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LMI developed the PNG inventory control solution to manage inventory items with infrequent demand
(i.e., isolated spikes in demand) as well as items with frequent, highly variable demand. Such items account for the
majority of hardware stocked at the U.S. Defense Logistics Agency (DLA). The forecasting of demand for these
items—no matter how sophisticated the forecasting method—had resulted in years of problems for DLA: excess
inventory for some items, backorders for others, and excessive buyer workload. The implementation of PNG, a
software package that consists of two inventory solutions, Peak Policy and Next Gen, allowed DLA to shift from
trying to forecast each item individually to using a portfolio or risk-management approach to inventory control.
Since DLA implemented PNG in January 2013, the agency has achieved its inventory-related goals for better
customer service and reduced buyer workload, has experienced no inventory increase, and has saved nearly $400
million per year.
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ML, a not-for-profit government consulting firm,

developed a unique inventory management tool to
help the U.S. military’s Defense Logistics Agency (DLA)
better manage its inventory portfolio. The PNG software
package combines two inventory solutions: Peak Policy
(Bachman and DeZwarte 2007) and the Next Generation
Inventory Model (Next Gen) (Bachman et al. 2011). With
PNG’s implementation, LMI shifted DLA away from
using traditional forecasting methods to employing a
more effective portfolio or risk-management approach
to inventory control.

DLA uses PNG to consider the trade-offs among
customer service, inventory value, and buyer workload
goals. DLA can then make a single inventory decision
that aligns with its organizational objectives—without
separate investments in forecasted demands, safety
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stock, or order quantities. The result has been better cus-
tomer service for the military servicemen that maintain
and repair equipment for the U.S. warfighter—DLA's
ultimate customer—and an impressive reduction in
buyer workload, but with no increase in inventory. DLA
is saving nearly $400 million per year—all from buying
more of what sells and less of what does not sell.

Here, we briefly describe the terminology we use in
this paper.

* Demands are requests for items from DLA’s inven-
tory.

e Fill rate is the percentage of orders filled completely
when an order is received.

e [nventory position is DLA’s stock on hand plus the
stock that is due in from replenishment orders; a nega-
tive on-hand inventory position denotes backorders.
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* Reorder point, denoted by s in (s, S) inventory
control doctrine, is the lower control level. When
an item’s inventory position drops to (or below) the
reorder point, a replenishment order is triggered.

* Requisitioning objective, denoted by S in (s, S) inven-
tory control doctrine, is the upper control level. When
an order is triggered, the order size is the difference
between the inventory position and the requisitioning
objective.

* Echelon is a stage of the supply chain. The items
that PNG manages are stocked only at the wholesale
echelon. DLA manages other items as retail stock; we
do not include them in our discussion.

e Wait time is the number of days between the
date an order is received and the date the last unit of
material filling the order is issued.

Background

DLA manages wholesale inventories of consumable
items for the U.S. Department of Defense and other
federal agencies. (The military services have their
own retail stocks of a lesser range of consumable
items and retain management of repairable items.)
By any standard, DLA is a large business. It has
$38 billion in annual sales (all to branches of the
U.S. government and allied forces) and $21 billion in
inventory, handles 131,000 customer orders and 10,000
contracting actions per day, and has more than five
million stock numbers. DLA manages nine supply
chains that cover everything from aviation, maritime,
and land systems to industrial hardware, construction
equipment, fuels, medical supplies, subsistence, and
clothing. Its five hardware supply chains are among the
most difficult to manage. (DLA uses the term hardware
generically for parts, equipment, and related items.)

The operating environment for the military is
dynamic and unpredictable. Customer demands for
hardware items are affected by wars, politics, military
policy, and congressional budget turbulence. These
causal factors are inherently unforecastable and drive a
level of uncertainty that makes planning extraordinarily
challenging.

Drifting failure patterns (patterns that are not well
explained by theoretical probability distributions) for
the military components within these supply chains
compound the demand uncertainty. Adding to this
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challenge, DLA sometimes has difficulty getting ven-
dors to bid for supply or manufacturing contracts.
Contracts for military hardware items are issued at
irregular intervals, and vendors often do not view
DLA as one of their “best” customers. When vendors
do work DLA items into their production schedules,
orders are fulfilled at the manufacturer’s convenience,
not DLA’s. As a result, lead times can range from a
few months to a few years.

A Problem with Multiple Dimensions

DLA has long recognized that its hardware supply
chains contain items with infrequent and highly vari-
able demand; therefore, it segmented its hardware item
populations in an attempt to better manage these items
based on demand characteristics. Statistical, demand-
based forecasting methods perform poorly for many of
these items, no matter how sophisticated the forecast-
ing algorithm. Therefore, we refer to these as items
with unforecastable demand; forecasting simply leads
to undesirable business outcomes (e.g., backorders,
excess inventory, excess procurement workload, wasted
working capital).

Commercial businesses might choose not to stock
such slow-moving items, but DLA must stock such
items because they are essential to support military
missions. In the military, as with many industries, if
a system is down for lack of a part, the mission is
in jeopardy. Having the right part available can truly
mean the difference between life and death.

To accommodate these problematic but essential
items, DLA segmented its hardware items based on
demand frequency. As Figure 1 illustrates, as demand
becomes more frequent (and consistent), we see fewer
items responsible for demand activity. The majority of
DLA items are demanded infrequently (with demand
in less than half the quarters). In addition, investment
risk—the danger that DLA invests in inventory that
ends up not being used—increases as the frequency
of demand decreases (moving from right to left in
Figure 1). The risk to customer service also goes up,
because it is difficult to predict with any accuracy the
specific items customers will actually need.

Realizing that forecasting did not work well for
the slower-moving items, DLA had been managing
items within the infrequent demand segment using
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Figure 1: DLA segmented its hardware business according to frequency of demand to accommodate peculiarities in

demand patterns.

a relatively simple set of business rules. Items with
more frequent demand were managed using traditional
forecasting and demand planning tools—until the
agency realized that not all high-frequency items were
forecastable.

The high-use segment includes a mix of items with
low demand variability (where standard forecast meth-
ods achieve good business outcomes) and items with
high variability (where existing forecast tools just do
not work well). Therefore, DLA’s segmentation of
its hardware population evolved from two to three
segments (Figure 2).

¢ Items that are forecastable because their demand
is frequent and has low variability;

¢ Items that are unforecastable because of infrequent
demand;

* Jtems that are unforecastable because of fre-
quent, but highly variable, demand patterns. (Frequent
demand is defined as having demand in more than
half the quarters. When the ratio of standard devia-
tion of quarterly demand to mean quarterly demand
exceeds 1.0, we consider the item’s demand to be
highly variable.)

Infrequent and unforecastable demand: Within the
segment of infrequent, irregularly spaced demand,
items experience demand spikes. Some demands occur
months apart; others occur two, three, or even four
years apart. Demand can be so sparse that keeping
manufacturing capacity online is not economical. If
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the spikes are more regularly spaced, DLA would
have a much easier problem; it could predict when
demand might occur. Unfortunately, the problem is
more complex than that, and the best forecast for most
of these items is zero. But using a forecast of zero
would result in zero stock—an unacceptable prospect
for critical military items.

Frequent but still unforecastable demand: Within
the segment of frequent, highly variable demand,
items experienced demand in most months. The issue
was in the variable size of the demand. During some
months, the demand may have been for five units;
in the next month, it may have been for 500 units.
Demand frequency is high, but the timing and size of
the demand is irregular. For this segment, commercial
forecasting and planning software, no matter how
sophisticated, has errors that can be as large as 200
percent, and the data do not fit standard probability
distributions.

LMI's goal was to help DLA find an approach
that would significantly improve business outcomes
for these two challenging segments (infrequent, iso-
lated spikes in demand and frequent, highly variable
demand).

Performance: Evaluating the Competition

DLA decided to keep its easiest segment of the hard-
ware population (shown on the right in Figure 2)
under its current forecast-based inventory control.
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Figure 2: The segmentation of DLA’s hardware business into three parts was an important step in achieving the

ultimate solution.

For the other two segments, the agency considered
alternatives that still fit into the planning structure of
using a forecast or demand plan, safety stock (stock
to cover demands that exceed a forecast of demand
over a lead time), and an order quantity expected to
cover demand over a fixed duration (also known as a
coverage duration).

Using inventory simulations, DLA conducted a
multiple-round competition of inventory forecasting
solutions. Each round varied the forecasting piece of
the planning logic. For some rounds, the goal was to
improve customer service without increased inventory;
other rounds focused on inventory reduction. DLA
considered as many as 25 forecasting methods.

At the time DLA expanded the competition to include
PNG, its goal was to reduce inventory value and

Goals: Reduce inventory and replenishment workload

procurement workload. PNG outperformed all other
alternatives for all metrics (Table 1).

Because LMI’s goal was to find the best solution
for our client, we analyzed other alternatives (beyond
those included in DLA’s competition) for items with
infrequent demand. These included Croston’s method
(Croston 1972) and bootstrapping-based stock levels.
Croston’s method forecasts demand sizes and time
between demands. The forecasts are combined to
produce a forecasted lead-time demand. Bootstrapping
develops an empirical distribution of lead-time demand;
Fricker and Goodhart (2000) describe bootstrapping and
show an application. Using a simulation, we compared
PNG with both Croston’s method and bootstrapping.
PNG required 30-50 percent less on-hand inventory to
yield the same level of customer service.

Scenario Inventory $ (%) Wait time (%) Cash outlay (%) % of orders Fill rate (%)

Best of all other inventory -1.2 70.7 —4.4 -59 -10.7
control methods

PNG —7.1 -3.6 -7.5 —40.9 0.8

Table 1: PNG outperformed more than 25 other inventory control methods tested by DLA.

Note. Table entries are percent changes from baseline.

RIGHTS L1 N Hig



Downloaded from informs.org by [132.207.236.247] on 11 October 2016, at 06:43 . For personal use only, al rights reserved.

Bachman et al.: Effective Inventory Control for Items with Highly Variable Demand

22

Interfaces 46(1), pp. 18-32, ©2016 INFORMS

For the frequently demanded, but highly variable
demand items, we tested several alternative safety
stock methods. These methods assumed a wide variety
of probability distributions (for the quantity demanded
over a fixed lead time), including normal, gamma,
negative binomial, lognormal, Laplace, Poisson, uni-
form, and Weibull. Variance estimates included those
based on mean absolute deviation and mean-squared
error. None of the safety stock methods we evaluated
improved metrics for the highly variable segment.
Statistical goodness-of-fit tests performed on the the-
oretical distributions rejected all methods (less than
0.5 percent probability of a false rejection), which is
not surprising because many demand distributions are
multimodal.

None of the alternative methods examined by either
LMI or DLA for the problematic segments of DLA
inventory yielded a significant improvement in bottom-
line business metrics. The exception was PNG, which
abandons the forecast and safety stock model for a
radically different, risk-management-based approach.

In 2013, LMI implemented PNG for the five DLA
hardware supply chains. It was a large-scale imple-
mentation, with more than 500,000 stock-keeping units
(SKUs) that accounted for $1.5 billion in annual sales.
(An SKU is an item or part number at a location; this
initial implementation only covered items with a single
location.)

Trade-Offs Among Business Objectives

DLA also needed to set priorities and configure the
model to suit the agency’s business goals. PNG presents
supply chain managers with trade-off curves, which
illustrate the three-way trade-off of different business
outcomes. For example, the horizontal axis in Figure 3
presents on-hand inventory values; the vertical axis is
average wait time, and the shading represents differ-
ent levels of procurements (buys) awarded annually.
Alternatively, the vertical axis can show fill rate.

By picking a single operating point—just one de-
cision—an inventory supply chain manager can make
a simultaneous three-way trade-off among operational
goals (for example, customer service, inventory, and
annual buys).

DLA supply chain managers started with the base-
line (the black square at the upper right in Figure 3)
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Figure 3: With PNG, DLA can select a point on a curve that best aligns with
its overall business goals.

or current process. They considered several options,
such as pushing to reduce inventory value, with more
modest improvements in customer service and reduc-
tions in buyer workload. Other options emphasized
customer service and procurement workload.

PNG offered DLA up to 30 possible trade-offs in long-
term metrics, and an analysis of the near-term effects
(e.g., obligation authority—or the annual expenditures
on replenishing material—or number of immediate
buys) for each option.

DLA did not pick points at the enterprise level.
Instead, each supply chain manager selected a point
that best met his (her) unique goals. Overall, DLA chose
to keep average on-hand inventory about the same,
while reducing both the number of buys generated
annually and customer wait time. Each supply chain
manager revisits the trade-off curves annually.

Once a trade-off curve point is selected, a simulation
model projects a range of annual expenditures across
simulation trials. The one-year expenditure associated
with a trade-off point can be one factor considered in
the point selection.

Selecting a point on a particular trade-off curve
translates to fixed PNG model parameters for each
supply chain and specific weights for the three business
metrics. The PNG model parameters are then used
during subsequent quarterly processing to generate
an (s, S) pair for each item (Scarf 1960). This quarterly
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review updates levels to reflect changes to item demand
transactions and item characteristics, such as lead times,
prices, and asset position; but it does not change the
PNG settings established during the annual process.

Peak Policy

Peak Policy (Peak) is analogous to a surge protector for
an electrical circuit. The normal voltage is a constant
12 volts (V), but sometimes there are voltage spikes (e.g.,
the largest voltage spike might be 50,000 V). We may
not be able to afford a surge protector sophisticated
enough to protect against a 50,000 V spike, but we can
afford one that will protect against 10,000 V. This may
cover 90 percent of the voltage spikes but still keep the
protection level affordable. The normal no-demand
situation is analogous to the standard 12 V, and the
infrequent demands are the voltage spikes.

Instead of forecasting, Peak determines the (s, S) pair
for each item in a population using a simulation-based
hedging strategy that balances the risks of being either
out of stock or overinvesting. Because Peak considers
the overall population as a portfolio (much like a stock

Quantity
(= e,
O
.
oF

Determine peak

for each item Month

Identify 7 price
groups

-

Calculate metrics for each
parameter set (1,000s)
o Customer wait time

o Inventory value

o Buyer workload
parameter set

<

Run mixed-integer /

program optimization

Run 1,000s of simulations with
randomized demand for each (M, Q)

portfolio), it does not attempt to predict the outcomes
for individual items.

Peak also uses all of an item’s historical demands
for the previous five years to develop a risk profile
for future demand, even if the only demand occurred
five years ago. This means that Peak evaluates the
possibility that future demand will be as large as any
quarterly demand within that five-year window. Experi-
menting with shorter windows (i.e., one, two, and three
years) showed little improvement in customer service.
At four years, however, customer service dramatically
improved, and it improved even further at five years.
Moving to six- and seven-year windows improved ser-
vice further but required significantly greater inventory
value. Five years offers the best balance between the
contrasting goals of excellent service and low inventory
investment. Peak does not assume another demand
spike will occur, nor does it assume full coverage for a
similar demand spike. Peak simply uses past demand
to illustrate a range of demands that could occur under
unforeseen circumstances, such as a war.

Figure 4 illustrates the steps of the Peak process,
from raw data to trade-off curves.

== - The peak is the maximum quarterly demand of the item

20 30
s = (price group multiplier, M) (max buffer size)

S = (price based order quantity, Q) + s

Generate 1,000s of
_ possible (M, Q)

parameter sets for
each price group

Wait time (days)

o 11.7Kbuys )

® = 11.6kbuyslyears (baseline) .
9130 132 134 136 138 140 142 144 146 148
On-hand inventory value ($M)

Management selects a
trade-off curve point,
which maps to an (M, Q)
parameter set

Figure 4: Peak follows seven steps to go from raw data to trade-off curves for items with infrequent demand.
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First (step 1 in Figure 4), the items are sorted by unit
price, and we identify the 10th, 25th, 50th, 75th, 90th,
and 95th percentile prices. These price breaks form the
boundaries for seven price groups.

Next, for each individual item, the model finds the
largest spike in demand (i.e., the peak) over a 20-quarter
period (Figure 4, step 2). The item’s reorder point is
set to a yet-to-be-determined multiplier (M) times the
peak demand. To keep buyer workload down, Peak
uses price-based order quantities and replenishes less
expensive items in larger batches than expensive items.
The requisitioning objective for an item is its reorder
point plus a yet-to-be-determined order quantity (Q).

The best (M, Q) sets are determined through simu-
lation and optimization. The Peak algorithm creates
thousands of sets of possible multipliers and order
quantities for each price group (Figure 4, step 3); these
are sets of model parameters.

The model then simulates randomized demand
spikes (using an empirical distribution based on actual
demand history) over a period of years, typically run-
ning 20 trials (20 possible futures). The same demand
patterns are used to stress test thousands of model
parameter sets (Figure 4, step 4). Our approach differs
from other simulations that assume either a constant
demand rate or a theoretical textbook probability distri-
bution of demand.

From the simulations, Peak projects population-level
outcomes for customer service, inventory value, and
buyer workload (Figure 4, step 5) for each parameter
set. These population-level outcomes are the coefficients
of the objective function and constraints of a mixed-
integer program (MIP) problem (Figure 4, step 6).
A branch-and-cut solver finds the best (M, Q) sets to
attain various trade-offs between business outcomes.
Appendix A includes the MIP formulation.

Each trade-off curve generated corresponds to a rela-
tively narrow range for annual buys, almost a level
curve. In step 7 of Figure 4, a manager selects an
operating point on a trade-off curve that aligns with the
organization’s long-term goals (three to five years out).
The point selected maps to a parameter set (a specific
M and a specific Q for each price group).

Finally, to set an item’s (s, S), the algorithm deter-
mines the price group in which the item falls and
applies that price group’s M and Q, as we explain
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earlier, to set (s, S) for each item. Point selection (deter-
mining Ms and Qs) is typically done annually, whereas
the (s, S) pairs are updated quarterly to reflect changes
in the demand history.

The Next Generation Inventory Model

Now let us turn to Next Gen, our solution to the prob-
lem of frequent, but highly variable demand. The Next
Gen model frames decisions about the size and timing
of buys according to empirical distributions of demand
quantities and the time between demands. Although
Next Gen was designed for items with frequent, albeit
variable demand, the model also works well on more
consistent demand, where forecast-based approaches
have historically been applied.

Next Gen starts with an original stream of customer
orders—five years of orders if they are available; at least
two years of orders are required. Next Gen first builds
histograms (Figure 5, step 1) for order interarrival times
and order sizes, and weights more recent observations
more heavily, which allows the model to adapt to
changing demand over time. (Balancing responsiveness
to a slowly developing trend without overreacting to
spikes in demand was a major challenge.)

Using renewal theory (Ross 1992), and building on
the work of Sahin (1979, 1982), Next Gen estimates
the probabilities of the inventory position for a wide
range of potential (s, S) pair combinations (Figure 5,
step 2.a) directly from the histograms. The inventory-
position probability distribution is computed from
n-fold convolutions of the demand-size histogram.

From convolutions of the interarrival time and
demand-size histograms, we also arrive at probabilities
for different amounts of customer demand (Figure 5,
step 2.b) for the fixed lead time in the input data, which
may result in a multimodal, badly behaved distribution
(Figure 6).

Next Gen generates multiple sets of penalty factors
for backorders, inventory value, and annual buys
(Figure 5, step 3.a). It builds a cost function for each set
(Figure 5, step 3.b), which adds terms for requisition
backorders and inventory position (beyond the Sahin
objective function). This balances service for items with
small demand sizes with items with large demand
sizes and prevents overinvesting in a few items at
the expense of all the others. However, this new cost
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Figure 5: Next Gen follows five steps to go from raw data to trade-off curves for items with highly variable demand.

function does not satisfy the conditions assumed by
the Z-F search (Zheng and Federgruen 1991, 1992);
therefore, we approximate using an alternate cost
function that does. We provide additional details in
Appendix B.

At this point, we have a formula (the cost function)
with values for penalty factors; however, we still need
an (s, S) pair for each item that minimizes the total
cost. To evaluate the cost function for a particular (s, S)
pair (for every item), Next Gen calculates probabilities
for backorders, on-hand inventory, and annual buys to
get the expected values for the cost terms.

For each item, the Z-F algorithm performs a stair-
step search within the (s, S) plane, adjusting the s
and S at each step and then reevaluating the cost
function. The result is one (s, S) pair for each item,
which minimizes this particular cost function (Figure 5,
step 4). In addition, combinations of (s, S) sets minimize
the other cost functions (each with different penalty
factors) that were generated. To build trade-off curves
(Figure 5, step 5), Next Gen assesses each (s, S) set
using LMI’s financial and inventory simulation model
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FINISIM™, which projects wait time, fill rate, inventory
value, and procurement actions. We intentionally use
a simulation with spliced segments (with random
starting points and lengths) of the original demand
history, thus ensuring that the demand stream does
not assume that the lead-time demand and inventory-
position probabilities in the Next Gen model are correct.
This independent assessment (against many possible
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Figure 6: Next Gen can accommodate badly behaved, multimodal
distributions.



Downloaded from informs.org by [132.207.236.247] on 11 October 2016, at 06:43 . For personal use only, al rights reserved.

Bachman et al.: Effective Inventory Control for Items with Highly Variable Demand

26

Interfaces 46(1), pp. 18-32, ©2016 INFORMS

futures) gives us confidence that the Next Gen trade-off
curves are robust and present practical options. To our
knowledge, other solutions do not assess their stock
levels for robustness against demand patterns that do
not meet their mathematical assumptions.

On a single CPU, and in the most computationally
intensive case (tuned for large investment and few pro-
curement actions), the average runtime is 0.62 seconds
per (s, S) calculation. Tuning to a particular on-hand
inventory level requires approximately 10 iterations (6.2
CPU seconds). For a 300,000-item population, this gives
a total run time of 1.86 million CPU seconds (520 CPU
hours) to tune to any given investment target.

Much like Peak, the Next Gen results are presented
as a family of trade-off curves, parameterized by the
number of annual replenishment actions generated.
We do not need to make separate decisions on safety
stock or order quantity, or to accept a demand plan
with unknown cost implications. The operating point
selected maps directly to an (s, S) pair of levels for
each item.

Within Next Gen, we build histograms from the
actual demand arrival process, make them adaptive (but
not overly reactive), and use renewal theory to compute
business metrics directly (without introducing errors
from forecasting and distribution fitting). We extended
the literature to target minimization of both requisition
and unit backorders and to spread customer support
across items, all while maintaining an efficient solution
for the entire population. We also developed efficient
techniques (incorporating improvements in convolution
speed, rescaling the unit of issue, parallelizing the
algorithm, and running on a 64-node cluster) to reduce
run time by two orders of magnitude.

Next Gen differs from the few competing solutions
(of which we are aware) that use empirical demand
probabilities in several important ways:

¢ It uses empirical probabilities to build trade-off
curves, thus enabling a single, integrated decision.
Only a few methods use empirical distributions and a
fill-rate goal, but such methods do not integrate cost,
workload, and customer service.

¢ It predicts outcomes only at the overall population
level.

¢ The explicit treatment of the demand arrival pro-
cess, rather than starting with an empirical distribution
for lead-time demand, enables (s, S) to evolve dynami-
cally over time, without overreacting.

RIGHTS L

Development and Implementation
Timeline

The development of PNG was a long but worthwhile
journey. From one perspective, development followed a
familiar path—from the problem definition to the model
formulation phases, we tested our models against
real-world data, compared them with alternatives, and
then implemented a solution. From another perspective,
the journey was unusual. The failure and ultimate
abandonment of standard inventory control led to a
years-long search for alternatives. Ultimately, finding a
solution required a radical shift in perspective.

The development timeline for PNG spans 14 years
(Figure 7), which is a testament to the difficulty of the
problems, and the resourcefulness and determination it
took to solve them.

In 1999, production at the U.S. Department of Defense
maintenance depots was being delayed by shortages of
repair parts, and the Office of the Secretary of Defense
(OSD) asked LMI to determine the nature and cause of
the parts shortages. We discovered that approximately
40 percent of the stock numbers that were delaying
repairs were items with infrequent demand.

We sought to characterize the demand pattern for
roughly 300,000 such items. As we moved a replenish-
ment lead-time window through each item’s demand
history, we recorded how many windows captured any
demand (irrespective of quantity). We found that more
than 90 percent of the lead-time demand observations
were zero (i.e., no observed demands).

If the usual situation for items with infrequent
demand was no demand, any positive demand was an
aberration. We realized that, rather than forecasting
demand, we needed to protect against the risk that a
demand might occur. Thus, we redefined the problem
in terms of risk management.

With this new risk-management mindset, we devel-
oped inventory control algorithms that balanced pro-
tection against unpredictable demand spikes with
affordable investment. Those algorithms became Peak
Policy.

By 2004, our simulation studies showed that the new
Peak algorithms delivered more cost-effective support
for more than 20 different item populations (containing
from a few hundred to more than 20,000 items), includ-
ing aircraft, maritime systems, land systems, engines,
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another decade to implement the solution.

and communications and electronics categories. We also
showed that the benefits were reproducible across item
populations and robust over time.

Could Peak also improve weapon system readiness?
Replaying history with Navy and DLA data in a
simulation, we showed fewer aircraft would have been
out of operation for lack of parts had Peak been used,
and without increasing the dollar value of inventory.
We presented the methodology and results at the
2004 Military Operations Research Society (MORS)
Symposium and won the Barchi Prize for best paper
(Bachman 2007).

We went live with a population of aviation supply
chain items in 2004. Shortly after, in 2005, DLA started
an enterprise resource planning implementation, which
delayed further Peak implementation.

In 2006-2007, motivated by our earlier success
with Peak Policy, we decided to create a new
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Figure 7: The development of PNG took many years. Even after the benefits of Peak were proven, it took nearly

risk-management approach for items with more fre-
quent, but volatile demand. Because we had more
data than were available for our infrequent demand
case, we looked to maximize the use of that data. Our
hypothesis was that, if we looked at demands over a
long enough period, causal factors behind the demand
uncertainty (e.g., changeable maintenance programs
and uncertain failure patterns) would be reflected in
the data—not perfectly, but, perhaps, well enough to
achieve better business outcomes.

From 2008 to 2010, we developed Next Gen, a new
model based on the raw demand process. Next Gen
used five-year demand histories and advanced math-
ematical algorithms to develop stock levels, but it
did not use a demand plan, forecast, safety stock, or
separate order quantity.

In 2011, Next Gen passed rigorous simulation testing
and was ready for use. Separately, we found we could
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improve the Peak algorithms, rendering them capable
of finding better solutions more quickly. This new
approach proved both effective and efficient, and
made large-scale application of Peak possible (tens of
thousands to hundreds of thousands of items).

Between July 2012 and January 2013, LMI coordi-
nated with DLA’s information technology services,
supply chains, and headquarters to implement PNG.
Changing the mindset—convincing people to move
away from a forecast-based business view and con-
sider inventory management based on a balance of
risks and probabilities—was difficult. Effective commu-
nication, training, and close coordination across the
enterprise were significant factors in our successful
implementation.

In January 2013, DLA began using PNG to control
the inventory levels for 500,000 of its most difficult-to-
manage SKUs. Just two years later, metrics show that
PNG is delivering impressive benefits.

Benefits

DLA supply chains set the following goals during the
trade-off curve point-selection process:

* Achieve 90 percent fill rate (in accordance with
the DLA director’s operations order).

e Target a significant reduction in procurement
request (PR) workload.

* Improve both wait time and on-hand inventory
value.

Just over two years after its implementation, PNG
helped DLA make considerable progress toward these
goals. (Although wait time was initially one of the
three goals established by the supply chains, fill rate
eventually became the focus metric for customer service
and DLA placed less attention on wait time.)

Increased fill rate: Greater fill rate translates into
better support and higher weapon system readiness.
For items managed by PNG, fill rate—the percentage
of orders filled completely on the same day they are
received—increased four percentage points, without
increasing on-hand inventory value. The item pop-
ulation under Peak (items with sporadic demand)
improved by 10 percentage points, from 72 to 82 percent.
The Next Gen items (items with frequent, but highly
variable demand) improved by four percentage points,
from 85 to 89 percent.

RIGHTS L

Reduced PR workload: Before implementation, DLA
generated 369,000 PRs each year for the items the
agency selected for PNG management. PRs are con-
tractual documents that describe the material to be
obtained. PNG reduced the number of PRs by 35 per-
cent to 239,000. If we assume that one-third of the PRs
are processed manually (a conservative estimate) and
use a DLA-provided labor cost of $400 per request,
DLA saves nearly $18 million per year—$90 million in
savings over five years.

Reduced PR cancellations: Cancelled PRs are down
70 percent, from 145,000 to 45,000 per year. Using a
DLA-provided labor cost of $75 to cancel a PR, this
saves DLA $7.5 million per year—$37.5 million over
five years.

Improved dollar value of on-hand inventory: On-
hand inventory value decreased from $3.3 billion in
January 2013 to $2.7 billion in October 2014. The
reduction was achieved mostly through an aggressive
disposal policy; however, because PNG ensures that
DLA continues to buy more of what sells and less of
what does not sell, PNG contributes to the inventory
reduction. More importantly, with PNG, DLA will
avoid a new buildup of excess inventory after disposal.

More efficient use of working capital: Before PNG,
that is, in calendar year 2012 (CY12) and prior years,
dollars invested in replenishment stock were running
much higher than revenue generated from sales. Fig-
ure 8 shows a steady decline in the ratio of procurement
dollars to sales dollars. (Over the same period, this
ratio actually increased for the population of items
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Figure 8: PNG reduces overinvestments resulting from volatile forecasts.
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not assigned to PNG—their overspending continued
to rise.) With PNG, DLA is using its working capital
more efficiently and seeing a reduction in overspend-
ing. By reducing the gap between dollars spent on
procurements and dollars earned on sales, DLA will
save $400 million annually.

Improved warfighter support: The greatest benefit
is occurring beyond DLA. Having the right items on
shelves directly correlates to an increase in fill rate for
mission-critical items, which means greater availability
of weapon systems and warfighter readiness.

Organizational Impact

The DLA and LMI teams continue to meet to discuss
implementation activities and monitor metrics and
progress. The supply chains actively engage in the
annual trade-off curve process, reviewing achievements
from the previous year and setting goals for the next.
DLA’s supply chains are shifting their thinking and
better managing their inventories by balancing risks,
rather than forecasting demand.

Lessons Learned

From an operations research perspective, what have
we learned?

¢ Defining the right problem is critical. The problem
was not about improving forecasts; it was about buying
the right quantity at the right time.

* When modifying any of the standard methods
fails to solve the problem, seeking a fresh approach is
appropriate.

* Persistence pays off. It took 14 years, from ini-
tial search to solution implementation. The last five
years were spent winning support for the PNG
approach.

* A close partnership between operations research
practitioners and the client organization is a key to
success. Funding, unwavering support, and review of
results by members of the DLA research and develop-
ment program were critical elements in PNG’s success.

Additional Applications

Several other industries may benefit from our approach,
including automotive, commercial aircraft, marine
hardware, apparel, consumer goods, food and bev-
erage, manufacturing, oil and gas, pharmaceuticals,
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and medical supplies. The high-technology and elec-
tronics industries, and those that provide service and
aftermarket parts, would also benefit from PNG.
Following PNG’s successful implementation at DLA,
OSD has initiated a project to extend the software to
reparable items managed by the military services.

Appendix A. Peak Policy

Let m; and g; equal the number of possible values for multi-
pliers (M) and order quantities (Q) for price group i. For
example, price group i =1 might have six possible multiplier
values (i.e., m; = 6) and four possible order quantity values
(i.e., g; =4), which results in 24 different candidate (M, Q)
pairs for price group i=1. There are N price groups and K
candidate multiplier and order quantity pairs per price group:
K=m; xgq;.

The problem of finding Peak Policy parameters (multipliers
M and order quantities Q by price group) to meet a given set
of trade-off goals is formulated as an MIP, where simulation
outputs for wait time, on-hand inventory value, and PRs are
key input parameters for the problem. The baseline stocking
policy refers to the metrics achieved by the business prior to
conducting the trade-off analysis using the MIP.

Parameters
i = price group, (i=1,...,N);
j =candidate (M, Q) pair for price group i,
(j=1,...,K);
OH;; = average on-hand inventory value for parameter
pairing j of price group i;
OHy,, = average on-hand inventory value for the baseline
stocking policy;
= scaling factor for average on-hand inventory
constraint (this is the percentage of OH,,,. that is
permitted for the average on-hand inventory
resulting from the MIP);
PR;; = procurement workload for parameter pairing j of
price group i;

PRy, = average procurement workload for baseline
stocking policy;

PR, ;. = scaling factor for procurement workload constraint
(this is the percentage of PRy, that is permitted
for the procurement workload resulting from the
MIP);

WR;; = average wait time for parameter pairing j of price
group i;

WR,,,,. = average wait time for the baseline stocking policy;

WR,,. = scaling factor for average wait time constraint (this
is the percentage of WRy,.. that is permitted for
the waiting time resulting from the MIP).

The parameters OH;;, PR;;, and WR;; are the outputs of a
simulation model using Peak Policy.

OH

scale

scale
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Decision Variables
X;;=1: When (M, Q) candidate pair j from price group i is
used; otherwise = 0.

Objective function. The business outcome metrics are on-
hand inventory, wait time, and procurement workload. Any
of these three outcome metrics can be minimized and the
others constrained. To illustrate, we present the on-hand
inventory value objective function as N, Zle OH;; Xj;.

Constraints. The procurement workload projected by Peak
Policy should not exceed some percentage of the procurement
workload associated with the baseline stocking policy. If
procurement workload is not an issue, PR, may be greater
than 1. We have

N K

Z ZPRU Xz] =< PRscale PRbase .
i=1j=1

The wait time projected by Peak Policy should not exceed
some percentage of the wait time associated with the baseline
stocking policy. We have

N K
Z Z WRij Xij =< WRscale WRbase .
i=1j=1

There is, at most, one Peak multiplier and Peak order quantity
per price group i. We have

Binary Constraints. The decision variables are binary,
such that
X;€{0,1}, Vi, j.

Appendix B. Next Generation Inventory Model

The Next Gen model computes (s, S) levels for items in
a population for use with either a continuous-review or
periodic-review ordering doctrine. Next Gen consists of two
parts: an analytical optimization model and a stochastic
simulation. The optimization model computes (s, S) levels
for items, and the simulation model independently assesses
(s, S) levels in terms of business metrics for customer service,
inventory value, and replenishment workload. This appendix
describes the optimization model.

Optimization Algorithm

Zheng and Federgruen (1991), using an abstract objective
function with specified properties, showed how to efficiently
solve for (s, S) policies when a positive cost to replenish
exists and shortages are backordered. This was a major break-
through, because it had been known since the 1950s (Arrow
et al. 1958) that the objective function was badly behaved,
with multiple local minimums. Search algorithms prior to
Z-F (Veinott and Wagner 1965), although faster than an
exhaustive search, were not computationally efficient enough
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to be practical. Recent books (Axsdter 2006, Zipkin 2000) cite
Z-F as the best relevant algorithm. To our knowledge, we are
the first to apply the Z-F algorithm to a practical problem;
however, the Zheng and Federgruen (1991) paper did not
express the objective function in terms of observable data.
We needed to construct an objective function from observable
data and, if possible, show it satisfied the Z-F conditions.

The population’s objective function, whose solution is a
set of (s, S) levels for every item, is the sum of the items’
objective functions. The item problems are linked by a set of
common penalty factors for backorders, carrying inventory,
and replenishment actions. Therefore, it suffices to work with
an item’s objective function.

Let c(s, S) be the expected cost per unit time, for a single
item, in equilibrium. We have

1 K A-1
65,9 = 337 |+ 2GS )
Mg j=0
1 K S—s—1 ] )
= W=+ 5 OSE-D)
where
A=S5-s
M(j) = expected time until the next order is placed, giving
starting inventory position of s+ j, and
G(S — j) = instantaneous back-ordering and holding cost, and
a lead time after inventory position is at S — .

Sufficient conditions on G(y) for the Z-F algorithm to
work are

1. —G(y) is unimodal—G(y) is monotone decreasing to
the left of an interval (possibly a single point), where it
is constant and attains its minimum value, and monotone
increasing to the right of that interval;

2. limy, ., G(y) > min, G(y) + K, where K > 0 is the fixed
cost to place an order;

3. ¢(s, S) and G(y) satisfy the relationship

c(s—=1,5) =ayc(s, 5)+ (1 -a,y)G(s),

M(A)

where ap = m.

Construction of Basic Objective Function

Sahin (1979) developed an objective function for a continuous
review (s, S) policy based on arbitrary demand size and inter-
arrival time distributions. Because our customer had histories
of transactional demands (stock number, date, quantity), we
could build histogram distributions for demand interarrival
times and demand sizes, and use those to construct the
objective function.

Notation
c(s, S) = expected cost per unit time for reorder point, s, and
requisitioning objective, S, A=S —s;
A(t) = CDF for requisition interarrival times;
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A, (t) = n-fold convolution of A(t), n>0; Ay(t)=1;
b(k) = density for requisition sizes, assumed discrete;
B(k) = CDF of requisition sizes;
b, (k) = n-fold convolution of b(k);
B, (k) = n-fold convolution of B(k); By(f) =1;
g(y) = probability density for lead-time demand;
G(y) = short-term back-ordering and holding cost with
inventory position y;
H(y) = short-term holding cost with inventory position y;
P(y) = short-term back-order cost with inventory
position y;
h = unit holding cost;
K = administrative cost to place a replenishment order;
1, = mean interarrival time;
p =back-order penalty;
R(x) =renewal function for requisition sizes for a total
quantity demanded x; R(x) =0;
r(x) =renewal density of requisition sizes for a total
quantity demanded x; r(0) =1.
The state probabilities of the inventory position, given (s, S),
are then

r(S—j)

T+RS—s—1)’
1

T+R(S—s—1)

Pr(IP =j) = j<S and

Pr(IP=S) =

The probability distribution for quantity demanded in a
replenishment lead time is

8(j) = Pr(d(t - L, t) =)

= Y Pr(j units in k arrivals) Pr (k arrivals)
k=1

=YnG)s [ - Aw)
k=1 , ] I“Lu u=0 ——
Pr(no demand from 0 to u)

A1 (L= ) = AL — u)] du,

Pr(k arrivals from u to L)

Note that g(0) =1/u, [y [1— A(u+ L)]du.
The expected number of replenishment cycles per unit
time is
1
Ho(1+R(S—5))’
Following Sahin, the expected cost of replenishment, carrying

inventory, and of outstanding backorders, in equilibrium, is
then

c(s,S)

K A-1 S
(—+Zr<j>[h2kg<5—j—k>
Ha  j=o k=1

- kg<S—j—k>])-<1+R<A—1>>*l

k=-1

1 K A-1 ‘ . ‘
:1+R@_qd#ﬂ+;;UHH5—ﬂ+PG—pq
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1 K Al
=—— 31—+ r(j)G(S— ')}.
R 27066

All the terms in this objective function are computable
from observable data. We showed that the instantaneous cost
function G satisfies the Z-F conditions, enabling us to solve
for (s, S) using the Z-F algorithm with our objective function.

Modified Instantaneous Cost of Backorders and
Holding Inventory
Simulation experiments against randomized historical
demand revealed that the basic Next Gen objective func-
tion did not provide the desired support for DLA’s mission
because

1. unit measures (i.e., expected units back-ordered) are
dominated by the service level for large requisitions (not
appropriate for DLA); and

2. minimization of the cost function can be achieved by
focusing on high levels of customer service for a few items
at the expense of the others. (DLA’s customers require a high
level of support for a wide range of items.)

To remedy this situation, we modified G(y) by adding two
terms to the cost function, so that it becomes

G(y)=H(y) + Hp(y) + P, (y) + P.(y),

where H;p(y) is the cost to carry on-hand plus on-order
inventory, P,(y) is the cost of outstanding unit backorders,
and P,(y) is the cost of outstanding back-ordered requisitions
(irrespective of quantity).

Cost terms for both inventory position (IP) and on-hand
inventory overlap, but the addition of the IP perturbation
term enabled us to address problems (1) and (2) in the
objective function above, while keeping G as a function of y
alone (for better mathematical tractability).

The modified G(y) did not satisfy the Z-F conditions;
therefore, we developed a unimodal approximation G(y).

The cost function must be unimodal for the optimiza-
tion procedure to avoid being caught in a nonoptimal local
minimum. We made a simple unimodal approximation
to the conditional cost function by flattening out the val-
leys corresponding to local minima before building the full
cost function. Given a possibly nonunimodal function f
defined on {0, 1, 2, ..., N}, achieving a global minimum on
[x,., x;], we use the unimodal approximation f, defined on
{0,1,2,...,N} by

f.(0) = £(0)

fu(N) = f(N)

£ = {f(x), ORI NN
f(x—1), otherwise,

fulx) = {f(x), i f) = flx=1), for x > x;.

f(x—1), otherwise,



Downloaded from informs.org by [132.207.236.247] on 11 October 2016, at 06:43 . For personal use only, al rights reserved.

Bachman et al.: Effective Inventory Control for Items with Highly Variable Demand

32

Interfaces 46(1), pp. 18-32, ©2016 INFORMS

Finally, we work with the new cost function c(s, S):

1 K A-1 A )
c(s,S) = m{ﬂ—a +/§) r(])G(S—])}.

The cost function for a population of N items is simply
C(s,8) = Zf\il c(si, Sp)-
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