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Abstract. In airlines operations, fleet assignment models are used to assign flight legs to
different equipment types (such as Boeing 760 or 767 or AirBus 320). The fleet assignments
have to satisfy certain operational constraints, such as coverage, maximum overnight stays,
and airport compatibility. Fleet assignments are tactical decisions, and changes in demand
and maintenance requirements require an intermediate decision-making process to capture
these changes before a flight’s day of departure. In this paper, we describe an implementation
of a swapper optimization suite (SOS) for one of the largest airlines in Japan. The scale of the
flight legs, the equipment types, complex operational constraints, maintenance requirements,
and other complex criteria specified by the route planners necessitated the development of
a sophisticated optimization suite to generate swaps of flight legs among the different
equipment types for the allotted fleet assignments. The SOS uses optimization models
to generate the optimal swaps. The company has seamlessly integrated the SOS in its

information systems to incorporate optimization into the decision-making process.

Keywords: prescriptive analytics  decision support « fleet assignment model * equipment swapping application « airlines tactical decision *

large-scale optimization

The International Air Transportation Association (IATA)
year-end report for 2017 estimated that consumers
would spend 1% of the world’s gross domestic prod-
uct (GDP) on air transportin 2018 (IATA 2018). Over 4
billion passenger departures occurred in 2017, and
the number of jobs in the industry exceeded 2.7 million.
Air transport boosts economic development world-
wide by increasing connections between cities, enabling
the flow of goods, people, capital, technology, and ideas.
The total number of unique flights between two cities
in 2017 exceeded 20,000, which is more than double
the connectivity by air transport 20 years earlier. In
addition to connectivity, an important contributor to the
increase in air transport volume is a decrease in the cost
of air travel. According to the IATA, the total revenue
for 2017 was $750 billion (and it was estimated to be
$834 billion for 2018). Also, although the year-to-year
passenger population increased by 7.1% in 2017, the
earnings before interest and taxes (EBIT) margin (ratio
of earnings before interest and taxes to net revenue
earned) decreased by 0.9%. Thus, it has become im-
perative for airline companies to make their operations
lean for fiscal sustainability and growth.

The optimal alignment of demand and supply is
paramount to the success of any business. In the airline
industry, this alignment is achieved using decision
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support systems in the areas of demand management
and capacity planning. Demand management encom-
passes the core areas of forecasting, revenue manage-
ment, and pricing. Determination of the optimal policy
for accepting or rejecting bookings and being able to
shape demand using price levers are central to an air-
line’s ability to improve revenue. Capacity planning,
however, addresses the supply side of the equation and
includes, for example, long-term fleet planning; fleet
rationalization; and the more tactical areas of fleet as-
signment, crew scheduling, gate assignments, and fleet
swapping. A common practice in airlines” scheduling
processes is to determine the equipment assignment
for a flight schedule based on a forecasted, unconstrained
demand. This exercise is typically done about a year in
advance for budget planning purposes, and it is adjusted
two to three months before finalizing the schedule.
However, factors, such as the near-term trend, local
events, and competitive pricing actions, can have a
profound impact on short-term forecasts, possibly
leading to significant mismatches between demand
and capacity. In this paper, we introduce the swapper
optimization suite (SOS), which was designed to op-
timize the near-term challenge of potential mismatches
between the types of aircrafts assigned to flights and the
projected demand based on on-hand bookings and the
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booking pace. The SOS is an optimization solution
for maximizing profitability while satisfying all oper-
ational requirements.

All Nippon Airways (ANA), the largest airline in
Japan, has 85 international routes and 119 domestic
routes in Japan. It has a unique dual-hub model that
enables passengers to travel to Tokyo and connect
through the two airports in metropolitan Tokyo,
Narita and Haneda, to various destinations throughout
Japan. The airline also offers same-day connections
between various North American, Asian, and European
cities. The ANA Group carried 53.8 million passengers
in fiscal year (FY) 2017 and has a fleet of approximately
260 aircraft. ANA’s operating revenues for FY 2017
were ¥1,971.7 billion. The airline had 122.8 billion
available seat km (ASKs) and 89.4 billion revenue
passenger km (RPKs). ASKs are the sum, across all
segments of the airline’s routes, of the number of avail-
able seats on the segment multiplied by the distance
of the segment expressed in kilometers. RPKs are
the sum, across all segments of the airline’s routes, of
the number of passengers on the segment multiplied
by the distance of the segment also expressed in ki-
lometers (Figure 1).

Before implementation of the SOS, ANA already
used a fleet assignment model (FAM), which is an
optimization tool that assigns aircraft to flight legs
in a way that maximizes the overall profitability of
the schedule. Whether determining the feasibility of

a future schedule or gauging the profitability of a
current schedule, the FAM provides valuable insights
into the flight scheduling process. The major speci-
fications for the FAM include

¢ producing fleet assignments that are consistent with
a base schedule and meeting maintenance requirements;

¢ adhering to specified ground turn times and
block times (block times are the total amount of time
that a flight takes from pushing back from the de-
parture gate to arriving at the destination gate);

* maintaining “prefleeted” flights—a normal busi-
ness practice for assigning the equipment to certain
flights;

e respecting “through” and “forced turn” flights by
maintaining the same equipment type for some flights
that have one or two intermediate stops before arriving
at their final destination and maintaining the same
equipment type throughout the route for some flights;
and

¢ enforcing crew-related restrictions.

In addition to these requirements, the FAM is also re-
stricted by carrier-, airport-, and routing-specific con-
straints. The FAM is used as a tactical tool in which the
initial equipment assignments are driven by represen-
tative forecast values. A “weekday” fleet assignment is
madebased on average daily forecasts and fares, and the
equipment assignment is identical for all weekdays of
the schedule. Similarly, a “weekend” fleet assignment
captures different demand patterns for weekends.

Figure 1. (Color online) ANA’s Domestic Hub-and-Spoke Network, Which Includes ANA, IBEX Airlines, AIR DO, Solaseed
Air, and STARFLYER, Serves 132 Routes and 1,054 Flights per Day
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The initial assignments made by the FAM are used
for budgeting and long- and short-term planning.
For long-term planning, the rosters for the aircraft pro-
vide overviews for strategic objectives and overall
profitability. In the shorter term, the rosters are useful
for publishing a schedule and for operations planning.
However, there are challenges associated with using
average demand forecasts for FAM assignments, be-
cause these forecasts fail to reflect day-to-day varia-
tions, special events, competitive actions, and other
marketing decisions. Also, as the day of departure gets
closer, the demand is better represented by actual
customer bookings-based projections. Another im-
portant phenomenon that is not captured by the FAM
is “group reservations” or “bulk bookings,” which
generally tend to happen closer to the departure date.
Group reservations are higher-volume bookings for
special events, such as conferences, sporting events,
corporate training, and large family functions. These
reservations can substantially increase the bookings
for certain legs, and these reservations typically occur
after assignments are made by the FAM; therefore,
there is a need to revise the FAM’s assignments to
accommodate the additional revenues and passenger
volume without violating other operational constraints,
such as maintenance and pilot-crew requirements.
Additionally, there can be changes in the availability
of overnight maintenance routines, crew, or the schedule
as well as other minor changes after the FAM assign-
ments, and these developments can make some of the
ground times unacceptable and thus, require a change
in the equipment type for a flight. Because of these
challenges, ANA was motivated to add an optimiza-
tion process on top of the FAM to make better, more
robust assignments for the equipment. The concept of
matching more recent demand with capacity may
sound like it should be simple; however, these changes
need to be conservative for the airline’s operations and
can give rise to additional challenges in terms of pilot
and crew assignments, ground handling, passenger
acceptance, and spares and maintenance for the air-
craft. Hence, any deviations from the rosters generated

by the FAM create an additional burden for the op-
erations team (OT), and therefore, the changes must
be minimal. Given the large number of aircraft and
flights and complex requirements for the fleet as-
signments, an efficient tool, such as the SOS, is required
for producing meaningful recommendations.

Literature Review
Strategic and tactical planning for airline operations
is broadly classified into four categories: network
planning, fleet assignment, aircraft routing, and crew
rostering (as shown in Figure 2). The SOS is a tactical
tool, and it is used multiple times before a flight’s day of
departure. The functionalities of the tool are restricted
based on the number of days until departure.
Network planning is a very strategic phase in which
flights are determined for a market based on demand
and potential profits, and fleet assignment is another
strategic step in which individual aircrafts are assigned
to each leg based on cost and the supply of different
seat segments. An FAM is then used for aircraft routing
based on maintenance and operations restrictions, and
finally, crew rostering is performed based on the crew
costs and workload regulations. The SOS is used in-
termittently after the FAM has provided the initial
routing up to the day of departure. The literature on
FAMs is extensive, but the literature on swapper ap-
plications is very limited. The main objective of an FAM
is to create a line of flight (LOF) for each aircraft in a
way that maximizes profit. Aircrafts differ in their
configurations, capacities, operating costs, and main-
tenance requirements, and the demand for each flight
will also differ based on the day of the week and the
time of day. Hence, the supply of aircraft has to be
well matched with travelers” demand, like any other
business requirement. Allocating larger aircraft for a
smaller demand will result in a low profit margin
because of the higher operating costs and lower oc-
cupancy, and similarly, allocating smaller air-
craft for high-demand flights will result in demand
spill (unsatisfied demand), poor customer service, and
multiple reroutings for customers. The literature has

Figure 2. (Color online) Operations Planning in the Airlines Industry
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largely treated FAMs as multicommodity network flow
problemswith cover, flowbalance, and aircraftavailability
constraints. We refer readers to Abara (1989), Daskin
and Panayotopoulos (1989), Berge and Hopperstad
(1993), and Subramanian et al. (1994) for earlier work
on FAMs and to Rushmeier and Kontogiorgis (1997),
Gopalan and Talluri (1998), and Sherali et al. (2006)
for surveys of FAM models and methodologies. Dillon
et al. (1993), Jarrah (1993), and Subramanian et al.
(1994) present the FAMs used by USAir, American, and
Delta, respectively.

Regarding the complexity of FAMs, Gu et al. (1994)
have shown FAMs to be NP hard for three aircraft
types, even without availability constraints. Hane et al.
(1995) and Rushmeier and Kontogiorgis (1997) have
presented different modeling strategies for large-scale
FAMs. Other methodological advances include solving
the linear programming relaxation of the mixed integer
model, applying rounding heuristics, using branch-and-
bound search techniques for the remaining variables
(Rushmeier and Kontogiorgis 1997), Lagrangean re-
laxation (Rushmeier and Kontogiorgis 1997), branch-
and-price solution schemes (Hane et al. 1995, Bélanger
et al. 2006), and large-scale neighborhood searches
(Ahuja et al. 2007).

Talluri (1996) presented heuristics for a swapping
application with a focus on the required overnight
maintenance of aircraft. Additional applications in-
clude balancing because of schedule disruptions and
undergoing designated maintenance. The swapping
also satisfies the most important requirements of a
fleet assignment, such as flow balance, aircraft count,
and coverage. Swapping aircraft is also a useful tactic
in disruption management during operations.

As Kohl et al. (2007) note, a number of different tech-
niques are available to airline operations control centers
to mitigate the effects of disruptions. These generally
take the form of flight delays, cancellations, and “aircraft
swapping.” Ageeva (2000) presented the idea of using
aircraft swaps to avoid delays, and Eggenberg (2009)
showed that aircraft swaps and increased idle and
passenger connection times are useful for improving
the recoverability of aircraft routings. More recently,
Froyland et al. (2013) introduced a two-stage stochastic
program in which FAM decisions are made in the first
stage and swapping is considered as a recovery option
in the second stage. Burke et al. (2010) considered a
multiobjective optimization problem where reliability
and flexibility were represented by the probability of
being on time and swapping opportunities, respectively.

This paper focuses on what happens after the FAM-
based assignment of flights to equipment. The swapping
application that this paper describes is useful for
meeting variations in demand and increasing revenue
as well as accommodating changes in maintenance
routines that have occurred after the FAM assignments.

Background
A “flight” is a scheduled service between a departure
airport and an arrival airport with a scheduled de-
parture time and a scheduled arrival time. There are
different airplane fleet types (for example, Boeing 787
and Airbus A330), and within each fleet type, there
are also configuration types referred to as equipment
configurations (ECs), which specify the number of
seats in the economy and business classes. Each air-
craft corresponding to an equipment and configura-
tion type will have multiple flights assigned to it; this
assignment is the aircraft’s LOF, which is a sequence
of connected flight legs that begins and ends at
(possibly different) maintenance airports. A “mainte-
nance airport” is one where the maintenance for the
aircraft is performed during an overnight stay; not
all airports are maintenance airports. A maintenance
airport is also capacitated by aircraft type and con-
figuration. An FAM process produces the LOF for
an aircraft. The assignments of crew, minimum and
maximum ground times, and maintenance routines
will depend on the aircraft type, and the demand
served will depend on the aircraft and configuration
type. A “minimum” or “maximum” turn time is the
minimum or maximum time required between a flight’s
arrival and the same aircraft’s subsequent departure,
respectively; these turn times will ensure that there is
sufficient time to conduct critical activities, such as
disembarking, removal of bags, refueling, loading of
bags, and boarding for the next flight. The departure
time for a flight can be changed slightly if it can fa-
cilitate additional swapping opportunities for the
aircraft to increase revenue or decrease demand spill.

Swapping must adhere to a number of inclusion
and exclusion rules, some of which we list below.

¢ Violates forced turn: certain flights are required
to connect to other flights

e Runway length: certain equipment types are
prohibited at certain airports because of runway
length requirements

e Segment prohibition: some flights have explicit
equipment prohibitions

¢ Preferred equipment and configurations: plan-
ners can specify a preference for certain flights with
certain equipment types and configurations

e First and last flights: certain flights are desig-
nated as the first flight of the day, and some others are
designated as the last flight of the day
Any viable swap should adhere to all of the rules and
prohibitions that are established by the OT.

ANA’s Previous Practice and the Need

for Analytics
Before the implementation of the SOS, the route plan-
ners (RPs) at ANA selected the flights that warranted
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higher-capacity assignments based on observed book-
ing patterns and sent a request to the OT. The OT eval-
uated the list of flights based on firm on-hand bookings,
crew conditions, and other operational requirements and
provided the RPs with swapping recommendations.
The RPs then had to decide whether to adopt each
OT recommendation. The major limitation of this ap-
proach was missed opportunities. Because the swaps
were identified manually, the process was cumber-
some, requiring multiple interactions across multiple
departments, and there was no consideration of cost
savings from downgauging flights (that is, moving
the flights from using larger to smaller equipment,
because the revenue management planners focused
primarily on revenue maximization). However, the OT
wanted minimal changes to the operations to reduce
its burden. The SOS was introduced to improve the
swapping process at ANA. The major challenges for
using this process before adoption of the SOS are listed
in Table 1. Other key features, such as multiple iter-
ations and downgauging, would be ideal for the
swapping process; however, they were not part of
this process because of their complexities in the ab-
sence of an optimization process.

To illustrate how important swapping can be,
consider two aircraft, 318 and 319, with capacities of
124 and 107, respectively, and FAM-assigned LOFs as
we show in the top panel of Figure 3. The current
projected bookings (denoted as “pb”) for the flight
from Haneda Airport (HND) to New Chitose Airport
(CTS) has increased beyond the capacity of aircraft 318.
Hence, the two flights, HND to CTS and CTS to HND,
are exchanged with those of aircraft 319, which has
enough additional capacity to accommodate the in-
crease in the current bookings. Fortunately, aircraft 318
has the required capacity for the flights swapped from
aircraft 319 between HND and Osaka International
Airport (ITM) and between ITM and HND, and the
swap is in accordance with all inclusion and exclusion
rules. Additionally, we note that this swap does not
change the aircrafts’ overnight maintenance require-
ments, and no other operational constraints, such as

minimum/maximum ground time and maximum air-
craft or configuration changes, are violated.

Although it is trivial to spot the profitable ex-
changes for aircraft 318 and 319 in Figure 3, on an
average day there are approximately 600 flights with
100 LOFs and seven different aircraft configurations.
Also, the example in Figure 3 demonstrates only a
two-level swap, whereas in practice, a multilevel swap
can also happen. For example, a multilevel swap in-
volving three aircraft A1, A2, and A3 might swap flights
between Al and A2 and between A2 and A3, with A2
and A3 making some swaps to accommodate the swaps
between Al and A2. In addition, the OT is interested in
making very few changes to the committed schedule,
whereas the RPs are interested in revenue maximiza-
tion. Although the departure times are known and fixed,
the SOS supports flexible departure times and allows
planners to conduct what if analyses. All changes will
constitute a network effect and produce other mainte-
nance requirements for the flights toward the end of
the day. Because of the complexities involved in swaps
and the possible number of combinations for swaps,
an optimization system, like SOS, is required to iden-
tify the LOF exchanges that will provide the maximum
revenue benefit.

The swapping process at ANA has different types
of restrictions based on the number of days until
the departure date. As the departure date approaches,
the number of restrictions will increase, because the
maintenance rosters and flight arrival and departure
times have already been published. In contrast, when
the departure date is farther away, the swapping
process is expected to recommend exchanges that
will produce the highest monetary benefits. Table 2
presents the restrictions for the swapping process,
which are based on the number of days until the de-
parture date. For example, only round trip swaps are
allowed when the swapping process is very close to the
departure date, because this approach would not dis-
rupt other published LOFs. Similarly, departure time
changes are not allowed within three days of the
departure date.

Table 1. Swapping Practice at ANA Before the SOS Implementation and the Drawbacks

of the Process

Before SOS

Drawbacks

Manual process

Laborious process of identifying swaps by looking at bookings and

the routing files

Labor intensive
Downgauging not considered
Low-quality solution

1.5 FTEs required to identify, review, and confirm equipment swaps
No cost savings by downgauging fleet assignments
OT acceptance was moderated, and fewer than six equipment

changes per day were identified; error prone

Few iterations
Low importance given to swapping

Short-sighted planning process
Critical tasks were given priority over fleet-swapping efforts
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Figure 3. (Color online) Movement of Flights from One Aircraft to Another Aircraft Owing to an Increase in Current Bookings
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Note. KIX, Kansai International Airport; ISG, New Ishigaki Airport; NGO, Chubu Centrair International Airport; FUK, Fukuoka Airport.

The SOS recommends an “iterative-optimal” solu-
tion: that is, in each iteration of the algorithm, the
system optimally discovers the most promising LOFs
for which flights can be swapped to generate maximal
gains in the incremental profit. On discovering a
swap, the system commits to the swap, recordsit, and
continues to the next iteration to find the next most
promising swap. Again, the system does so optimally
for each iteration. The algorithm terminates when it
cannot find any meaningful swaps, or it reaches the
aircraft change limit established by the user. In ad-
dition, each swap that the SOS finds is fully feasible,
because the SOS considers all operational constraints
while identifying swaps. The number of LOFs that are
involved in each swap is parametrized and can be
changed to three or more, which means that the swap-
per system can discover a multiple-swap LOF solution.
Although increasing the number of swaps provides
more flexibility for the optimizer and can generate
theoretically better swaps, executing such a solution
can be quite challenging for an airlines OT.

SOS is designed as an iterative tool, because ANA
must internally review and approve each swap. The
review considers strategic and operational plans,

Table 2. Order of the Restrictions from Most Restrictive to
Least Restrictive as Defined Within the SOS

Feature Scenario
Run period Daily/weekly /monthly
Swap Round trip only/no restrictions

Overnight stay Fixed aircraft and counts/no restrictions
Maximum aircraft changes 100/no restrictions

which are outside the scope of the SOS. The goal of
the SOS is to provide a list of easy to understand and
profitable swaps that the users can review and ac-
cept. Solving a single large mixed integer linear pro-
gram is certainly possible; however, the results in
multiple-line, multiple-flight swaps are hard for the
planners to understand. In contrast, SOS ranks each
swap based on the objective function value and provides
a perspective to the user on the type of swap and its
corresponding impact on overall revenue. Some swaps
could be difficult from a practical perspective and may
result in lower revenue and vice versa. Hence, the iter-
ative process is helpful in distinguishing the swaps
based on revenue.

Developing the SOS: Optimization Models

The SOS is an optimization tool that swaps flights for
aircraft based on the assignments made by the FAM.
The swaps are performed in a way that maximizes the
overall profitability of the schedule. With advances in
algorithmic techniques and computational power, the
SOS has matured into a dependable tool in the schedule
development process. Whether used to determine the
feasibility of a future schedule or gauge the profitability
of a current schedule, the SOS provides valuable insights
into the flight scheduling process. As the airline in-
dustry becomes more and more competitive, tools, such
as the SOS, are indispensable for a carrier’s survival
and growth. The overall architecture of the SOS is pre-
sented in Figure 4. The optimization engine has three
input streams. One provides the recent “unconstrained”
demand bookings and current fares, another provides
the existing assignments recommended by the FAM,
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Figure 4. (Color online) The Overall SOS Architecture Shows that Three Streams of Data and a User Interface Guide the
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and the third provides operational constraints. “Un-
constrained revenue” is the expected revenue from a
flight if capacity constraints are ignored. In addition
to these input streams, other user parameters guide
the optimization process. The solution process comprises
a preprocessing stage and solving a mixed integer linear
programming (MILP) model. The preprocessing en-
sures that any swap will adhere to the inclusion and
exclusion rules set by the OT, and it also helps reduce
the size of the mathematical model, resulting in a better
run time. We present the overall architecture and de-
tails of the optimization model in the appendix.

Preprocessing: Inclusions/Exclusions

Before presenting the viable options for swapping
flights between two aircraft, preprocessing is per-
formed to provide incentives or exclude potential
swaps from the model. The general rules include a
capacity and a compatibility check; we list some con-
siderations below:

® an aircraft’s capacity cannot be less than the
current bookings for a “swappable” flight;

e ground times for an aircraft are within the
parameter-specified tolerance;

* a swap will not violate any forced turns;

e spare aircrafts are grounded within the parameter-
specified tolerance;

* equipment is assigned to airports with compat-
ible runway lengths and gate capabilities;

* equipment and configuration prohibitions for cer-
tain flight segments are not violated;

e parameter-specified special block times for cer-
tain combinations of airports and equipment are met;
and

* parameter-specified allowable time changes for
the legs and equipment types are met.

Swapper Model

As we mention above, the SOS is a tool that makes
swapping decisions based on the overall profitability
of a schedule. The profitability of a flight is the dif-
ference between the revenue generated and the cost
incurred for that flight. Intuitively, revenue can be
computed by multiplying the unconstrained expected
demand in each fare class by the associated fare. Al-
though this may seem to be a straightforward task, a
sophisticated model or the assistance of an experienced
forecaster is necessary to estimate the unconstrained
expected demand.

The number of decision variables in the MILP model
depends on the flights and aircraft configurations. The
flight sequences are constructed as a network, with
connections representing “legitimate” combinations of
arrival and departure flights at an airport and arcs
representing flights. Any pair of connections in the
network is defined as decision variables (Figure 5).
Operational feasibility requires ensuring that the
combination of flights obeys all operational constraints,
such as minimum, maximum, and special ground times
between flights; forced turns; flight-airport compati-
bility; and so on. The preprocessing step is performed
to obtain all legitimate combinations, and then, these
combinations become the decision variables of the MILP
model. The flag in each variable indicates whether the
FAM'’s assignment of the flight to a particular aircraft
configuration was retained.

The objective of the MILP model is to maximize
profit, which is revenue minus costs. The revenue and
costs are calculated for each connection variable. The
costs are calculated based on fleeting decisions, which
are often referred to as “flight variable costs.” For ex-
ample, fuel costs must be included, because the total
cost of a flight will depend on the fuel efficiency of the
aircraft. However, overhead and ownership costs can
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be excluded, because they tend to be fixed in the short
term and haveless of abearing on the equipment type.

The types of constraints can be broadly categorized
into three major groups: (1) balance and coverage
constraints, which ensure that each flight is assigned
to an aircraft, the total number of LOF assignments is
not greater than the total number of available aircraft,
and mass balance constraints for the assignment of
flights are satisfied; (2) operations constraints, which
address all of the operational restrictions, including
constraints pertaining to overnight maintenance re-
quirements for each airport or aircraft, crew assign-
ments to aircraft, and limitations for the slot counts at
the airports; and (3) LOF constraints, which limit the
number of changes in LOFs or the number of as-
signments for each aircraft.

Implementation

The graphical user interface (GUI) interface for the
SOSwas developed using the NET framework. Based
on a user’s preferences, all of the input data required
for the optimization engine are prepared, and the
optimization model is then triggered. The optimiza-
tion model was developed using the Java program-
ming language and is solved using the commercial
solver CPLEX 12.6.3. For our hardware, we used an
Intel Core i7-4790K 4.0-GHz CPU with 32 GB RAM.
Constraints and functionalities for the optimization
model are invoked based on a run type as specified in
Table 2. The optimization model results are generated
as output and then, uploaded back into the SOS IT
system.

Table 3 provides data characteristics for some of
the daily runs at ANA without any of the restrictions
indicated in Table 2. ANA operations involve 61
airports. The preprocessing helps by removing all of

the exclusions for possible connections. For example,
the total number of connections for ECs and flights
could potentially be 17,101 (2,443 flights x 7 ECs);
however, given the exclusions, that number is only
3,517. Similarly, the number of connections, for ex-
ample 1, could potentially be 3,517 X 3,517; however,
the number is only 171,533 with exclusions. Some
other elements of the model are block groups, special
ground times, and special block times. Block groups
refer to the grouping of aircraft types for the purpose
of calculating the total block times. Special ground
times are adjustments to the standard ground times
to reflect time of day and day of week congestion
patterns at certain airports. These times can also be
influenced by the markets served, because leisure
markets typically have longer turnaround time be-
cause of passenger and baggage handling needs.
Special block times refer to adjustments in the block
times that reflect air traffic congestion and taxi times
owing to airport maintenance and renovation. Also,
“res” in Table 3 is the number of restrictions for
equipment configurations and airports. Some airports
have restrictions or preferences for certain types of
aircraft owing to runway lengths or gate capabilities.
The specified restrictions and preferences are all added
to the model as either a penalty or an incentive for the
equipment configuration and airport combination.
Table 4 provides an indication of the size of the
mathematical models run on SOS. The characteristics
are provided for the data instances reported in Table 3.
Columns (2)—(5) in Table 4 denote the size of the
mathematical model for the first iteration, and the last
column “Time” denotes the total run time for all it-
erations. Based on the number of nonzeros as shown
in Table 4, the model is very sparse. To provide clarity
for the OT regarding implementation of the SOS

Table 3. Data Characteristics for Some SOS Runs at ANA

Instance No. flights No.eqp No.ECs No.combs No.conns No.BGs No.SGs No.SBs No. res

1 2,443 7 7 3,517
2 2,545 7 8 4,105
3 2,595 9 12 5,817
4 2,443 7 7 3,548
5 2,530 8 11 5,151
6 2,606 9 12 5,836
7 2,545 7 8 4,108
8 2,590 9 12 5,829
9 2,626 9 12 5,923
10 2,545 7 8 4,193

171,533 2 249 259 274
127,188 2 249 259 274
162,045 2 353 256 295
174,177 2 249 259 274
138,489 3 306 350 319
159,700 2 353 256 295
127,324 2 249 259 274
160,670 2 353 256 295
168,628 3 343 350 360
130,258 2 249 259 274

Notes. There are 61 airports, and the model size increases as the number of connections increases. No.
flights is the number of flights for a particular day, and No. eqp and No. ECs represent the numbers of
aircraft (for example, Boeing 765 and Airbus 320) and the different configurations (for example, Boeing
765-300 and Airbus 320-500) available for the day, respectively. No. combs and No. conns represent the
numbers of combinations of flight and equipment configurations and connection variables as represented
in Figure 5, respectively. No. BGs represents block groups, No. SGs represents additional ground times,
No. SBs specifies the special block times, and No. res is the number of restrictions for equipment

configurations and airports.
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recommendations, the model recommends an LOF
change in each iteration. The recommended LOF
swaps will provide the highest revenue. During each
iteration, the swaps from previous iterations are
fixed, and a new pair of swaps is obtained. In this way,
the OT can quantify the impact of the swaps, which
provides the team with guidance for choosing the
easiest swaps that can provide higher revenues. The
revenue benefits between consecutive swaps decrease
monotonically, and the model terminates when an
iteration is unable to provide revenue benefits beyond
the threshold set by the user. In the next section, we
present representative revenues per iteration.

Benefits Summary

ANA’s initial interest in the development of the SOS
was driven by its need for a process that would enable
it to easily identify the swaps that could satisfy the
RPs and OT at ANA. The SOS benefits ANA in the
following ways.

e Itprovides a reliable and faster response; it takes
less than five minutes to run, and the solutions are not
only automated but optimal. Given the number of
possibilities for swapping, the SOS discovers a con-
siderable number of swaps that would have gone
undetected in a manual environment.

¢ It reduces the required effort. Only 0.1 full-time
equivalent (FTE) staff member is required for run-
ning the SOS, whereas 1.5 FTE staff members were
required for identifying, reviewing, and confirming
swaps before the implementation. Moreover, the ad-
ditional effort needed for multiple runs is minimal.

® The SOS requires minimal human intervention.
ANA has a policy of rotating staff across various oper-
ations departments, which always posed a challenge
when new staff had to manually perform swaps. The
adoption of SOS greatly improved the rotation process,
with significantly higher productivity for new teams.

¢ Utilization and acceptance of swaps are higher. Up
to 20 equipment changes are possible in each run, and
the average number of swaps is between 10 and 14.
Currently, the OT’s acceptance rate for swaps is 90%.

* The acceptance from operations is better. Rec-
ommendations from the OT that are similar to the SOS
outputs have better acceptance for implementation,
because the SOS process is exhaustive in terms of
considering all of the inclusion and exclusion criteria
for any swap.

e “Spares” are better utilized. Spares are a special
class of aircrafts that have high capacities and are
utilized for charter services or to cover legs when a
significant surge in demand occurs. Before adoption
of the SOS, utilization of spares was always a challenge
for ANA; however, since the SOS implementation, spare
aircrafts have played a significant role in the swapping
process.

¢ Likewise, crew constraints are designed to serve
the needs of a nonunionized workforce in Japan. This
differs from those models that serve the U.S. and
European markets. SOS optimizes the swaps while
adhering to the rules and regulations for crew.

® The SOS provides monetary benefits. The incre-
mental benefit of using the SOS for the results shown in
Table 5 for the month of July 2017 was ¥339 million.

Implementation Challenges

After the integration of SOS into ANA’s system, there
were challenges in adopting the recommendations for
operations. The challenges included the following.

* ANA'’s flight schedule is highly optimized for
safety and utilization. Although the SOS generated
feasible swap recommendations, these recommenda-
tions were occasionally viewed as potential causes for
crew and/or other operational disruptions. Eventually,
this issue was resolved, because undesirable swaps
were weeded out by the optimization model.

* ANA is an iconic brand in Japan and enjoys very
strong customer loyalty. As such, any initiative that
is perceived to have an impact on the passenger ex-
perience is heavily scrutinized. The SOS went through
a thorough validation during its phased rollout.

e The SOS results impact many departments
within ANA. Although revenue management and
fleet planning departments were the drivers of this

Table 4. Model Characteristics for the Data Shown in Table 3

Instance  No. binary variable ~ No. nonzeros No. constraints ~ No. iterations  Time (seconds)
1 172,564 1,013,416 4,425 16 5,877
2 127,434 750,114 5,053 24 10,209
3 163,233 958,477 6,837 24 4,735
4 174,279 1,024,765 2,545 20 5,225
5 138,835 808,258 6,035 18 1,129
6 163,233 958,477 6,837 25 1,191
7 127,434 750,114 2,649 27 1,745
8 164,218 960,963 6,948 21 11,097
9 168,740 986,372 2,628 24 7,693

10 130,368 768,120 2,649 18 1,129
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Table 5. Benefits Accrued from Using the SOS for Swapping Recommendations in

a Single Day

Itr No. LOF changes Inc. cost Inc. pax Inc. rev Dec. pax Dec. rev Inc. profit
1 3 436 170 4,514 0 0 4,078
2 3 —452 139 3,539 -53 -1,222 2,769
3 3 655 118 2,161 0 0 1,506
4 2 -159 97 1,928 0 0 2,087
5 2 30 37 798 0 0 768
6 2 264 47 906 0 0 641
7 2 -161 39 689 0 0 850
8 3 -85 139 3,713 -118 -3,262 537
9 2 24 18 255 0 0 232

10 2 -53 83 1,549 -94 -1,451 151

11 3 -1,085 436 12,304 -116 -2,251 11,137

12 3 5 61 1,426 0 0 1,421

Notes. The first two columns, Itr and No. LOF changes, give the SOS iteration number and the number of
line of flight changes for the iteration, respectively. Inc. cost is the incremental cost. Inc. pax and Dec. pax
represent the increase or decrease in passenger volumes owing to the swaps, respectively, and Inc. rev
and Dec. rev represent the increase or decrease in revenue, respectively. The final column, Inc. profit,
represents the increment in profits. Cost, revenue, and profit are expressed in 1,000 ¥.

initiative, the results of the solution also impacted the
crew as well as maintenance and sales departments.
In a consensus-driven culture, it was important that
all stakeholders accept the results.

e As we mention above, ANA’s rotational man-
agement philosophy can lead to the need for retrain-
ing of new staff any time that a rotation occurs. Al-
though this policy can help make the recommendations
even more actionable by incorporating constraints and
business rules that had not been considered previously,
it requires a level of training to help the new planners
get up to speed on the SOS.

Table 5 depicts some results of the SOS imple-
mentation for a single day in July 2017. ANA analyzes
the projected losses and gains from each swap before
approving the swap, and hence, this breakdown
specifically helps ANA to choose the swaps for op-
erations. We note that the results are monotonic
with the objective function of the optimization model.
However, given the built-in bonus and penalty struc-
tures for certain preferred assignments, it only follows
a general but not strict monotonicity with regard to
profitability. It is important for ANA to review the de-
tailed impact of revenue and cost for each recommended
swap. In iteration 2, for example, the impact of the
swap led to a decrease in incremental cost of ¥452,000,
an increase in projected revenues of ¥3,539,000 for

Figure 5. The MILP Decision Variables Are Defined as
Connections in the Network, and Each Connection
Represents a Legitimate Combination of an Arriving Flight
and a Departing Flight

Flight — 485 Flight — 486
IT™

A320 - C A320 - C

HND

flights that were upgauged, and a decline in projected
revenues of ¥1,222,000 for flights that were down-
gauged, resulting in a net profit of ¥2,769,000. We also
note that iteration 11 results in significantly high
profitability but appears only toward the end of the
swap list. This ordering is because ANA has config-
ured the system to find easy to implement swaps (for
example, round trip swaps) before enabling it to find
more complicated ones involving multiple flight legs.
These are exactly the cases ANA likes to review while
deciding to accept or reject a swap. Figure 6 indicates
the revenue from each SOS iteration. As the revenue
monotonically decreases over the iterations, the expected
revenue is weighted against the operational challenges.
The topmost iterations that make a few minor changes
to the operation schedules are the most preferred.

Figure 6. (Color online) Revenue per Swapper Iteration

Revenue per Iteration
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Notes. Each of the series represents the revenue by using SOS during

the run made in a day. Revenue (in million ¥) is the additional revenue
for each SOS iteration.
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Conclusions and Future Directions

Flight swapping is a necessary but complex tactical
problem, and a solution needs to minimize customer
dissatisfaction and maximize revenue for airlines.
Our SOS, implemented for ANA, allows for a seamless
integration within the ANA scheduling process to
reduce demand spillage and maximize revenue while
enhancing customer satisfaction. Additionally, the
SOS provides a visualization for the OT of the sequence
of swaps and their estimated change in demand spill-
age and revenue increase. From the operational per-
spective, the SOS is a critical component for daily
business operations because of its essential capabil-
ities and monetary benefits. A natural application
of the SOS is as a what if tool throughout the fleet-
planning process. The SOS has the potential to make
additional contributions in the future. One possibil-
ity would be to use the SOS as an operational tool to
identify swaps that can reduce the disruptions that
occur in flight schedules owing to adverse weather or
equipment failures, and it can also potentially be used
to estimate the swappable opportunities for each flight,
which could indicate the criticality of a flight within
the network. Similarly, the solution can be made more
robust by incorporating the stochastic nature of pro-
jected demand and revenue. Because SOS is able to
find the least disruptive swaps, it can also be modified
for schedule repair purposes owing to operational dis-
ruptions, such as equipment or crew unavailability.
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Appendix.
A.1. Decision Variables

1 if the pair of flights n is assigned
Xuf = to fleet type f,
0 otherwise.
1 if thereisa line of flight violation
Y= for £ € LoFy,

0 otherwise.

Figure A.1. (Color online) The Flowchart Shows the Flow
of the SOS Algorithm

Data Preprocessing — Inclusions
and Exclusions
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Notes. The functionalities are defined in three phases, and they are
realized sequentially. The different phases are the inclusion of spare
flights, multiple line of flight changes, and time changes. SOS also
limits the optimization run in terms of the total time and the number
of iterations.

Table A.1. Sets

Set Description

A Set of airports, 1€ A

F Set of fleet types, f €F

L Set of flights, £ € L; arrival and departure times for a

flight ¢ are represented as a(£) and e({), respectively;
s(¢) and d(€) € A denote the source and destination
airports for a flight ¢, respectively

T Set of block times, teT

C Set of pilot-crew pairs, ce C

N Set of pairs of consecutive flights in accordance with
operational restrictions, n € N; n(¢1) and n(¢>) denote
the first and second legs of #, respectively

NcN Set of pairs of overnight (consecutive) flights, where
l1,0> €N, such that e(;) <a(fy)
LoFy Collection of sets of LOFs for the fleets, f € F

A.2. Model Formulation

Max Z pan”f. (Al)
neN, feF
Subject to
X =1, Vel (A.2)
neN:n(ty)=C(feF
Xyp= >, Xy VCeLfeF (A3)
neN:n(ty)=¢t neN:n(tp)=C

> Xur =5 VfeF, (A.4)

neN
S Xy<oy VacAfeF, (A5)

neN:d(n(t))=a
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Table A.2. Parameters

sf Total number of available aircraft of type f
Pof Profit for the pair of flights n assigned to fleet f
Of Number of allowed overnight maintenance fleets of type f

at destination airport a

uqe(t)  Required number of pilot-crew pairs ¢ from airport a for
fleet f during time period ¢ within the planning horizon
M A large integer value that denotes the maximum number of
flights for any LoFy
mLof Maximum number of allowed LOF changes
Xinf 2 Ueap(t)
neN:e(n(l>))=a,feF,a(lr)<t<e((>)
VceC,aeA,teT,feF,
(A.6)
Xy <MY;  VfeF€cLoF;, (A7)
neN:n(ty)eln(ly)el
> Yy<mlLof, (A.8)
feF teLoF;
Xure{0,1}, VneN,feF, (A.9)
Y;€{0,1}, VfeF, eLoF. (A.10)

Based on the specified inclusions and exclusions, all
possible first and second legs are combined for the set N.
Along with the inclusions and exclusions, the possible
departure times are also used to define the variables in the
set N. Because of the growth in the number of variables
owing to time changes, only a discrete limited number of
minutes is allowed for time changes. The set F defines all
possible fleets, where a fleet is a combination of an equipment
type and configuration. For example, Airbus 320 may have
three configurations (A, B, and C), where each configura-
tion defines changes in the seat configurations. The objective
function defined in (A.1) maximizes the total profit from the
flight assignments, and the profit is calculated based on
revenue, cost, and preference/penalty for each assignment.
Constraint (A.2) ensures that every flight is covered by a
fleet. Constraint (A.3) defines a balance for the assignments
for each of the fleets, making sure that the assignments
are in a cycle or a loop so that fleet f will follow the loop
every day. Based on the capacity of each fleet f and the set
N defining the last flight of the day, constraint (A.4) defines
the number of LOFs to be declared for the fleet f. Similarly,
the number of the overnight equipment allowed for main-
tenance is limited at each airport, and this limitation is
captured in constraint (A.5). Certain aircrew within a time
window must be covered by certain fleet types in particular
airports, and this requirement is captured by constraint (A.6).
Any change from the original assignment ¢ of LOFs is cap-
tured using the binary variable Y7 in constraint (A.7). The total
number of LOF changes is limited by the parameter mLof
using constraint (A.8), and the definitions of the variables
are given in constraints (A.9) and (A.10).

The model is utilized iteratively. In a first pass, the model
is allowed only two LOF changes (mLof is set to two), and
departure time changes are allowed. After the optimization
process has found all of the two-LOF changes, the parameter

mLof is set to four, and time changes are not allowed.
As a result, the optimizer will generate the LOFs with the
highest revenue gains within the first few iterations and
will provide the user with insights about how the revenue
gains deteriorate as the iterations continue. The optimi-
zation process terminates if either the revenue gain between
two consecutive iterations is less than the user-defined thresh-
old or the runtime exceeds the stipulated maximum.
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Verification Letter
Seiichi Takahashi, Senior Vice President, Marketing, All
Nippon Airways, Ltd, Shiodome City Center, 1-5-2, Higashi-
Shimbashi, Minato-ku, Tokyo 105-7133, Japan, writes:
“The purpose of this letter is to verify the paper titled
‘Prescriptive Analytics for Swapping Aircraft Assignments at
All Nippon Airways.” The swapper optimization suite (SOS)
described in this paper is currently being used within the
operation processes on a daily basis by many of our busi-
nesses. We have achieved the quantitative and qualitative
benefits described in the Benefits section of this paper from
using the SOS in our revenue management and operations
business unit.”
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