
This article was downloaded by: [132.207.49.206] On: 28 October 2014, At: 12:27
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Interfaces

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Optimizing Chevron’s Refineries
Ted Kutz, Mark Davis, Robert Creek, Nick Kenaston, Craig Stenstrom, Margery Connor

To cite this article:
Ted Kutz, Mark Davis, Robert Creek, Nick Kenaston, Craig Stenstrom, Margery Connor (2014) Optimizing Chevron’s Refineries.
Interfaces 44(1):39-54. http://dx.doi.org/10.1287/inte.2013.0727

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2014, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/inte.2013.0727
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


Vol. 44, No. 1, January–February 2014, pp. 39–54
ISSN 0092-2102 (print) � ISSN 1526-551X (online) http://dx.doi.org/10.1287/inte.2013.0727

© 2014 INFORMS

THE FRANZ EDELMAN AWARD
Achievement in Operations Research

Optimizing Chevron’s Refineries

Ted Kutz
Technical Solutions, Chevron Downstream, Richmond, California 94801, tedkutz@chevron.com

Mark Davis
Value Chain Optimization, Chevron Downstream, Houston, Texas 77002, markdavis@chevron.com

Robert Creek, Nick Kenaston
Process Engineering, Chevron Energy Technology Company, Richmond, California 94801

{rjcr@chevron.com, nken@chevron.com}

Craig Stenstrom
Supply and Trading IT, Chevron Gas and Midstream, Richmond, California 94801, craigstenstrom@chevron.com

Margery Connor
Chevron Information Technology Company, San Ramon, California 94583, mhco@chevron.com

Chevron has developed a software modeling tool that its seven company-owned refineries use to select the
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Chevron, one of the world’s leading integrated
energy companies, conducts business worldwide.

It is involved in virtually every facet of the energy
industry. In its upstream organization, it explores for
and produces crude oil and natural gas. In its down-
stream organization, it refines and markets transporta-
tion fuels, chemicals, and lubricants. In this paper,
we describe Petro, our refinery planning tool, which
has made and continues to make a huge contribu-
tion to the effectiveness of Chevron’s downstream
organization.

Refineries convert crude oil into products, which
fuel the world. A large portion of these products

are transportation fuels, including gasoline for auto-
mobiles, jet fuel for airplanes, and diesel fuel for
trucks and railcars. Refineries can also produce lubri-
cating oils and a lower-value fuel oil product used to
fuel ships.

Most of the feed to our refining facilities, called
crude oil, comes from oil-producing fields world-
wide. Multiple crude oils, each with its own set of
qualities (e.g., sulfur content, hydrogen content) go
through a number of refinery process units to con-
vert crude oil into products. In these processes, they
are mixed or pooled in feed and intermediate tanks,
and in pipes at multiple points in the refining process.

39

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

20
7.

49
.2

06
] 

on
 2

8 
O

ct
ob

er
 2

01
4,

 a
t 1

2:
27

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Kutz et al.: Optimizing Chevron’s Refineries
40 Interfaces 44(1), pp. 39–54, © 2014 INFORMS

The proportions in which they are pooled, the pro-
cess units they go through, and the conditions under
which they operate subsequently determine the refin-
ery’s end products and the value of these prod-
ucts. To maximize the value of the refining process,
Petro considers all the crude oils and quantities avail-
able, refining options (e.g., quantities pooled and pro-
cess units), and current prices for the products it
manufactures.

Background on Refining
One fundamental difference between crude oil, which
enters the refinery, and products, which are the out-
put from the refinery, is that crude oil contains a
wide array of hydrocarbon (hydrogen plus carbon)
molecules, which boil from room temperature to well
over 1,000 degrees Fahrenheit (F), whereas prod-
ucts boil over a much narrower temperature range.
For example, gasoline boils between room temper-
ature and 350 degrees F, jet fuel between 300 and
500 degrees F, and diesel fuel between 350 and
650 degrees F. Crude oil also contains appreciable
amounts of sulfur, whereas most product specifica-
tions call for very low levels of sulfur. Tracking qual-
ities like these for each crude stream in a refinery is
critical in modeling refinery processes.

Typical refinery process units include:
• Distillation units: Primary crude oil processing

units separate the oil into narrow product boiling
ranges via a process called distillation.

• Cracking units: The part of the crude oil that
boils too high to make products is cracked (a process
that breaks heavy hydrocarbon molecules into lighter
ones) to the product boiling ranges. Cracking units
include hydrocracking, fluid catalytic cracking, and
coking.

• Treating units: In a process called hydrotreat-
ing, distilled and cracked stocks are then purified to
remove most of their sulfur and increase their hydro-
gen content. Hydrogen is either purchased or manu-
factured to support the hydrotreating process.

• Reforming: Gasoline production requires a spe-
cial process called reforming to meet octane specifica-
tion (e.g., the 87 octane number of regular unleaded
gasoline at a typical service station).

In addition, products from individual processing
units are blended into final products. Specialty prod-
ucts, such as lubricating oils and chemicals, require
additional processing.

Although most refineries contain the process units
described previously, refineries differ significantly in
the size and capability of their process units, and
also have other types of process units not mentioned
in this paper. Of the roughly 500 refineries in the
world, no two refineries are alike. Some refineries are
configured to upgrade difficult-to-process crude oil
into products through multiple process units. Other
refineries with fewer process units rely on easier-to-
process crude oil to make their products. Refinery
capability is a term used to describe the combination
of size, number, and flexibility of process units. More-
over, the capabilities of any given refinery will change
many times throughout the year as process units are
idled for routine maintenance or as unplanned dis-
ruptions occur.

No two crude oil fields, which supply the roughly
80 million barrels per day of the world’s oil demand,
are alike. The amount of material within each prod-
uct’s boiling range and the amount of sulfur and
hydrogen the oil contains vary considerably from
field to field. These are just a few of the many quali-
ties that influence the complexity of refining a crude
oil. The price of each crude oil is a function of its qual-
ity. Crude oils that are easier to refine (e.g., have more
hydrocarbon material in the gasoline, jet, and diesel
boiling ranges, and contain lower sulfur) command
a price premium in the market relative to crude oils
that require considerable cracking and treating. These
quality-based price adjustments change with market
prices and are influenced by the availability of com-
peting crudes.

Challenges
The challenge to maximize enterprise value in
Chevron’s crude-to-customer supply chain is multi-
faceted. On an ongoing basis, it involves decisions
such as:

• which crude oils to buy for the refinery;
• which products (gasoline, jet fuel, diesel, lubri-

cants, fuel oil) to manufacture; and
• how to operate the refinery to make the best use

of Chevron’s assets.
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Information used to make these decisions is
dynamic: availability of crude oil varies, demand
for products change, market prices fluctuate, refinery
capability changes, and product quality requirements
change, although less frequently. On a longer-term
basis, capital investments unlock opportunities to fur-
ther maximize enterprise value, such as building a
new lubricants plant.

For Chevron and our competitors in the industry,
finding the best fit between crude oil and refining
capability creates both a challenge and an opportu-
nity (Klingman et al. 1987). Because crude oil costs
typically represent 70–80 percent of our total costs,
acquiring crudes that economically fit our ability to
refine them has a great deal of value. For example,
some refineries have more capacity to process high-
sulfur crude than others. Given that Chevron pro-
cesses almost two million barrels of crude oil per day,
finding an improvement that saves just one cent per
barrel is worth millions of dollars annually to the
company. Finding the right answer to the crude oil
optimization opportunity involves achieving a high
degree of competence in all of the following areas:
maintaining accurate crude oil-quality data (assays),
configuring an optimization tool that accurately rep-
resents the range of capability of the refinery in a
way that results in quick convergence to optimality,
training and retaining skilled modelers and knowl-
edgeable analysts, and maintaining a robust reporting
system. If one or more of these challenges is not met,
the value of Petro and the crude selection process is
diminished.

Refinery capability and volatility in product prices
create a product optimization opportunity, similar
to the crude oil purchase optimization opportunity.
Refineries can shift the amount of products they make
by altering the operating conditions (e.g., tempera-
ture and pressure) of their process units. For exam-
ple, a refinery can make more diesel fuel, but less jet
fuel, if prices dictate this shift. However, prices alone
are not enough to drive a shift in the products we
make. Analysts must also understand the refinery’s
costs associated with making each product. Because
diesel product specifications require low sulfur con-
tent, diesel must be hydrotreated, whereas jet fuel
does not require this additional processing. The addi-
tional costs of hydrotreating must be weighed against

the price difference to understand which product is
more profitable. Comparing a refinery’s costs to pro-
duce products relative to market prices for those
products is an ongoing optimization opportunity that
requires competency in many of the same areas as
crude oil optimization.

Because of scheduling and transportation time, the
crude oil optimization and buying processes take
place two–four months before the crude oil is pro-
cessed and products are sold. As we get closer to the
day on which the crude oils are processed, a number
of important steps take place to assure that the opti-
mization plans, which we carried out at crude selec-
tion time, dovetail with and contribute effectively to
the instructions that guide the daily operation of each
refinery. During this time, we update the optimization
case (a case contains the inputs, outputs, and model
formulation associated with a given optimal solution)
to reflect changes (e.g., in prices, refinery capability,
or demand).

Given the breadth and complexity of our refining
capability, covering the salient properties within a
model is a challenge. Our goal is to closely model
the economic impacts of all the process units to the
extent that we understand these impacts, either based
on measured performance or on detailed process sim-
ulation models. This includes not only the separa-
tion, treating, and cracking processes, but also the
blending processes. In building a Petro model, we
strive to address this complexity, while also provid-
ing timely and understandable answers for our ana-
lysts. If multiple models are required to address all
the opportunities associated with refining, then close
communication—either organizationally or through
technology—is needed to avoid fragmented, and
therefore suboptimal, management of the business.

The example in Figure 1 illustrates some of the chal-
lenges and opportunities associated with product and
refinery optimization that our analysts face every day.
It involves a balance between (1) the average sulfur
content of the streams produced in the refinery, which
are blended into gasoline, and (2) the requirement
that the gasoline products stay below sulfur speci-
fications. This is a real-world problem inasmuch as
Chevron has and continues to devote a good deal
of effort to determining how to best meet stricter
sulfur specifications on gasoline and other products
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Other
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Heavy cracked
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Gasoline
blend
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Low sulfur
80 kbpd

maximum 10 ppm sulfur

Medium sulfur
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maximum 30 ppm sulfur

Figure 1: In this example, a refinery needs to complement its low-sulfur gasoline with some medium-sulfur
gasoline to balance the sulfur in the gasoline blend stocks. Other options also exist to achieve this balance
(kbpd = 11000 barrels per day, ppm = parts per million).

associated with more stringent air quality standards.
Figure 1 shows several process units and intermedi-
ate streams in a refinery. The cracking unit breaks the
heavy molecules in the treated cracker feed into two
gasoline boiling-range streams, light cracked gasoline
and heavy cracked gasoline, which are pooled with
the gasoline blend stocks. This example illustrates that
several approaches are available to meet the sulfur
specification, depending on how we route the inter-
mediate streams or operate the process units.

In Figure 1, the average sulfur of the 100,000-
barrels-per-day streams, which are blended into gaso-
line, is 12.2 parts per million (ppm). This is too high
to meet the 10 ppm sulfur specification on the low-
sulfur gasoline. To maintain a feasible operating pos-
ture, one solution is to produce and sell 20,000 barrels
per day of medium-sulfur gasoline, which has a max-
imum sulfur specification of 30 ppm.

Because we sell the medium-sulfur gasoline at a
lower price, we have an incentive to reduce its vol-
ume and increase the volume of the low-sulfur gaso-
line. Several refinery solutions exist to allow us to
achieve this goal. One option might be to blend
the high-sulfur, heavy cracked gasoline into jet fuel
because the jet sulfur specification allows it. Another
option, which reduces the sulfur of the cracked gaso-
line, would be to lower the sulfur on the hydrotreater
product by increasing catalyst temperatures; however,
this would reduce the run life of the hydrotreater cat-
alyst. If a minimum run life needs to be maintained to
achieve a preset maintenance schedule, it may be pos-
sible to reclaim the run life by buying crude oil, which

is easier to process in the hydrotreater. If we cannot
economically justify changing the crude oil quality to
maintain a minimum catalyst life, capital investment
solutions might include purchasing a more effective
catalyst or investing in an additional reactor. To find
the optimum solution among these options, we must
design and configure our tool to simultaneously eval-
uate all the solutions.

Solutions Considered and Selected
In the 1950s, oil companies started to explore the
use of linear programming (LP) methods for refinery
crude oil selection (Garvin et al. 1957, Bodington and
Baker 1990). By the 1970s, these programs were main-
frame based, but their input format was not intuitive;
the cases took several hours to solve and the solutions
were given in thick stacks of computer paper. How-
ever, the biggest challenge was that the LP model was
incapable of representing refinery processing. Because
different crudes have significantly different refining
characteristics, the models must track the chemical
and physical changes of each crude through each of
the downstream process units, even as crudes and
intermediate streams are pooled in common pipes
or tanks (see Figure 2). Because each crude oil con-
tributes different qualities, the conventional LP mod-
eler needs to create a whole new array of streams
each time a new crude oil is considered. This is both
impractical and inaccurate. In the example in Figure 2,
low- and high-sulfur feeds are mixed and distilled,
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jetJet fuel from

feed B

Jet fuel from
feed A

Figure 2: This figure illustrates the problem of using conventional LP for modeling refineries.

producing a single stream with a blended-sulfur qual-
ity. With conventional LP, this stream must be mod-
eled as two pseudostreams to distinguish the sulfur
quality differences of the two feed sources. The LP
sees an opportunity to bypass the low-sulfur part of
the stream around the treater. However, this might
not be possible because the blended sulfur necessi-
tates treating the entire stream. This failure to address
the mixing of qualities is called the pooling problem.

The industry needed to solve the pooling prob-
lem. During the 1970s, a number of solutions were
considered, including a technique called successive
linear programming (SLP), which solves nonlinear
optimization problems using a sequence of linear
programs (Zhang et al. 1985, Baker and Lasdon 1985).
Chevron and other energy companies, including Tex-
aco, used SLP primarily in the gasoline blending
arena (DeWitt et al. 1989, Rigby et al. 1995); however,
Chevron did not use it for refinery-wide modeling.

In the late 1970s, Chevron worked with model-
ing industry consultants from Haverly Systems. They
offered a potential solution for refinery-wide model-
ing by applying an iterative technique called distribu-
tive recursion LP, a technique that enabled refinery-
stream modeling to be consistent with the actual
stream flow. Stream properties were pooled from the
sources and distributed to each destination in propor-
tion to the amount of the stream going to that des-
tination. Although some have argued that SLP and
distributive recursion are similar (Lasdon and Joffe
1990), Chevron decided to improve its ability to use
distributive recursion because of its success in using it
for refinery modeling. During 1978 and 1979, Chevron
modified its LP system to incorporate distributive
recursion and rewrote the optimization model of its
El Segundo, California refinery, applying this new

method throughout the refinery model (White and
Trierwiler 1980); this was the first time the indus-
try used distributive recursion to model an entire
refinery. Because the matrix architecture of distribu-
tive recursion connects the entire refinery optimiza-
tion from crude oil to product, and matrix coefficient
changes have a clear link to an upstream cause, the
technique worked well. To get realistic answers using
the recursive model, the cost or value of each qual-
ity of each stream must be linked upstream to the
value of the crude and downstream through the pro-
cessing units to the value of the products (White and
Trierwiler 1980). Other methods did not have this
capability and did not fare as well.

Accurately modeling the relationship between the
stream going into the process unit and the product
yields, which depend on feed qualities and process
unit conditions, is critical to optimization. The rela-
tionships are captured in a delta base model for each
process unit. Modelers develop these relationships
from simulation models or plant data. The delta base
model translates these nonlinear relationships into
piecewise linear models. For each process unit in the
refinery, if input streams vary from the base condi-
tions, the delta base model calculates the resulting dif-
ferences in the outputs. These delta base models are
included in the LP configuration.

The LP must have initial best-guess qualities of
the pooled stream to leverage the delta-base model
and solve the optimization. However, the composi-
tion of the pooled stream is not known until after the
solver has completed one complete iteration. This is
where recursion is employed. The analyst provides a
first guess at the properties of the pool, and IBM’s
LP CPLEX solver finds a solution for the matrix.
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Refinery
model data,

including
delta base

models

Generate/update
matrix

Calculate and distribute
“errors” in qualities

Review solution

No YesHas solution
converged?

Reports

Run LP optimizer

Figure 3: This diagram shows how the refinery LP model is updated based on the difference between the original
composition anticipated and the composition that results from the (tentative) solution.

Petro calculates the difference between the composi-
tion of the actual solution and the composition of the
guess and tracks these errors. In distributive recur-
sion, this error is distributed to all the destinations
in the refinery for that stream, the matrix is adjusted,
and the LP model is solved again. This is repeated
until the solution converges to within a prespecified
tolerance. The appendix illustrates a simplified ver-
sion of Petro’s underlying LP model. Figure 3 shows
the iterative process of using the LP model with recur-
sion. Prejudging the qualities of the pooled streams
enables us to model nonlinear constraints as linear,
and the solution converges rapidly.

Many of the process units in refining behave non-
linearly. The ability to handle nonlinear problems
allows recursive LP to replicate the results of process
simulation models. Developing recursive LP model-
ing methods to closely represent the refinery’s reac-
tive and separation processes over a wide range of
feed and process conditions has been a priority for
Chevron for some time. Achieving this creates a pow-
erful linkage between the external drivers of refin-
ery profitability (e.g., crude oil availability, product
demands, prices) and the specifics of how to best
set operating conditions of process units in response
to these drivers. Distributive recursion enables us to
handle these nonlinearities associated with refining in
a way that allows us to achieve optimized solutions
in a reasonable amount of time.

Distributive recursion LP has and continues to
be the dominant method used within the indus-
try to optimize refineries. If developed and used
properly, it delivers a combination of speed, flexibil-
ity, and accuracy. Models can be quickly added or
updated to reflect changes in feeds, products, and
refinery capability. For Chevron, combining this oper-
ations research (OR) technique with (1) our mod-
eling techniques, (2) Petro, which facilitates model-
ing, case setup, interpretation, and communication
of results, and (3) solid work processes and train-
ing programs allows the analysts who use Petro daily
to explore planning alternatives and deliver timely
answers to guide the operation of Chevron’s seven
wholly-owned refineries.

Implementation and Evolution of Petro
Chevron implemented a mainframe version of Petro
during the late 1970s and early 1980s. Over the past
30-plus years, we have continually developed and
improved Petro and its complementary and support-
ing systems and work processes. In the following sec-
tions, we describe how we implemented Petro and
discuss its relationship to surrounding systems and
work processes.

As personal computer (PC) technology improved,
we moved Petro from mainframes to PCs. We also
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moved from bulk properties to molecule-based meth-
ods to better model gasoline and chemical pro-
cessing. This improved accuracy, but also increased
model sizes; however, because of advances in com-
puting capability, solve times did not increase. In the
early 1990s, we improved our recursion techniques to
improve solution convergence.

In 2002, Chevron started to make extensive use of
multiperiod and tank inventory modeling to optimize
around refinery unit shutdowns, thanks to a steady
improvement in solve times for handling the larger
matrices. Using the larger multiperiod models has
been routine in preparing our refinery plans for some
time (Kutz 2004, Rigby et al. 1995).

A key driver for multiperiod modeling is that it
provides a more accurate picture of the refinery’s
capabilities by including storage options. Given that
our refineries may have as many as 20 process units,
one or more of those units is not operating much of
the time. When a process unit is not running, its feed
is often stored in tanks until the unit starts back up.
Before multiperiod modeling, planners used single-
period optimization (Kutz 2004), a time-consuming
iterative approach. Multiperiod modeling makes the
plans that result from the optimization much easier
for the operations personnel to execute. This match
between the plans and the current state of the refinery
has resulted in a closer relationship between the ana-
lysts and the operations personnel who are responsi-
ble for planning and execution.

In 2002, Chevron and Invensys signed an agree-
ment that gave Invensys global marketing rights for
the Petro refinery planning system. Under the agree-
ment, Chevron would continue Petro’s development
activities, and Invensys would assume global mar-
keting, implementation, and support responsibilities
for new third-party customers. Presently, there are 10
external Petro licensees.

In 2004, we started to use multirefinery modeling,
primarily for the purpose of optimizing a region, for
example, our two California refineries in El Segundo
and Richmond. Optimizing a region can entail trans-
porting streams from one refinery to another or bal-
ancing regional product demands between refineries.
We also use multirefinery models to evaluate capital
projects that impact an entire region. Creating multi-
refinery cases is as easy as copying and pasting indi-
vidual refinery cases into the multirefinery model,

in which linkages between the refineries have been
modeled. Petro’s architecture allows this copy-and-
paste step to happen in less than three minutes.

From 2006 to 2009, to include more of the supply
chain in the optimization space, we developed a ver-
sion of Petro to link refinery operations to product
terminals and trading centers.

Recent innovations for Petro include developing
(1) a system to share Petro results via the Web with
all the stakeholders who manage the supply chain,
and (2) developing a reporting system that supports
advanced graphics. In addition, we enhanced Petro’s
models to incorporate our highly nonlinear catalyst
aging correlations and improved Petro’s ability to rep-
resent the real-world constraints in our hydrocracking
process units. A catalyst is used up over time and its
usage is based on feed rate, feed qualities, and unit
temperature.

Over the past three decades, we have imple-
mented a number of technological and organiza-
tional improvements to enhance Petro’s value to our
business. Some of the improvements involve Petro
itself; others involve its supporting infrastructure or
complementary systems. As Figure 4 shows, Petro
has become more integrated with other tools and
data sources. Within Chevron, people at all levels of
the organization understand the need to continually
improve how we address these challenges, and we
will continue to make improvements to maintain our
competitiveness.

Petro Support and Model Building
Today Petro has two main components of support:
maintaining the information technology (IT) systems
and building and updating models. Chevron staffs
each with people who have specialized skill sets.
The success and extent to which Petro is used can be
attributed to the creative efforts of these people who
have tailored Petro to meet the specific needs of refin-
ery optimization.

A centralized team of IT employees who are con-
versant in programming techniques provide Petro’s
global system support. The IT group updates the
Petro platform once or twice a year. These updates,
which impact all Petro refinery models, usually
involve minor changes to the existing core sys-
tem. Typical updates include incorporating the latest
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Petro
Recursive LP based

Refinery planning tool

System to share Petro
results with organizations
responsible for managing

the supply chainCrude oil
data

management
tool

Pricing and
product
demand

prediction
tools

Refinery control and
optimization models

Refinery daily
scheduling tool

Gasoline blending tool

Decision analysis tools

Crude oil data

Refinery data
(modeling step)

Feed and refinery balances

Feed and refinery
balances

Data

Models

Models

Data

Figure 4: This diagram shows the extensive number of information technology applications and associated busi-
ness processes to which Petro connects. This integration greatly enhances Petro’s value to Chevron.

CPLEX optimizer or new reports and navigation fea-
tures, which are usually requested by our most expe-
rienced Petro analysts.

The refinery modeling and data aspects are sup-
ported by local modelers; these modelers support
the Petro analysts who address business questions.
Modelers are usually chemical engineers who have
worked in our engineering organization and under-
stand the refining process.

The initial development of a new Petro model
for a refinery is a significant undertaking. It typi-
cally involves a project team commissioned by man-
agement and takes several months to complete.
The project team includes (1) people very famil-
iar with the refinery processing, (2) at least one
analyst who will use the model after it has been
completed, and (3) an experienced Petro modeler.
A detailed picture of the refinery’s feeds, products,
stream routings, and processing capability must be in
place before modeling can begin. Once each stream is
defined, modelers determine what qualities need to
be ascribed to that stream for proper valuation. This
is a critical step because stream qualities either deter-
mine the product mix that stream will produce when
it is processed, or determine whether the stream will
be suitable to blend into a final product stream. Of the

10,000 equations associated with a single-period com-
plex refinery model, about 70 percent involve cas-
cading stream-quality information from crude oil to
finished products. Like all big projects, we conduct
the initial development in stages, and thoroughly test
each stage before moving on to the next stage. When
developing new models, modelers leverage the exist-
ing model architecture and adhere to common con-
ventions for standardization.

Modelers must also make periodic updates to an
existing refinery model. These updates are triggered
by any need to add new variables or equations. This
occurs when we add a new stream destination, add
a new process unit or make structural changes to
an existing one, or add a new crude oil or product.
Some minor structural changes may take only min-
utes to complete. Other changes are extensive and
may be based on insights developed from intensive
evaluation of the process unit data. Model updates
always involve refreshing the crude oil data (i.e.,
crude assay).

Our modeling philosophy is to develop detailed,
robust process unit models that cover a wide range
of capabilities on the unit. This helps us to initialize
the model over a wide range of conditions needed
to reflect systematic shifts in refinery operations.
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If we know that a particular process unit will change
frequently and unpredictably, modelers will build
unique, tunable equations, allowing analysts to make
adjustments without requiring a model update. New
model rollouts involve reviewing the changes with
analysts, creating the multiperiod and multirefinery
models (frequently a 10-minute exercise, given the
architecture of the Petro system), and ensuring the
connections to supporting systems work properly.
To avoid supporting multiple models, we build each
Petro model to serve multiple business needs. Once
the rollout is complete, our goal is to have all the ana-
lysts switch to the new model as quickly as possible.

Petro Analysts
Analysts in various parts of the organization use
Petro to identify the most economical mix of crude
oils, product make, and refinery operations for given
period(s).

Analysts who focus on optimizing our crude selec-
tion sit in our trading hubs next to crude oil traders.
They perform analyses to evaluate the economics of
crude cargos for 30–50 types of crude oil, depending
on the refinery. A crude oil’s value, which is based on
the products it makes less its market price and deliv-
ery cost, results in that crude’s margin. The hierarchy
of highest-margin crude oils is then communicated
to traders who negotiate and purchase the highest-
margin crudes.

Additional analysts focus on optimizing the
amount of each product to produce. For a given crude
oil, the final refinery yield of gasoline, jet, diesel, and
fuel oil can be altered by changing refinery oper-
ating conditions and routings. The cost to produce
each product varies as a result of processing require-
ments to meet product specifications. In addition to
working on understanding production costs, analysts
work with product traders to understand product
prices and the ability to buy and sell products in the
market. By running Petro, the analysts generate an
optimized product mix, which they communicate to
product traders who negotiate and secure buys and
sells on behalf of the refinery. Because refinery loca-
tions and marketing capabilities do not always align,
Chevron buys products from other companies (and

these companies buy from us) to minimize transporta-
tion costs. Like crude oil optimization, product opti-
mization occurs prior to actual production to allow
time for blending and scheduling.

Another group of analysts works to reoptimize the
refinery in the very short term. Because crude oils
have been purchased and the product mix has been
set, the optimization is only internal to the refinery
with fewer degrees of freedom.

Using Petro has been a good way for analysts to
broaden their careers beyond the technical into the
business realm of refining and the integration of the
operations, business processes, and organizations.

To ensure that the plans that are developed using
Petro can be executed, our scheduling tools and our
online control system use the same models as our
planning tool. This enables us to maintain as much
consistency as possible between planning and execu-
tion. The reporting and case-sharing capabilities allow
the organizations in the value chain to collaborate.

Chevron has used Petro analysis in discussions
with both the U.S. Environmental Protection Agency
and the California Air Resources Board to analyze
fuel blends under consideration for future regula-
tions. Analysts using Petro identified gasoline formu-
lations that had less impact on supply and cost, while
still meeting environmental targets.

In addition to optimization, Petro analysts provide
key inputs into our business planning and strate-
gic processes. The objectives of our business plan-
ning process are to forecast earnings, plan mainte-
nance timing, and align capital projects with planned
maintenance for the upcoming three years. Petro ana-
lysts generate information on the type and amount
of crude oil the refineries buy and products they
make (known as refinery balances) to help guide this
process.

We prepare strategic plans, which include estimates
of long-term capital requirements to respond to fore-
casted changes in product specifications or to improve
the business. Petro modelers support this effort by
adding the process units we are considering (e.g., a
hyrdotreater to remove sulfur) to the model. Analysts
then generate refinery balances with agreed-upon
refinery capabilities, crude oil availability, and prod-
uct demands and prices from our long-term forecast-
ing group. Refinery balances developed from Petro
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are then passed to our decision analysis (DA) mod-
els that analyze uncertainties and develop probabilis-
tic project economics. Chevron’s culture supports the
application of DA tools, including tornado diagrams
and decision trees; in 2010, we were awarded the
INFORMS Decision Analysis Practice Award (Neal
et al. 2010). We have also used Petro to provide multi-
refinery stock balances for this analysis when pro-
posed investments have regional implications.

More About Petro
Today, Chevron has a refinery model for each of its
seven company-owned refineries. Analysts load the
model from a server onto their PCs. Petro’s spread-
sheet interface allows them to load the data from
tables and databases, set up the cases, run the model,
and review the analysis. Petro utilities manage cases
and allow cases to be stored or shared. Under the
spreadsheet interface, C code generates the matrix for
the linear model, which is solved using IBM’s CPLEX
solver. After each LP iteration, the tool compares the
solution with the original “guess,” distributes the dif-
ferences in the qualities to downstream processes,
updates the matrix, reruns the LP model, and repeats
this process until the objective function converges.
The C code then translates the output matrix into
spreadsheet-like updatable reports for exporting to
Microsoft Excel.

Given the size and complexity of the models and
Chevron’s philosophy that analysts must thoroughly
understand the cases with which they work, highly
developed reporting is essential for successful imple-
mentation. Petro’s reporting capabilities are one of its
distinguishing characteristics relative to other prod-
ucts used in the industry.

Reports help analysts to understand (1) how the
case is set up (inputs), and (2) what message the
case is delivering (outputs). Several of the reports are
designed to allow the analyst to compare and under-
stand what is happening between a base case and
alternative cases. The reports help analysts identify
the root cause of the elements that drive the solution.
These can be interactive reports in which they review
and mark up reports to define the next case or sce-
nario. This unique feature fits naturally with the way
analysts approach a problem.

Petro model sizes and solve times

Equations Coefficients Solve time
Model type (thousands) (thousands) (seconds)

Single-period models 5–10 100–200 5
Multirefinery models 10–20 200–400 10
Multiperiod models 25–100 500–2,000 60

Table 1: This table reports model size and typical PC solve time of the
single-period, multirefinery, and multiperiod Petro models Chevron runs
today.

Multiperiod models require a new class of reports
to foster an understanding of what is happening from
period to period in a given case, allowing an ana-
lyst to compare and understand what is happening
between two cases.

Considering the thousands of stream qualities and
hundreds of destinations associated with even single-
period refinery optimization (see Table 1) and the
nonlinear aspects of the problem, models need to be
constructed and set up to achieve reasonable solu-
tions that converge. Over the years, we have been
fairly successful in this regard—most solutions con-
verge. Modeling techniques play a key role, and most
of our experienced modelers recognize and develop a
work-around to any model construction that is likely
to cause convergence problems. We also train ana-
lysts on how to correct the convergence problems they
encounter by restricting flexibility (i.e., where refinery
streams can go) in a targeted way. Stable algorithms,
with fewer nonconverged cases, fewer local optima
problems, and faster solve speeds, are features that
distinguish Petro from other approaches to refinery
planning.

One obvious challenge to implementing Petro
involves managing the quality of the data that we
incorporate into the model. Two key sources of data
are crude oil qualities (assays) and refinery process
unit performance. Over the past 10 years, we have
made great strides in improving the data from both
sources.

Our crude oil assay team now has a monitoring
and grading system, which automatically triggers an
update to the server versions of the models’ crude
qualities in our assay management system if the qual-
ities of a specific crude oil fall below a specific score
on a standard test. This has resulted in much more
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frequent updates of the crude oil qualities. These
updates are passed to Petro in less than two min-
utes via an interface to our crude assay management
system. A Petro report keeps track of needed assay
updates to ensure we are using the latest information.

Other initiatives to improve the tracking of refinery
performance have also contributed to refinery opti-
mization. We now closely track our crude oil mixing
in tanks, our process unit stream rates and properties,
and our product-blending recipes. We also track the
performance of the catalysts that promote the many
chemical reactions that take place in refining. These
data are readily available through Microsoft Excel
spreadsheets for use in model updates and tuning.

The improved fidelity of the data has made validat-
ing model accuracy easier. It has set a higher standard
for our modelers, which represents our deeper under-
standing of refinery processing. Fortunately, distribu-
tive recursion LP, in the hands of our highly skilled
modelers, has been able to replicate the complexity of
our units with remarkable accuracy, while still main-
taining solve-time performance and convergence. Rig-
orous model validation has improved Petro’s credibil-
ity with refinery engineers and management.

Organizational Capability
Petro grows its organizational capability by develop-
ing the analysts who use the program. Each day, 25–
30 analysts use it routinely. Petro analysts typically
stay in their positions for only one to two years; there-
fore, they must quickly become proficient. A work-
ing knowledge of refinery economics, gained from
being an analyst, is valued in many positions within
Chevron; hence, the company tries to rotate many
people through the analyst position. The capability
management group actively manages this rotation to
ensure that enough analysts are available to meet the
immediate and longer-term business needs.

In addition to training classes, analysts send Petro
cases on which they are working to senior ana-
lysts, who mentor them on how to frame the prob-
lems, develop solid cases, and analyze output reports.
Petro’s case management architecture, which allows
case sharing via email and the use of screen-sharing
software, makes this possible.

Managing tool support capability is essential to the
long-term successful implementation of an OR pro-
gram as complex as Petro. The modeler job is a chal-
lenging position to fill. Typically, a candidate for this
job has worked for several years as a process engi-
neer in refining and as an analyst for a minimum of
two years. A modeler requires about a year to learn
the system well enough to make simple updates and
several years to model effectively with recursive LP.

Chevron places a great deal of emphasis on devel-
oping and retaining its modelers because it believes
that people with this skill provide the company with
a competitive advantage. It is a strong core capa-
bility that has been developed over a long period.
Chevron’s modelers have a deep understanding of
both Petro and the business. Its models are more
granular than those developed by other compa-
nies; thus, Chevron can explore more optimization
opportunities.

Benefits
Chevron estimates that Petro and OR presently pro-
vide approximately $1 billion per year in benefits,
derived from several sources, to Chevron’s down-
stream business.

As we describe previously, Chevron uses OR to
optimize crude oil selection, determine the highest-
value products to manufacture in its refineries, and
optimize the refinery process units. This generates
ongoing earnings from operating the downstream
business of approximately $600 million per year. Our
estimates are based on the following comparative
calculations.

• Chevron quantifies the value of its crude oil
selection process at $400 million per year by com-
paring the earnings from the Petro-optimized pur-
chased crude oil slate against a benchmark crude oil
slate. We run the Petro-optimized and the benchmark
crude supplies through separate Petro models and
compare the resulting earnings. The benchmark slate,
which Chevron updates each year to reflect changes
in crude oil availability and refinery capability, con-
sists of readily available crude oils. We have demon-
strated experience running the benchmark slate in the
refineries. However, if we had no crude oil selection
process, we know that we could operate with the
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benchmark slate. We have tracked the value of crude
selection with Petro for the past 10 years.

• Chevron continually uses Petro to evaluate the
refinery cost of making refined products (gasoline, jet,
diesel fuels) against the marketplace value of these
products. Our analysis shows that using Petro for
product optimization generates $100 million per year.
In addition to adjusting refinery operations to pro-
duce the highest-margin products, we sell products
to the market when producing them is advantageous;
we buy when our cost to produce is higher than the
market price. Similar to crude, we compare planned
products against a base slate of products to quantify
the value of production optimization.

• Chevron uses Petro to conduct ongoing and peri-
odic analyses to determine the optimal way to run
the refining processing units as crude oil prices, raw
material availability, product prices, product specifi-
cations, and equipment capabilities change. The anal-
yses have shown that using Petro to optimize refinery
process units generates $100 million per year in value.

In addition to the foregoing activities, which we
estimate generates about $600 million per year in ben-
efits, Chevron uses Petro in conjunction with DA to
evaluate capital projects for its refining system on
an ongoing basis. Petro combined with DA results
in data-driven economics so that project options are
evaluated based on their contribution to the long-
term economic health of the enterprise. Specifically,
Petro and DA make two contributions, which provide
a total of $400 million per year through capital opti-
mization. The first involves getting better value out of
the projects in which we invest. The second involves
avoiding investments in expensive projects that we do
not need or that we can replace with less expensive
alternatives.

• We elect to invest about $1.5 billion per year
in projects to improve the downstream business. For
these projects, we look at alternatives to determine the
projects that best meet our economic criteria, includ-
ing rate on capital employed (ROCE) and net present
value (NPV), which roll the discounted cash flow
in future years from projects into a single number.
Typically, this process allows us to achieve an addi-
tional 2–3 percent on ROCE; for our $1.5 billion-per-
year base, this improves NPV by about $200 million
per year.

• Annually, we use Petro and DA to reject pro-
posed projects, which would cost approximately $200–
$250 million, because our analyses show that these
projects have little or no merit. We replace them with
alternatives that cost between $0 and $50 million with
no change in earnings potential. The net value here is
(coincidentally) also about $200 million per year.

Using Petro and DA enables us to gain a deeper
understanding of the implications of projects under
consideration; consequently, we can make smarter
investment decisions. Based on reviewing capital
projects that used Petro in recent years, we estimate
the value of decisions made through our capital eval-
uation process is currently $400 million per year.

To summarize, the $600 million value generated
from ongoing earnings from operating the down-
stream business plus the $400 million generated from
improved capital efficiency total $1 billion per year.

We calculate Petro’s value today to be $1 billion per
year; however, we also know that because of advances
in technology, organizational capabilities, effective
modeling, management support, and market condi-
tions, its annual value has grown significantly in the
past three decades, and the amount of Petro’s annual
value to Chevron 30 years ago is only a fraction of
this $1 billion. Based on our experience, we can cal-
culate an effectiveness factor to compare Petro’s value
in a previous year to its current value. For example,
we estimate that Petro’s value in 2001 was about one-
third of what it is today; therefore, the effectiveness
factor for 2001 is 0.33 (see Figure 5). In this figure, we
annotate events or advances that have enabled step
changes in Petro’s value to Chevron, and thus can
depict the increase in Petro’s value over time.

We believe that the Petro licensees have business
processes in place that are similar to Chevron’s and
that they also find its value proportional to their refin-
ery sizes.

Observations
Petro has strongly influenced the way our down-
stream business approaches planning and decision
making; it is now an integral part of Chevron’s pro-
cesses and culture.

We have learned to target model accuracy to meet
our business needs. For a number of applications,
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Figure 5: This graph estimates how Petro’s value ($) has grown over time.

we accept a looser convergence tolerance because it
significantly reduces solve times without meaning-
fully impacting the business. Analysts want a fast and
friendly interactive tool that adds value to their anal-
ysis process.

Regular use drives continual improvement of the
product. Over the years, crude oil feed qualities, prod-
uct specifications, computer technology, lab analyses,
and refinery technologies have changed dramatically.
Petro’s flexibility has enabled us to respond competi-
tively to these changes.

Analysts will not make recommendations based on
a software product that they do not understand. They
will switch to simpler tools or make a judgment call
to deliver an answer they can explain confidently.
Reporting and training increase the understanding
and confidence of the analysts.

Because one bad matrix construction can cause
excessive solve time or a wildly nonconverged solu-
tion, we make and test small model changes incre-
mentally. Bad constructions will infrequently sur-
face for some case setups that we have not tested
sufficiently.

As the number of models and modelers grew, we
found that efficiency increased when we standardized
the modeling style and structure.

Appendix

Single-Period Model Formulation for a Single
Refinery
Figure A.1 shows the complexity of a refinery. The outputs
of each process unit will depend on how the process unit
is operated (e.g., temperature and pressure). We can route
the intermediate streams in many ways. Our decisions are
driven by cost, product specification, and product price.
The following is a simplified representation of the LP model
formulation used within Petro to make these decisions:

C = Set of refinery feeds c ∈C (e.g., crude oil).
R = Set of refinery units r ∈ R (e.g., process units, tanks,

pipelines).
I = Set of intermediate products i ∈ I .
P = Set of end products p ∈ P .
S = Set of operating parameters (e.g., combination of tem-

perature and pressure) for r ∈R.
Pricec = Unit price of feed c ∈C.
Availc = Availability of feed c ∈C.
Pricep = Unit price of product p ∈ P .
Demandp = Demand of product p ∈ P .
Capacityr = Capacity of refinery unit r ∈ R (e.g., process

units, tanks, pipelines).
Costrs = Cost to produce one unit of product p ∈ P or

intermediate i ∈ I by utilizing refinery unit r ∈R at a given
mode setting s.

F = Factor that converts units of volume in stream to
units of mass.

Q = Set of qualities (e.g., sulfur, octane) tracked, q ∈Q for
each product p ∈ P .

Specq = Specification for q ∈Q.
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Figure A.1: This diagram of a sample refinery includes intermediate streams and products.

Decision Variables
xir = Amount of intermediate i fed into refinery unit r .
xcr = Amount of crude c fed into refinery unit r .
yirs = Amount of intermediate i output from refinery

unit r at mode s.
yprs = Amount of product p output from refinery unit r

at mode s.
yqpr = Amount of quality q in one unit of product p out-

put from refinery unit r .
mrs = Variable indicating the percentage of the stream

resource r ∈R is operating at mode s (operating parameters,
such as temperature and pressure).

Although mrs is modeled as a percentage within the LP,
in reality, resource r can only be operated at a single mode
setting during the period. Consequently, the optimal values
of mrs are interpolated to arrive at a single mode setting.
For example, if the optimal values of mrs indicate operating
at a temperature of 320 degrees for 80 percent of the stream
and 330 degrees for 20 percent of the stream, then interpo-
lation results in a single mode of operation temperature as
322 degrees.

Objective Function: Maximize (Revenue Less Cost)
Maximize

∑

p∈P

(

Pricep ∗
∑

r∈R

∑

s∈S

yprs ∗mrs

)

−
∑

c∈C

(

Pricec ∗
∑

r∈R

xcr

)

−
∑

r∈R

∑

s∈S

Costrs ∗

(

∑

p∈P

yprs +
∑

i∈I

yirs

)

∗mrs 0

Constraints

0 ≤
∑

r∈R

xcr ≤ Availc1 c ∈C1

0 ≤
∑

r∈R

∑

s∈S

yprs ∗mrs ≤ Demandp1 p ∈ P1

0 ≤
∑

s∈S

(

∑

p∈P

yprs +
∑

i∈I

yirs

)

∗mrs ≤ Capacityr1 r ∈R1

(

∑

i∈I

F ∗ xir +
∑

c∈C

F ∗ xcr

)

=
∑

s∈S

(

∑

p∈P

F ∗ yprs +
∑

i∈I

F ∗ yirs

)

∗mrs1 r ∈R1
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∑

r∈R

∑

s∈S

yqpr ∗ yprs

yprs
∗mrs ≤ Specq1 q ∈Q1 p ∈ P0

Note: Prejudging the qualities of the pooled streams enables
us to model these nonlinear constraints as linear:

∑

s∈S

mrs = 11 r ∈R1

xcr1xcr1yirs1yprs1yqpr ≥ 0, mrs ∈ 401 0 0 0 115.

Company Profile: Chevron is one of the world’s leading
integrated energy companies and conducts business world-
wide. Chevron is involved in virtually every facet of the
energy industry. This includes:

• Exploring for, producing, and transporting crude oil
and natural gas.

• Refining, marketing, and distributing transportation
fuels and lubricants.

• Manufacturing and selling petrochemical products.
• Generating power and producing geothermal energy.
• Providing energy efficiency solutions.
• Developing the energy resources of the future, includ-

ing research for advanced biofuels.
Chevron’s refining resources are concentrated in North
America, South Africa, and the Asia–Pacific region, and
serve customers around the world. Chevron’s global refin-
ing system manufactures fuels and other products sold by
Chevron’s marketing, lubricants, and supply and trading
organizations. Manufacturing operates seven refineries that
produce fuels, base oils, and other products that are mar-
keted by Chevron under three brands: Chevron®, Texaco®,
and Caltex®. These retail products are available on six
continents.

In 2011, Chevron processed 1.8 million barrels of crude
oil per day and averaged 2.9 million barrels per day of
refined product sales worldwide. Total downstream earn-
ings in 2011 were $3.6 billion.

Chevron maintains four trading hubs located in Hous-
ton, Texas, Singapore, London, and San Ramon, California.
These trading hubs link our refineries with crude and prod-
uct trading markets around the world.
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