
2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)

Triangulation-Based Indoor Robot Localization
Using Extended FIR/Kalman Filtering

Moises Granados-Cruz, Juan Pomárico-Franquiz, Yuriy S. Shmaliy
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Abstract—A combined extended finite impulse response
(EFIR) and Kalman (EFIR/Kalman) algorithm is proposed for
mobile robot localization via triangulation. A distinctive advan-
tage of the EFIR algorithm is that it completely ignores the noise
statistics which are typically not well known to the engineer.
Instead, it requires an optimal averaging interval of Nopt points.
To run this algorithm, several initial Kalman estimates are used
for the roughly set noise covariances. We consider a mobile robot
travelling on an indoor floorspace and localized via triangulation
with three nodes in a view. We show that the EFIR/Kalman
filter is more accurate than the extended Kalman filter under the
uncertain noise statistics and initial state.

I. INTRODUCTION

Mobile robot applications require automatic localization or
self-localization often in a way fast, accurate and low cost.
Although the problem has been solved during decades by
various methods [1], [2], the traditional triangulation is still
used in many cases utilizing information obtained from three
nodes having known coordinates. The first method implies that
all stationary nodes are active (beacons) and the robot has
a rotating receiver [1], [3]–[7]. The second method implies
using passive landmarks or reflectors and rotating transmitter-
receiver [1], [8], [9]. In the three-node triangulation system,
three angles are often measured between the robot heading
and the directions to the nodes [10]. These angles are coupled
with the robot plane coordinates and heading by nonlinear
equations. The equations can be solved for unknown robot
coordinates and heading. Similarly, the algebraic equations
can be solved for the unknown coordinates employing the
trilateration methods and their modifications [11]. However,
accuracy is commonly insufficient in noisy environments and
optimal estimators are required.

The estimation theory offers several useful methods to the
triangulation problem. One of the most common approaches is
the extended Kalman filter (EKF) proposed by Cox [12] and
others. The EKF was used in tracking and robotics extensively
[1], [2], [13], [14] and has become a tool for moving ve-
hicular navigation, tracking, localization, and self-localization
[15], [16]. The benefit of the EKF resides in the following
facts: 1) It solves the nonlinear equations while providing
optimal denoising; 2) Its fast recursive algorithm requires small
memory and is thus low-cost, and 3) It practically does not
demonstrate divergence under the normal conditions of trian-
gulation. However, EKF has also several widely recognized
flaws: 1) Biased estimates, because noise is nonadditive in the

triangulation formulation; 2) Divergence under the conditions
of large nonlinearities and large noise [17] that is typical for
boundaries of the floorspace area; 3) High sensitivity to noise;
that is, the performance of EKF may be poor if the noise
covariance matrices and initial errors are not well known [18];
and 4) Large errors under the industrial uncertainties and when
noise is nonwhite Gaussian (heavy-tailed or Gaussian with
outliers) [18].

Referring to these drawbacks, several alternative ap-
proaches have been developed in recent decades. The un-
scented Kalman filter (UKF) [19] demonstrates better per-
formance when the state-space models is highly nonlinear.
The hidden Markov model (HMM) filters [20] have appeared
to be more useful for tracking [21]. A sequential Monte
Carlo (SMC) method also known as a particle filter (PF) [22]
was developed to estimate Bayesian models associated with
Markov chains in discrete-time domain be especially useful
for robot self-localization [23]. Another alternative to the EKF
that has an infinite impulse response (IIR) is the extended
finite impulse response (EFIR) filter recently proposed in [24].
Unlike the EKF, UKF, and optimal FIR (OFIR) filters [25],
[26], the EFIR filter totally ignores the noise statistics and
initial error statistics. Similarly to PFs, the EFIR filter exploits
most recent past measurements which number is required to
be optimal Nopt [27]. However, this technique is still not
developed for robot localization and requires investigations.
Below, we provide some results for localization via triangula-
tion employing the FIR/Kalman filtering approach developed
in [10].

II. TRIANGULATION AND FILTERING PROBLEM

Let us suppose that three nodes A, B, and C (beacons or
passive marks) are mounted in an indoor space as shown in
Fig. 1. A robot travels in the direction d with all three nodes
in a view. A detailed schematic two-dimensional geometry
of a moving robot is given in Figure 2. A node B(0, 0) is
placed in the corner that is a center of the indoor space planar
Cartesian coordinates and two other nodes have coordinates
A(0, y1) and C(x3, 0). A robot travels in its own planar
Cartesian coordinates (xr, yr) with a center at M(x, y); that
is, the robot direction always coincides with axis xr. All
nodes are observable by a robot or otherwise the nodes can
observe a robot. The angles φ1, φ2, and φ3 between axis
xr and the directions to the relevant nodes are supposed to
be measurable by commercially available means. The robot
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Fig. 1. A mobile robot platform traveling on an indoor floorspace in
the direction d with the three nodes A, B, and C in a view.

Fig. 2. Schematic two-dimensional geometry of a robot traveling on
an indoor floorspace (Fig. 1).

behavior is controlled by left and right wheels installed at
a distance b and the stabilizing wheel is not shown. The
incremental distances robot travels by these wheels are dL and
dR, respectively.

The incremental distance dn at the mid-axis point and the
incremental change ϕn in pose can be found at discrete time
index n from the robot odometry as

dn =
1

2
(dRn + dLn) , (1)

ϕn = arctan
dRn − dLn

b
∼=

1

b
(dRn − dLn) . (2)

In turn, the unknown coordinates xn and yn and pose Φn can
be obtained by the robot kinematics with equations

f1n = xn = xn−1 + dn cos

(
Φn−1 +

1

2
ϕn

)
, (3)

f2n = yn = yn−1 + dn sin

(
Φn−1 +

1

2
ϕn

)
, (4)

f3n = Φn = Φn−1 + ϕn , (5)

in which the values xn−1, yn−1, and Φn−1 at time n− 1 are
projected to time n by the time-variant incremental distances
dLn and dRn via (1) and (2). Note that all the values in (3)-
(5) are practically not exact and have some additive random
components.

In the triangulation problem illustrated in Fig. 2, state
variables xn, yn, and Φn are observable indirectly via the
measured angles φ1n, φ2n, and φ3n as

φin = θin − Φn , (6)

where i = 1, 2, 3 and the exactly known mod 2π angles θ1n,
θ2n, and θ3n existing from −π to π are given by

θin =

 arctan Qin

Iin
, Iin > 0

arctan Qin

Iin
± π , Iin < 0 ,

{
Qin > 0
Qin < 0

, (7)

where Qin = yi − yn, Iin = xi − xn, and the node known
coordinates yi and xi are: y1 ̸= 0, y2 = y3 = 0, x1 = x2 = 0,
and x3 ̸= 0.

A solution to (6) gives us the robot location, x̃n and ỹn,
and pose Φ̃n corrupted by noise:

tg Φ̃n =
An cosφ1n − sinφ3n

An sinφ1n + cosφ3n
, (8)

x̃n =
x3 tg (φ3n + Φ̃n)

tg (φ3n + Φ̃n)− tg (φ2n + Φ̃n)
, (9)

ỹn = x̃n tg (φ2n + Φ̃n) , (10)

where
An =

y1
x3

sin(φ3n − φ2n)

sin(φ2n − φ1n)
(11)

and Φ̃n is the mod 2π angle specified similarly to (7). In this
paper, we use x̃n, ỹn, and Φ̃n as reference noisy “linear”
measurements united in a vector yn = [ x̃n ỹn Φ̃n ]

T .

A. Triangulation State-Space Model

We now introduce a state vector xn = [xn yn Φn ]
T of

unknown variables and an input vector un = [ dLn dRn ]
T

of incremental distances. We suppose that random compo-
nents in these values are zero mean white Gaussian and
uncorrelated. We unite these components in a state noise
vector wn = [wxn wyn wΦn ]

T and an input noise vector
en = [ eLn eRn ]

T . Following (3)-(5), the robot nonlinear state
equation can thus be written as

xn = fn(xn−1,un,wn, en) , (12)

where fn = [ f1n f2n f3n ]
T has components given by (3)-

(5). Noise vectors wn and en are zero mean, E{wn} = 0
and E{en} = 0, have the covariances, Q = E{wnw

T
n } and

L = E{eneTn}, and a property E{wie
T
j } = 0 for all i and j.

For the observation vector zn = [φ1n φ2n φ3n ]
T ,

nonlinear function vector hn(xn) = [ θ1n − Φn θ2n −
Φn θ3n−Φn ]

T , and measurement additive noise vector vn =
[ v1n v2n v3n ]

T , the state observation equation becomes

zn = hn(xn) + vn , (13)
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in which noise vn is also supposed to be white Gaussian with
zero mean E{vn} = 0, the covariance R = E{vnv

T
n }, and

properties E{viw
T
j } = 0 and E{vie

T
j } = 0 for all i and

j. The robot stochastic dynamics is thus represented with the
state-space model (12) and (13).

B. Expanded state-space model

In order to apply Kalman filtering, the nonlinear state-space
model (12) and (13) needs to be expanded to the first-order
Taylor series. With respect to (12), such an expansion can be
provided at n− 1 as

fn = Fnxn−1 + ūn +Wnwn +Enen , (14)

where x̂n is the estimate of xn. Here, Fn = ∂fn
∂x

∣∣
x̂n−1

,
Wn = ∂fn

∂w

∣∣
x̂n−1

, and En = ∂fn
∂e

∣∣
x̂−
n

are Jacobian and
ūn = fn(x̂n−1,un,0,0) − Fnx̂n−1 is known. An expansion
(14) implies that an incremental difference un − un−1 is
insignificant on a unit time step and can thus be neglected. Yet,
because all of the values are supposed to be known exactly at
n−1, we set wn−1 = 0 and en−1 = 0. Matrix Fn = ∂fn

∂x

∣∣
x̂n−1

can be written as

Fn =

 1 0 −dn sin(Φ̂n−1 +
ϕn

2 )

0 1 dn cos(Φ̂n−1 +
ϕn

2 )
0 0 1

 , (15)

where dn is given by (1), ϕn by (2), and Φ̂n−1 is the pose
estimate at n− 1.

Because noise wn is additive with respect to the compo-
nents of xn in (3)-(5) and wn−1 = 0, we also have

Wn = Fn (16)

and transform the input matrix En = ∂fn
∂e

∣∣
en−1,x̂

−
n

to

En =

 E11n E12n

E21n E22n

−1
b

1
b

 , (17)

where E11n = 1
2 cos

(
Φ̂−

n + ϕn

2

)
+ dn

2b sin
(
Φ̂−

n + ϕn

2

)
,

E12n = 1
2 cos

(
Φ̂−

n + ϕn

2

)
− dn

2b sin
(
Φ̂−

n + ϕn

2

)
, E21n =

1
2 sin

(
Φ̂−

n + ϕn

2

)
− dn

2b cos
(
Φ̂−

n + ϕn

2

)
, and E22n =

1
2 sin

(
Φ̂−

n + ϕn

2

)
+ dn

2b cos
(
Φ̂−

n + ϕn

2

)
.

Reasoning similarly, we expand hn(xn) at n as

hn(xn) = Hnxn + z̄n , (18)

where Hn = ∂hn

∂x

∣∣
x̂−
n

is Jacobian,

Hn =


y1−ŷ−

n

(x̂−
n )2+(y1−ŷ−

n )2
x̂−
n

(x̂−
n )2+(y1−ŷ−

n )2
−1

−ŷ−
n

(x̂−
n )2+(ŷ−

n )2
x̂−
n

(x̂−
n )2+(ŷ−

n )2
−1

−ŷ−
n

(x3−x̂−
n )2+(ŷ−

n )2
−x3+x̂−

n

(x3−x̂−
n )2+(ŷ−

n )2
−1

 , (19)

and z̄n = hn(x̂
−
n )−Hnx̂

−
n is known.

TABLE I. EFIR FILTERING ALGORITHM

Input: zn, yn, K, N

1: for n = N − 1 : M do

2: m = n − N + 1, s = m + K − 1

3: x̃s =

{
ys , if s < N − 1
x̂s , if s > N − 1

4: Gs = FsFs−1(H
T
s,mHs,m)−1FT

s−1F
T
s

5: for l = m + K : n do

6: x̃−
l = fl(x̃l−1,ul, 0, 0)

7: Gl = [HT
l Hl + (FlGl−1F

T
l )−1]−1

8: Kl = GlH
T
l

9: x̃l = x̃−
l + Kl[zl − hl(x̃

−
l )]

10: and for

11: x̂n = x̃n

12: and for

Output: x̂n

The expanded state-space model associated with the prob-
lem illustrated in Fig. 1 and Fig. 2 is thus the following:

xn = Fnxn−1 + ūn + ẽn + w̃n , (20)
zn = Hnxn + z̄n + vn , (21)

and the zero mean noise vectors w̃n = Wnwn and ẽn =
Enen have the covariances, respectively,

Q̃n = FnQFT
n , (22)

L̃n = EnLE
T
n . (23)

The prior estimation error P−
n and estimation error Pn are

specified by

P−
n = E{(xn − x̂−

n )(xn − x̂−
n )

T , (24)
Pn = E{(xn − x̂n)(xn − x̂n)

T , (25)

where x̂−
n and x̂n can be either EFIR or EKF estimate.

III. EXTENDED UFIR FILTERING

For the expanded state-space model (20) and (21), the EKF
can be applied straightforwardly. Unlike the recursive EKF, the
iterative EFIR filter [24] utilizes measurements zn available on
an interval of N past neighboring points from m = n−N +1
to n. The EFIR filtering algorithm listed in Table I has the
following specifics. For each time index n, the output is taken
when l = n. The bias correction gain Kl is defined iteratively
via the generalized noise power gain Gl ignoring the noise and
error covariances. To avoid singularities, Gs is computed in the
batch form. Linear measurement yn is provided by (8)–(11).
As can be seen, this algorithm needs only the horizon length N
and the number of the states K to start computing and updating
all the matrices, provided zn and yn. No noise statistics are
involved. The required Nopt can easily be determined using
test measurements by minimizing (25). It has been shown
in [27] that Nopt can also be found via measurements with
no reference signal. The latter has a special significance for
applications.
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IV. APPLICATIONS

As an example of applications, we simulate a mobil robot
travelling stepwise on an indoor floorspace. The noise standard
deviation in coordinates xn and yn is allowed to be 1 sm and in
heading Φn to be 0.5◦. Accordingly, we set σ2

x = σ2
y = 10−4

m2 and σ2
Φ = 7.62 × 10−5 rad2 in the diagonal matrix Q.

We also allow the noise standard deviation of 1 sm in the
incremental distances dLn and dRn and set σ2

L = σ2
R = 10−4

m2 in the diagonal matrix L. Assuming that measurements
of all angles are provided with the noise standard deviation
of 0.5◦, we finally set σ2

φ1 = σ2
φ1 = σ2

φ1 = 1.218 × 10−3

rad2 in the diagonal matrix R. To show a consistency of EKF
and EFIR estimates under the ideal conditions, we sketch in
Fig. 3 the estimates of mobil robot location on an indoor
floorspace. Here, we also show the location coordinates x̃n

and ỹn obtained by (8)–(10). Fig. 4 shows the estimation
errors by two filters. In this simulation, we suppose that the
noise statistics are not well known and introduce the correction
coefficient p = 5 to the noise matrices as p2Q, R/p2, and
L/p2. We also admit a 10% error in the initial robot state for
the EKF. Typical results shown in Fig. 3 reveal larger “slow”
noise in the EKF estimates when p > 1. In an opposite case of
p < 1 (not shown), the EKF demonstrates larger “fast” noise.

V. CONCLUSIONS

We can now summarize some trade-off between the EFIR
and EKF algorithms in applications to the triangulation prob-
lem specialized by Fig. 2. The iterative EFIR filter ignores the
noise statistics and initial error statistics that is a distinctive
advantage against the EKF which requires all these measures
as well as the initial state. We have demonstrated that when the
noise covariances and initial state are specialized incorrectly
that is typical fo many applications, then the EKF is able to
produce large and even unacceptable errors. On the other hand,
the optimal averaging interval Nopt for the EFIR filter can
easily be determined via test measurements implying known
state model. It may also be found even without a reference
signal based on measurements. Although the EFIR/Kalman
algorithm has proved its advantage against the EKF under the
not fully known noise statistics and initial state, some questions
still remain. There must be found a solution to overcome the
boundary divergence. Also, the EFIR algorithm needs to be
tested by other methods of localization and real measurements.
We plan to report a progress in these investigations in near
future.
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Fig. 3. Localization by (8)–(10) and extended filters of a robot traveling stepwise on a floorspace of dimensions (30 × 20) m in noisy
environment. The EFIR and EKF produce consistent estimates.
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