RDDM

Research Design Development Management

Turbomachinery Lecture Series

Module 00 – Masters Introduction Gas Turbine Engine Design & Development

Presented to - Présenté at

Polytechnique Montréal AER4270: Propulsion Aéronautique MEC6615: Théorie avancée de turbomoteurs MEC8250: Turbomachines **Carleton University** AERO 4402: Aerospace Propulsion

05 October 2020 - 05 Octobre 2020

John H. Kidikian, Ph.D., ing. MDIDS-GT Senior research associate Adjunct Professor at Polytechnique Montreal: AER4270 & MEC6615 Adjunct Professor at Carleton University: AERO 4402

Déclaration de copyright Copyright Statement

Ce manuel de cours est surtout utilisé comme la matière de référence pour les conférences données à Recherche Design Developpement Management (RDDM) et aux institutions éducatives au Canada et à U.S.A. Aucune partie de cette publication ne peut être reproduite, révélée ou distribuée sans autorisation écrite de RDDM. Quelques figures et textes utilisées dans ce volume sont de les références énumérée dans le module.

This course handbook is mainly used as reference material for lectures given at Research Design Development Management (RDDM) and at educational institutions in Canada and U.S.A. No part of this publication may be reproduced, disclosed or distributed without written authorization from RDDM. Some figures and text used in this volume are from the references listed in the module.

Some words of wisdom

The most dangerous phrase in the language is, "We've always done it this way."

- Rear Admiral Grace Murray Hopper

If we worked on the assumption that what is accepted as true really is true, then there would be little hope for advance.

- Orville Wright

Some words of wisdom

"Simple methods with empirical input are still needed for the mean-line design, and it is often emphasized by experienced designers that if the one-dimensional design is <u>not</u> <u>correct then no amount</u> of CFD will produce a good design"

- Denton

4

PART ONE

7

fppt.com

© RDDM 2020

What are we talking about today?

8		

What do we have to do to get to this?

9

Well, we need to start with the basics

So the idea is to go from a simplified representation to the real thing.

So the idea is to go from a simplified representation to the real thing.

So what do we have to do?

12 © RDDM 2020

Multi-Disciplinary Design & Optimization

Multi-Disciplinary Design & Optimization (con't)

Multi-Disciplinary Design & Optimization (con't)

What are the 2 driving constraints?

16 © RDDM 2020

What are the 2 driving constraints?

And what is the driving design parameter for a Turbofan?

18 © RDDM 2020

The driving parameter of Turbofan

THRUST IN CONTEXT WITH 60 YEARS OF DATA

19 © RDDM 2020

It's all about "Thrust"

The basic cross sections

CHOOSING THE ENGINE CONFIGURATION

26 © RDDM 2020

Choosing a configuration

Three ingredients are required

1) a knowledge of different engine configurations

2) a historical background of existing engines

3) lots and lots of simulation models

The "core"

The "Grandpa to all"

2 Spool Turbo-Prop

2 Spool Turbo-Prop reversed RGB

3 Spool Turbo-Prop

2 Spool Turbo-Shaft

2 Spool Turbo-Fan

3 Spool Turbo fan

2 Spool Geared Turbo-Fan

2 Spool Geared Turbo-Fan

COMPANY	ENGINE	TIMEFRAME	COMMENT
Honeywell	TFE731	1972	
GE	QCSEE	1974	NASA design contract
Honeywell	ALF 502/507	1980	
IAE	SuperFan	1986	Engineering study only
Pratt & Whitney	PW1000G	2012	
United Engine Corporation	PD-30	TBD	
Rolls-Royce	UltraFan	TBD	

Is the UltraFan a reincarnation of the SuperFan? ... I wonder ...

© RDDM 2020

2 Spool Double-Fan Turbo-Fan

2 Spool Double-Fan Turbo-Fan

Open Rotor Forward Fan

Open Rotor Rear Fan

How do we choose which configuration?

42 © RDDM 2020

fppt.com

How do we choose which configuration?

+ $f(\mathbf{x})$

- + El
- + NI
 - + Mgt

+ Next slide

EI: Emotional Intelligence NI: Natural Intelligence

fppt.com

© RDDM 2020

And lots of sophisticated spreadsheets

fppt.com

"It is common sense to take a method and try it. If it fails, admit it frankly and try another. But above all, try something."- **Franklin D. Roosevelt**

The (disastrous) design process

MULTI-DISCIPLINARY (INTEGRATED) DESIGN (& OPTIMIZATION) SYSTEM

46 © RDDM 2020

A simplified value stream

An iterative value stream

A not so bad value stream

A stressful value stream

And remember ...

The most dangerous phrase in the language is, "We've always done it this way."

- Rear Admiral Grace Murray Hopper

The design process

WHAT EACH DISCIPLINE DOES

53 © RDDM 2020

Conceptual Design & Performance

Preliminary Sizing & Performance A	nalysis — 🗆 🗡
▶ <u>2</u> ,1 ×	
Preliminary Definition # of Spools Combustor Straight Engine Type Turbo-Fan	Comp. Inlet Angle 0.00 Turbine T4 2250.00 delta T 0.00 Computer Eta 100
Engine Size None Katheward Katheward Katheward Katheward Katheward Katheward Katheward Katheward Katheward Katheward Katheward	Pressure Loss 0.00 Fuel to Air Ratio 0.016887 Turb. Inlet Angle 0.00
Design Critesia ✓ Altitude 0.00 T amb 53.0080 + △ 0.0000 Pamb 14.6397	Duct Losse Inlet Loss 0.0 Exhaust Loss 0.0 Bypass Eta 1.0 Core Eta 1.0
Target Thrust 3300.00 BPR 5 4000 PT-RPM 0.0000 Bypass mass flow 810.0000 Core mass flow 150.0000 Forward Mach 0.0000	Spool 1 Spool 2 Preliminary Spool Data Shaft Length 87 Bore Radius 25 Gear Ratio 1 to 1 Mechanical Eta
Spool 1 Spool 2 Fan Stage Preliminary Compressor Data 10	Spool 1 Spool 2 Prelminary Turbine Data 2
0.00 MAX Tip Speed C 948.71 MAX Rim Speed C 4.27E+10 AN2 3 ✓	0.00 MAX Tip Speed C 948.71 MAX Rim Speed € 4.27E+10 AN2 3 ✓

The engineer:

- Creates different gas turbine configurations
- Suggests stage counts based on past experience or optimization
- Develops a simplified design-point performance condition
- Executes a simplified performance analysis
- Executes complex steady- and transient- performance analysis
- Repatriates the detailed design values to the design-point and off-design performance condition for iterative convergence

MANANA TY M

The compressor and turbine aerodynamicist

Stage Geometry	Stage Parameters	Bypass Strut	Bypass Stator
Rotor LE Rotor TE Stator LE Stator TE	Basetian 20.0000	Strut LE Strut TE	Stator LE Stator TI
31.75000 30.87500 Tip 19.10000 19.10000		31.52870 31.47610	31.47610 31.16080
21.05250 22.13500 Mid 16.54455 16.72250	PR 0.0000	25.69590 25.67905	25.96090 25.77465
10.35500 13.39500 Hub 13.98910 14.34500	Fin 0.0000	19.86310 19.88200	20.44570 20.38850
및 1.000 및 Cd 1.000 및 1.000 및	BPM 5650.00	T.000 T 1.000	1.000 1.000
1.0000 1.0000 F-Vortex 1.000 1.000		1.000 1.000	1.000 1.000
▼ 3.00000 Axial Gaps 0.75000 ▼	Has Vane	0.75000	
▼ 14.00000 Bypass Gaps 12.00000 ▼	V Has Strut	Benass Strut	Reaction 9350 9850
DCA 62 - Airfoil Type DCA 62 -		DCA 5%	DCA 6%
25 Airfoil Count 50	Vald Germater	50	75
8.569000 Axial Chord 2.000000	V Hold debinedy	10.000800	3.000000
0.000000 Tmax / C 0.000000	Ind Turbine In	0.100000	0.060000
0.0000 Tip Clearance 0.0000	Stage Sizing	0.0000	0.0000
0 Knife Edge Count 0	C Tip Speed 0.0000	0	0
None - Tip Type None -		None	None
0.020 0.020 Dia / C 0.020 0.020	AN2 0.0000	0.020 0.020	0.020 0.020
44 11592 41 36952 America 52 24275 29 20116	Overall Spool Values	22 52 52 24 20252	22 72897 24 23002
274729 Turning 24 96159	Target delH 18.0000	1 76619	0.50106
0.0000 Theat Area	Design delH 0.0000	0.000	0.0000
42.74223 Sotting Apple 40.75195	Target PB 1.6046	23 41944	23 97950
Herring Angle	Design PR 0.0000	120.41044	123.5(550
0.000000 Mrel Exit 0.000000	T	0.000000	0.000000
0.0000 0.0000 Cool 2 0.0000 0.0000	Design Eta 0.0000	0.0000 0.0000	0.0000 0.0000
0.0000 0.0000 Cool To 0.0000 0.0000	Design Eta juoudu	0.0000 0.0000	0.0000 0.0000
0.0000 0.0000 dPo/Po 0.0000 0.0000	PB. Beaction	0.0000 0.0000	0.0000 0.0000
Cooling BC 🔽 Cooling BC 🔽	Surge Margin	Cooling BC 🔽	Cooling BC 🔽
0.1576 Airfoil Loss 0.0820		0.1187	0.0511
0.0000		0.0000	0.0000

The engineer:

Executes the 1D design-point and off-design mean-line

There II

- Designs and analyzes:
 - Fan stage(s)
 - Axial and Centrifugal Compressor stage(s)
 - Axial Turbine stage(s)
 - Cooled or Uncooled

fppt.com

Aerodynamics, cooling, and stress

The engineer designs the airfoils for:

- Fan stage(s)
- Compressor (axial and/or centrifugal) stages
- Axial Turbine stages

The engineer also:

- Executes simplified and complex stress analysis
- Executes preliminary and detailed cooling flow design and analysis

Airfoils include

• Stator, Rotor, Strut, and Bypass Stator

Disk design and stress

The engineer:

- Creates different axisymmetric disk profiles
- Executes simplified and complex stress analysis
- Executes blade fixing analysis

The state of the s

xD analysis

The engineer:

- Executes 2D through-flow analysis
- Executes 3D CFD
 - Steady state and transient analysis
 - (or) Time invariant and time variant
- Fine tunes the aerodynamics
- Updates mean-line and through-flow performance values based on 3D analysis

GE likes to use the term "3D aero design"

Off design behaviour

The engineer:

- Executes off-design analysis to feed Performance group
 - Compressor off-design
 - Turbine off-design
 - IAS
 - Stress
- May execute 1D, 2D, and/or 3D off-design analysis

TTTTTTTTTTTTT

Air system

The engineer:

- Executes the preliminary and detailed air-system allocation between compressor and turbine stages
 - Bearings
 - Fixings
 - Seals
 - Hydraulic fluid systems (lubrication and cooling)
 - Fuel systems
 - Hot gas path ingestion
 - Sand particle removal

fppt.com

TTTTTTTTTTTT

Duct design

Bypass Duct Performance Core Duct Performance				Thrust Decomposition							
del	ta-To 0.00		4	elta-To 0.00		Bypass		Core	Mix plane	Mixed Exh	
del	ta-Po 0.00	_	1 4	atta-Po 000		0.8504	Mex	1.0000	0.0000	0.0000	dim
			*	288.15	15	563.68	0.00	0.00	degK		
Bypass	Duct Geome	try	Core	Duct Geome	try	0.00	DT	0.00	0.00	0.00	degK
Ax Length 75			Ax	Ax Length 25			101351.00 P5	161757.00	0.00	0.00	Pa
Segment No. 2 Segment No.		ent No. 2	✓	1.23	Bho5	1.00	0.00	0.00	kg/m3		
Exhaus	t Duct Optio	ns	Cente	r Body Geom	netry	0.002820	A5m	0.002144	0.000000	0.000000	m2/kg
Unmixe	d •	-		ength 🔯		1.00		2.00	0.00	0.00	
End Badius 2					1.60	PHact	2.36	0.00	0.00	dim	
0.0	E Mcc	ore	1	roome -		1.89	PRcrit	1.85	0.00	0.00	dim
0.0	⊢ Mea	nh 🗋		reuðru lo	4	1.60	NPR	1.85	0.00	0.00	dim
	Bypass Duct Segment Geometry				1.00	EtaJet	1.00	0.00	0.00	dim	
	Radius L		Length	ngth Angle	Т		_				
	Segment 1	30.875	37.5	0	-	23902.20	ThrustM	7134.41	0.00	0.00	IЫ
	Segment 2	28	37.5	0		0.00	ThrustP	1981.19	0.00	0.00	lbf
						23902.20	ThrustT	9115.60	0.00	0.00	IЫ
						0.00	Vin	0.00	0.00	0.00	ft/s
	J				<u> </u>	949.39	Vexh	1530.24	0.00	0.00	ft/s
	Core Duct Segment Geometry					1605.83	Aexh	226.13	0.00	0.00	in2
		Radius	Length	Angle	Л	0	Cd	0	0	0	dim
	Segment 1	19	12.5	0		0		0	0	0	
	Segment 2	17	12.5	0		Jo	nexh	0	10	0	NA
					Debugging			-			
		-				1.00		DUIG			

The engineer:

- Creates different exhaust geometries
 - Unforced unmixed
 - Unforced mixed
- Nacelle design
 - Axisymmetric
 - Non-axisymmetric

61 © RDDM 2020

Mander Middlesson II with

Overall Design

The engineer:

- Gathers all 2D and 3D designs from the disciplines
- Creates full 2D and 3D representations of the overall design
- Checks for clashes
- Weight calculations
- Integrated hot-to-cold conversion

Gas turbine design

IT DOESN'T END THERE

63 © RDDM 2020

Other activities

Any questions?

65 © RDDM 2020

fppt.com

Turbomachinery Lecture Series

Gas Turbine Engine Design & Development

PART 2

"A mean line efficiency prediction method is the sum of a large number of loss components. While some of them may prove to be quantitatively imperfect, the manner in which they are combined may cause errors to cancel. The final proof of a loss system must be its ability to correctly predict the efficiencies of well documented turbines [or compressors]"- Kacker & Okapuu

Aerodynamics

TURBINES

Aerodynamics and loss modeling

Turbine Stage

Turbine Blade Design

Turbine Blade Design

fppt.com

$$\eta_{TURBINE} = \frac{\Delta T_o}{T_{oIN} \left[1 - \left(\frac{1}{PR} \right)^{\gamma - 1/\gamma} \right]}$$

Turbine Efficiency

After much algebraic manipulation

$$\Delta H = \dot{m} \left(C_p T_{oIN} - C_p T_{oEX} \right) = \dot{m} C_p \left(T_{oIN} - T_{oEX} \right) = \dot{m} C_p \Delta T$$

 $\left(C_{p}T_{oIN}-C_{p}T_{oEX}\right)=\left(V_{TANG-IN}U_{IN}-V_{TANG-EX}U_{EX}\right)=\left[V_{TANG-IN}\left(\omega R_{IN}\right)-V_{TANG-EX}\left(\omega R_{EX}\right)\right]$

74

© RDDM 2020

Turbine Loss Models

Ainley & Matheison(AM)
$$Y_{TOTAL} = (Y_P + Y_S + Y_{TC})Y_{TE}$$
(1951)Dunhum & Came(DC) $Y_{TOTAL} = [(Y_P + Y_S)REFAC + Y_{TC}]Y_{TE}$ (1970)Kacker & Okapuu(KO) $Y_{TOTAL} = Y_P f_{(Re)} + Y_S + Y'_{TE} + Y_{TC}$ (1982)

1945 Zweifel

$$\therefore \psi_{T} = 2 \cdot \cos^{2} \beta_{2} [\tan \beta_{2} + \tan \beta_{1}] \cdot \frac{s}{b_{x}}$$

Turbine Loss Decomposition

fppt.com

Turbine Loss Decomposition

Turbine losses can be classically decomposed into the following loss components

- Profile
- Secondary
- Trailing Edge
- Tip Clearance
- Other

Y_S
Y_{TET}
Y_{TIP}

• Y_{OTHER}

• Y_P

Both geometric parameters and flow values have an impact on loss.

If everything else is kept the same, changing the TET has a dual impact. - It will have an impact on the throat size, which in turn may increase exit Mach numbers - It will change either the SS or PS surface, which in turn will impact the profile loss

fppt.com

مو^{ر م}ورمور م

Aerodynamics

COMPRESSORS

Compressor Loss Mechanisms

Compressor Stage

Compressor Blade Design

Compressor mean-line model

fppt.com

Author	Formula	
Lieblein (1953)	$\omega_{TOTAL} = \omega_P$	
Koch & Smith	$\omega_{total} = \omega_{P\&TE} + \omega_{EW\&TC} + \omega_{shock} + \omega_{PS-shrouds}$	
(1976)	(interpreted formula from reference)	
Barbosa (1987)	$\omega_{TOTAL} = \omega_P f_{Re} + \omega_S + \omega_{SH} + \omega_{COR}$	
Wright & Miller	$\omega_{total} = (\omega_p _{Re=10^6} + \omega_{EW\&TC})f(Re) + \omega_{shock}$	
(1991)	(interpreted formula from reference)	
Bloch, Copenhaver, O'Brien (1997)	$\overline{\omega} = \omega_{profile} + \omega_{shock}$	
Cahill (1997)	$\omega_{TOTAL} = \omega_P + \omega_S + \omega_{shock}$	
Lynette Smith (1999)	$\omega = (\varpi_{min} + \varpi_M) \left[1 + \left(\frac{i - i_{min}}{W} \right)^2 \right]$	•
Ramakdawala (2001)	$\omega_{TOTAL} = \omega_{Profile} + \omega_{EW\&TC} + \omega_{Shock}$	•
Boyer (2001)	$\omega = \left(\varpi_{min} + \varpi_M + \varpi_{tip} + \varpi_{hub} \right) \left[1 + \left(\frac{i - i_{min}}{W} \right)^2 \right]$	•
van Antwerpen	$\omega = \omega_p^* \left(\frac{\omega}{\omega_i}\right)_{inc} \left(\frac{\omega}{\omega_i}\right)_{Re} \left(\frac{\omega}{\omega_i}\right)_{Ma} + \omega_s \left(\frac{\omega}{\omega_i}\right)_{Re} + \omega_a, \text{ for } i > i_{\min}$	
(2007)	$\omega = \omega_p^* \left(f\left(\frac{\omega}{\omega_i}, \Phi\right) \right)_{inc} \left(\frac{\omega}{\omega_i}\right)_{Re} + \omega_s \left(\frac{\omega}{\omega_i}\right)_{Re} + \omega_a, \text{ for } i < i_{\min}$	
Falck (2008)	$\omega_{TOTAL} = \omega_P + \omega_{ew}$	
Veres (2009)	$\omega_{TOTAL} = \omega_P + \omega_{shock}$	
Benini (2010)	$\zeta = \zeta_{(M=0)} \chi_R \chi_M + \zeta_{shock} + \zeta_S + \zeta_\delta + K_M (i - i_{ref})^2$	

Compressor loss models

Other references of interest

- Steinke
- Howell & Calvert
- Schobeiri
- Denton
- AGARD
- Etc ...

90

Compressor loss

Compressor Performance Chart

Compressor Data

fppt.com

Compressor Loss Modeling

MDIDS-GT modeling

Calculations

PERFORMANCE

96

fppt.com

Cycle Calculation

A. Compte tenu de la section "core" de turbine à gaz suivant, et les données liées, déterminer les températures et les pressions des entrées et des sorties, puis le taux de dilution (fuel-air ratio), et le SFC.

B. Si une turbine de puissance ("power turbine") est ajoutée, trouver les températures, les pressions, et le SFC du moteur suivant.

Air froide	Air chaude	Carburant
γ = 1.4	γ = 1.33	Q = 46.2 x 10 ⁶ J / kg K
$c_p = 1004.5 \text{ J} / \text{kg K}$	c _p = 1156.7 J / kg K	C _p = 2.01x 10 ³ J / kg K
R _{gas} = 287 J / kg K	R _{gas} = 287 J / kg K	ηсомв = 100%
Ambient	Compresseur	Turbine
Tamb = 288 K	PRcomp = 3.25	T ₀₄ = 1175 K
Pamb = 101.3 kPa	ηсоме = 81.35%	ηнрт = 83. 7 5%
		ηрт = 92.25%
		Nozzle
	$SFC = \frac{f}{\sum \Delta h}$	η _{nozzzle} = 100%

Simplified Performance Calculation

		$\frac{T_{T^2}}{T_{T^0}} = 1$	$\eta_{INLET} = \frac{P_{T2}}{P_{T1}}$	
	Intake		$\eta_{RAM} = \frac{P_{T2} - P_{S1}}{P_{T1} - P_{S1}}$	
		0.4 < K < 0.7	$D_{\text{SPILL}} = K \cdot \left[\dot{m}_1 (V_{abs1} - V_{abs0}) + A_1 (P_{s1} - P_{s0}) \right]$	
	Compressor	$H = \dot{m}C_p \Delta T_{T_{23}} = \dot{m}C_p (T_{T_2} - T_{T_3})$	$\eta_{c} = \frac{T_{T2}}{\Delta T_{T23}} \left[PR_{32}^{(\gamma-1)} - 1 \right] = \frac{T_{T2}}{(T_{T3} - T_{T2})} \left[\left(\frac{P_{T3}}{P_{T2}} \right)^{(\gamma-1)} - 1 \right]$	
	Combustion	$\frac{T_{T4}}{T_{T3}} = \frac{\left(1 + f \cdot \eta_{COMB} \cdot \frac{Q}{\left(C_{p}T_{T3}\right)}\right)}{\left(1 + f\right)}$	-	
	Turbine	$H = \dot{m}C_p \Delta T_{T45} = \dot{m}C_p \left(T_{T4} - T_{T5}\right)$	$\eta_{T} = \frac{\Delta T_{T45}}{T_{T4} \left[1 - \left(\frac{1}{PR_{45}} \right)^{(\gamma-1)/\gamma} \right]} = \frac{(T_{T4} - T_{T5})}{T_{T4} \left[1 - \left(\frac{1}{P_{T4}/P_{T5}} \right)^{(\gamma)-1/\gamma} \right]}$	
	Exhaust	$\begin{split} T_{T8} \\ T_{T5} &= 1 \\ V_{abs8} &= \sqrt{2 \cdot \eta_{NOZZLE} \cdot C_{P} \cdot T_{T8}} \left[1 - \left(\frac{1}{NPR}\right)^{\gamma - \frac{1}{\gamma}} \right] \end{split}$	$\eta_{NOZZLE} = \frac{T_{T5} - T_{S8}}{T_{T5} \left[1 - \left(\frac{P_{S8}}{P_{T5}}\right)^{\gamma - 1/\gamma} \right]}$	
	Mechanical or Parasitic Loss	$WORK_{COMP} = \frac{1}{\eta_m} C_p \cdot \Delta T_{32}$	$\frac{1}{\eta_{para}}$	
on	Thrust	$Thrust = (1 + f) \cdot (\dot{m}_{\scriptscriptstyle IN} - \dot{m}_{\scriptscriptstyle BLEED}) V_{\scriptscriptstyle EX} - \dot{m}_{\scriptscriptstyle IN} V_{\scriptscriptstyle IN} + A_{\scriptscriptstyle EX} (P_{\scriptscriptstyle EX} - P_{\scriptscriptstyle IN})$	$V_{EX} = V_{abs8} = \sqrt{2 \cdot \eta_{NOZZLE} \cdot C_{P} \cdot T_{T8} \left[1 - \left(\frac{1}{NPR}\right)^{\gamma - \frac{1}{\gamma_{\gamma}}} \right]}$	98 © RDDM 2020

fppt.c

Goal of the future

TWO MAIN GOALS

99 99 800M 20

fppt.com

"Hey Google ..."

Any questions?

102 © RDDM 2020

fppt.com