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Abstract. Due to its scale, the complexity of its products and manufacturing processes, and
the capital-intensive nature of the semiconductor business, efficient product architecture
design integrated with supply chain planning is critical to Intel’s success. In response to an
exponential increase in complexities, Intel has used advanced analytics to develop an in-
novative capability that spans product architecture design through supply chain planning
with the dual goals of maximizing revenue and minimizing costs. Our approach integrates
the generation and optimization of product design alternatives using genetic algorithms and
device physics simulation with large-scale supply chain planning using problem decom-
position and mixed-integer programming. This corporate-wide capability is fast and ef-
fective, enabling analysis of many more business scenarios in much less time than previous
solutions, while providing superior results, including faster response time to customers.
Implementation of this capability over the majority of Intel’s product portfolio has increased
annual revenue by an average of $1.9 billion and reduced annual costs by $1.5 billion, for a
total benefit of $25.4 billion since 2009, while also contributing to Intel’s sustainability efforts.
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Intel Corporation
The integrated circuits designed and produced by
Intel Corporation have been a driving force in the
information revolution for over 50 years. Desktop and
laptop computers have contributed to large pro-
ductivity gains in the office and the factory. Modern
supercomputers have revolutionized the scientific
process by enabling research to move beyond the
constraints of physical experimentation. Perhaps most
importantly, servers and networking have transformed
many activities of importance to global society. This
list includes telecommunications for individuals and
businesses, banking and finance, commercial and
recreational transportation, manufacturing and ser-
vices industries, wholesale and retail businesses,
medicine, education, and agriculture. Recently, Intel-
driven computers have enabled the advent of cloud
computing, big data, and the practical resurgence of
artificial intelligence.

Also beneficial is how Intel has achieved these
technical and economic results. Intel is a world leader

in the use of green power and conflict-free minerals
and has an ongoing focus on reducing water pollution
and greenhouse gas emissions.

An Operational Decision Process

Intel’s business is designing, manufacturing, and
supplying state-of-the-art semiconductor products.
The semiconductor industry uses several technical
terms to describe these processes (Figure 1). A “wa-
fer” is a thin circular disk of silicon 200 millimeters
(mm) to 300 mm in diameter. Arrays of integrated cir-
cuits are fabricated on each wafer during manufactur-
ing. A small piece of the fabricated wafer, which contains
an entire integrated circuit, is called a “die” and is
comprised of one or more computational cores, mem-
ory, and input/output capability. “Die yield” refers to
the number of functional die on a wafer at the cul-
mination of the fabrication process determined by
“sorting” into functional and nonfunctional categories.
Each wafer is sawed into a number of die in “die prep,”
the nonfunctional die are discarded, and each functional
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Figure 1. A Visual Representation of the Entities Involved in Intel’s Business

The Major Entities in Intel’s Business

1) A Die with 8 compute

2) A Product Architecture
with 4 die. each with 8 cores.

3) A Wafer with multiple die from
the fabrication factory or Fab.

cores, memory, and I/0.
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4) Die Prep picking good Die
to Assemble with a Package.

5) A single Die Assembled with a
Package showing connecting pins .

6) A Product through Test
and Finish ready to ship.

Note. Included are a typical die and product architecture, followed by the basic manufacturing sequence from a wafer containing fabricated
die, a wafer with die tested for functionality (sort) and sawed out of the wafer (die prep), a die assembled with a package, and a tested and

marked (finish) product.

die is “assembled” with a “package.” This is a pro-
tective container with external connectors to provide
an attachment to printed circuit boards. The die as-
sembled with a package is Intel’s “product,” and once
the combination is tested and labeled, it is ready to
ship. Because many of Intel’s microprocessor prod-
ucts contain multiple die in one package, each mi-
croprocessor product has an “architecture” specify-
ing the number and types of die to include. The
performance of a die is determined by the number of
computational cores, their execution speed (higher is
better), and the power they consume during execu-
tion (lower is better). The performance of a micro-
processor product is determined by its architecture
and is a function of the performance of the die in-
cluded. Each microprocessor product is available as a
set of stock-keeping units (SKU-set) with a range of
performance for different applications. A SKU-set
supports selling a microprocessor product into multi-
ple markets to maximize revenue. Other important fi-
nancial considerations include engineering cost and the
cost of manufacturing the product. The engineering cost
with which we are concerned is associated with de-
veloping the architecture, not the detailed design of
each die. For manufacturing, the cost is fabricating the
die, acquiring the package, and assembling the two,
followed by testing. We are especially concerned with
the efficiency of using every die on every wafer to

supply a saleable product across the architectures of
our entire product portfolio.

As one the few remaining integrated device man-
ufacturers (IDMs), Intel holds a strong position in the
semiconductor industry. Most semiconductor com-
panies are “fabless,” which means they design their
own products but do not own manufacturing oper-
ations. Other companies in the industry focus only on
manufacturing and build products designed by the
fabless companies. Intel is one of the few companies
that designs and manufactures its products. As a
result, at any point in time, Intel is delivering hun-
dreds of different products to its customer base through
its large and complex supply chain, while simulta-
neously designing the next generation of products to
meet its customers’ needs. This gives Intel an im-
portant opportunity to follow an integrated five-step
decision process for designing, manufacturing, and
supplying its products (Figure 2).

Development of a new product with a new com-
putational core begins with product architecture de-
sign, which starts roughly two years ahead of the de-
livery of products to customers. The goal is to find the
best balance between product features to satisfy cus-
tomer requirements, the cost of engineering a SKU-set
with those features, and the cost of manufacturing that
SKU-set in sufficient volume to satisfy demand. We
decompose the decision processes into two steps.
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Figure 2. (Color online) An Integrated Sequence of Modules
Is Necessary to Run Intel’s Business

Intel’s IDM Analytics: Applicable over the Product Lifecycle
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Notes. The two product architecture design modules produce a SKU-
set composition with optimized performance, which is passed to the
three supply chain planning modules. The result is a set of products
that are manufactured and shipped to customers.

In the product composition step, utilizing fore-
casted demand and manufacturing die yields, ar-
chitects decide on the number and type of die that
should be assembled together to create multiple-die
products that align to market requirements with
minimum engineering and manufacturing cost. The
resulting decision is a SKU-set architected around a
new computational core.

In the product performance step, the performance
of the members of the SKU-set is the focus. The better
the performance goal of the individual products in the
SKU-set, the higher the revenue possibilities, but also
the higher the manufacturing cost. The resulting
decision is the specification of the performance goals
of the SKU-set based on balancing revenue and cost.

Supply chain planning (SCP) processes overlap
with product architecture design by roughly one
year ahead of the delivery of products to customers.
The goal of SCP is to minimize wafer starts and
optimally route them all the way to finished prod-
ucts to meet customer demand, while effectively
utilizing our high-investment internal factory net-
work. We decompose the SCP decision processes into
three steps.

Wafer starts optimization is the third step in the
overall design and planning decision process. It fo-
cuses on the wafer fabrication and sort process steps
and ensures that capacity is optimally used to support
customer demand and minimize costs. Wafer fabri-
cation is the most capital-intensive and constrained
process step; therefore, it is optimized first.

In network capacity alignment, the fourth step, we
determine the capacity allocations for the rest of the
supply chain. This step requires a detailed capacity
analysis in the internal factories and a request-response
process with the external factories.

In the fifth and last step, optimal routing plans are
finalized for the die-prep, assembly, and test and
finish steps to complete the planning process. The

output of this step not only provides guidance to
the rest of the supply chain but is also used across the
enterprise for financial projections and customer or-
der confirmation.

The first two steps are sequentially performed
over a two-year period. The third, fourth, and fifth
steps are run sequentially each month over the two-
to-four-year production life of the SKU-set. These five
steps are integrated in a number of ways to optimize
the overall system under a variety of conditions. The
initial integration occurs in the normal operation of
the system: the output of the first step is required
input to the second step, the output of the second is
input to the third, and so on. This sequential process
can involve feedback. The execution of step 2 may
point to a change needed in step 1, which is then
rerun; a reallocation of manufacturing capacity be-
tween product lines in step 3 may require re-execution
of step 1, restarting the entire sequence. Additional
common inputs to each of the five steps include the
details of forecasted market demand and forecasted
manufacturing yields. These forecasts change over time
and are eventually replaced by actual data. Minor
changes will reactivate step 5 or steps 4 and 5. Major
changes can force restarting the entire sequence be-
ginning with a re-execution of step 1, followed by re-
execution of step 2, and so on. Surprise introduction of
a new feature by a competitor, or demand for an
additional feature by a major customer, might have
the same effect and restart the entire sequence from
step 1.

Introduction to the Business Problem

Faster, better, and more integrated decision making is
increasingly important to Intel’s five-step decision
process. Over the past decade, our products have
become more complex. Initially, we designed single-
die products with one processing core. Today we are
shipping products consisting of multiple die, each
with multiple processing cores. Over the same period,
our manufacturing processes and product routings
have become much more complex with more manu-
facturing steps, longer throughput times, and many
more capacity-related complications. These complex-
ities have rendered our previous generation of decision
tools inadequate to run the business. Regardless of the
complexities that we face, our customers expect more
frequent product introductions, faster product delivery,
and more flexibility than ever before from Intel to meet
their needs. Meeting and exceeding these customer
expectations requires seamless integration of product
architecture design and supply chain planning, which is
only possible through more nimble decision processes
supported by better, faster decision tools. The advanced
analytics that we have developed, integrated, and
deployed provide a decision support system that has
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realized the required decision environment. In doing so,
we have faced four primary sources of complexity:
manufacturing, product architecture design, demand,
and supply chain planning.

Manufacturing Process Technology Complexity
Many of our microprocessor products contain as
many as 10 billion transistors, each of which is made
up of approximately 40,000 atoms. Precisely and
repeatably positioning individual atoms at the scale
needed to manufacture our semiconductors is cur-
rently impossible. Hence, volume production of any
individual product yields a range of values for each
product characteristic of interest, such as functioning
computational cores, power consumption, and exe-
cution speed (Figure 3).

Some die perform as intended, some have minor
deficiencies, and some do not work at all. Any batch of
die will have a range of execution speeds, some slower
and others faster than intended. Some will consume
more power, some less. An ongoing challenge is to
accurately forecast the results of this variability prior
to actual production for use in the product architec-
ture design process.

Handling manufacturing variability continues to
be important in later stages of the product life cycle.
Supply chain planning and execution processes ac-
count for manufacturing variability by holding right-
sized inventory at the appropriate locations and

implementing delayed differentiation and postpone-
ment strategies.

In addition to this inescapable variability, sus-
taining Moore’s law (Moore 1965) by manufacturing
exponentially smaller and smaller die on a two-to-
three-year cadence has become increasingly difficult
from a physics perspective. Production equipment
has become sophisticated and exponentially more
expensive, and the number of processing steps for
more complex transistor technologies has increased
greatly. These technological advances have led to
impressive increases in product functionality and
execution speed, as well as decreased cost per tran-
sistor for our customers.

However, the time and cost to develop the next
process in the Moore’s law sequence has risen dra-
matically, as has manufacturing throughput time.
Long lead times and expensive equipment dramati-
cally increase the risk of building the wrong product
in the wrong volume at the wrong time, making in-
tegrated decisions in product architecture design
and supply chain planning even more critical to
Intel’s health.

Product Architecture Desigh Complexity

Figure 4 shows the trajectory of increasing product
complexity. For roughly 30 years, our microprocessor
products contained one silicon die with one com-
putational core, while transistor counts grew from a

Figure 3. (Color online) Example Showing Variability Due to Manufacturing Process Complexity
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Notes. Intel’s manufacturing GOAL was to make six-core, 3.6-gigahertz (GHz) speed, 95-watt power devices. The ACTUAL results achieved
contained many six-core chips, but some with less cores working (left side of diagram). Some devices ran faster or slower than 3.6 GHz (middle of
diagram). Some devices consumed more or less power than 95 watts (right side of diagram). Note that we can purposefully “downgrade”
devices to satisfy demand, as we show in the lower right of the diagram. We can selectively turn off cores (but not reanimate nonfunctional cores)

and turn down speed (but not turn it up).



Heiney et al.: Applying Advanced Analytics at Intel

INFORMS Journal on Applied Analytics, 2021, vol. 51, no. 1, pp. 9-25, © 2021 INFORMS 13

Figure 4. (Color online) Release Years of Microprocessor Examples by Number of Processing Cores and Total Number

of Transistors

Processing Core and Transistor Counts over the Past 50 Years

10,000,000,000

1,000,000,000

100,000,000

10,000,000

1,000,000

100,000 .

10,000

Number of Transistors
L ]
[ ]

1,000

1970 1975 1980 1985 1990
Year

s 8 .
SRR
L ]
[ ] o [ ]
® L]
” $eo
oo ® >
®e >50 cores,
e 00° multi-die
[ ]
Afp—l
2to8
cores
" 1core, 1die
1995 2000 2005 2010 2015 2020

Notes. For the first 35 years of developing microprocessors, Intel products had one core on one die. This was followed by a 5-year period
consisting of products with two, four, six, and eight cores. In the most recent 10 years, complexity has continued to grow exponentially in both

number of cores and total number of transistors.

few thousand to hundreds of millions. The insatiable
demand for increasingly more powerful micropro-
cessor products resulted in multiprocessor architec-
tures containing one die with two cores followed by
four, six, and eight cores. Total transistor counts grew
to exceed one billion. Today we are shipping prod-
ucts with architectures containing multiple die, each
with multiple computational cores in packages often
including additional input/output, graphics, and mem-
ory die (Figure 1). Core counts per product exceed 50,
and total transistors exceed 10 billion. Products of
this complexity take more time to design, validate,
and manufacture.

Demand Complexity

Another vector of complexity stems from our cus-
tomer base, which requires a wide range of product
characteristics. The biannual development of a more
powerful computational core stimulates a spectrum
of demand. At one extreme, customers who build
supercomputers are interested in a product with 64 of
the new cores, while other customers build 4-core
servers for small businesses. The Intel sales and
marketing organization is happy to forecast sales for
all core counts in between, forming a diverse SKU-set
to appeal to all markets. However, we do not have
enough engineers to custom design each individual
product in such a set, and it is not economically viable
to mass produce 64-core products with 60 cores dis-
abled to serve the 4-core market. Novel approaches to

designing product architectures and determining the
performance of each product in a SKU-set are needed to
address this complex situation.

Supply Chain Planning Complexity

To meet the market demand for powerful multiple-
die products using ever-more sophisticated manu-
facturing technologies and increased variability, Intel
must effectively leverage its $100 billion internal
factory assets and partner with outside manufac-
turers and component suppliers to meet cost and
quality objectives in a timely manner. These objec-
tives require complex manufacturing routing sce-
narios, where a product traverses several internal and
external factories around the globe before becoming
a sellable entity.

As Figure 5 shows, our basic manufacturing flow
begins with wafer fabrication; each wafer holds from
15 to 30,000 die depending on wafer diameter and die
dimensions. After fabrication, each die on each wafer
is tested and sorted into performance categories in-
dicating their speed and power based on test results.
Individual die are then picked from the wafer and
assembled onto a multiple-pin package, often using
multiple die from different wafers for multiple-die
products. The assembled products are tested again to
measure actual performance and to separate items
into categories defined by performance ranges. Fi-
nally, the items go through a finish and mark process
thatresultsinindividual SKUs. To mitigate any risk of
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Figure 5. Intel’s Basic Semiconductor Manufacturing Flow

The Basic Flow of Intel’s Manufacturing
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Notes. Initially integrated circuits are fabricated (FAB) on wafers. Nonfunctional die are identified in SORT and eliminated in DIE PREP. The
remaining functional die are joined to packages in ASSEMBLY and their performance properties are determined in TEST. After being labeled and

boxed in FINISH, they are shipped.

business disruption and to maintain flexibility, each
manufacturing process step can be executed at two or
more factories, adding complexity to the manufactur-
ing flow.

Intel manufactures roughly 400 unique wafers types
totaling 2.5 million wafers per year, yielding 4,600
unique SKUs, which account for 600 million units in
SKU volume. Adding to this complexity, in an average
year, Intel introduces dozens of new products, each
more complex than its predecessors. Products can flow
through six or more manufacturing stages at more than
200 internal and outsourced factories across 13 coun-
tries. As Figure 6 shows, each wafer could undergo
any of several thousand possible interdependent manu-
facturing routing options before it is transformed into
one of the SKUs to be shipped to customers.

The supply chain planning challenge is to effec-
tively route and manufacture the right products to
meet demand for the designed SKU-set through an
extremely cost-intensive factory network. This is ac-
complished by leveraging the vast number of interde-
pendent routing options, each with its unique char-
acteristics to best utilize all die and the associated
factory capacity.

Product Architecture Design

Any solution to the two-step product architecture
design process (Figure 2) must consider both product
complexity and manufacturing complexity. On one
hand, the design process must supply the set of SKUs
desired by marketing to satisfy the forecasted de-
mand, while minimizing the engineering costs. On
the other hand, the design process must deliver a
SKU-set that is manufacturable and meets the re-
quirements for computational cores, execution speeds,

and power requirements, while minimizing manufac-
turing costs. We have developed two modules to ad-
dress these factors.

Product Composition: The Problem

Determining the number of design configurations is
the first step. As a simple example, consider a mar-
keting request for a SKU-set ranging from 4 cores to 24
cores in increments of 2, making 11 SKUs in all
(Figure 7). As noted in the previous section, it is
impractical from an engineering cost perspective to
custom design each of the 11 SKUs. Furthermore,
from a manufacturing cost perspective, it is imprac-
tical to satisfy all demand with a 24-core die. For
example, satisfying the 4-core demand by turning off
20 cores of a large 24-core device would be an ex-
pensive waste of silicon and manufacturing capacity.

We could design a 6-by-4 matrix of cores to satisfy
the top 24-core SKU. We could then remove a row
from the design for a 5-by-4 matrix, remove another
row for a 4-by-4 matrix, and so on to produce a set of
designs with 24, 20, 16, 12, 8, and 4 cores. Alterna-
tively, we could remove a column from the design of
the 6-by-4 matrix to produce a 6-by-3 matrix for an 18-
core SKU, and so on to produce a set of designs with
24,18, 12, and 6 cores. Or we could remove a row
and a column from the design of the 6-by-4 matrix to
create a 5-by-3 matrix for a 15-core SKU and remove
another row and column to create a 4-by-2 matrix fora
set of designs with 24, 15, and 8 cores.

In each case, the variable core yield (on a multicore
die, the number of working cores) from the manu-
facturing process, as well as our ability to turn off cores,
would support filling the demand. Consider the design
options with 24, 18, 12, and 6 cores. The 24-core design
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Figure 6. Simple Product Flow Showing Each Path with Unique Characteristics to Fill the SKU-Set Demand
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Note. At the top of the diagram are the number of item-location combinations, assembly-to-test routings, and test-to-finish routings for a
complex product once the product flow is extended to the factory network; each process step can be performed in two or more factories.

would be used to satisfy demand for 24, 22, and 20 cores,
the 18-core to satisfy demand for 18, 16, and 14 cores,
and so on. Minimizing engineering cost pushes in the
direction of fewer design configurations (24,15,and 8in
this example). Minimizing manufacturing cost pushes

in the direction of more design configurations to con-
serve expensive fabricated silicon by turning off fewer
working cores (24, 20, 16, 12, 8, and 4 in this example).
Thefirstmodule within our productarchitecture design
solution focuses on optimizing this trade-off considering

Figure 7. The Product Composition Module Develops a Target SKU-Set
Product Composition: How Many Design Configurations
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Notes. The upper approach uses the least silicon and so has the lowest manufacturing cost; however, it also has the most design configurations
and therefore has the highest engineering cost. The lower approach has the fewest design configurations and the lowest engineering cost;
however, it uses the most silicon and therefore has the highest manufacturing cost. Perhaps the middle option is the best compromise; but it
depends on the relative costs of engineering and manufacturing. It also depends heavily on the volume of each SKU in the set required to fill the
forecasted demand.
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the demand forecast from sales and marketing and the
core yield forecast from manufacturing.

As we increase the number of cores on a die, this
architectural optimization becomes more difficult.
Further complicating the problem, we now design
products including multiple die, each of which has
multiple cores. High demand for one core count and
low demand for another core count in a SKU-set is
another complicating factor (Figure 7). Finally, the
wider the variability in core yield, the more difficult
the optimization, although in some cases this can be
addressed by adding a few extra cores to the design
(e.g., designing 26 cores to ensure that 24 cores
are functional).

Product Composition: The Capability
Wedeveloped amathematical model to determine the
optimal number and selection of architectural designs
that meet market requirements with minimum en-
gineering and manufacturing costs. To evaluate the
effectiveness of each architectural option, we must
assess the variation in performance and cost of each
SKU on that proposed option. The device physics that
determine the performance and cost of each SKU are
complex and cannot be expressed in a closed form
suitable for direct mathematical optimization. There-
fore, we utilize simulations of device physics to gen-
erate a set of candidate die for each architecture option,
based on the variation in the manufacturing process.
We then simulate the device physics for each die and
track which SKU’s performance and feature require-
ments are satisfied. The results of these device physics
simulations provide inputs to the mathematical op-
timization that constrain which SKUs can be realized
within which architectural options. The inputs to the
model are market requirements, manufacturing and
engineering costs, the set of plausible architecture op-
tions, and the device physics simulated performance of
each architecture option.

The model combines device physics simulations to
address complex nonlinear interactions between fea-
tures and a mixed-integer program (MIP) to select an
optimal architectural option. The decisions gener-
ated specify a combination of architectural options
that minimize the total costs, while satisfying mar-
ket requirements.

By combining the simulation with the MIP, we
developed a general-purpose capability that matches
every product at Intel with the product architecture
that optimizes its engineering and manufacturing
costs. This breakthrough capability has enabled Intel
to design for optimal manufacturability from the
beginning of the product development life cycle and
has saved the company hundreds of millions of dol-
lars. Because this technique is product independent,

all current and future design projects will use it to
optimize their architectures.

Product Composition: An Example
This optimization model has yielded substantial cost
savings. In the example in Figure 8, the lifetime
manufacturing cost of the product was reduced by
$750 million after applying the optimization model.
The engineering baseline obtained using the best-
known previous design methodology is shown at
the top of the figure. This baseline consisted of four
designs to meet demand ranging from 4 to 56 com-
putational cores. It included 60-core (Al), 44-core
(B1), 35-core (B2), and 12-core (C1) designs. As we
show at the bottom of Figure 8, the optimization
model achieved significant cost savings by counter-
intuitively enlarging the smallest design C1” from 12
to 21 cores and eliminating the 35-core design B2,
thereby lowering engineering costs. This resulted in a
large shift of demand in the 14-to-20-core range,
moving it from the larger 35-core design B2 to the
smaller 21 core design C1’, thereby saving manufa-
cturing costs. The solve also lowered manufacturing
costs by assigning the 44-core design B1" additional
medium-core demand so that core failures in this
design could be used to satisfy lower-core demand.
Many alternative designs, which we must consider,
are clearly possible. Individual rows or columns of
cores can be added or removed, or entirely different
combinations of die can be used to achieve different
core-count levels. Each of these design options has its
own implications for engineering and manufacturing
costs, product performance, and both die and core
yields. The product composition module found the
optimal architecture to satisfy market requirements,
redefining the medium and low core-count solutions
by changing rows and columns of cores. This shifted
SKU-set demand to designs with lower overall manu-
facturing costs and reduced engineering costs. This
resulted in a savings of $750 million in costs on this
one SKU-set.

Product Performance: The Problem

Once the product architecture is specified, the next
step focuses on the trade-off between the performance
of the SKU-set and its manufacturing cost. Intel’s
customers are willing to pay a premium for the
higher-performing die but not for lower-performing
ones. Although we release enough wafers into the
factory to theoretically satisfy all demand, our vari-
able manufacturing process sometimes may not pro-
duce enough of the high-performance die. This forces
us to release more wafers into the factories to supply
the number of high-performing die required, there-
by producing more overall die than the total de-
mand requires. This phenomenon of “chasing” demand
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Figure 8. (Color online) Illustration of the Product Composition Step Using an Example

Product Composition: Example Results
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Notes. By eliminating the 35-core B2 design from the initial hand-generated design set, the optimizer reduced engineering costs. In addition, the
optimizer replaced the initial 12-core C1 design with a new 21-core C1” design. These changes resulted in (1) a shift of demand for 12-core C1 and
35-core B2 designs onto the new 21-core C1” design, and (2) a shift of demand for 35-core B2 and 44-core B1 designs onto the new 44-core B1’
design. These changes resulted in manufacturing cost savings of $750 million.

increases manufacturing costs, because an excess of
low-performing die for which there is no demand will
be produced to obtain enough die to satisfy the high-
performance demand. These overproduced low-
performing die are referred to as “leftovers.” They
can be difficult to sell and may accumulate in inventory
to eventually be scrapped.

The performance and manufacturing costs of the
SKU-set exist in a state of constant tension. Finding an
efficient trade-off was a challenging, time-consuming
process using the previously best-known design meth-
odology, with various business groups iteratively ex-
ploring only a handful of manually generated options.
The second module of our solution focuses on product
performance to quickly find the optimal trade-off be-
tween performance and manufacturing cost. By intel-
ligently exploring thousands of SKU-sets, we generate
an efficient frontier of SKU-sets based on the criteria of
manufacturing cost and performance. Using the effi-
cient frontier, product teams select the preferred SKU-
set for their specific markets and maximize overall
profit for Intel.

Product Performance: The Capability

Generating the efficient frontier is a daunting task.
Each SKU-set typically consists of 10 to 100 SKUs,
each with dozens of speeds that must be configured
to 1 of roughly 10 possible values. The performance of
an individual SKU is a function of its execution speed
and power consumption, and the performance of the
SKU-set is the weighted average of the SKU perfor-
mances. Hence, the size of the solution space for even
a moderately sized SKU-set is on the order of 10'%.

In addition to the sheer size of the solution space, the
problem is highly nonlinear. As in the product com-
position problem, the interactions between perfor-
mance and material variation are nonlinear and often
cannot be described in closed form. Furthermore,
determining the manufacturing cost of any candidate
SKU-set requires solving a linear program (LP). Thus,
an exhaustive search would require solving 10'% LPs.

Our module consists of a combination of the device
physics simulation of the interrelationships between
performance and material variation, a genetic algo-
rithm to search the SKU configurations for candidate
SKU-sets, and LPs to estimate the minimum manu-
facturing cost of each candidate SKU-set.

The key decisions are what frequencies to configure
to what values for each SKU in the set to obtain an
optimal trade-off between performance, defined as
a weighted average of the SKU performance, and
manufacturing cost, which is a function of the min-
imum number of wafers that must be produced to
meet those SKU demand requirements. The key in-
puts to the model are the baseline SKU-set from the
product composition module, the performance weights
for each SKU and each execution speed, and the device
physics simulation, which captures the interrelation-
ships between performance and material variation.

The optimization algorithm is implemented as a
hierarchical decomposition with two levels (Rash and
Kempf 2012). The outer level is a genetic algorithm
that searches for candidate SKU-sets. Each chromo-
some in the population is a candidate SKU-set whose
values are represented as changes from the baseline.
Mutation and crossover operations are implemented
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by randomly mutating speeds or swapping speeds
between parent chromosomes. Targeted improve-
ment heuristics greatly improve the performance of the
genetic algorithm by intelligently improving existing
solutions. For example, specifically perturbing the per-
formance of select SKUs up or down often incremen-
tally improves the solution by finding higher perfor-
mance or lower cost.

The inner level of the model is a series of LPs, one for
each candidate solution, to determine the minimum
manufacturing cost necessary to achieve the specified
performance targets. The genetic algorithm has an
unusual fitness function because it is a multiobjective
optimization. Rather than calculating a single fitness
value, the goal of the algorithm is to find the optimal
trade-off between performance and manufacturing
cost. Thus, the fitness of each candidate is its distance
from the current efficient frontier. At the end of each
generation, any nondominated solutions on the fron-
tier are preserved and solutions that are far from the
frontier are discarded.

Combining the device physics simulation with the
genetic algorithm and inner LP enabled the product
performance module to quickly and efficiently find
the optimal trade-off between cost and performance.
Our approach has been applied to several products to
identify and realize significant cost or performance
savings. This technique is product independent; there-
fore, it applies to all current and future product per-
formance projects.

Product Performance: An Example

Figure 9 shows the efficient frontier for an actual Intel
product after running the genetic algorithm for 100
generations. Each point represents a full SKU-set that
is a candidate solution. The light gray points repre-
sent sets from early generations, and the black ones
denote those in the final generation. The dashed line
highlights the nondominated solutions that comprise
the efficient frontier. Our module recommended a
solution at the solid star with roughly equivalent cost
but significantly higher performance than the base-
line solution at the hollow star, which was generated
manually using the previous best-known design meth-
odology. The benefit to Intel for this one product was a
$235 million uplift in revenue.

Our capability allows us to increase performance,
while holding manufacturing cost constant, or to
reduce manufacturing cost, while holding perfor-
mance constant. Senior managers have been receptive
to the efficient frontier representation because it gives
them a marketing control mechanism that they have
not had previously. When entering a new and un-
certain market, they can pick a SKU-set that reduces
manufacturing cost by sacrificing some performance
and sliding left on the efficient frontier. When going

Figure 9. (Color online) The Product Performance
Module Generates Thousands of SKU-Sets to Build an
Efficient Frontier
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Notes. Each dot represents a complete SKU-set; black dots are the
final SKU-sets generated by the genetic algorithm, and gray dots are
earlier generations. Compared with the engineering baseline that
only generated a few options, we found a solution that achieved a
$235 million uplift in revenue.

into a known but especially competitive market, they
can pick a SKU-set that increases performance and
absorbs some manufacturing cost by sliding right on
the efficient frontier.

Supply Chain Planning

The product architecture design process output serves
as an input into the supply chain planning processes.
In addition to the product designs and correspond-
ing customer demand signals, supply chain planning
requires information as to which set of factories can
execute which process stages for each SKU-set and the
associated manufacturing parameters such as yield,
throughput time, and capacity, as well as constraints
such as batching requirements. Outsourced manufa-
cturing locations often require additional constraints
based on Intel’s contractual agreements with sup-
pliers. The product and manufacturing information is
combined with information that reflects the strategies
around planning. Some examples are target and min-
imum inventory levels that need to be maintained to
account for uncertainties in demand and manufactur-
ing, and relative product priorities when allocating
capacity. Another key input to planning is the current
state of the supply chain with respect to manufacturing
work in progress. It is critical that all these relevant
details are captured as inputs into the decision process
to communicate feasible plans to the factory network to
ensure seamless execution.

Intel has invested over $100 billion to build and
maintain its wafer fabrication facilities. Given the
large investment, long lead times, and variability
described earlier, it is critical to effectively utilize the
capacity in these factories. Building the wrong die,
which can end up sitting in inventory rather than
meeting near-term demand, translates to wasted
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capital and lost sales opportunities. Therefore, the most
critical planning decisions in the supply chain are de-
termining what products to start at each of the wafer
fabrication facilities to meet the projected demand. Once
the wafer start decisions are made, the rest of the
planning process involves devising the optimal routing
of those wafers across the manufacturing network to
minimize costs, while meeting customer demand at the
appropriate time. These decisions span the entire net-
work of more than 200 factories across all process stages
and products. The wafer start decisions are made
months ahead of the delivery of finished goods to the
customer due to long manufacturing lead times; how-
ever, changes to customer demand and unexpected
events in the manufacturing network can happen daily.
To respond to these changes, the planning decisions are
revisited and reoptimized on an as-needed basis, typ-
ically weekly, but sometimes as frequently as daily. The
nature and the timing of various decisions lead to a
natural decomposition of the overall planning process
into three steps: wafer starts optimization, network
capacity alignment, and optimized routing plans.

Each of these steps in turn follows the iterative
process shown in Figure 10. Every time we start a new
planning cycle, our key business decision makers
provide a set of inventory strategies and product
priorities. However, due to the complexities described
earlier, they struggle to predict where we will face
constraints and problems in the supply chain, how
severe they will be, and how the strategy should change
to deal with those problems. In our iterative process,
our planners run the optimization engine, analyze the
results, and work with their key decision makers to
get feedback on the business trade-offs and scenarios
that they want to evaluate. They create additional
scenarios to explore the range of potential trade-off
decisions that could be made, and go through this loop
multiple times within the course of the planning cycle
before aligning on the scenario that they want to ex-
ecute and publish to the rest of the supply chain as our
operating plan.

Figure 10. (Color online) Flowchart Illustrating Intel’s
Iterative Approach to Planning
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With this approach, the strategic decisions are
made by the business operations teams; however, the
execution is done by the optimization program. The
operations teams can explore many possible business
scenarios, while the optimization engine shows them
the best possible results they could achieve for each
set of strategic decisions.

Wafer Starts Optimization

In the first step of our problem decomposition, we
focus on our wafer fabrication and sort facilities,
which consume the bulk of our capital investments.
We model the full product-flow complexity to un-
derstand how wafer start decisions impact the final
finished goods supply, but we ignore capacity con-
straints at all other stages of the supply chain. This
model runs simultaneously for all products at Intel
with a one-year horizon. It has 13 million decision
variables, 30,000 integer variables, and 4.1 million
constraints, and our engine can typically solve it in
approximately six minutes.

Because these decisions are so critical for Intel’s
success, we run dozens of scenarios and carefully
analyze how these decisions impact our capability to
support our customer demand and inventory strat-
egies. The outputs of this step are the capacity allo-
cations and schedules for the wafer fabrication and
sort factories.

Network Capacity Alignment

The wafer start decisions and how much supply we
will be generating from each wafer start is finalized in
the previous step. We can now use that information
as a constraint when we generate a capacity request to
all our die-prep, assembly, and test and finish fac-
tories both within Intel and at our external manufa-
cturing partners. Because the shared-wafer capacity
has already been allocated, and capacity at all other
stages is assumed to be unconstrained, each product
family can be planned independently. This breaks
down one large problem into hundreds of smaller,
easier-to-solve subproblems. The results from these
subproblems are later consolidated into a single signal
that is sent to both the internal and the external fac-
tory partners.

Our internal and external factory partners analyze
the requested schedules and allocate their capacity to
meet the demand and product priorities provided.
Analyzing and allocating our internal factory capacity
is a complex problem, with over 7.9 million decision
variables, 10,000 integer variables, and 7.8 million con-
straints, which can be solved in approximately four
minutes. The output of this step is the capacity allo-
cation by product family for each of the die-prep,
assembly, and test and finish factories across the in-
ternal and external manufacturing network.
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Optimized Routing Plans

After executing the previous two steps, we know the
supply available for each wafer and the capacity al-
locations for the rest of the network. We now can run
a fully constrained solve to optimize our final factory
routing plans and provide detailed instructions to
each factory on what it should build in each week in
the planning horizon. Once again, each product family
isindependent, allowing the problem to be decomposed
into hundreds of smaller pieces. A typical large product
family has about 2.1 million variables, 1.6 million con-
straints, and a solve time of less than two minutes.

The optimized routing plans are automatically pub-
lished to our enterprise systems and are used as the plan
of record for customer order confirmation, factory ex-
ecution, and our chief financial officer’s financial pro-
jections to market analysts.

Although we optimize the entire network on a
monthly cadence by executing all three steps of the
SCP process, the decomposition allows us to make
quick adjustments to the plans and, when needed,
with weekly and sometimes even daily frequency and
only for subsets of the supply chain. For example, if
the demand mix changes for a given product family,
then we can simply re-execute the last step in the
process for only that product family. If the demand
changes cannot be accommodated within the allocated
capacity, then we can re-execute the second and third
steps with the set of products and factories impacted.

SCP optimizes the global supply chain, providing
guidance to the entire supply network. Our SCP so-
lution integrates very closely with the tactical exe-
cution planning processes, which focus primarily on
the period within the manufacturing lead time. Tactical
execution planning provides instructions to the facto-
ries in the short term to align factory execution to plans
provided by SCP and, when warranted, makes the
required changes to SCP plans in response to customer
demand changes and unexpected manufacturing events.
As already noted, one of the key inputs to SCP is the
current state of the supply chain network. The tactical
execution planning process provides input to the SCP
process in terms of the expected output of the factory
network in the short term, ensuring a closed-loop
process. This is a key feature of the overall planning
environment to ensure that execution and planning
always stay in sync and that the output of planning is
feasible when it comes to execution.

SCP Modeling

The planning capabilities are built on an integrated
framework that includes the optimization and mathe-
matical modeling components, user interfaces for planners
to interact with the models, and an artificial intelligence/
machine learning (AI/ML) module for explaining op-
timization results. Included are interfaces to and from

the rest of the enterprise and factory systems to collect
the data needed to support the planning process and
to communicate decisions back to the enterprise and
factory network. This suite of capabilities guides SCP
decisions of what and how to optimally manufacture to
support demand and minimize waste. The goal is to
provide detailed plans for the entire supply chain
network, while comprehending demand and produc-
tion strategies.

The SCP model covers a one-year horizon in weekly
granularity. We represent SCP as an MIP problem,
similar to the classical production planning problems
covered in Moench et al. (2017). The model is modi-
fied for each step of the planning process to reflect the
modeling assumptions. For example, in the wafer
starts optimization step, the die-prep, assembly, and
test and finish factory network is aggregated to a
single factory, assuming infinite capacity for those
steps, whereas wafer fabrication and sort factories,
where key decisions are made, are modeled explicitly.
Another example relates to the last step of optimized
routing plans. In that step, the wafer supply is frozen;
therefore, the model does not need the wafer fabri-
cation and sort factories. This approach allows us to
create simpler models without sacrificing the solu-
tion quality.

Advanced Operations Research Algorithms

and Complexity

The size and the complexity of the SCP models are
challenging, especially considering the business re-
quirements for rapid runs to enable many iterations
and scenario analyses. Additionally, the high number
of objective trade-offs in one optimization run makes
reaching a satisfactory solution even harder. Our
advanced analytics models and data-reduction tech-
niques allow us to arrive at optimal solutions on average
in less than six minutes for these complex problems.
We employ various innovative techniques and use our
deep understanding of Intel’s business to exploit the
structure of the problem to simplify the mathematical
models and achieve faster results. The following are a
few of the techniques that we have leveraged:

e Standard and flexible formulation: Our SCP model
leverages the item, bill of material, and route model
(Hugos 2007) to represent the supply chain. This
translates to a robust and flexible formulation that
effectively handles the evolving supply chain net-
work as more complex products and manufacturing
processes are introduced into the flows.

* Model decomposition and effective cuts: In all the
SCP models, numerous production-related rules exist
for each process stage from fab to finish (Figure 5).
Some of these rules may vary depending on whether
manufacturing is planned at an internal factory or
an external factory. In other cases, select rules apply
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across all factories and process stages. This special
structure enables us to partition our large model into
manageable subproblems and use decomposition (e.g.,
for fab/sort and for assembly/test) to reduce solve
times (Dantzig and Wolfe 1960, Barahona et al. 2005).
To handle the complexity of solving binary and in-
teger variables for minimum lot sizing and batching
requirements, we add a number of stronger cuts
based on our practical knowledge of our problem to
speed up the branch-and-cut process, and reach the
optimal integer solution faster (Andersen et al. 2005).

e Interactive sequential goal programming: The busi-
ness rules for planning require that we balance sev-
eral hundred objectives in a single optimization run.
To handle the large number of objectives efficiently,
we use a tiered solve approach focusing on a subset of
objectives in each tier. We also convert objectives to
goals and use weighted goal programming to opti-
mize all unwanted deviations from the desired levels
in the goal achievement function within the objective
function (Masud and Hwang 1981).

o Constraint caching and parallel data processing: To
further improve end-to-end solve times, we cache all
constraints in memory and only regenerate constraints
that have coefficient or right-hand side (RHS) changes
from solve to solve. Moreover, we employ parallel
data loading for different constraint coefficients and
RHS values when we load data from the database
into memory.

o Path-based constraint formulation: Our solution
solves for multiple, sequential stages, as we show in
Figure 5. We employ a mix of path-based and stage-
based formulations to avoid the introduction of a
large number of variables and constraints by mod-
eling each stage. The path-based formulation pre-
generates paths from wafer to finish and calculates
parameters for each path to most effectively generate
the constraints (Fleischer and Skutella 2002).

o Artificial intelligence (Al) in support of explain-
ability and autonomous planning: One of the biggest
challenges in deploying optimization solutions in
practice is to explain the results. To overcome this
challenge, we have developed an Al platform, which
consists of a complex events processing (CEP) engine
that deciphers results from the optimization engine
into multiple events (Adi 2007), a knowledge-based-
system (KBS) module that helps explain plan changes
cycle over cycle (Tiwana 2000), and an ML module
that conducts classification, prediction, and har-
vesting of business rules based on historical plans
(Wilkins and desJardins 2001).

The platform accumulates both business process
flow knowledge and production rules with advanced
ML models working interactively with our optimi-
zation model to aid users in areas including (1) tuning
the model weights and parameters, (2) checking and

imputing bad data, (3) identifying binding and con-
flicting constraints, (4) understanding outputs such
as demand support patterns, and (5) facilitating
sensitivity analysis to ensure robustness of supply
chain plans.

Outputs from the CEP Engine, and KBS and ML
modules feed a decision support (DS) module con-
sisting of a rules engine that leverages predefined
rules and harvested rules. This DS module determines
whether to accept a plan or to iterate in search of a
better plan.

Analytics Framework and Implementation
Delivering end-to-end advanced analytics to support
product architecture design and supply chain plan-
ning requires a framework that is (1) easy to use,
(2) flexible to support changing requirements, and
(3) performant and scalable to meet the growing ad-
vanced analytics needs of the company. Our analytics
framework is designed to support a broad range of
product architecture design and supply chain plan-
ning capabilities. The framework is multilayered and
modular. Multilayered architecture enables different
parts of the solution to be implemented with different
technologies, while still being part of a single solution
framework. Modular architecture allows us to modify
existing components or add components indepen-
dently without impacting the rest of the solution.

The application layer includes a suite of applica-
tions, each focused on a specific business need. The
applications provide facilities to manage relevant
data, schedule analyses, perform what-if analyses,
and view results and dashboards. Applications are
implemented as a mix of client and web-based ap-
plications, depending on the specific business need.
An event-driven architecture is used across the appli-
cations with real-time notifications of analysis progress.
Applications are implemented using a variety of lan-
guages and platforms, including C#, Python, and var-
ious JavaScript frameworks.

The microservice layer is responsible for invoking
analyses as requested by applications and other micro-
services. New applications are composed by connect-
ing to existing microservices or adding new micro-
services. Microservices provide an abstraction so that
the details of running analyses can evolve over time
without impacting applications and are implemented
using a variety of languages and platforms, including
C# and Python.

The compute layer is where analyses run. Micro-
services expose the ability to trigger the analyses’
functions and review the analyses’ outputs. The so-
lution framework uses on-premises private scale-out
clusters for data locality and security requirements.
Many analyses are currently being migrated to run on
local Kubernetes clusters for maximum scalability.
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The optimization models and AI/ML models are im-
plemented using a variety of languages and frame-
works, depending on the specific business needs. Many
of the LP and MIP models discussed in this paper are
implemented using CPLEX and Concert Technology
with custom C# logic that manages preprocessing,
data validation and imputation, decision variable
creation, constraint generation, tiered-solve sequenc-
ing, CPLEX parameter setting, and algorithm config-
uration. The custom genetic algorithms are implemented
in Python using standard frameworks, such as Numpy,
and solve their linear subproblems by invoking CPLEX.

The data layer is where analysis data are stored.
SQL Server, MongoDB, and other enterprise services
are used in this layer. The compute and microservice
layers interact with the data layer to retrieve the in-
puts needed to run the optimization models. Appli-
cations access data through microservices. The details
of data storage are hidden from applications so storage
can change without impacting applications.

Benefits

Over the course of the efforts described in this paper,
Intel has realized financial benefits, organizational
benefits, and environmental benefits. All the modules
that have been developed and integrated are product
independent from the perspectives of design, manu-
facturing, and supply; therefore, these benefits will
continue to be realized into the future.

Financial Benefits: Product Architecture Design

Since the initial effort to expand our project to include
product architecture design eight years ago (Rash and
Kempf 2012), we have not found any commercially
available off-the-shelf (OTS) software that can ad-
dress any of the steps of our complex problems. As we
developed our modules to solve each part, we have
had the opportunity to apply them to a wide variety of
Intel products. A member of Intel Finance repre-
senting the target product division has been assigned
to each use case to provide financial data as required
during the effort and to help evaluate the benefits at
the conclusion of the use case. Over the past four
years, successful examples include decreasing the
number of design configurations required and low-
ering engineering cost, optimizing the manufacturing
cost trade-off with increased performance, increasing
revenue, and improving the utilization of the die from
manufactured wafers, thus lowering manufacturing
costs. The product design benefits computed by Intel
Finance include $1.04 billion in cost savings and $340
million in revenue uplift for a total of $1.38 billion
over the past four years (Figure 11). Because the
techniques that we have developed are applicable to
every product that Intel will design in the future, we
consider the valuation so far as the tip of the iceberg.

Figure 11. Monetary Benefits in Terms of Revenue Upside
and Cost Savings as a Result of Using Our Product
Architecture Design and Supply Chain Planning Solution
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Financial Benefits: Supply Chain Planning

To ensure that our solution provides Intel with a clear
competitive advantage over commercially available
OTS supply chain management software solutions,
we periodically compare our solutions with OTS
solutions with respect to capabilities and perfor-
mance and conduct a gap analysis based on our
current and future needs. Traditionally, we have
found OTS software unable to meet Intel’s required
criteria with respect to business rules and constraints.
Given the flexibility in our solution to customize the
models to fit the manufacturing network and capture
business requirements, we can provide feasible and
executable plans to the supply chain, minimizing
postoptimization manipulation and postexecution
reconciliation efforts. As a result of our fast-changing
business needs, we are required to deliver new ca-
pabilities and major enhancements every four to six
months, making OTS solutions impractical for our
scale and fast-changing environment.

Before putting our supply chain planning solution
into production in 2009, we did extensive testing and
analysis against the legacy solutions in place at Intel
at the time. We compared the optimization-based
solution with the legacy, greedy, algorithm-based
heuristic solutions, by running the solutions in par-
allel for a year. During this period, planners would
pick a set of representative products with all the cor-
responding input data and use the heuristic solution to
determine the plans for all manufacturing routes to
support demand and meet inventory targets. Then, we
would use the same set of products and the same in-
puts and run our supply chain planning modules to
generate the optimal plan to achieve the same demand
support and inventory targets. Based on our year-long
comparison of the computer-generated plans, which
included 12 monthly planning cycles, even for very
simple products, we observed that planners could only
manage to consider a subset of the potential feasible
solutions and, as a result, came up with answers that
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resulted in 6%-15% more wafer starts for the same level
of demand support compared with our optimization-
based solution. Today, with more complex multichip
and multicore products, the legacy solutions and pro-
cess would not be able scale to produce feasible results
in a timely manner.

Given the observed range of results, we have ar-
rived at a very conservative valuation of 6% reduction
in wafer starts for our supply chain planning mod-
ules. Analysis by Intel Finance has shown that this
translates to a 6% revenue upside in years of high-
capacity constraints (6% more revenue for the same
watfer starts), a 6% cost savings due to fewer wafers
manufactured to satisfy demand in years where ca-
pacity is not constrained, and a 3% revenue upside
and 3% cost saving in years of medium levels of ca-
pacity constraints.

The overall product architecture design and supply
chain planning results are summarized in Figure 11,
showing an overall benefit of $25.4 billion thus far
between 2009 and 2019. This is based on $568 billion
revenue for Intel during the same period for the
products that are designed and planned by our so-
lution suite. Similar levels of annual savings are also
projected in future years, with our capability con-
tinuing to drive a competitive edge for Intel.

Organizational Benefits

In addition to the technical challenges, we had to
overcome a variety of organizational challenges
to achieve our outstanding results, detailed earlier,
which position our advanced analytics as the gold
standard for the company. Our solutions have set
the direction on key product architecture design de-
cisions across multiple products and business units
and are vital to SCP decisions performed on a daily,
weekly, and monthly basis across Intel’s worldwide
manufacturing network. We faced many common
biases, including “these tools will take away our
jobs,” “notinvented here,” and “we have always done
it this way.” Despite these challenges, our users and
our management have transitioned from skeptics, to
believers, to champions.

We overcame these biases by always involving the
individuals, teams, and organizations who would
benefit from or be impacted by our solutions. Our
efforts began by observing stakeholders perform the
existing “standard” process for solving those prob-
lems and watching them report to their management.
We built proof-of-concept solutions using data from
previous situations and shared the method and re-
sults with potential users before sharing them with
their management, which led to requests for pro-
duction solutions. We found this approach to be more
effective in terms of the longevity of the solutions,
where the users took ownership of the solution early

on and became advocates, compared with solutions
that are pushed “top-down” from higher manage-
ment or corporate information technology groups.
The solutions that we have deployed include training
materials across all levels of the corporation, a frame-
work for our tools to enhance their usability, including
data acquisition and solution broadcast, and tech-
niques to explain the solutions. The users became
champions because our capability gives them the
benefit of efficiency and the satisfaction of generating
better solutions. They can now solve their problems
in minutes or hours instead of days or weeks, as they
did previously. Alternatively, they can evaluate 5 to 10
times more scenarios than ever before to improve so-
lution quality under different business conditions. In
most cases, they enjoy both benefits, always free from
manually introduced errors.

Our management became champions based on the
financial results from sustained revenue increases
and cost reduction, as well as the new insights and
controls that they have relative to the product archi-
tecture design and supply chain planning processes.

Environmental Benefits

Semiconductor manufacturing has a high reliance on
water, and Intel is leading the way with respect to
reductions in water usage and the wastewater gen-
erated during manufacturing. Intel recycles most of
the water it uses in manufacturing. The postmanufac-
turing treatment practiced by Intel produces water
that often exceeds local government drinking water
standards. Our supply chain planning capability resulted
in reducing water usage by two billion gallons of water
and preventing over 500 million gallons of wastewater
so far over the 10-year time frame of our project. Al-
though water savings are not explicitly modeled in our
analytics solutions, these benefits are the direct result of
the reduced number of wafers started in the factories,
especially in years where capacity is not constrained.
Reducing water usage and wastewater is important for
the environment, especially in states, such as Arizona
and New Mexico, that have Intel factories and where
water is a precious commodity. It continues to be a
major focus at Intel along with many other socially
responsibility efforts, such as leading the industry in the
use of green power and conflict-free minerals.

Summary

Considering the ever-increasing complexity of our
products, manufacturing processes, and routings,
Intel could not efficiently manage the product ar-
chitecture design and supply chain planning pro-
cesses that are vital to our success without the inte-
grated solution suite described in this paper. We have
achieved the goal of increasing the profitability of
our enterprise by over $25 billion and changing our
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culture in a way that will sustain the benefits far into
the future. Our customers and society benefit from
our ability to continue our long tradition of designing
and supplying ever-more powerful and capable com-
puting products. We have also contributed to Intel’s
ongoing efforts to protect and enhance the environ-
ment. We hope that our success will encourage others
to apply advanced analytics to complex problems
and thus provide them and society with substan-
tial benefits.
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