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Abstract. Birchbox created a mixed-integer programming formulation to determine the
products that it will send to its subscribers in individual boxes on a monthly basis. The
goal of this formulation is to produce a set of different box configurations that are then as-
signed to customers to meet the diverse needs of its varied customer base. As Birchbox’s
business grew, the mixed-integer program was taking days to solve, and experimenting
with different business requirements to determine the best set of configurations became
impossible. Therefore, Princeton Consultants created the Reciprocating Integer Program-
ming technique to reduce these solution times, thus decreasing them to typically under
20 minutes. This has dramatically changed the way that Birchbox can run its subscription
business.

History: This paper has been accepted for the INFORMS Journal on Applied Analytics Special Issue—2020
Daniel H. Wagner Prize for Excellence in the Practice of Advanced Analytics and Operations
Research.
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Overview
The online subscription-box service market was esti-
mated to be more than $7.5 billion in 2019 (Fenyo and
Mitchell 2019), with thousands of different services
available (Panko 2019). Birchbox is the pioneer in these
services, with millions of customers who receive a box
of samples of beauty products each month. The custom-
ers expect that the products they receive each month
will differ and will be tailored toward their beauty pro-
files and preferences based on their reviews of previous
products they have received. In a typical month, Birch-
box distributes 100 different samples in boxes, each of
which contains five to seven unique samples. From a
production point of view, uniquely tailoring each box
to each customer is impossible because assembling indi-
vidual boxes for each customer would be too expensive.
As a result, Birchbox uses machine-learning algorithms
to cluster its subscribers into groups. Following this
clustering step, it then creates a set of box configura-
tions to assign to each subscriber group to maximize
the customer experience. To provide a better experience
for its customers, increasing the number of clusters (cur-
rently around 4,000) would be desirable. However,
more box configurations may be necessary to meet the
product requirements of each individual cluster, be-
cause each group of customers has preferences that in-
clude both products that the customers would like to re-
ceive and products that they must not receive each
month. In addition, Birchbox has rules that determine a

valid box configuration. For example, one rule specifies
that specific product pairs should not be in the same
box; another limits the number of products from the
same brand that are in a box.

In 2014, Birchbox created a mixed-integer program-
ming (MIP) formulation to solve this assortment prob-
lem. It used the Gurobi optimizer as the integer pro-
gramming solver; see Gurobi (2020) for information on
the optimizer. In addition, the company acquired a
powerful 32-core computer to solve this problem each
month. However, when Birchbox decided to increase
the number of samples in each box, the problem be-
came nearly impossible to solve in a reasonable amount
of time, and coming up with an acceptable solution of-
ten required multiple days. This limited Birchbox’s flex-
ibility to meet the needs of its ever-increasing and di-
verse customer base. Therefore, it retained Princeton
Consultants to determine whether improving the solu-
tion times for this assortment problem was possible.
The Princeton team reformulated the problem using
concepts from column generation and then developed a
new algorithm, the Reciprocating Integer Programming
(RIP) technique, to solve this formulation. The RIP tech-
nique takes advantage of the power of the Gurobi MIP
solver and leverages linear and integer programming
concepts to reduce solution times from days to under
20 minutes for a typical data set.

In the Assortment Problem Description section, we
provide more details of the requirements of the

347

INFORMS JOURNAL ON APPLIED ANALYTICS
Vol. 51, No. 5, September–October 2021, pp. 347–360

ISSN 2644-0865 (print), ISSN 2644-0873 (online)http://pubsonline.informs.org/journal/inte

mailto:irv@princeton.com
https://orcid.org/0000-0003-4571-1802
mailto:prandall@princeton.com
mailto:rrandall@princeton.com
https://orcid.org/0000-0003-4571-1802
http://pubsonline.informs.org/journal/inte


assortment problem and the proposed solution approach.
We show the notation used for the problem in the Prob-
lem Notation section, describe the original MIP formula-
tion in the Original MIP Formulation section, and discuss
a new formulation that sets the foundation for application
of the RIP technique in the NewMIP Formulation section.
The Generating Box Configurations section formulates a
pattern-generation problem that is solved to generate col-
umns for the RIP technique, which we describe in the sec-
tion The RIP Technique. The final section, Computational
Results and Impact, provides a summary of the computa-
tional results using the RIP technique and summarizes the
impact on the Birchbox business.

Assortment Problem Description
As we describe in the Overview section, Birchbox uses
machine-learning algorithms to create clusters of its
subscribers so that similar subscribers receive boxes
with the same content each month. For ease of exposi-
tion, we will refer to the groups of subscribers as sim-
ply “subscribers.” A typical data set has between
1,000 and 5,000 such subscribers and 20–100 products
(the exact number depends on the product line),
which can potentially be assigned to these subscribers.
The goals of the assortment problem are to:

• Build a set of box configurations that contains sub-
sets of the products (typically five or six products per
box configuration) where the products in each box sat-
isfy a set of rules that define a valid box.

•Assign each subscriber exactly one box configuration.
• Ensure that each configuration is sent to at least a

specifiedminimum number of subscribers so that oper-
ations can efficiently build the planned boxes.

• Ensure that each configuration is sent to at most a
specifiedmaximum number of subscribers.

• Ensure that the number of planned box configura-
tions is between a specified minimum andmaximum.

• Ensure that if a product is used, it must be used for
a desired minimum number of subscribers and for at
most a desired maximum number of subscribers.

The rules for valid boxes are specified as follows:
• Box quantity: Each box must contain at least a

specified minimum number of products and at most a
specified maximum number of products. Each product
may be used at most once within each box.

• Attributes: A set of attributes (e.g., value, weight,
and volume) exist for each product. A valid box should
have a total value between a specified minimum and
maximum for each attribute.

• Pairing rules: Specific product pairs must be
shipped together (i.e., if one of the pair is present in a
box, the other product of the pair must also be present),
and other product pairs must not be in the same box.

Finally, for each product, there is a (possibly empty)
set of subscribers that must receive this product and

another (possibly empty) set of subscribers that must
not receive this product.

Birchbox’s original MIP model to solve this product-
to-subscriber assignment problem worked adequately
for several years; however, as the customer base grew
and offerings expanded, solutions to this model were
difficult to obtain in a reasonable amount of time, limit-
ing business flexibility. Operations executives were
forced to painstakingly manage and monitor the model
because it frequently could not find adequate solutions,
and, when it could, the average run time of 30–50 hours
jeopardized production deadlines.

When the company introduced improvements to its
box experience in early 2019, its managers sought to in-
crease the flexibility of assigning products to a box—for
example, adding a sixth sample—but not compromising
the integrity of the assortment. However, testing deter-
mined that themodel could not adequately handle the ad-
ditional mathematical complexity. Infeasibility was also
an issue. Some sets of products, quantities, eligibility re-
quirements, and “legal” box definitions (i.e., ones that
meet the various rules) are not conducive to finding a val-
id assortment; however, the existing model did not allow
operations to quickly ascertain if the inputs could produce
a feasible solution or test a new configuration of rules.

Working with Birchbox personnel, we identified
areas where the current formulation was leading to
poor performance, such as the use of a blended objec-
tive function that attempted to measure feasibility (e.g.,
whether each subscriber receives a box), while minimiz-
ing the number of box configurations and meeting
product minimums. The formulation also struggled
with symmetry (Liberti 2012) because the same subset
of products could be assigned to multiple box configu-
rations, which made it difficult for the MIP algorithm to
choose different subsets. After attempting several
“quick fixes,” such as randomly perturbing the objec-
tive function, implementing symmetry constraints, and
adding various cuts, without significant performance
improvement, we reformulated the problem using con-
cepts based on column-generation techniques. This led
to the creation of the RIP technique described below.

The first step in the new formulation was to gener-
ate a set of initial patterns (i.e., box configurations), as-
suring that each subscriber has feasible patterns and
favoring products with a high volume of inventory.
This set of patterns forms a restricted master problem.
The restricted master problem is solved twice—first,
as a linear program with multiple rounds of pattern
generation to establish that every subscriber can re-
ceive a box (i.e., is the problem feasible?) and, second,
as a MIP to do the actual box-to-subscriber assign-
ments. Once all subscribers can be assigned a box, the
total number of box configurations is minimized. The
reformulation not only remediates the performance is-
sues of the prior formulation, but also addresses the
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need to quickly determine whether a specific set of in-
puts results in an infeasible problem.

Performance testing on a suite of test problems
showed that the reformulation provided significant
performance improvements, with problems that orig-
inally required hours to solve now being solved with-
in minutes. The average run time is 10 minutes—an
improvement of more than 99% over the previous
model. The improved performance allows the oper-
ations team to tweak inputs and quickly rerun the
model, thus enabling the team to evaluate different
parameters, levels of subscriber aggregation, defini-
tions of a “good” box, and even optimize on box val-
ue. Such experimentation was impossible previous-
ly because the team struggled to produce a single
solution each cycle. David Bendes, Vice President
of Global Business Technology at Birchbox, des-
cribed this improvement as “life altering” (Lustig
and Randall 2020).

The remainder of this paper describes notation for
the data representing the problem, the original MIP for-
mulation, and, finally, the details of the revised formu-
lation, with a description of the RIP technique.

Problem Notation
To help the reader understand the new formulation
and algorithm, we first describe some notation to
represent the problem’s data.

Sets
• P is the set of products.
• R̂ � p1,p2( ) � p1,p2 ∈ P are the product pairs that

must be shipped together (if either is present in a box).
• R̃ � p1,p2( ) � p1,p2 ∈ P are the product pairs that

must not be in the same box.
• P̂ s ⊂ P is the set of products that a subscriber must

receive.
• P̃s ⊂ P is the set of products that a subscriber must

not receive.
• S is the set of subscribers.
• Ŝp ⊆ S is the set of subscribers (possibly empty)

that must receive product p:
• S̃p ⊂ S is the set of subscribers (possibly empty)

that must not receive product p.
• B is the set of boxes.
• A is the set of attributes (e.g., value, weight, and

volume).

Box- and Product-Related Data
• τl is the minimum number of box configurations to

build.
• τu is the maximum number of box configurations

to build.
• σl is the minimum number of subscribers to which

a box configurationmust be assigned.

• σu is the maximum number of subscribers to which
a box configuration can be assigned.

• φl
p is the minimum number of subscribers to which

product p ∈ P should be sent.
• φu

p is the maximum number of subscribers that
should receive product p ∈ P.

• γl is the minimum number of products each box
must contain.

• γu is the maximum number of products each box
can contain.

• µap is the value of attribute a ∈A for product p ∈ P.
• αl

a is the minimum total amount of attribute a ∈A a
boxmust have.

• αu
a is the maximum total amount of attribute a ∈A

a box can contain.

Original MIP Formulation
The original formulation assumes that, at most, τu box
configurations will be built, and thus the set B �
1, 2, : : : ,τu is predetermined.

Decision Variables
• yb ∈ 0, 1 is a binary variable representing whether

box b ∈ B is built.
• nb ≥ 0 is the integer number of boxes to build (i.e.,

box size) for box b ∈ B.
• xpb ∈ 0, 1 is a binary variable representing whether

to assign product p ∈ P to box b ∈ B.
• qpb ≥ 0 is the integer quantity of product p ∈ P used

by box b ∈ B:
• wsb ∈ 0, 1 is a binary variable representing whether

subscriber s ∈ S is assigned to box b ∈ B.
• zp ≥ 0 is the integer variable measuring the gap be-

tween the minimum quantity of product p ∈ P and the
amount of that product that has been assigned across
all boxes.

Constraints
The total quantity of product p ∈ P assigned to boxes
should not exceed the maximum quantity for product p.∑

b∈B
qpb ≤ φu

p ∀p ∈ P: (1)

The total quantity of product p ∈ P assigned to boxes
plus a slack variable should be at least the minimum
quantity for product p.∑

b∈B
qpb + zp ≥ φℓ

p ∀p ∈ P: (2)

The quantity assigned slack variable for product p ∈ P
should not exceed the maximum quantity for product p.

zp ≤ φu
p ∀p ∈ P: (3)

At least the minimum number of boxes must be built.∑
b∈B

yb ≥ τℓ: (4)
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The number of boxes built of box b ∈ B should be zero
if box b is not being built.

nb ≤ σuyb ∀b ∈ B: (5)

The number of boxes built of box b ∈ B should be at
least the minimum if the box is built.

nb ≥ σℓyb ∀b ∈ B: (6)

The total quantity of products assigned to box b ∈ B
should be at least the quantity needed based on the
box’s size and the minimum number of products re-
quired in a box if the box is built.∑

p∈P
qpb ≥ γℓnb ∀b ∈ B: (7)

The total quantity of products assigned to box b ∈ B
should not exceed the quantity needed based on the
box’s size and the maximum number of products al-
lowed in a box if the box is built.∑

p∈P
qpb ≤ γunb ∀b ∈ B: (8)

The size of box b ∈ B must be greater than or equal to
the quantity of product p ∈ P assigned to the box.

qpb ≤ nb ∀b ∈ B, p ∈ P: (9)

The quantity of product p ∈ P assigned to box b ∈ B can-
not exceed the product’s maximum available amount if
the box is built and is zero if the box is not built.

qpb ≤ φu
pyb ∀b ∈ B, p ∈ P: (10)

Subscriber s ∈ S can be assigned to at most one box.∑
b∈B

wsb ≤ 1 ∀s ∈ S: (11)

The size of box b ∈ B should be equal to the number of
subscribers assigned to the box.∑

s∈S
wsb � nb ∀b ∈ B: (12)

The quantity of product p ∈ P assigned to box b ∈ B is
greater than or equal to the size of box b ∈ B if product
p ∈ P is assigned to the box.

qpb ≥ nb −M 1− xpb
( )

∀b ∈ B, p ∈ P: (13)

The quantity of product p ∈ P assigned to box b ∈ B
cannot exceed the product’s maximum available
amount if the product is assigned to the box and is
zero if the product is not assigned to the box.

qpb ≤ φu
pxpb ∀b ∈ B, p ∈ P: (14)

Product p ∈ P cannot be assigned to box b ∈ B if the
box is not built.

xpb ≤ yb ∀b ∈ B, p ∈ P: (15)

Subscribers cannot be assigned to box b ∈ B if they
must receive product p ∈ P and product p is not as-
signed to box b.∑

s∈Ŝ p

wsb ≤ |Ŝp|xpb ∀b ∈ B, p ∈ P: (16)

Subscribers cannot be assigned to box b ∈ B if they are
ineligible for product p ∈ P and product p is assigned
to box b. ∑

s∈S̃ p

wsb ≤ S̃p
∣∣ ∣∣ 1− xpb

( )
∀b ∈ B, p ∈ P: (17)

Each box configuration b ∈ B should satisfy the attribute
constraints for each attribute a ∈A if box b is built.

αℓ
ayb ≤

∑
p∈P

µapxpb ≤ αu
ayb ∀b ∈ B, a ∈A: (18)

The number of products assigned to box b ∈ B should
not exceed the maximum number of products allowed
in a box if the box is built.∑

p∈P
xpb ≤ γuyb ∀b ∈ B: (19)

The number of products assigned to box b ∈ B should
be at least the minimum number of products required
for a box if the box is built.∑

p∈P
xpb ≥ γℓ · yb ∀b ∈ B: (20)

For each p1,p2( ) ∈ R̂, if product p1 is assigned to box
b ∈ B, product p2 must also be assigned to the box, and
if p1 is not assigned to the box, p2 cannot be assigned
to the box.

xp1b � xp2b ∀ p1,p2( ) ∈ R̂,b ∈ B: (21)

For each p1,p2( ) ∈ R̃, products p1 and p2 cannot be in
the same box.

xp1b + xp2b ≤ 1 ∀ p1,p2( ) ∈ R̃,b ∈ B: (22)

Objective Function
The original formulation used a composite objective
function that included four parts:

1. Count the number of boxes built.
2. Count howmany subscribers received boxes.
3. Introduce a perturbation to count how many

product/box combinations were used.
4. Penalize not meeting the minimum requirements

for use of the products.

maximize
1
2

∑
b∈B

nb + 1
2

∑
s∈S, b∈B

wsb +
∑
b∈B

∑
p∈P

1
3;600

· xpb

−∑
p∈P

2

φℓ
p + 1

( ) · zp: (23)
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New MIP Formulation
In the original formulation, the binary decision varia-
bles xpb exist for each product p ∈ P and for a fixed
number of possible box configurations 1 ≤ b ≤ τu. As
we mention in the Original MIP Formulation section,
this predefines the set B � 1, 2, : : : ,τu. It also creates
2 P| |τu decision variables xpb and qpb corresponding to
the possibility that any product can appear in any of
the τu boxes. The new formulation, which we will re-
fer to as the full master problem, assumes that all possi-
ble configurations of boxes exist and then uses a strat-
egy to dynamically generate these configurations
using mixed-integer programming. The concept of
this formulation is motivated by the concepts pio-
neered by Gilmore and Gomory (1961) for solving the
cutting-stock problem. One main difference between
the concept of this formulation and that of the cutting-
stock problem and other similar applications is that
the additional box configurations increase both the
number of decision variables and the number of con-
straints of the full master problem.

We define B to be all possible box configurations that
satisfy the box quantity, attribute, and pairing rules, as
we describe above. For each b ∈ B, there is a set of prod-
ucts Pb ⊂ P that are fixed in that particular box configu-
ration. We also denote by Bp the set of box configura-
tions containing product p ∈ P, with the property that
b ∈ Bp if and only if p ∈ Pb. In addition, there is a fixed
set of subscribers Sb that represents the set of subscrib-
ers eligible to be assigned to box b, based on the sets Ŝp
and S̃p. We also denote by B

s
the set of box configura-

tions to which subscriber s ∈ S can be assigned, with
the property that b ∈ B

s
if and only if s ∈ Sb. Note that

the set B is quite large. For example, with 100 products
and six products per box, there could be 100

6

( )
(more than

1.1 billion) possible box configurations.

Decision Variables
• yb ∈ 0, 1 is a binary variable representing whether

box b ∈ B is built.
• nb ≥ 0 is the integer number of boxes to build (i.e.,

box size) for box b ∈ B.
• qpb ≥ 0 is the integer quantity of product p ∈ Pb

used by box b ∈ B.
• wsb ∈ 0, 1 is a binary variable representing whether

subscriber s ∈ Sb is assigned to box b ∈ B.
• zp ≥ 0 is the integer variable measuring the gap be-

tween the minimum quantity of product p ∈ P and the
amount that has been assigned to boxes.

In Table 1, note the reduction in dimensionality of
the qpb and wsb variables. In the new formulation, these
variables are created only if product p ∈ P is in box b ∈
B and subscriber s ∈ S is eligible to receive box b. In the
original formulation, each box configuration b ∈ B could
contain any product; in the new formulation, a box

configuration b ∈ B contains a fixed set of products. In
the old formulation, a subscriber could be assigned to
any box. In the new formulation, a subscriber can only
be assigned to a box containing products that the sub-
scriber must receive (if any) and not containing prod-
ucts that the subscriber must not receive (if any). We
emphasize again that in the original formulation, the
model determined which products went in each box
configuration. In the new formulation, the products in
each box configuration are known.

Constraints
The constraints for the reformulation are replacements
for Constraints (1)–(12). To make the correspondence
easier to follow, we use the suffix “r” in the equation
numbers to correspond to revised equations and ex-
plain the revision; for constraints that are unchanged,
we repeat them with their original equation numbers.

The total quantity of product p ∈ P assigned to boxes
should not exceed the maximum quantity for product p.∑

b∈Bp

qpb ≤ φu
p ∀p ∈ P: (1r)

The total quantity of product p ∈ P assigned to boxes
plus a slack variable should be at least the minimum
quantity for product p.∑

b∈Bp

qpb + zp ≥ φℓ
p ∀p ∈ P: (2r)

The replacements for Constraints (1) and (2) take ad-
vantage of the knowledge that the boxes containing
product p are known because all possible box configu-
rations have been enumerated. In the original formu-
lation, the box configurations are unknown.

The quantity assigned for the slack variable for
product p ∈ P should not exceed the maximum quan-
tity for product p.

zp ≤ φu
p ∀p ∈ P: (3)

Constraint (3) remains unchanged.
At least the minimum number of boxes must be built.∑

b∈B
yb ≥ τℓ: (4r)

Table 1. This Table Contrasts the Dimensions of Each
Decision Variable Between the Two Formulations

Variable Old formulation New formulation

nb τu B̄
∣∣ ∣∣

xpb P| | × τu Removed
qpb P| | × B| | ∑

b∈B̄
|P̄ b|

wsb S| | × τu
∑
b∈B̄

|S̄ b|

zp P| | P| |
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Constraint (4) now sums over the known box configu-
rations B rather than the fixed set B.

The number of boxes of configuration b ∈ B that are
built must be zero if no box of configuration b is built.

nb ≤ σuyb ∀b ∈ B: (5r)

The number of boxes of configuration b ∈ B that are
built must be at least the minimum if the configura-
tion is built.

nb ≥ σℓyb ∀b ∈ B: (6r)

Constraints (5) and (6) are the same, except that they
are stated for every box configuration, rather than for
the limited number τu of box configurations.

The total quantity of products assigned to box con-
figuration b ∈ B should be at least the quantity needed
based on the box configuration’s size and the mini-
mum number of products required in a box if the box
is built. ∑

p∈P b

qpb ≥ γℓnb ∀b ∈ B: (7r)

The total quantity of products assigned to box configu-
ration b ∈ B should not exceed the quantity needed
based on the box configuration’s size and the maximum
number of products allowed in a box if the box is built.∑

p∈P b

qpb ≤ γunb ∀b ∈ B: (8r)

Constraints (7) and (8) are the same, except that they
are stated for every known box configuration, as op-
posed to the limited number τu of box configurations.
In addition, the sums are over the sets Pb rather than
the entire product set P.

The size of box configuration b ∈ B is equal to the
quantity of product p ∈ Pb assigned to the box config-
uration.

qpb � nb ∀b ∈ B, p ∈ Pb: (9r)

Constraint (9) becomes an equality rather than an in-
equality because Constraints (5r)–(8r) link the variable
yb, representing whether a box is built with the decision
variables qpb and nb. In addition, Constraint (9r) is stated
for every known box configuration, as opposed to the
limited number τu of box configurations. Moreover, it is
only stated for the products p ∈ Pb that are known to be
in box configuration b, rather than for all products.

The quantity of product p ∈ Pb assigned to box con-
figuration b ∈ B cannot exceed the product’s maxi-
mum available amount if the box is built and is zero if
the box is not built.

qpb ≤ φu
pyb ∀b ∈ B, p ∈ Pb: (10r)

Constraint (10) is the same, except that it is stated for
every known box configuration, as opposed to the

limited number τu of box configurations. In addition, it
is only stated for the products p ∈ Pb that are known to
be in box configuration b, rather than for all products.

Subscriber s ∈ S can be assigned to at most one box
configuration. ∑

b∈B s
wsb ≤ 1 ∀s ∈ S: (11r)

Constraint (11) is the same, except that the sum is over
only the box configurations that subscriber s is eligible
to receive.

The size of box configuration b ∈ B must be equal to
the number of subscribers assigned to the box.∑

s∈S b

wsb � nb ∀b ∈ B: (12r)

Constraint (12) is the same, except that it is stated for
every known box configuration, as opposed to the
limited number τu of box configurations. In addition,
the sum is over only the subscribers s ∈ Sb that are eli-
gible to receive box configuration b.

With the removal of the decision variables xpb,
Constraints (13)–(15) are no longer necessary. Those
constraints were stated to represent the decision of
placing a product p in box b to the decision variable
yb, indicating whether the box was built and to the
number of products in box b. This linking is no longer
needed, because the decisions of placing product p in
box configuration b are represented by the set Pb. The
method for handling Constraints (18)–(22) is described
in the Generating Box Configurations section.

We also introduced a constraint that would possibly
tighten Constraint (1r): The total number of box con-
figurations containing product p ∈ P is limited by the
maximum quantity of product p and the minimum
number of subscribers per box σℓ:∑

b∈Bp

yb ≤
⌊φu

p

σℓ

⌋
∀p ∈ P: (24)

Because the set B is quite large, this formulation has
many more constraints and variables than the original
formulation. The remainder of this paper describes a
solution strategy that is similar to column-generation
techniques and is based on mixed-integer program-
ming, which avoids generating the entire set B of all
possible box configurations.

Objective Function
Instead of using a compositive objective function, we
will use hierarchical optimization. The objectives, in
priority order, are

Maximize the number of subscribers receiving a
box

maximize
∑

b∈B, s∈S b

wsb: (25)
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Minimize the required number of box configurations

minimize
∑
b∈B

yb: (26)

Minimize the violation of product minimums

minimize
∑
p∈P

1

φℓ
p + 1

( ) zp: (27)

The second objective listed above (i.e., minimizing the
required number of box configurations) is needed be-
cause the set B is quite large, and the goal is to choose
a subset of those possible configurations of, at most,
size τu. We handle this requirement in one of two
ways via an option chosen by the user:

1.Hard: Explicitly include the constraint∑
b∈B

yb ≤ τu: (28)

Do not include the Objective (26).
2. Soft: Do not include Constraint (28), but use

Objective (26) to reduce the number of required boxes.
The computational results indicated that there was

a preference for the Hard strategy in terms of overall
performance. However, the Soft option provides an
additional benefit, because it allows Birchbox to deter-
mine whether its source data will support assigning
every subscriber a box, independent of the target for
the number of boxes needed.

Generating Box Configurations
Rather than generate all possible box configurations,
we create a MIP, termed the pattern- generation problem
or subproblem, which is used to generate valid patterns
of products that can be placed together in a box
configuration. This pattern-generation problem uses
binary decision variables xp ∈ 0, 1, p ∈ P. There is a
subproblem that corresponds to each subscriber s ∈ S,
and solving a subproblem yields a single box configu-
ration that will be dynamically added to the set B.

Subproblem Constraints
We replace Equations (16)–(22) with the constraints
described in this section.

Subscriber s ∈ S must receive product p ∈ P if re-
quired.

xp � 1 ∀p ∈ P̂ s: (16r)

Subscriber s ∈ S should not receive product p ∈ P if
that subscriber is ineligible for product p.

xp � 0 ∀p ∈ P̃s: (17r)

In the original formulation, Constraints (16) and (17)
linked together the decision variables xpb representing
whether product p was placed in box b and the deci-
sion variables wsb representing whether subscriber s

was assigned to box b. Now, this linking is implicit
due to the construction of the sets Sb and B s that rep-
resent whether subscriber s can be assigned to box b.
For the subproblems that generate valid box configu-
rations for subscriber s, we simply have to add bound
constraints on xp to force product p to be in or out of
the box if subscriber s must receive or not receive
product p, respectively.

Each box-configuration pattern should satisfy the
attribute constraints for each attribute a ∈A.

αℓ
a ≤

∑
p∈P

µapxp ≤ αu
a ∀a ∈A: (18r)

The number of products assigned to a configuration
pattern should not exceed the maximum number of
products allowed in a box.∑

p∈P
xp ≤ γu: (19r)

The number of products assigned to a box should be
at least the minimum number of products required
for a box if the box is built.∑

p∈P
xp ≥ γℓ: (20r)

In the original formulation, Constraints (18), (19),
and (20) included the variable yb, which represents
whether the box b would be built. In the subproblem,
we are creating proposed box configurations, and the
master problem will determine whether that box con-
figuration is used.

For each p1,p2( ) ∈ R̂, if product p1 is assigned to a
box, product p2 must also be assigned to the box, and
if p1 is not assigned to the box, p2 cannot be assigned
to the box.

xp1 � xp2 ∀ p1,p2( ) ∈ R̂: (21r)

For each p1,p2( ) ∈ R̃, products p1 and p2 cannot be
in the same box.

xp1 + xp2 ≤ 1 ∀ p1,p2( ) ∈ R̃: (22r)

Constraints (18)–(22) are the same as in the original
formulation; however, they represent the constraints
of a single box configuration, whereas in the original
formulation, the constraints were stated for the maxi-
mum number τu of box configurations.

With these constraints, suppose we generate a feasi-
ble solution xbp, where b corresponds to the new box
that will correspond to this pattern. We can then com-
pute Pb � {p ∈ P : xbp � 1} to represent the set of prod-
ucts p ∈ P in box configuration b. For future genera-
tion of patterns, we then add the constraint:

Do not regenerate a pattern∑
p∈P b

xp −
∑
p∉P b

xp ≤ Pb
∣∣ ∣∣ − 1 ∀b ∈ B: (29)

As new patterns are generated, these constraints are
added to the pattern-generation problem for every
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subscriber s so that a pattern is not regenerated and
guarantee that a pattern will not be regenerated by
the subproblemMIP.

Subproblem Objective Function
The subproblem objective function is modified during
the course of the RIP technique described in the sec-
tion The RIP Technique. For notation purposes, we
will write that function as

maximize
∑
p∈P

πpxp: (30)

As the RIP technique generates new subproblems, the
coefficients πp, p ∈ P are adjusted as described in that
section.

Subproblem Dimensions
The subproblems have exactly P| | binary decision var-
iables. The number of constraints depends on the sizes
of the sets A, R̂, and R̃, plus the number of patterns
generated, which will be the size of the set B that dy-
namically grows. In the experiments listed in the
Computational Results and Impact section, the num-
ber of generated patterns never exceeded 700, which
kept the size of the subproblem mixed-integer pro-
gram small for the Gurobi solver.

Subproblem Solution Procedure
After a subproblem is solved for one subscriber s1 ∈ S
to determine a new box b and the set Pb, the next sub-
problem will be solved for a different subscriber s2 ∈ S
such that s2 ≠ s1. The difference between these succes-
sive subproblems is due to Constraints (16r) and (17r)
related to the individual subscribers’ product require-
ments, the addition of Constraint (29) to eliminate the
regeneration of the newly generated pattern, and a
possible change in Objective Function (30), as we de-
scribe in the section The RIP Technique. The most re-
cently generated feasible solution is no longer feasible;
however, the Gurobi optimizer can use that solution
(and other solutions previously generated) as a MIP
start to influence the solution process for the next sub-
scriber s2.

The RIP Technique
The RIP technique is motivated by significant im-
provements over the past 20 years in the ability to prac-
tically solve mixed-integer programs, as Bixby (2012)
and Achterberg and Wunderling (2013) describe. The
RIP technique repetitively solves the pattern-
generation subproblem we describe in the Generating
Box Configurations section to generate a subset B̂ ⊂ B
of all possible box configurations. This subset is then
used to generate the MIP we describe in the New MIP
Formulation section, where the subset B̂ is used to de-
fine the set B and the related sets Bp and B

s
and, by

definition, the sets Pb and Sb. This version of that MIP
is termed the restricted master problem. For notational
purposes, we will use B to refer to both the complete
set of box-configuration patterns in the full master
problem and the growing set of box-configuration pat-
terns in the restrictedmaster problem.

Since Dantzig and Wolfe (1960) introduced the
Dantzig-Wolfe decomposition procedure, the concepts
of using a restricted master program with an associated
subproblem for generating columns of the restricted
master program have been used in a variety of applica-
tions. Desaulniers et al. (2005) provide many articles that
describe various examples of column generation. How-
ever, the concept of generating patterns that add both
columns and rows to the restricted master program
seems not to have been addressed in the literature. In
general, column-generation techniques are based on
keeping the number of constraints in the restricted mas-
ter problem fixed. For the master problem we describe
in the NewMIP Formulation section, as the set B grows,
there are four different variable classes that grow in di-
mension. In addition, Constraints (5r)–(10r) must be
added to the restricted master problem to correspond to
new patterns added to B. Because new patterns cause
the restricted master problem to grow in both the num-
ber of variables and the number of constraints, typical
branch-and-price techniques, as well as other column-
generation techniques, do not apply. We address this by
solving each restricted master problem as a mixed-
integer program. Vanderbeck (2005, p. 353) writes: “A
standard heuristic is to initialize the master with a set of
heuristically generated columns and to solve the MIP
master problem restricted to that initial set… However,
there is typically no guarantee that such a static restrict-
ed set of columns holds a feasible integer solution.” The
RIP technique addresses this latter issue by specifying
coefficients for the objective function of the subproblem
to generate new patterns that accelerate the convergence
to finding an integer-feasible solution.

One reason that the RIP technique works well is be-
cause it can take advantage of many of the advanced
features of the Gurobi solver. Branch-and-price techni-
ques, as Barnhart et al. (1998) describe, are based on
generating columns (new decision variables) at each
node in the branch-and-bound tree. This means that
many of the techniques used to improve the perfor-
mance of MIP solvers, such as presolve (Achterberg
et al. 2019), primal heuristics (Fischetti and Lodi 2011),
and cutting planes (Marchand et al. 2002), are not
available. Although recent work (Sadykov et al. 2019)
has extended primal heuristics in the context of
branch and price, these implementations most likely
do not have all of the features of the heuristics built
into Gurobi. Furthermore, as we mention above, the
growth in the restricted master problem in both
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dimensions prohibits the use of methods that assume
the number of constraints is fixed. By using the full pow-
er of the MIP solver, the RIP technique accelerates the
solution of the Birchbox product-assortment problem.

Although the RIP technique could be used to find a
provably optimal solution to the Birchbox problem,
this is not required by the business. Discussions with
Birchbox personnel revealed that the company had
three main goals for the optimization process:

1. Ensure that each subscriber is assigned to a box
configuration.

2. Use at most τu different box configurations, be-
cause additional configurations increase the production
costs of assembling the boxes.

3. Attempt to meet the minimum product-shipment
requirements represented by φℓ

p.
With respect to the first goal, the nature of the pro-

cess used to determine the sets P̂ s and P̃s, which rep-
resent the products that subscriber s ∈ S must and
must not receive, respectively, along with the maxi-
mum inventory amounts φu

p , may make assigning a
configuration for each subscriber impossible. For ex-
ample, if 1,000 subscribers must receive product num-
ber 69, but only 500 units of that product are available,
assigning each subscriber a box configuration will be
impossible. In addition, if the Hard option was cho-
sen, the value of τu may be too small to warrant a so-
lution. (Note that implementing a method to help di-
agnose these types of infeasibilities was beyond the
scope of our Birchbox project.) We observed that if the
RIP technique was slowly converging in the Relax
step described below, then it was likely that inventory
amounts were too low; there were too many restric-
tions on the products that subscribers must receive or
not receive; or that the Hard option was used, and τu

was too small. Birchbox would then use this informa-
tion about slow convergence to modify its input val-
ues to be able to make assigning each subscriber a box
more likely.

With these goals in mind, we designed the Birchbox
RIP technique with the following steps, which we ex-
plain in the subsections of this section, except for the
Boxes and Product steps, which need no further
detail.

1. Bootstrap: Generate an initial set of patterns by re-
petitively solving the pattern-generation problem,
which we describe in the Generating Box Configura-
tions section, and form the restricted master problem.

2. Relax: Solve the linear programming (LP) relaxa-
tion of the restricted master problem with the first ob-
jective function (25) using multiple rounds of pattern
generation and concepts from sifting, as Bixby et al.
(1992) describe. Because of Constraint (11r), it is only
possible to reach the first goal if the optimal objective
function of this linear program is S| | (i.e., the number of
subscribers). If that target value cannot be reached, and

all patterns have been generated, terminate and indi-
cate infeasibility.

3. Populate: Using the solution from the Relax step
combined with patterns that have already been gener-
ated, choose patterns that are more likely to be used in
the MIP to assign each subscriber a box.

4. Subscribe: Solve the relaxed master problem as a
MIP using the first Objective Function (25). As soon as
the objective function value reaches S| |, move to the
Boxes step. If the MIP solver proves that the upper
bound for the MIP is less than S| |, or if the MIP solver
starts a search and hits a small node limit (we chose
100), generate additional patterns based on the current
MIP solution, and solve the new restrictedmaster prob-
lemwith the additional patterns.

5. Boxes: At this point, we know that assigning each
subscriber a box s is possible; therefore, we add the
constraint ∑

b∈B, s∈S
wsb ≥ S| |: (31)

6. If the Hard option was used, we skip to the Prod-
uct step. Otherwise, with the Soft option, we then solve
the restricted master problem using the same set of pat-
terns, but with Objective (26). We terminate the solving
process as soon as the objective value is less than or
equal to τu.

7. Product: At this point, we now know that assign-
ing each subscriber a box s is possible, using at most τu

different configurations. If using the Soft option, we
add Constraint (28) to the restricted master problem.
(In the case of the Hard option, that constraint was al-
ready present.) Either way, we then solve the restricted
master problem using Objective (27) to optimality. We
let the user choose to abort the optimization procedure
by providing details of the values of zp, p ∈ P for each
newly found feasible solution. We also set a branching
node limit of 100, because we observed that the solu-
tions were not improving much once branching began,
and Birchbox personnel informed us that having an op-
timal solution for reducing the gap on minimum prod-
uct amounts was less important to the business.

Bootstrap
Thefirst step in the RIP technique is to generate an initial
set of patterns by repetitively solving the pattern-
generation problem described in the Generating Box
Configurations section. In the bootstrap phase, we do
not solve the pattern-generation problem to optimality.
Instead, we stop the MIP solver as soon as a feasible so-
lution is found. This increases the speed of the pattern-
generation process. We start by picking the first sub-
scriber s ∈ S and using an objective function of πp � φu

p

for all p ∈ P. This incents the solution to include prod-
ucts with the highest available inventory amounts. After
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a pattern b is generated for a subscriber s, that pattern is
checked to see if it is eligible for any other subscribers
ŝ ∈ S, where ŝ ≠ s by considering the sets P̂ ŝ and P̃ ŝ .
Note that Constraints (16r) and (17r) are subscriber specif-
ic, whereas Constraints (18r)–(22r) and (28) apply to all
subscribers, so checking whether pattern b is eligible for
subscriber ŝ is straightforward. If the pattern is eligible for
less than σℓ subscribers, the pattern is discarded, because
it would then be impossible to satisfy Constraint (6r) in
themaster problem,which states that each box configura-
tionmust be sent to at least σℓ subscribers.

As patterns are generated, a count PatCnt[s] of how
many patterns are feasible for each subscriber s ∈ S is
maintained. In addition, a count ProdCnt[p] of how of-
ten each product p ∈ P is used across the generated pat-
terns is also maintained. As the pattern-generation pro-
cess proceeds, the subscriber to use is based on
choosing a subscriber s ∈ S with the smallest value of
PatCnt[s]. The pattern-generation process is terminated
if all patterns have been generated, which occurs if the
pattern-generation problem is infeasible without Con-
straints (16r) and (17r). It is also terminated when the
value of PatCnt[s] is five for each subscriber s ∈ S, and
the total number of generated patterns is at least 2τu.

During the pattern-generation process, the objective
function values πp are dynamically modified after
each pattern is generated, based on the values of
ProdCnt[p]:

πp �
φu
p max

p̂∈P
ProdCnt p̂

[ ]
1+ProdCnt p[ ] ∀p ∈ P: (32)

This dynamic change to the objective function incents
products that are rarely used to be used more often
during the pattern-generation process.

If after this process has completed, there exists p ∈ P
such that φℓ

p > 0 and the value of ProdCnt[p] is zero, ad-
ditional patterns are generated to ensure that at least 10
patterns are available for any product that has a desired
minimum product count. The subscriber to use in the
pattern-generation problem is chosen based on which
subscribers are eligible to receive those products.

Relax
Given an initial set of patterns from the Bootstrap pro-
cess, the corresponding LP relaxation is solved. We use
a feature of the Gurobi optimizer called “deterministic
concurrent optimization,” which simultaneously uses
the dual simplex, interior point, and primal simplex
methods to solve the linear program, terminating as
soon as one of the methods finds an optimal solution. If
the optimal objective value is S| |, we move to the Popu-
late phase, because we have an LP solution that assigns
each subscriber a box, but some subscribers may have
fractional assignments.

If the optimal objective value is smaller than S| |, we
then use a variant of the sifting procedure described
in Bixby et al. (1992) to add and purge patterns. We
compute the reduced costs and basis status of the vari-
ables wsb for each b ∈ B, s ∈ Sb. For any nonbasic varia-
bles with a negative reduced cost, we remove them
from the relaxed restricted master problem. After this
removal, we consider for each box configuration b ∈ B
the number of wsb variables that remain. If that count is
smaller than σℓ, then the entire pattern b is removed
from the restricted master problem. Note that these pat-
terns may be reintroduced later when solving the re-
stricted master problem as a MIP.

We then retrieve the dual values π1
p and π24

p for all
p ∈ P associated with Constraints (1r) and (24), respec-
tively, which correspond to the maximum quantity of
products that can be shipped to all subscribers and the
maximum number of boxes that can be used per prod-
uct. Note that in the current solution to the relaxed re-
stricted problem, if a product p has excess inventory,
then the corresponding constraint will have π1

p � 0.
Also, π24

p � 0 in this case if φu
p is not a multiple of σℓ.

We set π̂p � π1
p +π24

p

( )
to represent the totals of these

two dual values.
For any patterns b ∈ B that were previously re-

moved, if

1− ∑
p∈P b

π̂p > 0, (33)

then we place b back in the set B for use in the restrict-
ed master problem. This is equivalent to computing the
reduced cost for wsb in the restricted master problem
and adding back variables with a positive reduced cost.

To generate additional patterns, we do not use the di-
rect dual values; instead, we use the values π̂p and the
values vp for the optimal slack values of Constraint (1r)
to determine the objective values πp for the Objective
Function (30) for the subproblems:

πp �
1
2

min
p∈P:π̂p>0

π̂p
vp

1+max
p∈P vp

− 1
( )

if π̂p � 0

−π̂p if π̂p > 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (34)

The purpose of this perturbation is to account for the pri-
mal degeneracy of the restricted master problem that
yields multiple dual solutions. Here, we perturb the dual
values that are zero, which correspond to products that
have remaining inventory. Because the subproblem is a
maximization problem, this will prioritize generating
patterns that have used up inventory to provide more
combinatorial flexibility in how those products can be
used in a final solution. Note that the perturbation guar-
antees that if π̂p1 � 0 and π̂p2 > 0, then πp1 > πp2 .

When solving each additional LP relaxation, we use
the optimal basis from the previous LP relaxation to
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warm-start the LP optimizers. We continue to use the
concurrent optimizers so that if the warm start helped
the primal or dual simplex method, it would provide
the optimal solution, but, if not, the interior point
method would provide the best solution. We observed
that 75% of the time, the interior point method was
the best algorithm; 20% of the time, the primal sim-
plex was best; and 5% of the time, dual simplex was
best. This makes sense, because toward the end of the
Relax phase, the LP relaxations are closer to optimali-
ty, and we have fundamentally added only columns
to the problem. The slack and artificial variables for
the additional rows are considered basic in the initial
solution, and the solver can use the previous basis
plus these slack and artificial variables as an effective
warm start.

Populate
After the Relax phase has completed, we have solved
the linear-programming relaxation of the restricted
master problem for an existing set of patterns that we
will represent as B̂. We first put back into that set any
previously deleted patterns that we removed due to
negative reduced costs, as we explain above. For each
b ∈ B̂, there is a set of eligible subscribers Ŝb. If we in-
clude all the corresponding variables wsb in the MIP
version of the relaxed master problem, this creates too
many columns for the MIP optimizer; therefore, the
Populate phase judiciously chooses the subscribers
that are eligible for each pattern. This phase is choos-
ing a new subset B̃ ⊂ B̂ to initiate the MIP optimization
on the MIP version of the restricted master problem.
The goal of the procedure is to have m � 10σℓ sub-
scribers per pattern and m̂ � 50 patterns per subscrib-
er (if the subscriber is eligible for that many different
box configurations). The choices of these limits
seemed to work well over the test set that we used
and provided a proper balance between the diversity
of the patterns per subscriber and subscribers per pat-
tern and, in addition, made the size of the resulting
MIP manageable for the Gurobi MIP solver.

A key aspect of this procedure is that we build up a
set of box/subscriber pairs b, s( ), where we consider all
the patterns b ∈ B̂ generated so far and the associated
subscribers s ∈ Ŝb eligible to receive box configuration b.
For each box b, we do not necessarily include all eligible
subscribers for that box. As the set B̃ is populated, the
sets S̃b for each b ∈ B̃ and B̃ s for each s ∈ S are also dy-
namically generated. The sets S̃b and B̃

s
are analogous

to the sets Sb and B
s
described in the New MIP Formu-

lation section. The Populate procedure chooses pairs
b, s( ) that will always satisfy the following properties:

b ∈ B̃
s
� s ∈ S̃b

B̃ �⋃
s∈S

B̃
s
: (35)

The goal is that B̃s
∣∣ ∣∣ ≥ m̂ and S̃b

∣∣ ∣∣ ≥m at the end of the
procedure. The construction of the sets B̃, B̃, and S̃b is
accomplished using the following steps:

1. First, we include any pairs b, s( ) involved in the
linear-programming solution obtained in the Relax
step. Mathematically, initialize B̃s and S̃b to include
any box b ∈ B̂ and s ∈ S such that the optimal value
wsb > 0 orwsb is basic in that LP solution.

2. We now add eligible subscribers to the patterns
chosen in the previous step to achieve our goal of a
minimum number m of subscribers per pattern. For
each box b ∈ B̃, such that |S̃b| <m, choose a subscriber
s ∈ Ŝb with |B̂s| being minimal, and update the sets B̃s

and S̃b accordingly.
3. The next step is to ensure that for any product

with a desired minimum number of subscribers, there
are at least five patterns using that product. Based on
the set B̂, we denote the set of boxes containing product
p ∈ P as B̂p. Based on the set B̂, define B̂

s
as the set of

boxes eligible for subscriber s ∈ S. For any p ∈ P with
φℓ
p > 0 such that B̂p∩ B̃ � ∅, choose b ∈ B̃\B̂p such that

|Ŝb| is maximum, and add b and the subscriber s ∈ S,
which generated b during the pattern-generation pro-
cess, to the sets B̃s and S̃b accordingly.

4. We now want to achieve the goal of having m̂ pat-
terns per subscriber. For each s ∈ S such that B̃s

∣∣ ∣∣ < m̂,
choose b ∈ B̂

s
such that b ∉ B̃s and S̃b

∣∣ ∣∣ is largest. Update
the sets B̃s and S̃b accordingly. The concept here is to
find new b, s( ) pairs that will affect the greatest number
of subscribers.

The above steps now define a new restricted master
problem based on the sets B̃s and S̃b, which will be
solved in the Subscribe step. By defining B

s � B̃
s
and

Sb � S̃b, the restricted master problem described
above is well defined.

Subscribe
As we describe above, the beginning of the Subscribe
step is to solve the MIP form of the restricted master
problem created using the Populate step with the Ob-
jective Function (25). Often, a solution is found at the
root node of the Gurobi MIP branch-and-bound pro-
cedure. If after limited branching was done, the objec-
tive value is smaller than S| |, we then add additional
box/subscriber pairs b, s( ) to the MIP restricted master
problem. The first set of additional patterns is deter-
mined by adding all combinations that were present
after the Relax step—that is, all the patterns and their
eligible subscribers that were generated to solve the
linear-programming relaxation of the master problem.
Using the solution from the first MIP solve, the new
MIP with these additional patterns is solved, with the
same stopping criteria of achieving the objective target
S| | or doing limited branching. We then try to generate

Lustig, Randall, and Randall: Reciprocating Integer Programing for Birchbox Product Assortment
INFORMS Journal on Applied Analytics, 2021, vol. 51, no. 5, pp. 347–360, © 2021 INFORMS 357



additional patterns for the MIP restricted master prob-
lem by solving the pattern-generation subproblem, us-
ing the Objective Function (30). Because dual values
are not available, we determine surrogate dual values
based on the slack values vp from the last MIP feasible
solution corresponding to Constraint (1r). The Objec-
tive Function (30) is then defined by setting

πp � 1
vp + 1

∀p ∈ P: (36)

Because the subproblem is a maximization problem,
this will emphasize generating patterns that use prod-
ucts that are used most often and are most con-
strained, again creating combinatorial diversity.

During this phase, we use one other feature to ter-
minate the MIP optimization early. If the solver can
prove that the upper bound of the objective function
is less than S| |, we immediately terminate the MIP so-
lution process and proceed to generate additional
patterns.

In our tests, the restricted master MIP required mul-
tiple solves only 28% of the time. That is, the patterns
and associated subscribers generated during the Pop-
ulate phase were sufficient for the MIP optimizer to
find a solution with an objective function value of S| |,
which meant that a solution was found where each
subscriber could be assigned a valid box without the
need to generate additional patterns.

MIP Parallelization
Because we had access to a machine with more than
24 cores, we tested a Gurobi MIP feature called con-
current optimization for MIP. The random seed used
by the Gurobi algorithms can affect MIP performance;
therefore, we set up six concurrent parallel solves,
each using a different random seed, and four threads
to solve each MIP restricted master problem. This in-
creased the chance that one of the Gurobi heuristics
would find good solutions at the root node, as op-
posed to some cores not being used until branching
began. As we show in the Computational Results and
Impact section, this option provided better perfor-
mance than using all 24 cores 50% of the time. In

contrast, the MIP subproblems were solved by using
all cores. However, the majority of those subproblems
were solved extremely quickly, thus demonstrating
that pattern generation by solving mixed-integer pro-
grams was not a factor in overall run times.

Computational Results and Impact
All computational results were performed on a com-
puter with AMD Opteron 6328 processors with a
clock speed of 3.2 Ghz and two megabytes of cache.
Our computational results are based on using 24 cores
of this machine, which had eight processors and four
cores per processor. Gurobi 9.0.2 was used as the MIP
solver.

During the project, Birchbox provided a few test
sets that we used to compare the performance of the
RIP algorithm to using Gurobi to solve the original
formulation of the problem. Table 2 presents the re-
sults using the concurrent optimization feature we de-
scribe above. One problem (190.998) did not solve to
optimality after 48 hours of computation using 24
threads, while a second problem (192.998) solved to
optimality after 17 hours. A third problem (198.999)
was easy to solve with the existing formulation and al-
lowed us to test and refine the RIP concept. For the
other problems, we did not want to waste the time to
use the solver designed for the original formulation,
because Birchbox personnel indicated that most of
those problems would take more than one day to
solve, and their computational resources needed to be
used for production operations.

In Tables 2 and 3, we show the cumulative time for
each phase using both the Hard constraint and the
Soft constraint techniques described above, highlight-
ing which method (hard or soft) was fastest. The last
column includes the times from the existing formula-
tion on three of the problems

Table 3 shows the results if all 24 cores are used to
solve the restricted master problem as a MIP (i.e., dis-
abling the Gurobi feature for concurrent optimization).

When comparing the two tables, the concurrent op-
tion improved results 50% of the time. In both cases,
adding the Hard Constraint (28) gave the best overall

Table 2. Using Concurrent Optimization, Solutions Times in Hours, Minutes, and Seconds (HH:MM:SS) Are Presented

Problem

End of Relax End of Subscribe Before starting product Total time

Old timeHard Soft Hard Soft Hard Soft Hard Soft

190.998 0:01:23 0:01:26 0:02:37 0:02:32 0:02:40 0:18:49 0:24:50 1:14:24 48:00:00
192.998 0:02:32 0:03:21 0:03:58 0:05:27 0:04:02 0:05:54 0:05:44 0:07:55 17:05:00
194.399.brunel2 0:04:24 0:04:03 0:22:26 0:40:20 0:22:32 1:13:52 0:22:33 1:13:58
195.995 0:01:49 0:01:49 0:03:54 0:03:30 0:03:59 0:15:52 0:16:19 2:38:44
198.999 0:01:03 0:00:59 0:03:08 0:02:05 0:03:13 0:04:11 0:03:13 0:04:19 0:03:49
206.600 0:02:40 0:01:32 1:24:45 0:28:02 1:25:01 1:30:44 1:25:03 1:30:53
207.998 0:01:45 0:01:45 0:19:09 0:02:42 0:19:13 1:10:28 0:44:42 1:11:25

Notes. Times represent cumulative time to that point in the RIP algorithm. Shaded squares indicate which method was fastest.
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performance. As we mention above, the Soft option is
valuable to Birchbox to determine whether its source
data will support assigning every subscriber to a box,
independent of the limit on the number of boxes
needed.

Impact
For Birchbox, the RIP algorithm has opened up new
opportunities for delighting its customers with cus-
tomized beauty and grooming experiences. With the
original formulation, most solves took multiple days,
which placed enormous pressure on Birchbox staff to
deliver new solutions each month to meet production
deadlines. During the COVID-19 pandemic, Birchbox
observed an additional benefit. Its suppliers have ex-
perienced the same supply chain challenges that man-
ufacturers across the globe have seen. The RIP algo-
rithm allowed Birchbox to quickly replan its boxes,
which would have been impossible using the original
model. David Bendes, Vice President of Global Busi-
ness Technology at Birchbox, said, “The increase in
speed and flexibility from the new model impacts ev-
ery piece of our business across multiple teams. Now
we can strategically invest that time in everything
from building more personal customer experiences to
optimizing our production process. With this new
model, Birchbox has truly entered a new operating
universe” (Lustig and Randall 2020).

The RIP algorithm includes the following innovative
ideas for solving a difficult mixed-integer program:

• The use of a MIP solver to generate patterns in a
column-generation framework

• A restricted master problem that increases in size
in both the number of constraints and number of varia-
bles as new patterns are generated

• Modification of dual values in a linear-
programming phase to improve performance

• Surrogate dual values in a mixed-integer program-
ming phase to generate new columns for the restricted
master problem

• Leveraging a variety of features of a powerful
mixed-integer programming solver to improve
performance.

We have also applied the RIP algorithm to a set of 24
public-domain nurse-scheduling problems available at
http://www.schedulingbenchmarks.org/nrp/. The RIP
algorithm found better solutions and/or improved low-
er bounds on three of the instances as compared with
results obtained by other researchers, while also solving
to optimality all the instances with known provable op-
timal solutions in under an hour on a laptop. This sub-
stantially improves the recent results reported by
Strandmark et al. (2020) and demonstrates that the RIP
algorithm is transportable to other applications.

We believe that many applications can benefit from
using a powerful mixed-integer programming solver
like Gurobi in an iterative solving algorithm such as
RIP. Our hope is that more optimization specialists will
develop new algorithms in this same spirit. In addition,
the power of mixed-integer programming can only be
realized by properly formulating the problems at hand.
We have observed that sometimes a MIP approach is
rejected without an understanding of the interactions of
proper formulations with the underlying solver. We
conclude by saying: “Formulation matters!”
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