RDDM

Research Design Development Management

Turbomachinery Lecture Series

Module 00 – Masters Introduction Gas Turbine Engine Design & Development

Presented to - Présenté at

Polytechnique Montréal AER4270: Propulsion Aéronautique MEC6615: Théorie avancée de turbomoteurs MEC8250: Turbomachines **Carleton University** AERO 4402: Aerospace Propulsion

05 October 2020 - 05 Octobre 2020

John H. Kidikian, Ph.D., ing. MDIDS-GT Senior research associate Adjunct Professor at Polytechnique Montreal: AER4270 & MEC6615 Adjunct Professor at Carleton University: AERO 4402

fppt.com

Déclaration de copyright Copyright Statement

Ce manuel de cours est surtout utilisé comme la matière de référence pour les conférences données à Recherche Design Developpement Management (RDDM) et aux institutions éducatives au Canada et à U.S.A. Aucune partie de cette publication ne peut être reproduite, révélée ou distribuée sans autorisation écrite de RDDM. Quelques figures et textes utilisées dans ce volume sont de les références énumérée dans le module.

This course handbook is mainly used as reference material for lectures given at Research Design Development Management (RDDM) and at educational institutions in Canada and U.S.A. No part of this publication may be reproduced, disclosed or distributed without written authorization from RDDM. Some figures and text used in this volume are from the references listed in the module.

Some words of wisdom

The most dangerous phrase in the language is, "We've always done it this way."

- Rear Admiral Grace Murray Hopper

Some words of wisdom

"Simple methods with empirical input are still needed for the mean-line design, and it is often emphasized by experienced designers that if the one-dimensional design is <u>not</u> <u>correct then no amount</u> of CFD will produce a good design"

- Denton

4

Who am I \rightarrow always busy

Who am I \rightarrow always learning

20+ years in Aerospace

Conference papers

Off-Design Prediction of Transonic Axial Compressors: Part 1 - Mean-Line Code and Tuning Factors

Off-Design Prediction of Transonic Axial Compressors: Part 2 - Generalized Mean-Line Loss Modelling Methodology

Thesis: An Off-Design Mean-Line Methodology to Predict the Missing Data of Single-Stage Transonic Axial Compressor Tests

PART ONE

7

fppt.com

© RDDM 2020

What are we talking about today?

8		

fppt.com

What do we have to do to get to this?

9

Well, we need to start with the basics

So the idea is to go from a simplified representation to the real thing.

So the idea is to go from a simplified representation to the real thing.

So what do we have to do?

12 © RDDM 2020

fppt.com

Multi-Disciplinary Design & Optimization

Multi-Disciplinary Design & Optimization (con't)

Multi-Disciplinary Design & Optimization (con't)

What are the 2 driving constraints?

16 © RDDM 2020

fppt.com

What are the 2 driving constraints?

And what is the driving design parameter for a Turbofan?

18 © RDDM 2020

fppt.com

The driving parameter of Turbofan

THRUST IN CONTEXT WITH 60 YEARS OF DATA

19 © RDDM 2020

fppt.com

It's all about "Thrust"

fppt.com

The basic cross sections

CHOOSING THE ENGINE CONFIGURATION

26 © RDDM 2020

Choosing a configuration

Three ingredients are required

1) a knowledge of different engine configurations

2) a historical background of existing engines

3) lots and lots of simulation models

The "core"

The "Grandpa to all"

2 Spool Turbo-Prop

2 Spool Turbo-Prop reversed RGB

3 Spool Turbo-Prop

2 Spool Turbo-Shaft

2 Spool Turbo-Fan

3 Spool Turbo fan

fppt.com

2 Spool Geared Turbo-Fan

2 Spool Geared Turbo-Fan

COMPANY	ENGINE	TIMEFRAME	COMMENT
Honeywell	TFE731	1972	
GE	QCSEE	1974	NASA design contract
Honeywell	ALF 502/507	1980	
IAE	SuperFan	1986	Engineering study only
Pratt & Whitney	PW1000G	2012	
United Engine Corporation	PD-30	TBD	
Rolls-Royce	UltraFan	TBD	

Is the UltraFan a reincarnation of the SuperFan? ... I wonder ...

2 Spool Double-Fan Turbo-Fan

2 Spool Double-Fan Turbo-Fan

Open Rotor Forward Fan

Open Rotor Rear Fan

How do we choose which configuration?

42 © RDDM 2020

fppt.com

How do we choose which configuration?

+ $f(\mathbf{x})$

- + El
- + NI
 - + Mgt

+ Next slide

EI: Emotional Intelligence NI: Natural Intelligence

fppt.com

© RDDM 2020

And lots of sophisticated spreadsheets

fppt.com

"It is common sense to take a method and try it. If it fails, admit it frankly and try another. But above all, try something."- **Franklin D. Roosevelt**

The (disastrous) design process

MULTI-DISCIPLINARY (INTEGRATED) DESIGN (& OPTIMIZATION) SYSTEM

46 © RDDM 2020

A simplified value stream

An iterative value stream

A not so bad value stream

A stressful value stream

And remember ...

The most dangerous phrase in the language is, "We've always done it this way."

- Rear Admiral Grace Murray Hopper

The design process

WHAT EACH DISCIPLINE DOES

53 © RDDM 2020

Conceptual Design & Performance

Preliminary Sizing & Performance Area	nalysis — 🗆 X
Preliminary Definition Preliminary Definition # of Spools Combustor Straight ✓ Engine Type Turbo-Fan ✓ Engine Stze None ✓ Exhaust Unmixed ✓ Cycle Open Cycle ✓ Design Criteria	Boundary Conditions Comp. Intet Angle [0.00 C Turbine 14 [2250.00 C delta T 0.00 Combustor Eta 1.00 Pressure Loss [0.00 Fuel to Air Ratio [0.016887 Turb. Intet Angle [0.00]
Image: Weight of the second	Inlet Loss 0.0 Exhaust Loss 0.0 Bypass Eta 1.0 Core Eta 1.0 Preliminary Spool 2 Preliminary Spool 2 Jata Shaft Length 87 Bore Radius 25 Gear Ratio 1 to 1 Mechanical Eta
Spool 1 Spool 2 Fan Stage Prefiminary Compressor Data 10 - Stages 14950.00 Spool RPM 150.00 Compressor Work 8:34 PR C 1.00 Efficiency C 948.71 MAX Tip Speed C 948.71 MAX Fim Speed C 4:27E+10 AN2 Si V	Spool 1 Spool 2 Preliminary Turbine Data 2 2 + 14950.00 Spool RPM 150.00 Turbine Work 262 PR 100 Efficiency ? 000 MAX Tip Speed 948.71 MAX Rim Speed 4.27E+10 AN2 S

The engineer:

- Creates different gas turbine configurations
- Suggests stage counts based on past experience or optimization

MANANA AND THE

54

© RDDM 2020

- Develops a simplified design-point performance condition
- Executes a simplified performance analysis
- Executes complex steady- and transient- performance analysis
- Repatriates the detailed design values to the design-point and off-design performance condition for iterative convergence

The compressor and turbine aerodynamicist

Stage Geometry	Stage Parameters	Bypass Strut	Bypass Stator
Rotor LE Rotor TE Stator LE Stator TE	Basetian 20.0000	Strut LE Strut TE	Stator LE Stator TI
31.75000 30.87500 Tip 19.10000 19.10000		31.52870 31.47610	31.47610 31.16080
21.05250 22.13500 Mid 16.54455 16.72250	PR 0.0000	25.69590 25.67905	25.96090 25.77465
10.35500 13.39500 Hub 13.98910 14.34500	Fin 0.0000	19.86310 19.88200	20.44570 20.38850
및 1.000 및 Cd 1.000 및 1.000 및	BPM 5650.00	T.000 T 1.000	1.000 1.000
1.0000 1.0000 F-Vortex 1.000 1.000		1.000 1.000	1.000 1.000
▼ 3.00000 Axial Gaps 0.75000 ▼	Has Vane	0.75000	
▼ 14.00000 Bypass Gaps 12.00000 ▼	V Has Strut	Benass Strut	Reaction 9350 9850
DCA 62 - Airfoil Type DCA 62 -		DCA 5%	DCA 6%
25 Airfoil Count 50	Vald Germater	50	75
8.569000 Axial Chord 2.000000	Hold Geometry	10.000000	3.000000
0.000000 Tmax / C 0.000000	Ind Turbine In	0.100000	0.060000
0.0000 Tip Clearance 0.0000	Stage Sizing	0.0000	0.0000
0 Knife Edge Count 0	C Tip Speed 0.0000	0	0
None - Tip Type None -		None	None
0.020 0.020 Dia / C 0.020 0.020	AN2 0.0000	0.020 0.020	0.020 0.020
44 11592 41 36952 America 52 24275 29 20116	Overall Spool Values	22 52 52 24 20252	22 72897 24 23002
274729 Turning 24 96159	Target delH 18.0000	1 76619	0.50106
0.0000 Theat Area	Design delH 0.0000	0.000	0.0000
42.74223 Sotting Apple 40.75195	Target PB 1.6046	23 41944	23 97950
Herring Angle	Design PR 0.0000	120.41044	123.5(550
0.000000 Mrel Exit 0.000000	T	0.000000	0.000000
0.0000 0.0000 Cool 2 0.0000 0.0000	Davies Eta 1.0000	0.0000 0.0000	0.0000 0.0000
0.0000 0.0000 Cool To 0.0000 0.0000	Design Lta Juodoo	0.0000 0.0000	0.0000 0.0000
0.0000 0.0000 dPo/Po 0.0000 0.0000	PB. Beaction	0.0000 0.0000	0.0000 0.0000
Cooling BC 🔽 Cooling BC 🔽	Surge Margin	Cooling BC 🔽	Cooling BC 🔽
0.1576 Airfoil Loss 0.0820		0.1187	0.0511
0.0000		0.0000	0.0000

The engineer:

Executes the 1D design-point and off-design mean-line

Transver II

- Designs and analyzes:
 - Fan stage(s)
 - Axial and Centrifugal Compressor stage(s)
 - Axial Turbine stage(s)
 - Cooled or Uncooled

fppt.com

Aerodynamics, cooling, and stress

The engineer designs the airfoils for:

- Fan stage(s)
- Compressor (axial and/or centrifugal) stages
- Axial Turbine stages

The engineer also:

- Executes simplified and complex stress analysis
- Executes preliminary and detailed cooling flow design and analysis

Airfoils include

• Stator, Rotor, Strut, and Bypass Stator

Disk design and stress

The engineer:

- Creates different axisymmetric disk profiles
- Executes simplified and complex stress analysis
- Executes blade fixing analysis

10000

TANKA TANA

xD analysis

The engineer:

- Executes 2D through-flow analysis
- Executes 3D CFD
 - Steady state and transient analysis
 - (or) Time invariant and time variant
- Fine tunes the aerodynamics
- Updates mean-line and through-flow performance values based on 3D analysis

GE likes to use the term "3D aero design"

Off design behaviour

The engineer:

- Executes off-design analysis to feed Performance group
 - Compressor off-design
 - Turbine off-design
 - IAS
 - Stress
- May execute 1D, 2D, and/or 3D off-design analysis

(Internal

TTTTTTTTTTTTT

Air system

The engineer:

- Executes the preliminary and detailed air-system allocation between compressor and turbine stages
 - Bearings
 - Fixings
 - Seals
 - Hydraulic fluid systems (lubrication and cooling)
 - Fuel systems
 - Hot gas path ingestion
 - Sand particle removal

TTTTTTTTTTTT

Duct design

Bypass	Duct Perform	nance	Core	Duct Perform	ance	Thrust Dea	ompositio	n			
dei	ta-To 0.00		d	elta-To 0.00		Bypass		Core	Mix plane	Mixed Exh	
dei	ta-Po 0.00	—	/ d	elta-Po 0.00	1	0.8504	Mex	1.0000	0.0000	0.0000	dim
			-			288.15	15	563.68	0.00	0.00	degK
Bypass	Duct Geome	uy	Lore	Juct Geome	uy	0.00	DT	0.00	0.00	0.00	degK
Ax L	ength 75		Ax	Ax Length 25		101351.00 P5	161757.00	0.00	0.00	Pa	
Gegmen	nt No. 2	1	Segmi	ent No. 2	1	1.23 Bh	Bho5	Bho5 1.00	0.00	0.00	kg/m3
Exhau	t Duct Optio	ns	Cente	r Body Geom	netry	0.002820	A5m	0.002144	0.000000	0.000000	m2/kg
Unmixe	d .	-		ength 🔝		,		0.00	0.00	0.00	
		-	End	Badius 2		1.60	PRact	2.96	0.00	0.00	dim
0.0	☐ Mcc	ore	-1			1.89	PRcrit	1.85	0.00	0.00	dim
0.0	⊢ Mea	nh	🖉 🛛 🖉	_ength >	✓	1.60	NPB	1.85	0.00	0.00	dim
	Bypass Duct Segment Geometry					1.00	EtaJet	1.00	0.00	0.00	dim
	Radius L		Length	Angle	Т						
	Segment 1	30.875	37.5	0	-	23902.20	ThrustM	7134.41	0.00	0.00	lbf
	Segment 2	28	37.5	0		0.00	ThrustP	1981.19	0.00	0.00	lbf
						23902.20	ThrustT	9115.60	0.00	0.00	lbf
					- 4	0.00	Vin	0.00	0.00	0.00	ft/s
	J				4	949.39	Vexh	1530.24	0.00	0.00	ft/s
	Core Duct	Gegment G	eometry			1605.83	Aexh	226.13	0.00	0.00	in2
		Radius	Length	Angle	J	0	Cd	0	0	0	dim
	Segment 1	19	12.5	0		0	Daut	0	0	0	NA
	Segment 2	17	12.5	0		Je.	nexn	0	10	10	MA
				Debugging							
						1.0.0		MMN S		TIOL	

The engineer:

- Creates different exhaust geometries
 - Unforced unmixed
 - Unforced mixed
- Nacelle design
 - Axisymmetric
 - Non-axisymmetric

61 © RDDM 2020

Mander Middlesson II with

Overall Design

The engineer:

- Gathers all 2D and 3D designs from the disciplines
- Creates full 2D and 3D representations of the overall design
- Checks for clashes
- Weight calculations
- Integrated hot-to-cold conversion

62 © RDDM 2020

Gas turbine design

IT DOESN'T END THERE

63 © RDDM 2020

Other activities

Any questions?

fppt.com