?Model transformations are defined
in different contexts and can vary in several dimensions such
as their size and complexity. Thus, Sect. 5.2.1 addresses how
the nature of the model transformation can affect the results.

RQ2.2—How do contracts affect the results quality?
Contracts are the oracle that decidewhether amodel transfor-
mation is correct or not. In this paper, we define two types of
contracts in Sect. 4.2.2: multi-rule and single-rule contracts.
An analysis for how the type of contract can affect the results
is then presented in Sect. 5.2.2.

RQ2.3—How do specific faults affect the results qual-
ity? Many different types of faults may be present in a
model transformation. Thus, we wish to examine how the
nature of the faults can affect the results. This is discussed in
Sect. 5.2.3.

RQ3—Is the SBFL-Verif approach fast enough to dis-
cover faulty rules efficiently? Our model transformation
verification tool may construct many path conditions to con-

123



B. J. Oakes et al.

sider all possibilities (sometimes even thousands of them),
which are inputs to our SBFL approach that obtains the
suspiciousness-based rankings. We want to study whether
the time taken by our approach and accompanying imple-
mentation to obtain the rankings is reasonably short enough
to be part of a practical model transformation debugging pro-
cess. This question is answered in Sect. 5.3.

4.2 Experimental setup

Our research questions ask whether we can locate faults in
transformations effectively and efficiently. To determine this,
it is necessary to have known faults in our transformations.
Thus, the rules in our transformations will be mutated sim-
ulating a range of faults realistic to those in practice [59].
Each mutant will then be verified for each contract using the
SyVOLT contract checker. When a contract is not satisfied,
we assume that there is a fault that needs to be localized.

The results of this verification process are presented to
the SBFL suspiciousness techniques to identify which rules
are the faulty ones. Thus, we will be able to determine if
a suspiciousness technique has detected the (known) faulty
rule aswell as the ranking of the faulty rule in the examination
order.

4.2.1 Model transformations

For our evaluation of the SBFL-Verif approach, we reuse five
model transformations from our previous works to evaluate
our approach. The first two and last have been sourced from
the ATL Zoo repository [8] and converted to their DSLTrans
representation [49, 50], while the other two come from previ-
ous work in DSLTrans verification [58–60]. An explanation
of the domains of each transformation is given in the follow-
ing.

We acknowledge that a threat to our work is that this selec-
tion of model transformations is based on convenience and
is not a systematic survey. However, we believe this to be a
sufficient selection for two reasons. First, these transforma-
tions are comparable in size to those found in related work
and a subset of the ATL Zoo repository [46] selected for
relevance. Second, while we have developed an automated
method for converting ATL transformations into DSLTrans
transformations [50], there still remains a significant effort in
both developing appropriate contracts for each transforma-
tion and (quite ironically) debugging any unintended faults
in the transformation.

RSS-to-ATOM. This transformation details the produc-
tion of an ATOM model from an RSS model. ATOM is an
XML-based format for synchronizing “feeds” between pub-
lishers and consumers; while RSS is a format for syndicating
news. The ATL version has been taken from the ATL Zoo [8]

and we have obtained the corresponding DSLTrans version
using the techniques of [50].

UML-to-ER. This transformation is considering structural
modeling languages. In particular, entity relationship (ER)
diagrams are produced fromUMLclass diagrams. It has been
introduced in [76] and extended in [13]. We use the extended
version and have applied the technique of [50] to obtain the
DSLTrans representation.

GM-to-AUTOSAR. This is an industrial transformation
used previously in our contract proving work [60]. The trans-
formation receives input models defined in a proprietary
legacy meta-model used at General Motors (GM) for vehicle
control software development. The output meta-model is the
automotive industry standard AUTOSAR4. Therefore, this
transformation is migrating legacy models to an industrial
standard for better tool interoperability [61]. The GM-to--
AUTOSAR transformation and contracts are further discussed
in [58].

UML-to-Kiltera. TheUML-to-Kiltera transformation con-
verts a subset of UML-RT state machines into Kiltera—a
language for timed, event-driven,mobile and distributed sim-
ulation [58]. The transformation has been proposed in [53]
and further developed in [52]. In addition, studying this trans-
formation provided further insights into the contract proving
process [59].

Families-to-Persons_Extended. TheFamilies-to-Persons
_Extended transformation (hereafter referred to as Fam-to--
Per-Ex) has been introduced in Sect. 2.1. As a brief recap,
it transforms Parents and Children in a Family into Men
andWomen inCommunities. The original transformation has
appeared in previous verification approaches [25] while the
Extended version has been extensively examined in our pre-
vious work [48, 50].

The selected transformations not only differ in their appli-
cation domains, but also in the complexity of their rules.
Table 3 orders the transformations by increasing size and
complexity, and reports the number of layers, rules, match
elements, apply elements, associations, attributes and back-
ward links. In the three central columns, the number before
the slash is in the input component of the rules,while the num-
ber after the slash is in the output component. For example,
the Fam-to-Per-Ex transformation has 46 elements in total in
the input components of its rules, and 33 elements in the out-
put components.5 The number of rules in the transformations
vary between 7 and 19, meaning the largest transformation
is almost three times larger than the smallest one.

4 AUTomotive Open System ARchitecture, AUTOSAR.org.
5 Dividing these numbers by the number of rules in the transformation
provides a rough estimate of the complexity of the transformation. For
example, the Fam-to-Per-Ex transformation has 46/19 = 2.4 input ele-
ments on average. This information is omitted from Table 3 for visual
clarity.

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

Table 3 Metrics for
transformation complexity, rule
complexity and number of path
conditions produced by the
SyVOLT tool

Transformation Num. Num. Num. Num. Num. Num. Num.
Layers Rules Elements Assoc. Attrib. Backward Links Path Conds.

RSS-to-ATOM 7 7 8/14 1/7 16/14 5 5

UML-to-ER 7 9 13/12 4/3 15/8 6 23

GM-to-AUTOSAR 8 9 26/20 17/10 5/9 10 5

UML-to-Kiltera 8 17 46/91 30/74 25/58 18 558

Fam-to-Per-Ex 16 19 46/33 39/14 14/10 24 255

Table 4 Size statistics for
relevant transformations in the
ATL zoo [46]

Measure Value

Minimum 5

Mode 5

Quartile1 6

Quartile2/Median 9

Mean 13.9

Quartile3 20

Maximum 31

To demonstrate that these transformations are representa-
tive, we position their sizes against those in previous SBFL
work [69] and in the ATL zoo. The BibTeX2DocBook trans-
formation used in previous SBFL work [69] contains nine
rules, just as most of our transformations do. Table 4 details
statistics of the transformation sizes present in a version of
the ATL zoo [46] selected for relevance. The transforma-
tions we examine here are therefore as large or larger than a
majority of the zoo transformations, with theUML-to-Kiltera
and Fam-to-Per-Ex transformations larger than 70% of the
screened zoo.

Table 3 also details the number of path conditions pro-
duced by the SyVOLT tool for each transformation. The
nonlinear relationship for the size of the transformation and
the number of path conditions is due to the nature of the sym-
bolic execution, where rules may overlap or path conditions
may be discarded due to violating meta-model constraints
(so-called “pruning”) [48]. This nonlinearity means that it is
extremely difficult to statically estimate the number of path
conditions produced by examining the transformation.

4.2.2 Contracts

For each transformation examined in this evaluation, we
have collected a set of contracts that must be satisfied for
the transformation to be considered correct. As mentioned
in Sect. 2.3.2, contracts can be designed to be either satis-
fied or not satisfied on purpose by a correct transformation.
As a reminder, in this evaluation we only consider contracts
designed to be satisfied by a correct (non-mutated) version
of the transformations.

Multi- versus Single-Rule Contracts.As an exploration of
how contracts can affect the results of SBFL in the SBFL-
Verif approach, we offer as a contribution a consideration
of two different types of contracts: multi-rule contracts and
single-rule contracts.

The first type is multi-rule contracts (MRC), which
are sourced from prior work and involve elements from
multiple rules in the transformation. For example, the
Pos_FourMembers contract in Fig. 4 contains elements from
four rules involving familymembers from theFam-to-Per-Ex
transformation.

The second type of contracts is termed single-rule con-
tracts (SRC). These contracts have been created for this work
and are derived directly from the rules of the transformation.
That is, the single-rule contracts are produced as one-to-one
mirrors of the rules in the transformation, where the intention
is to test the production of the elements in that rule.

For example, a single-rule contract for the Fam-to-Per-Ex
transformation is shown in Fig. 6. This contract is a direct
mirror of the elements from the rule in Fig. 2. This contract
checks for the proper creation of the persons relation in the
output model when the appropriate elements are present in
the input model.

Single-rule contracts are simple to construct as they are
just one-to-onemirrors of transformation rules. The intention
for their creation was to explore whether they could be used
to immediately identify faulty rules in the fault localization
step. However, it was discovered during this work that not
all single-rule contracts will hold on the correct version of
the transformation. This situation arises because other rules
may produce similar input elements such that the contract’s
pre-condition will hold, but the post-condition will fail.

As a specific example, one rule (Hacommittee[...]) in
the Fam-to-Per-Ex transformation matches on a Company
element connected to a City element, and produces an Asso-
ciation element connected to aCommittee element. The SRC
produced from this rule thus checks for these same two input
elements and two output elements. However, another rule
(Htworkers[...]) also matches on a Company element con-
nected to aCity element (and aParent element), and produces
different elements from the Hacommittee[...] rule. Thus,
whenever the Htworkers[...] rule is symbolically executed,
and the Hacommittee[...] rule is not symbolically executed,

123



B. J. Oakes et al.

Fig. 6 Single-rule contract created from the rule in Fig. 2

Table 5 Case study contracts by type (multi-rule - MRC or single-rule
- SRC) and their source

Case study Contract type Number Source

RSS-to-ATOM MRC 0 [48]

SRC 7 –

UML-to-ER MRC 12 [69]

SRC 9 –

GM-to-AUTOSAR MRC 7 [58]

SRC 9 –

UML-to-Kiltera MRC 14 [58]

SRC 11 –

Fam-to-Per-Ex MRC 6 [50]

SRC 16 –

Total MRC 39

SRC 52

the SRC produced from the Hacommittee[...] rule will not
hold.

This example demonstrates that SRCs must be carefully
reasoned about to ensure that they are valid contracts for the
transformation and that other rules will not interfere. Thus,
we conclude that SRCs are easily constructed but are not
satisfied in all cases.

Table 5 displays metrics for the 91 contracts considered
in this work. For each case study, the number of multi-rule
and single-rule contracts is presented, along with the source
for the multi-rule contracts6. All single-rule contracts were
created as part of the current work.

4.2.3 Mutant generation

For evaluating our approach, we require a set of transforma-
tion rules with known induced faults. To support this, as a

6 For the RSS-to-ATOM transformation, the multi-rule contract case
was not evaluated. This was due to the fact that only two multi-rule
contracts are defined in [48]. One contract intentionally does not hold on
the correct transformation (a negative contract). The remaining contract
is too simple to produce results with our approach, as it was either
satisfied in all mutants or was not applicable.

contribution of this work we have implemented automatic
mutation the SyVOLT verification tool. In particular, it is
the rules within the input DSLTrans transformations that are
mutated, such as changing the type of an element or adding
an association between two elements.

The two left-most columns of Table 6 show the set of
implemented mutation operators along with a brief descrip-
tion. These mutation operators were crafted based on the
DSLTrans meta-model and experience with common errors
made when creating DSLTrans transformation rules [59],
similar to the analysis performed in [66].

Note that this set ofmutation operators only includes those
which impact the symbolic execution technique employed
by the SyVOLT contract checker. For example, DSLTrans
rules have other constructs such as Exists elements and indi-
rect links (described in [48]) which cannot be handled by
the current SyVOLT tool. Therefore, these constructs were
not considered in our mutation operators. Future work will
expand the set ofmutation operators to capture other possible
transformation errors and constructs.

These mutation operators are applied one-at-a-time to all
rules in each transformation, generating hundreds and even
thousands ofmutants. The total number ofmutants generated
for each case study, classified by type of mutation, is also dis-
played in Table 6. In total, 4852 mutant transformations are
produced with our approach. Each mutant transformation is
then fed as input to the SyVOLT tool, alongwith the contracts
for the case study, following the methodology proposed in
Sect. 3.3.

4.2.4 Techniques for suspiciousness computation

For a list of techniques, we mirror the extensive catalogue
of 18 techniques collected in [69]: Arithmetic Mean [81],
Barinel [2], Baroni-Urbani & Buser [79], Braun-Banquet
[80],Cohen [45],D* [78],Kulczynski2 [45],Mountford [79],
Ochiai [3], Ochiai2 [7], Op2 [45], Phi [42], Pierce [80],
Rogers & Tanimoto [41], Russel Rao [54], Simple Matching
[80], Tarantula [34] and Zoltar [32].

For brevity, we refer the reader to our SBFL4PC tool
repository [63] for the formulas and descriptions of each
technique7.

4.3 Evaluationmetrics

To answer our research questions, we use several metrics
depending on the nature of the RQ.

7 Once in the repository, select SpecBased_FaultLoc_SyVOLT and Sus-
piciousness_Techniques.md..

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

Table 6 The mutation operators in our approach, and a classification by type and case study of the mutants which are automatically generated

Mutation Oper. Description RSS-to-ATOM UML-to-ER GM-to
AUTOSAR

UML-to-Kiltera Families-to-
Persons

Add
Association

Adds a valid association
between two elements (if not
existing)

13 9 27 266 51

Add Backward
Link

Adds a backward link (see
Sect. 2.2)

0 1 13 102 19

Add Element Adds a random element from
the respective input or output
meta-model

161 99 171 1207 437

Delete Element Deletes an association or
element (and connected
assocs.)

29 32 82 253 154

Delete
Equation

Deletes an equation on
elements for matching or
setting attribute values

14 17 26 58 10

Modify
Equation

Modifies part of an equation,
such as removing terms in a
concatenation, or replacing
involved attributes

0 0 481 42 96

Retype Assoc Replaces an association’s type
by another valid association

3 7 25 436 79

Retype
Element

Replaces an element’s type by
a type up or down the
inheritance hierarchy

5 17 6 277 66

Total 4852 232 191 840 2658 931

Table 7 Average values of mean and standard deviation for EXAM
scores in best-, worst- and average-case scenarios

Technique Mean Standard deviation

BC WC AC BC WC AC

Zoltar .111 .364 .258 .186 .238 .199

Kulcynski2 .111 .364 .258 .186 .238 .199

Ochiai .111 .365 .258 .186 .238 .198

Op2 .111 .364 .261 .209 .238 .209

Russel Rao .111 .386 .265 .187 .228 .194

Mountford .111 .381 .270 .190 .258 .209

Br.-Banq .111 .386 .274 .188 .240 .199

B.-U & B .111 .408 .300 .213 .250 .218

S. Match .111 .445 .336 .254 .267 .246

Rog & Tan .111 .445 .336 .254 .267 .246

Tarantula .111 .511 .338 .190 .322 .215

DStar .111 .491 .382 .289 .326 .296

Ar. Mean .111 .842 .503 .204 .317 .196

Phi .111 .842 .503 .204 .317 .196

Cohen .111 .842 .503 .204 .317 .196

Ochiai2 .111 .888 .529 .169 .297 .183

Pierce .111 .951 .662 .317 .192 .201

Barinel .778 .842 .669 .322 .307 .274

Bold values indicate the scores are acceptable results for an EXAM
score

4.3.1 Evaluation metrics for answering RQ1

For answeringRQ1 in Sect. 5.1, EXAMscores are employed.
As explained in Sect. 2.4.2, there can be ties in the suspicious-
ness-based rankings [80, 81]. This is the reason why EXAM
scores for the best-,worst- and average-case scenarios need to
be obtained. For example, Table 7 displays the average values
of mean and standard deviation for EXAM scores in best-,
worst- and average-case scenarios for each suspiciousness
technique.

Lower EXAM scores are preferable as these indicate that
the faulty rule will be presented earlier for examination. Con-
sider that the average number of transformation rules in our
evaluation is 12.2 (cf. Table 3), and the average number of
rules in theATLzoo is 11.2 (cf. Table 4). In thiswork,we con-
sider an EXAM score below 0.3 acceptable, which implies
that on average the user will be directed toward the top four
possible rules to find the bug.

To complement the information provided by the EXAM
score, we also want to know the percentage of cases in which
the faulty rule is positioned in the top-three rules in the
suspiciousness-based rankings (shown in Table 8). We con-
sider that an effective technique locates the faulty rule among
the top-three rules it provides, in at least 70% of the cases.

123



B. J. Oakes et al.

Table 8 Percentage of cases in which the faulty rule is placed within
the top-three in the AC scenario

Technique Perc. Top-3 (%) Technique Perc. Top-3 (%)

Kulcynski2 74.56 Rog & Tan 65.44

Zoltar 74.56 DStar 63.96

Op2 74.56 Tarantula 61.00

Ochiai 74.44 Barinel 14.28

Mountford 72.44 Ar. Mean 13.92

Br.-Banq 71.92 Phi 13.92

Russel Rao 70.92 Cohen 13.80

B.-U & B 69.80 Ochiai2 11.76

S. Match 65.44 Pierce 6.28

4.3.2 Evaluation metrics for answering RQ2

This research question is divided in three sub-questions and is
answered in Sect. 5.2. To respond to RQ2.1 about the effects
of the transformation, we have obtained the EXAM score
values in the average-case scenario, for each suspiciousness
technique, for each model transformation under test and both
types of contract. These values are presented inTable 9. Tech-
niques are sorted with increasing value of EXAM score, and
values below 0.3 have been highlighted.

We have also obtained boxplots with the EXAM score
values in the average-case scenario for each model trans-
formation, which are presented in Fig. 7. A boxplot is a
standardized way of displaying the distribution of data based
on a five-number summary. Techniques in each boxplot have
been sorted according to the average value of the EXAM
score. Since these boxplots have been grouped by type of
contract (multi-rule contracts versus single-rule contracts),
they are also used for answering RQ2.2 about how the type
of contract affects the results.

For answering RQ2.3 about the effects of the type of
mutant on the results, we display in Table 10 the EXAM
scores in the average-case scenario for each technique,
grouped by the type of mutant.

4.3.3 Evaluation metrics for answering RQ3

For answering this RQ about the speed of the approach in
Sect. 5.3, we require execution time measurements. We col-
lect the number of seconds needed for each transformation to
have the contracts verified and for the results to be processed
to produce EXAM scores for all techniques. These timings
are presented in Table 11, taken to be the average of three
execution runs.

Table 9 Average values for EXAMscores in average-case scenarios for
each case study (MRC:multi-rule contracts; SRC: single-rule contracts)

RSS2ATOM - SRC UML2ER - MRC UML2ER - SRC

Technique Val Technique Val Technique Val

Pierce 0.439 Kulcynski2 0.270 Kulcynski2 0.237

Kulcynski2 0.617 Zoltar 0.270 Zoltar 0.237

Zoltar 0.617 Ochiai 0.270 Ochiai 0.237

Ochiai 0.617 Op2 0.270 Op2 0.237

Br.-Banq 0.623 Br.-Banq 0.271 Russel Rao 0.240

B.-U & B 0.623 B.-U & B 0.275 Br.-Banq 0.245

Russel Rao 0.625 Russel Rao 0.275 B.-U & B 0.248

Ochiai2 0.642 S. Match 0.280 S. Match 0.253

Op2 0.643 Rog & Tan 0.280 Rog & Tan 0.253

S. Match 0.660 Mountford 0.306 Mountford 0.287

Rog & Tan 0.660 Tarantula 0.434 Tarantula 0.484

Tarantula 0.665 Cohen 0.512 Cohen 0.512

DStar 0.678 Ar. Mean 0.512 Ar. Mean 0.512

Mountford 0.679 Phi 0.512 Phi 0.512

Cohen 0.759 Ochiai2 0.517 Ochiai2 0.538

Ar. Mean 0.759 DStar 0.554 Barinel 0.557

Phi 0.759 Barinel 0.590 DStar 0.696

Barinel 0.802 Pierce 0.758 Pierce 0.835

GM2Auto - MRC GM2Auto - SRC UML2Kil - MRC

Technique Val Technique Val Technique Val

Br.-Banq 0.458 Kulcynski2 0.266 Kulcynski2 0.210

S. Match 0.458 Zoltar 0.266 Zoltar 0.210

Kulcynski2 0.458 Ochiai 0.266 Ochiai 0.210

Zoltar 0.458 Russel Rao 0.266 Op2 0.210

Ochiai 0.458 Op2 0.266 Mountford 0.211

Op2 0.458 Br.-Banq 0.271 Russel Rao 0.234

Russel Rao 0.458 B.-U & B 0.271 Br.-Banq 0.272

B.-U & B 0.458 S. Match 0.271 Tarantula 0.319

Rog & Tan 0.458 Rog & Tan 0.271 Cohen 0.338

Cohen 0.556 Mountford 0.272 Ar. Mean 0.338

Barinel 0.556 DStar 0.274 Phi 0.338

Ar. Mean 0.556 Tarantula 0.276 DStar 0.371

Phi 0.556 Ochiai2 0.553 B.-U & B 0.374

Ochiai2 0.556 Cohen 0.554 Barinel 0.376

Tarantula 0.556 Ar. Mean 0.554 Ochiai2 0.486

Mountford 0.611 Phi 0.554 S. Match 0.513

DStar 0.615 Pierce 0.569 Rog & Tan 0.513

Pierce 0.653 Barinel 0.832 Pierce 0.797

UML2Kil - SRC F2P - MRC F2P - SRC

Technique Val Technique Val Technique Val

Zoltar 0.133 Kulcynski2 0.266 Kulcynski2 0.167

Op2 0.133 Zoltar 0.266 Zoltar 0.167

Kulcynski2 0.133 Ochiai 0.267 Ochiai 0.168

Ochiai 0.136 Russel Rao 0.269 Mountford 0.171

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

Table 9 continued

UML2Kil - SRC F2P - MRC F2P - SRC

Technique Val Technique Val Technique Val

Mountford 0.138 Mountford 0.279 Russel Rao 0.174

Br.-Banq 0.155 Op2 0.286 Op2 0.175

Russel Rao 0.168 Br.-Banq 0.316 Br.-Banq 0.203

B.-U & B 0.209 DStar 0.418 B.-U & B 0.246

Tarantula 0.317 Tarantula 0.419 S. Match 0.298

S. Match 0.321 B.-U & B 0.436 Rog & Tan 0.298

Rog & Tan 0.321 Barinel 0.448 Tarantula 0.430

Ar. Mean 0.324 Cohen 0.454 Cohen 0.449

Phi 0.324 Ar. Mean 0.454 Ar. Mean 0.449

Cohen 0.325 Phi 0.454 Phi 0.449

Ochiai2 0.374 S. Match 0.518 Barinel 0.452

Barinel 0.374 Rog & Tan 0.518 Ochiai2 0.502

DStar 0.467 Ochiai2 0.620 DStar 0.602

Pierce 0.862 Pierce 0.752 Pierce 0.858

Bold values indicate the scores are acceptable results for an EXAM
score

4.4 Prototypical implementation

Our SBFL-Verif approach is supported by a prototypical
implementation. This implementation has two components:
a) the SyVOLT verification tool [64], and b) the EXAMscore
calculator [63].

As mentioned in Sect. 2.3, SyVOLT is a contract verifi-
cation tool which builds the symbolic execution space of a
transformation and then proves contracts on that space. As
output, SyVOLT produces a set of path conditions (detailing
which rules have symbolically executed), and whether each
contract is satisfied, not satisfied, or not applicable. For this
work, SyVOLT has also been extended to perform mutation
on model transformations (cf. Section4.2.3). An XML file
containing the results of contract satisfaction on each path
condition can then be easily produced for each mutant auto-
matically.

The second component in our implementation is a Java-
based program to read in the XML files produced from
SyVOLT, and compute the EXAM scores for each sus-
piciousness technique. Specifically, for each mutant the
coverage matrix is generated of each path condition and
contract results, the suspiciousness technique equations are
evaluated, the ranking of the suspicious rules is produced,
and the EXAM score is calculated based on the known faulty
rule.

As this implementation hasmostly been developed to sup-
port this paper, the calculator tool produces comma-separated
value (CSV) files which summarize the suspiciousness tech-
niques in the best-, worst- and average-case scenarios.
This would not be useful in the methodology suggested in

Sect. 3.3. However, when the calculator is used as in the
methodology, an easy-to-interpret CSV containing the sus-
piciousness ranking of the rules would be produced.

4.4.1 Execution environment

All the experiments have been executed on a desktop PC
running 64-bit Ubuntu 19.10, with an Intel i5-4570 3.6 GHz
quad-core processor, and 16 GB of RAM. The software used
was Eclipse Modeling Tools version 2019-12, and Python
3.4.3.

5 Evaluation results and critical discussion

This section answers the research questions posed in Sect. 4.1
andprovides a critical discussionof the results.Wealso inves-
tigate the threats to validity for our experiments.

5.1 RQ1

Question: Is SBFL-Verif powerful enough to discover faulty
rules effectively?

As mentioned in Sect. 4.3.1, this research question is
answered by examining the EXAM score for the suspi-
ciousness values produced by the different suspiciousness
techniques for all model transformations. Specifically, the
data in Table 7 has been obtained after the automatic con-
struction of 2499 suspiciousness tables with our approach.
This means that, out of the total of 91 contracts defined (cf.
Table 5) and the 4852 mutants produced (cf. Table 6), there
are 2499mutants in which at least one contract is satisfied for
at least one path condition and at least one contract fails for
at least one path condition. That is, there are 2499 scenarios
in which our approach has been applied and evaluated for
locating the faulty rule.

In Table 7, we have highlighted with bold font those
EXAM scores whose mean is below 0.3 in the average-case
scenario. Results have been grouped by increasing value of
this measure. We can see that there are eight techniques for
which the mean of the EXAM score in the average-case sce-
nario is below0.3. These areZoltar,Kulcynski2,Ochiai,Op2,
Russel Rao, Mountford, Braun-Banquet and Baroni-Urbani
& Buser.

The differences of the average mean values in the best-
and worst-case scenarios do not differ much among these
techniques, and the values for the standard deviation of these
eight techniques are also quite similar. For this reason, having
only the data in this table, it is not possible to state with cer-
tainty which of these techniques is better. However, for now
we can state that these eight techniques behave effectively in
the SBFL-Verif approach which uses fault localization in the
context of model transformation verification.

123



B. J. Oakes et al.

Fig. 7 Box-plots of the EXAM scores of each technique per transformation in the average case (MRC: multi-rule contracts; SRC: single-rule
contracts)

The percentage of cases in which the faulty rule is located
within the top-three ranked rules is displayed in Table 8.
Techniques are ordered by a decreasing value of the per-
centage, and values above 70% have been highlighted. We
can see that the order of the techniques is similar to the one
obtained in Table 7. Since the value for technique Baroni-
Urbani & Buser is below 70%, we remove this technique
from the previous list of eight techniques. Furthermore, Kul-
cynski2, Zoltar, Op2 and Ochiai seem to provide the best
results, since they are placed in the top four both in Table 7
and Table 8.

Answer to RQ1: The SBFL-Verif approach is powerful
enough to discover faulty rules effectively. This approach
can be used with seven suspiciousness techniques to
locate the faulty rules in the average case a) in maximum
30% of the transformation, and b) among the top-three
ranked rules in 70% of all the studied cases.

5.2 RQ2

Question: How do the different inputs to SBFL-Verif (model
transformation, contract type, and specific mutations) affect
the results?

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

Table 10 Average values for
EXAM scores in average-case
scenarios for each mutation

Add Assoc. Add Back. Link Add element Delete element

Technique Val Technique Val Technique Val Technique Val

Kulcynski2 0.206 Russel Rao 0.276 Kulcynski2 0.315 Zoltar 0.17

Mountford 0.206 Op2 0.289 Zoltar 0.315 Op2 0.17

Zoltar 0.206 Br.-Banq 0.342 Ochiai 0.315 Kulcynski2 0.17

Ochiai 0.206 S. Match 0.342 Mountford 0.317 Ochiai 0.17

Op2 0.206 Kulcynski2 0.342 Russel Rao 0.33 Russel Rao 0.186

DStar 0.206 Mountford 0.342 Op2 0.347 Mountford 0.187

Russel Rao 0.26 Zoltar 0.342 Br.-Banq 0.359 Br.-Banq 0.198

Cohen 0.267 Ochiai 0.342 Tarantula 0.369 B.-U 0.247

Ar. Mean 0.267 B.-U 0.342 DStar 0.392 S. Match 0.305

Phi 0.267 Rog & Tan 0.342 B.-U 0.409 Rog & Tan 0.305

Br.-Banq 0.269 DStar 0.342 Ar. Mean 0.429 Tarantula 0.393

Tarantula 0.273 Cohen 0.553 Phi 0.429 Cohen 0.414

Barinel 0.313 Barinel 0.553 Cohen 0.43 Ar. Mean 0.414

Ochiai2 0.398 Ar. Mean 0.553 Barinel 0.454 Phi 0.414

B.-U 0.403 Phi 0.553 Ochiai2 0.47 Barinel 0.449

S. Match 0.552 Tarantula 0.553 S. Match 0.563 Ochiai2 0.487

Rog & Tan 0.552 Ochiai2 0.73 Rog & Tan 0.563 DStar 0.541

Pierce 0.777 Pierce 0.776 Pierce 0.654 Pierce 0.853

Delete equation Modify equation Retype Assoc. Retype element

Technique Val Technique Val Technique Val Technique Val

Kulcynski2 0.197 Russel Rao 0.133 Kulcynski2 0.162 Kulcynski2 0.19

Zoltar 0.197 Kulcynski2 0.138 Zoltar 0.162 Zoltar 0.19

Op2 0.197 Zoltar 0.138 Op2 0.162 Op2 0.19

Ochiai 0.198 Op2 0.138 Ochiai 0.163 Ochiai 0.192

Russel Rao 0.208 Mountford 0.141 Mountford 0.169 Mountford 0.2

Br.-Banq 0.209 Ochiai 0.141 Br.-Banq 0.184 Russel Rao 0.207

Mountford 0.217 Br.-Banq 0.191 Russel Rao 0.196 Br.-Banq 0.235

B.-U 0.246 Tarantula 0.351 B.-U 0.233 B.-U 0.299

S. Match 0.305 B.-U 0.356 S. Match 0.309 S. Match 0.369

Rog & Tan 0.305 Cohen 0.375 Rog & Tan 0.309 Rog & Tan 0.369

Tarantula 0.429 Ar. Mean 0.375 Tarantula 0.333 Tarantula 0.402

Cohen 0.446 Phi 0.375 Cohen 0.347 Cohen 0.413

Ar. Mean 0.446 Barinel 0.413 Ar. Mean 0.347 Ar. Mean 0.413

Phi 0.446 DStar 0.432 Phi 0.347 Phi 0.413

Ochiai2 0.48 S. Match 0.475 Barinel 0.383 Barinel 0.436

Barinel 0.482 Rog & Tan 0.475 Ochiai2 0.404 DStar 0.475

DStar 0.612 Ochiai2 0.575 DStar 0.501 Ochiai2 0.512

Pierce 0.843 Pierce 0.89 Pierce 0.842 Pierce 0.841

Bold values indicate the scores are acceptable results for an EXAM score

This research question is broken down into three sub-
questions.

5.2.1 RQ2.1

Question: How does the model transformation under test
affect the results?

As the model transformations examined in this work are
of varying sizes and complexity, we here present the results

123



B. J. Oakes et al.

Table 11 Number of mutants
for each case study, time taken
for experimentation and scoring,
and a per-mutant estimate

Case study Num. Muts. Contr. type Verif. time (s) Score time (s) Time Per Mut.(s)

RSS-to- 232 MRC - - -

ATOM SRC 296 1 1.28

UML- 191 MRC 261 2 1.38

to-ER SRC 262 3 1.39

GM-to- 840 MRC 1189 8 1.43

AUTOSAR SRC 864 5 1.03

UML-to- 2658 MRC 9896 128 3.77

Kiltera SRC 11,261 122 4.28

Families- 931 MRC 2025 29 2.21

to-Persons SRC 2022 26 2.20

of the SBFL-Verif approach for each transformation sepa-
rately. The EXAM scores are presented in Table 9, where
the columns are for each transformation and contract type
and the rows are each suspiciousness calculation technique.
Figure7 then presents this information as boxplots which
provide five-number summaries of the distribution of values.
For both Table 9 and Fig. 7, lower EXAM scores are better.

Through examination of these results, we have divided the
results into two groups. The first group is two transformations
where the SBFL-Verif approach has been unsuccessful, and
the other group where it has been successful.
Negative Cases The fault localization results for the RSS-to-
ATOM andGM-to-AUTOSAR transformations are very poor.
In the case of the single-rule contracts (SRC) for both trans-
formations, the entire transformationmayhave to be searched
for finding the faulty rule. This can be seen in Fig. 7 by the
boxes and dots which extend to an EXAM score near 1.0. For
the GM-to-AUTOSAR transformation results with the multi-
rule contracts (MRC), the techniques consistently identify
that half the rules must be searched, which is seen with the
boxplots grouped near an EXAM score of 0.5. This outcome
is also undesirable as the user will have to search many rules.

We conclude that these results are not useful, and therefore
the SBFL-Verif approach is not applicable to these trans-
formations. However, it is important to determine why the
technique does not apply. The answer most likely lies within
the symbolic execution technique used to prove the contracts.

Recall that the SyVOLT prover generates path conditions
which represent how rules can combine in a transformation
(Sect. 2.3). These path conditions are then matched by the
contracts to see in which conditions the contracts are sat-
isfied, and when they are not satisfied. Our hypothesis for
these poor results is that if there is an insufficient number
of path conditions, then there is not enough information for
the SBFL-Verif approach to identify the faulty rule. That
is, there will be a lack of satisfaction cases (contracts ×
path conditions) needed to generate a robust coverage matrix
for SBFL (Sect. 2.4). We presume that any SBFL approach

would struggle to dealwith this lack of coverage and that hav-
ing more path conditions, and thus more satisfaction cases
for the coverage matrix, would improve the efficacy of our
approach [80]. Future work will attempt to precisely identify
the relationship between the number of path conditions and
the EXAM score quality.

To gain an indication of how many path conditions could
be sufficient, Table 3 presents the number of path conditions
generated for each transformation. The RSS-to-ATOM and
GM-to-AUTOSAR transformations produce only five path
conditions each, while the others produce over twenty. The
path conditions produced are a consequence of how the trans-
formation rules combine and overlap, which is extremely
difficult to predict (see Sect. 2.3). Future work could be to
adjust the underlying technique to generate more path condi-
tions by modifying the abstraction relation used to map path
conditions to transformation executions [48].
Positive Cases For the remaining transformations (UML-to-
ER, UML-to-Kiltera and Fam-to-Per-Ex), there are several
techniques with EXAM score values below 0.3. For these
techniques, the successful results are shown graphically in
Fig. 7 boxplots, where the lines and rectangles are of a rea-
sonable length and relatively tightly grouped near the bottom.
This suggests that the EXAM score values obtained are rel-
atively similar no matter the contract and mutant used.

In particular, we highlight the excellent results for the
single-rule contracts (SRC) for the UML-to-Kiltera and
Fam-to-Per-Ex transformations. In these cases, multiple
techniques provide information such that the faulty rule could
be found by searching in only 14 or 17 percent of the trans-
formation (three rules and four rules, respectively).

From these results,we conclude that our SBFLapproach is
applicable to these three transformations, ranking the faulty
rule within at most one-third of the transformation. The top-
three techniques seem to be Kulcynski2, Zoltar and Ochiai,
closely followed by Op2.

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

Answer to RQ2.1: The SBFL-Verif approach efficiency
depends on a transformation producing a sufficient
number of path conditions. This matches other SBFL
techniques where sufficient test cases are required for
sufficient coverage. The SBFL-Verif approach is effec-
tive with adequate coverage.

5.2.2 RQ2.2

Question: How do the contracts affect the results quality?
Section 4.2.2 describes how we consider two types of

contracts: a)multi-rule contracts (MRC), which involve ele-
ments from multiple rules in the transformation, and b)
single-rule contracts (SRC), which are mirrored versions of
the rules. From the results in Table 9 and Fig. 7, the SRCs pro-
vide a slightly better EXAM score on almost all techniques
compared to the MRCs. Building these SRCs also allowed
us to test our approach on the RSS-to-ATOM transformation
which did not have usable MRCs.

Answer to RQ2.2: Single-rule contracts (SRCs) are
slightly more effective than multi-rule contracts (MRCs)
in our SBFL-Verif approach for locating faulty rules.

5.2.3 RQ2.3

Question: How do specific faults affect the results quality?
In this work, we have defined eight mutation operators

on DSLTrans transformations, which in total have produced
4852 mutants (cf. Section4.2.3). An immediate question is
then how well the EXAM techniques are able to detect each
type of mutation. Table 10 presents the EXAM scores in
the average-case scenario for the transformations where the
SBFL approach was effective (the UML-to-ER, UML-to--
Kiltera, and Fam-to-Per-Ex transformations, as explained in
Sect. 5.2.1).We note that the top SBFL techniques are inmost
cases quite effective, producing scores at or below 0.20. It is
only for the mutations of adding a backward link and adding
elements where the techniques perform poorly.

The reasons why these specific mutations provide poor
results is a topic of further investigation, but an initial exam-
ination suggests that these mutations are unlikely to falsify
both the MRCs and SRCs used in the current evaluation.8

The current set of contracts used could be considered incom-
plete as it cannot sufficiently detect thesemutations. Thus, the
SBFL-Verif approach (or presumably any fault localization
approach) is unable to detect these errors and locate the rule
in question. Future work will attempt to resolve this issue,
either by producing contracts which are falsified by these

8 The addition of a backward link maymake explicit an implicit depen-
dency already present in the rule. The addition of an extraneous element
is often simply not tested for in contracts.

mutants or by adjusting the SBFL-Verif approach to better
localize these faults.

Answer to RQ2.3: Most types of mutations are han-
dled well by the SBFL-Verify approach. Themutations of
adding backward links and extraneous elements requires
further investigation, as contracts may not be able to
detect these additions.

5.3 RQ3

Question: Is the SBFL-Verif approach fast enough to dis-
cover faulty rules efficiently?

The focus of the current paper is on the development of
and initial results for the SBFL-Verify approach. As such, our
focuswasnot onoptimizing execution times or other resource
consumption. However, it is important to have some mea-
sure of the efficiency of the current implementation. Table 11
details the number of seconds needed for each transforma-
tion9 to have the contracts verified and for the results to be
processed to produce EXAM scores for all techniques.

The times listed may seem inefficient, as the lowest time
taken is 263s and the highest time taken is 11,383s (over
three hours.) However, this is the total time taken for ver-
ification and scoring for all mutants, which number in the
thousands. In the methodology we propose in Sect. 3.3, the
developer would be examining one transformation, corre-
sponding to one mutant. Therefore, a rough estimate is
provided in the right-most column of Table 11, where the
combined time per mutant in our transformations ranges
from 869/840 = 1.03 seconds for the fastest case (GM-to--
AUTOSAR) to 11383/2658 = 4.28 seconds for the slowest
case (UML-to-Kiltera).

We thus consider this time taken to allow for a reasonably
efficient process to be applied in debugging scenarios with
the human-in-the-loop. That is, the delay is short enough for
the user to pause for the results and continue developing the
transformation without losing attention.

Answer to RQ3: For transformations of this size and
complexity, our approach can produce results within a
few (< 5) seconds.

6 Discussion and threats to validity

After performing this thorough evaluation, this section is
devoted to discuss some interestingfindings.As amain result,
we can conclude that combining symbolic execution-based
contract checking on model transformations with spectrum-

9 For the multi-rule contract results for the RSS-to-ATOM transforma-
tion, see footnote 6.

123



B. J. Oakes et al.

Table 12 Average values for EXAM score in AC scenario excluding
GM-to-AUTOSAR and RSS-to-ATOM case studies

Technique Val Technique Val

Zoltar 0.214 Rog & Tan 0.364

Kulcynski2 0.214 Tarantula 0.401

Ochiai 0.215 Ar. Mean 0.432

Op2 0.219 Phi 0.432

Russel Rao 0.226 Cohen 0.432

Mountford 0.232 Barinel 0.466

Br.-Banq 0.244 Ochiai2 0.506

B.-U & B 0.298 DStar 0.518

S. Match 0.364 Pierce 0.810

Bold values indicate the scores are acceptable results for an EXAM
score

based fault localization in the SBFL-Verif approach can
provide effective localization of faulty rules.

The caveat to this is that the symbolic execution must
produce a sufficient number of path conditions such that
the SBFL techniques have sufficient coverage. However, the
good news is that (a) more path conditions are usually pro-
duced as the size of a model transformation grows, and (b)
the path conditions can be computed very fast. A pre-check
in our methodology can thus check whether a certain num-
ber of path conditions is produced or not. In the latter case,
a warning could be shown to the model transformation engi-
neer that the SBFL-Verif approach may not lead to effective
tracking of the faulty rules.

If there are a sufficient number of path conditions,
the SBFL-Verif approach is quite effective. For example,
in Table 12, we present the EXAM score averages in
the average-case scenario without considering the GM-to-
AUTOSAR and RSS-to-ATOM transformations. Comparing
Table 12 against Table 9, we see that the EXAM scores
improve even further. In particular, there are four SBFL
techniques (Zoltar, Kulcynski2, Ochiai and Op2) where the
EXAM score is below 0.22, which we consider to be a good
fault localization score. The remaining eleven techniques are
not recommended to be used in the context of fault localiza-
tion in model transformation verification.

6.1 Comparison of SBFL-verif and SBFL-test

In those cases where the application of SBFL-Verif does not
provide effective-enough results, an alternative can be the
application of spectrum-based analysis following a dynamic
approach [69] (SBFL-Test, cf. Section2.4). The challenge
with the SBFL-Test approach is that a large number of test
cases should be provided to have useful coverage for the
suspiciousness techniques. For example, the work in [69]
reports results using 100 test cases as input for each model
transformation.

In any case, our SBFL-Verif approach and the SBFL-
Test approach [69] can be complementary. If contracts are
available, and the symbolic execution process produces a suf-
ficient number of path conditions, then no test cases need to
be created and it is straightforward to apply our approach. On
the other hand, if a large number of test cases are generated (a
challenging problem [10, 11]), then the SBFL-Test approach
[69] can be applied. An interesting line of future work is the
generation of test cases from satisfaction cases: when our
approach does not provide accurate-enough results with the
available satisfaction cases, input models could be obtained
from path conditions, achieving an interplay between both
approaches.

To briefly compare the efficiency of the two approaches,
the conclusions found in Sect. 5 for SBFL-Verif and those
from [69] for SBFL-Test are similar, although a thorough
evaluation of the scores based on the model transformations,
contracts and mutants is not reported in that work. We also
note that the SBFL-Test approach is reported to take around
4 and 75s per mutant [69], while our SBFL-Verif approach
takes around 1 to 5 s per mutant.

In the SBFL-Test approach, the best techniques allow the
user to inspect a maximum of three rules to locate the bug
in around 74% of the cases. This conclusion is very similar
to the one we reported in Sect. 5.1, where we conclude that
the best techniques are able to locate the faulty rule in the
top-three over 70% of the time for all case studies analyzed.

EXAM scores reported in [69] are slightly lower than the
ones reported in our study. In particular, the top two tech-
niques in that work (Mountford and Kulcynski2) provide
average EXAM scores of 0.205 and 0.207. However, these
results are not consistent across transformations, as when
comparing the UML-to-ER transformation studied in both
works. The SBFL-Verif approach leads to EXAM scores
below 0.3 for this transformation (see Table 7), while the
SBFL-Test approach leads to values above 0.3 as reported in
Table 7 of [69].

Interestingly, Kulcynski2, Ochiai, Zoltar and Mountford
are the most efficient techniques for SBFL-Test [69]; while
Kulcyinski2, Ochiai, Zoltar and Op2 are the most efficient
techniques for SBFL-Verif as reported by our evaluation.
We see that the only difference is the switch of Mountford
and Op2; however, these techniques have relatively good
results in both approaches. Thus, this work confirms the pre-
viously reported results in [69], although different model
transformation languages, contract languages and model
transformations are used.

6.2 Threats to validity

Wohlin et al. [77] identified four types of threats which have
to be discussed in the context of our study.

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

6.2.1 Conclusion validity threats

The first threat is drawing incorrect conclusions from the
experimental data. To mitigate this, we have applied statisti-
cal analysis by comparing the mean and standard deviation
of all case studies, and have also considered the differences in
theEXAMscores of best- andworst-case scenarios. Box-plot
charts for all case studies have been obtained and analyzed
too. Furthermore, we have applied a deep analysis by study-
ing how the model transformations under test, the contracts
and themutants used in the experiments influence the results.
Finally, our prototypical implementation and the evaluation
data are available online for replication of our study in the
companion materials of this paper [63, 64].

6.2.2 Construct validity threats

A single metric, namely the EXAM score, has been selected
to evaluate the effectiveness of the SBFL techniques and the
impact of the transformation, mutation and contract types on
the results. In addition to the EXAM score, alternative met-
rics have been proposed [80], e.g., the T-score [38], P-score
[83] and N-score [28] to mention just a few. We selected the
EXAM score because (i) it is a well-accepted metric, (i i) is
often used in previous work [80], and (i i i) is straightforward
to compute and easy to understand.

6.2.3 Internal validity threats

We are now discussing threats that might affect the results
of our study. As the first threat, we discuss the usage of a
fixed set of 91 contracts (cf. Table 5). This threat is mini-
mized by the construction of contracts which provide a good
coverage of the transformation implementations and are of
two different types, namely multi- and single-rule contracts
(cf. Sect. 4.2.2). Indeed, the single-rule contracts are built
from the transformation rules, assuring that they cover the
complete model transformation.

Another threat to internal validity is the set of model trans-
formation mutation operators used in the evaluation. Our
mutation operators have been created automatically and are
based on the DSLTrans meta-model and the authors’ expe-
rience with DSLTrans transformations faults [59], so that
they cover a wide variety of aspects of the language. A total
amount of 4852 mutants have been generated (cf. Table 6).
From these mutants, the 91 contracts defined cause 2499 of
them to fail, which means that 2499 mutants have been used
for computing the suspiciousness-based rankings used in the
evaluation. We consider this is a large-enough set of mutants
to believe that the results obtained are not affected by the
specific mutants used, so this threat is sufficiently mitigated.
Another threat in our mutation strategy is that only one rule
at a time is mutated. The presence of multiple mutations in

a rule may require further modification to the suspicousness
techniques [21].

6.2.4 External validity threats

This section mentions threats that might negatively affect
the generalization of our results. As a first threat, we have to
point to the fixed set of five case studies which are used in
our study. To mitigate this threat, we selected model trans-
formations having different size and complexity matching
those in the ATL zoo, coming from different domains and
employing different transformation language features in their
implementations (cf. Table 3). Furthermore, the transforma-
tions used are larger than a majority of relevant ATL zoo
transformations [46], with the UML-to-Kiltera and Fam-to-
Per-Ex transformations larger than 70% of this selection of
the zoo.While larger transformations exist, we consider these
to be a threat to the scalability of the approach rather than the
effectiveness. Finally, we have also used a case study from
industry, namely the GM-to-AUTOSAR case study.

Second, we employed 18 techniques for suspiciousness-
based ranking of model transformation rules. However, there
might be better techniques, i.e., providing higher EXAM
scores, which we did not consider in our study. To counteract
this threat, we have used the same techniques as proposed in
previous work [69].

Third, we have realized our approach for the DSLTrans
language and SyVOLT contract prover, since they provide a
powerful toolkit for transformation verification using sym-
bolic execution. However, as discussed in Sect. 3.3.2, our
approach may produce similar results for other model trans-
formation languages and verification tools which provide the
same analysis capabilities and outputs, i.e., path conditions.
Any such tool may serve as input for our SBFL computation
(cf. Steps 2 and 3 in Fig. 5), which constructs the coverage
matrices and error vectors, and computes the suspiciousness-
based rankings.

Finally, we have tomention that our approach locates bugs
at rule level only, such as related approaches do. This means,
it would bemore challenging for the transformation engineer
to locate a bug in a large rule than in a small rule. While the
debugging output provided by SyVOLT attempts to assist
in further localization by presenting the elements present in
the contract which are missing in the path condition, this is
only a first attempt [51]. To mitigate this threat, it would be
interesting to study as future work the possibility to locate
bugs in specific elements in the rule.

7 Related work

There is significant previous work in the general field of
model transformation validation, verification and debugging.

123



B. J. Oakes et al.

For instance, consider [29, 36, 39, 58, 74] for concrete
approaches and [4, 14, 21, 24, 55] for surveys. Our pre-
sented approach focuses on employing SBFL for symbolic
execution techniques to track the faulty rules and, up to our
knowledge, is the first work in this line. Therefore, with
respect to the contribution of this paper, we discuss two
threads of related work: (i) fault localization approaches
which use static techniques, i.e., not requiring to execute test
suites, and (i i) works that use dynamic approaches which
require to execute test suites. Please note that the presented
SBFL-Verif approach of this paper falls in the first cate-
gory. Finally, a contribution of this work has also been the
implementation of automatic mutation of input DSLTrans
transformationswithin theSyVOLTverification tool (cf. Sec-
tion4.2.3). For this reason, we add a third categorization
of works related to the definition of mutants in an MDE
context.

7.1 Static fault localization

The work of Burgueño et al. [13] compares the elements of
transformation contracts to the rules in the transformation
in a static way. In particular, this is done by computing the
footprints of the contracts and rules in their associated source
and target meta-models. The main idea is to present to the
transformation engineer which rules are causing contracts
to fail by matching the used elements and associations in
the rules and contracts based on the computed meta-model
footprints. The approach shows good performance when the
footprints of the transformation rules are diverse, but in cases
where the rule footprints are very similar, the fault tracking is
more challenging as more rules have to be potentially inves-
tigated.

Cheng and Tisi [15, 17] present a static approach based
on deductive reasoning for tracking guilty rules in ATL
transformations. OCL conditions are decomposed into sub-
goals using a deductive rule-based approach. Unverified
sub-goals can then be traced to transformation rules, allow-
ing for a static slicing approach to provide users with the
specific potentially faulty rules. Their approach focuses on
the decomposition of the verification contracts and tracing
the sub-goal failures back to the faulty rules. In contrast,
our symbolic execution technique focuses on generating the
state space of the transformation as path conditions, and then
using the contract satisfaction result to trace back to the faulty
rules which were symbolically executed in that path condi-
tion.

Cuadrado et al. [19] presented a technique for static anal-
ysis of ATL transformations. In particular, they are using
type inference in combination with other techniques to report
potential syntactic problems in the transformation. In addi-
tion,OCL constraints are generated in order to again generate
“witness” inputmodelswhich should allow to locate the fault.

Furthermore, in [20] also presents a method and system to
propose quick fixes for transformation errors.

Similar to these mentioned approaches, no input models
are necessary in our approach to perform fault localization,
which eases its applicability. However, themain difference of
our work to the aforementioned related ones is that we man-
age to locate faulty rules by combining symbolic execution
and spectrum-based techniques. In fact, we not only perform
a static reasoning based on the content of the model transfor-
mation, like previous works do, but we use the information
on the path conditions taken from symbolic execution to aid
in the effective detection of bugs.

There are multiple works that propose to convert model
transformations to a formal domain where verification can
be carried out automatically [4, 24, 55, 71]. However, these
works tend to focus on the conversion to the formal domain,
and not on the detection of bugs.

7.2 Dynamic fault localization

Locating faulty transformation rules by using a dynamic
approach, i.e., requiring an execution of the model transfor-
mation for particular test cases, has been subject to several
investigations in recent years. Hibberd et al. [31] discussed
so-called forensic debugging techniques for model trans-
formations by resorting on the traces produced as a side
product of model transformation executions. They employ
the traces for reasoning about the relationship between source
and target model elements as well as the transformation
rules. They also proposed debugging questions formulated
as model queries which are executed on the traces (as
they are also represented as models, so-called trace mod-
els). Following this line, in [75], OCL-based queries are
employed for the backwards debugging of model transfor-
mations. A dedicated runtime model incorporating the trace
models between source and target models is constructed
which is the basis for querying the history of a transfor-
mation execution for locating faults. Another approach for
locating faults in model transformations by exploiting trace
models between source and target models is presented in
Aranega et al. [5]. Finally, a dynamic slicing approach for
model transformations is presented in [72]. This approach
can be used to produce slices of model transformations
whichmay be subsequently applied for fault localization pur-
poses.

The work by Troya et al. [69] pioneered the applica-
tion of SBFL to the domain of model-driven engineering,
by applying SBFL techniques for locating faults in model
transformations in the SBFL-Test approach. The SBFL-
Verif approach we propose in this paper follows this line
of research. However, in the previous work of Troya et
al. [69], transformations need to be executed, for which
a test suite must be developed and maintained. After the

123



Fault localization in DSLTrans model transformations by combining symbolic execution…

model transformation finishes, the coverage matrix is built
by using the information about the model transformations
available in the execution traces. In the current SBFL-Verif
approach, however, we do not need to execute the trans-
formation for locating faults. Instead, we apply symbolic
execution for building all possible path conditions for con-
structing the coverage matrix. This SBFL-Verif approach
does not execute the transformation directly, and is thus
especially useful in the case where bugs in a transformation
cause execution errors and the transformation cannot finish
properly. Despite being independent approaches, SBFL-
Verif and SBFL-Test can be complementary as discussed in
Sect. 6.1.

Other approaches which uses test models for performing
SBFL for model transformations are presented in [22, 37,
56]. Du et al. proposed to combine SBFL with metamor-
phic testing as previously proposed in [70]. This allows the
application of SBFL without the need to count on an oracle,
whereas our work relies on contracts as an oracle. Li et al.
proposed to use weighted test models as well as weighted
rule coverage to improve the performance of SBFL, but fol-
low the classical approach of SBFL using large test suites
[37]. Rodriguez-Echeverria et al. develop a novel approach
based onprecision and recallmetrics calculated for every out-
put pattern when executing test models [56]. Combined with
traceability information, repair actions are then suggested on
particular rules, allowing for effective fault localization and
repair.

7.3 Mutants in MDE contexts

There has been extensive work on the definition and auto-
matic generation of mutants in order to apply mutation
analysis in MDE contexts [67]. One research line is the
mutation of OCL expressions which is of general interest
since OCL is an important MDE standard. Jin and Lano
[33] propose a set of mutation operators for the OCL stan-
dard library and classify them into different groups. Clarisó
and Cabot [18] also deal with the mutation of OCL expres-
sions by mutating integrity constraints expressed in OCL in
a structured way. However, there is still a need for the inte-
gration of the automatic generation of OCLmutants in MDE
tools.

Another research line is the generation of mutants for a
given model conforming to a meta-model. Sen and Baudry
[62] presented an approach to derive primitive mutation
operators from meta-models by interpreting them as graph-
grammar rules [23]. These rules are automatically generated
by a model transformation which considers the addition of
model elements, relationships and attributes. Gómez-Abajo
et al. [26, 27] presented WODEL, a dedicated language for
the specification and automatic generation of model mutants.
WODEL considers the following operators: deletion and

addition of elements, element selection strategies and muta-
tion compositions.

The research line most related to the mutants we have
defined and automated for DSLTrans is of course the defini-
tion of mutants for other model transformation approaches.
Mottu et al. [44] pioneered the work on mutation analysis for
model transformations. They define generic mutation oper-
ators for model transformations reflecting basic operations
such asmodel navigation, filtering, outputmodel creation and
input model modification. Aranega et al. [6] turned the muta-
tion operators proposed byMottu et al. [44] intomutations for
the Kermeta language. The presented mutation operators by
Kahn and Hassine [35], Troya et al. [65], Sánchez-Cuadrado
et al. [57] andGuerra et al. [30] are all defined for ATLmodel
transformations. In particular, the work by Guerra et al. [30]
revises the mutation operators proposed in the literature by
the different authors and collect them in a consolidated cat-
alogue of mutation operators for ATL.

While there have been several approaches to automate
mutation analysis for different contexts as has been discussed
in the previous paragraphs, we are not aware of any exist-
ing approach for DSLTrans. However, we followed general
strategies, e.g., as outlined by Mottu et al. [44], and inter-
preted them in the context ofDSLTrans, a graph pattern based
transformation approach.

8 Conclusion

In this paper, we have introduced the first (to the best of our
knowledge) approach to combine a) a symbolic execution
contract-based transformation verification approach with b)
spectrum-based fault localization (SBFL) such that faulty
rules can be suggested to the user. This SBFL-Verif approach
allows a user to perform fault localization without relying on
test cases, thus avoiding the burden of creating and maintain-
ing test suites of sufficient size, quality and coverage.

The implementationof theSBFL-Verif approachdescribed
here utilizes the contract checker tool SyVOLT [64] to pro-
duce path conditions (which represent rule executions) and
indicate which contracts are satisfied or not by each path
condition. This output is fed into a number of suspiciousness-
based ranking techniques, which rank the rules involved in
the failure path conditions.

Wehave found that there are four very effective techniques
for localizing faults, namely Kulcyinski2, Zoltar, Ochiai and
Op2. The rankings they provide lead the user to inspect less
than a quarter of themodel transformation to locate the faulty
rule in many case studies. As well, these and three other
techniques (Russel Rao,Mountford and Braun-Banquet) are
able to locate the faulty rule in the top-three over 70% of the
time for all case studies analyzed.

These conclusions have been derived from studying how
the model transformation under test, contracts and the model

123



B. J. Oakes et al.

transformation faults (by creating mutants) affect the effec-
tiveness of the SBFL techniques. Regarding the types of con-
tracts, better results are generally obtained with single-rule
contracts created from individual rules in the transforma-
tion, but multi-rule contracts also work well. Furthermore,
our approach works well with most of the mutation types
used in our study.

However, the approach also has some limitations when it
comes to the number of path conditions which are produced
for a transformation. For the coverage required for fault local-
ization techniques, we estimate that at least one or two dozen
path conditions is required for our approach to work effec-
tive. When this is not possible, we recommend applying the
dynamic SBFL-Test approach forwhich the generation of test
cases are necessary [69]. As future work, we aim to identify
further the relationship between the number of path condi-
tions and the quality of the EXAM scores, and the possibility
of generating further path conditions on demand. In addition,
we plan to investigate the use of path conditions to generate
input models, allowing the interplay between both the SBFL-
Verif and SBFL-Test approaches.
There are further lines of work that we would like to explore
next. As single-rule contracts (SRCs) aremirrors of the rules,
we plan to automate their creation. This may enable some
degree of SBFL on transformations which do not yet have
contracts. However, as mentioned in Sect. 4.2.2, not all SRCs
are satisfied even on a correct version of the transformation.
We leave as an open question how to combine (i) automatic
SRC construction, and (b) managing the unknown contract
verification status, during the construction process of the
transformation. Finally, we will study the scalability of our
approach and consider improvements such as incremental
verification [16].

Verifiability

Our prototype and all artifacts of the experiments are avail-
able online. First, the SyVOLT tool is available on [64], from
which XML files with the results of the symbolic execu-
tion for all case studies, all contracts and all mutants have
been obtained. Second, the outputs provided by SyVOLT are
used as input for the spectrum-based fault localization imple-
mentation, provided in [63]. Instructions are provided for its
execution. As well, the CSV files with the results generated
for all case studies, contracts and mutants are provided.

Acknowledgements The authors thank Lola Burgueño from the Uni-
versity ofMalaga for her insightful comments on this work. The authors
have no competing interests to declare that are relevant to the content
of this article. This work was partially funded by the Spanish Govern-
ment (FEDER/Ministerio de Ciencia e Innovación–Agencia Estatal de
Investigación) under projects PID2021-125527NB-I00 and TED2021-
130523B-I00, by the Austrian Science Fund (P 30525-N31), and by
the Austrian Federal Ministry for Digital and Economic Affairs and

the National Foundation for Research, Technology and Development
(CDG).

Funding Funding for open access publishing: Universidad Málaga/
CBUA.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: On the Accu-
racy of Spectrum-based Fault Localization. In: Proceedings of the
TAICPART-MUTATION, pp. 89–98 (2007)

2. Abreu, R., Zoeteweij, P., Gemund, A.J.C.V.: Spectrum-based mul-
tiple fault localization. In: Proceedings of the ASE, pp. 88–99.
IEEE Computer Society (2009)

3. Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.: A practi-
cal evaluation of spectrum-based fault localization. J. Syst. Softw.
82(11), 1780–1792 (2009). https://doi.org/10.1016/j.jss.2009.06.
035

4. Amrani, M., Combemale, B., Lucio, L., Selim, G.M.K., Dingel, J.,
Traon, Y.L., Vangheluwe, H., Cordy, J.R.: Formal verification tech-
niques for model transformations: a tridimensional classification.
J. Object Technol. 14(3), 1:1-43 (2015)

5. Aranega, V., Mottu, J., Etien, A., Dekeyser, J.: Traceability mecha-
nism for error localization inmodel transformation. In: Proceedings
of the ICSOFT, pp. 66–73 (2009)

6. Aranega, V., Mottu, J.M., Etien, A., Degueule, T., Baudry, B.,
Dekeyser, J.L.: Towards an automation of the mutation analysis
dedicated to model transformation. Softw. Test. Verif. Reliab. 25,
653–683 (2015)

7. Assiri, F.Y., Bieman, J.M.: Fault localization for automated pro-
gram repair: effectiveness, performance, repair correctness. Softw.
Quality J. 25(1), 171–199 (2017)

8. ATL: ATL Zoo. http://www.eclipse.org/atl/atlTransformations
(2006)

9. Barroca, B., Lúcio, L., Amaral, V., Félix, R., Sousa, V.: DSLTrans:
A turing incomplete transformation language. In: Proceedings of
the SLE, pp. 296–305 (2011)

10. Baudry,B.,Dinh-Trong, T.,Mottu, J.M., Simmonds,D., France,R.,
Ghosh, S., Fleurey, F., Le Traon, Y.: Model transformation testing
challenges. In: Proceedings of the ECMDAWorkshop on Integra-
tion of Model Driven Development and Model Driven Testing, pp.
432–448 (2006). https://doi.org/10.1007/978-3-642-33666-9_28

11. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu,
J.M.: Barriers to systematic model transformation testing. Com-
mun. ACM 53(6), 139–143 (2010)

12. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software
Engineering in Practice, 2nd edn. Morgan & Claypool, San Rafael
(2017)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1016/j.jss.2009.06.035
http://www.eclipse.org/atl/atlTransformations
https://doi.org/10.1007/978-3-642-33666-9_28


Fault localization in DSLTrans model transformations by combining symbolic execution…

13. Burgueno, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault
localization in model transformations. IEEE Trans. Softw. Eng.
41(5), 490–506 (2015)

14. Calegari, D., Szasz, N.: Verification of model transformations: a
survey of the state-of-the-art. Electron. Notes Theor. Comput. Sci.
292, 5–25 (2013)

15. Cheng, Z., Tisi, M.: A deductive approach for fault localization
in ATL model transformations. In: Proceedings of the FASE, pp.
300–317 (2017)

16. Cheng, Z., Tisi, M.: Incremental deductive verification for rela-
tional model transformations. In: Proceedings of the ICST, pp.
379–389. IEEE (2017)

17. Cheng,Z., Tisi,M.: SlicingATLmodel transformations for scalable
deductive verification and fault localization. Int. J. Soft. Tools Tech.
Transf. 20(6), 645–663 (2018)

18. Clarisó, R., Cabot, J.: Fixing defects in integrity constraints via
constraint mutation. In: Proceedings of the QUATIC, pp. 74–82
(2018)

19. Cuadrado, J.S., Guerra, E., de Lara, J.: Static analysis of model
transformations. IEEE Trans. Softw. Eng. 43(9), 868–897 (2017)

20. Cuadrado, J.S., Guerra, E., de Lara, J.: Quick fixing ATL trans-
formations with speculative analysis. Softw. Syst. Model. 17(3),
779–813 (2018). https://doi.org/10.1007/s10270-016-0541-1

21. de Souza, H.A., Mutti, D., Chaim, M.L., Kon, F.: Contextualizing
spectrum-based fault localization. Inf. Softw. Technol. 94, 245–261
(2018)

22. Du, K., Jiang, M., Ding, Z., Huang, H., Shu, T.: Metamorphic test-
ing in fault localization of model transformations. In: International
Workshop on Structured Object-Oriented Formal Language and
Method, pp. 299–314. Springer (2019)

23. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.):
Handbook of Graph Grammars and Computing by Graph Trans-
formation: Voloume 2: Applications, Languages, and Tools (1999)

24. Gabmeyer, S., Kaufmann, P., Seidl, M., Gogolla, M., Kappel, G.:
A feature-based classification of formal verification techniques for
software models. Softw. Syst. Model. 18(1), 473–498 (2019)

25. Gogolla,M.,Vallecillo,A.: Tractablemodel transformation testing.
In: Proceedings of the ECMFA, pp. 221–235. Springer (2011)

26. Gómez-Abajo, P., Guerra, E., de Lara, J.:Wodel: a domain-specific
language for model mutation. In: Proceedings of the SAC, pp.
1968–1973 (2016)

27. Gómez-Abajo, P., Guerra, E., de Lara, J.: A domain-specific lan-
guage for model mutation and its application to the automated
generation of exercises. Comput. Lang. Syst. Struct. 49, 152–173
(2017)

28. Gong, C., Zheng, Z., Li, W., Hao, P.: Effects of class imbalance in
test suites: an empirical study of spectrum-based fault localization.
In: Proceedings of the COMPSAC, pp. 470–475 (2012)

29. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A.,
Retschitzegger,W., Schönböck, J., Schwinger,W.:Automated veri-
ficationofmodel transformations basedonvisual contracts.Autom.
Softw. Eng. 20(1), 5–46 (2013)

30. Guerra, E., Sánchez-Cuadrado, J., de Lara, J.: Towards effective
mutation testing for ATL. In: Proceedings of the MODELS, pp.
78–88 (2019)

31. Hibberd, M., Lawley, M., Raymond, K.: Forensic debugging of
model transformations. In: Proceedings of the MoDELS, pp. 589–
604. Springer (2007)

32. Janssen, T., Abreu, R., van Gemund, A.J.: Zoltar: a spectrum-
based fault localization tool. In: Proceedings of the SIN-
TER@ESEC/FSE, pp. 23–30. ACM (2009)

33. Jin, K., Lano, K.: Design and classification of mutation operators
for OCL specification. In: Proceedings of the MODELS, pp. 852–
861 (2022)

34. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula
automatic fault-localization technique. In: Proceedings of theASE,
pp. 273–282. ACM (2005)

35. Khan, Y., Hassine, J.: Mutation operators for the atlas transfor-
mation language. In: Proceedings of the ICSTW Workshops, pp.
43–52 (2013)

36. Lano, K., Clark, T., Kolahdouz-Rahimi, S.: A framework formodel
transformation verification. Formal Aspects Comput. 27, 193–235
(2014)

37. Li, P., Jiang, M., Ding, Z.: Fault localization with weighted test
model in model transformations. IEEE Access 8, 14054–14064
(2020)

38. Liu, C., Fei, L., Yan, X., Han, J., Midkiff, S.P.: Statistical debug-
ging: a hypothesis testing-based approach. IEEETrans. Softw. Eng.
32(10), 831–848 (2006)

39. Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim,
G.M.K., Syriani, E., Wimmer, M.: Model transformation intents
and their properties. Softw. Syst. Model. 15(3), 647–684 (2016)

40. Lúcio, L., Oakes, B.J., Gomes, C., Selim, G., Dingel, J., Cordy, J.,
Vangheluwe, H.: SyVOLT: Full model transformation verification
using contracts. In: Proceedings of theMODELS, pp. 24–27 (2015)

41. Mao, X., Lei, Y., Dai, Z., Qi, Y., Wang, C.: Slice-based statistical
fault localization. J. Syst. Softw. 89, 51–62 (2014). https://doi.org/
10.1016/j.jss.2013.08.031

42. Maxwell, A.E., Pilliner, A.E.G.: Deriving coefficients of reliability
and agreement for ratings. Br. J. Math. Stat. Psychol. 21(1), 105–
116 (1968)

43. Meghzili, S., Chaoui, A., Strecker, M., Kerkouche, E.: Verification
of model transformations using Isabelle/HOL and Scala. Inf. Syst.
Front. 21(1), 45–65 (2019)

44. Mottu, J.M., Baudry, B., Le Traon, Y.: Mutation analysis testing
for model transformations. In: Proceedings of the ECMDA-FA, pp.
376–390 (2006)

45. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-
based software diagnosis. ACM Trans. Softw. Eng. Methodol.
20(3), 11:1-11:32 (2011)

46. NaoMod Research Group - IMTAtlantique: ATL Zoo Benchmark.
https://github.com/atlanmod/mondo-atlzoo-benchmark

47. Narayanan, A., Karsai, G.: Verifying model transformations by
structural correspondence. Electron. Commun. Eur. Assoc. Softw.
Sci. Technol. 10 (2008)

48. Oakes, B.J.: A symbolic execution-based approach to model trans-
formation verification using structural contracts. Ph.D. thesis,
McGill University (2018)

49. Oakes, B.J., Troya, J., Lúcio, L., Wimmer, M.: Fully verifying
transformation contracts for declarative ATL. In: Proceedings of
the MODELS, pp. 256–265 (2015)

50. Oakes, B.J., Troya, J., Lúcio, L., Wimmer, M.: Full contract ver-
ification for ATL using symbolic execution. Softw. Syst. Model.
17(3), 815–849 (2018)

51. Oakes, B.J., Verbrugge, C., Lúcio, L., Vangheluwe, H.: Debugging
of model transformations and contracts in SyVOLT. In: Proceed-
ings of the MDEbug@MODELS, pp. 532–537 (2018)

52. Paen, E.: Measuring incrementally developed model transforma-
tions using change metrics. Master’s thesis, Queen’s University
(2012)

53. Posse, E., Dingel, J.: An executable formal semantics for UML-RT.
Softw. Syst. Model. 15, 179–217 (2016)

54. Qi, Y.,Mao, X., Lei, Y.,Wang, C.: Using automated program repair
for evaluating the effectiveness of fault localization techniques. In:
Proceedings of the ISSTA, pp. 191–201. ACM (2013). https://doi.
org/10.1145/2483760.2483785

55. Rahim, L.A., Whittle, J.: A survey of approaches for verifying
model transformations. Softw. Syst. Model. 14(2), 1003–1028
(2015)

123

https://doi.org/10.1007/s10270-016-0541-1
https://doi.org/10.1016/j.jss.2013.08.031
https://doi.org/10.1016/j.jss.2013.08.031
https://github.com/atlanmod/mondo-atlzoo-benchmark
https://doi.org/10.1145/2483760.2483785
https://doi.org/10.1145/2483760.2483785


B. J. Oakes et al.

56. Rodriguez-Echeverria, R., Macías, F., Rutle, A., Conejero, J.M.:
Suggesting model transformation repairs for rule-based languages
using a contract-based testing approach. Softw. Syst. Model. 21(1),
81–112 (2022)

57. Sánchez-Cuadrado, J., Guerra, E., de Lara, J.: Static analysis of
model transformations. IEEE Trans. Softw. Eng. 43, 868–897
(2017)

58. Selim, G.: Formal verification of graph-based model transforma-
tions. Ph.D. thesis, Queen’s University (2015)

59. Selim, G., Cordy, J., Dingel, J., Lúcio, L., Oakes, B.J.: Finding and
fixing bugs in model transformations with formal verification: an
experience report. In: Proceedings of the ATM @ MODELS, pp.
26–35 (2015)

60. Selim,G., Lúcio, L., Cordy, J., Dingel, J., Oakes, B.J.: Specification
and verification of graph-based model transformation properties.
In: Proceedings of the ICGT, pp. 113–129. Springer (2014)

61. Selim, G.M.K., Wang, S., Cordy, J.R., Dingel, J.: Model transfor-
mations for migrating legacy models: an industrial case study. In:
Proceedings of the ECMFA, pp. 90–101. Springer (2012)

62. Sen, S., Baudry, B.: Mutation-based model synthesis in model
driven engineering. In: Proceedings of the Mutation Workshop,
pp. 1–10 (2006)

63. SBFL for MT with Symbolic Execution. https://doi.org/10.5281/
zenodo.3954860. https://github.com/javitroya/sbfl-symbolic-
execution-mt

64. SyVOLT tool. https://github.com/levilucio/SyVOLT
65. Troya, J., Bergmayr, A., Burgueño, L., Wimmer, M.: Towards sys-

tematic mutations for and with ATL model transformations. In:
Proceedings of the ICSTWWorshops, pp. 1–10 (2015)

66. Troya, J., Bergmayr, A., Burgueno, L., Wimmer, M.: Towards
systematic mutations for and with ATL model transformations.
In: Proceedings of the Mutation Workshop @ ICSTW, pp. 1–10
(2015). https://doi.org/10.1109/ICSTW.2015.7107455

67. Troya, J., Segura, S., Burgueño, L., Wimmer, M.: Model trans-
formation testing and debugging: a survey. ACM Comput. Surv.
(CSUR) 55(4), 1–39 (2022)

68. Troya, J., Segura, S., Parejo, J.A., Ruiz-Cortes, A.: An approach
for debugging model transformations applying spectrum-based
fault localization. In: XXII Jornadas de Ingeniería del Software
y Bases de Datos (JISBD) (2017). https://biblioteca.sistedes.es/
submissions/uploaded-files/JISBD_2017_paper_32.pdf

69. Troya, J., Segura, S., Parejo, J.A., Ruiz-Cortés, A.: Spectrum-based
fault localization in model transformations. ACM Trans. Softw.
Eng. Methodol. 27(3), 13:1-13:50 (2018)

70. Troya, J., Segura, S., Ruiz-Cortés, A.: Automated inference of
likely metamorphic relations for model transformations. J. Syst.
Softw. 136, 188–208 (2018). https://doi.org/10.1016/j.jss.2017.05.
043

71. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. J.
Object Technol. 10(5), 1–29 (2011)

72. Ujhelyi, Z., Horváth, Á., Varró, D.: Dynamic backward slicing
of model transformations. In: Proceedings of the ICST, pp. 1–10.
IEEE (2012)

73. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting
your models ready for MDA. Addison Wesley, Boston (2003)

74. Weidmann, N., Yigitbas, E., Anjorin, A., Srivastava, A., Jose, J.:
Human-in-the-loop large-scalemodel transformationswith the vic-
tory debugger. J. Object Technol. 21(3), 3:1–15 (2022). https://doi.
org/10.5381/jot.2022.21.3.a8. http://www.jot.fm/contents/issue_
2022_03/article8.html. The 18th European Conference on Mod-
elling Foundations and Applications (ECMFA 2022)

75. Wimmer,M., Kappel, G., Schönböck, J., Kusel, A., Retschitzegger,
W., Schwinger, W.: A Petri Net based debugging environment for
QVTRelations. In: Proceedings of theASE, pp. 3–14. IEEE (2009)

76. Wimmer, M., Martínez, S., Jouault, F., Cabot, J.: A catalogue of
refactorings for model-to-model transformations. J. Object Tech-
nol. 11(2), 2:1-40 (2012). https://doi.org/10.5381/jot.2012.11.2.a2

77. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.:
Experimentation in Software Engineering. Springer, Berlin (2012)

78. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The DStar method for
effective software fault localization. IEEE Trans. Reliab. 63(1),
290–308 (2014). https://doi.org/10.1109/TR.2013.2285319

79. Wong,W.E., Debroy, V., Li, Y., Gao, R.: Software fault localization
using DStar (D*). In: Proceedings of the SERE, pp. 21–30 (2012)

80. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on
software fault localization. IEEE Trans. Softw. Eng. 42(8), 707–
740 (2016)

81. Xie, X., Chen, T.Y., Kuo, F.C., Xu, B.: A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization.
ACM Trans. Softw. Eng. Methodol. 22(4), 31:1-31:40 (2013)

82. Yu, Y., Jones, J.A., Harrold, M.J.: An empirical study of the effects
of test-suite reduction on fault localization. In: Proceedings of the
ICSE, pp. 201–210. ACM (2008)

83. Zhang, Z., Chan, W., Tse, T., Hu, P., Wang, X.: Is non-parametric
hypothesis testing model robust for statistical fault localization?
Inf. Softw. Technol. 51(11), 1573–1585 (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Bentley James Oakes is an Assis-
tant Professor in the Department
of Computer Engineering and Soft-
ware Engineering at Polytechnique
Montréal, Canada. Previously, he
was a post-doctoral researcher at
the University of Montréal and
at the University of Antwerp. He
received his PhD at McGill Uni-
versity in 2019 on the topic of
model transformation verification.
His research interests include dig-
ital twins, verification of cyber-
physical systems, model-driven
engineering, knowledge represen-

tation, and model transformations. Please visit https://bentleyjoakes.
github.io/ for more information.

Javier Troya is Associate Pro-
fessor of Software Engineering at
the University of Màlaga, Spain.
Previously, he was a postdoctoral
researcher as well as Assistant
and Associate Professor at the Uni-
versity of Seville, Spain (2016
to 2021), and a postdoctoral
researcher in the TU Wien, Aus-
tria (2013 to 2015). He obtained
his International PhD with honors
from the University of Màlaga,
Spain (2013), and was awarded
in 2020 with the I3 Certificate by
the Spanish Ministry of Science,

Innovation and Universities. His current research interests include
model transformation testing, uncertainty modeling and digital twins.
Contact him at jtroya@uma.es or visit https://javiertroyauma.github.
io/.

123

https://doi.org/10.5281/zenodo.3954860
https://doi.org/10.5281/zenodo.3954860
https://github.com/javitroya/sbfl-symbolic-execution-mt
https://github.com/javitroya/sbfl-symbolic-execution-mt
https://github.com/levilucio/SyVOLT
https://doi.org/10.1109/ICSTW.2015.7107455
https://biblioteca.sistedes.es/submissions/uploaded-files/JISBD_2017_paper_32.pdf
https://biblioteca.sistedes.es/submissions/uploaded-files/JISBD_2017_paper_32.pdf
https://doi.org/10.1016/j.jss.2017.05.043
https://doi.org/10.1016/j.jss.2017.05.043
https://doi.org/10.5381/jot.2022.21.3.a8
https://doi.org/10.5381/jot.2022.21.3.a8
http://www.jot.fm/contents/issue_2022_03/article8.html
http://www.jot.fm/contents/issue_2022_03/article8.html
https://doi.org/10.5381/jot.2012.11.2.a2
https://doi.org/10.1109/TR.2013.2285319
https://bentleyjoakes.github.io/
https://bentleyjoakes.github.io/
https://javiertroyauma.github.io/
https://javiertroyauma.github.io/


Fault localization in DSLTrans model transformations by combining symbolic execution…

Jessie Galasso is an Assistant Pro-
fessor in the Department of Elec-
trical and Computer Engineering
at McGill University, Canada. She
received a Ph.D in Computer Sci-
ence in 2018 from the Univer-
sity of Montpellier (France). Her
research interests include aug-
mented software engineering, vari-
ability management and model-
ing, modeldriven engineering,
machine learning, mining software
repositories and software reverse-
engineering. For more informa-
tion, please visit https://jgalasso.

github.io.

Manuel Wimmer is full professor
leading the Institute of Business
Informatics-Software Engineering
at the Johannes Kepler Univer-
sity Linz, and he is the head of
the Christian Doppler Laboratory
CDL-MINT. His research inter-
ests comprise foundations of
model engineering techniques as
well as their application in domains
such as tool interoperability, legacy
modeling tool modernization,
model versioning and evolution,
and industrial engineering. For
more information, please visit http

s://www.se.jku.at/manuel-wimmer.

123

https://jgalasso.github.io
https://jgalasso.github.io
https://www.se.jku.at/manuel-wimmer
https://www.se.jku.at/manuel-wimmer

	Fault localization in DSLTrans model transformations by combining symbolic execution and spectrum-based analysis
	Abstract
	1 Introduction
	2 Background
	2.1 Families2Persons_Extended model transformation
	2.2 DSLTrans transformation language
	2.3 Symbolic execution and contract verification
	2.3.1 Path conditions
	2.3.2 Contracts and contract verification
	2.3.3 Technique limitations

	2.4 SBFL in model transformations
	2.4.1 Building the coverage matrix and error vector
	2.4.2 EXAM score: effectiveness of suspiciousness techniques


	3 SBFL-verif approach and methodology
	3.1 Coverage matrix and error vector
	3.2 Suspiciousness calculation
	3.3 Methodology
	3.3.1 Methodology comparison to SBFL-Test
	3.3.2 Generalizing SBFL-verif for other transformation languages


	4 Evaluation setup
	4.1 Research questions
	4.2 Experimental setup
	4.2.1 Model transformations
	4.2.2 Contracts
	4.2.3 Mutant generation
	4.2.4 Techniques for suspiciousness computation

	4.3 Evaluation metrics
	4.3.1 Evaluation metrics for answering RQ1
	4.3.2 Evaluation metrics for answering RQ2
	4.3.3 Evaluation metrics for answering RQ3

	4.4 Prototypical implementation
	4.4.1 Execution environment


	5 Evaluation results and critical discussion
	5.1 RQ1
	5.2 RQ2
	5.2.1 RQ2.1
	5.2.2 RQ2.2
	5.2.3 RQ2.3

	5.3 RQ3

	6 Discussion and threats to validity
	6.1 Comparison of SBFL-verif and SBFL-test
	6.2 Threats to validity
	6.2.1 Conclusion validity threats
	6.2.2 Construct validity threats
	6.2.3 Internal validity threats
	6.2.4 External validity threats


	7 Related work
	7.1 Static fault localization
	7.2 Dynamic fault localization
	7.3 Mutants in MDE contexts

	8 Conclusion
	Verifiability
	Acknowledgements
	References


