PHS6317 NANO-ENGINEERING OF THIN FILMS

Ludvik Martinu, ing., PhD

Professor

Polytechnique Chair: Multifunctional Coatings and Surface Engineering

ludvik.martinu@polymtl.ca

www.polymtl.ca/larfis

PHS 6317 Nanoengineering of thin films

Course schedule - Winter 2024

12 January	Introduction – Scientific and technological challenges
19	Fabrication methods – Vacuum physics and vapor-phase techniques
26*	Fabrication methods – Plasma processes
2 February	Fabrication methods - Plasma-surfaces interactions and diagnostics
9*	Fabrication methods – Thermal/Plasma spray technologies
16***	Optics of thin films 1, optical characterization, Miniquiz1 (5%)
23**	Optics of thin films 2, design of optical filters
1* March	Presentations – Emerging fabrication techniques (30%)

March 4-8 - Winter/Spring break

15***	Tribomechanical properties of films and coatings
22**	Electrochemical properties – corrosion and tribo-corrosion (filter-20%)
5 April	Passive functional films and coatings, Miniquiz 2 (5%)
12	Active functional films and coatings
16	Life cycle analysis and environmental impact
19***	Presentations – Emerging applications of nanostructured films (40%)

Deadlines:

Project #1 – Fabrication technique:

Choice of the subject: 26 January

Abstract and references: 9 February

Report and presentation: 1st March

Projet #2 – Design of an optical filter:

Choice of the subject: 16 February

Report: 22 March

<u>Projet #3 – Application of nanostructred</u> <u>thin films:</u>

Choice of the subject: 16 February

Abstract and references: 15 March

Report and presentation: 19 April

Evaluation

 Project 1: Bibliographic research on an emerging fabrication technique of thin films - Report and presentation 	30%
2. Project 2: Design of an optical filter - Report	20%
3. Project 3: Bibliographic research on a specific application of the nano- engineering of thin films - Report and presentation	
4. Miniquiz 1 and 2 (@ 5%)	10%

Project 1: Bibliographic reserach on an emerging fabrication technique; Report and presentation (20% + 10% = 30%)

Deliverables: Report – max 10 pages (letter size, 2 cm margins, Times New Roman 12 pts single space)

Structure and contents:

Summary – abstract

Introduction: challenges, possible approaches, choice of the subject and its justification

Scientific description of the fabrication technique: principles of operation, background theory, experimental set up, advantages and disadvantages, open questions

Conclusions

Bibliography – papers from refereed journals

Evaluation:

Scientific depth – 50%

Structure, clarity, consistency, critical sense – 30%

Form – how smooth reading and listening, quality of figures and tables, language – 20%

Deadlines:

PHS6317:

Nanoengineering of Thin Films - W2024

Project 2: Design of an optical filter (20%)

Specific requirements:

Deliverables: Report, maximum 8 pages (letter size paper, 2 cm margins, Times new roman 12 pts)

Structure and contents:

- Introduction describe the choice of the specific filter
- Optical specifications of the filter: spectral characteristics in T and R, tolerances
- Methodology of the design (architecture, materials, optimization,...)
- Discussion of the performance and sensitivity to the fabrication process
- Conclusions

Deadlines:

Choice of the filter: .. 16 February

Report: 22 March

Nanoengineering of Thin Films - W2024

Project 3: Bibliographic reserach on an emerging application of the nanoengineering of thin films; Report and presentation (30% + 10% = 40%)

Deliverables: Report – max. 16 pages (letter size, 2 cm margins, Times New Roman 12 pts single space)

Structure and contents:

Summary – abstract

Introduction: challenges and problems, possible approaches

Scientific description of the solution: principles of operation, background theory, experimental set up, advantages and disadvantages, impact, open questions

Conclusions

Bibliography – papers from refereed journals

Evaluation:

Scientific depth – 50%

Structure, clarity, consistency, critical sense – 30%

Form – how smooth reading and listening, quality of figures and tables, language – 20%

Deadlines:

PHS6317:

Nanoengineering of Thin Films - W2024