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In mineral supply chains, medium-term plans are made for scheduling crews, production, and maintenance.
These plans must respect constraints associated with loading and unloading, stockyard capacities, fleet capac-
ities, and maintenance and production requirements. Additionally, compliance with grade quality depends on
blending minerals from different sources. In this paper, we present an optimization tool developed for a major
multinational iron ore mining company to manage the operations of its supply network in the Pilbara region of
Western Australia. The tool produces plans for time horizons from a few weeks to two years, while addressing
the nonlinearities that blending introduces. The plans our tool produces allow the company to ship a higher
amount of iron ore than it did when it followed the plans obtained by its former manual approach. The com-
pany’s planners now rely solely on our tool because it has enabled them to schedule up to one million additional
tonnes of material per annum and has reduced the planning time from five hours to less than one hour.
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Australia is the largest iron ore exporter in the
world. In 2009, it produced 394 million tonnes

of iron ore and exported 362 million tonnes, gener-
ating 30 billion Australian dollars (AUD). Of all the
iron ore in Australia’s mines, 97 percent comes from
the Pilbara region of Western Australia. Rio Tinto Iron
Ore (RTIO), with an operating capacity of approxi-
mately 240 million tonnes per annum, is one of the
major producers of iron ore in this region. Its freight
rail network, the largest privately owned network in
Australia, currently connects 14 mines and three ship-
ping terminals. RTIO has plans to further expand
its capacity to 330 million tonnes by 2015. Figure 1,
a map of the Pilbara region, shows the region’s mines
and ports and the relative size of its iron ore reserves.

Figure 2 shows a simplified schematic of the RTIO
operations in the Pilbara region. After the iron ore
is removed from the ground, it is dumped onto
the mine’s stockpiles for loading onto trains. This
extracted mineral is classified by its size as lump or
fines. Both have a number of subproducts, each with

its own specific composition or grade. When the trains
arrive at the ports, car dumpers transfer the iron ore
to the port’s stockpiles, and shiploaders transfer the
ore into ships for export.

As Figure 2 shows, most of the mines and ports
within RTIO’s operations have two types of stockpiles,
live and bulk. The live stockpiles are considered part
of the production line, whereas the bulk stockpiles
are used mostly for buffering and storage. Both live
and bulk stockpiles have their own maximum stor-
age capacities that are determined by the available
area, allocated, for the storage. These storage areas are,
accordingly, referred to as live yard and bulk yard.
The figure also shows outloaders, which are conveyors
that move material from the live to the bulk stockpiles,
and inloaders, which move material in the opposite
direction. RTIO transfers ore between live and bulk
stockpiles based on the following rationale. The raw
ore is moved from pit to ship via a series of intermedi-
ate transportation subsystems, such as rail networks,
inloaders, outloaders, car dumpers, and shiploaders.
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Figure 1: The map shows the operations of Rio Tinto Iron Ore (RTIO) in the Pilbara region. The dark grey bubbles
represent the relative size of the reserves and resources of the mines, and the light grey bubbles are proportional
to the estimated size of the deposit, according to the scale shown on the top right corner. The light areas represent
RTIO’s tenement of land.

Bulk stockpiles serve as buffers between these subsys-
tems to mitigate the impact of subsystem variability
on the quality of the shipped material. Stockpiles are
also used for blending lumps and fines of different
compositions into finished products (i.e., blends) that,

Mine Mine live stockpile Port live stockpile Export

Port bulk stockpileMine bulk stockpile

Outloaders Inloaders Outloaders Inloaders

Shiploaders

Car
dumpers

Rail

Figure 2: The graphic shows a simplified schematic of RTIO operations in the Pilbara region. Material from
the mines is dumped onto the live stockpiles. In both mines and ports, outloaders move iron ore from live
to bulk stockpiles, and inloaders move the material in the opposite direction. The ore in the mines’ live
stockpiles is transported by rail to the ports where it is dumped onto the ports’ live stockpiles by car dumpers.
Shiploaders put the ore onto ships for export.

when shipped, have the composition that RTIO’s cus-
tomers expect (i.e., target composition). The finished
product is considered of good quality if it satisfies
this target composition. In summary, transfer between
stockpiles occurs when the stockpiles’ levels exceed
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the company’s preferred margins (i.e., when the stock-
piles’ tolerance limits have been reached), or when the
iron ore grade needs to be modified. However, RTIO
prefers not to transfer material to the bulk stockpiles
very often, because this increases costs and may also
produce delays.

RTIO aims to maximize iron ore throughput while
managing grade requirements and system capaci-
ties. Fulfilling its contractual obligations with other
partner mining companies is an additional concern
for the company. These obligations require it to
transport minimum amounts of mined products from
partner mines to certain ports during the contrac-
tual periods. Quality control, capacities, and contrac-
tual obligations are nontrivial requirements that, to
the best of our knowledge, the literature has not
reported as integral parts of medium-term rail plan-
ning (i.e., two weeks to two years).

The manual process of determining the required
time and the number of trains to be sent from mines
to ports across the rail network, while considering all
the operational constraints (i.e., determining a sched-
ule), was cumbersome and time consuming. The com-
pany’s planners made all the required calculations
using spreadsheets, which made gaining insight into
the problem’s complexity difficult. An additional dis-
advantage of the manual approach was the difficulty
of doing what-if analyses. To ameliorate this situation,
RTIO sought the assistance of CSIRO’s operations
research group. We developed an optimization tool
that finds the optimal allocation of trains to mines,
assists in medium-term operations planning, and
enables the assessment of alternative scenarios.

The optimization tool solves a mathematical prob-
lem that assumes that management’s plan for the
next three to five years is the backbone for deter-
mining medium-term operations. The model trans-
lates resource availabilities, as foreseen by the tactical
plan, into operational targets. To facilitate scenario
analysis, we incorporated different incentives into the
model for planners to use in testing. These incen-
tives act as “knobs” to guide algorithms toward
more desirable solutions. They include bonuses for
removing material from stockpiles at mines, increas-
ing the stockpile levels at ports, and increasing the
number of train trips. In 15 minutes of execution
time, our tool produces plans with at least as high a

throughput of iron ore as those constructed using five
hours (and occasionally more) of manual planning.

The grade requirements introduce an additional
complication into the model, that is, nonlinearities.
These arise because the target compositions are
expressed as fractions whose denominators are the
amount of mass in the stockpiles, which is one of the
decision variables. See Nomenclature in Appendix A
(Formulation) for the full list of decision variables.
The equations are explained in detail in the Con-
straints on Grades subsection and in Appendix B
(Iron Ore Grades). The grades calculated by our
model deviate only marginally from the target
composition. Henceforth, we will refer to the differ-
ences between calculated and target compositions as
grade deviations.

In this paper, we describe a medium-term plan-
ning tool for allocating trains to mines and emphasize
the challenges posed by target compositions, con-
tractual commitments with partner companies, and
product movement between live and bulk stockpiles.
We organize the remainder of the paper as follows:
following the Literature Review section, we give a
detailed description of the iron ore transportation sys-
tem in Problem Description. The Model discusses the
constraints that must be satisfied. In Implementation,
we discuss issues of practical interest to RTIO, includ-
ing incentives. Solution Approaches introduces the opti-
mal solution method and two additional heuristic
methods that we used to provide RTIO with solutions
of good quality in a short time. Results presents some
numerical outcomes of the tool and demonstrates that
the proposed model produces solutions with a higher
throughput of iron ore than those obtained manually.
Finally, we summarize our work and present the com-
pany’s requests for future research in the Conclusions
section.

Literature Review
The focus in this paper is on maximizing the iron ore
throughput of RTIO’s operations by means of a rail
freight schedule, while ensuring that the composition
of all blends falls within the target ranges, and that
all the company’s operational and contractual require-
ments are met. With respect to rail scheduling, several
medium-term transportation planning projects have
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been reported in the literature. An exhaustive review
is beyond the scope of this paper; however, the inter-
ested reader may refer to the reviews by Caris et al.
(2008) and Macharis and Bontekoning (2004), which
focus mostly on planning intermodal freight trans-
port, or Cordeau et al. (1998) which focuses only on
rail. Newman and Yano (2000) solve a discrete-time
scheduling problem to minimize costs for the rail line-
haul portion of an intermodal network in the United
States and compare it to a variety of decentralized
scheduling approaches. They report that decentral-
ized scheduling produces better results. Kuo et al.
(2010) present a multiline freight rail scheduling prob-
lem that considers demand elasticity. The model min-
imizes operating costs incurred by carriers and delays
incurred by shippers, while ensuring that the sched-
ules and demand levels remain consistent.

With respect to blending and production plan-
ning in mining, most research papers address these
problems separately. Common examples are quarry
production scheduling problems. In this type of
problem, the objective is usually to maximize the net
present value of a project under precedence, capacity,
and blending constraints for individual mines (e.g.,
Kumral 2011, Rehman and Asad 2010). On a larger
scale, previous studies have addressed the challenges
of simultaneously optimizing product composition
and production schedules in the supply chains of
extractive industries. Fröling et al. (2010) propose a
planning tool for a company that operates four zinc
recycling plants and must allocate zinc-rich steel scrap
from different sources to these sites for processing.
Their model considers linear input-output functions
by multiple linear regression as a way of addressing
blending in the planning problem. Sandeman et al.
(2010) discuss a mineral export optimization model
coupled with a discrete-event simulation model used
to fine-tune the grades of mineral and present a gold
export operation as a case study. Ulstein et al. (2007)
formulate a model for the Norwegian oil industry,
where the mole fraction of different hydrocarbons is
considered when maximizing the profit obtained from
oil and gas distribution plans.

With respect to blends of multiple components, Liu
and Sherali (2000) and Shih (1997) calculate optimal
plans for the shipping and blending of coal to be
used as fuel by electricity companies. These plans

must consider electricity demand, coal quality, and
price. The authors model composition as tolerance
limits of ash, nitrous oxide, and other components,
rather than as actual percentages, as we do in our
case. Regarding blending and planning for iron ore
production, Everett (2001) lists algorithms and sim-
ulation methods for estimating iron ore composition
at different stages of the production chain to aid in
production-scheduling decisions. Everett (2007) gives
an excellent description of the role stockpiles play in
the iron ore production system and introduces Excel-
based software to aid daily ore selection and maintain
target composition. García-Flores et al. (2011) outline
the iron ore planning and blending problem that we
discuss at length in this paper.

With respect to our general modelling approach,
Bilgen and Ozkarahan (2007) report a model to calcu-
late shipping schedules for the export of grain blends.
These authors also use an integer decision variable
to schedule ships in a problem constrained by blend-
ing requirements; however, unlike our problem, their
two-component blending model is linear. We tackle
the nonlinear blending problem using successive lin-
ear programming, which consists of using linear
approximations and an iterative procedure to calcu-
late product compositions. This method is simple and
is commonly used in the petrochemical industry (e.g.,
Méndez et al. 2006). Audet et al. (2004) review alter-
native methods to successive linear programming for
tackling the blending problem, including bilinear and
quadratic programming. We also introduce two slid-
ing time-window heuristics, which are common in
manufacturing problems, but have only recently been
introduced in open-pit mining problems (Cullenbine
et al. 2011).

Some work in the literature has separately ad-
dressed facets of the iron ore medium-term rail
scheduling problem; however, no previous work
has combined blending multiple components and
using strategic plans as a guideline for tactical plan-
ning. Including these aspects in the formulation has
been indispensable for the success of our decision-
making tool.

Problem Description
The aim of RTIO planners, and therefore of the tool
we present in this paper, is to devise an optimal plan
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for allocating trains to mines; we wish to maximize
revenue, while satisfying all grade requirements and
operational capacity constraints. In this section, we
describe the main characteristics and constraints of
the problem.

RTIO’s freight rail network currently consists of
approximately 1,400 kilometres of track. The com-
pany owns two train fleets, the Robe Valley fleet with
5 trains of 160 wagons each, and the pooled fleet with
30 trains of 233 wagons each. The former has a capac-
ity of 18 kilotonnes per train and serves the 3 mines
in the Robe Valley region; the latter serves the remain-
ing 11 mines and has a typical capacity of 25 kilo-
tonnes per train. The mines served by the pooled fleet
are also divided into regions because there are lim-
its on the number of trains available to serve some
of these regions. The cycle time for each trip (i.e., the
time it takes for an empty train to go from a port to a
mine, load iron ore, and come back to a port) varies
between 20 and 40 hours depending on the mine and

Figure 3: The map shows the Pilbara rail network. It also shows the road network, and the existing and planned
mines, ports, and main settlements. The Robe Valley fleet serves the western branch of the rail network (i.e.,
the Mesa A and Mesa J mines).

the product. The average train length is 2.6 kilome-
tres. Figure 3 shows a map of the rail network.

The mines average 350 kilotonnes of live yard
capacity; depending on their production and loading
capacity, they can send up to 30 trains per day. The
material-handling scheme in the mines can be either
first-in, first-out (FIFO) or last-in, first-out (LIFO). The
scheme determines the order in which the ore enters
and leaves the stockpiles; consequently, it affects the
composition of the ore conveyed between stockpiles.

The ore extracted in a mine is first placed at the
live yard, which has a physical limit on the amount
of material it can store. In addition, the live stock-
piles have desirable minimum and maximum lev-
els. The stockpile closing level should preferably fall
between these tolerance limits at the end of each
planning period. Bulk stockpiles have only a maxi-
mum capacity limit. The amount of product that can
be transported between live and bulk stockpiles in
any period is limited by the inloaders’ and outloaders’
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capacities at that period. In general, frequently trans-
ferring product between live and bulk stockpiles is
undesirable because of the costs and delays associated
with the transfer operation. Similar stockpile capacity
constraints and inloader and outloader capacity con-
straints apply at the ports.

The shiploaders and car dumpers also have capac-
ity limits expressed as constraints in the model. In any
period, the total tonnes of material loaded onto a ship
from the port cannot be more than the ship’s loading
capacity for that period. Similarly, the total number
of trains emptied by the car dumper cannot be more
than car dumper’s capacity for that period.

Some car dumpers may be given preference to
unload material originating from certain mines or
regions. The dumped iron ore is blended in the
ports’ live stockpiles to attain shipped product grade.
An additional operation, called “lump rescreening”
is needed in the ports to comply with final prod-
uct specifications: when the lump product is loaded
onto the ships, a certain proportion of this lump,
which is undersized, is returned to a fines stockpile.
This returned material is referred to as return fines.
Hence, the final composition of the fines product also
depends on the composition of the lump product.
The contractual obligations specify targets per period
on the number of trains delivered from the relevant
mines, within a certain tolerance.

Incorporating all the constraints into the manual
calculation of a schedule was a tedious process that
consumed up to five hours of the RTIO planners’
time, without complete certainty that all the con-
straints were being met. To complicate matters, the
demand for iron ore increased steadily from 57 mil-
lion tonnes in 1999 to 230 million tonnes in 2010, and
RTIO is planning an expansion to a total capacity of
330 million tonnes per annum in 2015. As a conse-
quence, the planners expect the number of wagons to
increase from the current 8,000 to 12,000 and the num-
ber of locomotives to increase from 130 to 180. This
translates into up to 20 additional trains to further
complicate the problem, making the need for auto-
mated planning and scheduling even more acute.

The Model
We consider a finite planning horizon in which each
period represents a certain number of days, typically

one week. In our model, we do not require the num-
ber of days in any two periods to be the same. Mines
are divided into five regions, four of which are served
by the pooled train fleet and one by the Robe Valley
fleet. The main decision variable is the number of
trains to be sent from mines to ports during each
period. Other important variables are the live and
bulk stockpile levels in mines and ports, and the ton-
nages transferred from (to) live stockpiles to (from)
bulk stockpiles.

A summary of the model follows. For each period
in a given time horizon, determine the number of
trains sent to each mine and the amount shipped
from each port to maximize total revenue. Revenue
is expressed as the sum of the sales profit minus
the total cost of violating the soft constraints, subject
to operational constraints, grade constraints, contrac-
tual obligation constraints, and car dumper prefer-
ence constraints. In the next section, we present the
soft constraints incorporated in the model. We can-
not release the full formulation of the problem for
confidentiality reasons, but we present an outline of
the model in Appendix A (Formulation). García-Flores
et al. (2011) provide further details.

Operational Constraints
Capacity constraints form the core of the problem. For
the stockpiles, these constraints determine the closing
level at the end of each period. The amount of mate-
rial that a stockpile can store is limited. Both live and
bulk stockpiles have a maximum yard limit that can-
not be violated; we model it as a hard constraint. Live
stockpiles also have minimum and maximum desir-
able levels, modelled as soft constraints. If the closing
level does not fall within these limits, we penalize
the difference. The material at mines and ports is
stored primarily in the live stockpiles and is trans-
ferred to bulk when the maximum desirable live level
is reached. Bookkeeping constraints track the inven-
tory levels in the stockpiles. For example, the ending
live inventory at a mine in a given period equals its
opening inventory, minus the material transferred to
the bulk, plus the material from the bulk, plus the
production, and minus the material transported from
the mines in this period. This is Equation (A18) in For-
mulation in Appendix A. We assume that the amount
of material lost because of handling is negligible.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

20
4.

10
0.

22
6]

 o
n 

23
 O

ct
ob

er
 2

01
3,

 a
t 1

2:
40

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Singh et al.: Medium-Term Rail Scheduling for an Iron Ore Mining Company
Interfaces, Articles in Advance, pp. 1–19, © 2013 INFORMS 7

The only stockpile operation that needs further
explanation is lump rescreening, introduced in the
Problem Description section. This operation occurs dur-
ing the loading of iron ore into the ships at the ports,
and consists of removing a fixed proportion of the
finer material from the lumps and adding it to the
fines stockpile. We also consider lump rescreening in
the bookkeeping constraints of the live stockpiles at
the ports. Through these constraints, the model con-
siders that compositions of shipped fines also depend
on the composition of lump product. Therefore, mod-
elling lump rescreening is important for calculating
the composition of shipped product.

We list other operational constraints that we con-
sider in the model.

1. The total amount shipped from the ports in any
period cannot exceed the capacity of the shiploaders
for that period at that port.

2. The total number of trains sent to a region
(or mine) in any period cannot exceed the region’s
(or mine’s) maximum allowed number of trains for
that period. Similar constraints exist for car dumpers
and inloaders.

3. The total number of fleets and fleet hours used
should not exceed the available capacity of a fleet in
a given period. We model these as soft constraints.
We do not estimate the available fleet hours and cycle
times. RTIO uses a detailed simulation model to esti-
mate average cycle times to all regions. We use these
averages as an input to the model we present in
this paper.

Constraints on Grades
We express the composition of lumps and fines as
a mass percentage of iron, silica, alumina, phospho-
rus, manganese, sulphur, and other components. The
tool must consider not only the quantities of iron ore
transported by trains and ships and in the live and
bulk mine and port stockpiles, but also their compo-
sition. To illustrate how this is done, we describe next
the expressions for live stockpile grades and grades
of material transported by rail.

We calculate the live stockpile grades at the end of
a period by finding the total fraction of a component
that is left at the live stockpile of a mine after all the
transfer operations. The mass balance of the compo-
nent considering these operations is the sum of the

amount of the component that remains in the mine
at the end of the previous period, plus the amount in
the mined ore as measured by the company, plus the
amount transferred from the bulk stockpile, minus
the amount transferred to the bulk stockpile, minus
the amount transported by rail to the ports. To cal-
culate the fraction of the component, we divide this
mass by the total live stockpile level.

To calculate the grades of material transported by
rail, we first determine the mass of material loaded
onto the trains. This mass is the amount of compo-
nent in the mined ore as measured by RTIO, plus the
amount of the component in the iron ore taken from
the live and bulk stockpiles. The material handling
scheme affects the order in which the iron ore is
loaded onto the trains. If the mine operates according
to a LIFO scheme, the current period’s mined ore is
first loaded onto the trains, and then the ore from the
live stockpiles is loaded. If this amount is still not suf-
ficient to fill the train, material is loaded from the bulk
stockpile. If the mine operates according to a FIFO
scheme, material from the live stockpile is loaded first
onto the trains and then the material from the current
period’s mined ore is loaded; if this is still not suffi-
cient to fill the train, iron ore is loaded from the bulk
stockpile. To calculate the mass fraction of each indi-
vidual component, we divide the component’s mass
by the train’s total storage capacity.

We model the bulk stockpile grades and grades of
material to be shipped in a similar fashion. We note
that this approach ignores the kind of partial mixing
that occurs when materials are placed in a stockpile
and replaced again; however, we adopt it as a valid
assumption on the advice of RTIO’s planners. As the
reader can verify in Appendix B (Iron Ore Grades),
the denominators of the live stockpile grades, Equa-
tion (B1), and grades of material transported by rail,
Equation (B6), are expressed in terms of decision vari-
ables, which introduce nonlinearities in the model.
Following Méndez et al. (2006), we use Algorithm 1
in Appendix B to obtain linear approximations to the
nonlinear constraints. In the first step, we solve the
relaxed problem without grade constraints and with-
out restricting the number of trains to be integer. In
the following steps, we use the previous iteration’s
solution values for stockpile levels and numbers of
trains in the grade equations as estimates for the
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denominators. We repeat this procedure for a fixed
number of iterations. As we show in the Results sec-
tion, we need only a few iterations for this process
to produce solutions whose penalty because of grade
deviations is small.

Constraints on Contractual Obligation
Some of the mines must comply with both annual
and per-period delivery quotas. The per-period quota
includes a soft target that represents the total number
of trains to be sent from each of these mines in the
corresponding period. For the annual quota, planners
define a cumulative target for each period to ensure
that the annual delivery targets are being met, within
a certain tolerance, as the end of the year draws closer.
The cumulative target is reset at the beginning of the
calendar year. We model the per-period constraints
as soft constraints and the cumulative targets as hard
capacity constraints.

Constraints on Preferences
RTIO prefers that specific car dumpers serve specific
mines. We model this as a soft constraint and penalize
the amount by which one of these car dumpers cannot
comply with unloading the products from the mines
in question.

Constraints on the Lump-Fine Ratio
RTIO prefers to maintain a specific ratio of lump to
fines, within tolerance, at each port. We also model
this as a soft constraint and penalize the amount by
which this ratio is violated.

Implementation
We implemented the software application in C++

(C++ Standards Committee 2012) with the capabil-
ity of interfacing to either Gurobi (Gurobi Optimiza-
tion 2012) or CPLEX (IBM 2012) solvers. The user
interacts with the application through a Visual Basic-
supported (Microsoft Corporation 2012) interface. The
interface gives structure to the problem by storing the
optimization parameters (e.g., incentives and penal-
ties) in separate sheets from resource data. The tool
also presents results in a structured manner that
allows the user to easily identify bottlenecks by high-
lighting the most- and least-used resources.

To facilitate scenario analysis, we provide addi-
tional control over the model by adding extra knobs
in the form of incentives. Incentives are additional
terms in the objective function that guide the model
toward a solution that recommends the transfer of
as much iron ore as possible from the mines to the
ports, regardless of whether or not it can be shipped.
Without incentives, the tool prescribes the use of just
enough train capacity to transfer the material that can
be shipped. That is, the purpose of the incentives is
to use train capacity to its maximum. We can achieve
this using the four incentives we describe below.

1. Encouraging the transport of more material from
the mines to the ports. This incentive is for increasing
the number of trains; its value is proportional to a
fraction of bulk handling costs.

2. Discouraging the accumulation of material at the
mine sites. This incentive is for reducing the levels
of live and bulk stockpiles at the mines; its value is
proportional to a fraction of the bulk handling costs.

3. Favoring the accumulation of finished product at
the ports. This incentive is for increasing the levels of
live stockpiles in ports; its value is proportional to a
fraction of shipped profit.

4. This incentive is similar to Incentive 1; however,
its value is proportional to a fraction of shipped profit.

Incentives are artificial in the sense that no real cost
is incurred for not taking these actions. They are part
of the model only if the user activates them; the inter-
face verifies that at most one incentive is active when
running the optimizer. We discuss their effect in the
Incentives subsection of the Results section.

Solution Approaches
We implement three methods for solving the
medium-term rail-planning problem. The method
we refer to as optimal throughout this paper is
the linearized mixed-integer nonlinear programming
(MINLP) described in the The Model section for which
the search was terminated with a guarantee that the
solution lies within a specified percentage gap of
optimality. This method finds the number of trains
that maximizes profit over the full-time horizon, and
produces the best possible solution, considering all
constraints.

In addition to the optimal method and at the
request of RTIO’s planners, we implemented two
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sliding-time-window heuristics to provide the user
with good quality solutions using less CPU time.
We denote these heuristics as H1(I) and H2(I ′� i′);
Appendix C (Heuristics) provides details of the heuris-
tics and the meaning of the parameters. These heuris-
tics split the time horizon into subintervals using
this rationale: the farther back in time a schedule
was realized, the smaller the effect it should have on
present plans. For example, optimizing the plan for
six months into the future is less important than opti-
mizing it for the next month.

We implement these heuristics because, by divid-
ing the time horizon into intervals, they simplify the
problem into smaller subproblems and thereby reduce
memory requirements. The heuristics also reduce the
computational load on the solver and run at a compa-
rable speed or faster than the optimal method. Finally,
limited influence of adjacent time intervals on peri-
ods far in the past or in the future is consistent with
the planners’ intuition about building schedules. We
regard all these as valid reasons to use heuristic meth-
ods (Zanakis and Evans 1981). We discuss the perfor-
mance of these methods in the Comparison of Methods
subsection of the Results section.

Results
We obtained the following results using CPLEX 12.1.1
and Gurobi 4.5.1 in a 64-bit Intel Xeon CPU with two
processors of eight cores (2.27 GHz) each and 48 GB
of RAM. We calculated all the results presented here
without using incentives, except for the results pre-
sented in the Incentives subsection. We justify the use
of the solvers in Appendix D (Optimizer Parameters
and Flags).

Validation
To validate the results, we compare the iron ore
throughput prescribed by the optimal and manual
schedules. Figure 4 shows the differences between the
total amount of material transported as calculated by
the optimizer and the supply plan produced manu-
ally by the planner. The optimizer used H2�10�5� and
0.2 percent gap for each time window.

The optimizer scheduled 89 kilotonnes more than
the manual plan in the last five months of 2010, and
416 kilotonnes more than the manual plan for all
of 2011. Therefore, 505 kilotonnes of additional iron
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Figure 4: The graph compares tonnage transported using the optimal and
manual schedules. The continuous line shows the difference between the
monthly transported amounts for these schedules. The dashed line shows
the difference in cumulative tonnage. The cumulative difference at the
end of the planning period is positive, which means that the optimizer
outperforms the manual schedule.

ore were sent to the ports for the entire planning
horizon, corresponding to $114 million of additional
income. The average amount of iron ore transported
per month is 20,196 kilotonnes. The optimizer shows
a drop in performance in January 2011 and a recovery
in the following month, as a result of confidential
information known to the planner about the pos-
sibility of compensating with additional train trips
in February for a shortage in January; this infor-
mation was not part of the input to the heuristic.
A close inspection of both schedules shows that the
manual plan used 58 more trains in January 2011,
but the optimizer used 57 more trains in February
2011, which roughly evens out the amount of material
transported in these two months. Nevertheless, the
cumulative differences clearly show that the annual
amount of transported material scheduled by the opti-
mizer is higher.

The tool consistently produces plans with higher
iron ore throughput than the manual approach. RTIO
has been using our tool for actual rail planning since
November 2011. Planners have abandoned the man-
ual approach and now rely solely on our software,
which has given them the ability to plan shipping of
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Figure 5: The graph shows the cost of iron ore grade deviations as a func-
tion of the number of iterations of Algorithm 1. The results show that after
only eight iterations, the algorithm produces decision variable values that
are stable enough and close enough to the target compositions to produce
only small variations in the total cost of grade deviation from one iteration
to the next.

potentially up to one million tonnes per annum more
in a much shorter planning time.

Grade Compliance
The results in Figure 5 for 20 iterations of Algorithm 1
(the grade preservation) show that the grades do con-
verge after eight iterations. That is, the algorithm
produces decision variable values that are stable
enough and close enough to the target compositions
to produce only small variations in the cost of grade
deviations.

The total grade deviation costs are a very small
fraction of the total costs (approximately 10−7), while
most of the grade deviation penalties are approxi-
mately 12�5 × 106 dollars per kilo tonne, which is a
high but arbitrary value chosen in consultation with
RTIO planners to make it extremely costly to deviate
from the desired compositions (Winston 1994). This
combination of high penalties and small contribution
of grade deviation costs to the total costs indicates
that the deviations from the desired grades are very
small.

Incentives
Table 1 shows the differences between the solu-
tions obtained using the four implemented incentives

Transported
Objective function Number of amount

Parameter value minus trains minus minus
Incentive value reference (AUD) reference reference (kt)

Incentive 1 0�50 1.64e+14 −162 −4�14
Incentive 2 0�50 −8.84e+13 −8 −0�20
Incentive 3 0�01 5.38e+09 5 0�13
Incentive 4 0�10 2.99e+10 113 2�91

Table 1: The table shows results using different Incentives (gap = 3%).
It shows the objective function values, number of trains, and transported
amounts obtained using each incentive, minus the corresponding value
obtained when solving the problem without incentives (i.e., the reference
solution). Incentives 1 and 2 do not increase the amount of iron ore trans-
ported to the ports. Incentives 3 and 4 produce a higher number of train
trips than the reference solution without incentives.

discussed at the end of the Implementation section
and the results of the reference solution, that is, the
solution without active incentives. Reiterating, Incen-
tives 1 and 4 encourage an increased number of trains,
Incentive 2 discourages the accumulation of material
in the mines’ live stockpiles, and Incentive 3 encour-
ages the accumulation of material in the ports’ live
stockpiles. All incentives are artificial and, strictly
speaking, do not capture actual operational require-
ments. However, we consider them useful because
they aim to increase train capacity usage; for this
reason, we compare them to the reference solution,
which captures all operational requirements. Table 1
shows clearly that when using the parameter values
shown, Incentives 1 and 2 do not produce solutions
with higher iron ore throughput than the solution
generated without using incentives.

The positive terms in the objective function of the
problems that use Incentives 1, 3, and 4 boost the
value of the decision variables; we can see their con-
tribution in that the objective values of the solu-
tions when using these incentives are greater than the
objective value of the reference solution. However,
the term in the objective function that corresponds to
Incentive 2 is negative because this incentive strives
to reduce the inventory of iron ore in the mines’ stock-
piles; this is reflected in a negative difference of objec-
tive function values. The results also show that this
does not necessarily imply that more trains will be
sent to keep the mines’ stockpiles low: the solution
that uses Incentive 2 sends eight trains fewer than the
reference solution.
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By contrast, Incentives 3 and 4 do increase the
amount of iron ore transported to the ports. The
solution that uses Incentive 3 sends five trains more
than the reference solution, increasing the amount of
material stored in the ports’ live stockpiles. Incen-
tive 4 produces a much larger increase in transported
ore (113 additional trains) by adding to the objec-
tive function a small fraction of the shipped profit
times the number of trains. Because the solution that
uses Incentive 4 produces the largest increase in the
amount of iron ore transported by rail, the planner
should clearly prefer the solution obtained by using
this incentive over the reference solution and all the
other incentives. This conclusion is valid when using
the parameter values listed in Table 1; however, these
parameters can be changed in the Excel interface to
explore the solution space.

Comparison of Methods
Figure 6 presents the percentage deviations calculated
as the value of the objective function obtained using
the optimal method minus the value of the objective
function calculated by the heuristics, divided by the
value from the optimal method, and multiplied by
100. The grey-shaded bars indicate the value of the
percentage deviations after a fixed number of iter-
ations of the grade preservation algorithm. In this
figure, the columns on the left of the dotted line cor-
respond to the results of H1, whereas the columns on
the right correspond to the results of H2.

We call an algorithm more reliable if its final objec-
tive value does not vary with the increase in itera-
tions of the grade preservation algorithm. Using this
definition, Figure 6 shows clearly that H2 is more reli-
able than H1. Observe that the deviations of H1(15)
and H1(25) from the objective value, as calculated by
the optimal method, can be greater than two percent,
whereas all instances of H2 remain less than one per-
cent. As we terminate the execution of the optimal
method with a gap of two percent, in some cases,
the percentage deviation is a small negative number,
which implies that the heuristic can find solutions
whose objective value is greater than that of the opti-
mal method. We find it interesting that although the
heuristics are myopic and, in the H1 case, do not con-
sider that train numbers are always integral or, in the
H2 case, that the full-time horizon parameters are dis-
regarded, they manage to find very good solutions;
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Figure 6: The graph shows the deviation from the optimal value for the
heuristics as a function of the number of iterations used in the grade
preservation algorithm. The columns on the left of the dotted line corre-
spond to H1; the columns on the right correspond to H2. For details on the
heuristics and the meaning of parameters I, I ′, and i ′, refer to Appendix C
(Heuristics). The deviation is calculated as the value of the objective func-
tion obtained using the optimal method minus the value of the objective
function from the corresponding heuristic, divided by the value from the
optimal method, and multiplied by 100. Heuristic H1 is less reliable than
H2 with respect to grade preservation because H2’s range of percent devi-
ation (0.79%) is lower than H1’s (3.22%).

these solutions are occasionally better than those that
the optimal method generates.

Figure 7 shows the trade-off between percent gap
and CPU time for all the implemented solution meth-
ods. The position of a point in this plot shows the
CPU time required to achieve a solution using a given
method and the solution’s gap. We can clearly see the
compromise for the optimal method: the solid dots in
the figure show that the solution improves as the time
limit increases.

Figure 7 shows that H1 generally produces higher
revenues in shorter execution times than does H2. We
would select H1 as the method of choice if the com-
position results obtained using it were more reliable.
Unfortunately, Figure 6 shows that H1 is less reli-
able than H2, making it difficult to claim that either
heuristic method performs better. Despite this, we
recommend the use of either H2�45�15� or the opti-
mal method with a gap of three percent. The main
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Figure 7: The graphic compares performances in the optimal method and
heuristics H1 and H2 in terms of gap percentages and CPU times. Although
it may appear from this figure that H1 produces better solutions in shorter
times, H2 is preferable because it produces more reliable results, that
is, its results are more consistent when combined with Algorithm 1 for
preserving grade compositions. H2(45, 15) is an acceptable tradeoff. The
points for the optimal method represent runs with different execution time
limits; the longer the execution time, the lower the percent gap.

reasons for this choice are that (1) H2 is more reli-
able in terms of composition accuracy, (2) H2 is more
practical because it does not consider the entire plan-
ning horizon at each iteration, and (3) by considering
subintervals in each calculation step, H2 reflects bet-
ter the influence of recent actions on decisions that
must be taken in the near future. The farther back in
time a schedule was realized, the smaller the effect it
should have on present plans.

Figure 7 also shows that the speed of a heuris-
tic is generally not affected by its input parameters.
This means that heuristic execution times tend to be
short, regardless of the gap. We expect this because
the heuristics’ intervals are smaller; therefore, their

First feasible
Solver Objective value Gap (%) Time LB after cuts Root solution solution gap (%)

Gurobi −8�01120× 1010 2�30 227 min 7�82710× 1010 7�81290× 1010 54�40
CPLEX −8�20807× 1010 4�71 606 min 7�82143× 1010 7�81286× 1010 51�01

Table 2: The table compares the Gurobi and CPLEX solver performance. The example uses data from one typical
production setup without using incentives. LB denotes lower bound.

optimization subproblems have fewer variables and
constraints. By contrast, the accuracy of the optimal
method is clearly affected by the execution time limit
we impose on it.

Comparison of Solvers
As we noted earlier, we designed the tool to use
either the CPLEX or Gurobi solvers. Table 2 shows
a comparison between the performances of CPLEX
12.1.1 and Gurobi 4.5.1 using data from one typi-
cal production that we set up as an example with-
out incentives, and with execution flags as described
in Appendix D (Optimizer Parameters and Flags). The
table shows that the Gurobi solver returns a smaller
gap; thus, it gives a better solution to the maximiza-
tion problem in a much shorter time. The Gurobi
solver created tighter cuts for the problem (i.e., the
lower bound after cuts was higher) and found better
solutions to the subproblems of the heuristics, which
translates into better overall performance and plans
with higher throughput. This result was generated
although the first feasible solution that the Gurobi
solver found was worse than the solution that the
CPLEX solver produced.

Conclusions
RTIO’s planners successfully implemented our tool
to manage the operations of the rail network in the
Pilbara region of Western Australia; they have aban-
doned the manual approach and now rely solely on
our software. The tool consistently produces plans
with a higher iron ore throughput than the manual
approach they used previously. It has reduced the
time planners spend determining schedules from five
hours to less than one hour, and sometimes to under
15 minutes. The software has increased the amount
of material transported to the ports by one million
tonnes in a typical planning horizon, which represents
an increase in sales of over $100 million.
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Our tool does more than assist in rail network plan-
ning. By design, it enables the translation of tacti-
cal plans at RTIO into shorter-term operational plans
by optimizing the use of resources, including trains,
rail tracks, and stockpiles. The user has the option to
enable and adjust incentives to transfer material to
and from the stockpiles, or to increase the number
of train trips. By giving the planners control over
the incentives, they can experiment with what-if sce-
narios, which in some cases produce schedules with
higher iron ore throughput than running the opti-
mizer without any incentives.

The company is particularly concerned with (1) pre-
serving the quality of its shipped products, and
(2) fulfilling its contractual obligations. To ensure
that the resulting schedules fulfill grade requirements,
we add equations to the model, which have the
unfortunate effect of making it nonlinear. We han-
dle this extra complexity by introducing an iterative
algorithm to approximate the actual compositions.
Our results show that the deviations from the tar-
get composition values are negligible. We also model
contractual obligation constraints using annual and
per-period targets, which can be met within a user-
defined tolerance.

In addition to the optimal method, we imple-
ment and test two heuristic methods, labelled H1
and H2. Their purpose is to provide RTIO with
usable, good-quality solutions in short execution
times. From our results, H1 might initially seem to be
the best-performing heuristic because it has a shorter
execution time and smaller optimality gap than H2.
However, H2 is the preferred heuristic because it has
a smaller range of deviation from target grades than
H1, as the results of the grade preservation algorithm
show. Additionally, the overlapping time horizons
between consecutive iterations of H2 better represent
the influence of recent actions on near-future deci-
sions: the farther back in time a schedule was real-
ized, the smaller the effect it should have on present
plans. This observation is consistent with the plan-
ners’ intuition about building schedules; thus, RTIO
readily accepted H2 as an alternative to the optimal
solution method. For these reasons, we recommend
the use of either H2(45, 15) or the optimal method
with a gap tolerance of 3 percent.

The tool generates comprehensive output reports
that have been useful in operations by helping plan-
ners understand uncertainties and identify bottle-
necks. It has released valuable staff time for use in
other business priorities, and has facilitated the for-
malization of rules of thumb and operational poli-
cies. It has also encouraged staff members to maintain
clean and updated resource data.

RTIO started testing the software in late 2010;
guided by the planners’ feedback, we have since
made many improvements. However, some enhance-
ments remain in the pipeline. These include shorten-
ing the planning horizon and taking into account ship
arrival times to make the tool more relevant to day-to-
day operations, incorporating costing and profit infor-
mation, and providing automatic access to RTIO’s
databases for increased integration with existing soft-
ware systems. RTIO and CSIRO will continue to col-
laborate to address some of the outstanding research
challenges.

Appendix A. Formulation
This appendix summarizes all the relevant features of the
model (García-Flores et al. 2011). A typical production prob-
lem spans 62 periods representing 28 months, and con-
sists of 67,158 variables and 31,024 constraints. We cannot
release the full formulation of the problem for confidential-
ity reasons.

Nomenclature
Sets

C The set of all components of a product.
Dmrp The set of all car dumpers in port r ∈ R receiving

mined product p ∈ P from mine m ∈M .
F The set of all train fleets.
G The set of all regions; a region may comprise a single

mine.
M The set of all the mines.
Mf The set of all mines serviced by fleet f ∈ F , Mf ⊂M .
Mg The set of all mines belonging to region g ∈G, Mg ⊂

M .
Pm The set of all mined products for mine m ∈M .
R The set of all the ports.
S The set of all unique shipped product, i.e.,

S =
⋃

m∈M p∈Pm
Smp.

Sr The set of all shipped products from port r ∈ R,
Sr ⊂ S.

Smp The set of all shipped products for mine m ∈M and
product p ∈ P , smp ⊂ S.

T Total number of planning periods (weeks) in the
model.
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Model parameters

�ft Additional cycle time of fleet f ∈ F at period
t ∈ T .

�4 Fraction of shipped profit for Incentive 4.
BPMmp Cost of handling mined product p ∈ Pm in

mine m ∈M to/from bulk stockpiles.
BPRrs Cost of handling shipped product s ∈ Sr in

port r ∈R to/from bulk stockpiles.
CTmpt Cycle time of a train carrying mined product

p ∈ Pm from mine m ∈M during period t ∈ T .
GPIrsc Penalty (per tonne) for deviating from target

grade of component c ∈ C in shipped prod-
uct s ∈ Sr at port r ∈R.

GPOrsc Penalty (per tonne) for violating control lim-
its of component c ∈ C in shipped product
s ∈ Sr at port r ∈R.

IOP_gradempt Actual mined grade (fraction) of product
p ∈ P produced at mine m ∈M in period t ∈ T .

IOPmpt Amount of product p ∈ Pm produced at mine
m ∈M in period t ∈ T .

MFTft Available train numbers in fleet f ∈ F at
period t ∈ T .

MSVLmp Penalty for violating limits in live stockpile
content of product p ∈ Pm in mine m ∈M .

MTgt The maximum number of allowed trains in
region g ∈G at period t ∈ T .

PFTft Available pooled hours of fleet f ∈ F at
period t ∈ T .

PPmd Penalty for not fulfilling a preference, for
example, dumping all product coming from
mine m ∈M in a specific car dumper d ∈Dm.

PRSPrt Penalty for violating the specified lump-to-
fines ratio at port r ∈R in period t ∈ T .

PSVLrs Penalty for violating limits in live stockpile
of product s ∈ Sr in port r ∈R.

Smax
mpt Maximum live stockpile level at mine m ∈M

for product p ∈ Pm in period t ∈ T .
Smin

mpt Minimum live stockpile level at mine m ∈M
for product p ∈ Pm in period t ∈ T .

SPs Profit per sold tonne of shipped product
s ∈ S.

TPf Penalty for exceeding train trips of fleet
f ∈ F .

TSmp Capacity of a train in tonnes transporting
mined product p ∈ Pm from mine m ∈M .

U max
rs Maximum tonnes of product s ∈ Sr that can

be stockpiled at port r ∈R.
W max

rst Maximum live stockpile level at port r ∈ R
for product s ∈ Sr in period t ∈ T .

W min
rst Minimum live stockpile level at port r ∈ R

for product s ∈ Sr in period t ∈ T .
Y max
mp Maximum tonnes of product p ∈ Pm that can

be stockpiled at mine m ∈M .
Zmax
rt Maximum shipping capacity at port r ∈R in

period t ∈ T .

Decision variables

�↓

mpt Amount by which minimum live stockpile
limits are violated at mine m ∈ M for mined
product p ∈ Pm in period t ∈ T .

�↑

mpt Amount by which maximum live stockpile
limits are violated at mine m ∈ M for mined
product p ∈ Pm in period t ∈ T .

�↓

rst Amount by which minimum live stockpile
limits are violated at port r ∈ R for shipped
product s ∈ Sr in period t ∈ T .

�↑

rst Amount by which maximum live stockpile
limits are violated at port r ∈ R for shipped
product s ∈ Sr in period t ∈ T .

�rt Penalty variable for deviations in the pre-
ferred ratio of shipped fines to shipped lump
at port r ∈R in period t ∈ T .

�ft Amount by which the maximum number of
allowed trains of a fleet f ∈ F was exceeded at
period t ∈ T .

�mdt Amount by which a selected car dumper
d∈Dm cannot comply with serving mine m∈M
in period t ∈ T .

B_tnsmpct Amount of component c ∈ C transferred from
the bulk stockpile of product p ∈ P at mine
m ∈M in period t ∈ T .

BMmpct Bulk stockpile grade of component c ∈C in
product p ∈ Pm at mine m ∈M in period t ∈ T .

eirsct Excess variable to penalise when grade of
component c ∈ C of shipped product s ∈ Sr
from port r ∈R at time t ∈ T is different from
target.

eorsct Excess variable to penalise when grade of
component c ∈ C of shipped product s ∈ Sr
from port r ∈ R at time t ∈ T is outside the
control limits.

IOP_tnsmpct Amount of component c ∈C in mined product
p ∈ P at mine m ∈M in period t ∈ T .

L_tnsmpct Amount of component c ∈ C left in the stock-
pile of product p ∈ P at mine m ∈M at the end
of period t ∈ T .

LMmpct Live stockpile grade of component c ∈C in
product p ∈ Pm at mine m ∈M in period t ∈ T .

R_tnsmpct Amount of component c ∈ C in product p ∈ P
at mine m ∈ M in period t ∈ T railed to the
ports.

RGmpct Railed grade of component c ∈ C in product
p ∈ Pm from mine m ∈M in period t ∈ T .

smpt Live stockpile level at mine m ∈ M for mined
product p ∈ Pm in period t ∈ T .

sirsct Slack variable to penalise when grade of com-
ponent c ∈ C of shipped product s ∈ Sr from
port r ∈R at time t ∈ T is different from target.

sorsct Slack variable to penalise when grade of com-
ponent c ∈ C of shipped product s ∈ Sr from
port r ∈ R at time t ∈ T is outside the control
limits.
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u+

rst Transfer to bulk stockpiles at port r ∈R for
shipped product s ∈ Sr in period t ∈ T .

u−
rst Transfer from bulk stockpiles at port r ∈R for

shipped product s ∈ Sr in period t ∈ T .
wrst Live stockpile level at port r ∈ R for shipped

product s ∈ Sr in period t ∈ T .
xmpdst Number of trains to mine m ∈ M for mined

product p ∈ Pm at car dumper d ∈ Dmrp for
shipped product s ∈ Smp in period t ∈ T .

y+

mpt Transfer to bulk stockpiles at mine m ∈ M for
mined product p ∈ Pm in period t ∈ T .

y−
mpt Transfer from bulk stockpiles at mine m ∈ M

for mined product p ∈ Pm in period t ∈ T .
zrst Amount of product s ∈ S shipped from port

r ∈R in period t ∈ T .

Objective Function
The objective is to maximize revenue while minimizing the
deviation from the product quality specification.

Revenue

= Total profit − Cost of live stockpile violations

− Cost of bulk stockpile violations

− Cost of contractual commitment violations

− Cost of grade noncompliance

− Cost of bulk handling

− Cost of extra trains

− Cost of violating preference requirements

− Cost of violating lump-to-fines ratios

+ Incentives0 (A1)

The total profit for shipping product is
∑

s∈S

SPs

∑

t∈T

∑

r∈R

zrst1 (A2)

where SPs is the profit per shipped tonne of product s and
zrst is the amount of product s shipped from port r in
period t. The cost of live stockpile limit violations is

∑

m∈M

∑

p∈Pm

MSVLmp

∑

t∈T

4�↑

mpt +�↓

mpt5

+
∑

r∈R

∑

s∈Sr

PSVLrs

∑

t∈T

4�↑

rst +�↓

rst51 (A3)

where MSVLmp represents the limit violation penalty for live
stockpiles of mined product p in mine m, PSVLrs is the limit
violation penalty for live stockpiles in the ports, �↑

mpt and
�↓

mpt are the amounts by which the maximum and mini-
mum live stockpile limits are violated in the mines, respec-
tively, and �↑

rst and �↓

rst are the amounts by which maximum
and minimum live stockpile limits are violated in the ports,
respectively. An analogous term is needed for the cost of
bulk stockpile limit violations.

The cost of violating contractual agreements in a given
period is

∑

m∈Mv

JVPm

∑

t∈T

4�↑

mt + �↓

mt51 (A4)

where JVPm is the penalty for violating per-period contrac-
tual commitments, and �↑

mt and �↓

mt are the excess and slack
variables for contractual targets by period, respectively.

The cost of deviating from the target compositions of the
shipped products is

∑

c∈C

∑

r∈R

∑

s∈Sr

[

GPIrsc
∑

t∈T

4sirsct + eirsct5

+ GPOrsc

∑

t∈T

4sorsct + eorsct5

]

1 (A5)

where GPIrsc is the penalty for violating the target grade of
component c, GPOrsc is the penalty for violating the compo-
sition control limit, sirsct and eirsct are the slack and excess
variables to penalize when c is off target, respectively, and
sirsct and eirsct are the slack and excess variables to penalize
when c is outside the control limit, respectively. The cost
associated with moving material from (to) bulk stockpiles is

∑

m∈M

∑

p∈Pm

BPMmp

∑

t∈T

4y+

mpt + y−

mpt5

+
∑

r∈R

∑

s∈Sr

BPRsr

∑

t∈T

4u+

rst +u−

rst51 (A6)

where BPMmp and BPRrs are the handling costs of products
at mines and ports, respectively, y+

mpt and y−
mpt are the trans-

fers to and from bulk stockpiles at mines, and u+

rst and u−
rst

are the transfers to and from bulk stockpiles at ports.
There is a limit on the number of trains available per fleet

(see Constraint (A20) later). The cost of violating this limit is
∑

f∈F

0TPf

∑

t∈T

�ft 1 (A7)

where �ft is the amount by which the number of allowed
trains of fleet f was exceeded, and TPf is the corresponding
penalty.

The cost of not respecting a preference, such as dumping
a product using a nonpreferred car dumper, is

∑

m∈M

∑

d∈Dm

PPmd

∑

t∈T

�mdt 1 (A8)

where PPmd denotes the penalty for not fulfilling the pref-
erence, and �mdt is the amount by which a selected car
dumper d cannot comply with serving mine m in period t.

The penalties for violating the preferred ratio of shipped
lump to fines are

∑

r∈R

PRSPr

∑

t∈T

�rt1 (A9)

where PRSPrt is the penalty for violating the specified ratio,
and �rt is the penalty variable for deviations in the ratio.
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Finally, we illustrate the use of penalties in the model.
The incentive for a higher number of trains as a fraction �4
of shipped profit is expressed as

�4

∑

s∈S

SPs

∑

m∈M

∑

p∈Pm

∑

d∈D

∑

t∈T

xmpdst 1 (A10)

where the decision variable xmpdst is the number of trains
sent from mine m carrying mined product p to car dumper
d to produce shipped product s at period t. All other incen-
tives (not shown) are expressed in a similar fashion. Only
one of 0 <�i < 1, i = 11 0 0 0 14, is greater than 0 when run-
ning the algorithms.

Operational Constraints
The main constraints that must be followed to ensure that
the schedule is operationally feasible are:

1. The total amount of live product stacked, both at
the mines and the terminal, should not exceed the allo-
cated product capacities and the live stockpile capacity. Live
stockpiles are part of the main production line, and bulk
stockpiles act as buffers.

Smin
mpt −�↓

mpt ≤ smpt ≤ Smax
mpt +�↑

mpt

∀m ∈M1 p ∈ Pm1 t ∈ T 1 (A11)

W min
rst −�↓

rst ≤wrst ≤W max
rst +�↑

rst

∀ r ∈R1 s ∈ Sr1 t ∈ T 1 (A12)

where smpt and wrst are the live stockpile levels at mines and
ports, respectively, Smin

mpt and Smax
mpt are the minimum and max-

imum live stockpile levels at mine m, and W min
rst and W max

rst are
the minimum and maximum live stockpile levels of shipped
product s at port r in period t. Similar constraints apply to
bulk product.

2. Inloaders and outloaders cannot service more than a
specified maximum capacity in tonnes per period.

0 ≤
∑

s∈S

zrst ≤Zmax
rt ∀ r ∈R1 t ∈ T 1 (A13)

0 ≤ smpt ≤ Y max
mp ∀m ∈M1 p ∈ Pm1 t ∈ T 1 (A14)

0 ≤wrst ≤U max
rs ∀r ∈R1 s ∈ Sr1 t ∈ T 1 (A15)

where Zmax
rt , U max

rs , and Y max
mp are the maximum tonnes of prod-

uct that can be shipped, stockpiled at ports, and stockpiled
at mines, respectively.

3. The amount of material in the live stockpiles must not
exceed the site’s yard limit. For mines and ports that have
a bulk stockpile, material accumulates in the live stockpile
until this stockpile reaches its maximum control limit. The
material is then placed into the bulk stockpile until this
stockpile reaches its capacity, and is then put again in the
live stockpile until this reaches the yard limit. For mines,

Smax
mpt +�↑

mpt ≤ YLMmpt ∀m ∈M1 p ∈ Pm1 t ∈ T 1 (A16)

y+

mpt ≥ �↑

mpt ∀m ∈M1 p ∈ Pm1 t ∈ T 1 (A17)

where YLMmpt is the yard limit. Similar constraints apply
at ports.

4. At the mines, the amount of product in the live stock-
piles at the beginning of a period equals the existing mate-
rial in the stockpile, plus the produced material, plus the
material transferred from the corresponding bulk stockpile,
minus the material transferred to the corresponding bulk
stockpile, minus the material railed to the ports.

smp1 t+1 = smpt +IOPmpt +y−

mpt −y+

mpt −TSmp

∑

d∈Dmrp

∑

s∈Smp

xmpdst

∀m ∈M1 p ∈ Pm1 t ∈ T 1 (A18)

where TSmp is the capacity of a train in tonnes transporting
product p from mine m, and IOPmpt is the amount of prod-
uct p produced at mine m in period t. Similar bookkeeping
constraints apply to bulk at the mines and bulk and live
material at the ports.

5. At the ports, as at the mines, the amount of prod-
uct in the live stockpiles to be shipped at the beginning
of a period equals the existing material in the stockpile,
minus the material shipped plus the material transferred
from the corresponding bulk stockpile, minus the material
transferred to the corresponding bulk stockpile, plus the
material railed from the mines.

6. The number of trains that service a region cannot
exceed the total allowed number of trains in that region.

∑

m∈Mg

∑

p∈Pm

∑

d∈Dmrp

∑

s∈S

xmpdst ≤MTgt ∀g ∈G1 t ∈ T 1 (A19)

where MTgt is the maximum number of allowed trains in
region g at time t. Similar capacity constraints apply to train
fleets, car dumpers, inloaders at the mines and at the ports,
and outloaders at the mines and at the ports.

7. The total number of train and train hours for each fleet
should not exceed the available pooled fleets and fleet hours
in a given period,

∑

m∈Mf

∑

p∈Pm

∑

d∈Dmrp

∑

s∈S

xmpdst ≤ MFTft +�ft

∀ f ∈ F 1 t ∈ T 1 (A20)

∑

m∈Mf

∑

p∈Pm

CTmpt

∑

d∈Dmrp

∑

s∈S

xmpdst ≤ PFTft +�ft

∀ f ∈ F 1 t ∈ T 1 (A21)

where CTmpt is the cycle time of a train carrying mined prod-
uct p from mine m at period t, MF Tft are the available train
numbers, and PF Tft is the available pooled hours of fleet f
at period t. The �ft are the additional trains required, and
�ft is the additional cycle time needed for fleet f at period t.

Other constraints (not shown) address special require-
ments, for example, penalties for not delivering a specific
product to a particular car dumper.
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Appendix B. Iron Ore Grades
We calculate live stockpile grades at mines by finding the
fraction of the total component that is left at the live stock-
pile of the mine after loading trains and moving material
in or out of the bulk stockpiles. More precisely, the live
stockpile grade of component c of product p mined at m in
period t is

LMmpct =
L_tnsmpct +IOP_tnsmpct +B_tnsmpct −R_tnsmpct

smpt
1 (B1)

where

L_tnsmpct = LMmpc1 t−14smpc1 t−1 − y+

mp1 t−151 (B2)

IOP_tnsmpct = IOP_gradempc1 t−1IOPmp1 t−11 (B3)

B_tnsmpct = BMmpc1 t−1y
−

mp1 t−11 (B4)

R_tnsmpct = RGmpc1 t−1

(

∑

d∈Dmrp

∑

s∈Smp

TSmpxmpds1 t−1

)

0 (B5)

The term L_tnsmpct is the fraction of component c left in
the stockpile at the end of the previous period, IOP_tnsmpct
is the amount of c in the mined ore as measured by the
company, B_tnsmpct is the amount of c transferred from the
bulk stockpile, and R_tnsmpct is the amount of c transported
by rail to the ports. As the equation shows, the estima-
tion of LMmpct requires LMmpc1 t−1, which is also a variable,
thus making the equation nonlinear. Bulk stockpile grades
at mines are calculated in a similar fashion. For grades of
material transported by rail, the model considers material-
handling schemes in the mines as one of LIFO or FIFO, as
explained in the Problem Description section. If the scheme
of the mine is LIFO, then

RGmpct

=

∑

d∈Dmrp

∑

s∈Smp
4IOP_tnsmpct +L_tnsmpct +B_tnsmpct5

∑

d∈Dmrp

∑

s∈Smp
TSmpxmpds1t−1

1

(B6)

where

IOP_tnsmpct

= min
{

TSmpxmpds1 t−11 IOPmp1 t−1

}

IOP_gradempc1 t−11 (B7)

L_tnsmpct = min
{

smp1 t−11max
{

01TSmpxmpds1 t−1

− IOPmp1 t−1

}}

LMmpc1 t−11 (B8)

B_tnsmpct = max801TSmpxmpds1 t−1 − IOPmp1 t−1

− smp1 t−19BMmpc1 t−10 (B9)

Equations (B7)–(B9) imply that if the mine’s scheme is
LIFO, the produced quantity will first be loaded onto the
trains leaving the mine, and the remaining amount will be

loaded from the live stockpiles. If this amount is not suffi-
cient, the remaining amount will come from the bulk stock-
pile. Accordingly, the respective grades are multiplied to
accurately calculate the grade of material transported by rail
from the mine. However, if the mine’s scheme is FIFO, then

IOP_tnsmpct = min
{

IOPmp1 t−11max
{

01TSmpxmpds1 t−1

− smp1 t−1

}}

IOP_gradempc1 t−11

L_tnsmpct = min
{

TSmpxmpds1 t−11 smp1 t−1

}

LMmpc1 t−11

B_tnsmpct = max
{

01TSmpxmpds1 t−1 − IOPmp1 t−1

− smp1 t−1

}

BMmpc1 t−10

In this case, trains will be loaded first using live stock-
pile material, next from the mine production, and finally, if
required, from the bulk stockpile.

To obtain linear approximations of the nonlinearities
introduced by the above equations into the model, we use
Algorithm 1 (Méndez et al. 2006). In the first step, we solve
the relaxed problem without grade constraints and without
restricting the number of trains to be integer. In the fol-
lowing steps, we use the previous iteration’s solution val-
ues for stockpile levels and numbers of trains in the grade
equations as estimates for the denominators. We repeat this
procedure for a fixed number of iterations.

Algorithm 1 (Grade Preservation)
Require: N = Number of iterations for which we

should run the algorithm. êo = Rail planning
model to optimize without integer restrictions on
numbers of trains.

Ensure: ço = A rail plan with small deviations from
the target compositions.
çT ← Solution of êo without grade constraints.
for i = 1 to N do

êT ← A model like êo, but where stockpile
levels and numbers of trains from çT are used
as estimates of the denominators for grade
calculation in blending equations.

çT ← Solution of êT .
end for
ço ←çT .

Appendix C. Heuristics
We implemented two heuristic methods to provide RTIO
with good-quality solutions in a short execution time. The
heuristics decrease the memory requirements and the load
on the solver by dividing the time horizon into subintervals
and solving the corresponding subproblems. The underly-
ing rationale is that the farther back in time a schedule was
realized, the less effect it should have on present plans. We
also implemented these heuristics to assess and compare
their effectiveness relative to the optimal method.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

20
4.

10
0.

22
6]

 o
n 

23
 O

ct
ob

er
 2

01
3,

 a
t 1

2:
40

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Singh et al.: Medium-Term Rail Scheduling for an Iron Ore Mining Company
18 Interfaces, Articles in Advance, pp. 1–19, © 2013 INFORMS

Heuristic 1
Heuristic 1, which we denote by H1(I ), uses a sequence of
iterations over intervals of I periods as follows:

1. In the first iteration, we solve the problem for the full-
time horizon by taking the number of trains to be integers
for only the first I periods, and as real numbers for the rest
of the horizon.

2. In the second iteration, we solve the problem for the
complete horizon by giving a tolerance of two trains to the
solution from the previous iteration 601 I7 to ensure feasibil-
ity, and taking the number of trains in periods 6I12I 7 to be
integers.

3. In general, in the 4j+15th iteration, we solve the model
over the complete horizon, giving a tolerance of two trains
to the solution from the previous iteration 601 jI7, and taking
the number of trains in periods 6jI1 4j + 15I7 to be integers.
That is, we allow the (i+1)th iteration to violate the solution
of the ith iteration by two trains to ensure feasibility.

4. The process continues until we reach the last period.

Heuristic 2
Heuristic 2, which we denote by H2(I ′, i′), uses a sequence
of iterations over intervals of I ′ periods with overlap i′ as
follows:

1. In the first iteration, we solve the model for a limited
horizon 601 I ′7.

2. In the second iteration, we solve the model over peri-
ods 6012I ′ −i′7, with the solution from the first iteration used
to fix (within a tolerance of two trains to ensure feasibility,
as in Heuristic 1) the values of xmpdst for t ∈ 601 I ′ − i′7.

3. In general, in the 4j+15th iteration, we solve the model
over periods 601 I ′ + j4I ′ − i′57, with the solution from the
jth iteration used to fix (within a tolerance of two trains to
ensure feasibility) the values of xmpdst for t ∈ 601 j4I ′ − i′57.

4. The process continues until we reach the last period.
For the problem presented, a tolerance of two trains is

sufficient to ensure feasibility for both heuristics; however,
this value is adjustable.

Appendix D. Optimizer Parameters and Flags
For both the CPLEX and Gurobi solvers, we invoked the
relaxation-induced neighborhood search (RINS) every 50th
node in the tree and set the search parameter to 100 nodes
in the corresponding subMIP tree. We set the maximum
number of Gomory cut passes to 1,000 and the number of
passes of the feasibility pump heuristic (Fischetti et al. 2005)
to 100. We also set the termination criterion to a certain per-
centage gap (different for different scenarios), the maximum
CPU time to 600 minutes, and configure the optimizers’
flags to aggressively generate mixed-integer rounding cuts
and cover cuts. We initially designed the tool to use only
the CPLEX solver. However, we realized from our exper-
iments that we found better upper and lower bounds by
using the Gurobi solver; therefore, we also added an inter-
face to this solver.
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Pooling problem: Alternate formulations and solution meth-
ods. Management Sci. 50(6):761–776.

Bilgen B, Ozkarahan I (2007) A mixed-integer linear programming
model for bulk grain blending and shipping. Internat. J. Pro-
duction Econom. 107(2):555–571.

C++ Standards Committee (2012) JTC1/SC22/WG21—The C++
Standards Committee. Accessed August 28, 2012, http://www
.open-std.org/jtc1/sc22/wg21/.

Caris A, Macharis C, Janssens GK (2008) Planning problems in
intermodal freight transport: Accomplishments and prospects.
Transportation Planning Tech. 31(3):277–302.

Cordeau JF, Toth P, Vigo D (1998) A survey of optimization
models for train routing and scheduling. Transportation Sci.
32(4):380–404.

Cullenbine C, Wood RK, Newman A (2011) A sliding time win-
dow heuristic for open pit mine block sequencing. Optim. Lett.
5(3):365–377.

Everett JE (2001) Iron ore production scheduling to improve prod-
uct quality. Eur. J. Oper. Res. 129(2):355–361.

Everett JE (2007) Computer aids for production systems man-
agement in iron ore mining. Internat. J. Production Econom.
110(1–2):213–223.

Fischetti M, Glover F, Lodi A (2005) The feasibility pump. Math.
Programming 104(1):91–104.

Fröling M, Schwaderer F, Bartusch H, Rentz O (2010) Integrated
planning of transportation and recycling for multiple plants
based on process simulation. Eur. J. Oper. Res. 207(10):958–970.

García-Flores R, Singh G, Ernst A, Welgama P (2011) Medium-
term rail planning at Rio Tinto Iron Ore. Chan F, Marinova D,
eds. Proc. 19th Internat. Congress Model. Simulation (Modelling
and Simulation Society of Australia and New Zealand, Perth,
Australia), 311–317.

Gurobi Optimization (2012) Gurobi Optimization home page.
Accessed January 18, 2012, http://www.gurobi.com/.

IBM (2012) IBM ILOG CPLEX optimizer. Accessed January 18, 2012,
http://www-01.ibm.com/software/integration/optimization/
cplex-optimizer/.

Kumral M (2011) Incorporating geo-metallurgical information into
mine production scheduling. J. Oper. Res. Soc. 6(1):60–68.

Kuo A, Miller-Hooks E, Mahmassani HS (2010) Freight train
scheduling with elastic demand. Transportation Res. Part E—
Logist. Transportation Rev. 46(6):1057–1070.

Liu CM, Sherali HD (2000) A coal shipping and blending problem
for an electric utility company. Omega–Internat. J. Management
Sci. 28(4):433–444.

Macharis C, Bontekoning YM (2004) Opportunities for OR in inter-
modal freight transport research: A review. Eur. J. Oper. Res.
153(2):400–416.

Méndez CA, Grossmann IE, Harjunkoski I, Kaboré P (2006)
A simultaneous optimization approach for off-line blending
and scheduling of oil-refinery operations. Comput. Chemical
Engrg. 30(4):614–634.

Microsoft Corporation (2012) Visual basic. Accessed August
28, 2012, http://msdn.microsoft.com/en-us/vstudio/hh388568
.aspx.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

20
4.

10
0.

22
6]

 o
n 

23
 O

ct
ob

er
 2

01
3,

 a
t 1

2:
40

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Singh et al.: Medium-Term Rail Scheduling for an Iron Ore Mining Company
Interfaces, Articles in Advance, pp. 1–19, © 2013 INFORMS 19

Newman A, Yano CA (2000) Centralized and decentralized train
scheduling for intermodal operations. IIE Trans. 32(8):743–754.

Rehman SU, Asad MWA (2010) A mixed-integer linear program
MILP model for short-range production scheduling of cement
quarry operations. Asia-Pacific J. Oper. Res. 27(3):315–333.

Sandeman T, Fricke C, Bodon P, Stanford C (2010) Integrating opti-
mization and simulation—A comparison of two case stud-
ies in mine planning. Johansson B, Jain S, Montoya-Torres J,
Hugan J, Yücesan E, eds. Proc. 2010 Winter Simulation Conf.,
IEEE, 1898–1910.

Shih LH (1997) Planning of fuel coal imports using a mixed
integer programming method. Internat. J. Production Econom.
51(3):243–249.

Ulstein NL, Nygreen B, Sagli JR (2007) Tactical planning of offshore
petroleum production. Eur. J. Oper. Res. 176(1):550–564.

Winston WL (1994) Operations Research Applications and Algorithms,
3rd ed. (Duxbury Press, Belmont, CA), 164–169.

Zanakis SH, Evans JR (1981) Heuristic “optimization”: Why, when,
and how to use it. Interfaces 11(5):84–91.

Gaurav Singh is a senior research scientist in the Math-
ematics, Informatics, and Statistics Division of CSIRO, the
Australian federal government’s premier research agency.
He holds a PhD in scheduling theory and joined CSIRO in
2004 as an OR specialist. He heads the supply chain research
team in CSIRO and has successfully led several consult-
ing and optimization systems development projects with
major mining supply chains across Australia. He is pub-
lished widely.

Rodolfo García-Flores has 10 years experience in OR,
particularly in mathematical programming, data mining,
simulation, and multiagent systems. As a research scien-
tist at CSIRO, he has participated in different commercial

projects, for example, in the development of software for
minimization of waste in dairy production, the design of
beef supply chains, and the analysis of environmental sen-
sor network data. Before joining CSIRO, he was an associate
professor in Mexico and a data analyst for a chemical com-
pany in Pudsey, England.

Andreas Ernst is the leader of the Operations Research
Group at CSIRO’s Mathematics, Informatics, and Statistics
Division. He has worked for more than a decade on OR
problems in bulk material supply chains. His research inter-
ests include hub location problems, parallel hybrid meta-
heuristics, and integer programming.

Palitha Welgama has more than 18 years experience in
simulation modeling of logistics systems and in optimiza-
tion. He has consulted and developed decision support sys-
tems for the mining, manufacturing, and service industries.
He is manager of systems modeling and optimization with
Rio Tinto and is published widely.

Meimei Zhang is senior analyst for optimization and sys-
tem modeling in integrated planning for Rio Tinto Iron Ore.
She earned a PhD in manufacturing systems engineering.
She has about 10 years of academic research experience in
OR in manufacturing, aerospace, and mining. She was pub-
lished widely prior to joining Rio Tinto in 2011.

Kerry Munday is a qualified surveyor with more than
25 years experience in the mining industry in planning and
scheduling. He has seen his focus shift from a single site to
the entire supply chain, with its increases in complexity and
volume over the past 10 years and expectations for more
complexity in the near future.

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

20
4.

10
0.

22
6]

 o
n 

23
 O

ct
ob

er
 2

01
3,

 a
t 1

2:
40

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 


