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Abstract. Diabetes affects 422 million people globally, costing over $825 billion per year. In
the United States, about 30.3 million live with the illness. Current diabetes management
focuses on close monitoring of a patient’s blood glucose level, while the clinician experiments
with dosing strategy based on clinical guidelines and his or her own experience. In this work,
we propose a model for designing a personalized treatment plan tailored specifically to the
patient’s unique dose-effect characteristics. Such a plan is more effective and efficient—for
both treatment outcome and treatment cost—than current trial-and-error approaches. Our
approach incorporates two key mathematical innovations. First, we develop a predictive
dose-effect model that uses fluid dynamics, a compartmental model of partial differential
equations, constrained least-square optimization, and statistical smoothing. The model le-
verages a patient’s routine self-monitoring of blood glucose and prescribed medication to
establish a direct relationship between drug dosage and drug effect. This answers
a fundamental century-long puzzle on how to predict dose effect without using invasive
procedures to measure drug concentration in the body. Second, a multiobjective mixed-
integer programming model incorporates this personalized dose-effect knowledge along
with clinical constraints and produces optimized plans that provide better glycemic control
while using less drug. This is an added benefit because diabetes is costly to treat as it
progresses and requires continuous intervention. Implemented at Grady Memorial Hospital,
our system reduces the hospital cost by $39,500 per patient for pregnancy cases where
a mother suffers from gestational diabetes. This is a decrease of more than fourfold in the
overall hospital costs for such cases. For type 2 diabetes, which accounts for about 90%—95%
of all diagnosed cases of diabetes in adults, our approach leads to improved blood glucose
control using less medication, resulting in about 39% savings ($40,880 per patient) in medical
costs for these patients. Our mathematical model is the first that (1) characterizes person-
alized dose response for oral antidiabetic drugs; and (2) optimizes outcome and dosing
strategy through mathematical programming,.

Funding: This work is partially supported by the National Science Foundation [Grants ITP-0832390 and
11P-1361532].
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Challenges and Objectives

This surge in diabetes has made it one of the most

More than 100 million U.S. adults are now living with
diabetes or prediabetes, according to a recent report
(Centers for Disease Control and Prevention 2017). The
report finds that as of 2015, a total of 30.3 million
Americans—9.4% of the U.S. population—have diabetes.
Another 84.1 million have prediabetes, a condition that, if
not treated, often leads to type 2 diabetes within five
years. Globally, the number of people with diabetes has
risen from 108 million in 1980 to 422 million in 2014
(World Health Organization 2016), costing over $825 bil-
lion dollars per year (NCD Risk Factor Collaboration 2016).
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common diseases that doctors treat.

Type 2 diabetes accounts for about 90%—95% of all
diagnosed cases of diabetes in adults (Menke et al. 2015).
In these cases, the patient’s pancreas still produces in-
sulin, but the body does not produce enough or is not
able to effectively use it. The management of type 2 di-
abetes is often through a combination of treatments, in-
cluding diet control, exercise, self-monitoring of blood
glucose, and, in some cases, oral drugs or insulin.
Treatment is often ad hoc and can be complicated, es-
pecially for patients with multiple health conditions.
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Through trial and error, clinicians experiment using
various doses and medications. Clinical guidelines often
describe titration (i.e., a dosing-experiment period) as
a process to gradually increase the patient’s dose every
three days or one week until the patient’s blood glu-
cose becomes stable. This may take six to eight weeks
(or longer) for a diabetes patient using an oral anti-
diabetes drug.

In gestational diabetes mellitus (GDM), the man-
agement focuses on close monitoring of a patient’s
blood glucose level, while the clinician experiments
with dosing strategy based on some clinical guidelines
and his or her own experience (Jovanovic and Pettitt
2001, Alwan et al. 2009, World Health Organization
2013). However, conflicts in guidelines and wide
variations in practice often result in inappropriate care
(Jovanovic-Peterson et al. 1989, Panel 2004, Hawkins
etal. 2009, Jacqueminet and Jannot-Lamotte 2010, Kim
2010). Women with GDM and elevated glucose levels
are at higher risk of maternal and fetal complications
during pregnancy and birth, including shoulder
dystocia, birth injuries, hypoglycemia, respiratory
distress syndrome, cesarean section, preeclampsia,
and fetal overgrowth (Metzger et al. 2008). It may also
trigger the occurrence of type 2 diabetes in mothers
after pregnancy (Bellamy et al. 2009). In the United
States, GDM affects up to 7% of all pregnancies, resulting
in over 200,000 cases annually (Hillier et al. 2008), and
incurs approximately $636 million of annual treatment
cost (Chen et al. 2009).

To ensure treatment success, diabetes management
often requires the monitoring of blood glucose levels up
to four times a day (Beckmann et al. 2013). Dietary
control and physical activities are the most common
interventions. If they fail to control the blood glucose
level, more effective insulin therapies will be prescribed
(Todorova et al. 2007). Oral hypoglycemic agents (OHAs)
are commonly used for treating type 2 diabetic patients.
Although not approved by the Food and Drug Ad-
ministration for treating pregnant women, OHAs are also
common GDM drugs because of their ease of use and low
cost. Glibenclamide-glyburide, which we use in this
study, has been proven to be an effective alternative
to insulin for achieving adequate glycemic control
(Kimber-Trojnar et al. 2008).

A major challenge in diabetes management is that
patients have different dose-response and disease-
progression characteristics. Hence, a personalized
treatment plan tailored specifically to the patient’s
unique dose-effect characteristics will be more effective
and efficient—for both treatment outcome and treat-
ment cost—than current trial-and-error approaches.
This is particularly critical because treatment expenses
have been increasing, whereas insurance coverage for
diabetes-related medications and supplies has been
declining.
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Among drug-effect mathematical models, predictive
models, such as mechanism-based models, are often
better than descriptive models because predictive models
can be used to fit historical data to identify response
patterns and to accurately predict the levels of future ef-
fects (Miyazaki et al. 2001, Landersdorfer and Jusko 2008).
Both are key to determining the best course of treat-
ment. Unfortunately, although most mechanism-based
models can capture the entire dynamic insulin-glucose
system well, they require continuous measurement of
blood glucose and drug concentrations in body fluids,
thus making them impractical for routine clinical use
(Bergman et al. 1979, De Winter et al. 2006, Cobelli et al.
2009, Wang et al. 2014). Furthermore, although the use
of mathematical models in all phases of preclinical and
clinical drug development has proven to be beneficial
(Palmer et al. 2000, 2004), little research has been done to
apply those concepts in clinical therapy.

In this work, we address the twofold dosing chal-
lenge in diabetes management by designing a novel
outcome-based decision-support tool that couples
a predictive treatment-effect model with a treatment-
planning optimization model. Our combined model has
four distinct features. First, the new treatment-effect
model is a mechanism-based pharmacokinetic (i.e., the
movement of drugs within the body) and pharmaco-
dynamic (i.e., the effects of drugs and the mechanism of
their action) model, which we refer to as a PK/PD model,
that captures the underlying glucose dynamics and
personalized drug effects of each patient; this establishes
a predictive estimate of drug-dose and glucose-response
characteristics. Second, the model captures disease
progression over the entire treatment horizon. This is
crucial to ensuring that the patient has good glycemic
control, which is of particular importance for safe de-
livery in GDM patients. Third, personalized dose re-
sponse and disease progression are obtained by fitting
the treatment-effect model using only drug dosage and
self-monitored blood glucose levels (SMBGs), which the
patients themselves record. These data are readily avail-
able, and thus our approach is implementable under
current clinical and patient practice (with no additional
requirements). Last, and most importantly, the pre-
dictive treatment-effect model is fitted for each indi-
vidual patient to obtain a personalized dose response
and disease progression. This predictive information is
then incorporated into a mixed-integer-program treat-
ment model that optimizes the glycemic control and
drug dosage for the entire treatment period.

In implementing this approach for gestational di-
abetes patients at Grady, we found that the resulting
personalized treatment plan returns better glycemic
control while using less medication. The treatment
success reduces the risk for cesarean sections (C-sections)
and the need for admission of the newborn to the
neonatal unit.
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Figure 1. (Color online) The Schematic Workflow and Interplay of the Predictive Treatment-Effect and the Personalized

Treatment-Planning Models
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Methods and Study Design

Figure 1 shows the data and process flows of our study
design and analytic schema. It highlights the interplay
between the predictive treatment-effect model and
the personalized treatment-planning model within an
evidence-based clinical decision framework. The pre-
dictive pharmacological-based treatment-effect model,
which we describe in Appendix A, involves fluid dy-
namics, a compartmental model, statistics, and non-
linear programming optimization. It seeks to establish
drug-dose blood glucose response using partial in-
formation collected during the dosing-experiment pe-
riod. The personalized treatment-planning model, which
we describe in The Treatment-Planning Model subsection
and in detail in Appendix B, takes the predicted dose-
response knowledge as input and utilizes mixed-integer
programming with multiple objectives to design the best
course of treatment.

In Figure 1, the solid arrows show the model-testing
and validation pathways. Specifically, this entails
a retrospective study with patients who have received
diabetic treatment. For each patient in the training set,
an estimation of parameters is first performed by us-
ing part of the patient’s dosing-experiment data. The
resulting treatment-effect model is used to predict the
dose effect for the entire treatment duration. Two vali-
dations are then performed: (1) compare these predicted
values against the actual blood glucose level based on
the prescribed clinical dosage; and (2) incorporate the

Ay

predicted drug-effect knowledge into the personalized
treatment-planning system. The resulting plan is then
compared with the original clinical plan.

The dotted arrows illustrate the clinical decision
pathways. New patients coming in for diabetic treat-
ment receive an initial diagnosis and treatment regi-
men. Data from the dosing experiment are used to
establish the drug-effect response, and this information
is used to design the personalized treatment. The
resulting optimized plan facilitates the provider’s
clinical decision making.

We designed our modeling framework for diabetes
patients; however, the design schema is generalizable
to other types of diseases.

We describe our predictive treatment-effect model
in Appendix A and our multiobjective treatment-
planning model in Appendix B. The appendices in-
clude the equations, parameters, and decision variables
we used. Below, we summarize the information in each
appendix.

The Predictive Treatment-Effect Model

A basic fact of clinical pharmacology is that the in-
tensity of pharmacological effects relates directly to the
concentration of a drug at the effect site (Derendorf and
Meibohm 1999). Pharmacokinetic (PK) models char-
acterize the time course of drug concentration in the
body fluids. In the simplest one-compartment model,
plasma drug concentration is a function of the dose and
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Figure 2. The Decision Process for Diabetes Management
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Note. For gestational diabetes patients, the treatment will be completed upon delivery; patients who develop type 2 diabetes and require

continued management are an exception.

the elimination rate of the drug; see Equation (A.1).
The area under the concentration-time curve (AUC)
is the integration of Equation (A.1) from zero to in-
finity, which represents the total drug exposure
over time.

Pharmacodynamics (PD) models characterize the
relationship between drug concentration and drug
effect. The effect of a drug present at the site of action is
a function of the concentration of the drug at the site,
the potency of the drug in the system, and its efficacy;
see Equation (A.2).

The drug-effect model, which we show in Equa-
tion (A.6), gives the predicted blood glucose level over
time by using antidiabetic drugs, which is a function
of AUC. The calculation of AUC requires continuous
measurement of drug concentration, which is impractical
in daily diabetes management.

Our Innovation. We introduce a predictive dose-effect
model by replacing AUC with drug dosage. By doing
so, we overcome the calculation of AUC and establish
a direct relationship between drug dosage and drug
effect. This answers a fundamental century-long puzzle on
how one can predict the dose effect without measuring the
drug concentration in the body fluids. Moreover, all pa-
rameters are patient-specific and can be specialized for
each patient. As a result, we obtain a treatment-effect
model that characterizes personalized drug response
and disease progression by using only daily blood
glucose records and dosage information. In Appendix A,
we describe the full predictive treatment-effect model.

The Treatment Planning Model

The management of diabetes starts with the diagnosis
(for gestational diabetes, usually at weeks 24-28 and
ending after the delivery). An initial plan is determined
when a diagnosis is made and is set by determining the
type and dose of treatment. Decisions on whether to
maintain or switch treatment types or dose are made at
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subsequent clinical visits until the desired blood glucose
level is maintained (or until delivery in cases of gesta-
tional diabetes). Decisions are made after assessing the
impact of prior treatment according to the self-monitored
blood glucose data (Figure 2). There are three types of
treatment for diabetes: (1) diet control only, (2) OHA
therapy with diet control, and (3) insulin therapy with
diet control. In this study, we only consider the first two
methods because insulin therapy is not prescribed for
our patients.

The dosing strategy of diabetes currently relies heavily
on the results from clinical trials. However, clinical
trials often address the (trial) patient population for
whom the intervention is appropriate, instead of in-
dividual patient characteristics. Clinical trials also
seldom observe health outcomes over long periods and
less frequently consider the long-term economic impact
of the interventions (Panel 2004).

A Novel Approach. Our model aims to address these
two shortcomings. First, we fit our PK/PD predictive
treatment-effect model to each specific patient by using
his or her own SMBGs so that the parameters obtained
reflect the patient’s own personalized dose response
and disease progression. Second, we incorporate such
personalized information into a mixed-integer pro-
gram to optimize the glycemic control, while simul-
taneously minimizing the drug dosage. Although OHAs
are commonly used for treating gestational diabetes,
they are not formally approved. Minimizing dosage
thus serves to improve safety for these patients.

We use mixed-integer programming to design the
treatment-planning model. The objective function is
a combination of health outcome and treatment cost.
Because diabetic treatment aims to maintain the blood
glucose level within a recommended range, we mini-
mize the sum of the deviation of glucose level from the
upper and lower bounds over the entire treatment
horizon. In terms of costs and side effects, we minimize
the total amount of the drug used. The model optimizes
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the medication regimen for the entire treatment du-
ration with a specific treatment(s) selected for each
week. Because OHAs are usually in the form of pills,
drug dosage in our model is restricted to discrete levels.
Dosage level 0 implies that the patient is on diet control
only, and no drug is administered. The model includes
the PK/PD predictive treatment effect (calculated and
personalized for each patient using his or her dosing-
experiment data), which estimates the change of blood
glucose level at different phases and times as a result of
the drug effect, as Equation (A.11) predicts.

Clinical practice advises that the dosage level should
not fluctuate too much from one visit to the next. Because
no national standard exists to control the fluctuation, it
can be physician-dependent. In practice, clinicians al-
ways start with “diet control only” at the start of the visit.
We comply with this practice by setting the initial
treatment at the start to no dosage. In Appendix B, we
describe the full treatment-planning model.

Results and Findings

We use a group of diabetic patients to train and es-
tablish our predictive treatment-effect model param-
eters. We then apply our model individually to an
independent set of 200 patients to gauge its predictive
performance. We note that this is a personalized pre-
dictive model; that is, each patient’s predicted dose re-
sponse is established based on his or her data.

Table 1 summarizes the statistics of these patients;
57% are African-American and 43% are Caucasian-
American. Furthermore, 21% have a history of gesta-
tional diabetes; 21% have a history of type 2 diabetes;
28% are obese; 7% have hypotension; and one patient
is blind.

Determining Personalized Predictive
Treatment-Effect Parameters

We first present the personalized predictive treatment-
effect results. For each patient, we use the initial 30%
(first two to three weeks during the dosing-experiment
period) of SMBG and dosage data to establish the
personalized least-square estimator of parameters for
the treatment effect in Equation (A.11). For each pa-
tient, there are four sets of SMBGs, corresponding to
four phases of monitoring per day: before breakfast,
after breakfast, after lunch, and after dinner.

We develop an efficient gradient descent method to
obtain the optimal parameters * in Equation (C.1).
Because the least-square optimization is nonconvex in
the corresponding parameters, the gradient descent
algorithm cannot guarantee the global optimality of
the solution. As a result, different choices of the initial
value of f can lead to different estimations. To avoid
local optima and ensure the quality of the solution, we
run the algorithm multiple times with different initial
values and choose the one with the minimum estimation
error. Different initial values are chosen according to the
population mean and variance of these parameters in the
literature (Holford and Sheiner 1982) because we as-
sume that the value of these parameters for each pa-
tient will not differ very much from the population
mean. Mathematically, the gradient descent requires
an initial value to start. Clinically, the choice can be
interpreted as an initial guess of the patient’s response
characteristics.

Once we fit the data, we then generate predicted
glucose levels for the entire duration. We compare the
predicted values to actual values collected by patients.
Moving averages are often used to uncover trends in
time series (Brockwell and Davis 2006); therefore, we
use them to compare the actual data versus the pre-
dicted values. Figure 3 shows the predicted glucose
level trend (solid curve) versus the actual trend (dotted
curve). Specifically, the solid curve is based on training
during the first 14 days. After day 14, the established
parameters are used to predict the future glucose trend
by using the prescribed dosing. In Appendix C, we
describe the full process for estimating the model pa-
rameters, including the equations, test data, and esti-
mated performance.

Designing Personalized Optimal Treatment Plans
The parameters estimated for predicting treatment effect
for each patient are entered into the mixed-integer
programming-based treatment-planning model to gen-
erate a personalized dosing strategy based on the pa-
tient’s dose-response information; see Figure 4.

The upper-bound target blood glucose levels are
95 milligrams per deciliter (mg/dl) before breakfast
and 120 mg/dl after meals. The lower-bound baseline
blood glucose levels are 60 mg/dl for all four phases

Table 1. Classification of the Data by Age, Height, Weight, Body Mass Index, and Length of Treatment Until Steady Stage

Is Reached
Age (years) Height (inches) Weight (pounds) Body mass index (kg~m_2) Length of treatment (days)
Minimum 20 59 122 22.7 26
Maximum 41 70 260 50.8 153
Mean 33.7 62.9 184.5 32.8 79.5
Median 34.5 62 181.5 33.2 68.5
Standard deviation 5.3 3.0 38.6 6.5 38.8
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Figure 3. (Color online) The Prediction Results of the Dose-Effect Trend Using Self-Monitored Blood Glucose Data for Patient 5
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entire treatment horizon (dotted curve).

to avoid hyperglycemia. Among the two objectives,
health outcome is more important than drug cost in
managing diabetes, especially for gestational diabetes,
because a high blood glucose level relates to compli-
cations in delivery, and the price of the oral antidiabetic
drug (e.g., glyburide) is inexpensive and affordable. So
we set the cost of positive deviation C, = 20, the cost of
negative deviation C_ = 10, and the cost of drug C(i) =1,
i=0,...,16, where i corresponds to dosage level 1.25*i mg.
The choice of cost coefficients reflects the importance
of each objective. Guided by our clinical team, our
selection places more emphasis on the positive deviation
than the negative deviation.

We solve the mixed-integer program instance of each
patient using an in-house system, MIPSOL. In 93% of
the patients, the optimized dosing strategy results in
smaller (or the same) total positive deviation value in
all four phases compared with the original treatment
plan. We could not draw any conclusions for the
remaining 7% because a large amount of SMBG data

are missing. Among these 93%, 11.7% of the optimized
plans are identical to the original plans. The remaining
88.3% all experience reductions in blood glucose with
the optimized plans, although they are using fewer
drugs. This shows that the dosing regimen obtained
from our model can provide better glycemic control
with lower required dosages.

Figure 4 contrasts the optimal regimen to the
original regimen for Patient 5. The graph on the left
compares the blood glucose levels over the entire
treatment horizon, showing that the optimal regimen
achieves uniformly lower blood glucose levels than
the original regimen. The graph on the right shows
the total positive deviation among all four phases
over the entire treatment period, indicating a better
overall glycemic control for the optimized plan. These
improved patterns are observed among 93% of all
cases. Figure 5 shows the net reduction in the total
positive deviation of the optimal plans among all
patients.

Figure 4. (Color online) Contrast of the Optimal Regimen to the Original Regimen for Patient 5
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positive deviation among all four phases over the entire treatment horizon, optimal (solid) vs. original plan (dashed); note the reduction
in positive deviation, indicating a better overall glycemic control for the optimal regimen.
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Figure 5. (Color online) The Net Total Positive Deviation
Reduction When We Compare the Optimized Regimen to
the Original Regimen
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Notes. Our comparison covers all four phases over the entire treatment
horizon and 200 patients. The results indicate a better overall glycemic
control for the optimized regimen. Some patients achieve very large net
reduction (represented by the isolated +).

We also observe that the treatment plan from our
model tends to prescribe a higher dose early in the
program; we see no change in dosage after week 3; this
contrasts to six to eight weeks (or sometimes months)
for the current clinical practice. The dosing-experiment
period is thus significantly shortened, and the main-
tenance dosage level is achieved quickly. This dem-
onstrates that the predictive treatment-effect model
enables clinicians to prescribe higher doses early in the
program without concerns about overdosing. This is in
agreement with recommendations to quickly increase
the dose of an oral hypoglycemic agent until an ade-
quate glycemic control is achieved or a response is not
observed (Frey et al. 2003). Our model pinpoints precisely
when and what dosage the clinicians should prescribe.

Clinical Decision Making for the General

Diabetic Population

The real-time clinical decision support system enables
clinicians to tailor treatment design to the needs of
patients. It shortens the dosing-experiment period and
helps clinicians make better treatment decisions.

At Grady, a high percentage of the gestational di-
abetic patients are overweight and diabetic. The treatment
success of these patients reduces the risk for C-section
and the need to admit the newborn to the neonatal unit.

RIGHTS L | M Hdz

The elimination of these high-cost risks saves ap-
proximately $39,500 per patient, more than a fourfold
decrease in the overall hospital costs. It also reduces the
need for long-term care for the babies, thus generating
additional savings. For patients with type 2 diabetes, it
offers good glucose level maintenance, thus reducing
diabetic-related complications. The age-adjusted life-
time medical cost for a diabetic patient is estimated to
be $105,000, of which 53% is spent on complications
due to poor glucose maintenance. Factoring this
globally, the savings could be very significant to the
world economy. Most importantly, the model tailors
treatment to the dose-response effect for each indi-
vidual patient, allowing better individual outcomes.
This, in turn, improves overall patient health and safety
in drug usage.

The drug-effect outcome-based personalized treatment-
planning framework is applicable to any diabetes-
management analysis. In addition to using it at Grady
Memorial Hospital, we are now conducting two diabetic
studies: (1) investigating the effect of glibenclamide dose
escalation on blood glucose and insulin in patients with
poorly controlled type 2 diabetes; and (2) investigating
practice variance and best practices among more than
800 clinical sites with 377,118 diabetic patients who have
multiple chronic health conditions and optimizing in-
dividual treatments to produce the best outcomes.

Scientific Advances and Impact

This study establishes a predictive drug-effect-based
personalized treatment-planning framework that im-
proves the treatment outcome for diabetic patients.
First, a predictive pharmacokinetic and pharmacody-
namics model is designed to uncover drug effect based
on analysis of antidiabetic drug dosage and the blood
glucose level recorded in the dosing-experiment period
of each patient. This personalized evidence is then
utilized within a treatment plan optimization model to
generate an optimal dosing strategy. This work offers
unique mathematical and clinical advances on multiple
fronts.

Mathematical and Operations Research Advances

¢ The predictive treatment-effect modeling frame-
work includes fluid dynamics, a compartmental model,
a constrained nonlinear programming model, and sta-
tistical smoothing for establishing the direct drug-dose
drug-effect relationship. The model describes the move-
ment of drugs within the body, the effects of drugs, and
the mechanisms of their actions. Although the model is
powerful, it presents theoretical and computational chal-
lenges. We establish solution strategies to make it practical
for actual usage in a clinical setting.

¢ The complexity of our predictive treatment-effect
mathematical models is evident. Our model answers
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a century-old challenge: How can one predict dose effect
based on available noninvasive measurements? Al-
though the complex clinical pharmacology of drug-
concentration drug-effect relationship in Equation (A.2)
was first established in 1910, it took over nine decades
for researchers to compensate for the lack of knowledge
of “concentration of drug” by replacing it with “con-
tinuous measurement of drug concentration.” Such
measurements remain impractical for actual daily di-
abetes management. Our mathematical and computa-
tional model is the first that establishes a direct relationship
between drug dosage and drug effect. Furthermore,
it requires only the knowledge of medication and
prescribed dosage from the doctor and the daily self-
monitoring glucose data. The latter is collected via
a home glucose meter that is routinely used by diabetes
patients. The resulting predictive treatment-effect model
characterizes personalized drug response and disease
progression. It can also be used within a treatment-
planning framework.

¢ The multiobjective mixed-integer programming
treatment-planning model offers a flexible modeling
environment, adapting to individual patients. It in-
corporates the predictive treatment-effect model output,
captures the disease progression over the entire treat-
ment horizon, and ensures that the patient has good
glycemic control. The model optimizes the treatment
outcome (glycemic control) and safety (drug dosage).
The resulting personalized treatment plan, stipulating
the medication and dosage for each week for the entire
treatment horizon, offers better glycemic control while
using less medication for patients. To the best of our
knowledge, this is the first predictive personalized
treatment-planning model that optimizes dosing and
quality of outcome. The modeling framework is gen-
eralizable to other diseases. It can also be adapted to the
specific needs of patients and can incorporate drug
interactions and minimize adverse effects.

¢ This real-time clinical decision tool combines mul-
tidisciplinary mathematics and operations research tools:
(1) a fluid dynamics compartmental model, constrained
nonlinear programming, and statistics for establishing
the predictive treatment effect; and (2) mixed-integer
programming optimization to develop a personalized
treatment plan. The predictive treatment effect model
can effectively handle missing data and can generate
dose-response characteristics in real time utilizing our in-
house nonlinear solver. We caution that our solver ob-
tained only local optimal solutions for these difficult
quadratic constrained programming instances. Different
initial values are chosen according to the population
mean and variance of these parameter in the literature.
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We repeated the solution process multiple times to de-
termine the best local optimum as our parameter esti-
mator. We found that the quality of the first solution is
comparable to and has only marginal differences to later
solutions.

Clinical and Translational Advances

In the United States, half of the adults (age 20 or older)
have diabetes (30.3 million) or prediabetes (84.1 mil-
lion), racking up an estimated $327 billion in costs in
2017 (American Diabetes Association 2018). Globally,
an estimated 422 million adults were living with di-
abetes in 2014. It is one of the most common diseases
that internists and other medical specialists treat.
Treatment is ad hoc and can be complicated, especially
for patients with multiple health conditions. As we
state above, a personalized treatment plan tailored
specifically to the patient’s unique dose-effect charac-
teristics is more effective and efficient for both treat-
ment outcome and treatment cost. This is particularly
critical with mounting treatment expenses while cov-
erage for diabetes-related medications and supplies has
been on the decline.

¢ The clinical usage of our system offers improved
outcome and cost savings. Gestational diabetes can
lead to 34% higher maternity costs and complica-
tions. It results in higher rates of emergency C-sections
(1.75 times), higher rates of infant neonatal-unit ad-
mission (3.14 times), and 34% higher costs of care (Gillespie
et al. 2013). Implemented at Grady Memorial Hospital,
our system helps reduce the hospital cost by $39,500 per
delivery, more than fourfold decrease in the overall hos-
pital costs. Grady delivers about 3,000 newborns annually,
and many of their mothers are overweight and suffer from
diabetes; thus, the cumulative savings are substantial.

e For type 2 diabetes patients, the age-gender
weighted average of the lifetime medical costs adjusted to
net present value is approximately $105,000, of which 53%
is due to treating diabetic complications (Zhuo et al. 2013).

¢ Grady has an unusual burden with only 8% of its
patients privately insured. Reduction in hospital cost
translates to reductions in Medicaid and Medicare
expenses, which are significant for a leading safety-net
hospital in a state that did not expand Medicaid cov-
erage under the Affordable Care Act. There is also
savings in the reduction of long-term care requirements
for the babies.

¢ The adaptive system reduces practice variance and
empowers objective clinical decision making. Currently,
the treatment of diabetes relies heavily on clinicians’
experiences. This data-driven model, which uses per-
sonal self-monitoring glucose data, provides a clinician
with good insights on a patient’s personalized drug
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response and potentially guides the clinician’s deci-
sion making during the treatment. This decision support
tool also allows continuous learning of evidence for each

patient as new treatment outcomes are recorded.
* Scientifically, our clinical decision framework has

four important distinctions. First, the PK/PD pre-
dictive treatment-effect model establishes a direct re-
lationship between drug dosage and drug effect (the
amount of decrease in blood glucose level); it is the first
model that overcomes the obstacle of many existing
models, which require continuous measurement of
insulin or drug concentration in the blood. Second, in
contrast to traditional PK/PD models that are used in
drug development, we fit the model for each individual
patient to characterize and predict the personalized
dose response and disease progression over the entire
treatment horizon. Third, our model uses only drug
dosage and self-monitored blood glucose levels that are
recorded by patients themselves at home. Since the
1990s, diabetics have routinely collected daily blood
glucose for self-monitoring. The digital era has enabled
providers to more easily collect and maintain these
data in their patients’ records. Hence, our model can be
disseminated and implemented within current clinical
and patient practices (without extra resource re-
quirements). Last and most importantly, such per-
sonalized predictive information is utilized in a novel
treatment-plan optimization model to generate per-
sonalized dosing strategy that optimizes glycemic
control and drug dosage. This is crucial to ensure that
the patient has good glycemic control for safe delivery.
The resulting personalized treatment plan shortens the
dosing-experiment period, it empowers clinicians to
quickly identify and achieve the maintenance dose, and
it eliminates subjective trial-and-error planning. The
resulting treatment plans provide better glycemic
control while using less drug. This is an added benefit
because diabetes progresses and requires continuous
intervention; thus, it is costly to treat. The financial
burden is further amplified with coverage for diabetes-

related medications and supplies being in decline.
e Our model is generalizable. We have begun

a larger clinical implementation that involves over
300,000 diabetic patients to further explore and validate
our model. We caution that clinical trials must be
carried out to document the potential gain in outcome
for broad dissemination and adoption.
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Appendix A. The Predictive Treatment-Effect Model
A basic fact of clinical pharmacology is that the intensity of
pharmacological effects relates directly to the concentration
of a drug at the effect site (Derendorf and Meibohm 1999).
Pharmacokinetic models characterize the time course of drug
concentration in the body fluids. The simplest one-compartment
model is particularly useful for the analysis of drugs that dis-
tribute rapidly throughout the body. According to first-order
kinetics, the plasma drug concentration after a rapid intravenous
injection is given by
=Dt
Ct) = Ve (A1)
where C(t) is the plasma drug concentration at time ¢, D is the
injected dose, and k,; is the first-order elimination rate con-
stant for the drug. V is the volume of distribution, which has
no direct physiologic meaning but is an indication of the
extent of drug distribution in the body (Gibaldi and Perrier
1975). The area under the concentration-time curve is the
integration of Equation (A.1) from zero to infinity. It represents
the total drug exposure over time and is used in computing the
average drug concentration over a period of time.
Pharmacodynamics models characterize the relationship
between drug concentration and drug effect. The effect of
a drug present at the site of action is determined by that drug’s
binding with a receptor, and the most commonly used model is
the sigmoid E,,;, model (Hill 1913), which is of the form:

_ Ey C
ECl+C7 7

(A2)

where E,,,, is the maximum effect, C is the concentration of the
drug at the effect site, ECs is the concentration that produces
half of the maximal effect, and 7 is the shape factor. Here, ECsq
characterizes the potency of the drug in the system, and E, .
reflects its efficacy. Although the shape factor n is derived from
receptor theory as the number of molecules interacting with
areceptor and can provide better data fits, it is rarely used in
practice (Derendorf and Meibohm 1999).

Drug concentration C at the effect site in Equation (A.2) is
not the same as in Equation (A.1), which is measured in
plasma. The relationship between plasma and effect-site
concentration may either be constant or change over time.
For direct-link models, equilibrium between both concen-
trations is assumed to be achieved rapidly; thus, their ratio is
a constant [Figure A.1(a)]. For indirect-link models, however,
there is a temporal dissociation between the time course of
concentration and effect, which is most likely caused by the
distributional delay between the concentrations in plasma
and at the effect site. A general approach to characterize this
delay is the effect compartment model first introduced by
Holford and Sheiner (Sheiner et al. 1979, Holford and Sheiner
1982). A hypothetical effect compartment is attached to
the pharmacokinetic model to describe the concentration at
the effect site [Figure A.1(b)].

Let C, denote the concentration in plasma and C, the
concentration in the effect compartment, and assume that the
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Figure A.1. The Direct-Link and Indirect-Link Models, Which Are Based on the Work of Derendorf and Meibohm (1999)

(a)

(b)

Pharmacokinetics Pharmacodynamics Pharmacokinetics Pharmacodynamics
D E= Epax C" D _ Ewpax* Ce"
ECsy" +C  ECsy" +C,"

Effect

compartment
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'\ ’,'

Direct Link Indirect Link

Notes. The models calculate the effect-site drug concentration C in the drug effect E,,,, model in two ways. In (a), the direct-link model uses plasma
drug concentration C, as C. In (b), the indirect-link model uses effect-compartment drug concentration, C, = C,, - (1 - ekat) as C.

drug influx into the effect compartment follows a first-order
process; then, we have

dc,
o = Keg (Cp -Co),

= (A.3)

where k,, is the equilibration rate constant. Solving this
differential equation, we have

Celt) = Cplt) - (1 —eha 1), (A.4)

The drug-concentration drug-effect relationship, which we
show in Equation (A.2), was first established in 1910 (Hill
1910). Frey et al. compensated for the lack of concentration
using the area under the curve (Frey et al. 2003).

In particular, Frey et al. proposed a mixture model cap-
turing both disease progression and drug effect of the di-
abetes treatment. In their model, the fasting plasma glucose
level (FPG) for a patient taking an antidiabetic drug can be
represented by

FPG(t) = Base + S(t) — E(t), (A.5)

where FPG(t) is the fasting plasma glucose at time t, Base is
the predicted baseline level, S(t) is the disease progression
model, and E(t) the drug-effect model. Because diabetes is
a progressive disease, Frey et al. (2003) used S(t) = a-t (Chan
and Holford 2001), which means constant rate progression.

The drug-effect model, E(t), gives the predicted decrease of
blood glucose level at time ¢ by using antidiabetic drugs. Drug
concentration C is replaced with AUC in Equation (A.2) and
incorporated the effect compartment model in Equation (1.4):

Epax XAUCX(1—¢~ker't)

E(t) = AUCX(1—c ")+ AUCs, *

(A.6)
The calculation of AUC requires continuous measurement of
drug concentration, which is impractical in daily diabetes
management.

Our Innovation
We introduce a predictive dose-effect model by replacing
AUC with drug dosage D. By doing so, we overcome the
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calculation of AUC and establish a direct relationship be-
tween drug dosage and drug effect. This answers a fundamental
century-long puzzle on how one can predict the dose effect without
measuring the drug concentration in the body fluids. More-
over, although Equation (A.5) is a population PK/PD model
proposed by Frey et al. (2003) to measure the long-term
hypoglycemic effect of gliclazide, all parameters are
patient-specific and can be specialized for each patient. As
a result, we obtain a treatment-effect model that charac-
terizes personalized drug response and disease progres-
sion by using only daily blood glucose records and dosage
information.

Most drugs are administered periodically with sufficient
frequency to maintain the presence of drug in the body. For
drugs given in a fixed dose at a constant dosing interval, they
accumulate in the body until a steady-state plasma level is
achieved. At steady state, the drug concentration at any time
during any dosing interval will be identical to the concen-
tration at the same time during any other dosing interval
(Gibaldi and Perrier 1975) (Figure A.2). We use this fact to
establish the relationship between AUC and dosage D.
Suppose a drug is administered at dose D with dosing in-
terval 7 for N intervals, then the drug concentration at time
N-t + t will be

(A7)

N
—ke —nkyT _ —kyot (=g N+
Cn(b) = Deht. 37 ekt = Dohat (e 0T s ).
n=0
Therefore, at steady state, the drug concentration at any time ¢
is given by

D et

Vm, te[O,T).

Css(t) = I\}ilnooCN(t) = (A.8)

By Equation (A.8), we have the following relationship:

AUCT™ = [ Cltdt = 5 = [, CulBlt = AUC™

(A.9)

Therefore, AUC during any dosing interval at steady state
is the same as the overall AUC after the first dose and
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Figure A.2. The Time Course of Drug Concentration After
Multiple Intravenous Dosings
Steady State

. Attained after approximately 5 half-lives
. Time to steady state independent of dosage

.

]

]
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Notes. Here, drug dosage D =200 mg; the volume of distribution V =

101; the first-order elimination rate constant for the drug k.;= 0.1 min~};

and the dosing interval T = 100 minutes. Because no absorption time is

considered, the drug concentration will spike suddenly at the time

of each drug administration.

AUCY™ = 5. By substituting AUC ™ with 35 in (A.6), we
have

D_x(1— ekt
E(t) = Emaxx D Yk (—k 't )
mx(l —e " ) + AUC5Q

D-Ry-(1—eFeat)
1+D-Ry-(1—eFerty *

= Epax X (A.10)
Here, for model simplicity, we combine pharmacokinetic
parameters into Ry = m (mg™"). Tt can be used to de-
scribe the drug sensitivity of a patient. When all other pa-
rameters are fixed, patients with larger R; will have larger
drug effect, indicating that these patients tend to have better
treatment outcome.

Finally, we derive the blood glucose level BGL on day t as

_D-Rg-(1—e7Fert)
Max 44 D-Ry-(1—e*eaty’

BGL(B,t) =Base + a-t—E (A.11)

where $ = (Base, &, Emayx, Ry, key) are the parameters to be
estimated for each individual patient.

Appendix B. The Multiobjective Treatment-
Planning Model
We first introduce the parameters and decision variables used
in our treatment optimization model.
The treatment-planning model can be formulated as

(MIP) Min Zmethl(m' w,t) + ZwZ{fz(w, i)
s.t. fi(m,w,t) = Co-p(m,w,t) + C_-n(m,w, 1),
Vm=1..4w=1..W,t=1...7
fo(w,i) = C@H)-x(w,i), Yw=1,...W,i=0,...,L
(B.2)

(B.1)
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Indices

w Index for week, w = 1,...,. W

m Index for phase of daily blood glucose level, m = 1,..4
(before breakfast, after breakfast, after lunch, after
dinner)

t Index for days during a week, t = 1,...7

i Drug dosage level, i = 0,...L

Parameters

g(m, w, t, i) Treatment effect for dosage level i at week w, day ¢, and

phase m

C, Cost or penalty of positive deviation of blood glucose
level from upper-bound level

C_ Cost or penalty of negative deviation of blood glucose
level from lower-bound level

C(@) Cost of drug at dosage level i

W Total number of weeks

L Total number of dosage levels (assume that dosage level
increases 1.25 mg per level)

k, Maximum positive dosage-level change between two
consecutive decisions

k_ Maximum negative dosage-level change between two
consecutive decisions

T(m) Upper bound of blood glucose level for phase m

B(m) Lower bound of blood glucose level for phase m

Base(m) Predicted blood glucose baseline for phase m, output

from the predictive model

Decision variables

x(w, 1) Binary decision variable, which takes a value of 1 if
dosage level i is applied for week w, 0 otherwise.
s(m, w, t) Blood glucose level at week w, day t, phase m.
p(m, w, t)  Positive deviation of blood glucose level from upper
bound at week w, day t, phase m
n(m, w, t)  Negative deviation of blood glucose level from lower
bound at week w, day t, phase m
>xw,i) =1, Vw=1...W (B.3)
s(m,w, t) = s(m,w, t = 1) + > g(m,w, t = 1,1) - x(w, 1),
Vm=1..4w=1..W,t=1...7 (B.4)
s(m,0,0) = Base(m),V m=1...4 (B.5)
pm,w,t)=s(m,w,t) - T(m), Vm=1...4,
w=0..W,t=1...7
n(m,w, t) > B(m) — s(m, w, t), Vm=1...4,

w=0..W,t=1...7 (B.6)

x(w—1,i) + qu_kix(w, i)+ Z]‘>i+k+ x(w,j) <1,
Vw=1,...W, i=0,...,L (B.7)
§>0,p>0,n>0,xe B", x(0,0) = 1. (B.8)

The objective function of this mixed-integer program is
a combination of health outcome, Equation (B.1), and treat-
ment cost, Equation (B.2). Because diabetic treatment aims to
maintain the blood glucose level within the recommended
range, Equation (B.1) minimizes the sum of deviation of
glucose level from the upper and lower bounds over the entire
treatment horizon calculated by Equation (B.6). In terms of
cost and side effect, Equation (B.2) minimizes the total
amount of drug used. Constraint (B.3) ensures that
a treatment is selected for each week. Because OHAs are
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mostly in the form of pills, drug dosage in our model is
restricted to discrete levels. Dosage level 0 implies that the
patient is on diet control only and no drug is administered.
Constraints (B.4) and (B.5) estimate the change of blood
glucose level as a result of the drug effect, as predicted by
Equation (A.11). Specifically,

DRy (m).keq(m), & Keq(m)-(7w+1)
1+ Dy-Ry(m)-(1 — e~ D))’
(B.9)

§(m,w, t,i) = a(m) — Emax(m)-

where D; is the i-th dosage level and parameters = (Base, a,
Emaxs Ra, keg) are estimated from SMBGs of phase m.
Constraint (B.7) follows clinical practice that the dosage
level should not fluctuate too much from one visit to
the next. Because no national standard exists regarding
the choice, the fluctuation allowed can be physician-
dependent. In practice, clinicians always start with “diet
control only” at the start of the visit. We comply with this
practice by setting the initial treatment at week 0 to no
dosage—that is, x(0,0) = 1.

Appendix C. Establishing the Predictive Treatment-
Effect Parameters

For each patient, we use the initial 30% (during the dosing-
experiment period) of SMBGs and dosage data to establish
the personalized least-square estimator of parameters for the
treatment effect in Equation (A.11). Each patient has four sets
of SMBGs corresponding to four phases of monitoring per
day: before breakfast (BB), after breakfast (AB), after lunch (AL),
and after dinner (AD). Let {;, L,..., Ir}denote the blood glucose
level recorded at one of the phases from day 1 to day T; then,
we obtain parameter f for that phase by solving the non-
negative least-square problem:

B = argmin Err(f) = argmin Zle (It — BGL(B, t))z. (C1)
B=0 B=0

As the dosage level keeps changing during the treatment,
dosage D in Equation (A.11) depends on time t. To address
this issue, we calculate the blood glucose level by the first-
order approximation:

BGL(B,t+1) ~ BGL(B,t) + 81;% B Hyx1

IBGL
BGL(B,0) + D! — B9
; D(S)'Rd . ke .e*kmrs
BGL(B,0)+ -t = 3o Emox ' po bt — oy

(C.2)

Patients sometimes forget to record their glucose level.
Equation (C.2) calculates BGL(B, t) on those days; however,
they are not included in the summation in Equation (C.1)
because I; values are missing.

We develop an efficient gradient descent method to obtain
the optimal parameters f* in Equation (C.1). Because the
least-square optimization is nonconvex in the corresponding
parameters, the gradient descent algorithm cannot guarantee
the global optimality of the solution. As a result, different
choices of the initial value of § can lead to different estima-
tions. To avoid local optima and ensure the quality of the
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solution, we run the algorithm multiple times with different
initial values and choose the one with the minimum esti-
mation error. Different initial values are chosen according to
the population mean and variance of these parameters in the
literature (Holford and Sheiner 1982) because we assume that
the value of these parameters for each patient will not differ very
much from the population mean. Empirically, we obtain the range
of parameters: Base = 90 + 10 mg-dl™" for phase AB and Base =
130 + 10 mg-dl™ for others; « = 0.005 + 0.001 mg-dl""-day™",
Emax = 90 + 10 mg-dl™!, Ry = 02 + 0.1 mg ™, and k,, = 0.05 +
0.01 day". These choices consistently reflect the clinician’s
initial judgement on the patient’s status. Mathematically, the
gradient descent requires an initial value to start. Clinically, the
choice can be interpreted as an initial guess of the patient’s
response characteristics.

Once we fit the data, we then generate predicted glucose
levels for the entire duration and compare them to the actual
values. Moving averages are often used to uncover trends in
time series (Brockwell and Davis 2006); therefore, we use them
to compare the actual data versus the predicted values using
window size 15. Specifically, we use 15 data points to calculate
each point of the moving average. Figure C.1 illustrates the
results for a patient. Specifically, the “X” values are actual
SMBG data from the first 14 days. They are input into our
treatment-effect model to establish the predicted drug effect
(solid). The squares denote the actual SMBG values for the
remaining treatment period not used for training. The moving
average of all SMBG data (“X” and squares) for this patient is
represented by the dotted line. We observe that our predictive
model (solid curve) approximates well the blood glucose level
trend over the entire treatment horizon (dotted curve). Fur-
thermore, Figure C.2 suggests that the fitting residual (for all
patients) is both close to normally distributed and close to
stationary in time. This indicates that the model predicts well.

Figure C.1. (Color online) Prediction of the Drug-Effect
Trends Using Self-Monitored Blood Glucose Data Obtained
During the Dosing-Experiment Period
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Notes. Specifically, each “X” is an SMBG data point from the first
14 days (dosing-experiment period). They are input into our
treatment-effect model to establish the predicted drug effect
(solid curve). The squares denote the actual SMBG values for the
remaining treatment period (not used in training). The moving
average of all SMBG data for this patient is represented by the
dotted curve. Our predictive model (solid curve) provides a good
approximation of the trend of blood glucose levels over the entire
treatment horizon.
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Figure C.2. (Color online) Least-Square Residual Values of
All Patients vs. the Standard Normal Distribution

Q-Q plot: residual vs. standard normal

150

100

50

Quantile of residual

-50

-100
-3 -2 -1 0 1 2 3

Quantile of standard normal

Note. Q-Q, quantile-quantile.

Hence, the SMBGs can be seen as a stationary time series with
time-independent noise, and statistically the least square esti-
mator f* is the maximum-likelihood estimator.

This shows that our model gives good predictions on the
drug effect and disease progression using data collected
during the first few weeks of treatment. We observe con-
sistently good-quality performance in the resulting pre-
dictive dose-glucose effect trend for all four phases (BB,
AB, AL, and AD) for 93% of the 200 patient cases. In 7% of
the cases, we have insufficient patient data to evaluate the
performance.
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