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https://doi.org/10.1287/inte.2018.0963 Abstract. Rail is the preferred mode of transport for many categories of freight because of
its low cost and energy efficiency. Rail accounts for approximately 40%, measured in ton-
miles, of all freight movements in the United States. To maintain their competitive ad-
vantage and effectively utilize their large investments in rail infrastructure, freight railroad
companies place considerable emphasis on improving the cost efficiency of their opera-
tions. Crew costs, including payments to crew members and expenses for crew reposi-
tioning and lodging at stations away from the home base, constitute a significant portion of
railroad operating expenses. This paper describes the development of an optimization
model and solution method and the implementation of a system called “crew decision
assist” to support crew scheduling at BNSF Railway. The work was motivated by the
company’s desire to replace its current manual crew-planning process with a systematic
and effective approach. Preexisting crew-scheduling models did not adequately capture all
the options and constraints that arise in practice, such as the option to use extra crew
members or policies to jointly reposition engineers and conductors. We, therefore, de-
veloped a tailored model and solution approach that incorporates various practical fea-
tures and requirements for crew assignment at BNSF and accounts for uncertainty in train
schedules. Our decision support system, based on this method, interfaces with existing
information systems to retrieve the necessary data and quickly generate effective crew-
deployment plans when train schedules change. The system was recently introduced for
use by crew planners at BNSF and has already reduced crew costs, yielding estimated
annual savings of several million dollars.

Copyright: © 2018 INFORMS
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Introduction systems, terminals, and rolling stock. To be com-
The rail freight industry is an important component of ~ petitive, freight railroad companies focus on ensuring
the transportation sector in many countries and is vital ~ good utilization of their capital-intensive resources and
for their national economies. Rail transport offers the ~ operating in a cost-efficient manner. BNSF employs
advantages of lower cost (for shippers) and higher en-  approximately 20,000 crew members to operate trains.
ergy efficiency compared with other modes of transport ~ Because crew costs account for a significant portion of
(American Association of Railroads 2017). In recent  train operating expenses (i.e., crew cost is the highest
years, the railroad industry has also taken significant ~ among all components of BNSF’s train operating costs),
steps to make train movements safer. In the United  the effective deployment of train crews is an important
States, railroads handle approximately 40% of all freight ~ priority for railroad companies.

movements, measured in ton-miles (Federal Railroad Crew-deployment decisions include assigning crew
Administration 2017), and carry a wide range of ma-  members to operate the scheduled trains, as well as
terials such as coal, crude oil, chemicals, and many decisions regarding whether and when to reposition
agricultural, industrial and consumer products. crews between stations, also called deadheading, to

BNSF Railway, a leading U.S. Class 1 freight railroad, = ensure adequate crew availability at each station. These
operates an average of 1,400 trains per day over its vast ~ decisions determine the payments made to crew
rail network, which contains 32,500 miles of track and ~ members, their layover costs (e.g., lodging and trans-
spans 28 states in the continental United States and  portation expenses at stations away from their home
three Canadian provinces. In 2016, BNSF Railway had  bases), and expenses for deadheading. For purposes of
operating revenues of over $19 billion, transported  crew deployment, the rail network is divided into crew
9.7 million carloads, and invested $3.9 billion to expand and ~ districts. Real-time crew-deployment decisions are
upgrade its infrastructure, including tracks, signaling ~ made by crew planners, each responsible for assigning
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crews to trains in multiple (5-10) districts. BNSF
Railway’s previous method for planning crew-to-train
assignments and deadheading was manual. The manual
crew-planning process was time consuming and was
based on individual planners’ experience and intuition
rather than on a uniform and structured approach that
carefully accounts for the cost implications of crew-
planning decisions.

The need for decision support for crew scheduling
was driven by considerations of financial impact,
business continuity, crew safety, and quality of life
among the three main stakeholders—senior manage-
ment, crew planners, and crew members. First, because
crew costs constitute a significant portion of overall
operating expenses, even a small percentage im-
provement in these costs can translate to considerable
annual cost savings. Therefore, senior managers want
to ensure that the crew-planning decisions are close to
optimal in terms of minimizing total crew-deployment
costs. Second, efficient crew planning is key to unin-
terrupted and resilient rail network operations. Third,
railroad companies take the safety of their operations
very seriously, and periodically report safety perfor-
mance measures with their financial metrics. Further,
the Federal Railroad Administration monitors and
regulates railroad safety. Finally, and importantly, crew
work cycles, including rest periods and time away from
home, affect crew members’ quality of life. These re-
quirements are complementary rather than conflicting.
For example, ensuring adequate crew rest and balanced
workloads can lead to safer and more cost-effective crew
assignments. Based on these considerations, senior ex-
ecutives created technical and operational teams to
develop a strategic solution that would provide cost
savings and also meet organizational safety metrics and
crew workload policies. Crew planners, facing ever-
changing train and crew lineups in the many districts
they manage, wanted a system that could be quickly and
seamlessly integrated with the current databases and
planning platform. BNSF corporate leadership, there-
fore, asked its operations research group to explore the
development of a computerized tool that optimizes
crew-assignment and deadheading decisions to minimize
total crew-deployment costs. This initiative led to our
modeling, solving, and implementing an optimization-
based approach, called the “crew decision assist” (CDA)
system, to support real-time crew-assignment and
deadheading decisions. As train schedules are updated,
this system dynamically retrieves the necessary data from
existing databases to quickly generate near-optimal crew
deployment plans for the next few days. The project
entailed collaboration between the operations research
group, crew planners, and information systems person-
nel to frame the problem, gather data, develop and
test optimization algorithms, validate the outputs, and
implement the approach for use in practice. BNSF crew
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planners began using the system for real-time decisions
in January 2015; initial results indicate that this system
has reduced crew costs by several million dollars an-
nually compared with costs based on previous manual
decisions.

Crew Scheduling for Freight Trains

Freight railroad companies partition their networks into
crew districts, each demarcated by two crew-change
stations, one at each end of the track segment covered
by the district, and they require that trains passing
through a district be operated by crew members
assigned to that district. Hence, crew-planning deci-
sions decompose by district. We focus on single-ended
districts in which all crew members who are assigned
to the district have as their base one of the two stations,
called the home station. We refer to the other station as
the away station. Each train requires a crew team
consisting of one crew member from each occupation
(i.e., engineers and conductors for our application
context). We are given the set of trains that are scheduled
to travel through the crew district over the planning
horizon (typically, 48 hours). For each train, the schedule
specifies its movement direction and the times at which
it enters and exits the district. We also know the initial
location and rest status (at the start of the planning
horizon) of each crew member assigned to the district.

Crew Movements and Transfers

When a train enters a district at either end, assigned
crew members from that district operate the train to the
other station in the district, disembark at this station,
and rest before traveling back. Depending on the in-
tensity of train traffic in the two directions in the dis-
trict, a station may have, at certain times, too few or too
many available crew members relative to the number
needed to operate the trains scheduled to traverse the
district from that station. In anticipation of such situ-
ations, crew members may need to be deadheaded
(repositioned) from one station to the other. A crew
member can be deadheaded using one of three modes:
on a scheduled freight train, on a scheduled public-
transportation service (e.g., passenger train), or using
a dedicated taxi (i.e., van). These modes vary in timing
and costs. Scheduled freight and passenger trains have
fixed departure and arrival times, whereas taxis can be
dispatched at any time except during blackout win-
dows (i.e., periods of the day in which taxis cannot be
dispatched because of safety reasons). To accommo-
date surges of traffic, the railroad maintains a roster
of extra crew members at the home station. Union
agreements specify that extra crew members can only
be used when no regular crew member is available. We
refer to the group of extra crew members as the extra
pool, and the group of regular crew members as the
regular pool.
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We define a trip as any movement of crew members
between the two stations, either to operate a train or to
deadhead. A connection refers to the transfer of a crew
member from an inbound trip to an outbound trip at
a station. Before this transfer, the crew member must
rest for a minimum period, which depends on the
durations of the inbound and outbound trips. There are
three types of possible connections at the away station:

* Full-rest connections require the rest time between
the inbound trip’s arrival and the outbound trip’s de-
parture to be at least 10 hours plus a lead time (typically,
1.5 hours). To address quality-of-life concerns, we have
ensured that the rest time must not exceed a specified
maximum value (e.g., 24 hours).

e Short-rest connections are possible when the sum
of travel times for the inbound and outbound trips does
not exceed 12 hours. In this case, the intermediate rest
time must be at least four hours plus a lead time.

e Flip connections have no rest-time requirement and
apply when the crew member’s total round-trip elapsed
time, from and back to the home station, does not exceed
12 hours.

The types of connections allowed are district specific;
for example, some districts permit full-rest only, some
also allow flips, and some allow only flips. At the home
station, only full-rest connections are allowed, with no
upper limit on the rest time. For full- and short-rest
connections at the away station, crew members rest at
a hotel.

Crew-Deployment Restrictions

Crew-assignment decisions must meet several re-
quirements. The plan must ensure that each scheduled
train is assigned the required complement of crew
members, one from each occupation, to operate the
train. Deadhead decisions must satisfy capacity con-
straints (i.e., trains and taxis can accommodate only
a limited number of deadheading crew members). The
connections at each station must meet the appropriate
rest requirements, as we discuss above, and must also
follow crew-dispatching priorities, which we call crew-
rotation rules. These rules specify the chronological
sequence in which crew members depart the station. In
some districts, a simple “first in, first out” (FIFO) rule
applies: for each occupation, crew members must de-
part the station in the same order in which they arrived.
In other districts, a first out, first out (FOFO) rule ap-
plies: crew members must depart the station in the
order in which they departed the other station on their
previous inbound trip. Most districts impose the ad-
ditional requirement, specified by union agreements,
that deadheads consist of an equal number of crew
members from both occupations; we refer to this re-
quirement as “occupation pairing.”
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Crew-Deployment Costs

The costs for crew deployment fall into four broad
categories: (1) train operator costs, (2) deadheading
costs, (3) layover costs, and (4) costs for using extra
crews. Train operator costs refer to the payments, also
called trip rates, to members of the crew team for
operating a train. Deadheading costs include a trip rate
for each deadheaded crew member and any additional
cost for transporting the crew member. Deadheading
a crew member on a scheduled train entails no addi-
tional transportation cost; however, deadheading via
other modes does incur such costs (e.g., taxi fixed cost
or fare for public transport). If a crew member must
wait for a long period at the away station, that crew
member receives a payment, which we call a heldaway
cost. Specifically, crew members receive a per-hour
heldaway payment for every hour they must wait
beyond a specified limit, typically 16 hours. Depending
on the connection type, costs are also incurred for
lodging and meals for crew members who need to rest
at the away station. Connections at the home station
do not incur such costs because crew members can go
home to rest.

Prior Work

Although operations researchers have long studied
crew-scheduling problems in public-transportation con-
texts such as airlines (Barnhart et al. 2003, Gopalakrishnan
and Johnson 2005) and passenger trains (Caprara et al.
1998, 2001, 2007; Abbink et al. 2005), the models and
methods for these problems do not directly apply to
U.S. freight railroads because of the following differ-
ences in rail crew-deployment requirements and op-
tions. Unlike periodic passenger-transport services that
follow fixed, repeating schedules, the itineraries and
schedules of freight trains vary from week to week
depending on the required cargo movements, network
congestion, and resource availability. So crew planning
for freight railroads requires dynamic decision-making.
Freight railroad companies also differ in their crew
operating policies. The duty cycles for train crew
members (from home to away and back) are struc-
turally simpler than crew duty cycles for other trans-
port services; however, crew-to-train assignments are
subject to dispatching priorities and other rules that do
not apply, for example, to airline crew scheduling, and
can be difficult to model. For train crews, planners also
have a wider choice of deadheading options and can
use extra crews when regular crew members are not
available to operate a train. Because of these distinc-
tive features, crew scheduling for U.S. freight rail-
roads requires tailored models. The literature on
freight train crew scheduling is relatively sparse (e.g.,
Gorman and Sarrafzadeh 2000, Vaidyanathan et al.
2007, Sahin and Yiiceoglu 2011, Jiitte et al. 2011). The
models proposed in these papers consider only simple
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dispatching priorities (e.g., FIFO) and do not in-
corporate some features and options (e.g., fixed cost
for taxi deadheads or the option to use extra crews)
that must be considered in practice.

First Approach: Integer Programming
Figure 1 provides a visual representation, over a time-
space network, of the problem components for rail crew
scheduling. This representation facilitates our discus-
sion of the model formulation for the crew-planning
problem. Figure 1, left, shows a representative network
over which the problem is defined, and Figure 1, right,
shows a sample solution. The time-space network has
two spatially separated layers (vertical lines), one cor-
responding to each station; the time axis runs from top
to bottom at each station, with the top (bottom) rep-
resenting the start (end) of the planning horizon. Points
on each line correspond to arrival or departure events at
the station.

The network has two main types of directed arcs: trip
arcs and connection arcs. Trip arcs represent travel on
trips (as train operator or deadhead) from the home
station to the away station or vice versa. Each trip arc
starts at the location and time at which the trip begins

and ends at the location and time at which the trip
terminates. The solid lines correspond to scheduled
trains, and the dotted lines to deadheads (using taxis
or public transport). Connection arcs represent the
transfer of crew members from an inbound trip to an
outbound trip at a station. The time between the arrival
of the inbound trip and departure of the outbound trip,
reflected in the length of the arc, is the rest time of the
crew member making the connection. We also include
a source node to model the use of extra crews and a sink
node to account for crew members who remain at the
away station at the end of the planning horizon. Fi-
nally, although taxis can be dispatched at any time,
Figure 1 shows only a discrete set of arcs for taxi
deadhead trips. As we will explain later, based on the
train departure and arrival times, we can prune the set
of candidate-taxi start times to such a discrete set
without losing optimality.

Formulation

The rail crew-scheduling problem requires assigning
the crew team to operate each train, deciding when
to use extra crew members, specifying the transfers
or connections from inbound to outbound trips at

Figure 1. (Color online) The Crew-Planning Problem Can Be Represented as a Time-Space Network
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a station, and deciding how many crew members of
each occupation to deadhead between stations at what
time and using what mode. We can interpret these
decisions as flows of crew members on the arcs of the
time-space network shown in Figure 1. However, the
crew-planning problem is much more complex than
a standard minimum-cost network-flow problem be-
cause it involves routing multiple “commodities” (one
for each combination of occupation and crew pool) and
requires many constraints, in addition to flow conser-
vation, to capture the restrictions on crew assignments
and connections. Moreover, because using taxis incurs
fixed costs, additional binary decision variables are
needed to represent whether to use a taxi dead-
head trip.

Our integer programming formulation for the rail
crew-scheduling problem uses the following three
main sets of decision variables:

1. Integer variables representing the flows of crew
members on the trip arcs.

2. Binary variables indicating which connection arcs
are selected.

3. Binary variables indicating which taxi trip arcs are
selected.

The objective function consists of minimizing the
total crew-deployment cost during the planning hori-
zon. The coefficients of the decision variables in this
function provide wide latitude in modeling different
expenses, including crew payments, fixed and variable
deadheading costs, connection-dependent layover costs,
and costs for using extra crews. We can also incorporate
various penalties to capture planner and operational
preferences. The model’s constraints include equations
to link the connection and flow variables, and con-
straints to ensure that each train is assigned the re-
quired complement of crew members, deadheading
capacities are not violated, and the connections satisfy
rotation rules. In addition, the model contains con-
straints to appropriately capture taxi fixed costs and
meet operational requirements, such as crew pairing
and restrictions on using extra crews. The appendix
contains our detailed integer programming formula-
tion of the rail crew-scheduling problem.

Our model incorporates several features that previous
models (with the partial exception of Balakrishnan et al.
2016) do not consider. First, we allow for the possibility
of using extra crews, and capture their costs as well as
the policy of using these crews only when no regular
crew member is available. Second, we permit using taxis
as a deadheading mode, and consider their timing, fixed
cost, and capacity. Third, we model the occupation-
pairing requirement to concurrently deadhead crew
members from both occupations. Fourth and finally, we
model the crew-rotation rules that govern the dispatching
priorities at each station as constraints on judiciously

RIGHTS L

chosen subsets of connection variables. The model
requires many such restrictions to ensure that the so-
lutions generated by the model are implementable in
practice. Except for Balakrishnan et al. (2016), other
papers on crew scheduling (for trains or other trans-
portation settings) do not consider the general version
of crew-rotation rules that our model incorporates.

Data Preparation

Instantiating the decision model for a given district
and planning horizon requires first gathering informa-
tion on train schedules, crew availability, public-transport
schedules, various cost parameters, and crew-deployment
rules. In addition, we must also determine (1) the
potential times at which taxis may be used, which we
call candidate-taxi trip generation and (2) the set of
feasible inbound-to-outbound trip connections at the
away station that satisfy rest requirements, which we
call candidate-connection set generation.

Taxis are available as needed to deadhead crew
members; the optimization model needs to choose their
timing. Instead of treating the taxi dispatch times as
continuous decision variables, we judiciously select
a discrete set of times for potential (i.e., candidate) taxi
trips. This set covers all possible taxi options that any
optimal solution may use, and stems from noting that
a taxi is required for one of two reasons: (1) to deadhead
a crew member away to address a shortage at the away
station, or (2) to deadhead a crew member home to
avoid a surplus at the away station or a shortage at the
home station. Accordingly, for each connection type at
the away station, we create a just-in-time home-to-
away candidate taxi that is timed to connect, with
minimal rest, to each train trip departing the away
station. Likewise, for each train trip arriving at the
away station and for each connection type from this
trip, we create a just-in-time candidate taxi from the
away station to the home station that can deadhead the
crew members who operated the trip after minimal
rest. Taxis departing during blackout periods are
omitted; instead, we create candidate taxis departing
immediately before and after each blackout period.

Improving Performance

The rail crew-scheduling model is difficult to solve
optimally using commercial solvers because it has tens
of thousands of variables and millions of constraints.
We incorporated several enhancements to reduce
the variables and constraints. First, because all crew
members in a given occupation and pool have the same
capabilities (and costs), our model treats crew assign-
ments as flows rather than considering the trip as-
signments for each individual crew member. After
solving the model, we can easily map the solution to
individual trip assignments. Second, a conventional
approach to modeling the problem is to include decision
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variables for crew connections at both the home and the
away stations (as we show in the appendix). However,
we can reduce the problem size by omitting the con-
nection variables at the home station because no con-
nection costs are incurred at that station. The assignments
only need to satisfy the minimum full-rest time re-
quirements, which we accomplish using constraints on
the cumulative inbound and outbound flows at the
home station. Third, instead of defining a connection
variable for every pair of inbound and outbound trips
at the away station, we apply a preprocessing method
to prune the list of candidate connections based on the
connection rules. Specifically, for each inbound trip, we
determine the subsequent outbound trips or successors
to which a crew member can feasibly transfer, given
the minimum and maximum rest-time requirements.
Similarly, for every outbound trip, we determine its
feasible predecessors. We can omit connections from an
inbound deadhead trip to an outbound deadhead
trip because cost-minimizing solutions do not use
such deadhead-to-deadhead connections. By apply-
ing these rules, we not only implicitly incorporate the
rest-time requirements but also significantly reduce the
number of decision variables. Finally, we developed
strategies to strengthen the model and improve its linear
programming lower bound by formulating tighter ver-
sions of the rotation-rule constraints. This enhancement
also reduces the number of constraints in the model.
Even after implementing these model improvements,
practical instances of the problem formulation are quite
large. As an example, for a district with 131 trains and
153 candidate deadheads in the planning horizon, the
reduced formulation requires 12,976 decision variables
and contains 3.5 million constraints.

A Faster Algorithm: Neighborhood Search
Although we were able to solve the integer program to
optimality for most problem instances, the solution
times were quite inconsistent, with many instances
requiring much more time than is practical for real-time
use. In part, the large number of constraints needed
to model the rotation rules contributed to the long
computational times. Moreover, as a deterministic
model, our integer program does not account for un-
certainty in train schedules; incorporating uncertainty
(e.g., in a stochastic program) greatly increases problem
difficulty and solution times. Therefore, we shifted our
focus to developing an effective heuristic method.

Key Principle

The crew-scheduling problem is well suited for a
heuristic approach because the primary decisions are
the deadheading choices. Given a set of deadheads to
use, we can readily complete the solution (i.e., deter-
mine the corresponding crew-to-trip assignments,
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extra crew usage, and connections) by applying the
crew-rotation rules and rest requirements. We know the
initial state of the system (i.e., initial location and rest
status of each crew member); therefore, we can track the
inventory of rested crew members at each station as
the train and deadhead trips arrive at or depart from
the station. Then, applying the crew-rotation rule
yields the inbound-to-outbound connections, as well
as the needed use of extra crew members (when there
are crew deficits at the home station). That is, given
a deadhead plan, we can fully determine the values of
all the decision variables in the rail crew-scheduling
model. Therefore, we can use a two-stage approach
of first selecting deadheads and then completing
the solution. By separating the deadhead-selection
decisions from the crew-assignment decisions, this
approach overcomes the computational challenges
posed by the rotation-rule constraints in the integer
program.

Neighborhood-Search Procedure

We use a variable neighborhood-search procedure
to explore the space of candidate-deadhead plans. In
the following discussions, we refer to any given choice
of deadheads as a deadhead plan (d-plan). Given
a starting d-plan, the procedure first selects one
neighborhood type from among different types, which
we define below, and then generates a neighborhood
around the incumbent d-plan, completes the solution
corresponding to each neighbor and evaluates its total
cost, finds the lowest-cost d-plan within this neigh-
borhood, updates the incumbent with this d-plan, and
repeats these steps until no improved solution is found
for that type of neighborhood. We perform this pro-
cedure for all the neighborhood types, considered in
a specified sequence.

Each neighborhood type is specified by a combina-
tion of the following four attributes:

1. Type of operation: Add, drop, or swap deadheads

2. Number of crew members involved in the oper-
ation (one, two, or three in our approach)

3. Whether these deadheads are on the same trip or
can be on different trips when multiple deadheads are
added, dropped, or swapped

4. Deadhead direction(s) to consider (home-to-away,
away-to-home, or both)

Because the number of combinations of these attribute
types, and, hence, possible neighborhood types, is large,
we selected a subset of neighborhood types that are
effective in quickly finding a near-optimal solution. To
identify this subset, we conducted a series of compu-
tational tests and chose the neighborhood types (and
their sequence) based on the results. Starting with the
simplest neighborhood types (i.e., add, drop, or swap
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one deadhead), we examined the heuristic d-plans
obtained using these neighborhoods for many real-world
test cases, compared them with the d-plans obtained
by the optimization model, and added neighborhood
types that improved the heuristic d-plans. Using this
strategy, we gradually added new types of neigh-
borhoods and dropped neighborhood types that were
no longer effective when new ones were added. We also
experimented with various sequences for searching
the chosen neighborhood types to identify an effec-
tive sequence that quickly yields good solutions.

Train-Schedule Uncertainty

Our heuristic approach accounts for random variations
in train departure times at the away station. (Typically,
trains are ready to depart later than scheduled, not
earlier.) We focused on modeling uncertainty in de-
parture times from the away station because the in-
bound trips that connect to these trains are dispatched
early in the planning horizon, and hence have accurate
schedules. Moreover, at the away station, train de-
parture delays increase the heldaway expenses for the
assigned crew members, whereas heldaway costs are
not incurred for crew members departing from home.
For each scheduled outbound train at the away station,
we consider a train-specific probability distribution for
the difference between this train’s actual and scheduled
departure times. When this train is delayed, the con-
necting crew members have higher heldaway times.
But, we may also encounter situations in which no
rested crew member is available when the train is ready
to depart. To accommodate this possibility, we permit
violating the minimum rest requirement, but with
a penalty per hour of shortfall in rest time (relative to
the minimum requirement) for the connecting crew
member. This penalty reflects the cost of postponing
the outbound trip until crew members who arrived on
the connecting inbound trips are adequately rested and
ready to operate the train. This approach of penalizing
violations of rest requirements essentially corresponds
to treating the minimum rest requirement as a soft
constraint. Based on the probability distribution of
train departure times from the away station, our so-
lution approach computes and adds the expected rest-
time penalty to the total cost of a d-plan within the local
improvement iterations.

Effectiveness of the Heuristic

We applied deterministic versions of both the exact and
heuristic algorithms to a sample of 1,728 real-world data
sets and compared the run times and solution costs for
each problem instance. We found that the heuristic runs
nearly seven times faster than the exact algorithm and
has more consistent run times. Further, the heuristic
found an optimal solution in all but 11 cases (99.2%)
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and found a solution within 2% of optimality in all but
two cases (99.9%). We, therefore, decided that the heu-
ristic was an adequate substitute for the exact algorithm,
and focused subsequent development, including the
extensions to address train schedule uncertainty, on
the heuristic.

From Prototype to Production

Moving our prototype implementation to a production
environment for use by planners required a lengthy
period in which we validated the model and then in-
tegrated it into the users’ existing production planning
tools. We validated the model in stages, each with iter-
ative improvements, based on user feedback. The first
stage entailed examining the solutions to ensure that they
did not violate any rules and were implementable in
practice, and then reviewing sample solutions with crew-
planning experts. After addressing any suggestions and
obtaining the approval of the experts, we repeated the
process of review and approval with the crew operations
managers, and then with the end users of the system (i.e.,
crew planners) in several districts. This process of reviews
and rework culminated in a system that crew planners
judged to be suitable for operational use.

In the new CDA system, our decision support ap-
proach was integrated with the existing (manual) tool
used by BNSF to build deadhead plans. The system
modifications ensured that the user’s existing business
process largely remains unchanged. The CDA system
contains a Parameters button on the main screen that
displays a list of settings (e.g., cost parameters, rotation
rules, connection types) applicable to the district. Al-
though the system provides significant flexibility by
defining and providing control over many settings,
most of the settings do not need to change from run to
run; they can be fixed by a manager once and reviewed
periodically. So we classified the users into groups
based on their permissions to modify various settings.
The system permits end users to change only a limited
number of settings, whereas the settings their managers
can change are less restrictive. To initiate a run of the
optimization procedure, users click a Decision Assist
button on the main screen. The system then gathers all
necessary input data, including the upcoming train
schedule and current status of all crew members, and
passes this information, together with an initial plan
(e.g., user-generated or preexisting plan), which we call
the presolve plan, to an external server. The server
executes the heuristic, generates a list of recommenda-
tions to transform the presolve plan into the optimized
plan, and passes the recommendations back to the main
tool. These recommendations fall into three categories:

¢ Add: Add a deadhead to the presolve plan

¢ Remove: Remove a deadhead from the presolve plan
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* Modify: Change the departure time and (or) mode
of a deadhead in the presolve plan

The user reviews the recommendations by clicking
a Results button and selects the changes to apply. The
system then modifies the presolve plan to incorporate
these choices. After reviewing the revised plan, the
crew planner commits it (i.e., communicates it to other
planning and operations personnel). Because the CDA
system required only minor changes to the existing
planning tool and each run typically requires fewer
than five seconds, the user business process was
minimally disrupted.

CDA was rolled out to the user community in stages.
We first introduced CDA to managers and crew
planners in a few representative districts. Over a period
of several months, planners in these districts were
instructed to use the system and provide feedback to
the development team through an internal bulletin
board. The development team incorporated this feed-
back to improve the system, and then rolled it out to all
the crew districts. Initially, planners were encouraged
to only experiment with the system. After including
further system refinements based on their suggestions,
BNSF issued a mandate requiring all crew planners to
use the system for decision-making.

Gaining Acceptance

To gain acceptance of CDA by the planner community,
we first measured the extent to which planners ac-
cepted and used the system, and then employed
strategies to increase its acceptance. CDA usage is
continuously monitored to identify situations in which
the system is not being used (possibly for legitimate
reasons). After each CDA run and subsequent commit,

the system determines whether the CDA recommen-
dations were followed and classifies the outcomes as
follows:

* Full commit: All recommendations were committed

¢ Partial commit: A subset of recommendations was
committed

* Zero commit: No recommendation was committed

* Good standing: No change was required to the
presolve plan (i.e., no recommendation was made)

Also, if a deadhead plan is committed without
running CDA, the system determines whether CDA
was run in the previous 15 minutes. If not, the decision
is classified as an unassisted commit. The system tracks
each planner’s actions by measuring the percentages of
commits that fall in each of these categories. The goal is
to have a large percentage of commits be classified as
either good standing or full commit. Partial commits
are considered a partial success and zero commits are
failures. Partial and zero commits indicate possible
shortcomings of the model. Unassisted commits in-
dicate lack of compliance with the usage mandate,
prompting reminders and (or) additional training.
These percentages are tracked at various geographic
levels (i.e., region, division, district) and by user, facili-
tating diagnosis of problem areas and users. Finally,
changes to CDA settings in each district are recorded to
monitor and control the changes because these settings
can significantly affect the performance of CDA’s op-
timization module.

CDA usage was initially very low after the system
rollout; however, it improved as the user community
gradually accepted the system. Figure 2 displays the
trends in the proportion of weekly commits in three
categories during the ramp-up of CDA and after full

Figure 2. (Color online) Usage of the CDA System Reached 80% Within 1 Year After Deployment
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deployment: “Tool Not Used” (unassisted commits),
“Tool Used, Solution Not Used” (zero commits), and
“Tool & Solution Used” (good standing + full commit +
partial commit). As the figure shows, CDA usage
(dotted and hatched areas) has stabilized at around
90%, and the percentage of commits in which at least
some of the recommendations were used has stabilized
at around 75%. Increasing these numbers is a continual
process of using feedback to further improve he system
and working with crew planners to increase usage.
For many situations in which the CDA solution was
not used fully, we found that the settings defined for
that district were not appropriate. Maintaining the
integrity of these settings is important; so the system
generates periodic reports on the changes to the set-
tings. Occasionally, the model needs to be enhanced to
address a new or revised requirement; thus, mainte-
nance of the model is also a continual process.
Low-usage patterns by individual users are not easy
to address. By comparing the proportion of times that
a user does not fully commit the recommended solu-
tion with the proportion for other users in that user’s
peer group, we can identify users who are outliers.
Such users tend to be either relatively novice users or, at
the other extreme, very experienced users who feel that
they do not need model assistance. Usage among novice
users can usually be increased with more training. For
expert users, providing more detailed explanations of
the model’s logic and demonstrating its strengths can
increase usage. We also identified champions—users
who understand CDA very well and support its use—
and made them responsible for training their peers. Our
objective was to increase usage. This strategy was ef-
fective because these champions were better able to
relate to their peers and customize their training, rather
than having the development team conduct the training.

Impact

To assess the effectiveness and benefits of the CDA-
optimized solutions compared with manual solutions,
we estimate the aggregate impact of using these two
methods over a given period. The two main factors that
influence crew costs are the number of deadhead
movements and the total heldaway hours (for all crew
members) in each crew district. These two values de-
pend on the traffic intensity (i.e., the number of trains
traversing the district in each travel direction), which
can vary from week to week. Therefore, to assess the
benefits of using optimized versus manual plans in
a district, we use two nonfinancial metrics, deadhead
rate and heldaway rate, defined, respectively, as the total
number of deadheads and total number of heldaway
hours per period (e.g., week) in that district divided by
the number of train starts in that period. The lower the
values of these metrics, the lower the cost to BNSF. Since
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deploying CDA, we have been tracking these two
metrics for every district on an ongoing basis.

We cannot directly compare the deadhead and
heldaway rates after CDA deployment with the rates
observed before deployment because they depend on
the characteristics of the train schedules, particularly
the number of trains and the directional imbalance
(absolute difference in train movements in the two
directions) of trains traversing a district. For example,
more trains lead to a greater number of opportunities
for crew connections, thus reducing crew shortages and
heldaways. Larger directional imbalances (i.e., more
trains traversing the district in one direction than the
other) can necessitate deadheads to equalize the im-
balance. At the time CDA was deployed, BNSF ex-
perienced structural changes in its traffic patterns due
to a changing mix of traffic and various economic
factors, causing a notable drop in train flows across
many districts.

In an initial comparison of actual pre-CDA and post-
CDA deadhead and heldaway rates, we found these
rates to be roughly comparable, although post-CDA
traffic was lower (implying that the post-CDA rates
should have been higher). This observation suggested
that the CDA-supported decisions improved on pre-
vious manual decisions. To obtain a better assessment
of the benefits of CDA, we decided to estimate the
deadhead and heldaway rates that each district would
have observed whether manual crew plans were ap-
plied to the actual traffic flows after CDA was deployed.
For this purpose, we developed simple linear regression
models for each district, using pre-CDA data, to estimate
the two metrics as functions of the number of trains and
the magnitude of the directional imbalance in the dis-
trict. As we noted above, we expect deadhead and
heldaway rates to correlate negatively with the number
of trains but correlate positively with the magnitude of
the directional imbalance.

Figure 3 shows the data points corresponding to
the weekly deadhead and heldaway rates versus the
number of trains, immediately prior to CDA deploy-
ment, for a sample district. Figure 4 shows the data
points corresponding to the two rates versus the di-
rectional imbalance for the same district. As antici-
pated, these figures show that deadhead and heldaway
rates decrease with number of trains and increase with
directional imbalance.

We built such regression models for each district and
used them to predict the deadhead and heldaway rates
that BNSF would have observed in each district had it
used manual planning in the year following CDA
deployment. We then compared these predicted values
with the values we observed using CDA over the same
period. Using the appropriate costs per deadhead and
per heldaway hour, we estimated that using CDA
yields savings to BNSF of several million dollars per
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Figure 3. (Color online) Deadhead and Heldaway Rates Depend on the Number of Trains Traveling Through a District
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year in crew costs. Senior leadership at BNSF has re-
cognized the impact of CDA:
¢ The Executive Vice President of Operations stated:

Given the size and complex nature of our network,
an application such as Crew Decision Assist en-
hances our planners’ abilities to deal with the scale
and dynamic nature of our operations. In the past
two-and-half years, CDA has been adopted by the
majority of our planning team and it has been
instrumental in lowering costs by several million
dollars each year.

* A General Director of Operations stated:

Crew Decision Assist has provided a technology
solution that has changed the way we schedule
crews who operate trains. CDA has positively
impacted our cost efficiency and the life quality of
employees who operate trains by reducing their
time away from home. As an example, we recently
made the decision to suspend the use of CDA after
growth in our volumes resulted in operational
challenges. When we did, cost and employee morale
deteriorated. When CDA was again initiated, we
immediately realized improvements in both.

Conclusions
In this paper, we described the development, imple-
mentation, and usage of an optimization model and

Heldaway Rate vs. Trains

30% .
25%
°
o 20%
5 e eh, e ©
 15% cg®
> ° [ ) Q‘.‘d‘. )
& 10% .9 o
‘ .......
S 5% ., % e
T 0%

150 170 190 210 230 250 270

Number of Trains

method for crew planning at BNSF Railway. Our model
incorporates features such as different crew-rotation
rules (other than FIFO) and usage of extra crews that
previous crew-planning models have not addressed.
Our solution approach is also novel because it accounts
for uncertainty in train schedules. The crew-scheduling
algorithm, used as a decision support engine within the
existing crew-planning system, has been well received
by crew planners, and steady adoption of the system
has significantly reduced crew costs. Encouraged by this
experience, we next plan to develop optimization-based
methods to support crew scheduling in districts that are
not single ended.

Our experience with the development, implementa-
tion, and adoption of CDA also highlights principles for
the successful application of optimization-based deci-
sion support in practice. Below, we summarize some
pertinent takeaways from this project.

¢ Formulating a decision problem as an optimization
model is valuable to improve and validate our under-
standing of the problem, and optimally solving it yields
benchmarks against which we can compare the quality
of solutions using heuristics that may be more viable for
practical use.

* Modeling and algorithmic development is an it-
erative process, which consists of applying the approach

Figure 4. (Color online) Deadhead and Heldaway Rates Depend on the Imbalance in Traffic Between the Two Travel

Directions in a District
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to real data, engaging the users to validate the results, and
improving and refining the approach based on feedback.

¢ In the crew-scheduling context, crew districts vary
in their operational policies, requirements and restric-
tions, and decision options. Moreover, these features
change over time, for example, because of new union
agreements that change work and rest rules. So de-
veloping systems that are flexible and can readily
accommodate these variations is important.

¢ For successful implementation, development teams
must anticipate and institute strategies to overcome
resistance to change among users by (1) introducing the
system in phases, starting with carefully chosen lead
users, (2) demonstrating the economic and operational
benefits of employing the system, (3) explaining broader
applications of the system (e.g., for scenario analysis),
and (4) making system improvements in response to
user feedback.

These observations reinforce the experience of suc-
cessful practice-driven operations researchers.

Appendix. Integer Programming Formulation
Sets and Indices

K: Set of occupations, k€ K
A: Setofalltrips, i,j € A, with j typically denoting the
index of an outbound trip and i denoting any trip
Al: Set of initial trips that departed before the
planning horizon, each carrying crew members
who arrived before or are in transit at the
beginning of the planning horizon
A C Al: Subset of initial trips arriving at the away station
AF: Set of future trips that depart during the planning
horizon, including an artificial “sink” trip from
each station at the end of the planning horizon,
AF = A\A!
AT : Set of future train trips, AT c AF
AP Set of future deadhead trips (taxis and public
transport), AP = AF\AT
A Set of future trips departing the home station,
A c AF
ik Set of valid predecessor trips to trip j€ AF for
occupation k€ K
Si: Set of valid successor trips from trip i€ A for
occupation k € K
B;: If the rotation rule at the arrival station of trip i€ A
is FIFO, then B; is the set of trips that arrive at the
same station as trip i and arrive before trip i, or if
the rotation rule at the arrival station of trip i € A is
FOFO, then B; is the set of trips that arrive at the
same station as trip i and depart before trip i

Parameters

. : Number of reqular crew members from occupation
k€ K available on initial trip i € A

vy : Number of extra crew members from occupation k € K
available on initial trip i € A"
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b; : Capacity of trip i € AT (unlimited for deadhead trips on
public transport)
mj: Minimum number of crew members of occupation k € K
needed on trip i€ AT
My : Maximum number of crew members from occupa-
tion k€K who can be assigned to trip i€ AF ity =
bi = Ziek:kkMic
1 : Total number of regular crew members from occupa-
tion k available in the district
t;: Departure time of trip i€ A
cijk - Connection cost for a crew member of occupation k € K to
connect from trip i € A to trip j € Sy for occupation k € K
dj : Crew payment made to each crew member of occupa-
tion k€ K assigned to trip i € A
e: Cost for each extra crew member used from the home
station
f: : Fixed cost of deadhead trip i € AP (zero for deadhead
trips on public transport)

Decision Variables

X = 1 if a reqular crew member of occupation k€K con-
nects from trip i€ A to trip j€ Sy and 0 otherwise

Yix = 1 if an extra crew member of occupation k€K con-
nects from trip i€ A" to trip j€ Sgand 0 otherwise

Uy = Number of regular crew members of occupation k € K
assigned to trip i € AT

Vik = Number of extra crew members of occupation k € K
assigned to trip i€ A"

Z; =1 if at least one crew member is assigned to trip

i€ APand 0 otherwise

Wi = 1 if at least one extra crew member of occupation
keK is assigned to trip i € A; and 0 otherwise

Objective Function

Minimize
> (X + Yig) + D dali + D, (dic + Vi + D fiZi
ieA ieAF ieAH! ieAP
Jj€S; keK keK
kek (A1)
Constraints
Trip-Transfer Linking.
> Xik = g icAl, keK (A.2)
jES,/\/
> Yk = v ieA” keK (A.3)
jGS,'k
> Xi = Uy ieAf, keK (A.4)
j€Sik
> Yk = Vi ieAf, keK (A.5)
j€Sk
> X = Up jeAf, keK (A.6)
i€Pj
> = Vi jeAf, keK (A7)
i€Py
Train-Crew Requirement.
Uy + Vi > my icAT, keK (A.8)
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Train Capacity.

> Ui+ Vi) <by ie AT (A9)
keK
Deadhead-Selection Forcing and Capacity.
> (Ui + Vi) <biZ; ie AP (A.10)
keK

Occupation Pairing.

U + Vi —mg = Uy + Vg —my i€ AF, ke K kK €K k#k

(A.11)
Contingent Extra-Crew Usage.
Vi < Wi jeAl, keK
(A.12)
D ur+ >y U= D5 Upe <1 - Wy)
icAlN Py i€AFN Py j €AH: 1 <t;
jeAl keK
(A.13)
Rotation Rule.
Xijk + Yijk + Xi']'rk + Yi'j'k <1
keK,ie A,i'€B;,j€Sy N Sit,j €Sir by >t
(A.14)

Nonnegativity and Integrality.

Xiik, Yij €{0,1} ie AjeSy kekK
Ui, Vi > 0 and integer icAf,keK
Z;€{0,1} ie AP

Wi €{0,1} ieA” keK

This model has the following structure:

Objective Function

The objective function is to minimize the total crew de-
ployment cost during the planning horizon, including crew
payments, and costs for deadheading, layovers, and usage of
extra crews.

Constraints

e Trip-transfer linking: Constraints (A.2)-(A.7) relate the
crew-to-trip assignment and connection variables. Constraints
(A.2) and (A.3) ensure that each crew member arriving at the
system on an initial trip is connected to a successor trip;
Constraints (A.4) and (A.5) ensure the same for crew members
arriving on future trips; and Constraints (A.6) and (A.7) ensure
that each crew member departing on a future trip has a con-
necting predecessor trip. These constraints serve to conserve
flow: the flow on a trip must equal the flow connecting to the
trip and equal the flow connecting from the trip.
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e Train crew requirement: Constraint (A.8) ensures that
each train has the required complement of (regular or extra)
crew members to operate the train.

® Train capacity: Constraint (A.9) ensures the number of
deadheading crew members assigned to each train does not
exceed the train’s capacity.

® Deadhead-selection forcing and capacity: Constraint (A.10)
ensures that the binary taxi-selection variable assumes a value
of one if one or more crew members are assigned to a taxi trip,
and to impose capacity limits on the number of crew
members traveling on the taxi.

® Occupation pairing: Constraint (A.11) ensures that dead-
heads contain crew members of both occupations. The number
of crew members assigned minus the number required is the
number deadheaded, which must be the same for each occupation.

® Contingent extra crew usage: Constraints (A.12) and (A.13)
ensure that extra crew members are used only when enough
rested regular crew members are not available to travel on an
outbound trip from the home station. Specifically, if one or
more extra crew members of occupation k are assigned to
outbound trip j, Constraint (A.12) forces Wy = 1; then
Constraint (A.13) forces the cumulative number of regular crew
members who are rested at the home station before trip j
departs to be less than or equal to the cumulative number of
reqular crew members dispatched from the home station on or
before trip j (which implies that enough regular crew members
are not available for trip j). Note that the trip-transfer linking
Constraints (A.2), (A.4), and (A.6) ensure that the left side of
Constraint (A.13) is nonnegative. Therefore, when Wy = 1,
Constraint (A.13) effectively requires the left side to be equal to
zero (i.e., the cumulative number of regular crew members of
occupation k who are rested and available before trip j departs
must equal the cumulative number dispatched on or before
trip j). When Wy = 0, the constraint is “deactivated.”

e Rotation rule: Constraint (A.14) ensures that the chosen
connections meet the crew-dispatching priorities applicable
to the district and occupation. For example, if the rotation rule
is FIFO, then connections <i, j> and <i’, j> are “in-
compatible” if trip i" arrives before trip i and trip j* departs
after trip j (because crew members on trips arriving earlier
should depart earlier than crew members on trips arriving
later), provided trip j is a valid successor to trip i". Constraint
(A.14) prevents incompatible connection pairs from being
selected in a solution.

The long computational time to exactly solve the integer
program stems primarily from the large number of rotation-
rule Constraint (A.14); a typical problem instance has several
million of these constraints, but only a few thousand of the
remaining constraints. The heuristic easily handles these con-
straints when it “simulates” the connections made for a given
deadhead plan, which is a major contributor to its success.
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