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Abstract. Omnichannel distribution, which blends brick-and-mortar retailing and
e-commerce, is a key challenge for today’s supply chains. In this paper, we report on
a study to design an omnichannel distribution system for Total Hockey, a growing U.S.
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sporting goods retailer in a competitive environment. Management strongly believes that
e-commerce success will depend on high service levels characterized by one- or two-
day delivery and initially thought that a new omnichannel warehouse located on the
East Coast could support its expansion plans. To study the situation, we developed a
profit-maximizing optimization model for locating omnichannel warehouses that sup-
ports both e-commerce and store shipments. The model uses estimates of e-commerce
demand by metropolitan statistical area (MSA) across the United States, while incor-
porating management’s sales expectations regarding the value of high service levels,
e-commerce sales lost to competitors’ stores, and reverse cannibalism from Total Hockey’s
own retail stores. Multiple warehouse sizes allow modeling of nonlinear inventory costs.
The facility-location optimization model allows exploration of multiple solutions and an
assessment of the impact of higher service levels. The results of the study were contrary to
management expectations and suggested a significant redesign of the distribution system.
We report results for several analyses, implementation details, and managerial insights for
omnichannel distribution.

History: This paper was refereed.

Funding: This project was funded by Total Hockey as an applied research project.
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OR/MS implementation: applications

The need to design (and redesign) distribution systems
to facilitate omnichannel commerce and ensure high
service levels is a popular topic in both the business
world and academia (e.g., Swaminathan and Tayur
2003, Agatz et al. 2008, Chao and Norton 2016, Ishfaq
et al. 2016, Zhang et al. 2016). While multiple chan-
nel refers simply to selling through multiple channels,
such as phone (including mobile), Internet, catalogs,
and brick-and-mortar retail stores, omnichannel distri-
bution focuses on using an integrated logistics system
to support the multiple channels, and often integrates
front-end (sales) and back-end (logistics) systems
(Hiibner et al. 2016). Omnichannel distribution differs
from multiple-channel distribution where, for exam-
ple, two separate warehouse and distribution sys-
tems are used to satisfy retail store replenishment and
e-commerce direct-to-consumer shipments in parallel.
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This paper reports on a study for Total Hockey (TH), a
hockey equipment brick-and-mortar and e-commerce
retailer that sought to locate omnichannel warehouses
to support a retail network and e-commerce sales
across the United States. A key focus is on e-com-
merce sales and how they are likely to be influenced
by higher service levels (i.e., faster delivery times) from
new warehouse locations.

At the beginning of the study, TH operated 30 stores
in 11 states, all served from a single warehouse in
St. Louis (Figure 1). The warehouse stocked approx-
imately 32,000 stock-keeping units (SKUs) to support
both the retail stores and e-commerce orders; provided
break-bulk functions for the inbound container and full
truckload shipments from manufacturers; and picked,
packed, and shipped e-commerce orders. TH also used
retail store inventories to satisfy e-commerce orders


http://pubsonline.informs.org/journal/inte/
mailto:millsteinm@umsl.edu
http://orcid.org/0000-0001-8445-7013
mailto:campbell@umsl.edu
http://orcid.org/0000-0003-2951-8703

Millstein and Campbell: Total Hockey Optimizes Omnichannel Facility Locations

Interfaces, 2018, vol. 48, no. 4, pp. 340-356, © 2018 INFORMS

341

Figure 1. (Color online) At the Start of the Study, TH’s 30 Retail Store Locations Were Primarily Across the Upper Midwest

@ TH current retail stores

TH current warehouse
location

Note. The numbers indicate multiple stores in a city; for example, Chicago has five stores.

in two cases. The first case was for inventory at the
retail stores in St. Louis, which are located near the
warehouse. Each day, a peddle truck delivered items
from the warehouse to the stores to replenish store
inventories. That truck also collected items from the
stores to take back to the warehouse, possibly combined
these items with items from the warehouse or other
stores into a single shipment, and used them to ful-
fill e-commerce orders. TH developed this inventory-
pooling approach to reduce split shipments and backo-
rders. It reflects their relatively high SKU count, which
includes a large number of low-unit-volume items and
the small average order size of 2.7 items per order. The
second case of using store inventory for e-commerce
orders occurred when an item was not available in the
St. Louis warehouse or a St. Louis store, in which case
the item was shipped to the customer directly from the
store closest to that customer. However, this practice can
create split shipments, which add shipping costs and
require stores to dedicate backroom space for packing
and shipping operations. Because TH stores are gen-
erally in expensive retail areas, the company prefers
to minimize its backroom space for packing and ship-
ping, to maximize retail floor selling space. In prac-
tice, each retail store typically stocks only a fraction of
the SKUs TH sells, depending on factors such as local
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demand, available space, or availability of stock from
other nearby stores; shipping items directly from stores
to customers is discouraged. Thus, most e-commerce
orders are sent from the St. Louis warehouse.

This paper reports on our study to redesign TH's
distribution system to serve 359 U.S. metropolitan sta-
tistical areas (MSAs) using an omnichannel warehouse
location model. We provide empirical results that sup-
port findings in the channel selection literature and
incorporate management requirements in the model
in a way that supports TH’s decision-making pro-
cess (Levasseur 2015). Important aspects of TH's situa-
tion, which add complexity in our study, are: (1) TH’s
aggressive expansion plans, (2) a focus on the impact
on e-commerce demand in an MSA both from offering
high service levels (one- or two-day delivery) and from
the presence of competitor stores and TH stores in the
MSA, (3) the lack of MSA-specific data on e-commerce
market sizes for hockey equipment, and (4) the use of
retail store inventories for e-commerce orders.

The Background section includes relevant background
on TH and a brief review of the omnichannel mod-
eling literature. In the Modeling Market Share section,
we describe our work with TH management to esti-
mate demand parameters, and to model warehouse and
inventory costs that are inputs to the facility-location



Millstein and Campbell: Total Hockey Optimizes Omnichannel Facility Locations

342

Interfaces, 2018, vol. 48, no. 4, pp. 340-356, © 2018 INFORMS

optimization model. In Multiple-Facility-Location Model,
we present the location model, and in Analysis of Solu-
tions, we analyze the results, including the important
role of pooling store and warehouse inventory. We dis-
cuss TH management’s decision and implementation
issues in Management Decision and Implementation, and
follow with concluding remarks in Conclusions.

Background

Background on TH

TH grew very rapidly, both organically and through
acquisitions, since being founded in the Midwest
almost 20 years ago. It initiated online sales in 2002;
these sales currently constitute approximately 30 per-
cent of its revenues and have been growing strongly.
In 2013, TH initiated an omnichannel strategy with
all inventory items visible on its e-commerce web-
site. When an e-commerce order is received, TH’s
omnichannel software gives priority to using a single
shipment for all the items included; so, most orders
are sent as a single shipment from the St. Louis ware-
house (using items from the warehouse and possibly

the St. Louis stores). At the time of our study, TH
had aggressive five-year expansion plans to increase
from 30 retail stores, mostly in the Midwest (Figure 1),
to 86 stores across the United States by adding 29
stores in the Northeast, 18 stores in the upper Midwest,
and several stores in Florida, Los Angeles, and Seattle
(Figure 2). TH believes these new stores will increase
e-commerce sales in the new regions from reverse can-
nibalization. Expansion into the hockey-rich Northeast,
which has numerous competitor stores but very few
TH stores, required us to consider the effect of both the
new TH stores and competitors’ existing stores on TH’s
e-commerce market share.

TH’s CEO held a strong view that one-day (or same-
day) delivery of many consumer goods, as companies
such as Amazon, Google, and Ebay demonstrate, with-
out requiring the customer to pay for premium ship-
ping, would drive customers to expect similar high lev-
els of service (Smith 2014). Therefore, TH expects to
gain market share of e-commerce demand by position-
ing larger amounts of inventory close to the larger mar-
kets, which include the Northeast, Chicago, Minnesota,

Figure 2. (Color online) TH’s Planned Retail Store Locations and the Potential Warehouse Locations Are Scattered Across the

United States

aj

® TH current and future retail stores

D Potential warehouse location

A Current warehouse location

Note. The numbers indicate multiple stores in a city; for example, 10 stores are planned in Chicago.
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and Detroit. This focus on service is driven by the fixed
uniform pricing arrangements of the major equipment
suppliers, which require all retailers to sell at or above
a specified price. Thus, product availability and deliv-
ery time, not price, are the key differentiators. There-
fore, we needed to incorporate shipping time from
the warehouse when modeling TH’s e-commerce mar-
ket share of an MSA. We also needed to estimate the
e-commerce hockey-equipment market size by MSA,
because these data were not available. The U.S. hockey-
equipment retail business is dominated by eight small
privately held retailers that operate brick-and-mortar
retail stores and e-commerce sites. These competitors
do not share data on their e-commerce market size in
each MSA.

Prior to our study, TH was tentatively planning
to add an omnichannel warehouse near Philadelphia,
Pennsylvania to support the new retail stores and
expected growth in e-commerce business in the North-
east. The company was also interested in options that
would allow it to open small warehouses near each
major market to provide customers with one-day deliv-
ery. However, our study provided a more general
profit-maximizing, optimal network design that con-
sidered 23 potential warehouse locations across the
United States.

Literature on Omnichannel Modeling

One key concern in the omnichannel research literature
is the channel selection decision of whether to fulfill
e-commerce orders from dedicated e-commerce ware-
houses (or fulfillment centers), the same warehouses
that support retail stores, retail store inventories, or a
combination of these sites. Researchers have addressed
how the use of these different e-commerce channels
is impacted by inventory pooling, demand correla-
tions, postponement, options for in-store pickup, rel-
ative costs, and the percentage of total sales through
e-commerce (Alptekinoglu and Tang 2005, Chiang and
Monahan 2005, Bendoly et al. 2007, Mahar and Wright
2009, Bretthauer et al. 2010, Gallino and Moreno 2014,
Torabi et al. 2015). Results from Bendoly et al. (2007)
show how the use of a dedicated e-commerce chan-
nel depends on the percentage of total demand that
is e-commerce, the relative costs, the level of demand
variation across customers (markets), and the number
of retail stores. Theoretical total-cost models show that
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the benefits from using retail store inventories gen-
erally decrease with the number of stores and with
the percentage of demand that is e-commerce. How-
ever, the use of retail stores for fulfillment appears
to be growing, and a recent study (Griffin-Cryan and
Wall 2015) suggests over 80 percent of leading retailers
either already offer, or plan to offer, e-commerce fulfill-
ment from retail stores. Ishfaq et al. (2016) note that the
role of stores is evolving toward serving both in-store
and online customers.

Our research bridges the gap between channel-
selection issues for omnichannel commerce and opti-
mization models for competitive location and net-
work design. Only a few researchers address locational
aspects of omnichannel distribution. Bretthauer et al.
(2010) show that the number of e-commerce fulfillment
locations changes with the percentage of e-commerce
orders, but they do not consider specific locations. Liu
et al. (2010) use a capacitated location optimization
model to solve artificially generated two-echelon prob-
lems and explore the trade-off between inventory pool-
ing effects and transportation costs, but do not use real-
world data or include competition. Zhang et al. (2016)
provide a multiple-objective capacitated distribution-
network-design model that allows shipments through
different channels involving a manufacturer, central
distribution centers (DCs), and regional DCs. While
multiple channels are integrated in one optimization
model, total demand is given and there is no differen-
tiation of customers (e-commerce versus retail stores).

In contrast to these works, our research includes
location modeling based on TH’s demand data and
costs, competition to determine e-commerce mar-
ket share, and reverse cannibalization between TH’s
e-commerce and retail operations. In addition, it is
empirically grounded with significant work done in
coordination with TH management to model the
demand and inventory costs. The original goal of our
study was oriented toward finding the best location for
a U.S. East Coast omnichannel warehouse, with a focus
on e-commerce fulfillment and one-day delivery. How-
ever, the optimization model we developed is a more
general multiple-facility-location model that allows a
broad set of analyses. Note that our research uses deter-
ministic e-commerce demand, as do Mahar and Wright
(2009), Torabi et al. (2015), and Zhang et al. (2016),
while many other omnichannel and network-design
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models use nondeterministic demand to explore avail-
ability and service level issues.

Modeling Market Share

A key component of our study is the model for e-com-
merce market share that TH will capture in each MSA
based on the market size, the service provided (i.e.,
delivery time), and the presence of TH stores and
competitor stores. Because this industry is dominated
by privately held retailers that do not share data,
we needed to estimate the e-commerce market size
for each MSA (i.e., the number of e-commerce orders
in each MSA). We accomplished this by combining
industry-association data, census data, and internal
data from TH sales. USA Hockey, the association that
governs amateur hockey in the United States, provided
the home addresses of over 600,000 hockey players in
the United States, and estimated that the annual rev-
enue for hockey equipment sold in the United States
is $600 million and that e-commerce is approximately
20 percent of this total, or $120 million per year. With
TH’s average e-commerce order size of almost $135,
this equates to about 891,000 e-commerce orders per
year for the United States. A simple approach would
apportion these 891,000 orders to MSAs based on rela-
tive populations of hockey players, but TH wanted to
use its own sales data to seek other factors that influ-
enced hockey-equipment e-commerce sales.

Working with TH management, we created regres-
sion models using several data sources for TH's e-com-
merce sales in an MSA with independent variables,
including the number of hockey players and hockey
rinks in the MSA, which USA Hockey supplied, the
median income of the MSA (from U.S. census data),
the number of TH stores in the MSA, and the num-
ber of competitor stores in the MSA. Only two of
these variables are statistically significant: median
income (p-value = 0.0046) and number of hockey play-
ers (p-value < 0.0001). (Interestingly, the regression
models showed that wealthier MSAs tended to place
more e-commerce orders per player, but did not place
higher value orders on average.) Therefore, to predict
total e-commerce demand in an MSA, not only TH
e-commerce, we proportionally allocated the 891,000
e-commerce orders to MSAs based on the product of
the number of hockey players and the median income
in an MSA.
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To incorporate the impact of service level, we used
the travel time T;; to MSA i from possible warehouse
location j, for each warehouse-MSA pair. After exten-
sive discussions with management, we also included
a constant “market share factor,” which we denoted F,
that moderates the expected demand captured. (See
Appendix A for the market share model equation.) In
this model, larger values of the travel time (i.e., lower
service) and larger values of F decrease the market
share. The model also includes two adjustments to the
market share to account for a loss of e-commerce mar-
ket share due to competitor chains in an MSA, and a
gain in e-commerce market share due to greater brand
presence from having TH stores in an MSA. A vari-
ety of functional forms could be used to model the
market share decrease with increasing delivery time,
and our approach differs slightly from the approach
that is often used, which includes an exponential in
the denominator, such as delivery time squared (Huff
1966). We use a simpler form because it represents
the observed relationship between market share and
service, other functional forms were confusing to TH
management, and we wanted to use a model that is
easily understood to enhance the chances of adoption
(Levasseur 2015). However, we also conducted exten-
sive sensitivity analysis by varying the market share
factor F to explore its impact on the results.

To model the impact of TH and competitor stores in
an MSA, we relied on statistical analysis and extensive
discussions with TH management. TH management
believes that the presence of competitors’ stores (pos-
sibly stores from multiple chains) in an MSA decreases
TH’s e-commerce sales in that MSA. The managers
also believe that the presence of one or more TH
stores in an MSA increases TH e-commerce sales from
greater brand awareness. Thus, they believe there is
reverse cannibalism (i.e., increasing e-commerce sales)
when TH enters a new market with brick-and-mortar
stores. The academic literature shows mixed results
with some empirical studies showing cannibalization
of sales and other studies showing reverse cannibaliza-
tion; for example, see Pauwels and Neslin (2015) and
Cao and Li (2015).

To assess the impact on e-commerce sales from open-
ing TH stores, we evaluated the monthly e-commerce
revenue over a three-year period for six MSAs, begin-
ning when TH opened its first store in that MSA. We
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examined the revenues from 12 months prior to TH
opening its first store in the MSA to 24 months after
this store’s opening. As a control, we used an MSA
(i.e., St. Louis) with TH retail but no store changes
over the relevant periods. We developed autoregres-
sive integrated moving average (ARIMA) models for
these MSAs to test whether the intervention of opening
stores is a significant factor for increasing e-commerce
sales. The results show that store openings are statisti-
cally significant in two of the six MSAs (p < 0.01), a little
less strong for a third MSA (p < 0.063), and not statisti-
cally significant for the other three MSAs, although all
six MSAs showed e-commerce growth. As an example,
results for the ARIMA model for the Chicago MSA are
included in Table B.1 (Appendix B). Although these
results offer mixed support for reverse cannibalization,
management feels strongly that it is important to model
e-commerce shipments reflecting reverse cannibalism
of sales when TH enters a new MSA that includes
retail stores. Consequently, our market-capture models
reflect a percentage addition to e-commerce demand
(e.g., 10 percent) due to opening TH stores in a new
MSA. Given the positive adjustment to market share for
the presence of TH stores, management wanted a sim-
ilar negative adjustment to market share for the pres-
ence of competitor stores. Because some large markets
(MSAs) have multiple competitor chains with retail
stores, the market share is decreased for each competi-
tor chain with a retail store in the MSA.

The net effect of the market share model (see Ap-
pendix A) is that the number of orders captured by TH
for an MSA decreases with increasing delivery time
and the presence of one or more competitive chains,
and increases from opening a TH store in the MSA.
The market share factor F controls the sensitivity of the
market share to the service level (i.e., delivery time); the
values of interest to TH management are in the range
1.5 < F < 4. Note that the market shares for each MSA-
warehouse location pair are calculated exogenous to
the warehouse location-optimization model and used
as input values.

To illustrate the estimation of market capture M;;
for one MSA, consider Chicago, a large market where
TH has a store presence and two competitor chains
have stores. Chicago receives one-day delivery from
TH’s existing omnichannel warehouse in St. Louis.
The median household income in the Chicago MSA is
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$70,074 and the MSA has 28,857 hockey players (accord-
ing to USA Hockey). Over all MSAs in the United States,
the sum of the product of median income and num-
ber of hockey players is $37,824,840,861. In Appendix A,
we estimate the total e-commerce demand in orders for
Chicago as 47,613. Using a 10 percent factor to adjust
market shares and a market share factor F = 2, we also
estimate the Chicago demand captured by TH as 19,045
orders.

Figure 3 shows the fit between the market share
model for F =2 for all MSAs that receive more than
70 orders per year; the percentage values from the mar-
ket share model (Appendix A) for F =2 are shown
by solid triangles and are offset slightly to show the
underlying estimated market share values (open dia-
monds). The open diamonds for one, two, three, and
four delivery days are the market shares for 177 MSAs,
based on TH’s actual number of e-commerce orders in
each MSA divided by the predicted number of e-com-
merce orders in each MSA. In MSAs with a small num-
ber of orders, the market share estimates can be very
large when the actual orders for TH far exceed a small
prediction for the total number of orders in an MSA.
The market share term in brackets (from the equation
for M;; in Appendix A) provides up to six points for
each number of delivery days, which correspond to the
combinations of having zero, one, or two chain com-
petitor stores (L; in Appendix A can equal zero, one,
or two), and having no or at least one TH store (G;
in Appendix A can equal zero or one) in a particular
MSA. The curved line in Figure 3 shows the decline in
market share with increasing delivery time. Note the
over-prediction of market share for one-day delivery
with F =2, which indicates a greater benefit from a
larger market share by offering one-day service. Other
values of the parameter F provide differing predica-
tions; therefore, setting F considering the available data
and management expectations is important.

Modeling Warehouse and Inventory Costs

Accurately modeling costs for potential warehouses is
important because these costs comprise a large share of
the total costs. Costs to open and operate a warehouse
are based on the facility capacity and the local real
estate and labor-cost rates in the MSA. They demon-
strate economies of scale with larger facilities hav-
ing lower unit costs. We model five possible sizes
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Figure 3. (Color online) The Model’s Calculated Market Share for F = 2 and TH’s Market Share vs. the Delivery Days to

Each MSA
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for warehouses, with each size based on the capac-
ity of orders per year that can be shipped out of the
facility. Calculating the inventory investment required
for e-commerce fulfillment from each potential ware-
house required additional steps. By evaluating TH’s
current e-commerce demand, we estimated the num-
ber of SKUs required for each size of facility. For
example, the smallest facility with a capacity of 25,000
annual orders could be expected to ship (and there-
fore stock) approximately 16,000 unique SKUSs. A large
fulfillment center like the current facility in St. Louis,
which processed 92,000 e-commerce orders in 2014,
shipped 31,975 unique SKUs. Additional SKU levels
required by facility capacity were built around TH's
annual e-commerce demand pattern by SKU. These
levels are shown in column 2 of Table 1.

We calculated inventory investment levels for each
warehouse size using Optimal Velocity’s Inventory

Table 1. The Inventory Investment for the Five Warehouse
Sizes Reflects the Economies of Scale

Warehouse capacity Approximate no. Estimated inventory

(shipments per year) of SKUs required investment ($)
25,000 16,000 4,109,812
50,000 25,000 5,411,028
75,000 28,500 5,848,257

100,000 32,000 6,098,081

250,000 32,000 7,378,678
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Optimizer™ demand forecast and inventory safety stock
optimization model (Optimal Velocity 2015), using the
actual TH demand and cost data. The demand fore-
cast model in Inventory Optimizer uses five exponen-
tial smoothing algorithms whose coefficients are opti-
mized. The forecast program then chooses the model
that is most accurate for the preceding 12 months
and uses its future prediction of demand in TH's
planning process. The forecast error, calculated as the
square root of the mean squared error, is used in the
safety stock calculation, replacing standard deviation
of demand, to represent the nonstationary nature of
the demand of most of TH’s SKUs (Neale and Willems
2009). Safety stock is optimized using a mixed-integer
linear programming (MILP) model in Inventory Opti-
mizer, which allows each SKU to be endogenously
assigned its appropriate cycle service level based on
item profit, lead time, and the aforementioned forecast
error (Millstein et al. 2014). This safety stock optimiza-
tion maximizes the profit return on inventory invest-
ment of the entire inventory set. The inventory invest-
ment in column 3 of Table 1 is the average monthly
forecast over 12 months divided by two, plus average
safety stock.

The inventory levels and costs in Table 1 demonstrate
economies of scale with the inventory investment per
unit of capacity falling from $164 for a 25,000-shipment
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warehouse to about $30 for a 250,000-shipment ware-
house. The dramatic decline in inventory investment
per unit as warehouse size increases results from the
very erratic demand pattern of many of TH’s SKUs.
With larger warehouses, the aggregation of demand
reduces demand variation and improves the forecasts
of lower-volume SKUs.

The data in Table 1 reflect warehouses that operate
at levels near their capacity. To assess this modeling
approach, we measured the warehouse capacity uti-
lization of the optimal networks (from solving the loca-
tion optimization model) for multiple values of F (F =
1.5,2,2.5, 3, 3.5, and 4). Capacity utilization across all
warehouses in the optimal solutions ranged between
91 and 100 percent, thereby validating our approach.

An important adjustment to the inventory invest-
ment in the warehouse is made (for some MSAs) to
reflect the possibility of inventory pooling with the
local retail stores. Because TH’s omnichannel strat-
egy uses inventory at retail stores in the same MSA
as a warehouse for e-commerce fulfillment, we treat
the entire MSA (stores plus warehouse) as one inven-
tory location for e-commerce orders. This allows us to
decrease the size of the warehouse to reflect invento-
ries in all TH stores in that MSA. In addition, using
store inventory for e-commerce orders allows TH to
have more attractive stores with larger inventories than
retail-only store traffic merits. Thus, TH’s omnichan-
nel strategy of making retail store inventory visible to
online customers allows stores to stock some lower-
volume SKUs, which would not normally justify retail
space, so both online and in-store customers can pur-
chase them. Placing lower-volume SKUs in stores goes
against conventional wisdom that places only higher-
volume SKUs in stores and allocates lower volume
SKUs to warehouses. However, for TH, this has pro-
vided an unexpected revenue upside.

The consequence of this inventory pooling is that
locating a warehouse in an MSA with many TH retail
stores requires less warehouse inventory than a ware-
house that serves the same demand in an MSA with
fewer (or no) TH retail stores requires. Note that our
modeling differs from a totally decentralized fulfil-
ment channel where all stores can provide e-com-
merce fulfillment (Bendoly et al. 2007); we allow e-com-
merce demands to be filled from retail stores only in
MSAs that house a warehouse, and where vehicular
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traffic conditions allow store inventory to arrive back
in the warehouse each day in time for shipping out
in the evening. Thus, in congested markets, such as
Washington, DC, New York, Los Angeles, and Boston,
heavy vehicle traffic does not allow inventory from the
retail stores to be transshipped through the warehouse
and shipped out the same day; therefore, we did not
decrease warehouse inventory in these MSAs to reflect
the retail stores” inventory in the MSA. Thus, a vari-
ety of practical issues (e.g., the need to maximize retail
space in expensive markets, a low number of items per
order on average, traffic congestion, and packing and
shipping efficiencies at a warehouse) drove TH to pre-
fer shipping e-commerce orders from a warehouse, but
to also use store inventories, whenever possible.

The ability to use store inventory to fulfill e-com-
merce orders in an MSA with an omnichannel ware-
house has several benefits and costs. One benefit for
stores in an MSA with a warehouse is the increase in
store inventory, which might lead to higher in-store
sales. Another benefit for these stores relates to dif-
fering practices for receiving shipments from vendors.
In an MSA with a warehouse, the warehouse receives
vendor shipments in large trucks, sorts the inventory
by store, and sends it on a small delivery truck on a
peddling route to the stores. The small delivery trucks
allow safer and more efficient receiving of inventory at
the stores. The delivery trucks can also collect items to
fill e-commerce orders, which they transport back to
the warehouse. In contrast, for stores not in an MSA
with a warehouse, vendor shipments are received at
stores directly from truck trailers at dock height, which
requires items to be handed off from the back of the
truck to store employees at ground level. Time stud-
ies demonstrated that this practice is less efficient than
receiving inventory from the small delivery trucks. In
addition, safety incidents have occurred while unload-
ing from the dock-height truck trailers at stores.

The added costs from TH’s use of store inventory
for e-commerce fulfillment include store labor to pick
e-commerce orders in a store (stores are not set up for
efficient picking), the additional inventory carried in
the store, and a portion of the cost of the peddle truck
and driver (note that they are already being used for
replenishment of the retail stores). While detailed data
are not available on all the benefits and costs of using
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store inventory for e-commerce fulfillment, TH man-
agement believes the net effect in the model should be
savings of $10,000 per year for each MSA where store
inventory is pooled with the warehouse inventory for
e-commerce orders.

Our model also includes costs for warehouse oper-
ations to support retail stores with break-bulk func-
tions for the inbound containers and for full-truckload
shipments from manufacturers. (Break-bulk includes
the activities in a warehouse or depot to unload the
large shipments from inbound trailers or containers
and then create multiple smaller shipments, generally
with a mixture of merchandise, that are sent on to
many locations, such as retail stores.) These inbound
large shipments are broken down into pallets, which
are then sent as less-than-truckload (LTL) shipments to
stores. The warehouse operations costs are calculated
based on the number of expected LTL shipments to
each store per year.

Multiple-Facility-Location Model

To design the omnichannel network, we developed a
multiple-facility warehouse-location model that deter-
mines (1) the location, number, and size of warehouses
to support e-commerce and retail stores; (2) the assign-
ment of e-commerce orders from each MSA to a ware-
house; and (3) the assignment of retail stores to a
warehouse, all to maximize profit. Ongoing demand
and costs are modeled over a five-year period using
a net present value (NPV) function and TH’s hurdle
rate. (Hurdle rate is the minimum rate of return that
a company requires to invest in a project and is used
in the NPV calculation to discount future cash flows.)
The five-year NPV function is used to combine the
one-time warehouse opening costs with the ongoing
annual costs. Store locations are modeled based on
TH'’s intended 2020 store network of 86 stores.

The profit objective includes a positive contribution
based on the average gross profit per order. Trans-
portation costs are included for e-commerce deliveries
and for support of retail stores. E-commerce shipping
costs for each MSA are calculated using parcel ship-
ping costs from the assigned warehouse. Store-support
shipping costs are calculated as the average annual
number of pallets shipped to each store multiplied by
the LTL pallet shipment costs from the assigned ware-
house. Warehouse costs are included in the objective
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for opening warehouses, operating warehouses, and
holding inventory. Use of retail store inventories for
e-commerce fulfillment is modeled as a $10,000 annual
savings in the baseline case, but we also do a sensitivity
analysis that varies this amount down to a $50,000 cost.

Inputs to the multiple-facility-location model in-
clude the 23 possible fulfillment-center locations, the
359 U.S. MSAs as demand points, TH and chain com-
petitor store locations, average gross profit per order,
NPV hurdle rate, parcel-delivery costs for an aver-
age order, parcel-delivery times for all warehouse-MSA
pairs, LTL delivery costs (per pallet) for all warehouse-
store pairs, and the number of pallets per year for
store support. The e-commerce market share in annual
orders for each MSA-warehouse combination is an
input calculated as we describe in Appendix A.

Three sets of binary decision variables are used in
the warehouse location optimization model to deter-
mine (1) the locations and sizes of warehouses (cho-
sen from the 23 candidate sites), (2) the assignment
of the 359 MSAs to the warehouses for e-commerce
shipments, and (3) the assignment of the retail stores
(located in 20 MSAs) to the warehouses. Figure 2 shows
the 23 possible warehouse sites, which include current
MSAs served by TH retail stores, future markets that
TH plans to populate with retail stores, and a few loca-
tions that are popular e-commerce shipping points.
Because TH management feels that only larger ware-
houses can handle the break-bulk operations required
for store support, retail stores can be assigned only to
warehouses with capacity greater than 125,000 orders
per year.

The model was calibrated and validated with TH’s
management against the current state with a single
warehouse at St. Louis. Although the model optimizes
profit from e-commerce orders, TH does not break out
profit by channel; therefore, we could not validate the
model based on profit. However, we did know the
number of e-commerce orders TH currently captures
in each MSA, which is also an output of the model.
Thus, we calibrated the model by selecting the market
share factor F that provides the appropriate number
of orders for MSAs. We ran the model for values of F
between 1.5 and 4.0 with the single St. Louis warehouse
and compared TH’s actual e-commerce orders to the
orders from the model output. Overall, F = 3 provides
the most accurate results. For example, TH had 15,080
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actual orders in Chicago in the 12 months prior to
this analysis and the model indicated 15,871 orders for
F = 3. However, as we discuss in the following section,
Analysis of Solutions, TH chose to focus on results with
F =2, which provides a higher market share, because
of management’s belief that fast delivery times will
become increasingly important.

We developed and solved the binary linear program
for warehouse locations (Appendix A) using Solver
Premium Platform with the large-scale LP/IP solver.
This optimization software was chosen by the model-
ing team because it uses Microsoft Excel as a founda-
tion, and TH managers are comfortable using Excel.
This supports the influence and importance of “active
and ongoing interaction between manager and model
builder” as noted by Levasseur (2015, p. 364). Build-
ing the model in Excel helped enable adoption and
increase the potential for ongoing use as conditions
change. Model solution times ranged from five min-
utes to several hours, and were deemed acceptable by
TH management for a strategic analysis.

Analysis of Solutions

The market share factor F is an important parameter
in the model because it determines the response of
market share to the service level (delivery time from
the warehouse). Model results for different values of
F show how the market share factor impacts the opti-
mal solution; however, the appropriate value for this
is uncertain given the unknown actual market shares
for this industry and the uncertain e-commerce mar-
ket size. Further complicating the choice of the market
share factor is that TH anticipates the number of retail
competitors with e-commerce capability may consoli-
date from eight to four in a few years.

Given these unknowns, we conducted a sensitivity
analysis, varying the parameter F from 1.5 to 4.0, in 0.1
increments. The results shown in Table 2 helped guide
the decisions the management team made. Table 2
shows the optimal warehouse locations, the number of
orders captured by TH (No. of orders), profit (five-year
NPV), and average delivery days for e-commerce ship-
ments for 26 levels of F. As expected, as the market
share factor F increases, TH becomes less competitive;
therefore, the number of orders and the profit fall dra-
matically. However, the average level of service (deliv-
ery days) varies much less and stays between 1.66 and
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2.15 days, because the optimal warehouse locations
adjust to reduce delivery times and thereby increase
market capture and revenue.

Table 2 reveals some interesting patterns in optimal
warehouse locations. Only four locations (of 23 possi-
ble MSAs) are selected as warehouses, with Detroit and
Minneapolis almost always appearing (25 and 24 times,
respectively, out of 26 solutions), albeit with differ-
ent capacities in some cases. Further, the 26 solutions
in Table 2 show only seven different configurations
of the four warehouses, and the general trend can be
explained as follows:

—With small F (in the range 1.5-2.4), the number of
orders captured decreases from 432,000 to 287,000 and
three or four warehouses are always used: Philadelphia
with capacity 125,000 (except for F = 1.5); Minneapolis
with capacity 50,000, except for the smallest F values
when it has 125,000; Chicago and (or) Detroit, where
one has capacity 125,000 and the other has 50,000 or 0;

—With medium F (in the range 2.6-3.3), the number
of orders captured decreases from 225,000 to 199,000
and three warehouses are used: Detroit always with
capacity 125,000; Minneapolis usually with capacity
50,000; and usually either Chicago with capacity 50,000
or Philadelphia with capacity 25,000.

—With large F (in the range 3.5-4.0), the number
of orders captured decreases from 175,000 to 166,000
and the warehouses selected are always Detroit with
capacity of 125,000 and Minneapolis with capacity of
50,000.

—The model never locates warehouses in the large
markets with heavy vehicular traffic congestion (e.g.,
Washington DC, New York-New Jersey, Los Angeles,
Boston), because the inability to use store inventories
effectively increases the inventory required in ware-
houses, which along with the higher costs of pur-
chasing or leasing warehouse space in these markets
ensures that they are never optimal locations.

Table 2 also exhibits some anomalies for certain val-
ues of F, such as 2.1, 2.2, and 3.4, where the opti-
mal locations differ substantially from neighboring val-
ues of F. These dramatic changes were illogical to
TH’s management; therefore, we used the model with
some warehouse locations fixed open to help man-
agement understand these changes; for example, how
near-optimal solutions (within 1 percent of the optimal
profit) can be found with Minneapolis and (or) Detroit
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Table 2. Results of the Sensitivity Analysis for the Market Share Factor F

Profit Average no. of

F  Minneapolis Chicago  Detroit  Philadelphia No. of orders ($ millions) ($)  delivery days

1.5 125,000 50,000 50,000 250,000
1.6 125,000 X 125,000 125,000
1.7 125,000 X 125,000 125,000
1.8 50,000 125,000 50,000 125,000
1.9 50,000 125,000 50,000 125,000
2.0 50,000 125,000 50,000 125,000
2.1 X 125,000 50,000 125,000
22 50,000 125,000 X 125,000
2.3 50,000 X 125,000 125,000
24 50,000 X 125,000 125,000
2.5 50,000 50,000 125,000 25,000
2.6 50,000 50,000 125,000 X
2.7 50,000 50,000 125,000 X
2.8 50,000 50,000 125,000 X
29 50,000 50,000 125,000 X
3.0 75,000 X 125,000 X
3.1 50,000 X 125,000 25,000
32 50,000 X 125,000 25,000
3.3 50,000 X 125,000 25,000
34 X 50,000 125,000 X
3.5 50,000 X 125,000 X
3.6 50,000 X 125,000 X
3.7 50,000 X 125,000 X
3.8 50,000 X 125,000 X
3.9 50,000 X 125,000 X
4.0 50,000 X 125,000 X

431,967 27.146 1.66
374,881 25.078 1.86
367,829 23.985 1.78
350,000 22.338 1.81
343,971 21.529 1.80
332,460 20.043 1.77
300,000 18.928 1.89
299,956 18.450 1.74
294,915 17.613 1.72
287,215 16.609 1.70
245,469 15.549 2.03
225,000 15.366 217
221,659 14.896 2.10
215,844 14.146 2.10
210,430 13.446 2.10
200,000 12.967 2.19
199,893 12.612 2.14
200,000 12.610 2.11
198,614 12.404 2.06
175,000 11.966 2.24
175,000 11.827 2.25
175,000 11.811 2.21
174,545 11.727 2.15
171,500 11.332 2.15
168,612 10.956 2.15
165,868 10.599 2.15

Note. X represents a location not selected by the model.

forced open, but how profit optimization can some-
times produce a cascade of changes (e.g., when forcing
Minneapolis open results in closing Chicago and open-
ing a small warehouse in Denver).

Table 3 provides cost details for three solutions in
Table 2 that correspond to F =2,3, and 4 to show
how individual cost components vary with the mar-
ket share factor, because that causes the number of
orders, warehouse locations, and warehouse sizes to
change (Table 2). The changes in costs in Table 3 show
the nonlinear response to the number of orders cap-
tured (and F). For example, the last two rows of Table 3
show that as F increases from 2 to 3 to 4, the inventory
holding cost per order decreases from $0.409 to $0.328,
while the e-commerce delivery cost per order increases
from $0.323 to $0.351. Note that these total costs are
based on the actual unit costs, which vary consider-
ably across the warehouse locations, and result from
the differing optimal shipment patterns.

In summary, the results and sensitivity analysis de-
monstrate that an optimal or near-optimal network for
TH can be produced from the same set of four ware-
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Table 3. Results for Orders, Locations, and Cost Components
Vary Considerably with Changes in the Market Share Factor F

F=2 F=3 F=4
No. of orders 332,460 200,000 165,868
Locations Min, Chi, Min, Det Min, Det
Det, Phil

Five-year NPV inventory 14,921 7,265 5,800
holding cost ($1,000) ($)

Five-year NPV e-commerce 11,798 7,439 6,196
delivery cost ($1,000) ($)

Five-year NPV facility 7,892 4,448 3,833
operating cost ($1,000) ($)

Five-year NPV store support 1,558 1,643 1,643
delivery cost ($1,000) ($)

Warehouse opening 349 228 199
cost ($1,000) ($)

Total cost ($1,000) ($) 36,518 21,024 17,671

Inventory holding 0.409 0.346 0.328
cost per order ($)

E-commerce delivery 0.323 0.354 0.351

cost per order ($)

houses over a broad range of market share factors,
and that two key locations appear to be Detroit and
Minneapolis. Detroit is a consistently optimal choice
for a large e-commerce fulfillment warehouse (125,000
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orders), except with smaller values of F when TH can
capture enough e-commerce orders from the large (and
competitive) Northeastern market by opening a large
warehouse in Philadelphia. Minneapolis is usually also
an optimal location, although with a smaller capac-
ity (usually 50,000) than Detroit. Minneapolis is val-
ued because it is a very large market that has low
levels of competition (in part due to the very strong
retail position of TH and one of its competitors in this
market). The Minneapolis warehouse also serves cus-
tomers in Alaska, which is a relatively large market
with no retail chains.

The data collected for this study showed that MSAs
with a large number of TH retail stores generally have
enough inventory in the stores to handle up to about
50,000 e-commerce orders per year. If such an MSA had
a warehouse and the store inventory could be delivered
back to the warehouse before the parcel-shipping com-
pany pick-up time at the end of the day, then the store
inventory could be used to fulfill e-commerce orders.
Results show that optimal warehouse locations gravi-
tate to MSAs with large numbers of retail stores to take
advantage of this store inventory and thereby allow a
smaller, lower-cost warehouse. To further explore the
role of pooling store inventory with the warehouse
inventory in the same MSA, we conducted additional
analyses, which we summarize in Table 4. The first two
rows of results in Table 4 show solutions that do not
allow use of store inventories with fixed warehouse
locations in St. Louis only (the current warehouse),
and with St. Louis plus a new warehouse in Philadel-
phia (the location originally thought useful to handle
Northeastern demand). Adding Philadelphia improves
service; however, both designs produce a net loss (i.e.,

Table 4. Allowing the Use of Retail Store Inventories for
E-Commerce Fulfillment Is Shown to Be Beneficial

NPV profit
Use of store Warehouse ($x1,000) Service
inventory locations %) (average days)
No St. Louis® -2,226 2.58
No St. Louis*, Philadelphia® -9,144 2.12
No Detroit 1,907 2.31
Yes Detroit, Minneapolis, 20,043 1.77

Chicago, Philadelphia

s,

Notes. A fixed warehouse location is indicated by “*”; other locations
are optimal solutions from the model. Results are for market share
factor F =2.

IIGHTS L

negative profit). The next row of Table 4 shows that
the optimal solution without using any store invento-
ries for e-commerce fulfillment is a single warehouse
in Detroit, which provides a small NPV profit. A much
better solution is achieved by allowing e-commerce ful-
fillment from store inventories, in which case the opti-
mal solution, shown in the last row of the table, has
four warehouses with a $20 million NPV profit, along
with a high service level. These results illustrate how
the decision to use store inventories can have a dra-
matic effect on both profit and the optimal locations of
omnichannel warehouses.

An alternative to locating new warehouses to im-
prove service and increase one-day delivery is to use
next-day-air shipping services. TH shipments are very
often odd-shaped items (e.g., hockey sticks) and the
average cost premium for next-day air to all MSAs from
the St. Louis warehouse is about $20 per shipment. To
assess the alternative of using next-day air, we compare
the service for the current network with a single ware-
house in St. Louis (using F = 2) with that for the opti-
mal (profit-maximizing) network. There are 135,535
orders that require more than one-day delivery in the
current network, but receive one-day delivery in the
optimal network. To use only the current single ware-
house in St. Louis and ship the 135,535 orders next-day
air adds about $2.7 million to the transportation costs,
but allows savings compared to the optimal network
(with multiple warehouses) in warehouse operating
and inventory costs. The net impact is that to match
the service level from the optimal network, using only
a St. Louis warehouse with next-day-air shipping, will
decrease the profit by $1.4 million.

Management Decision and Implementation
The results of our study show that maintaining the
St. Louis warehouse and adding one warehouse in
Philadelphia is not an optimal solution. Following anal-
yses and experimentation with the location model,
TH’s management team decided to put a 50,000-order-
per-year warehouse in Minneapolis, a 125,000-order-
per-year warehouse in Chicago, a 50,000-order-per-
year warehouse in Detroit, and a 125,000-order-per-year
warehouse in Philadelphia. This decision follows the
model’s general recommendations with lower values of
the market share factor F; however, TH put the larger
facility in Chicago rather than Detroit. Reasons for this
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include the proximity of Chicago to the current head-
quarters in St. Louis and quality-of-life considerations
for the operations management team, which would
have to relocate from headquarters to the new ware-
houselocation. (The warehouse operations director and
his supervisors have long tenure with TH, and manage-
ment thought that hiring new managers in a new loca-
tion would be unacceptably disruptive.)

Based on a distribution system with four omnichan-
nel warehouses, using optimal assighments to MSAs
and optimal sizes, we calculated the percentage of cus-
tomers and percentage of revenues that will receive
one-, two-, three-, and four-day service (Figure 4). Al-
though the western United States and Alaskan mar-
kets are far from the closest e-commerce shipping
point, one-day service is provided to 58 percent of USA
Hockey members, and these orders generate 77 percent
of total e-commerce revenues. An additional 24 percent
of customers, who generate 15 percent of revenues,
receive two-day service. These results show how the
model seeks to give better service to the more valu-
able markets (i.e., MSAs), not only the markets with
more players. (Recall that the e-commerce market size
for an MSA depends on the number of hockey play-
ers and the median income within the MSA.) Note that
92 percent of revenues are from customers receiving
one- or two-day service, which is a result of locating

warehouses near the major markets in the upper Mid-
west and Northeast. These results are important to TH,
and the company plans to advertise that its network
will reach about 60 percent of its customers in one
day. This contrasts with TH’s large competitors (one of
which has its warehouse in Dallas and another close to
Boston) whose networks cannot match TH’s speed of
delivery across the United States.

To further improve service, TH has been consider-
ing allowing e-commerce fulfillment from small ware-
houses in Denver and St. Louis. This is motivated
partly by the recent acquisition of a competitor with
a small warehouse that supported its Denver stores
and e-commerce operations. The small warehouse in
St. Louis is driven by the need for inventory-supporting
customer service and marketing operations at head-
quarters. The management team asked us to evaluate
a configuration with four main omnichannel ware-
houses (i.e., Minneapolis, Chicago, Detroit, Philadel-
phia), along with small store-based e-commerce fulfill-
ment centers in Denver (10,000 orders per year) and St.
Louis (5,000 orders per year). The result is a revenue
increase of $533,000 per year from the improved level of
service, because one-day service increased by 1 percent
(5,698 more customers) and two-day service increased
by 2 percent (14,048 more customers). However, the
added inventory costs are over $1.080 million in the two
store-based e-commerce fulfillment centers, due partly

Figure 4. (Color online) This Graph Shows the Percentage of Hockey Players Served, and the Percentage of Revenue Provided
by One-, Two-, Three-, and Four-Day Service from the Network Selected by TH
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to the absence of inventory economies of scale in these
smaller facilities.

Conclusions

Implementing omnichannel distribution can be chal-
lenging and little applied research is available to sup-
port optimal designs and implementation. This study
seeks to contribute in this area, although we do not
intend to provide comprehensive solution methods for
all omnichannel distribution systems. TH, and the spe-
cialty sporting goods market in general, have few stores
relative to many industries, and the market is well
defined, with the locations of a very high percentage
of customers known. Still, there are several general
lessons to take away from this study.

—Optimal omnichannel warehouse locations de-
pend on the level of e-commerce demand and on
economies of scale in inventory and operating costs.
About 30 percent of TH’s demand is via e-commerce;
therefore, our results are in line with the theoretical
findings from Bendoly et al. (2007), which favor the use
of decentralized channels (e.g., store inventories) for
lower levels of e-commerce demand. The models also
show how warehousing economies of scale can over-
come the benefits of having many small e-commerce
warehouses to achieve high service levels (an aspect
that TH management considered originally).

—Network design depends on the fulfillment strat-
egy regarding the use of inventory from retail stores.
The ability to leverage in-store inventory for e-com-
merce sales can be economically beneficial and can
improve service levels, a benefit that will be especially
important with the growing trend toward fast delivery
(i.e., one day or less).

—Sensitivity analysis with a comprehensive distri-
bution-system design model can help clarify trade-offs
and identify key parameters, especially in the face of
uncertainty and in competitive environments where
market capture and competitor responses are uncertain.

—Although many e-commerce omnichannel strate-
gies include shipping orders from the backrooms of
individual stores at the beginning, if orders contain
more than one item, the probability of having the right
inventory in any one store can be very low. Where
practical, bringing items from retail stores back to an
omnichannel warehouse can be beneficial.

Our research shows how optimization modeling,
whichincludes practical details of real-world operations
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that incorporate management concerns and beliefs in
an uncertain and competitive business environment,
complements more theoretical modeling to shed light
on challenging supply chain design issues. This illus-
trates the value of combining the power of optimiza-
tion with managerial decision making and strategic
planning in the face of future uncertainty.
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Appendix A

The omnichannel warehouse network design model is for-
mulated as a capacitated fixed-charge location problem,
where each warehouse location has multiple possible capac-
ities. The formulation uses four sets: I for the set of markets,
] for the set of possible warehouse locations, S for the set of
cities with TH stores, and K for the set of warehouse sizes.

The formulation includes the following parameters:

p = gross profit per order for TH;

v = TH’s hurdle rate;

)/j’.‘ = capacity in orders for a warehouse of size k at
location j;

M;; = e-commerce demand in orders per year from MSA i
that will be captured if assigned to a facility at
location j;

h* = annual inventory holding costs for a warehouse of
size k at location j;

a;.‘ =annual operating costs for a warehouse of size k at
location j;

f].k = one-time fixed costs to open a warehouse of size k at
location j;

¢;; = parcel shipping cost for the average order ($ per order)
to MSA i from a warehouse at location j;

dy; = LTL shipping cost ($ per pallet) to MSA s from a
warehouse at j;

b, =number of pallets shipped to all TH stores in MSA s;

e¥ =labor cost savings per TH store from having a

warehouse of size k at location j; and
g; =number of TH retail stores in proximity to a
warehouse at location j.

The formulation uses three sets of binary variables for the
locations of warehouses of appropriate size and the alloca-
tion of both MSAs and retail stores to a warehouse:

Y;;=1 if MSA i is served by a facility at location j;

Xk=1 ifa facility of size k is open at location j, k ={1,2,
3,4,5};

Z,j=1 ifstoresin MSA s are served by a facility at location j;

-
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To calculate the market share M;;, we first estimate the
e-commerce demand in annual orders for MSA i, O;, by
apportioning the total of 891,000 orders in the United States

to the MSAs:

0,=891,000
no. of hockey players in MSA i X median income of MSA i
> no. of hockey players in MSA i x median income of MSA i

In the example using Chicago, as we discuss in the Model-
ing Market Share section, we can use this equation to estimate
the total e-commerce demand in orders for Chicago as:

28,857 x $70,074

OChicago = 891’000m

=47,613.
The model for the market share (in annual orders) captured

by TH in MSA i by serving it from warehouse location j that
was developed in concert with TH management is given by

—a;XL;+B; XG;

1
My =0 [m
Using the same example, a 10 percent factor for a; and g; to
adjust market shares, and a market share factor F =2, gives
the Chicago demand captured by TH as

Monicago, 1. Lows =47, 613[ ~0.1%x2+0.1x1|=19,045 orders.

The three terms in brackets model the market share (per-
centage) that TH captures of the total e-commerce demand
in MSA i (O;). Larger values of the travel time (i.e., lower ser-
vice) and larger values of F decrease the first term. For exam-
ple, using F =2, the first term in the brackets is 1/(1 X 2) =50%
if an MSA is served by a TH warehouse in one day, 1/(2x2) =
25% if the MSA is served by a TH warehouse in two days,
and 1/(3x2) =16.7% for three-day service. The second term
in brackets captures the decrease in market share due to com-
petitor chains in an MSA. Parameter a; is the percentage
decrease in market share for MSA i for each competitor chain
in MSA i and L; is the number of competitor chains in MSA i.
The third term in brackets above captures the increase in
market share due to having a TH store in the MSA. Param-
eter f; is the percentage increase in market share for MSA i
from having one or more TH stores in MSA i, and G; is a
binary variable indicating whether TH has a retail store in
MSA i. The parameters «; and g, are selected by management
based on market conditions. In the results presented, we use
a; =B; =10% for all MSAs.

The objective function in the network design model con-
sists of the gross profit minus the relevant costs for ware-
housing, holding inventory, delivery to stores and to MSAs
for e-commerce orders, and the in-store-market labor cost
savings. The components of the objective are as follows:

GP = Annual gross profit=3; pM,] s
FO =Facility opening costs = Z ki f]k X;‘
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OI = Annual operating + inventory holding
costs = Zk,j(a;‘ + hj‘)X;‘,

ED =E-commerce delivery costs = 3; ; ¢;;M;;Y;j;
SS =Store-support delivery costs = 3, ; b,d,;Z;;
LC =DC in-store market labor-cost savings = 3 ;g je;‘ X

The annual net profit can be calculated as GP + LC — OI —
ED —SS. All components except the facility opening costs are
annual costs; therefore, the five-year discounted net profit is

given by
DAY+ kZ BjiXj = 2, CsiZsjs
ij 2 s

where

Aij=(P 1])M1/XZ (1+ )t’

B =[q;¢} - (af +hk)]x[ -f%

(1+v)

=bed XZ(HU)t

The term A;; includes the gross profit (GP) and e-com-
merce delivery costs (ED), Bj, includes the facility open-
ing costs (FO), warehouse operating and inventory holding
costs (OI), and the DC in-store market labor-cost savings (LC),
and C;; includes the store-support delivery costs (SS).

The omruchannel location model can then be formu-
lated as

max ZAIJYI/ +ZB]ka( _ZCS]ZS] (A.l)
ij k,j s, j
subject to ZY =1, Vi (A2)
,]_ZX Vi, j; (A3)
ZZS,: Vs (A4)
zs]sx4+x5 Vs, j; (A.5)
ZMU ,szkak v (A.6)
ZX’f_ R ¥ (A7)
k
X{e{0,1}, Vjk (A9)
Z,;€{0,1}. Vs,j. (A.10)

The objective (A.1) maximizes the five-year NPV of net
profit. The constraints are those from a capacitated fixed-
charge location problem. Constraint (A.2) ensures each MSA
is served by one warehouse. Constraint (A.3) ensures MSAs
are assigned only to open facilities. Constraint (A.4) ensures
each TH retail store is served by one warehouse. Con-
straint (A.5) ensures TH retail stores are assigned only to
warehouses of the two largest sizes. Constraint (A.6) ensures
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the capacity of a warehouse is large enough for the assigned
e-commerce demand. Constraint (A.7) ensures a warehouse
is opened at only one size level. Constraints (A.8)—(A.10) are
domain constraints.

Appendix B

Table B.1. Summary Fit Statistics and Coefficient Estimates
of the ARIMA Intervention Model for Chicago

Model statistics
Model fit
statistics X
—_— Ljung-Box Q(18)
No. of Stationary No. of
predictors R-squared Statistics DF Sig. outliers
1 0.938 21.006 18 0.279 7
ARIMA model parameters
Estimate SE t Sig.
Sales Constant 2,404 373.2 6.442 0.000
Stores Numerator Lag0 8,687 1,348 6.444 0.000
Outliers
Estimate SE t Sig.

August 2006 Transient ~Magnitude 4,801 1872 2.564 0.012

Decay factor 0.907 0.092 9.880  0.000

Dec 2007 Additive 11,267 2,705 4.166  0.000
Dec 2008 Additive 24,316 2,733 8.898  0.000
Jan 2009 Transient ~Magnitude 11,547 2,356 4902 0.000

Decay factor 0.747 0.088 8.461  0.000
Aug 2009 Transient ~Magnitude 13,494 2,078 6.493 0.000
Dec 2009 Additive 34,360 3,021 11.375 0.000
Jan 2010 Additive 8,966 3,239 2.768 0.007
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Verification Letter

Rob Bowers, Vice President of Strategy, Total Hockey, 3120
Riverport Tech Center Drive, Maryland Heights, MO 63043,
writes:

“Total Hockey is a 17-year-old retailer specializing in
hockey and lacrosse equipment and apparel needs for ama-
teur participants. Total Hockey has long been an organization
driven by data and innovation, from the market analysis that
drives store site selection, to the demographic data from our
partnership with USA Hockey, to our marketing strategies
built around personas identified through our 12-year-old loy-
alty program.

“Almost four years ago, as Total Hockey’s footprint was
growing from three MSA’s in the upper Midwest to seven
MSA’s stretching from St. Louis to Philadelphia and our
ecommerce business was continuing its rapid growth as a
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central element of our omnichannel strategy, it became clear
that we needed to enhance our capabilities in inventory man-
agement, logistics, and process management.

“In 2015, we began working with Dr. Mitch Millstein to
optimize our facility locations supporting e-commerce and
in-store inventory needs. From this work we developed a new
omnichannel warehousing and inventory plan that entirely
redefined our approach to warehousing, inventory manage-
ment, store distribution and fulfillment. The modeling efforts
caused us to rethink our expansion strategy from needing a
single new east-coast warehouse to a more complex distribu-
tion system with multiple warehouses as well as e-commerce
fulfillment from retail stores. This work illuminated some
options we had never considered, including the value of in-
store inventories to support e-commerce sales. As a result of
the analyses by Dr. Millstein we have begun the move to an
improved omnichannel design by reassigning MSAs to new
warehouses, greater leveraging of in-store inventories to sat-
isfy e-commerce demands, and exploring acquisitions of new
warehousing space in serval strategic locations. We have
already seen an improvement of more than $300,000 from
both more efficient shipping strategies and better inventory
management.”
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