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https://doi.org/10.1287/inte.2020.1042 Abstract. Denver Public Schools (DPS) serves roughly 90,000 K-12 students using a mixed
Copyright: © 2020 INFORMS bus ﬂeet. Developing and reviewing bus-route assignments manuz'llly has been ghallenging
and time consuming for DPS. During 2017-2018, DPS analysts reviewed and adjusted over
700 routes assigned to approximately 200 buses, considering time and capacity feasibility.
We developed a decision support tool (DST) to generate feasible bus-route assignments
and help inform DPS’s decisions. The DST employs optimization models to solve the bus-
route assignment problem using distance data from Google Maps Application Pro-
gramming Interface and various interroute reposition-time scenarios to account for the
impact of potential traffic delays. The model incorporates multiple objectives related to
minimizing cost, meeting demand, and maximizing “consistency”—that is, the difference
between a newly created and previously implemented solution The solutions generated by
the DST for the 2017-2018 school year utilized significantly fewer buses and lower re-
position mileage compared with the DPS solution. Considering the convenience, efficiency,
and flexibility of generating high-quality bus-route assignments using the DST, the DPS
transportation team has used the DST in the route planning process since 2018.
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Transporting K-12 students in the United Statesisa  routes covering all the bus stops, setting school bell
massive endeavor involving more than 25 million  times, and bus-route assignment (Figure 1). A route
students annually and costing more than $23 billion  (also referred to as a segment by Denver Public
(Snyder et al. 2016). The provision of school bus  Schools (DPS)) consists of a set of bus stops with
transportation is an essential service to students and  students assigned to those stops to be picked up in
families, especially for those with little to no access  the morning and dropped off in the afternoon. Prior
to modes of safe transportation. Many states require  to software-based solutions, school districts solved
by law that school districts provide transportation =~ SBRPs manually. In the late 1970s, researchers ex-
to all eligible students. Student eligibility dependson ~ amined specific school districts and developed al-

criteria such as walking distance from school, dis-  gorithms for solving SBRPs, considering the objec-
ability status, type of school, and whether a student  tives of minimizing transportation costs and average
attends a school outside of his or her zoning district. student ride time (Bodin and Berman 1979). Various
Although school systems strive to provide service to  solution methods exist addressing one or more sub-
all eligible students, many challenges exist, includ-  problems, including special-education routing (Russell
ing operational costs, bus-stop and -route assign-  and Morrel 1986, Braca et al. 1997); route generation

ments, ridership uncertainty, and rider and driver = and bus-route assignment (Spada et al. 2005, Simchi-
equity. Efficient school-bus operations could help  Levi et al. 2014); route generation and bus-route as-
reduce chronic absenteeism, a “hidden educational  signment with school-bell time adjustment (Fugenschuh
crisis” (U.S. Department of Education 2019), as well as 2009, Bertsimas et al. 2019); and mixed-load route
the overall cost of transportation incurred by the  generation (Park et al. 2012, Lima et al. 2016).
school systems. Our work focuses on DPS’s bus-route assignment
The school bus-routing problem (SBRP) (Newton  problem, which is challenging for various reasons, in-
and Thomas 1969, Park and Kim 2010) consists of  cluding the large number of routes and buses, various
interconnected subproblems: selection of bus stopsto ~ start and end times for the routes, reposition times
ensure safe and easy access by students, choosing  and distances between the routes, and uncertainty in
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Figure 1. (Color online) SBRP Has Several Components, Including Stop Selection and Assignment of Students to Stops, Route

Generation, and Bus-Route Assignment
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Notes. Bell-time adjustment can be considered when generating routes or assigning buses to routes. The dashed lines in the bus-route assignment
diagram represent the repositioning of buses from the terminal to the first stop of a route or between consecutively served routes. Our work

focuses on the bus-route assignment subproblem.

reposition times. While generating bus-route assign-
ments, we consider a heterogenous bus fleet, multiple
bus-terminal locations, and capacity and time con-
straints. We consider multiple objectives, such as min-
imizing the reposition mileage, the number of buses
utilized (with the goal of reducing operational costs),
delays (due to uncertainty in reposition times), using
slack (or idle time) between routes, and “incon-
sistency”—that is, reducing the difference between a
newly created and current (or previous) solution. The
solution methods—namely, optimization models that
are embedded into the decision support tool (DST)—
are the results of a collaboration between a group of
researchers from the Georgia Institute of Technology
and data analysts and transportation supervisors
from DPS. This work differs from other work in the
literature because it considers multiple objectives (as
well as numerous constraints), evaluates trade-offs
between consistency and other objectives, and em-
beds the developed solution approaches into a fully
functional decision-support tool, which has been suc-
cessfully used in practice by DPS and can be adapted to
other school systems.

Denver Public Schools System

DPS transportation route analysts develop bus-route
assignments for a fleet of around 400 buses, trans-
porting close to 40,000 K-12 students across 207
schools (Denver Public Schools Transportation 2018).
The team determines bus-stop locations, assigns stu-
dents to stops, creates a set of routes, and assigns buses
to routes each academic year starting in April and
ending in July. For the 2017-2018 academic year, DPS
route analysts created 700-800 routes and assigned
buses to routes to maximize the number of routes
served per bus, while also picking up and dropping
off students on time (Figure 2).

Each bus starts and ends its day at one of two
terminals. This is a single-load problem because each
route involves transporting students going to or
departing from one school. We categorize the routes
into two types: morning or afternoon. In the morning,
each bus repositions from its terminal to the first stop
of its first assigned route. After visiting all the stops
and picking up students on its route, the bus takes the
students to their schools by a planned drop-off time
because students cannot be dropped off too early at

Figure 2. (Color online) Each Year, the DPS Transportation Team Makes Multiple Decisions Regarding School Bus Routing
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their schools due to safety reasons. Then, the bus
repositions to the first stop of the next route (if any)
assigned to it. In the afternoon, each bus starts at a
school to pick up students. After visiting all the stops
on the route and dropping off students, it repositions
to the school of the next route (if any) assigned to it.
Finally, after serving all its assigned routes, the bus
returns to its terminal. In our deterministic and sto-
chastic models, morning and afternoon routes are
considered separately due to the sufficiently long
break between the routes; this helps to decrease the
model size and run time.

While planning the routes and estimating their
durations, DPS analysts utilize a conservative esti-
mate of bus speed and account for potential travel-
time uncertainties within each route. DPS shares in-
formation with families about the estimated arrival
time of the bus at each stop. Drivers adjust their speed
and try to arrive at each stop “on time” so that stu-
dents are not accidentally missed because the bus is too
early or late. Because the estimated and actual route
times are typically very close to each other, we assume
that route durations are known/deterministic.

There is often some uncertainty in the repositioning
times between routes. In the deterministic model, we
use average repositioning times as input and utilize
the concept of slack to address this uncertainty. Slack
time between two consecutive routes assigned to the
same bus is equal to the second route’s start time
minus the first route’s end time minus the (average)
reposition time between those routes. That is, the
slack is the extra time available while a bus reposi-
tions from one route to another. A slack that is too
small may increase the chances of route delays. Hence,
it is generally undesirable for the slack time to be
too small. In the stochastic model, we explicitly model
the uncertainty by considering various reposition-
time scenarios.

Challenges

Many factors impacting school bus routes are outside
the control of the transportation team. These factors
include school closures and openings, new riders,
families leaving or moving into the school district,
students changing schools, road closures, rezoning,
and city development. Even with minimal changes to
such factors within the school system, DPS route
analysts struggle to evaluate trade-offs and the fea-
sibility of adjustments to bus-route assignments be-
fore implementation.

A major consideration in school bus-routing deci-
sions is cost, including costs of bus procurement and
maintenance, driver salaries, fuel (particularly due
to repositioning between routes), and utilization of
commercial school-bus transportation software. Prior
to this collaborative project and the development of

the DST, DPS analysts used a software package to
generate routes and then manually created bus-route
assignments. This tedious and time-consuming ad-
justment process left little time for review before the
start of the new academic year. Manually adjusting
the bus-route assignments often led to a cascading
impact of potential infeasibilities, where one change
could affect tens or hundreds of other assignments.
The manual process also made what-if analyses of the
bus-route assignments nearly impossible. For ex-
ample, prior to this work, when a school wanted to
change its bell time, there was no simple method to
evaluate the overall impact on the bus-route assign-
ments, feasibility, and cost.

Another key consideration in bus-route assign-
ment decisions is scarce resources, such as buses and
drivers, capacity constraints on the number of stu-
dents each bus can accommodate, and accessible
buses that must be assigned to routes with students
using wheelchairs. If there are not enough buses or
drivers, DPS has to rely on expensive third-party
busing services to cover any routes not able to be
served by the DPS bus fleet. Hence, scarce resources
add to the challenge in the manual generation of
feasible and low-cost bus-route assignments. The
added expense of third-party services might be un-
necessary or excessive, but, prior to this work, DPS
analysts did not have enough time or bandwidth to
determine whether the use of third-party services
could be decreased or not.

Finally, DPS route analysts prefer “consistency” in
bus-route assignments; that is, whenever possible,
a route assigned to a particular bus/driver in the
current solution should be assigned to the same bus/
driver in a newly generated solution. Consistency
helps minimize the impact on students, families, and
drivers; makes implementation easier; and helps DPS
meet its contractual obligations to drivers by limit-
ing the changes to bus-route assignments. There are
challenges in achieving consistency due to the various
objectives and constraints that need to be considered,
and there is often a trade-off between consistency and
cost. We focus on overall cost minimization as a
primary objective and include consistency as a sec-
ondary objective in our models by using adjustable
parameters to help DPS develop and evaluate con-
sistent bus-route assignments. Better route assign-
ments result in more efficient use of the current
bus fleet and available drivers without compromis-
ing service.

Solution Approach

We developed deterministic integer programming
(D-IP) and stochastic integer programming (S-1P)
models, which are embedded into the DST for bus-
route assignment generation and for sensitivity analysis



Chu, Keskinocak, and Villarreal: Denver Public Schools Optimizes School Bus Routes
INFORMS Journal on Applied Analytics, 2020, vol. 50, no. 5, pp. 298-312, © 2020 INFORMS 301

considering uncertainty in reposition times, respectively.
The objective function has five main components—
namely, the number of buses used, number of un-
served routes, reposition miles, inconsistency (devi-
ation from the current solution), and slack penalty
(applied only if the slack time is below a speci-
fied threshold).

Model inputs include the following:

e Route data: For each route, ridership demand,
route end time and duration, and estimated reposi-
tion time and miles between every pair of routes.

¢ Fleet data: For each bus, capacity, terminal location,
and other specifications (e.g., wheelchair accessibility).

e Current DPS solution (i.e., current bus-route
assignments).

¢ User-assigned parameters, including the following:

- For the objective function components (the number
of buses used, the number of unserved routes, repo-
sition miles, inconsistency, and slack), the weights/
penalties are represented by scalars (c, ¢, 7, v, and s),
respectively.

- Lower and upper bounds on slack time.

- Parameters defining the magnitude of the buffer
added to repositioning times.

The models generate new bus-route assignments,
considering time and capacity constraints, while aiming
to minimize (expected) operational costs and penalties
due to inconsistency (i.e., differences between the cur-
rent and the newly generated assignments).

Key constraints are based on time and capacity,
where each route is assigned to a bus that has the
capability to serve it (e.g., enough capacity to ac-
commodate all students on the route and wheelchair
accessibility if students using wheelchairs are on the
route), and assignments of consecutive routes to a
bus must be serviced on time. Optional constraints
include a lower bound on how early buses can leave
the terminal and upper and lower bounds for the slack
time. DPS analysts have the flexibility to turn these
constraints on or off in the DST. We discuss further
details, such as definitions and explanations of de-
cision variables, input parameters, objectives, and
constraints of the D-IP model, in Appendix A.

The S-IP model builds upon the D-IP model by
considering uncertainties in reposition times and
potential delays—that is, the possibility of a bus ar-
riving at its destination after the scheduled arrival
time. Although the D-IP model takes reposition times
between routes as a deterministic input, the S-IP
model considers multiple scenarios, each with an
assigned probability, for reposition times between
each pair of routes in the system and incorporates a
penalty for the expected delay in the objective func-
tion. For a feasible solution, the model calculates the
delay under each scenario and the total expected delay
across all scenarios. For a given problem instance, we

expect that the S-IP solution is likely to result in lower
overall expected delay, on average, compared with the
D-IP solution. We discuss further details, such as defi-
nitions and explanations of decision variables, input
parameters, objectives, and constraints of the S-IP
model, in Appendix B.

Bus-Route Assignment Decision
Support Tool

To aid DPS analysts in decisions related to school-bus
routing, we developed an Excel-based DST with
macros embedded using Microsoft Visual Basic for
Applications. Populated with data from DPS, the DST
employs the models coded by using a mathematical
programming language, AMPL, enabling the DST to
call any integer programming (IP) solver. The DST
currently uses the GNU Linear Programming Kit,
a solver freely available at https://www.gnu.org/
software/glpk/, to keep the implementation and
usage cost low; in the future, DPS could utilize other
solvers if desired. The DST contains all functionality
needed by the user to create and analyze bus-route
assignments. Figure 3 provides a view of the main
menu of the DST.

Decision Support Tool Inputs

The data input, collected via the main menu of the
DST tool (Figure 3), includes bus-fleet mix (e.g., ca-
pacity and terminal location of each bus), route in-
formation (e.g., planned load, wheelchair load, start
time, and duration), reposition times and miles be-
tween routes, number of terminals, number of buses
by terminal, and information about the current bus-
route assignment (i.e., current DPS solution). The user
also inputs additional parameters, such as the pen-
alties for the objective function components, which
allow that user to consider trade-offs between cost
and consistency while maintaining time and capac-
ity feasibility.

The user can enter some or all of the reposition-time
and mile values. If the reposition-time and mile in-
formation are not readily available for all route pairs,
the DST provides two different distance functions for
calculating reposition miles and times for a subset or
all route pairs: the Google Maps Distance Matrix
Application Programming Interface (API) and the Eu-
clidean distance formula. The user also has the option to
add “buffers” to the reposition times. The buffer
can be added as an absolute value or as a fraction of
the current reposition time, or by adjusting the bus
speed. The bus speed is used to calculate the repo-
sition time based on the reposition distance. This
functionality of the DST enables DPS to adjust repo-
sition times as needed (e.g., based on past experi-
ence or changes in traffic patterns or road conditions)
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Figure 3. (Color online) The Main Menu Tab in the DST Enables the User to Prepare Model Input Files, Specify Model
Parameters, Run the User-Defined Model, and Read in the Model Solution

Decision Support Tool - Fixed Bell Time Windows
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Note. Other supplementary functions (not shown in the figure) include reposition time and distance matrix calculations using the Google Map

Distance Matrix API or a Euclidean distance formula.

while creating new bus-route assignments or evalu-
ating alternative solutions. In the future, DPS could
utilize different time estimates considering the time
of day.

Decision Support Tool Outputs

The DST output, in a format similar to what DPS
analysts have historically used, includes the bus-
route assignment solution generated by the model
(Figure 4(a)) highlighting consistency, the reposition
times and miles between routes (Figure 4(b)), and
lists of buses utilized and routes (not) served. The
DST allows the user to output select histogram plots
and view summary statistics of the model solution.
Appendix C shows example outputs in Figures C.1
and C.2.

Note that each route has a planned load, which can
be greater than the maximum available bus capacity,
because, typically, some eligible students choose not
to use the bus. Therefore, the route-load input to the
model is the minimum of the planned route load and
the DPS-assigned bus capacity to this route.

Computational Study

To understand the impact and performance of the
developed models in comparison with the DPS bus-
route assignments, we completed various studies
detailed below. DPS analysts provided the bus-route
assignments implemented during the 2017-2018 ac-
ademic year, which consisted of 358 morning and 350
afternoon routes. First, using the D-IP model, we cre-
ated bus-route assignments with and without consid-
ering consistency. Then, we analyzed different combi-
nations of weights (c, ¢, r, v, and s) for the five penalty
components in the objective function (i.e., number of
buses used, number of unserved routes, total repo-
sition miles, inconsistency, and slack) to examine
their impact. In the computational study, we coded
the D-IP and S-IP models in Python and solved them
with Gurobi Optimizer 8.1.

For each route pair (j, k), we first calculated the
estimated reposition time ¢ (the reposition time from
the end of route j to the beginning of route k) using
the Google Maps Distance Matrix API and an esti-
mated bus speed (Duran and Walkowicz 2013);
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Figure 4. (Color online) The Output Solution Tab in the DST Displays the Bus-Route Assignment Generated by the D-IP Model

(@)

DPS Bus WC Model Bus ModelBus | ModelBus WC| Segment Segment | Segment WC
DPS Bus Number | DPS Bus Capacity Cavasd e Capacity Capacity A Y ; Terminal
1026-N 72 0 1026-N 72 0 1 120 0 1
1035-N 72 0 1026-N 72 0 13 72 0 1
1028-N 72 0 1028-N 72 0 3 140 0 1
1028-N 72 0 1028-N 72 0 4 72 0 1
1029-N 72 0 1029-N 72 0 5 120 0 1
(b)
Reposition Reposition Reposition Reposition Reposition Reposition
StartTime | Duration | EndTime | Slack Time Time Time Time Miles Miles Miles
(t>s) (seg > seg) (a1 (t>s) (seg -> seg) (a1
6:46 AM 59.00 7:45 AM 0.00 17.18712186 5.72904062
7:52 AM 38.00 8:30 AM 3.00 3.649933254 26.90847116 1.216644418 B.969490385
7:27 AM 33.00 8:00 AM 0.00 13.65835595 4.552785317
8:28 AM 17.00 8:45 AM 13.00 14.75631851 15.62126694 4.918772836 5.20708898
7:03 AM 37.00 7:40 AM 0.00 14.1952205 4.731740165
7:57 AM 28.00 8:25AM 1.00 15.35842701 26.83949897 5.119475669  8.946499658

Notes. In panel (a), the output solution tab shows the current DPS solution and the solution generated by the model and highlights the
differences (inconsistency) between them; the shaded cells indicate when the bus-route assignment is the same in both solutions. In panel (b), the
time stamps and reposition information for the routes assigned to each bus.

see Appendix D for details in Figure D.1. We stored
these values in matrix Ry, where each cell (j, k) in the
matrix corresponds to tj. We ran the D-IP model
using R, as input, with and without slack penalties.
Wealsoran the D-IP model using different reposition-
time matrices as input, which we created by modifying R
with the addition of buffers (an absolute value, a, and a
fraction of the current reposition time, f8) to each tj.

To understand the impact of reposition-mile un-
certainty on the quality and robustness of the solu-
tions, we generated multiple reposition-time scenar-
ios (where each scenario corresponds to a particular set
of realizations of the reposition times). First, note that
92.5% of reposition times are larger than five minutes
(see Figure 5). For tj > 5, we modeled the percentage
difference between the realized and expected repo-
sition times using a triangular distribution (mini-
mum = —10, mode = 0, and maximum = 200). This
ensures that the realized reposition times are more
likely to be longer (versus shorter) than the average,
and the absolute deviations are higher when the ex-
pected reposition time is longer. To generate each
scenario u, for each pair (j, k) we drew a number d from
the distribution and set ty = (1+d/100)ty. For very
small repositioning times—thatis, fx <5—weadded a
delay of (x € 1,...,5) minutes following a triangular dis-
tribution (minimum = 1, mode = 1, and maximum = 5).
We generated 15 reposition-time scenarios with sce-
nario u stored in matrix R", u = 1,...15.

For each D-IP solution, we computed the expected
delay across these 15 reposition-time scenarios. Note
that route delay is the positive difference between the
actual and scheduled arrival time of the bus at the
route’s destination (if the bus arrives earlier than
scheduled, the delay is zero). The S-IP model incor-
porates an expected delay penalty (£) in the objective
function to favor bus-route assignments that mini-
mize expected delay across all scenarios.

Figure 5. (Color online) The Distribution of Estimated
Reposition Times from Matrix Ry Shows that More than 90%
of Reposition Times Exceed Five Minutes
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Results and Discussion

The D-IP model focuses on the assignment of buses to
routes with the goal of minimizing reposition mileage
between routes and reducing the number of buses
used, while ensuring timely pick-up and delivery of
students. In the objective function, we set c = 100 (the
penalty for the number of buses used), e = 1,000 (the
penalty for not serving a route), and r = 1 (the penalty
for total reposition miles) to ensure that the model
always favors solutions that serve as many routes
as possible.

Trade-Off Between Cost and Consistency

To understand the trade-off between cost and con-
sistency, we ran the D-IP model with various pen-
alties for deviating from the current solution (i.e., by
setting the inconsistency penalty in the objective
function to v = 0, 10, 25, 50, 100). In this part of the
computational study, we set s = 0 (i.e., no penalty for
slack) and used the average reposition-time estimates
(Ro) as input (i.e., a = p=0).

When we set v = 0, the D-IP solution for morning
routes utilized 15% fewer buses and 24% fewer re-
position miles compared with the DPS solution as
shown in Figure 6. For the afternoon routes (see

Appendix E for a summary of the results in Figure E.1),
the D-IP solution utilized 19% fewer buses and 27%
fewer reposition miles compared with the DPS so-
lution. As we increased v, the consistency (similarity)
between the D-IP solution and the DPS solution in-
creased; the D-IP solution results in no more buses
used and a smaller number of reposition miles
compared with the DPS solution, while serving all
the routes.

D-IP Solution Quality and Robustness Under
Reposition-Time Uncertainty

In the D-IP model, we utilized two approaches to hedge
against reposition-time uncertainty: (1) We used dif-
ferent reposition-time matrices as input, which we
created by modifying R, with the addition of buffers to
each tj; and (2) we ran the D-IP model using R, as
input, with slack penalties.

We modified the reposition times by adding a
“buffer” with the goal of reducing delays. The buffer
is a combination (e, ), including a fixed value (o > 0)
and a fraction (§ < 1) of the estimated reposition time.
For example, suppose the reposition time between
two routes is 20 minutes; (0, 0) represents no buffer,
whereas (5, 0.2) represents a buffer of 5 + (0.2)(20) =9

Figure 6. (Color online) The Graphs Show the D-IP Model Solution for the Morning Routes with Objective Function Penalty

Parameters (c; e; r; s) = (100; 1,000; 1; 0)
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Notes. As v increases, the number of buses used (a) and the total reposition miles (b) increase, while the number of inconsistent routes
decreases (c). Even a small v (i.e., v > 25) results in a solution with high consistency (over 90%) and utilizing significantly fewer buses compared

with the DPS solution.
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minutes added to the reposition time. The set of («, f5)
combinations used were: {(0, 0), (0, 0.1), (0, 0.2), (5, 0),
(5,0.1), (5, 0.2), (10, 0), (10, 0.1), (10, 0.2)}.

To understand the impact of using buffers, we cre-
ated eight different reposition-time matrices, Ry, ..., Rs,
by adding different buffer values to the estimated re-
position times stored in matrix Ro.

We solved the D-IP model by inputting each of
these matrices; as before, we set the objective function
penalties as (c = 100, e = 1,000, r = 1). For each of the
D-IP solutions, we computed the route delays under
the 15 reposition-time scenarios (R, u=1,...,15) and
the corresponding expected delay across all scenar-
ios. Generally, as the buffer increased, (1) the total
expected and maximum delay decreased, and (2) all
routes could be served with fewer buses (except when
a =10 in the morning results) than the DPS solution.
Note that although the mean expected delay was
quite low in the D-IP solution, the maximum expected
delay could be higher compared with S-IP, but sig-
nificantly lower than the maximum expected delay in
the DPS solution. The morning and afternoon results
with the D-IP using buffers are presented in Tables E.1
and E.2 in Appendix E.

In addition, the D-IP model includes a slack-time
penalty in the objective function to influence the
model to prefer bus-route assignments with a certain
amount of slack. As we mention above, the slack time
is equal to the planned start time of a route minus the
reposition time minus the planned end time of the
previous route assigned to the bus. If the slack is
positive, it helps reduce delays in case of reposition
times that are longer than expected.

To understand the impact of using the slack pen-
alty, we prepared the following input for the D-IP
model via preprocessing: For each pair of routes that
can be feasibly served consecutively by the same bus,
we set the slack penalty equal to s x max{0, threshold —
slack}. Hence, if the slack between a pair of routes
assigned to the same bus is less than a threshold, the
slack penalty increases as the slack decreases. We set
the threshold = 15, which incentivizes the model to
prefer bus-route assignments with slack close to and
above 15 minutes. We tested the D-IP model using R,
as input with s = 0, 10, 25, 50, 100, where s = 0 cor-
responds to the base D-IP solution. For each of the
D-IP solutions (found using one of the slack penal-
ties), we computed the route delays under the 15
reposition-time scenarios (R*, u=1,...,15) and the
corresponding expected delay across all scenarios. In
general, as the slack penalty increased, (1) the total
expected and maximum delay decreased, and (2) all
routes could be served (except when s = 100 in the
morning routes), while the total number of reposition
miles increased. Tables E.3 and E.4 in Appendix E
display the morning and afternoon results for the D-IP

solutions under different slack penalties. Note that DPS
previously could not quantify the impact of includ-
ing slack penalties in generating bus-route assignments.

Recall that the S-IP model incorporates an expected
delay penalty (¢) in the objective function to favor bus-
route assignments to minimize the expected delay
across all scenarios. The total expected delays resulting
from the S-IP and D-IP solutions (with buffers or slack
penalties) are similar. Hence, in this application, D-IP
solutions are generally robust under reposition-time
uncertainty. Furthermore, the impact of buffers and
slack penalties are generally similar; hence, depending
on their knowledge and experience, DPS analysts can
benefit from using slack penalties and buffers inter-
changeably, or in combination.

Implementation and Benefits

The process of developing the models and the DST
sparked a robust data-validation process led by the
district routing department and supported by infor-
mation from DPS bus terminals. The DPS route an-
alysts collaborated on updating the route data sets
with the latest information from the bus terminals and
departments across the district. The DST helped DPS
quickly identify potential issues with bus-route as-
signments, given the strategic goal of minimizing
reposition time and miles between routes to address
changing traffic conditions across Denver.

The pilot testing on a subset of the bus routes during
the 2017-2018 school year indicated that the DST
solution would lead to an 8% decrease in buses used
and a 20% decrease in reposition miles compared
with the bus-route assignment implemented by DPS
during that time frame. The DST enabled the trans-
portation team to create high-quality bus-route as-
signments, as well as efficiently and effectively evaluate
them (e.g., identify bus routes at risk for being late);
doing these activities manually previously took several
weeks or was not time-feasible at this scale and scope.
DPS analysts used the DST for the planning of the
2018-2019 school year and the bus-route assignments
outputted from the DST with minor modifications,
which helped DPS start the new school year with a
realistic and robust school bus-route assignment plan
and reduced the need for contracted third-party ser-
vices to cover bus-driver vacancies (considering the
nationwide bus-driver shortage). The time savings in
the planning process enabled the DPS transportation
team to focus on other critical tasks, while helping to
enable DPS to better prepare and transport students
each academic year.

Lessons Learned

The school bus-routing problem is difficult to solve,
especially for large school systems such as DPS. The
solution approach presented in this paper provides a
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data-driven optimization approach to help DPS in
creating high-quality school bus-route assignments, as
well as utilizing the tool to evaluate alternatives—for
example, alternative route options, adding buffers
to repositioning times to reduce potential delays,
changes to bell times, etc. The model employed in the
DST is especially useful in evaluating the trade-offs
between cost and “consistency” in bus-route assign-
ments. The unique perspective and insight of the DPS
analysts and transportation team helped with the
implementation and integration of the DST into the
route-planning process. The DST has a general design
and could be easily adapted for use by other school
systems. We hope that this successful implementation
of operations research and analytics in the public
sector and the benefits realized by DPS encourage
more collaborations between the public-sector orga-
nizations and academia in applying analytics-based
tools and approaches.
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Appendix A. D-IP Model Formulation

In this section, we describe the details of the D-IP model for-
mulation that determines the optimal bus-route assignment,
given a set of routes and the bus fleet. We present the defi-
nitions of the sets, inputs, parameters, preprocessing, and
decisions variables first and then present and explain the
model objectives and constraints. All time values are in minutes.

Sets

e B:Setofbuses (i=1,...,n)

e S:Set of routes (j=1, ..., m)

® Sy Set of routes including 0 to represent the bus’s ter-
minal (j=0,1, ..., m)

Input Data
Route Data.

¢ [: Load of route j € S is the minimum of the current
DPS assigned bus capacity and the planned route load

* [ Wheelchair load of route j € S
d;: Duration of route j € S from first to last stop
ej: End time of route j € S at its last stop

. W)ij: Reposition miles from bus i’s terminal to the start of
routej, i€ B,j€S

* my: Reposition miles from the end of route j to the start
of routek,je€ S, ke S

. 7(7_1171 Reposition miles from end of route j to the terminal
of busi, i€ B,je€S

. t_;-]-: Reposition time from bus i’s terminal to the start of
routej, i € B,j€S

* t;: Reposition time from the end of route j to the start of
routgk,jES,kE S

* t;: Reposition time from end of route j to the terminal of
busi,i€B,je€S

® ay: Slack time if route k is served immediately after
route j by the same bus

Fleet Data.
e ¢;: Capacity of busi € B
e ¢': Wheelchair capacity of bus i € B

User-Assigned Parameters.

e b: Value under which slack time is penalized in the
objective function

e w, w: Lower and upper bound on slack time used in
optional constraints

e p: Earliest departure time from all terminals

® « > 0: Buffer value added to reposition times

¢ 0 < B < 1: Buffer value as a fraction of reposition times

e c: Penalty for using a bus

e ¢: Penalty for not serving a route

e r: Penalty for reposition miles

e u: Penalty for deviating from the current bus-route
assignments

e s: Penalty for small slack time between two consecu-
tive routes

Consistency Parameters
The consistency parameters represent the current bus-
route assignments in the model and are listed below. The
lists, Gioj, Gijx, and Gjjo, represent the current bus-route
assignment solution.

* ¥, = 1forbusi € B that serves route j € S first in the
current bus-route assignment solution, Gjo;.

° gi].k =1 for bus i € B that serves routes j, k € S, j # k
sequentially in the current bus-route assignment solution, G;.

® ;0 =1 for bus i € B that serves route j € S last in the
current bus-route assignment solution, Gj.

Preprocessing

To improve the model run time and reduce complexity, we
perform preprocessing to determine the capacity and time-
feasible bus-route assignment pairs based on the set of
routes, S, and buses, B, as two 0-1 matrices called F;; (which
routes can be served by each bus) and F;; (which pairs of
routes can be consecutively served by the same bus).

Bus i € B could potentially serve route j € S if the bus has
sufficient capacity to serve the route and meets other restric-
tions of the route (e.g., wheelchair-accessible); namely, F;; = 1
if ¢; > I;and ¢’ > [".

Bus i € B can serve route j € S then route k € S if the bus-
route assignment is both capacity and time feasible, i.e., Fjr = 1
if F;;= Fix = 1 and if there is sufficient time for the bus to travel
from the end of routej to the start location of route k in time
to begin serving route k (i.e., & + ((1 + )*tj + a) + d <&).

Decision Variables
® v = 1, bus I € B serves route j first; 0, otherwise,
forieB,je S, if Fj=1.
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* v = 1, bus i serves routes j and then route k; 0, oth-
erwise, fori € B,j € S, ke Sif F; = 1.

* yjo =1, bus i € B serves route j last; 0, otherwise, for i
EB,]’ES,ifFijzl.

* x; =1, route j is not served by any buses; 0, otherwise,
forjes.

Objective Function and Constraints
The D-IP is a multiobjective model. We list and explain each
component of the objective function below.

minc| > v+, (A1)
i€B, jeS:Fi=1
e| > x|+, (A.2)
j€s

DY | i + 3 Yijo + > omay ||+, (A3)
i€B, jeS:Fy=1 keS:Fi=1
vl > (ioj = yioy) + 2. (Ti0 = vipo)
i€B, jeS: i€B, jeS:
(i,))€Gioj (i,/)€Gijo
+ Z (:l?ijk - yi]'k) +, (A4)
i€B,jeS, keS:
(i,j,K)€Gijx
S Z max{O, (b - aij)}yijk . (AS)

i€B, j€S, keS:Fij=Fy=F;=1

Component (A.1) captures the penalty for using a bus.
Component (A.2) represents the penalty for not serving a
route. Component (A.3) is the penalty for repositioning in
miles, including miles from the bus’s assigned terminal to
the start of its first route, between routes, and from the end
of the last route returning to the bus’s assigned terminal.
Component (A.4) represents the penalty for deviating from
the current bus-route assignments. This penalty enables
minimizing the changes between the new bus-route as-
signments and the current solution. Component (A.5) pe-
nalizes positive slack time below a specified threshold with
the purpose of penalizing lower slack-time values. Any
objective can be removed from consideration by the model
by setting the corresponding penalty to zero.

st. > <1, VieB, (A.6)
jeSFy=1
>, wai= >, Vi VieB, jeS, ifFy=1, (A7)

1€S :Fy=Fy=1 keSo:Fa=Fjr=1

X+ 2.

keSo:Fjj=Fy=Fi;=1

yikj = 1, V]ES (AS)

Constraint (A.6) specifies that each bus can only serve
one route first. Then, Constraint (A.7) serves as the “flow-in
flow-out” constraint—that is, if bus i serves route j, then it
needs to next serve another route k or return to the terminal.

Finally, Constraint (A.8) requires that either a bus or the
dummy bus serves each route.

Optional constraints, listed below, that the user can
enable in the DST include the following: a lower bound on
how early buses can leave the terminal (A.9) and upper and
lower bounds for the slack time ((A.10) and (A.11)). The
departure-time constraint helps the model consider solu-
tions that align with driver work schedules. In regard to the
slack-time constraints, if the slack is too small, this may
increase the chances of route delays; hence, it could be
desirable to put a lower bound on slack to minimize po-
tential delays. If the slack is large and there are no delays,
the bus waits until it needs to move to the start of the next
route; hence, it is possible to put an upper bound on slack to
limit wait times. Note that Constraints (A.10) and (A.11)
utilize an indicator function, denoted as A(A), where if
the condition A is true then A(A) =1; otherwise, A(A) =0.

(p+H)yioj<&—d;, VieB,jeSs, if F; =1, (A.9)
Vi <Aa;>w), VieB,jeS, ke, if Fy =1, (A.10)
Vi <A(a;<@), VieB,jeS, keS, if Fy=1. (A1)

Appendix B. S-IP Model Formulation Details

In the S-IP model, we incorporate uncertainty by using multiple
reposition-time matrices as scenarios. Let U define the set of
reposition-time scenarios where each scenario, u € U, corre-
sponds to a random reposition-time matrix, R“. The remaining
sections describe the updated notation used in the S-IP
formulation based on the D-IP model formulation. Some of
the D-IP model parameters and decision variables are used
in the S-IP model formulation and not reiterated here.

Updated Input Data
Route Data.

o t_;l: Reposition time from bus i’s terminal to start of
route j for scenario u, i€ B,j€ S, u € U.

* tj:Reposition time from the end of route j to start of k for
scenario u, i € B,j€ S, u € U.

o t:]u : Reposition time from end of route j to terminal of
bus i for scenario u, i€ B,j€ S, u € U.

e M: Big-M value for the time tracking constraints equal
to max;ese;.

User-Assigned Parameters.
e (: Penalty for delay.

Preprocessing

As outlined in the D-IP preprocessing section in Appendix A,
for S-IP, we update the two 0-1 matrices, F;; and Fj, with
capacity and time-feasible bus-route assignment pairs based on
the set of routes, S, buses, B, and scenarios, U.

Bus i € B can serve route j € S, then route k € S if the bus-
route assignment is both capacity- and time-feasible—i.e.,
Fij = 1if F;j = Fj = 1—and if there is sufficient time for the
bus to travel from the end of route j to the start location of
route k in time to begin serving route k for at least one
scenario u (i.e., & + (1 + ‘B)*t};( +a) + dy <ée).

Auxiliary Variables
e T} = start time of route j € S based on scenario u € U.
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. Tj”/ = end time of route j € S based on scenario u € U.

* 6/ =nonnegative delay at the end of route j € S based on
scenario u € U.

o ¢" = expected delay across scenario u € U.

Objective Function and Constraints

In the S-IP model, each reposition-time scenario applies to
feasible bus-route assignment pairs (i.e., the bus can serve
the route pair on time with the reposition time from at least
one of the scenarios). Thus, there can be bus-route as-
signment pairs that are not time-feasible for some scenarios.
The S-IP model determines the set of bus-route assignment
pairs (i.e., the bus-route assignment solution) that mini-
mizes the expected delay across all scenarios. We calculate
the expected delay by using the auxiliary variables, which
keep track of delay for each feasible bus-route assignment
pair for all scenarios. The weighted cost for expected delay
is shown below.

(B.1)

5 - o5 ().

uelU uel jes

The probabilities for each scenario u € U are p". The
formulation of the S-IP model is an extension of the D-IP
model formulation to include the auxiliary variable cal-
culations, as shown below.

s.t. Z Yioj <1, VieB, (BZ)
jeSFy=1
> ya= > Vi Vi€eB, jeS, if F;=1, (B.3)
IeSo:Fy=Fy;=1 keSy Fr=Fy=1

xj+ 2.

keSo:Fy=Fix=Fy;=1

T],-l > (E] - d]) Z y,'()]‘ - M(l bl

ieB:Fy=1

yij =1, V€S, (B.4)

Z Yioj ,VueU,jeS,
ieB:Fy=1

(B.5)

TEeTY 4ty >

Yijk — M(1 - Z yijk) ’
Fip=1

i€B:Fy=Fy=Fj=1 i€B:Fy=Fy=

Yuel,jeSs, keSs, (B.6)
TV g, Vuel, jes, (B.7)
TV >T¥+d;, YueU, jes, (B.8)
6}’27"]?‘—Ej+df, YueU,jes, (B.9)
820, VueU, jes. (B.10)

Constraints (B.2)—(B.4) are the same as constraints (A.6)—
(A.8) from the D-IP model formulation. Constraints (B.5)—(B.9)
track the start and departure times of each route j € S in the
model solution for each scenario. Constraint (B.5) sets the
start-time auxiliary variable equal to the planned start time
of the route if a bus i € B serves route j € S first. Otherwise,
Constraint (B.6) sets the start-time auxiliary variable equal
to a calculated start time plus reposition if bus i serves
route j then route k. In the case where a route j is not served
by any bus, the big-M value makes Constraints (B.5) and
(B.6) nonbinding. Constraints (B.7) and (B.8) represent the
end time of route j € S as the maximum between Constraint
(B.7) (the lower bound based on the route end time) and
Constraint (B.8) (the calculated end time using the start-
time auxiliary variable). Finally, Constraint (B.9) tracks the
delay of route j € S based on any delays of routes (if any)
served before route j.

Appendix C. Additional Model Outputs

Each illustration below shows an example of additional
outputs from a model solution. Figures C.1 and C.2 provide
more details about the solution that is beneficial to DPS
analysts for comparing different solutions. Note that the
term segment and route are synonymous.

Figure C.1. (Color online) Histograms Show the Start-Time and End-Time Distributions of the Routes (i.e., Segments)
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Figure C.2. (Color online) Histograms Show the Start-Time and Total Travel-Time Distribution of the Buses—The Length of
the Bus-Route Assignments for Each Bus from Departure to Arrival at Its Terminal

Start Time by Bus Total Travel Time by Bus
40 20
35 o 18
30 + 16
25 4 14
20 + 12
15 4 10
10 + 8
- 6
0 T T T T T T 1 4
[ |
0"‘:‘0'3‘\Q‘sq&q@gﬁboﬁbo&o&o&o&eﬁx\nﬁ oé}o"b : 1111 |
1 1
RO I S I R R e o +——LALLLLRLU LI LU
PSS S QPSS LT SRS M LS SIS
97 97 ¥ ©F ©° 07 AT AT AT AY @ 97 9 @7 9 0 10 20 30 40 50 60 70 80 90100110120130140150160170180 190
Appendix D. Bus-Speed Distribution with minimum, mean, and maximum of 13.5, 23.31, and

To estimate reposition times, we utilized travel-distance ~ 53.77, respectively, and standard deviation of 4.15 in
estimates and bus speed, as Duran and Walkowicz (2013) miles per hour (mph). We use the average bus speed of
report for various states, including Colorado. We mod- 23.31 mph for the reposition-time calculations for the D-IP
eled the bus speed as a truncated normal distribution = model runs.

Figure D.1. (Color online) A Truncated Normal Distribution for the Expected Bus-Speed Distribution Is Used to Generate
Reposition-Time Matrices
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Appendix E. Computational Study:
Supplemental Results

Figure E.1. (Color online) The Graphs Show the D-IP Model Solution for the Afternoon Routes with Objective Function
Penalty Parameters (c; ¢; r; s) = (100; 1,000; 1; 0)
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Notes. As v increases, the number of buses used (a) and the total reposition miles increase (b), while the number of inconsistent routes
decreases (c). Even a small (i.e., v > 25) results in a solution with high consistency (over 80%) and utilizing significantly fewer buses compared
with the DPS solution.

Table E.1. The Table Summarizes the Model Results for the 2017-2018 Morning Routes: D-IP Solutions (= 0; = 50), and DPS Solution

Morning summarized results of D-IP solutions using buffers

Buffer values Number Number of Total reposition Expected delay: minimum, mean,
Solution (o, B) of buses unserved routes miles standard deviation, maximum
D-IP with R, 0,0 155 0 1,962 0,2.1,4,29
D-IP with R, 0,0.1) 159 0 1,970 0,1.6,22,10
D-IP with R, (0,0.2) 161 0 1,981 0,13,21,14
D-IP with R;3 (5,0) 171 0 2,164 0,0.7,1.6,9.5
D-IP with Ry (5,0.1) 174 0 2,169 0,05,13,75
D-IP with Rs (5,0.2) 176 0 2,178 0,0.3,09, 6.3
D-IP with Ry (10,0) 182 3 2,247 0,0.2,08,53
D-IP with R, (10,0.1) 182 5 2,207 0, 0.09, 0.5, 5.3
D-IP with Rg (10,0.2) 182 8 2,146 0,0.07,0.5,5.3
S-IP — 172 0 2,129 0, 0.06,0.2,1.3
DPS — 182 0 2,583 0,4.4,124, 89

Note. For the morning routes, as the buffer increases, some routes become time-infeasible to serve, and all the buses are needed to serve the
remaining time-feasible routes, leading to a slight decrease in the number of reposition miles.
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Table E.2. The Table Summarizes Model Results for the 2017-2018 Afternoon Routes: D-IP Solutions Based on Different Inputs
for Reposition Times, S-IP Solution (s = 0; = 50), and DPS Solution

Afternoon summarized results of D-IP solutions using buffers

Buffer values Number Number of Total reposition Expected delay: minimum, mean,
Solution (o, B) of buses unserved routes miles standard deviation, maximum
D-IP with Ry 0,0 148 0 1,966 0,235, 17
D-IP with Ry 0,0.1) 149 0 1,983 0,1.6,31,17
D-IP with R, 0,0.2) 150 0 1,993 0,1.1,2,10
D-IP with R; (5,0 157 0 2,050 0,0.5,15,9
D-IP with Ry (5,0.1) 160 0 2,075 0,04, 13,86
D-IP with Rs (5,0.2) 160 0 2,080 0,04,12,7.6
D-IP with Re (10,0) 166 0 2,192 0,04, 1.3,10.1
D-IP with R, (10,0.1) 167 0 2,205 0,0.25,1,9.2
D-IP with Rg (10,0.2) 170 0 2,223 0, 0.16, 0.6, 3.7
S-IP — 155 0 2,096 0,0.03,0.1, 0.8
DPS — 184 0 2,693 0.06, 20, 41, 189

Table E.3. The Table Summarizes Model Results for the 2017-2018 Morning Routes: D-IP Solutions Based on Different Slack
Penalties, S-IP solution (s = 0; = 50), and DPS Solution

Morning summarized results of D-IP solutions using slack penalty

Total

Number Number of reposition Expected delay: minimum, mean, Expected slack: minimum, mean,
Solution of buses  unserved routes miles standard deviation, maximum standard deviation, maximum
D-IP with s = 0 155 0 1,962 0,21,4,29 0,12, 11, 58
D-IP with s = 10 179 0 2,323 0, 0.15, 0.6, 5.1 35,19, 11, 64
D-IP with s = 25 182 0 2,372 0,02,07,51 3.1, 19,11, 64
D-IP with s = 50 182 0 2,381 0,02,08,51 3.1, 19, 10.5, 54
D-IP with s = 100 182 1 2,399 0,0.15, 0.6, 4.8 32,192, 11, 64
S-IP 172 0 2,129 0,0.06,0.2, 1.3 0.08, 18, 11, 59
DPS 182 0 2,583 0,4.4,12.4, 89 0.1, 16, 13,78

’

Table E.4. The Table Summarizes Model Results for the 2017-2018 Afternoon Routes: D-IP Solutions Based on Different Slack
Penalties, S-IP Solution (s = 0; = 50), and DPS Solution

Afternoon summarized results of D-IP solutions using slack penalty

Total

Number Number of reposition Expected delay: minimum, mean, Expected slack: minimum, mean,
Solution of buses unserved routes miles standard deviation, maximum standard deviation, maximum
D-IP with s =0 148 0 1,966 0,2,35 17 0, 19, 23, 141
D-IP with s = 10 167 0 2,296 0,03,1.2,9 3,22,20,133
D-IP with s = 25 174 0 2,333 0,02,08,6 5,23,21,133
D-IP with s = 50 177 0 2,363 0,02,07,6 5,235, 20, 133
D-IP with s = 100 178 0 2,366 0,021, 4,24,20,133
S-IP 155 0 2,096 0,0.03,0.1, 0.8 1.1, 21, 21, 138
DPS 184 0 2,693 0.06, 20, 41, 189 0, 25, 24, 157
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