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Abstract. Mining operations determine a long-term production schedule, often to max-
imize net present value. For a time horizon of between years and decades, optimization
models seek the extraction times—with monthly or yearly fidelity—of three-dimensional,
notional blocks of ore and waste within a deposit to satisfy spatial precedence constraints,
as well as resource constraints on the amount of material extracted and sent to the mill.
With algorithmic advances, as well as those in mine planning software and in hardware,
we are able to solve instances with a decade-long horizon at daily fidelity. The resulting
objective, repeatable, and defensible schedules inform production and maintenance su-
pervisory decisions based on resource availability, that is, loaders, shovels, haul trucks, and
mineral processors.We implement our solutions at the Turquoise Ridge underground gold
mine in Nevada, United States. These solutions indicate more than a 2% increase in total
ounces extracted over a decade while decreasing development footage by as much as 11%
over the same time horizon. Furthermore, we are able to incorporate rules governing a
shared resource and to evaluate binding versus nonbinding capacity constraints.

History: This paper was refereed.
Funding: This work was supported by Barrick Gold Corporation [Contract #18-12 with South Dakota

School of Mines (A. Brickey)].
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Barrick Gold Corporation is based in Toronto, Can-
ada, and has been publicly traded since 1983. Its first
mines were located in Ontario and Quebec, Canada,
and in Nevada and Utah, United States. At the time of
this writing, Barrick’s mines and projects are located
in Argentina, Australia, Canada, Chile, the Domini-
can Republic, Papua New Guinea, Peru, Saudi Ara-
bia, the United States, and Zambia, with more than
three-quarters of its production originating in the
Americas. As measured by annual production ton-
nage in 2017, Barrick is the largest international gold
mining company.

Turquoise Ridge (TR) underground mine is a di-
vision of Barrick Gold Corporation, which, in ag-
gregate, employs about 3,800 workers. The mine is
located approximately 44 miles northeast of Winne-
mucca, Nevada. Barrick and Newmont Mining Cor-
poration co-own the mine in proportions of 75% and
25%, respectively. The average reserve grade of the
ore is 0.45 troy ounces per ton (15.56 grams per tonne),
the highest in Barrick’s operating portfolio, and among
the highest in the industry.

Problem Summary
Operational decisions in underground mine produc-
tion scheduling consist of determining when various
activities should occur over the course of a horizon
of one to many years. These activities prepare and,
subsequently, retire an area from which ore is extract-
ed, and consist of (i) drilling the area and inserting
explosives, (ii) blasting the rock (or fragmenting it
via mechanical means) to permit it to be extracted,
(iii) extracting (or mucking) the broken rock, and
loading it into a haul truck, and (iv) transporting it
to the surface for further processing and eventual
sale. If necessary, for stability, the void left as a result
of the extraction is backfilled. A precious metal
mining company generally possesses an objective of
maximizing net present value (NPV), and constraints
consist of rules governing the order in which ac-
tivities can occur, and the amount of resources over a
time span that can be used to conduct these activities,
for example, extraction or processing capacity. (For
technical terms such as NPV, we refer the reader to
Table A.1 in Appendix A.)
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Literature Review
There is extensive literature on mathematical pro-
gramming approaches to production scheduling in
both open pit and underground mining applications
(Newman et al. 2010), with some of the earlier work
applied to the former (Johnson 1968), whereas the
latter began with models such as that proposed by
Trout (1995). Research on underground mine plan-
ning methods has henceforth been applied to several
types of mines, including hard-rock (metal) mines con-
taining platinum and palladium (Carlyle and Eaves
2001), iron ore (Kuchta et al. 2004, Martinez and
Newman 2011), and lead and zinc (O’Sullivan and
Newman 2014), and to soft rock (i.e., coal) mines
(Sarin and West-Hansen 2005), all of which have
different requirements than the mine we consider
here. In particular, the geology specific to each mine
lends itself to a given mining method. This difference
results primarily in unique precedence constraints,
mathematical structures, and, correspondingly, so-
lution techniques. In some cases, the authors simply
solve the monolith, whereas in others, they use tai-
lored decompositions.

Recently, Brickey (2015) and Muñoz et al. (2018)
have proposed exploiting the so-called resource-
constrained project scheduling problem (RCPSP) struc-
ture to solve large-scale underground mine planning
problems. Their approach is based on extending a linear
programming decomposition algorithm (Bienstock and
Zuckerberg 2010), and an integer rounding heuristic
(Chicoisne et al. 2012), in the context of open pit
mining. King et al. (2017) discuss the use of this ap-
proach for strategic underground planning, and King
et al. (2016) employs it to solve instances of open-pit-
to-underground transition problems.

Here, we adopt the same approach to solve a
challenging problem faced by Barrick. Although we
tailor our model to the company’s mine and under-
ground mining method, this type of modeling can be
applied, regardless of ore type, to any underground

mine as long as the data (as given by the sets and
parameters listed in Appendix B) are known. Most
open pit operations include the option to stockpile,
which, typical of undergroundmines, we do not. (We
refer the interested reader to O’Sullivan et al. 2015 for
the differences between open pit and underground
mine planning optimization models.) We determine
production schedules for long (for example, 10-year)
horizons at fine (for example, daily) fidelity. That is,
we provide our industry partners with schedules that
dictate the activities that start each day for the next 10
years, and that can be used for both mid- and long-
range planning.

Operations at Turquoise Ridge
Because Turquoise Ridge (TR) is an underground
mine, many types of activities must be scheduled to
prepare an area for ore extraction and, subsequently,
to backfill the void to mitigate the instability of the
host rock. For example, to access a mining zone, we
must first excavate long-term, or primary, develop-
ment areas such as haulage ramps and declines.
Within each mining zone, we next build secondary
development needed for access to the individual
stopes. Primary development is generally a capital-
ized expenditure, whereas secondary development is
considered an operational expense. In TR’s case, this
primary and secondary development is normally
excavated in waste, or lower-grade ore, so as not to
inhibit the extraction of higher-grade ore while still
satisfying geotechnical and safety requirements.
These activities all require different equipment, and

are therefore associated with different resource re-
quirements. For example, development drilling ac-
tivities use a jumbo, that is, a piece of equipment that
drills horizontally. A load-haul-dump unit (Figure 1)
is needed for mucking and to place the rock into
trucks, which then haul the excavated rock to a muck
pass or loading station. In 2017, the mine began using
Sandvik MH620 continuous miners (Figure 2) that

Figure 1. (Color online) Photograph of a Load-Haul-Dump Unit (Caterpillar for Hardrock) Representing the Type Used at
Turquoise Ridge
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possess rotating drums on a hydraulic arm that cut
away at the rock, thus eliminating the need for dril-
ling and blasting (Moore 2017). The cut material is
gathered at the front of the continuous miner and
then loaded into trucks via a conveyor belt.

Durations of the individual activities vary widely,
from a few hours to multiple months. This charac-
teristic is typical for an underground mine, in which
exploration, development, extraction, and backfilling
are often associated with areas sized to match the non-
uniform geology. (See, as another example, O’Sullivan
and Newman 2014.) Each activity is assigned a profit
or cost based on the activity. For example, the ex-
traction of stopes, or areas of ore, ultimately yields
salable gold, that is, revenue, whereas development
and backfill activities incur costs. Activities associ-
ated with a cost are often the activities whose exe-
cution is needed to provide access to a given area such
that ore can subsequently be extracted. We treat these
data as deterministic for the purposes of our long-
term plan and owing to the culture of and data
availability at the mine site. Short-term models that
might capture the stochastic nature of the operations
are beyond the scope of our work.

The Turquoise Ridge mine extracts ore utilizing
the underhand cut-and-fill mining method (Figure 3),
a top-down method, meaning that extraction prog-
resses downward by mining small cuts and then
backfilling them before moving to a cut either adja-
cent to, or beneath, the current cut. The backfill is a
cemented aggregate limestone, which solidifies to
provide roof support, necessary for a safe working
environment. The precedence structure is dictated by
the nature of the extraction above a given area. An
intralevel ramp developed in the waste rock provides
access to the ore in a topcut, which, once extracted,
is backfilled. The ore contained in the ramp is then

extracted to reach the undercut directly below, in
which the ore is mined out and backfilled. This
process continues until all regions associated with
this ramp have been mined and backfilled. Lastly, the
ramp is backfilled as well. This method possesses a
lower production rate than other underground bulk
miningmethods, but is employed specifically because
of the difficult ground conditions (that is, weak host
rock) found at Turquoise Ridge.
To determine where and when to mine, engineers

continually evaluate mining conditions (such as the
strength of the host rock), economic factors (such
as the price of gold and the cost of operating or
upgrading equipment), and geological factors (such
as updated information about the amount of ore
contained in the rock) to determine if the mine’s
production schedule needs to be revised. Associated
with these activities is a mining sequence, or a set of
rules dictating, to some extent, the precedence that
must be followed during activity execution. It is with
this fixed design (Sipeki et al. 2020) and set of pre-
cedences that we generate a production schedule for
the requisite mining zones, that is, designated areas
within the larger operation (Figure 4).
Specifically, we seek to maximize discounted NPV

subject to the following constraints: (i) precedence
between activities, (ii) daily mining capacity for the
ore tonnage, (iii) daily capacity of total material move-
ment (waste, ore, and backfill tonnage), (iv) daily
number of mechanical mining activities executed,
(v) daily mechanical mining advance, (vi) monthly ore
tonnage mined, and (vii) other common-sense oper-
ational restrictions, for example, an activity can be
executed atmost once during the planning horizon. In
addition to these operational constraints, a small set
of activities must start on specific dates or be com-
pleted by a specific date, sometimes as a result of our
initial conditions.

Previous and New Scheduling Methods
Prior to our work, the scheduling process consisted of
the following three steps: mine design, task creation,
and scheduling. Mine design incorporates numerous
factors such as ground conditions, ore grades, safe
mining sequences, and equipment characteristics, and
yields an economic extraction envelope. A design pro-
duces activities based on characteristics such as location,
size, resource quantity, and extraction method (con-
ventional or mechanical), to which are assigned prece-
dence requirements to ensure a safe and logical mining
sequence, for example, that access to an extraction ac-
tivity is created before said extraction, or that ventilation
infrastructure is built prior to operating in an area. At the
time of this writing, the mine engineers at TR used a
commercially available heuristic-based scheduling pro-
gram. The software employs a genetic algorithm to

Figure 2. (Color online) Photograph of a Mechanical Miner
(MH620 Roadheader for Hardrock) Representing the Type
Used at Turquoise Ridge
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schedule the activities with a view to improving NPV
while adhering to the precedence constraints, and to
various resource constraints. The disadvantage of the
heuristic-basedmethod is that the quality of the solution
is not guaranteed to be within a known percentage of
optimality. To compensate for the unknown solution
quality, mine planners generate multiple life-of-mine
solutions and then evaluate them, choosing the one as-
sociated with the highest NPV or with a specific pro-
duction profile.

The gold mining industry is highly competitive.
Price fluctuations and depleting reserves have high-
lighted the need to continually improve efficiency and
reduce costs. Barrick aims “to be the leading mining
company focused on gold” (BarrickGoldCorporation
2017, p. 3), and the company is therefore motivated
to implement new optimization techniques into their
business strategies. With this backdrop, our goal is
to improve the production scheduling process by

generating provably (near-)optimal solutions more
quickly, enablingmine planners to runmultiple scenarios
depending on the conditions. In fact, due to the mathe-
matical structure of the underlying scheduling models,
and the efficiencyof the corresponding algorithms,we are
able to exceed the planners’ expectations in terms of the
size of instance solved within an acceptable timeframe.
To create a representative optimization model com-

patible with the mathematical optimization software,
we employ (the Open Mine Planner (OMP) solver; see
Appendix B), it is necessary to determine how in-
formation such as the mining method and sequence,
the equipment used, and any operational limitations
are represented in the mine plan. TR utilizes the
Deswik suite (DeswikMiningConsultants (Australia)
Pty Ltd 2018) of mine planning tools, a commer-
cially available platform, to create a three-dimensional
computer-aided design representation of the mine
and subsequently to define operational activities.

Figure 4. (Color online) Mining Zones of Interest at the Turquoise Ridge Mine

Figure 3. (Color online) Mining Sequence in the Underhand Cut-and-Fill Method

Note. This sequence consists of an intralevel ramp that provides access to the ore, followed by mining and backfilling, where mining always
proceeds top-down, that is, the topcut is excavated first, followed by the undercuts.

INFORMS Journal on Applied Analytics, 2021, vol. 51, no. 2, pp. 106–118, © 2020 INFORMS 109
Brickey et al.: Turquoise Ridge Optimizes Production Scheduling



We extract the necessary data from the Deswik files to
create our optimization model. At a high level, the
resulting model can be thought of as consisting of the
following components:

1. Parameter data: The required information from
Deswik pertaining to each activity, in addition to the
time horizon and fidelity.

2. Objective function: The value assigned to each
activity or task, which appears as a coefficient in our
objective of maximizing NPV.

3. Precedence links: Activity dependence that creates
a sequence.

4. Resource constraints: The operational limita-
tions such as the amount of material moved in a day,
or the number of activities that can simultaneously be
executed on a level (see Table 1).

Each activity is associated with a net profit, which
can be positive, zero, or negative, andwith an activity
type, which dictates the resource(s) that it consumes.
Table 1 lists the various resource constraints and the
related activity types. Table 2 provides descriptions
for the types of activities scheduled. For example, ore-
producing activities such as topcut mining, under-
cut mining, and stope mining are associated with
ore tonnage. Therefore, the resource consumptions

resulting from executing these activities are summed
in the daily ore tonnage constraint.
To enhance model tractability, we excise activities

based on the following: (i) whether they were already
scheduled in the short term, that is, before January
2019 and therefore fixed, (ii) the length of the critical
paths of predecessors based on the durations and
resources these predecessors would require to be
completed, and (iii) the length of the planning hori-
zon. The optimization model considers a total of
16,432 activities, but then excludes those activities
scheduled outside of the time horizon. Additionally,
we include 25 activities that produce ore tons sched-
uled in 2018 but that are to be completed in 2019. We
concede that these legacy activities constituting initial
conditions compromise some optimality, but to the
benefit of creating a seamless plan with which the mine
can dovetail its current operations.
To rectify the heterogeneity in the duration of the

underground activities, it is necessary to schedule at a
fidelity commensurate with the duration of shorter
activities while limiting the duration of longer-lasting
ones. For example, scheduling at an hourly level of
detail for the planning horizon of interest would yield
an intractable model. We mitigate this by rounding

Figure 5. (Color online) Distribution of Activity Durations Before (Left) and After (Right) Splitting

Note. As the graphs show, many more activities require fewer than 31 days to execute after splitting.

Table 1. Resource Constraints in Our Production Scheduling Model

Constraint name Description Activity types Fidelity

Total tonnage Total amount of material (i.e., waste, ore, and
backfill) moved

Backfilling, capitalized projects, primary
development, secondary development, stope
mining, topcut mining, undercut mining,
vertical development

Daily

Daily ore tonnage Amount of ore tons moved daily Topcut mining, undercut mining, stope mining Daily
Mechanical mining

activity
Number of concurrent mechanical
mining activities

Topcut mining, undercut mining (only activities
using mechanical miners)

Daily

Mechanical mining
footage

Mechanical mining advance Topcut mining, undercut mining (only activities
mechanical miners)

Daily

Monthly ore tonnage Amount of ore tons moved monthly Topcut mining, undercut mining, stope mining Monthly

Note. Each of the constraints in our model is enforced using a specific time fidelity.
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activity durations up to a day, and, correspondingly,
by splitting longer-lasting activities into those re-
quiring nomore than 31 days to complete. In this way,
we can use a daily time fidelity to schedule, while also
forcing a greater degree of homogeneity into ac-
tivity duration (see Figure 5). Although this may
seem overly detailed for a 10-year horizon, many
activities require a day or less. These cannot be ag-
gregatedwithout loss of desired detail. Our schedules
are therefore intended to provide a longer-term view
of the operation, as opposed to a short-term schedule,
and are then used as the foundation for near-term
planning. From an implementation perspective, mining
engineers typically conduct long- to mid-term sched-
uling events once or twice per year. This may occur
more frequently at larger operations depending on the
variability of the mining conditions.

For this project, the components necessary to run
the OMP solver are represented by six files (Table 3)
that together contain the necessary information for
the software to build an instance and correspond-
ingly solve it. Specifically, the Deswik model data
are exported to a Comma Separated Values file and
handed to a Python script in which any required
transformations occur, for example, the removal of
any tasks that are scheduled prior to the start of our
time horizon.

The associated output files are then passed to the
solver and a run is initiated. After completion, the
solver writes out the integer programming solution.
In OMP, time periods are represented as integer
values. These are converted into calendar dates, using
another script, before the schedule is imported into
Deswik, whereupon it can be viewed as a Gantt chart
and the results can be visually verified, for example,
whether any precedence constraints are being vio-
lated and whether daily production limits are being
respected. Reports on production metrics and eco-
nomics can then be generated on a daily, monthly,
or yearly basis. Figure 6 provides a schematic of
this process.
Fortunately, despite the long horizon (15 years) and

fine time fidelity (daily), we are able to obtain rea-
sonable solution quality and times because of the
problem structure we can exploit, which yields a 1%
optimality gap in approximately eight hours. We use
thefirst 10 years to construct the schedule, resulting in
9,150 scheduled activities out of the approximately
14,000 available over the 15-year horizon.With amine
life at the time of this writing estimated at 22 years,
mine planners deem the 10-year horizon to be suffi-
ciently long for their intermediate-term goals.
We provide the formulation of the integer pro-

gram, the hardware and software on which we run

Table 2. Activity Types in the Production Schedule at Turquoise Ridge

Activity type Description

Backfilling Filling of voids created by ore extraction with cemented aggregates to maintain geotechnical stability
Delineation drilling Drilling performed to delineate ore and waste boundaries for smaller sections of the deposit, typically

performed a few weeks before actual extraction
Capitalized projects Large-scale undertakings that would be considered an asset for the mine, for example, sinking shafts, installing

or upgrading main ventilation fans
Primary development Horizontal excavations that provide initial access to the ore body, for example, haulage ramps,

declines (Figure 4)
Stope mining Extraction of ore in a defined area, creating a void
Topcut mining Extraction of ore in a defined topcut (Figure 3)
Secondary development Horizontal excavations needed to provide more granular access to the ore body, for example, access ramps,

conducted prior to extraction activities
Undercut mining Extraction of ore in a defined undercut (Figure 3)
Vertical development Vertical excavations, for example, ventilation raises, service shafts

Table 3. Input File Types and Descriptions

File type Description

Blocks (*.blocks) Lists all activities and their associated resource consumption values on a daily basis
Problem (*.prob) Controls how the overall model is constructed, and contains the time horizon for which to solve the model, the

number of constraints, and associated parameter values
Precedence (*.prec) Lists the predecessors for each activity
Delay (*.delay) Lists the delay corresponding to each precedence list for each activity
Mapp (*.mapp) Contains the mapping from the Deswik identifier to the corresponding identifier used by the mathematical

optimization software
Time (*.time) Implements multi-time period constraints

INFORMS Journal on Applied Analytics, 2021, vol. 51, no. 2, pp. 106–118, © 2020 INFORMS 111
Brickey et al.: Turquoise Ridge Optimizes Production Scheduling



the model instances, and specific information about
solution times and optimality gaps in Appendix B.

Results
Barrick’s primary goal in enlisting our help to pro-
duce production schedules is to mitigate the myopia
seen in their current, heuristically generated ones.We
are able to incorporate rules whose benefits were not
initially apparent. Our model produces an objective,
repeatable, and defensible schedule in less time than
currently required. Finally, the company is interested
in evaluating operational resource utilization, that is,
binding versus nonbinding constraints.

A challenge to this operation is the presence of an
annual ore production target, rather than a limit,
signifying that the mine must meet this value to the
extent possible over the course of a year (and cannot
exceed it). The origin of this so-called target is the fact
that TR shares a processing facility with neighboring
mining operations, for which eachmine is expected to
produce a given amount of material to meet pro-
cessing facility capacity while not overtaxing it and
precluding its use by the neighbors. We could place a
constraint on daily ore production such that the total
for a year equals the annual ore target. However, it is
unclear how to best translate an annual target into a
daily one. Daily targets equal to the quotient of the
annual level and the number of operational mill days
could be overly restrictive during some time periods
of the year and therefore lead to lost opportunity for
TR with respect to ore production. On the other hand,
some relaxation of the daily ore production capac-
ity constraint could cause front-loading, in which
the economic driver (in our case, ore production) is
accelerated in the early part of the time horizon to
increase NPV. Such a schedule would be infeasible
from an operational standpoint and would create
discord with the neighboringmines. To meet the annual
ore production target, to preclude lost opportunity, and
to prevent front-loading, we introduce a multi-time
period knapsack constraint (Chowdu et al. 2019) that
constrains each month’s production to be approxi-
mately equal to the quotient of the annual production

target and 12 (i.e., the number of months in a year).
Monthly production targets are slightly higher in
aggregate than the annual target to allow for the
lumpiness associated with the tonnage contained
in different stopes, and to account for the differing
number of days per month. Figure 7 provides a de-
piction of the impacts of front-loading and demon-
strates that the use of multi-time period knapsacks
curb that behavior.
Our schedule, to which we refer as the under-

ground RCPSP (UG-RCPSP), results in a production
profile similar to the original, manually generated
one, but tends to forego unprofitable development
activities in the near term to a greater extent than the
original schedule. The (UG-RCPSP) schedule improves
NPV, not only directly by bringing ounces forward from
areas with higher grade, but also, secondarily, by re-
ducing the development (scheduled just-in-time relative
to the corresponding extraction). Production is moved
from areas with higher development to those that re-
quire less to mine the associated ore. Table 4 provides
quantitative comparisons of total ore tonnage and
ounces of gold mined, backfill used, waste extracted,
tonnage associated with primary and secondary de-
velopment, and advancement achievedwith the original
schedule and for (UG-RCPSP).
Figure 8 contrasts the scaled cumulative NPV over

the planning horizon of interest, on an annual basis,
for Barrick’s original schedule (original) and for the
one we generate (UG-RCPSP). The latter yields a
higher NPV from the beginning of the horizon, and
the difference in NPV grows for about the first six
years, after which it remains virtually constant based
on an annual discount rate set by the company.
The NPV is inextricably intertwined with the total

ounces of gold produced, and with their corresponding
average grade (Figure 9(a)). The (UG-RCPSP) schedule
consistently producesmore ounces for the first 8 years of
the 10-year schedule with the exception of year 6, in
which (UG-RCPSP) yields a slightly lower value.
Nonetheless, owingboth to the overall numberof ounces
produced and to the discount rate, the generally higher
level of gold production matches the higher NPV we

Figure 6. (Color online) OMP Scheduling Process

Note. This process consists of data processing, using the solver to produce a schedule, employing mining software to analyze the solution, and
outputting the schedule after no adjustments need to be made.
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obtain with our schedule. Commensurately, although
less monotonic and more difficult to determine domi-
nance between schedules, the overall much higher grade
of the mined material in 3 of the first 4 years (and in 6
years of the 10-year horizon) is also consistent with the
higher NPV (UG-RCPSP) produces. Barrick’s original
schedulegenerateshigher-gradeore in thefinal 2years of
the horizon (at the expense of the same or lower grades
throughout all but one of the first 8 years of the horizon)
when compared with the optimized schedule. This
myopia in the former schedule fails to capture the im-
portance of the discount factor, and, therefore, results in
lower NPV.

Activities, including primary and secondary de-
velopment, backfill, and those associated with other
necessary infrastructure, are expensive to conduct
and do not directly generate revenue, and (UG-
RCPSP) schedules these just-in-time (subject, natu-
rally, to precedence constraints) to minimize the

detrimental impact on the objective function value.
Figure 9(b) shows a substantial reduction in devel-
opment footage in the early years of the schedule.
Specifically, primary development is reduced by 3.3%
and secondary development is reduced by 10.2%,
contributing to an overall reduction of 8.8%. More
tons of backfill are scheduled in the early years due to
the increased ounces extracted, yet the overall amount of
backfill required for both schedules is the same.
Finally, although a critical path in the traditional

sense is generally based on due dates, a characteristic
absent from our production schedules in which ac-
tivities need not even be executed at all, our model
does provide an evaluation of two types of phe-
nomena that restrict the objective function value:
(i) bottleneck time periods in which one or more

Table 4. Comparison of Total Ore Tons and Ounces
Produced and Total Waste Tons and Development for the
OMP-Generated Schedule Compared to the Original

Metric Difference (%)

Total ore tons 1.0
Total ounces 2.4
Total backfill tons 0.0
Total waste tons −11.0
Primary development tons −3.3
Primary development footage −3.3
Secondary development tons −10.2
Secondary development footage −10.2

Note. The OMP-generated schedule improves upon the original
schedule in the total ore tons and ounces produced (both increase),
as well as total waste tons and development (both decrease).

Figure 8. (Color online) Comparison of the Scaled,
Cumulative NPV and the Mine’s Original Schedule

Note. The scaled, cumulative NPV is higher for the model we solve
than that corresponding to the mine’s original, manual schedule.

Figure 7. Impacts of Front-Loading and Use of Multi-time Period Knapsacks to Curb the Behavior

Note. The left-hand graph shows an operationally infeasible front-loaded schedule, whereas the right-hand graph demonstrates how the
appropriate constraints smooth out ore production (and, hence, mill utilization).
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resources are used at capacity, and (ii) activities
whose start dates are delayed owing to predecessor
activities and their associated durations. The use of
Deswik or othermine schedule visualization tools can
discern these restrictions and provide engineers and
management with feedback regarding appropriate
operational responses to changing conditions. Engi-
neers can then determine if additional resources are
warranted or if modifications to the design or other
fundamental inputs to the scheduling model should
be made.

Conclusion
Barrick Gold Corporation approached us with a pro-
duction scheduling problem that they were handling
well, but upon which they wanted to improve. Specifi-
cally, they were interested in (i) using a formal optimi-
zation approach to increase NPV or demonstrating
that the company had a (near-)optimal solution, and
(ii) creating production schedules faster, more objec-
tively, and in a reproducible manner. We were able to
show that the company was, indeed, generating good
schedules, but that we could improve on them both in
terms of quality, and, to a much greater extent, in the
time required to produce them. Our deterministic-model
solutions with daily-fidelity schedules are capable of
meeting the annual ore production target, in addition to
other resource constraints. The model accommodates
heterogeneous activity durations and produces multi-
year schedules with reasonable computation times.

Important aspects of our work arose with each it-
eration of the model, providing us with information
about the requirements for producing an operation-
ally feasible schedule. For example, due to the highly
precedence-constrained nature of many activities, we
are able to run instances containing longer time ho-
rizons than initially thought, thereby yielding solu-
tions with a long-term outlook and ensuring that the
schedule accounts for a perspective of the operation
that includes access development, equipment allo-
cation (that is, mechanical miners), and backfill ac-
tivities needed for safe execution. Additionally, the
schedules are able to provide engineers with a tool to
identify deficiencies in resources.
A valued outcome of the model is the significant

reduction in development activities early in the time
horizon, yielding just-in-time scheduling of expen-
sive activities. The resulting cost reductions, coupled
with an increase in the grade of the scheduled ore
production, significantly impacts the NPV of the
operation. Although the mine design is fixed for any
given schedule, the results provide valuable infor-
mation on critical activities and priority development
for higher grade areas. Another important lesson
relates to the production profile, initially constrained
on an annual basis, but which resulted in front-
loaded, operationally infeasible schedules. Incorpo-
rating monthly, rather than annual, production tar-
gets increases NPV, reduces development costs, and
produces more objective and repeatable schedules,

Figure 9. (Color online) Comparison of Select Production and Operational Metrics from the (UG-RCPSP) Schedule and the
Original Schedule

Note. The comparison shows that more, higher-grade ounces are produced in the (UG-RCPSP) schedule with about the same number of backfill
tons and less development (i.e., with fewer resources overall).
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with associated parametric analyses. Therefore, the
company has begun to think about implementing
models such as the one we describe at its other un-
derground mine sites.

Finally, our modeling paradigm of the resource-
constrained production schedule problem, and its
associated solutionprocedure, canbe applied in a variety
of other settings such as nurse staffing and scheduling,
supplier selection, pharmaceutical research and devel-
opment, plant engineering and construction, informa-
tion systems, and automotive research and develop-
ment projects (Schwindt and Zimmermann 2015).

Appendix A. Mining-Specific Acronyms
Table A.1 provides a list of mining-specific acronyms and
terms to facilitate parsing the paper for those unfamiliar
with underground mining.

Appendix B. Formulation
Our underground mine scheduling problem possesses a
RCPSP mathematical structure, in which the two main cate-
gories of constraints are (i) precedence (the majority), and
(ii) knapsacks (the minority). Problems with this structure
lend themselves to the use of the OMP solver (Rivera et al.
2015), which implements a number of algorithms published
in the academic literature, and executes primarily in two

stages: (i) it solves the linear programming relaxation of the
problem using a decomposition method (see Muñoz et al.
2018 for details), and then (ii) it applies a TopoSort heuristic
to obtain an integer-feasible solution (Chicoisne et al. 2012,
Brickey 2015). The latter, although a list-ordering heuristic
based on the “expected” completion time of a block or
activity in the linear programming solution, tends to pro-
vide integer-feasible solutions provably within a few per-
centage points of optimality. We employ OMP’s variant of
an early start algorithm (Lambert et al. 2014) to reduce the
number of activity-time period pairs under consideration.

We formulate this model by converting Deswik data,
via a Python script, into a format compatible with OMP.
Barrick’s data set contains activities with time-varying
durations. Because OMP lacks the flexibility to accommo-
date this type of data, we approximate the solutions by
using the longest (that is, most conservative) durationwhen
optimizing and then post-process into the final schedule the
correct duration based on the time at which the activity is

executed.We run the corresponding instances using a Lenovo
ThinkServer RD350 computer with 16 processors (2.6 GHz)
and 32 gigabytes of RAM. All runs are executed with OMP
Version 2663. Instances spanning a 15-year horizon and
possessing daily fidelity result in 47,410,701 variables,
102,548,859 precedence constraints and 22,102 resource con-
straints, and require 29,107 seconds (or 8.09 hours) to solve to
1% optimality.

Table A.1. Mining Terminology Used in This Paper

Term Description Source

Backfill Material used to fill a void created by ore extraction, for example, pastefill
(processing tailings mixed with water to form a slurry), rock backfill (waste rock
from development sometimes combined with cement)

Hambley (2011)

Decline A system of ramps and horizontal drives that connects the orebody to a surface
portal or to a breakout from existing mine infrastructure

Brazil et al. (2008)

Deswik Mine planning and scheduling software Deswik Mining Consultants
(Australia) Pty Ltd (2018)

Development An excavation that provides access to the orebody, categorized as primary,
secondary, or vertical

Tuck (2011)

Gold ounces The final product derived through mineral processing of ore, taking into account
processing recovery and dilution

Fuerstenau and Han (2011)

Net present
value (NPV)

The difference between the present value of cash inflows and cash outflows over a
period of time, used to analyze the profitability of an investment or project

Stermole and Stermole (2014)

OMP solver Open Mine Planner, a mathematical solver used for large scheduling problems
with a particular structure

Moreno et al. (2017)

Ore An occurrence of rock that contains sufficient minerals to be economically extracted
from the deposit

Darling (2011)

RCPSP Resource-constrained production scheduling problem Brucker and Knust (2012)
Stope An excavation in the orebody created to extract ore, resulting in a stable void Carter (2011)
Topcut An excavation in the underhand cut-and-fill mining method, in which the

excavation’s roof is composed of the host rock
Hustrulid and Bullock (2001)

TopoSort Heuristic employed by OMP to convert a solution to the linear programming
relaxation of the scheduling problem into an integer one

Chicoisne et al. (2012)

(UG-RCPSP) Underground resource-constrained production scheduling problem King et al. (2017)
Undercut An excavation in the underhand cut-and-fill mining method, in which the

excavation’s roof is composed of cemented backfill, formed by backfilling a
preceding topcut or undercut

Hustrulid and Bullock (2001)
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The model formulation that OMP solves is as follows:

Indices and sets :
a ∈ ! An activity within the set of all activities
ã ∈ !̃ ⊂ ! An activity within the set of activities

whose start dates have been predetermined
ā ∈ !̄a An activity ā within the set of

predecessor activities to activity a
r ∈ 5 A resource within the set of resources,

such as production and development
capacity, whose limits are enforced
on a daily basis

r ∈ 5̂ ⊂ 5 A resource within the set of resources,
such as production and development
capacity, whose limits are enforced on a
monthly basis

t ∈ 7 A day within the set of daily time periods
m ∈ } A month within the set of monthly

time periods
t ∈ 7̂m A day within the set of days contained in

month m
Parameters :
ca Monetary value associated with

completing activity a [$]
qra Daily consumption of resource r

associated with completing activity a
[tonnes, meters]

r̄rt Maximum amount of resource r available
on day t [tonnes, meters]

r̂rm Maximum amount of resource r available
in month m [tonnes, meters]

da Duration of activity a [days]
dā Duration (including mandatory delay)

of activity ā [days]
δt Discount factor for period t [fraction]

Decision variables :
Xat 1 if activity a is completed by the end of

time t, 0 otherwise

UG-RCPSP( ) max
∑
a∈!

∑
t∈7

δtca Xat − Xa,t−1( ) (B.1a)
s.t.Xa,t−1 ≤Xat ∀ a∈!, t∈7 (B.1b)

Xat ≤Xā,t−dā ∀ a∈!, ā ∈ !̄a, t ∈7
(B.1c)∑

a∈!

qra
da

Xat − Xa,t−da
( ) ≤ r̄rt

∀ r ∈ 5, t ∈ 7 (B.1d)∑
t∈7̂m

∑
a∈!

qra
da

Xat−Xa,t−da
( )≤ r̂rm ∀ r ∈ 5̂,m ∈} (B.1e)

Xã1 � 1 ∀ã∈ !̃ (B.1f)
Xat binary ∀a ∈ !, t ∈ 7 (B.1g)

The objective (B.1a) maximizes NPV, which is a dis-
counted function of the monetary value associated with
the (on-time) completion of activity a and the time at
which said activity is completed. We express the latter as
the difference of two variables corresponding to the time
by which an activity is completed (Lambert et al. 2014).
Constraints (B.1b) ensure that once an activity is com-
pleted at time t − 1, it remains completed for all future time

periods t, . . . , |7|. Constraints (B.1c) enforce precedence
between an activity a and its predecessors ā, such that a
cannot start unless ā starts sufficiently early that, when
accounting for its duration, it is finished by the time a starts.
Constraints (B.1d) constitute knapsacks and ensure that the
amount of a resource of a particular type consumed by all
activities on any given day cannot exceed the availability of
said resource. Constraints (B.1e) do the same for a subset of
the resources whose consumption must be restricted on a
monthly basis. Activities whose start dates have been
previously determined to coincide with the beginning of
our time horizon must be inserted into the schedule per
constraints (B.1f). All variables are required to be binary by
constraints (B.1g).

Table B.1 provides OMP solver performance as a function
of different time horizon lengths. For a relatively constant
gap, runtimes increase exponentially with the number of
time periods we include in an instance. The case in the final
row in the table corresponds to a life-of-mine instance, and
one in which almost all of the approximately 16,000 activities
are scheduled. The optimality gaps, which range (generally)
between 1% or 5%, are considered acceptable for our type of
planning, and result from the termination of the algorithmafter
executing the TopoSort heuristic to obtain a lower bound and
after solving the linear programming relaxation to obtain an
upper bound. With such a style of execution, longer runtimes
would not close the gap.
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Verification Letter
Trey Williams, Mining Engineer, Turquoise Ridge Joint
Venture, MC66 Box 220, 28 Miles NE Golconda, Golconda,
Nevada 89414, writes:

“This letter is regarding the submitted paper entitled
‘Barrick’s Turquoise Ridge Gold Mine Optimizes Under-
ground Production Scheduling Operations.’ The long-term
planning process at Turquoise Ridge typically consists of
using heuristics for scheduling. While these heuristics are
good at managing resources and creating feasible sched-
ules, they are often time consuming to produce. This, in
addition to the overwhelming complexity of the Turquoise
Ridge orebody, means that optimization occurs in very
limitedways and there often isn’t enough time to do the full
optimization that the mathematical method presented in
this paper is capable of. Follow-up work using this optimizer
has informed the mine’s capital development schedule and
plans to include it in Turquoise Ridge’s long-term planning
process in more intimate ways are being considered. The
optimized schedules produced have been invaluable in
identifying key development time lines and targeting clear
value in a highly complex mine.”
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