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During a single planning period, Kimberly-Clark Latin America manufactures dozens of stock-keeping units
(SKUs) in varying quantities using a few machines. The same SKU can be manufactured on multiple machines,
some of which are more efficient than others. In addition, the setup time for an SKU is sequence dependent,
and its demand is stochastic between planning periods. The stochastic demand necessitates changing produc-
tion plans each planning period; given the large number of SKUs and small number of machines, this leads
to inefficiencies. This paper describes the formulation and corresponding solution approach of an integrated
inventory, production-planning, and detailed scheduling model to address the inefficiencies in lot sizing, pro-
duction scheduling, and inventory management. The paper’s key contribution is the solution approach, which
solves the resultant industry-size NP-hard problem in minutes. The solution quality and its implementation
have been tested extensively, and the model has been successfully deployed in five countries. A reduction in
finished product inventories of up to 45 percent, an increase in yield and uptime of 2 percent, and improvements
in service levels of 2.4 percent are directly attributable to the model and the solution approach highlighted in
the paper.

Key words: production scheduling: sequencing; programming: integer; applications: production scheduling;
lot sizing.

Kimberly—Clark (K-C) is a multinational corpora-
tion with operations in 35 countries and global
brands that are sold in more than 150 countries.
K-C’s Latin American Operations (K-C LAO) division,
which encompasses 22 countries south of Mexico,
focuses on bringing various feminine, infant, adult-
care, and other personal hygiene products to market.
To cater to the diverse needs of the region’s pop-
ulation, K-C LAO maintains an expansive portfolio
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of over 1,000 stock-keeping units (SKUs). Most of
these SKUs satisfy niche demands; because competi-
tors” products are usually available as substitutes, K-C
LAO must keep a large product portfolio and a high
fill rate. Furthermore, the competitive structure of the
market causes low margins on products.

In 2007, K-C LAO had an expansive portfolio and
was successful at maintaining high product availabil-
ity; however, its inventory levels were high. The root
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cause of the inefficiency was found to be the stochas-
ticity of demand at the SKU level. The stochastic
demand necessitates that production plans be changed
frequently, and that the production runs (batch sizes)
change. A mathematical model based on production
planning and detailed scheduling seemed to be an
attractive approach to address the inefficiencies.

The mathematical model would take as an input
the expected demand for multiple SKUs over a finite
time horizon, the current inventory, an end-of-month
inventory policy, production and inventory holding
costs, machine capabilities, and changeover times. As
output, the model would recommend the quantity of
each SKU to manufacture, the machine to use, and the
manufacturing sequence to follow on each machine
during the entire planning horizon, while ensuring
that overall profits are maximized. Such mathemati-
cal models are variants of the economic lot-scheduling
problem (ELSP) that various researchers have stud-
ied extensively. However, ELSP and its variants are
an NP-hard class of computationally intractable prob-
lems; therefore, they cannot be solved to optimality
for large industrial-scale problems (Hsu 1983).

We formulated the integrated production plan-
ning, inventory management, and detailed schedul-
ing problem as a mixed-integer programming (MIP)
problem. The key contribution of the paper lies in the
solution strategy we developed for solving the large-
scale MIP; it solves the resultant industry-size NP-
hard problem in minutes.

The solution strategy depends on three algorithms:
(1) the assignment algorithm, which filters the pro-
duction capabilities based on a linear programming
(LP)-based assignment model; (2) the arc generation
algorithm, which reduces the size of the solution
space for the ELSP problem; and (3) the successive
machine inclusion algorithm, which allows the inclu-
sion of machines one at a time, practically reducing
an M-machine problem to M single-machine prob-
lems, which are easier to solve. Together, these three
algorithms ensure a scalable solution approach that is
solvable within minutes.

We organized this paper as follows. We start with
a brief Literature Review section covering the rele-
vant work in ELSP. In the Optimization Model section,
we present the model in some detail; Appendix A
includes the exact formulation and its description. In

the Solution Strategy section, we provide an overview
of our heuristic for solving the model presented in the
previous section; in Appendix B we give the details.
In the Results section, we compare some key measures
of performance of the best solution obtained to those
obtained by experienced production planners, and the
impact of the model usage. Finally, we present a sec-
tion on Conclusions and Ongoing Improvements.

Literature Review

The classic ELSP involves developing a schedule for
the production of several products on a single facility
so that demand levels are met without back orders,
and long-run average inventory-carrying and setup
costs are minimized. It also assumes deterministic
demand and production rates, and sequence-indepen-
dent setup times and costs. The ELSP has been stud-
ied for more than 40 years; Elmaghraby (1978), Potts
and Wassenhove (1992), Jans and Degraeve (2007,
2008) provide details related to various solution
approaches. The key issue with the ELSPs is that they
are computational complex problems; even the classic
ELSP with restrictive assumptions has been shown to
be NP-hard (Hsu 1983). Variants of the ELSP prob-
lem are at least NP-hard; some, such as those applied
to the semiconductor manufacturing units, are NP-
complete (Denton et al. 2006).

Given the complexity, any opportunities to exploit
the structure of the problem and the solution space
are generally used to obtain good-quality solutions.
The ELSP is usually formulated as an MIP; heuris-
tics are then developed to solve it. Belvaux and
Wolsey (2000) describe a branch-and-cut approach
based on combining several types of cuts to sys-
tematically reduce the size of the solution space.
Belvaux and Wolsey (2001) describe methods for
reformulating lot-sizing problems to achieve substan-
tially improved computational times. Degraeve and
Jans (2007) discuss a new Dantzig-Wolfe reformula-
tion and branch-and-price algorithm to find a solu-
tion. Other approaches that have been widely studied
include: the use of Lagrangian relaxation combined
with branch-and-bound (Afentakis and Gavish 1986,
Diaby et al. 1992); use of one-pass greedy-type
approaches (Dixon and Silver 1981); metaheuristics
such as tabu search (Simpson and Erengii¢ 1998); and
column-generation approaches (Vanderbeck 1999).
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More recently, the focus has moved from solving
small academic exercise problems to larger industrial-
scale problems by MIP reformulations using commer-
cial MIP solvers, as discussed by Nemhauser et al.
(1994), Belvaux and Wolsey (2000, 2001), and Cordier
et al. (1999). Denton et al. (2006) discuss the solution
method for an IBM case for a semiconductor manu-
facturing unit using an “MIP + heuristic” approach,
in which the heuristic exploits the structure of the
problem to solve the industry-scale problem; such
problems also combine problem decomposition with
reformulation.

The key concept behind decomposing the ELSP is
that, if a heuristic can solve the variant of the ELSP for
a single-machine case, it can be extended for the more
general multimachine case under some assumptions.
For example, the multimachine case in which paral-
lel processors are available for production has been
successfully solved. Most of the solution approaches
in the existing literature make an initial product allo-
cation and then separately solve the problem for
each machine. Carreno (1990) considered the ELSP
for the case of identical parallel machines and proved
that if machines are identical the optimal allocation
does not allow product sharing between machines.
Bollapragada and Rao (1999) considered the non-
identical parallel-machines version, and developed a
concave minimization model that confines solutions
to rotation schedules. Pesenti and Ukovich (2003)
tackle the nonrelated parallel machines in which some
products cannot be produced simultaneously; they
use a two-step methodology in which products are
assigned using a linear program, and sequence and
lot sizes are proposed by a heuristic based on graph
theory.

Two lessons from prior research on ELSP are rele-
vant to the methodology developed at K-C LAO.

1. An effective solution to a lot-sizing problem
depends on the development of a tight formulation
for the specific problem (Belvaux and Wolsey 2001).

2. Most ELSP problems can be decomposed into a
set of single-item problems with linking constraints
(Wolsey 2002).

Our work is in line with the work by Belvaux and
Wolsey (2000, 2001), Wolsey (2002), and Denton et al.
(2006).

Optimization Model

Most of K-C’s products in K-C LAO must compete for
a limited number of machines, which must be set up
whenever the SKU that is to be manufactured in the
machine changes. These changeovers could require a
lengthy process, because many parts of the machine
must be dismounted and replaced by new parts. Fur-
thermore, after starting the machine, a long tune-up
time is required, wasting much raw material. There-
fore, K-C LAO has a strong motivation to choose large
batch sizes. However, although the long production
batches reduce the number of setups, they increase
inventory and inventory holding costs, and the man-
ufacturing system becomes less efficient at satisfying
the demands for specific product mixes. The opti-
mization model aims to find the balance between
batch sizes and changeovers that maximizes the firm’s
profits over an extended planning horizon.

We developed an MIP that takes as input the
monthly demand (which is split in four weeks based
on historical data) for each SKU, current inventory
levels at the SKU level, target inventory levels for
every SKU, production parameters (e.g.,, machine
speeds, setup costs, and times for an SKU on a
machine), SKU processing time by machines, produc-
tion and inventory holding costs, and estimated back-
order costs. Using these data, the model produces
sequence and lot-size recommendations. The objective
function considers the selling price, manufacturing
costs, inventory holding costs, and backorder costs.
Appendix A shows the details of the mathematical
formulation.

Solution Strategy

We were able to solve the problem presented in
Appendix A for many instances. However, larger
plants with more SKUs generated instances that
required some ingenuity to find a solution in less than
an hour. Our solution strategy is built on applying the
following three heuristic algorithms sequentially to
speed up the solution. We explain the basic concepts
behind the results and present their impact below.
Appendix B provides the mathematical details.

1. The assignment algorithm reduces the universe
of possible assignments of parts to machines, thus
reducing the number of binary variables. The assign-
ment algorithm uses information about the machine
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capabilities (e.g., which SKUs the machine can man-
ufacture), time that the machine requires to make
each SKU, and corresponding cost, inventory state,
demand, and costs in an LP formulation to assign
lot sizes of SKUs to be manufactured on a given
machine. In essence, it solves the optimization prob-
lem in Appendix A, albeit without including the con-
straints that introduce the sequence-dependent setups
into the model. The resulting LP can be solved in a
short time, and it provides us with a new allocation of
SKUs to machines; we use this allocation to redefine
the capabilities, by including for each machine only
those products with a positive assignment quantity in
the solution of the assignment model.

2. The arc generation algorithm reduces the uni-
verse of possible SKUs transitions by keeping only
those that are close to the ideal sequence. This ideal
sequence is obtained by solving a traveling salesman
problem (TSP) for each machine, where each city is an
SKU and the travel times are the costs incurred when
making a setup from one SKU to another. Using this
algorithm has an additional advantage: the resulting
sequences do not vary significantly from one month
to the next. To test the impact of using a subset of arcs
rather than the whole set, we ran instances for four
machines. We found that, on average, using 50 per-
cent of the arcs, the model attains a solution value
that is 99.5 percent of the optimal value, but uses only
82.4 percent of the original time. Figure 1 shows the
evolution of the objective function and solution time
as a function of the arc generation percentage.

3. The successive machine inclusion algorithm
speeds up the problem’s solution by including one
machine at a time. Although no machine is capable
of producing every product, some products can be
made in multiple machines. This implies that to get
the optimal solution, all the machines must be sched-
uled at the same time. However, because of the com-
binatorial nature of the problem, it is faster to solve
a problem for each machine independently than to
solve a single problem for all machines at once. Keep-
ing this in mind, we devised an algorithm to include
the machines sequentially in the analysis. The concept
is to add one machine at a time, fixing the sequence
(but not the quantities) for the machines solved in
previous steps. By doing this, the number of contin-
uous variables increases at each step; however, the
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Figure 1: This graph illustrates the impact of using an arc generation algo-
rithm. The solution time and the objective function evolve as the percent-
age of generated arcs is varied from 50 percent to 100 percent in steps of
10 percent.

number of binary variables remains roughly the same
at each step (because we are finding sequences for
only the last added machine). We start the algorithm
by including first the newer machines, which are usu-
ally more cost effective, and thus preferred. At the
end, we run a polishing stage; we feed the solution
to the solver as a warm-start solution to see if it
can improve upon the solution found. Our experience
showed that the successive machine inclusion algo-
rithm is very effective at reducing the solution time.
When we tested the algorithm with a four-machine
instance, we were able to reduce the solution time by
more than 600 percent without impacting the solution
quality (see Figure 2.)

Results

Starting from a prototype developed by a Pennsyl-
vania State University team, the Strategic Operations

Successive machine inclusion algorithm impact
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Figure 2: This graph shows a comparison of the objective function and
solution time when machines are added sequentially (sequential strategy)
and when no special strategy is used (base model). We see that the same
solution is obtained in 16 percent of the original time.
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Research Team (SORT) at K-C LAO developed an
industrial-strength optimization solution using com-
mercial solver software. K-C LAO first used the
solution in a pilot plant in January 2008; it then fine-
tuned the model parameters to accurately reflect the
mill conditions. In the pilot, the solution increased the
model’s profit function (which is not the total oper-
ating profit) by more than 6 percent and provided
solutions to the MIP within minutes. K-C LAO has
fully deployed the model in its daily operations across
multiple business units.

Benefits of the model utilization include planning-
time reduction. Developing a traditional plan nor-
mally took more than two hours. Currently, the model
provides solutions to a similarly sized problem in
an average of seven minutes. Furthermore, historical
behavior of key business indicators has shown a con-
tinuous improvement since the model’s implementa-
tion. Inventories have been reduced by 45 percent,
and service level has improved by 2.4 percent. Fig-
ure 3 shows service and inventory-level trends over
a 22-month horizon. Although these variables may be
altered by other factors, we can conclude that because
of continuously using the model, K-C LAO has been
able to simultaneously reduce inventory days and
increase service levels.

Using the model has allowed the operations team to
improve operational efficiency at the plants (see Fig-
ure 4). Uptime (i.e., the ratio between production time
and total time, including setups and breakdowns)
improved 9 percent in 22 months. This increasing

120 100
110 98

— 100 9% ~

]

=) 9

T 80 92 ©

() 90 %

2 601 88 3

[0} >

N
o

@
o

T
[oe]
N

n
o
o]
o

Inventory (days) —o— Service level

— Linear (inventory (days))

— Linear (service level)

Figure 3: Areduction in inventory level is often associated with a decrease
in service level. However, the graph shows that inventories were reduced
without affecting service levels. We computed the trend lines using linear
regression.
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Figure 4: Uptime represents the relationship between production time and
total time. A higher value implies better efficiency from the mill point of
view because unproductive time is minimized.

uptime trend suggests that more efficient sched-
ules have been developed, although the number of
SKUs has increased, which would normally imply an
increase in the number of setups.

Another method that we used to measure the
model’s impact consisted of comparing the optimal
plan suggested by the model (model) to that of
the planner (traditional). The results were significant
in persuading the production planners to use the
model’s suggestions (see Tables 1 and 2).

Variation: (model —

Statistic traditional)/traditional (%)
Fill rate (%) 9.9
Income (USD) 6.2
Production cost (USD) -6.0
Profit (USD) 6.0

Table 1: The table compares the model’s results and the traditional plan.
Both correspond to Mill 1, August 2009. The fill rate represents the
percentage of cases delivered in the same period in which they were
requested. The production cost is the variable cost associated with
production.

Variation: (model —

Statistic traditional)/traditional (%)
(A) Setup cost (USD) -174
(B) Inventory holding cost (USD) 8.5
(A)+(B) —13.6
Fill rate 0.0
% machine utilization -1.0

Tahle 2: The table compares the model’s results and the traditional plan.
Both correspond to Mill 2, September 2009.
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Tables 1 and 2 show two different comparisons
made between the model and traditional plans.
Table 1 shows a case in which the fill rate improved.
Using the model results, K-C LAO is able to produce
and sell more and attain a higher level of revenue.
Although this production is achieved at the expense
of higher costs, profit is still superior. Table 2 shows
a case in which the fill rate in both cases is the same;
however, the results proposed by our optimization
model suggest a 13 percent model’s costs avoidance.
Observe that although inventory costs increase by 8.5
percent, setup costs decrease by 17.4 percent.

We added the impacts for four different mills, and
analyzed them in terms of the two most important
costs: setup and inventory holding costs. To make
the comparison as conservative as possible, we forced
both plans to produce the exact quantity, so that the
changes would only be the result of better machine
assignment and sequencing. We achieved an overall
reduction of 12 percent in relevant costs; although
setup costs were predicted to be 34 percent higher
than in traditional plans, only 77 percent of the origi-
nal holding costs were incurred (see Figure 5).

Conclusions and Ongoing
Improvements

In this paper, we discussed K-C LAO’s approach
to solving a large-scale production-planning and
detailed scheduling problem and its impact on

Model’s economic impact
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Figure 5: This graph shows the setup and holding costs when comparing
traditional and model solutions. Results suggest that total costs will be
12 percent less than using a traditional plan.

planning and operations. The K-C LAO team is cur-
rently rolling out the model to five more plants.

The model’s impact goes beyond cost reduction,
because it allows K-C LAO to quickly run different
production plans, and analyze what-if scenarios by
comparing the profit function using various target
inventories. This can provide insights on which prod-
ucts should be produced in each machine. The model
is useful in providing a solution to the planning
activities; however, because it can be run throughout
the month to suggest modifications of the planning
orders, it has also proved to be a dynamic tool, able
to adapt to changes in demand and inventories.

K-C LAO management feels comfortable with the
model; it has concluded that the model is well cali-
brated and can be used for policy studies and study-
ing different scenarios. According to K-C Andean
Supply Chain Director, Gustavo Palacio, “The impor-
tance of the tool developed by PSU and SORT is
that planners today can spend more time analyz-
ing scheduling alternatives and see the ramifications
of the solutions attained rather than spending time
in massaging the data to build one solution. This
has allowed us to reduce inventories keeping service
levels and better react to the ever-changing market
place.” To date, K-C LAO has deployed the Web-
based decision support system in six plants in five
countries and has extended its applicability to pro-
duction planning, inventory management, and inte-
grated supply chain planning.

Multiple enhancements are also being introduced
in the model presented in Appendix A. These include
the possibility of keeping stock in multiple locations
so that the model is able to produce a gross distri-
bution plan. Also, some machines allow the possi-
bility of packing different SKUs at the same time.
Changing packing configurations can be time con-
suming and costly; the original model was not able to
reflect these factors. We are also looking for alternate
ways to obtain the end-of-month inventory targets,
which depend on the inventory policy and on the
sequence to be used the next month. Because sequenc-
ing and target inventories depend on each other, we
are looking at alternate ways to solve both problems
simultaneously (Sanchez et al. 2010). Finally, we are
constantly investigating ways to make the model run
faster so that longer horizons can be considered.
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Appendix A. Model Formulation

In this appendix, we present an MIP formulation of
the production lot-sizing and scheduling problem. We
first introduce the notation to be used. The model’s
objective function and constraints are presented and
explained in detail.

Sets

P={1,..., N}, Products indexed with i and j.

M = Machines indexed with m.

J =1{1,..., T}, Periods indexed with ¢.

# = Markets indexed with k. Each market has its
own demand and service requirements. This set
is used, for example, to distinguish between
exports and imports or VIP clients, and so on.

P,, = Set of products that can be made in machine m.
Nﬂl = |g§ﬂl|'

M; = Set of machines that can produce product i.

s, = Set of arcs for transitions allowed for
machine m; that is, s, = {(i,j) € P, x P,: a
transition from product i to j is allowed in
machine m}.

i = {j: (i, j) € #,,}. The set of products that can fol-
low product i in machine m.

sy, = 1{j: (j, 1) € o4,}. The set of products that can pre-
cede product i in machine m.

Variables
X;m = Production of product i during period ¢ in
machine m, with unit cost c;,,.
sy = Sales volume of product i for market k dur-
ing period ¢, with selling price p;,.
I, = Inventory of i at the end of period ¢, with unit
cost h; per period. [, is a known parameter.

B;;, = Back orders of product i for market k at the

end of period ¢, with unit cost b; per period.
I:f I; = Overage and shortage inventory with respect
to the desired safety stock I, with shortage

~ unit cost b, per period.

8., = 1if product j is used just after i in machine m

~ during period ¢ with setup cost a;.

y,; = 1 if between periods t and ¢+ 1 in machine m
makes a transition from i and j with setup
cost a;;.

tims = Ranking for product i in machine m in
period t. This is a relative ranking; i.e., if
there is a transition from i to j, then 7, >
time + 1. If product i is not in the sequence,
then this variable is irrelevant.

Yime = 1 if product i is produced in machine m dur-
ing period t.

W, = Time that machine m is busy during period t,
with unit cost a,,,.

Parameters
D;;; = Expected demand for product i, for market k
during period ¢.
= Sequence-dependent setup time to switch from
product i to j in machine m.
Wi, = Product i production rate in machine m.
K, = Capacity (in hours) for machine m during
period t.
L; = Lower bound for production using product i.
U; = Upper bound for production using product i
(or any big constant if there is no upper
bound).

Eiim

Max ) Z[Z {PieSice — Dt Bie )

teT,iePLkeF

- Z {Cimximt + amtvvmt} - hiIit - Elfz?i|

meJl
Y| ¥ gt ¥ oagh] @
teT me (i, j)esty, (i, j)esd,,
subject to
g+ Y Xpw— Y su=1L, i€P, teT, (A2
mel; keZ
Sikt+Bikf_Bik,[—1:Dikt 1693, ke%, ng (A3)
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ked
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S Y =1 me., (A11)
j€Pm
Sy =1 med, (A12)
i€Py,
rjmt — Yimt + Nm (1 - 6311‘) = 1
(i,j)ed,, med,teT, (Al3)

7+ - = |+
Ximtr Siker Wintr Bikes Vime s L, Iy € T,

ij ij
Yimtr Zime s amt/ Y € {O/ 1}

The objective function (Al) maximizes the net
profit. We compute it as the sales income minus
the costs that correspond to backorders, inventory,
and machine usage costs. Equation (A2) balances
inventory with production and sales. The demand is
split according to Equation (A3): it is either sold or
increases back orders. Equation (A4) is used to com-
pute shortages (I;) and excess (IN,J{) of net inventory
with respect to the desired target inventory (I;,). Equa-
tion (A5) computes the total working time, whereas
Equation (A6) bounds it. Equations (A7) and (AS8)
establish upper and lower bounds to the production
batch.

The transitions (i.e., setups) are represented by
binary variables §,, which are 1 if a transition is
made between i and j during period ¢ on machine m.
Similarly, the variables y,,, represent the transitions
between the end of one period and the beginning
of the next one. Finding a sequence solution on a
machine m is equivalent to determining an optimal
path (i.e., set of transitions) between the staring node i,
and the ending node “0” in Figure A.l1. If a node is
visited, then that SKU can be produced in that period.
If a transition is highlighted in the figure, then that
transition is used. Equations (A9) and (A10) estab-
lish a flow balance for every node, which can be
written as

Yime = Z Vﬁ,t71+ Z B{;t= Z '}’Zt‘i‘ Z 53&- (A14)

J€H, JEHy, jesth, jestd,

This equation says that product i is made at time ¢
if some other product j was made prior to it, either
in the same period (in which case &/, =1) or in the
previous period (in which case some 'y,lzt_l =1). This
is equivalent to having path continuity in Figure A.1.
Note that Equation (A10) forces v;,, to be 1 if the
sequence uses product i and simultaneously ensures

Figure A.1: This graph represents a solution in the scheduling model for a three-product, three-period example.
The thin lines represent all possible transitions, whereas the thick lines represent an actual schedule. The solu-
tion schedule will be to produce products 1 and 2 in week 1, product 3 in week 2, and products 3, 1, and 2 in

week 3. The machine is currently set for product 2.
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that at most one 6 and vy in each side of Equation (14)
is equal to 1. Equation (A11) ensures that the sequence
starts with product i,, whereas Equation (A12) guar-
antees that the sequence ends with the dummy prod-
uct at the end of planning horizon T. Finally, Equation
(A13) eliminates subtours in the sequence by assign-
ing relative rankings that satisfy r;,, > r;,,, + 1 if there
is a transition from i to j; otherwise, this restriction
gets disabled because the difference in rankings is
never bigger than N,,.

We note that Equation (A7) is not establishing a
minimum bound for the run, but rather a minimum
batch for the period f. If a production run covers
more than one period, then we must consider this,
and disable this constraint. Thus, Equation (A7) must
be replaced by a pair such as

ii ii
Xt = Li(yimf ~Ym, -1 ‘Ymt)’
ii
Ximt + xim, t—1 = Liynl, =1

Notice that the first equation guarantees that if
product i is made both in t and t —1 or ¢ + 1, then
the bound is disabled, whereas the second equation
guarantees that if product i is made in both t and
t—1 (ie., v ., =1), then the lower bound is active
for the sum of production of these two periods. (The
previous equations will need straightforward modifi-
cations for f=1and t=T.)

Appendix B. Mathematical
Descriptions of the Heuristics

In this appendix, we present details about the heuris-
tic algorithms used to speed up the solution.

Assignment Algorithm

The assignment model is a reduced version of the
mathematical formulation found in Appendix A
without the sequencing constraints; that is, it uses
Equation (A1) as the objective, subject to Equa-
tions (A2)—(A8) as constraints, setting 8/, =0 and
vy, = 0 in Equation (A5). Call x;,,, the solution from
this assignment. We use it to redefine the new capa-
bilities as

P, ={ieP,: x;, > 0}.

Arc Generation Algorithm
The arc generation algorithm refines the sets of pos-

sible arcs %, and %,,, thus reducing the number of

binary variables. The arc generation algorithm uses
deviations from the “optimal sequence,” obtained
by solving a TSP. Let N,, be the number of SKUs
assignable to machine m, as obtained from the assign-
ment algorithm. The arc generation algorithm begins
by assuming that, in a given period, all N,, products
must be sequenced; it then solves a TSP using an MIP
solver to sequence the N,, SKU on that machine. Each
SKU is seen to be equivalent of a “city” and the cost
associated with setting up the machine from one SKU
to the next is the corresponding “distance.” The result-
ing solution is an “optimal sequence.”

Let R;,, be the relative rank of product i in the opti-
mal sequence for machine m. Notice that we can arbi-
trarily label any SKU as having rank 1 because we
have a tour rather than a path. We can define a cyclic
distance between SKUs i and j as

d?j’ = (R]m - Rim + Nm)mOd le

where “mod” is the modulus operator. For example,
in Figure B.1, the optimal TSP is represented by the
thick line that goes clockwise; R;,, =1, R;,, =2, and
so on. The cyclic distance between 1 and 4, 47}, is 2,
whereas the cyclic distance between 5 and 4, 4, is 3.

Next, by assuming D,, (a reference maximum cyclic
distance) as given, the arc generation approach gener-
ates arcs that connect all nodes that are less than D,,
distance away from the reference node. Thus, if we
are at node 3 and the reference maximum cyclic dis-
tance is 2, then generate arcs that connect node 3 to
nodes 4 and 2. Mathematically, if (7, j) represents an
arc between i and j, then redefine the set of available
arcs as

&Q;ﬂ:{(l,]) i,jeg)m/ d;7 SDm}‘

Note that the optimal sequence is generated infre-
quently (i.e., once every two-three months—only
when new products are introduced), and the model
uses the stored optimal sequence to generate the
set 4, for developing production plans and detailed
schedules. The need to solve the TSPs each time the
model is run is, therefore, eliminated.

Successive Machine Inclusion Algorithm
The algorithm can be described as follows: let us
assume that machines will be included in the order
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Figure B.1: In this graph, we show the strategy to eliminate arcs. On the left, we see a six-product network in
which all transitions are enabled; we see the optimal TSP tour in bold. On the right, we show that we have
eliminated all arcs except those that have maximum cyclic distance.

1,2,..., M, where M is the total number of machines.
That is, we numerate the machines in the preferred
order; therefore, the first machines are those that are
more cost effective. At the nth step of the algorithm,
the set of machines ./ is split as /' U {n}, where /' is
the set of machines that have the sequence already
fixed and n is the machine currently being added
to the analysis. Therefore, we will solve the problem
described in Appendix A at every step, adding the
equations

), =5

mt — Ymt

Yimt = Yimt

meM,teT, (i,j)ed,, (B1)
medl,teT,ie?P,, (B2)

where 3;’1, and ¥;,, define the fixed sequence found
in the solution from previous steps. Notice that fixing
the s and ys automatically fixes the 7ys.
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