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The most dangerous phrase in the language is,
"We've always done it this way."

- Rear Admiral Grace Murray Hopper

3

Some words of wisdom

© RDDM 2020

If we worked on the assumption that what is 
accepted as true really is true, then there would 

be little hope for advance.
- Orville Wright



“Simple methods with empirical input are still
needed for the mean-line design, and it is
often emphasized by experienced designers
that if the one-dimensional design is not
correct then no amount of CFD will produce
a good design”
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Some words of wisdom

- Denton
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PART ONE

7
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What are we talking about today?
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What do we have to do to get to this?
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Well, we need to start with the basics
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simplify

simplify

simplify

complexify

complexify

complexify
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So the idea is to go from a simplified 
representation to the real thing.
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So the idea is to go from a simplified 
representation to the real thing.
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So what do we have to do?
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Cycle 
Design

Compressor 
Stage 
Design

Compressor 
Airfoil 

Design

Turbine 
Stage 
Design

Turbine 
Airfoil 

Design

Disk Design

Multi-Disciplinary Design
& Optimization
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Internal Air 
System

Cooling

Dynamics

Shaft 
Design

Combustion

Electronic

Control

Multi-Disciplinary Design
& Optimization (con’t)
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Program 
mgt

Project

mgt

After 
service

Overhaul

Sales

Human

Assets

Multi-Disciplinary Design
& Optimization (con’t)
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And much 
more …
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What are the 2 driving
constraints?

16
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What are the 2 driving
constraints?

17
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And what is the driving
design parameter for a Turbofan?
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THRUST
IN CONTEXT WITH 60 YEARS OF DATA

The driving parameter of Turbofan

19
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It’s all about “Thrust”

20

Specific Fuel Consumption
(SFC)

Our target to achieve
or do better
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It’s all about “Thrust” (con’t)

21

Fan diameter

Size
Weight
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It’s all about “Thrust” (con’t)

22

Weight

Time for a diet
and

Stay on target
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It’s all about “Thrust” (con’t)

23

Air flow

The driving fluid
Performance
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It’s all about “Thrust” (con’t)

24

RPM

Stress
Material selection

Performance
Cost
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It’s all about “Thrust” (con’t)

25

Gas turbine preliminary sizing 
limit & trade-off curves
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CHOOSING THE ENGINE 
CONFIGURATION

The basic cross sections

26
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Choosing a configuration

Three ingredients are required

1) a knowledge of different engine configurations

2) a historical background of existing engines

3) lots and lots of simulation models

27
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The “core”

28
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The “Grandpa to all”

29

1st introduced to the 
military WWII

introduced to 
civilian market

Boeing 707 with 
Pratt & Whitney J57

de Havilland Comet 
with Ghost turbojets

1957 / 19581949 / 1952 © RDDM 2020



2 Spool Turbo-Prop
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2 Spool Turbo-Prop reversed RGB
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3 Spool Turbo-Prop
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2 Spool Turbo-Shaft
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2 Spool Turbo-Fan

34

Rolls-Royce Conway
(1958) 0.3 BPR

Pratt & Whitney JT3D
(1959) 1.42 BPR © RDDM 2020



3 Spool Turbo fan

35
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2 Spool Geared Turbo-Fan

36
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2 Spool Geared Turbo-Fan

37

COMPANY ENGINE TIMEFRAME COMMENT
Honeywell TFE731 1972

GE QCSEE 1974 NASA design contract
Honeywell ALF 502/507 1980

IAE SuperFan 1986 Engineering study only
Pratt & Whitney PW1000G 2012

United Engine Corporation PD-30 TBD
Rolls-Royce UltraFan TBD

Is the UltraFan a reincarnation of the SuperFan? … I wonder …
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2 Spool Double-Fan Turbo-Fan

38
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2 Spool Double-Fan Turbo-Fan

39GE Affinity
(Civilian supersonic)

SAFRAN Larzac 04
(military) 1969, 1982, 1984
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Open Rotor Forward Fan

40
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Open Rotor Rear Fan

41

COMPANY ENGINE TIMEFRAME
GE GE36 1986

Pratt & Whitney / Allison 578-DX 1986-1989

USSR Progress D-27 1992
Rolls-Royce - -

SAFRAN (SNECMA) - 2019 (approx.)
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How do we choose
which configuration?

42
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Database of engines

43

Successful production 
engine data

“biased” clean sheets 
and derivatives

Model & simulation 
validation

Incorporation of new or 
improved technologies
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+ (x)

How do we choose
which configuration?

+ EI

EI: Emotional Intelligence
NI: Natural Intelligence

+ NI
+ Mgt

+ Next slide
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And lots of sophisticated spreadsheets

45
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MULTI-DISCIPLINARY (INTEGRATED) DESIGN 
(& OPTIMIZATION) SYSTEM

The (disastrous) design process

46

“It is common sense to take a
method and try it. If it fails, admit it
frankly and try another. But above
all, try something.”- Franklin D.
Roosevelt
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A simplified value stream

47

Conceptual 
design

SFC
Weight
Thrust

Performance
Analysis

Excel +
*.txt

Compressor
Stage Design

Excel +
*.txt

Turbine
Stage Design

Excel +
*.txt

Excel +
*.txt

Compressor
Airfoil Design

Turbine
Airfoil Design

Excel +
*.txt

Excel +
*.txt

Compressor
Disk Design

Turbine
Disk Design

Excel +
*.txt

Excel +
*.txt

Compressor
Stress Analysis

Turbine
Stress Analysis

Excel +
*.txt

Excel +
*.txt

Turbine
Cooling Analysis

Excel +
*.txt

Internal Air 
System

Excel +
*.txt

Combustion
Design

Excel +
*.txt

Combustion
Cooling

Excel +
*.txt

Dynamic 
Analysis

Excel +
*.txt DONE 

GO

Integration
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An iterative value stream

48

Conceptual 
design

SFC
Weight
Thrust

Performance
Analysis

Excel +
*.txt

Compressor
Stage Design

Excel +
*.txt

Turbine
Stage Design

Excel +
*.txt

Excel +
*.txt

Compressor
Airfoil Design

Turbine
Airfoil Design

Excel +
*.txt

Excel +
*.txt

Compressor
Disk Design

Turbine
Disk Design

Excel +
*.txt

Excel +
*.txt

Compressor
Stress Analysis

Turbine
Stress Analysis

Excel +
*.txt

Excel +
*.txt

Turbine
Cooling Analysis

Excel +
*.txt

Internal Air 
System

Excel +
*.txt

Combustion
Design

Excel +
*.txt

Combustion
Cooling

Excel +
*.txt

Dynamic 
Analysis

Excel +
*.txt I’m OK 

GO

Integration
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A not so bad value stream

49

Conceptual 
design

SFC
Weight
Thrust

Performance
Analysis

Excel +
*.txt

Compressor
Stage Design

Excel +
*.txt

Turbine
Stage Design

Excel +
*.txt

Excel +
*.txt

Compressor
Airfoil Design

Turbine
Airfoil Design

Excel +
*.txt

Excel +
*.txt

Compressor
Disk Design

Turbine
Disk Design

Excel +
*.txt

Excel +
*.txt

Compressor
Stress Analysis

Turbine
Stress Analysis

Excel +
*.txt

Excel +
*.txt

Turbine
Cooling Analysis

Excel +
*.txt

Internal Air 
System

Excel +
*.txt

Combustion
Design

Excel +
*.txt

Combustion
Cooling

Excel +
*.txt

Dynamic 
Analysis

Excel +
*.txt Ooph

GO

Integration

shafts

bearings

electronics

Nuts & bots
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A stressful value stream

50

Conceptual 
design

SFC
Weight
Thrust

Performance
Analysis

Excel +
*.txt

Compressor
Stage Design

Excel +
*.txt

Turbine
Stage Design

Excel +
*.txt

Excel +
*.txt

Compressor
Airfoil Design

Turbine
Airfoil Design

Excel +
*.txt

Excel +
*.txt

Compressor
Disk Design

Turbine
Disk Design

Excel +
*.txt

Excel +
*.txt

Compressor
Stress Analysis

Turbine
Stress Analysis

Excel +
*.txt

Excel +
*.txt

Turbine
Cooling Analysis

Excel +
*.txt

Internal Air 
System

Excel +
*.txt

Combustion
Design

Excel +
*.txt

Combustion
Cooling

Excel +
*.txt

Dynamic 
Analysis

Excel +
*.txt Oh my!

GO

Integration

shafts

bearings

electronics

Nuts & bots
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A panic-attack value stream

51

Conceptual 
design

SFC
Weight
Thrust

Performance
Analysis

Excel +
*.txt

Compressor
Stage Design

Excel +
*.txt

Turbine
Stage Design

Excel +
*.txt

Excel +
*.txt

Compressor
Airfoil Design

Turbine
Airfoil Design

Excel +
*.txt

Excel +
*.txt

Compressor
Disk Design

Turbine
Disk Design

Excel +
*.txt

Excel +
*.txt

Compressor
Stress Analysis

Turbine
Stress Analysis

Excel +
*.txt

Excel +
*.txt

Turbine
Cooling Analysis

Excel +
*.txt

Internal Air 
System

Excel +
*.txt

Combustion
Design

Excel +
*.txt

Combustion
Cooling

Excel +
*.txt

Dynamic 
Analysis

Excel +
*.txt No comment

GO

Integration

shafts

bearings

electronics

Nuts & bots

OH NO!!

Don’t pass

More weight

Uhmm

You serious

Cough cough

Mr. Customer 
we need to 
negotiate

Executives yell 
on directors

Directors yell on 
managers

managers yell on 
supervisors

supervisors yell 
on staff

staff updating 
LinkedIn
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The most dangerous phrase in the language is,
"We've always done it this way."

- Rear Admiral Grace Murray Hopper

52

And remember …
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WHAT EACH DISCIPLINE DOES
The design process

53
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Conceptual Design & Performance

54

The engineer:
• Creates different gas turbine configurations
• Suggests stage counts based on past experience or optimization
• Develops a simplified design-point performance condition
• Executes a simplified performance analysis
• Executes complex steady- and transient- performance analysis
• Repatriates the detailed design values to the design-point and 

off-design performance condition for iterative convergence
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The engineer:
• Executes the 1D design-point and off-design mean-line
• Designs and analyzes:

• Fan stage(s)
• Axial and Centrifugal Compressor stage(s)
• Axial Turbine stage(s)

• Cooled or Uncooled

The compressor and turbine 
aerodynamicist
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Aerodynamics, cooling, and stress

56

The engineer designs the airfoils for:
• Fan stage(s)
• Compressor (axial and/or centrifugal) stages
• Axial Turbine stages

The engineer also:
• Executes simplified and complex stress analysis
• Executes preliminary and detailed cooling flow 

design and analysis

Airfoils include
• Stator, Rotor, Strut, and Bypass Stator
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Disk design and stress

57

The engineer:
• Creates different axisymmetric disk profiles
• Executes simplified and complex stress analysis
• Executes blade fixing analysis
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xD analysis

58

The engineer:
• Executes 2D through-flow analysis
• Executes 3D CFD

• Steady state and transient analysis
• (or) Time invariant and time variant

• Fine tunes the aerodynamics
• Updates mean-line and through-flow performance 

values based on 3D analysis

GE likes to use the 
term “3D aero design”
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Off design behaviour

59

The engineer:
• Executes off-design analysis to feed Performance 

group
• Compressor off-design
• Turbine off-design
• IAS
• Stress

• May execute 1D, 2D, and/or 3D off-design analysis
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Air system

60

The engineer:
• Executes the preliminary and detailed air-system 

allocation between compressor and turbine stages
• Bearings
• Fixings
• Seals
• Hydraulic fluid systems (lubrication and cooling)
• Fuel systems
• Hot gas path ingestion
• Sand particle removal
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Duct design

61

The engineer:
• Creates different exhaust geometries

• Unforced unmixed
• Unforced mixed

• Nacelle design
• Axisymmetric
• Non-axisymmetric
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Overall Design

62

The engineer:
• Gathers all 2D and 3D designs from the disciplines
• Creates full 2D and 3D representations of the 

overall design
• Checks for clashes
• Weight calculations
• Integrated hot-to-cold conversion
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IT DOESN’T END THERE
Gas turbine design

63
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Shaft dynamics

Centrifugal 
compressor design

Complex integrated 
Performance analysis

64

Cost analysis

Lifing Analysis

Combustion design

Digital twin
(production data 

analysis)

Other activities

Procurement

Manufacturing

Testing

Sales

After Service

Production

R & D

Etc …
© RDDM 2020



Any questions?

65
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PART 2

Turbomachinery Lecture Series

Gas Turbine Engine Design & Development

66



TURBINES
Aerodynamics

67

“A mean line efficiency prediction method is the
sum of a large number of loss components. While
some of them may prove to be quantitatively
imperfect, the manner in which they are combined
may cause errors to cancel. The final proof of a
loss system must be its ability to correctly predict
the efficiencies of well documented turbines [or
compressors]”- Kacker & Okapuu
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Aerodynamics and loss modeling

68

  


















1
11 PRT

T

oIN

o
TURBINE

How do the gas path
design parameters 
impact efficiency?
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Aerodynamics and loss modeling

69

  


















1
11 PRT

T

oIN

o
TURBINE

How do the gas path
design parameters 

impact other 
parameters?

How do the gas path
design parameters 
impact efficiency?
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Turbine Stage

70

© RDDM 2020



Turbine Blade Design

71
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Turbine Blade Design
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Turbine Efficiency & the Physical Design Space

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Pressure Ratio, PR

T
u

rb
in

e 
E

ff
ic

ie
n

cy

Theoretical upper limit of 100% turbine efficiency Design-Point
condition

LOW
% DP RPM

HIGH
% DP RPM

100% DP RPM

% of Design-Point RPM

Analytically defined
Off-Design Characteristic

PR

RPM

T

Work

Methodology

@ constant Tinlet
vary both RPM & PR

to obtain various DT  Work
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Turbine Efficiency

74


ToIN



PR

T

  


















1
11 PRT

T

oIN

o
TURBINE

After much algebraic 
manipulation

    TCmTTCmTCTCmH poEXoINpoEXpoINp  

        EXEXTANGININTANGEXEXTANGININTANGoEXpoINp RVRVUVUVTCTC   
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
ToIN



PR

T
ToIN

ToEX
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mIN
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RPM AN2

VRIM

NOA
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Stress

Stress
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Turbine Efficiency
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Mean Line Methods Time Line

1967 1969 1993

199119821948 1951 1962

19871971

19681949 1960

0

1

2

3

4

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

Year

M
e

th
o

d
o

lo
g

y

AMDCKO Method

Craig-Cox-Chen Method

Others

Ainley &Matheison (AM)   TETCSPTOTAL YYYYY   (1951) 
 

Dunhum & Came (DC)    TETCSPTOTAL YYREFACYYY   (1970) 
 

Kacker &Okapuu (KO)   TCTESPTOTAL YYYfYY  Re  (1982) 

Turbine Loss Models

1945 Zweifel
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Turbine Loss Decomposition

77

CLR

TED

c

s

LED

h

Loss

IN

EX

MEX

MIN

P

Geometric
Parameters

Flow
Parameters

s/c

h/c

CLR/h

tmax

tmax/c

Geometric
Relations

Loss
Decompose

YP

YS

YTIP

YTET

YTOTAL



YOTHER

Loss
Corrections

Re

INC-YP

INC-YS
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Turbine Loss Decomposition

78

• Profile
• Secondary
• Trailing Edge
• Tip Clearance
• Other

• YP

• YS

• YTET

• YTIP

• YOTHER

Turbine losses can be classically decomposed into 
the following loss components

Both geometric parameters and flow values have 
an impact on loss.
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Turbine Losses

79
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Turbine Losses
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Turbine Losses
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Turbine Losses
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COMPRESSORS
Aerodynamics

83
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Compressor Loss Mechanisms

84

REF: Yu, X., Z. Zhang, and B. Liu, 
The evolution of the flow 
topologies of 3D separations in the 
stator passage of an axial 
compressor stage. Experimental 
Thermal and Fluid Science, 2013. 
44: p. 301-311.
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Compressor Stage

85
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Compressor Effiiency & the Physical Design Space
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(35)

Single Stage Compressor Design Space
@ Design-Point Condition

Theoretical upper limit of 100% compressor efficiency

T/T Inlet Temp / (Work)

Pressure Ratio = Poin/Poex  (Work + Loss)

PR

?

T

Work
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Compressor Blade Design

87
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Compressor mean-line model

88

Blockage factor used to mimic
Boundary layer thickness

Blockage factor used to mimic
Airfoil thickness

Blockage factor used as 
“go-to” parameter for PR match.

Cd CdCd Cd

Deviation at TEIncidence at LE

Actual airfoil thickness 
ignored

Directly obtained 
from ML solution

Literature shows mainly using 
idealized thin cambered airfoil

Literature has shown wide-
spread use of Carter’s rule

“Bladed mass flow equation”

Cd may be used at 
every mean-line 
calculation plane

Constant tip clearance

Literature shows that tip 
clearance remains fixed 

in a ML model
Remains constant through 

OD conditions
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Compressor 
loss models

89

Other references of interest
• Steinke
• Howell & Calvert
• Schobeiri
• Denton
• AGARD
• Etc …
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Compressor loss

91
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Compressor Performance Chart

92
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Compressor Data

93
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Compressor Loss Modeling
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MDIDS-GT modeling
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PERFORMANCE
Calculations
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Cycle Calculation
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Simplified Performance Calculation
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TWO MAIN GOALS
Goal of the future 
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“Hey Google …”
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“I need a gas turbine that develops a 
thrust of 63,500 lbf with an SFC of 0.20 

at take-off”

“Change the turbine disk material, use 
bleed air from the stator leading edge, 

and run full 3D please”
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Or …
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Any questions?
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