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Shanghai Baoshan Iron and Steel Complex (Baosteel) is China’s largest and the world’s third-largest steel com-
pany. In 2005, our research team was tasked with developing advanced operations research-based planning tools
to improve the operational efficiency of Baosteel’s Shanghai plant. In the following six years, we developed
novel optimization algorithms and tailored metaheuristics, and implemented four decision support systems
(DSSs) to replace the manual planning methods at the Shanghai plant. The DSSs have brought scientific oper-
ations management to Baosteel and transformed the plant’s production and final-product delivery operations.
Baosteel estimates that from 2007 to 2012, they provided a cumulative economic benefit of $77 million. Based on
their current usage at this plant, they also estimate that these DSSs will continue to provide an annual economic
benefit of $20 million, which represents a 17 percent improvement of Baosteel’s information technology and
operations management capability. They have also reduced Baosteel’s carbon dioxide emissions by 585,770 tons
annually.

Keywords : iron and steel industry; production planning; batch planning; logistics scheduling; integer
programming; branch and price; metaheuristics; decision support system.

For decades, the iron and steel industry has been
a powerful symbol of an increasingly global mar-

ket economy, leading the development of other indus-
tries, such as construction, automotive, shipbuilding,
and home appliances. Over the past 30 years, China’s
iron and steel industry has grown rapidly, as has the
Chinese economy. China has been the largest steel
producer in the world for the past 15 years. Fig-
ure 1 compares the annual crude steel production by
China and the rest of the world from 2004 to 2011.
In 2011, China’s steel output was 695 million tons,
46 percent of the world’s total output. The iron and
steel industry has been one of the pillar industries
in China’s national economy, accounting for about

12 percent of the industrial sector’s share of China’s
gross domestic product. Of the hundreds of large and
medium iron and steel enterprises in China that have
an annual throughput of over one million tons, the
Shanghai Baoshan Iron and Steel Complex (Baosteel)
is the largest.

Baosteel Overview
The construction of Baosteel started in December
1978, the same month in which China decided to
reform its way of doing business and open its doors
to the outside world. By 1995, Baosteel had developed
as the largest and most technologically advanced iron
and steel enterprise in China. Within 20 years of its
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Figure 1: The graph shows the annual crude steel production by China, the rest of world, and the entire world
including China (in millions of tons).

first production run in 1985, Baosteel became one of
the world’s top 500 enterprises (by revenue). With
production output of 44 million tons in 2011, Baosteel
was ranked third among all iron and steel enterprises
in the world. Its development trajectory reflects the
rapid growth of China’s steel industry and symbol-
izes the country’s fast economic development over
the past 30 years. Baosteel has become a flagship
of China’s state-owned enterprises. Headquartered
in Shanghai, the company has four steel production
sites in China, including Shanghai, Ningbo, Guang-
dong, and Xinjiang. The Shanghai plant is the largest,
accounting for 61 percent of Baosteel’s steel output.

Although producing high-quality steel products
remains its core business, Baosteel also does business
in six other areas, including resource development
and logistics, steel in-depth processing, engineering
technology services, coal chemical engineering, finan-
cial investment, and production services. In 2011, Bao-
steel’s net profit was $2.9 billion, of which the net
profit from its core steel business was $1.2 billion.

Baosteel has several competitive advantages over
other steel manufacturers in China. First, it uses the
most advanced manufacturing facilities, processing

technologies, and automatic control systems, which
together enable it to make a wide variety of high-
quality products. Second, its large size and leading
business position give it bargaining power to acquire
raw materials in bulk at lower prices than its com-
petitors. Third, Baosteel has an excellent information
technology (IT) infrastructure that allows seamless
data communication and data management across the
entire enterprise. Since it was established in 1978,
Baosteel has taken full advantage of its manufac-
turing facilities, technological strengths, and bargain-
ing power in the marketplace to maximize its profit.
However, until our collaboration, the company had
not utilized its IT infrastructure to its full potential.
It needed to improve in one critical area: fully lever-
aging its advanced IT infrastructure to improve its
decision-making and operations management capa-
bilities. Baosteel estimated that its operations man-
agement and information capabilities indirectly con-
tributed about 10 percent of the total profit from its
core steel business (i.e., about $118 million). There-
fore, even a small improvement in its operations man-
agement capability could bring significant economic
benefits.
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Challenges Baosteel Faced
In recent years, fierce global competition and the
slowdown of the global economy have resulted in a
decrease in steel prices. However, the price of iron
ore, and the costs of coal, electricity, water, and trans-
portation have continued to rise, causing the profit
margins of companies in the iron and steel industry
to shrink. Furthermore, most Chinese iron and steel
enterprises have lacked scientific and systematic man-
agement methods for production and logistics plan-
ning, and have long relied on simple rules and the
experience of experts to make complex planning deci-
sions. This has resulted in both frequent late orders
and high costs for production, inventory, and logis-
tics. Because of these challenges, iron and steel man-
ufacturing businesses have become less profitable (or
unprofitable) for some companies in recent years.

Before our collaboration, Baosteel had been using
fairly advanced management information systems to
keep relevant order data and necessary informa-
tion about its production processes. However, these
were transactional systems that did not have built-in
decision-making capabilities. Baosteel’s expert plan-
ners had to manually make planning and scheduling
decisions based on greedy rules and personal experi-
ence, and then type the decisions into the company’s
manufacturing management system. Because of the
large scale and highly complex nature of the underly-
ing planning and scheduling problems, planners usu-
ally spent six to eight hours each day in making these
decisions. Furthermore, because of the myopic nature
of the manual planning methods used, their decisions
were often ineffective. Consequently, Baosteel often
had low resource and energy utilization, low levels
of production and logistics efficiency, and high levels
of work-in-process inventory. The company’s prod-
ucts frequently had quality problems and its orders
were often late. In addition, the planning quality
depended highly on the experience and preferences of
the individual planners involved. Thus, the produc-
tion schedule often varied significantly from day to
day with little robustness and stability, which resulted
in operational inefficiency and increased quality and
cost uncertainty. Baosteel realized that to improve its
competitiveness in worsening market conditions, it
had to shorten its production cycle, decrease work-
in-process inventory levels, cut material and energy

consumption, reduce production costs, and improve
product quality. To achieve these objectives, in 2004
Baosteel started to identify the major bottlenecks of
the production process at its Shanghai plant; its goal
was to streamline the plant’s operations by removing
these bottlenecks. It also realized that it had to change
how it manages operations and makes decisions. The
company started to search for more systematic plan-
ning and scheduling methods.

Challenges the Research Team Faced
In 2004, Baosteel invited Professor Lixin Tang, the
leader of our research team, to submit a proposal
on how to improve its in-plant operations. He pro-
posed that Baosteel use rigorous operations research
(OR)-based decision-making approaches to replace its
manual planning methods. We developed optimiza-
tion models and tools in our earlier research in the
steel industry (Tang 1999, Tang et al. 2001), and were
confident that we could extend these models and
tools to enable Baosteel to make better planning and
scheduling decisions. However, many people at the
company knew little about OR and optimization; they
doubted that any optimization-based algorithm could
find a better solution than their well-trained and expe-
rienced planners, given the complex and large-scale
problems they were facing. Most planners were also
reluctant to change how they make decisions.

During 2004, we spent considerable time communi-
cating with Baosteel’s planners and managers, intro-
ducing the OR tools to them, and sharing OR suc-
cess stories from other steel companies. We also used
OR techniques on several of their small-scale research
projects, and successfully demonstrated the signifi-
cant economic benefits that they could achieve by
using our decision-making approaches, rather than
their manual approaches. This, coupled with the
knowledge that an increasing number of international
and domestic companies had embraced OR-based
decision support systems (DSSs) to improve their pro-
ductivity, gradually made the planners more receptive
to using OR tools and boosted the managers’ confi-
dence in OR.

In 2005, Baosteel started systematic collaboration
with our research team to streamline its operations
across the entire production process at its Shang-
hai plant through advanced OR techniques. We were
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tasked with developing effective decision-making
tools to handle the planning and scheduling prob-
lems in four bottleneck areas within the production
process, which the company had identified during a
year-long investigation. These four bottleneck areas
had significantly affected this plant’s production effi-
ciency, the associated production, inventory, logistics,
and energy costs, and the quality of its steel products.

To facilitate collaboration, Baosteel formed a project
team of experts, including three Baosteel authors of
this paper, several planners, and managers. In the
following three years (2006–2008), the research team
worked closely with the Baosteel team. Each bottle-
neck area required tackling one or two major decision-
making problems. The research team faced several
challenges. One challenge was modeling and for-
mulating these problems. Each problem consisted of
multiple objectives and complex technology and man-
agement constraints. Baosteel was interested in not
only maximizing productivity and minimizing costs,
but also in maximizing product quality and customer
satisfaction. Therefore, even mathematically formulat-
ing these problems was not straightforward. Another
challenge was developing computationally efficient
algorithms to solve these difficult problems. Each
problem had characteristics that had not been pre-
viously studied in the literature; thus, we could not
directly apply or generalize existing algorithms. These
problems were technically intractable (i.e., they were
strongly NP-hard), and finding optimal solutions for
them would be time consuming. They were large-scale
problems, some of which had to be solved several
times daily. Therefore, we had to be creative in (1) for-
mulating these problems so that the resulting formu-
lations were more tractable and yet closely reflected
the issues and complexity of Baosteel’s practice, and
(2) designing solution algorithms that could generate
optimal or near-optimal solutions in a short time.

We developed a number of novel optimization
and sophisticated heuristic solution algorithms by
exploiting the structures of the problems and tak-
ing advantage of their unique characteristics. To
guarantee the optimality or near optimality of the
solutions for such difficult problems within a reason-
able amount of computation time, we used a num-
ber of optimization techniques, including branch and

bound (B&B), column generation, valid inequalities
(cutting planes), variable reduction techniques, very
large neighborhood-based metaheuristics, and novel
dynamic programming algorithms. We then devel-
oped a number of computerized DSSs in which we
embedded our algorithms. Baosteel implemented the
DSSs at some production lines of its Shanghai plant
from 2006 to 2008 to replace its manual planning
methods.

During the next three years (2009–2011), we contin-
ued working with Baosteel to fine-tune the DSSs and
install them at similar production lines of the Shang-
hai plant. As of this writing, they have been running
smoothly for more than two years. Their successful
launch has profoundly transformed the company’s
daily production operations, brought huge economic
and other benefits, and helped make Baosteel one
of the most competitive steelmakers in the global
market.

Next, we describe the scope of the project, the prob-
lems we tackled, and the OR solution approaches we
developed. We also summarize the DSS implementa-
tion and the benefits to Baosteel.

Project Scope
Iron and steel production is a complicated multistage
system (see Figure 2), which consists of four major
stages—iron making, steelmaking, hot rolling, and
cold rolling. In the iron-making stage, raw materi-
als, including iron ore, coke, and limestone, are trans-
formed into molten iron. In the steelmaking stage, the
converter first transforms the molten iron into molten
steel with the required steel grade of specific cus-
tomer orders. The continuous caster then transforms
the molten steel into slabs, which are dimensioned
to meet customer requirements. Sequentially, in the
hot-rolling stage, suitable slabs are selected, rolled
into steel sheets with the required specifications, and
coiled. Finally, the hot-rolled coils are cold rolled into
thinner strips and then coiled again. Cold-rolled coils
can be used as final products to fulfill customer orders
or processed further to make customer-required final
products through operations such as batch annealing.
Tang (1999) and Tang et al. (2001) provide additional
details on the steelmaking process.
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Figure 2: This figure shows four main stages of iron and steel production, the finished-product delivery stage,
and the areas of the process we address in the four parts of our OR project.

In the delivery stage, which follows the comple-
tion of the production process, the finished steel prod-
ucts are delivered from the plant to nearby ports
or train stations for transport to the final customer
destinations.

The project consisted of four parts, which we imple-
mented over six years (2006–2011). Each part was a
multiyear subproject focusing on one specific area of
the steel production and final-product delivery pro-
cess at Baosteel’s Shanghai plant (see Figure 2). Next,
we list the corresponding decision-making problems
in these four parts, which we illustrate in Figure 3
and describe in detail in later sections.

Part 1: Integrated charge-batching (i.e., batching
and sequencing a set of available charges to form
casts) and casting-width selection (i.e., selecting a
casting width for each charge in a cast) decisions in
the continuous-casting operation of the steelmaking
stage.

Part 2: Open-order slab-allocation and slab-reallo-
cation decisions in the slab yard of the hot-rolling
stage.

Part 3: Coil batching decisions in the batch anneal-
ing operation of the cold-rolling stage.

Part 4: Ship-consolidation and ship-stowage plan-
ning in the final-product delivery stage.

These four problem areas were an integral part of
Baosteel’s operations-improvement project. Each area
had to be improved to maximize the enterprise-wide
benefit. However, because of the complexity and large
scale of the decision problems, considering all four

problem areas as a unit and solving them as one
integrated problem would be unrealistic. In addition,
the four areas were physically separated by work-
in-process storage areas (e.g., storage yards or facili-
ties), and each problem was relatively independent of
the others in terms of the decisions involved. There-
fore, we addressed them separately. From an imple-
mentation perspective, considering them separately
was also beneficial. Making changes in all four areas
simultaneously would have been too disruptive to
Baosteel’s operations.

The decision problems we addressed in this project
are more complex than similar problems facing other
steel companies. First, Baosteel deals with a larger
variety of products, because it seeks to have a specific
market share for almost every high-end steel prod-
uct to keep its leading position in the market. Second,
the models we developed for Baosteel jointly con-
sider multiple sets of decisions, whereas most models
reported in the literature do not. For example, Bao-
steel jointly considers charge-batching and casting-
width selection decisions to achieve better solutions;
in the literature, these decisions are considered sep-
arately and sequentially (Chang et al. 2000, Tang
and Wang 2008), which can result in ineffective solu-
tions. Third, Baosteel considers multiple objectives,
whereas most models in the literature involve a single
objective. All of these factors increase the complex-
ity of Baosteel’s production and logistics operations
problems.
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Figure 3: This figure illustrates the decision-making problems in the four parts of this project: integrated charge-
batching and casting-width selection, open-order slab allocation and slab reallocation, coil batching, and ship-
consolidation and ship-stowage planning.

Integrated Charge-Batching and
Casting-Width Selection in the
Steelmaking Stage
The steelmaking stage is often the biggest bottle-
neck in the steel production process. In this stage,
the molten iron from blast furnaces is converted at
the converter and refining furnace into the molten
steel with the required steel grade of specific customer
orders. A full furnace or ladle load of molten steel
(about 250–300 tons), called a charge, is then trans-
ferred to the continuous caster, where molten steel
flows from the ladle via a tundish—a broad open con-
tainer with a pipe emanating from its bottom—into
water-cooled copper molds that simultaneously con-
tain it, cool it, and move it forward. The steel strand
is completely solidified at the bottom of the continu-
ous caster and immediately cut into slabs of required
lengths. The tundish acts as a buffer between the ladle
and the continuous caster, so that an empty ladle can

be removed and a new, full ladle can be positioned
without interrupting the continuous-casting process.
Once the heat-resistant material coated at the lining
of the tundish is burned out by high-temperature
molten steel, the tundish must be replaced by a new
tundish. When a tundish is replaced, the caster must
be shut down and cleaned; this incurs both a setup
time, which varies from one to two hours and results
in productivity loss, and a setup cost of about $4,000
to repair the used tundish. To improve productivity
and reduce production costs, a steel company must
increase the tundish utilization, which is measured as
the average number of charges cast in each tundish.

The two main decisions that a steel company
such as Baosteel faces in its daily planning for
the continuous-casting operations are charge-batching
and casting-width selection. As we define previously,
charge-batching is batching and sequencing a set of
available charges to form casts, one for each available
tundish. A cast is a set of charges in the planning
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level, which is represented by multiple ladles of
molten steel consecutively processed in a tundish.
Casting-width selection is selecting a casting width
for each charge in a cast.

When making these decisions, the company must
consider a number of technological constraints and
restrictions imposed on the continuous-casting oper-
ation. The first constraint, called a grade-switch con-
straint, requires that only the charges with the same
steel grade or compatible steel grades can be consec-
utively cast within a tundish. In addition, a grade-
switch cost is incurred to account for the resulting
low-quality slab between the two neighboring charges
whenever a charge with one grade is followed by
a charge with a different grade. The second con-
straint, called a width-switch constraint, requires that
the width of the nozzle located at the bottom of a
tundish can be adjusted at most once per cast and
only from the current width to the smaller adjacent
width. In addition, a width-switch cost is incurred to
account for the resulting low-quality slab between the
two neighboring charges whenever a width change
occurs. Finally, each tundish lining has a limited life
span; hence, the total casting time of the charges
processed within a tundish must not exceed this
life span.

In addition to maximizing the tundish utilization,
Baosteel also wants to maximize product quality by
minimizing the total grade-switch and width-switch
cost of all the casts formed. These objectives often
conflict. In practice, however, the first objective is
much more important than the others because repair-
ing a tundish is substantially more expensive than
the cost of a grade switch or width switch. Thus, we
need to maximize the number of charges packed first,
and then minimize the total grade- and width-switch
cost. Mathematically, we can do this by combining
these three objectives into one by assigning a suf-
ficiently large reward � to each charge packed and
using the total net reward (total reward minus total
grade-switch and width-switch cost) in the objective
function.

Baosteel’s Shanghai plant has two steelmaking
shops (Number 1 and Number 2), which have three
and two continuous casters, respectively. These steel-
making shops are managed separately. For each steel-
making shop, Baosteel makes charge-batching and

casting-width selection decisions once per weekday
for the following day’s plans; it makes the decisions
for Saturday, Sunday, and Monday on Friday after-
noon because the planners are unavailable over the
weekend. It makes daily decisions by considering the
available tundishes and the available charges gener-
ated by solving an order-batching problem, which it
considers separately.

The daily integrated charge-batching and casting-
width selection problem can be formulated as a
mixed-integer program (MIP) (see the appendix). For
an average-size practical problem, however, the MIP
formulation has about 3,000 binary integer variables,
100 continuous variables, and 3,000 constraints. More
than 80 percent of the constraints are conditional con-
straints used to represent the logical relationship of
the finishing times between each pair of adjacent
charges within a case. Consequently, the linear pro-
gramming (LP) relaxation is very weak and the MIP
formulation is extremely difficult to solve. A direct
commercial MIP solver, such as CPLEX, would fail to
solve it to optimality within several hours.

As a result, we chose not to directly use a com-
mercial MIP solver. Instead, we reformulated the
MIP model as a set-packing model, which con-
tains an extremely large number of columns but
has a very tight LP relaxation, and we developed
a column-generation-based B&B exact algorithm for
solving the set-packing model. We used the column-
generation approach to decompose the LP relaxation
of the set-packing model into a much smaller mas-
ter LP problem and two single-cast subproblems.
In each iteration of the column-generation procedure,
we first solve a restricted master problem with the
columns generated so far. We then efficiently solve
the subproblems using dynamic programming algo-
rithms that exploit subproblem structures to gener-
ate columns with the most positive reduced costs.
We next add the newly generated columns to the
restricted master problem and update it. When no
new columns with a positive reduced cost can be
found in solving the subproblems, the procedure ter-
minates and the LP relaxation is solved to optimal-
ity. In addition, we proposed valid inequalities to
strengthen the LP relaxation. We designed branching
strategies in a way that ensures that after each stage of
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branching, the structures of the subproblems are pre-
served. Tang et al. (2012) provide more information
on this solution.

We conducted a pilot test based on 14 days of real
production (i.e., March 3–March 16, 2006) at the Num-
ber 2 steelmaking shop. The computational experi-
ment showed that using our B&B exact algorithm,
for every problem instance tested, (1) at most 8,388
columns are generated, (2) the integrality gap is less
than 0.07 percent, and (3) an optimal solution is
found in less than one minute. However, using the
direct MIP solver of CPLEX, the objective value of the
best feasible solution obtained in two hours still has
3.73–11.13 percent of gap relative to the optimal objec-
tive value. This shows that our B&B exact algorithm
is more effective than the direct MIP solver of CPLEX.

Open-Order Slab Allocation and Slab Reallocation
in the Hot-Rolling Stage
Slab production is planned based on customer orders.
Ideally, the number of slabs produced for an order
should be exactly equal to the required quantity of
the order. To fully use the capacity of a steelmaking
furnace, which is often required because steelmaking
furnace capacity is a major bottleneck, slabs for mul-
tiple orders may have to be produced together in a
furnace by sharing a charge (i.e., a full furnace load)
of molten steel. However, because a charge of molten
steel can only be used to produce slabs with the
same dimension and chemical composition require-
ments, only orders with the same requirements can
be batched together. In the current iron and steel mar-
ket, orders tend to be large in variety and low in vol-
ume. Consequently, the total quantity of the orders
that can be batched together to form a charge is fre-
quently not enough to fill up a furnace load. Thus,
to fill up the capacity of a furnace, an excess number
of slabs, called open-order slabs (i.e., slabs that have
not yet been assigned to any orders), may have to be
produced together with the customer-order slabs (i.e.,
slabs that are produced for specific orders). Order can-
cellations also lead to open-order slabs. Open-order
slabs are stored in the hot-rolling slab yard as sur-
plus inventory. Prior to our collaboration, the sur-
plus inventory at the Shanghai plant accounted for
one-quarter of the total inventory in the hot-rolling
slab yard. The generation of surplus inventory greatly

increases production and inventory costs. One way to
solve this problem is to allocate open-order slabs to
some unfulfilled orders (i.e., the orders whose order
quantity is not completely satisfied) whenever possi-
ble. This can reduce the surplus inventory, hence sav-
ing production costs, and reduce the need to produce
new separate slabs for the unfulfilled orders, hence
speeding up the completion of these orders.

We call the decision to allocate open-order slabs
to unfulfilled orders the open-order slab-allocation
problem. In this problem, we must consider a num-
ber of matching and allocation constraints. First, Bao-
steel has a requirement that a slab can be allocated
to an order only if the steel grade of the slab is the
same as, or compatible with, the grade required by
the order, and the slab dimensions (including width,
length, and thickness) are in the ranges that the order
requires. In addition, if the steel grade or a dimen-
sion of a slab differs from the order’s requirements,
a mismatching cost between the slab and the order
will result. Second, because customers usually pay a
lower price for the excess slab weight of an order,
defined as the weight of the slabs allocated to this
order less the required weight of the order, Baosteel
requires that the excess slab weight of each order
not exceed the weight of the lightest slab allocated
to that order. Finally, each slab can be allocated to
at most one order. To decrease energy consumption,
increase resource utilization, and improve customer
satisfaction, Baosteel tries to maximize the amount of
allocated open-order slabs, minimize the total weight
loss caused by the width and length mismatch of
the open-order slabs and the orders (which we call
trim loss), maximize the total amount of the hot
open-order slabs allocated to the orders, minimize the
total excess slab weight of the orders, minimize the
number of unfulfilled orders, maximize the propor-
tion of open-order slabs that are allocated to urgent
orders, and minimize the mismatching cost between
the open-order slabs and their allocated orders.

Steel production is a complex process. In many
cases, even a small process variation may cause the
slabs produced to deviate from the design specifica-
tions of an order to the extent that the slabs can-
not be used to fulfill the order. Therefore, in addition
to allocating open-order slabs to unfulfilled orders,
to improve the matching relationship between the
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slabs and orders, planners may need to reallocate the
customer-order slabs among all the orders on hand.
We call this decision problem the slab-reallocation
problem.

In the slab-reallocation problem, we consider the
same performance measures as in the open-order
slab-allocation problem. In addition to the same set of
constraints, we must satisfy an additional constraint.
All slabs are first rolled into strips at the hot-rolling
stage and then processed at different production
lines in the cold-rolling stage, based on the customer
requirements. To ensure the continuous operation of
equipment and to keep balanced production at the
cold-rolling stage, the total weights of the slabs flow-
ing through different production lines must be bal-
anced. The total slab weight flowing through each
production line cannot exceed a given upper limit.
This constraint does not exist in the open-order slab-
allocation problem because this constraint arises in
the actual production, which starts only after slab-
reallocation decisions are made.

Previous studies (Kalagnanam et al. 1998, 2000)
consider similar open-order slab-allocation problems.
However, they consider only the total weight of allo-
cated slabs and trim loss of slabs in their objectives.
The objectives and constraints in our problem are
more complex, because the additional production bal-
ance constraint in Baosteel’s production lines makes
the problem different from the ones studied in the
previous research.

By assigning (positive or negative) weights to the
performance measures and adding them together to
form a single objective function, these two problems
can be formulated as MIPs. The resulting formula-
tion for the open-order slab-allocation problem has
on average about 2.3 million binary integer variables,
2,000 continuous variables, and 12,000 constraints,
whereas the formulation for the slab-reallocation
problem has on average about 3.5 million binary inte-
ger variables, 3,000 continuous variables, and 36,000
constraints. Clearly, directly using a commercial MIP
solver to solve these formulations is impossible.

Finding an optimal solution for these problems
in a reasonable time is unlikely. Hence, we devel-
oped tailored metaheuristics to quickly find near-
optimal solutions for them. Based on the matching
constraint that the steel grade of a slab should be the

same as, or compatible with, the grade required by
its matched order, we proposed a steel grade-based
decomposition strategy to divide the original open-
order slab-allocation problem into several indepen-
dent subproblems. We then proposed a hybrid heuris-
tic that combines scatter search and variable-depth
search to solve the subproblems. In the heuristic, scat-
ter search operates as a diversification mechanism,
while variable-depth search provides intensification
for further exploration. We developed some strate-
gies to accelerate the search procedure and improve
the solution quality. To evaluate the solution perfor-
mance, we developed a column-generation algorithm
to find the lower bound of the problem’s objective
function by optimally solving the LP relaxation of
the problem. Our computational experiment showed
only a very small gap between the objective value of
the solution obtained by the heuristic and the lower
bound, implying that the heuristic is capable of gen-
erating near-optimal solutions.

Similarly, for the slab-reallocation problem, we
developed a steel-grade-based decomposition strat-
egy that divides the problem into several independent
subproblems, which we solve using a tabu search
heuristic. To further improve the solution during the
tabu search procedure, we proposed an innovative
search method based on the neighborhoods gener-
ated by a series of pairwise exchanges of slabs in
a sequence of assignments to orders. The computa-
tional results show that all the tested practical prob-
lem instances can be solved in about two minutes,
and all the performance measures after reallocation
improve significantly over those before reallocation.

Coil Batching in the Batch Annealing Operation of
the Cold-Rolling Stage
The batch annealing operation consists of the follow-
ing steps. First, a batch of coils is loaded onto the
empty base of a furnace. Next, the inner cover of the
furnace is placed over the coils, a protective gas atmo-
sphere is added to prevent oxidation, and the outer
cover of the furnace is loaded. Finally, a series of
heating and cooling operations are executed follow-
ing a temperature control curve. Although each coil
has its own ideal annealing curve for achieving qual-
ity requirements, only one temperature control curve
can be set for batch annealing in a furnace. Therefore,
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one coil in each batch is selected as the median coil
whose ideal annealing curve is used to set the tem-
perature control curve of the furnace.

The decisions the planners must make include
selecting suitable coils from the available coils to form
batches, each of which will be loaded into an empty
furnace for annealing, and selecting one coil in each
batch to be the median coil, based on which coil
the temperature control curve of the furnace is set.
In making these decisions, the following technological
constraints must be satisfied. First, the outer diameter
of each coil in a batch must be smaller than the inner
diameter of the furnace, and the total height of a batch
must not exceed the height of the furnace. Second,
the coils loaded in the same batch must have simi-
lar characteristics in terms of annealing curve, thick-
ness, outer diameter, surface flatness, and steel grade.
In addition, a coil-coil mismatching cost is incurred
if a coil in a batch has different characteristics than
the median coil in the batch. Third, the coils and the
protective gas atmosphere in a furnace have match-
ing requirements. A coil-furnace mismatching cost is
incurred if a mismatch occurs between the annealing
curve index of a coil and the protective gas atmo-
sphere of the furnace.

The most important performance measure in mak-
ing coil batching decisions is the furnace utilization,
which we define as the total weight of coils annealed
in a furnace. Higher furnace utilization means less
energy and resource consumption for annealing the
same set of coils. Hence, furnace utilization should
be maximized. Another performance measure is the
annealing quality of coils. To ensure that each coil
receives the level of annealing required and hence
guarantee the quality of annealing coils, the total
coil-coil and coil-furnace mismatching cost should be
minimized. In addition, Baosteel must consider some
management issues regarding customers and internal
logistics; these include order due dates, relationships
between coils, contract accumulation times, and stor-
age times of coils. We quantify these issues and deter-
mine a collective priority value for each coil. Baosteel
wants to maximize the total priority value of the coils
annealed.

Although most steel companies commonly encoun-
ter the coil batching problem, we are not aware of any
study in the literature that addresses a coil batching

problem with a similar structure to our problem. The
literature does not discuss the concept of median coils
in a batching problem in the steel production process;
this does not mean that nobody has considered this
problem; it only means that nobody has published
results on it. Our problem can be viewed as a com-
bination of the multiple-knapsack problem and the p-
median problem, and inherits the complexity of both
problems.

Baosteel runs three shifts in a workday. Coil-
batching decisions are made once per shift for the
batch annealing production in the next shift. New
coils come in and new furnaces become available
continuously. Such new information is incorporated
into the next coil-batching decision problem to be
solved. The unfinished work that began in an ear-
lier shift will continue in the later shifts. Depending
on the market demand for batch-annealed coils, two
demand seasons occur each year—low-demand and
regular seasons. The low-demand season lasts about
four months, including a period of approximately one
month (usually from mid-January to mid-February)
that covers the Chinese Spring Festival, and the three-
month quiet season of the automobile industry (July,
August, and September). The remaining eight months
are the regular-demand season. During this season,
about 100–300 coils and 8–30 available furnaces need
to be considered for each shift.

By combining the multiple-objective functions
using weights and treating them as a single objective
function, we can formulate the coil-batching problem
as a binary integer program. The formulation for the
regular-demand season has about 100,000 binary inte-
ger variables and 40,000 constraints. A commercial IP
solver, such as CPLEX, cannot deal with such large-
scale instances because of memory overflow. Even for
the formulation during the low-demand season, the
commercial IP solver cannot find an optimal solution
within two hours. This motivated us to design spe-
cialized solution methods to solve it.

To solve the problem for the low-demand season,
we developed a column-and-row generation-based
B&B exact algorithm. This algorithm involves a differ-
ent set of techniques than the ones used in the algo-
rithm for solving the integrated charge-batching and
casting-width selection problem in the first part of the
project. The pilot test results showed that the average
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computation time to solve the problem instances with
a practical size (about 80 coils and eight furnaces)
in the low-demand season was about 17 minutes.
However, solving some difficult instances could take
more than two hours, which would exceed Baosteel’s
maximum allowable planning time (i.e., two hours).
Hence, we had to develop new strategies to improve
the computational efficiency. By exploring the prob-
lem structure, we proposed some valid inequalities to
tighten the LP bound during the column-generation
procedure so that in each iteration of the procedure,
columns and rows are generated alternately until no
column or row can be generated. The introduction
of the row-generation procedure significantly reduces
the integrality gap. Consequently, it reduces the num-
ber of B&B nodes that need to be explored and short-
ens the computation time. We also employed a vari-
able reduction strategy to identify columns that can
never be included in the optimal solution. The strat-
egy effectively reduces the solution space and thus
further reduces the run time of the algorithm. After
we applied these techniques, the average compu-
tation time needed to optimally solve the problem
instances with a practical size in the low-demand
season decreased from 17 minutes to six minutes—a
reduction of 65 percent.

The coil-batching decisions in the regular season
typically involve up to 300 coils and 30 furnaces, mak-
ing it impossible to optimally solve this difficult large-
scale problem in a short time. Therefore, we designed
a tailored tabu search heuristic to obtain near-optimal
solutions for the problem, and developed three simple
search neighborhoods and a sophisticated variable-
depth neighborhood-search strategy. The computation
time of the tabu search heuristic is always less than
three minutes for all test instances with a practical
size in the regular-demand season. The average gap
between the solution obtained by tabu search heuris-
tic and the upper bound is only three percent.

Ship-Consolidation and Ship-Stowage
Planning in the Final-Product
Delivery Stage
Because of large volume and heavy tonnage, steel
products are transported to customer sites by ship
or by train wherever possible. At Baosteel’s Shang-
hai plant, more than 50 percent of the steel coils are

transported by ship to customers at different desti-
nation ports. For each arriving ship, Baosteel must
develop a two-phase loading plan. In the first phase,
planners select the final coil products from the ware-
house to be delivered to customers according to the
destinations of available ships, required quantities
and due dates of customer orders, and positions of the
coils in the warehouse. We call this decision problem
the ship-consolidation planning problem. Its objec-
tives are to maximize the loading rate of the ships and
minimize the number of destinations of each ship, the
number of late orders, and the number of shuffling
operations in the warehouse. In addition to the capac-
ity constraint of the ships used, Baosteel requires that
some finished coils belonging to the same order must
be simultaneously transported to the terminal. The
coils selected in the ship-consolidation planning prob-
lem are transported from the final-product warehouse
to the storage yard of the terminal. We can view this
problem as a knapsack problem with complex con-
straints; hence, it is NP-hard. No such practical con-
solidation problems have been previously reported in
the literature.

In the second phase, for a given set of coils to be
loaded onto a ship, planners need to decide the posi-
tion of each coil on the ship, and consider all the
necessary constraints, such as the weights and diam-
eters of coils and the balance of the ship. We call this
decision problem the ship-stowage planning problem.
Its objectives are to minimize the moment imbalance
of the ship, the total number of shuffling operations
that will be needed for unloading, and the disper-
sion of coils for the same destination, considering the
following Baosteel structural and operational restric-
tions: (1) coils at the lower layer in each row must
be placed from the stern to the fore with no space
between adjacent coils, and the sum of diameters of
coils at the lower layer in each row cannot exceed the
length of the ship; (2) the width, diameter, and weight
of a coil at the upper layer cannot exceed those of
any of the two coils underneath it; (3) to keep sta-
bility, the sum of the moment contributions of coils
along the length of the ship and across the width of
the ship, respectively, must be within a given small
range, which is near zero.

Most existing research on ship-stowage planning
focuses on container ships. The cylindrical shape of
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steel coils makes stowage planning for these coils dif-
ferent from that of rectangular containers. Few studies
(Hvattum et al. 2009) on ship-stowage planning prob-
lems involve cargos with a cylindrical shape. Because
of the nature of the cargo considered, these studies do
not consider stacking and shuffling. Instead of using
estimated distances to calculate the moment, we cre-
ated a new method to calculate the moments of the
coils using precise distances.

Each workday, about a dozen ships arrive at the
port that the Shanghai plant uses. Each arriving
ship requires a consolidation plan and a stowage
plan. Hence, the ship-consolidation problem and the
ship-stowage problem are solved about 12 times per
workday.

We formulated the ship-stowage planning problem
as a MIP and derived five valid inequalities to tighten
the problem. We tried to solve the resulting formu-
lation using the CPLEX MIP solver, and found that
we could obtain optimal solutions within acceptable
times only for instances of small and medium sizes.
The computation time to solve the models increases
exponentially with the number of coils. For instances
with a practical size (e.g., 200 coils), the MIP for-
mulation of the stowage planning problem is very
large; on average, it has about 80,000 binary integer
variables, 1,000 continuous variables, and 90,000 con-
straints. This motivated us to develop effective meta-
heuristics to obtain near-optimal solutions in a short
time. We developed a tabu search algorithm with a
tabu list of variable length. We first use an optimality
property to construct a heuristic for generating an ini-
tial solution. Then, we use shift moves (i.e., moving
a loaded coil to an available position) and ring-swap
moves (i.e., swapping several coils with correlative
coils) to improve the initial solution within the frame-
work of the tabu search. For further improvement, we
use two acceleration strategies to accelerate the search
procedure.

We formulated the ship-consolidation planning
problem as a pure integer program. For instances with
a practical size (i.e., about 20,000 coils), this prob-
lem has about 20,000 binary variables and 20,000 con-
straints on average. We found that solving it with a
commercial solver is also impossible. Therefore, we
developed a hybrid metaheuristic, which combines
variable-depth search and scatter search, to solve it.

The computational results on the practical instances
show that the proposed hybrid intelligent search algo-
rithm can solve the problem within one minute.

Implementation of the Decision
Support Systems
As we mention previously, before we started
this project, Baosteel’s Shanghai plant already had
a sophisticated management information system.
Human-machine interactive editors allowed Bao-
steel’s expert planners to manually make planning
and scheduling decisions, based on greedy rules and
their experience, by entering their decisions into the
management information system. A major goal of
our collaboration with Baosteel in this project was to
streamline its decision-making processes and replace
the manual planning approaches by optimization-
based DSSs. In this project, we developed four DSSs,
one for each of the four parts of our project. We devel-
oped all the DSSs in the Microsoft Visual C++ 6.0
integrated development environment, coded the opti-
mization algorithms for all the planning problems in
C++, and solved all the LP problems with the LP
solver of IBM CPLEX.

To protect the management information system
security and to make our DSSs portable, our DSSs nei-
ther replace Baosteel’s management information sys-
tem nor are imbedded within it. Instead, they run
on top of it through a data interface. Each DSS con-
sists of similar functional modules and includes sep-
arate modules for data downloading, technological
data management, parameter configuration, optimiza-
tion, human-machine interactive editing, and data
uploading (see Figure 4). The main difference among
the four DSSs is that they call different optimization
solvers, which we have customized for different plan-
ning problems using different algorithms.

We keep our DSSs and the management informa-
tion system separate and link them through a data
interface; therefore, they are highly portable and can
easily link to the existing information systems at Bao-
steel’s other plants. Other steel companies in China
face similar daily operational challenges to those
we describe for Baosteel’s Shanghai plant. Therefore,
these steel companies could readily use these DSSs by
modifying the company-specific parameters for some
functional modules.
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Figure 4: Each DSS consists of similar functional modules; however, we use different algorithms to optimize
each of the four parts. The DSSs are built on top of Baosteel’s previously existing 9672 management information
system.

Each DSS consists of six modules (see Figure 4), and
each has a specific function, as we describe next.

(1) The data downloading module is the data inter-
face between the DSS and the management informa-
tion system. When using the DSS for daily planning,
the production data (e.g., information about orders,
charges, slabs, coils) is downloaded from the manage-
ment information system and uploaded to the DSS
each day through this module.

(2) The technological data management module is
used to initialize, add, update, or delete some of
the infrequently updated data related to production
technology (e.g., steel grades, casting widths, steel-
grade compatibility, furnace capacity, tundish lining
life span). Such data rarely change, but can be dynam-
ically updated whenever necessary.

(3) The parameters configuration module is used
to tune the values of some parameters in the mathe-
matical models and algorithms. We collaborated with
Baosteel’s expert planners to tune these parameters to
ensure that the models closely reflect practical tech-
nological restrictions and management requirements.
In addition, for some metaheuristics such as tabu
search, the algorithm parameters (e.g., tabu list length,
population size, aspiration criteria) are also tuned in
this module.

(4) The optimization algorithms module is the
engine of the DSS in which our solution algorithms
reside. Its task is to generate optimal or near-optimal
solutions for a particular planning problem.

(5) The human-machine interactive editor module
is a graphical interface in which the solution can be
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displayed in both visual graphics and data tabula-
tion format. This editor allows the planners to evalu-
ate and modify a solution according to their personal
experience and preferences.

(6) The data uploading module is a data inter-
face that converts the resulting solution data into the
management information system-defined format and
then uploads the data to the management information
system.

We developed and implemented the four DSSs
at various production lines and related sites of the
Shanghai plant across a six-year period, 2006–2011.

Impact and Benefits
The successful implementation of the DSSs using
advanced OR techniques has transformed Baosteel’s
operations across its entire production process and
final-product delivery from its plant to ports, thus
bringing significant tangible and intangible benefits to
the company.

In today’s volatile steel market, in which many steel
companies operate on a slim profit margin or even
at a loss, Baosteel’s steel output and net profit con-
tinue to grow at a steady rate. This can be attributed
not only to Baosteel’s use of advanced manufactur-
ing equipment and production technology, but also
to its adoption of advanced OR-based planning tools,
which result in significantly improved operational
efficiencies. Next, we elaborate on the various benefits
associated with using the DSSs.

Tangible Benefits
We can quantify the monetary impact of this project
based on a number of key performance measures.
Baosteel estimates that from 2007 through 2012, the
DSSs at the Shanghai plant have provided a cumu-
lative benefit of $77 million. Based on their current
usage at this plant, Baosteel also estimates that they
will continue to provide an annual economic benefit
of $20 million. As previously mentioned, Baosteel’s
IT and operations management contribute almost 10
percent of Baosteel’s annual profit of $1.2 billion from
the steel business (i.e., $118 million). Therefore, the
current estimate of the annual economic benefit of the
DSSs ($20 million) represents a 17 percent improve-
ment in Baosteel’s IT and operations management
capability. As a result of the substantial benefits that

the DSSs have brought, Baosteel plans to extend and
implement them at its other plants in the next several
years; it estimates that this will result in an annual
economic benefit of more than $50 million.

Table 1 summarizes the cumulative direct and indi-
rect economic benefits that the DSSs have provided
in the impacted areas of the production process from
2007 through 2012. We calculate the direct economic
benefits based on the improvement of technical mea-
sures that have a direct impact on cost or revenue
(e.g., increased tundish utilization, increased produc-
tion rate, reduced scrap steel), and the indirect eco-
nomic benefits based on the improvement of technical
measures that have an indirect impact on cost or rev-
enue (e.g., improved product quality, reduced inven-
tory space usage).

The use of the DSSs has also significantly reduced
the time that planners spend in making decisions (see
Table 2). The improved planning efficiency allows
planners to spend more time doing what-if analyses
to gain meaningful managerial insights.

Other tangible benefits include an annual reduc-
tion of 293,967 tons of standard coal consumption,
an annual reduction of 585,770 tons (or equivalently
12 percent) of carbon dioxide emissions, and a nine
percent reduction in inventory.

Baosteel calculated the tangible benefits previously
reported based on the actual improvement of cor-
responding technical measures, such as increased
tundish utilization, reduced scrap steel, increased
charging rate, and reduced trim loss.

Intangible Benefits
The use of OR-based planning tools has also provided
Baosteel with benefits that are difficult to quantify,

Total Total
direct indirect Total

economic economic economic
benefits benefits benefits

DSSs Production line (million $) (million $) (million $)

DSS for part 1 Steelmaking shops 14073 1092 16065
DSS for part 2 Hot-rolling lines 43041 0075 44016
DSS for part 3 Batch annealing line 11000 0080 11080
DSS for part 4 Final-product warehouse 4020 4020

Total 73034 3047 76081

Table 1: Baosteel estimates the cumulative economic benefits it gained
from using the DSSs from 2007 through 2012 to be about $77 million.
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Computation-time comparison
(for an average-size problem instance)

Decision Efficiency
problems Manual methods DSSs improvement

Part 1 1 hour ≤2 minutes About 30 times
Part 2 7 to 10 hours ≤15 minutes About 40 to 56 times
Part 3 3 hours ≤8 minutes About 22 times
Part 4 5 hours ≤10 minutes About 30 times

Table 2: Replacing Baosteel’s manual planning methods with the DSSs
has improved the efficiency of Baosteel’s planning process by more than
30 times, on average.

but are equally (or even more) important from a long-
term perspective. Next, we summarize these intangi-
ble benefits.

• Improved product quality and customer satis-
faction. Increased customer satisfaction has helped
Baosteel enhance customer loyalty and grow market
share, benefits that are strategically important in the
long run.

• Reduction in Baosteel’s annual carbon dioxide
emissions and hence its environmental impact. This
sends an important message to China’s steel industry,
which has been one of the major industries responsi-
ble for pollution and other environmental problems in
China. Baosteel has demonstrated that by using OR-
based operations management tools, it can improve its
profitability and also reduce its environmental impact.

• Increased understanding of the important role
that OR-based models and planning tools play in
daily production and logistics operations planning
at Baosteel. Its planners have changed from being
skeptical about OR to fully embracing it. This project
has been a great learning experience for everyone
involved. Baosteel learned about the true value of OR,
and the research team gained additional real-world
experience.

• Baosteel’s realization that it must maximize oper-
ational efficiency to stay competitive. By replacing its
decades-old rules and experience-based manual plan-
ning methods with computerized DSSs, the company
is starting to embrace rigorous scientific operations
management approaches to improve its planning and
operations management capability. This change in
management culture is undoubtedly the biggest ben-
efit that this project has given Baosteel.

• Positive external impact. As a large, well-
respected state-owned company and a role model
for other steel companies in China, Baosteel’s initia-
tives and practices will attract the attention of other
Chinese companies. Many Chinese companies rely on
simple rules and expert opinions to make planning
decisions. Baosteel’s success story is likely to motivate
other Chinese companies to adopt more systematic
OR-based planning tools to improve their profitabil-
ity. The optimization models and algorithms that we
have developed in this project can be almost directly
applied to similar problems at other steel companies.

Conclusion
In the six years of close collaboration between Bao-
steel and the research team, this project has trans-
formed the production process at its Shanghai plant
and made a significant impact on the plant’s opera-
tional efficiency, product quality, energy and resource
consumption, and environmental footprint. The DSSs
we developed will continue to improve Baosteel’s
operations management capability and enhance its
competitiveness. The successful adoption of our OR-
based planning tools could also have a positive
impact on other steel and nonsteel manufacturing
companies in China who face similar problems. This
project is an example of how OR can successfully
solve complex real-world problems and create value.

Appendix. The Mixed-Integer Programming
Formulation for the Integrated Charge-Batching
and Casting-Width Selection Problem
The MIP formulation consists of the following components.

Parameters
N = 81121 0 0 0 1n9, the set of charges.
m= the number of available tundishes.
G= the set of steel grades involved.
R= the set of possible casting widths.
gi = the steel grade of charge i ∈N .
Ri = 8li1 li + 11 0 0 0 1ui9 the set of possible casting widths

for charge i ∈N .
Gk = the set of steel grades that are compatible with

grade k.
T = the tundish lining’s life span.
tj = the casting time of a charge using width j .
âj = 8i ∈ N � li ≤ j ≤ ui9, the set of charges for which j is

an allowable casting width.
ã+

ij = 8h ∈ âj\8i9 � gh ∈ Ggi
9, the set of charges h that can

be sequenced immediately before charge i in a cast
where both charges i and h use width j .
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ã−
ij = 8h ∈ âj\8i9 � gh ∈ Ggi

9, the set of charges h that can
be sequenced immediately after charge i in a cast
where both charges i and h use width j .

ç+

ij = 8h ∈ âj+1\8i9 � gh ∈Ggi
9, the set of charges h that can

be sequenced immediately before charge i in a cast
where charge h uses width j + 1 and charge i uses
width j .

ç−
ij = 8h ∈ âj−1\8i9 � gh ∈ Ggi

9, the set of charges h that
can be sequenced immediately after charge i in a
cast where charge i uses width j and charge h uses
width j − 1.

�kk′ = the grade-switch cost between adjacent charges
associated with grades k and k′.

�= the width-switch cost.
�= the reward for packing a charge.

BigM= a large positive constant.

Decision variables
x1
hij = 1 if charge h is sequenced immediately before charge

i, and both h and i use width j , 0 otherwise.
x1

0ij = 1 if charge i is the first charge in a cast and uses width
j , 0 otherwise.

x1
i0j = 1 if charge i is the last charge in a cast and uses width

j , 0 otherwise.
x2
hij = 1 if charge h using width j + 1 is sequenced immedi-

ately before charge i using width j , 0 otherwise.
y1
j = number of casts using one width j .

y2
j = number of casts using two widths (j + 11 j).

Qi = the time when charge i finishes dispensing from a
tundish.

Objective Function
Maximize the total reward of packed charges minus the
total grade-switch cost and total width-switch cost:

�
∑

i∈N

∑

j∈Ri

(

∑

h∈ã+
ij ∪809

x1
hij +

∑

h∈ç+
ij

x2
hij

)

−
∑

i∈N

∑

j∈Ri

(

∑

h∈ã+
ij

�ghgi
x1
hij +

∑

h∈ç+
ij

�ghgi
x2
hij

)

−�
∑

j∈R

y2
j 0 (1)

Constraints
Assignment constraint requires that each charge is assigned
to at most one cast:

∑

j∈Ri

∑

h∈ã+
ij ∪809

x1
hij +

∑

j∈Ri

∑

h∈ç+
ij

x2
hij ≤ 11 i ∈N0 (2)

Flow conservation constraint is similar to that of typical net-
work problems:

∑

h∈ã+
ij ∪809

x1
hij +

∑

h∈ç+
ij

x2
hij =

∑

h∈ã−
ij ∪809

x1
ihj +

∑

h∈ç−
i14j−15

x2
ihj1

j ∈R1 i ∈ âj 0 (3)

Variables relationship constraint to ensure that the number
of times that a charge is sequenced at the first position of a

cast and uses width j is equal to the number of casts using
one width j and using two widths (j1 j − 1):

∑

h∈âj

x1
0hj = y1

j + y2
j−11 ∀ j ∈R0 (4)

Variables relationship constraint to ensure that the number
of times that a charge is sequenced at the last position of a
cast and uses width j is equal to the number of casts using
one width j and using two widths (j + 11 j):

∑

h∈âj

x1
h0j = y1

j + y2
j 1 ∀ j ∈R0 (5)

Variables relationship constraint to ensure that the number
of times switching from width j + 1 to j is equal to the
number of two-width casts using widths (j + 11 j):

y2
j =

∑

h∈âj

∑

i∈ç−
hj

x2
hij1 ∀ j ∈R0 (6)

There are m tundishes available:
∑

j∈R

∑

h∈âj

x1
0hj =

∑

j∈R

∑

h∈âj

x1
h0j =m0 (7)

Logical relationship of the finished times between each pair
of adjacent charges within a cast:

Qi ≥ tj +4x1
0ij −15BigM1 ∀j ∈R1i∈âj1 (8)

Qi ≥Qh+tj +4x1
hij −15BigM1

∀j ∈R1h∈âj1 i∈ã−

hj1 (9)

Qi ≥Qh+tj +4x2
hij −15BigM1

∀j ∈R1h∈âj+11 i∈ç−

hj 0 (10)

Nonnegativity and integrality requirements for variables:

0 ≤Qi ≤ T 1 ∀ i ∈N1 (11)

x1
hij1x

1
i0j1x

1
i0j ∈ 801191 ∀ j ∈R1 i ∈ âj1 h ∈ã+

ij 1 (12)

x2
hij ∈ 801191 ∀ j ∈R1 h ∈ âj1 i ∈ç−

hj1 (13)

y1
j 1y

2
j ≥ 01 ∀ j ∈R0 (14)
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