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Abstract. The use of unmanned aerial vehicles (UAVs) is becoming commonplace in
search-and-rescue tasks in complex terrains. In the literature, there are a number of studies
on UAV search with the objective of minimizing search time and/or maximizing detection
probability. However, little effort has been devoted to collaborative human and UAV
search, which is necessary in many applications in which humans must ultimately reach
the target. In this paper, we present a collaborative human–UAV search-planning problem,
the objective of which is to minimize the expected time for human rescuers to reach the
target. For this highly complex problem, traditional exact algorithms would be very time-
consuming or even impractical for solving even relatively small instances. We propose an
evolutionary algorithm that uses biogeography-inspired operators to efficiently evolve a
population of candidate solutions to the optimal or near-optimal solution within an ac-
ceptable time. Computational experiments demonstrate the advantages of our algorithm
over many popular algorithms. The proposed method has been successfully applied to
two real-world search-and-rescue operations to find missing tourists in a nature reserve
in China. Compared with the old method used by the rescue department, our method
shortened the time required for reaching the targets by approximately 79 and 147 minutes
in the two cases, respectively, providing a great improvement in the life-critical operations.

Funding: This work was supported by the National Natural Science Foundation of China [Grants
61872123 and 61473263].
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Introduction
Many tourists go missing throughout the world each
year. To find them, great efforts are made in search-
and-rescue operations. Such operations can benefit
from the use of unmanned aerial vehicles (UAVs),which
provide sensory data, such as images and videos, to find
evidence about target locations, especially in complex
terrains (Murphy et al. 2008, Waharte and Trigoni
2010, Tan and Zheng 2013). With the rapid improve-
ment of the functionality, flexibility, and autonomy of
UAVs, their use in search and rescue is becoming com-
monplace. For example, in January 2017,Australianwater
police used an Eagle-3UAV to locate twomissing tourists
in Ku-ring-gai Chase National Park within one hour
(Morcombe 2016). On February 5, 2019, a DJI drone
detected a student missing from the California School
for theDeaf shortly after it took off and then guided the
police to the student, who was cold and hungry (Jun
2019). UAVs were also used in humanitarian opera-
tions, including the 2015 Tianjin Port explosion, the
2016 Kaohsiung earthquake, and the Syrian conflict.

There have been numerous studies on UAV path
planning for target search. The methods can be cat-
egorized into local and global search methods depend-
ing on whether path planning is considered as a global
optimization problem. Local search methods include
greedy methods (i.e., methods that always choose a
direction with maximum detection probability or the
largest payoff; Bourgault et al. 2006, Yao et al. 2019),
contour search methods (such as spiral search and
potential field search, which follow offset paths in a
highly systematic fashion without leaving large holes
or overlap; Hansen et al. 2007, Goodrich et al. 2008),
and variants and combinations of these (Hansen
et al. 2007, Waharte and Trigoni 2010). Global search
methods can be further divided into problem-specific
heuristic methods and metaheuristic methods (Zheng
et al. 2015). The former include the goodness ratio
heuristic (Lin and Goodrich 2014), the Monte Carlo
tree search (Baker et al. 2016), and the improved
coverage search with geometric relations (Meng et al.
2017). The latter include genetic algorithms and their
variants (Lin and Goodrich 2009, Hayat et al. 2017)
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and other nature-inspired methods, such as particle
swarm optimization (van Willigen et al. 2011), thbac-
terial foraging algorithm (Heidari and Abbaspour
2014), pigeon-inspired optimization (PIO) (Duan and
Li 2014), and ant colony optimization (ACO) (Perez-
Carabaza et al. 2018), as well as combinations of these
(Wang et al. 2017). Figure 1 presents a classification
chart of existing UAV search-planning methods.

The objectives of almost all UAV search-planning
problems studied in the literature are to minimize
search time and/or maximize detection probabil-
ity. However, in many search-and-rescue operations,
detecting the target is an important milestone but not
the ultimate goal. For example, a tourist lost in thewild

for several days is often in poor condition and needs to
be reached by medical professionals as early as pos-
sible. Using a human rescue team and a UAV to search
simultaneously in two opposite directions would be
likely to reduce detection time but could greatly
prolong the reaching time if the search direction of the
human team is wrong. Figure 2 illustrates such a case
with one human team and one UAV. The case can be
much more difficult when there are multiple teams
and UAVs. Unfortunately, little effort has been de-
voted to collaborative human andUAV search, which
is necessary in many applications in which the tar-
get must be ultimately reached by human rescuers.
The studies of Bertuccelli and Cummings (2011) and

Figure 1. (Color online) Classification of UAV Path-Planning Methods for Search and Rescue in the Literature, Including
Relevant Citations

Figure 2. (Color online) A Simple Case of Search and Rescue by UAV and Human Teams in Two Regions, in Which Region 1
Has a Higher Target-Location Probability

Notes. In panel (a), only a UAV is used. To minimize the expected search time, the UAV first searches region 1. In panel (b), a UAV and a human
team are used. To minimize the expected search time, the UAV searches region 1, and the team searches region 2. When the target is in region 1,
the teamwill reach it too late. In panel (c), a UAV and a team are used. To minimize the expected time to reach the target, the UAV and the team
cooperate in the search.When the target is in region 1, the teamwill reach it quickly. In panel (d), the UAV and the team cooperate in the search as
they do in case (c). When the target is in region 2, the team will reach it on time because the UAV is much faster than the human team.
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Liu (2016) consider human–UAV cooperation, but
they also focus on target detectionwhile emphasizing
the dominant role of humans in controlling the search.

In this paper, we present a collaborative human–
UAV search-planning problem, the objective ofwhich
is to minimize the expected time for human rescuers
to reach the target. To solve this complex combinatorial
optimization problem, we propose an evolutionary
algorithm that evolves a population of candidate so-
lutions toward the global optimal (or a near-optimal)
solution by bioinspired operations. Computational
experiments show the advantage of our algorithmover
many popular algorithms. The proposed problem and
algorithm have been successfully applied to real-world
search-and-rescue operations for finding missing tour-
ists in Hua’eshan National Nature Reserve in China.
Our approach can also be used or extended for target
searching in a variety of field environments.

Problem Description
Consider thatwe are using a set of human rescue teams
and a set of UAVs to search simultaneously for a target
(e.g., one or a team of missing tourists) in a wide area
(e.g., a nature reserve). The search area is divided into
a number of subareas. The target location is unknown,
but we have a prior probability of target location in
each subarea, which is estimated based on the target
information (e.g., the time and place last seen) and
environmental features (e.g., rivers and roads). The
human teams and UAVs can use different modes to
search each subarea: the more detailed the search
mode, the higher is the probability that the target will
be detected if the target is actually in the subarea. The
problem is to determine the search sequence (of sub-
areas) for each human team and each UAV and de-
termine the search mode of each team and each UAV
in each subarea such that the expected detection time
is minimized. The mathematical formulation of the
problem is given in the “Problem Formulation” sec-
tion of the appendix.

Following are some guidelines for constructing
problem instances:

• Area subdivision: The search area is divided mainly
based on topographic conditions (i.e., the topographic
and environmental features within a subarea are sim-
ilar, and different subareas have different topographic
conditions and/or are separated by terrain obstacles).
Usually, a subarea covers an area of 0.5–2 km2: an
excessively large subarea cannot be effectively searched
by a UAV, and excessively small subareas can result in
a large number of subareas and therefore increase the
difficulty of the problem.

• Prior probability estimation: Typically, the prior
target location probability of each subarea is estimated
based on the environmental features of the subarea and
the distance from the target’s last known location to the

subarea. Two factors contribute to a higher proba-
bility of finding the target: (1) an environment that
is more suitable for travel and (2) being closer to the
target’s last known location. An example of the es-
timation of the location probability distribution is
given in the “Estimating the Prior Distribution on
Target Location” section of the appendix.
• Detection probability estimation: The more experi-

enced the team or the more advanced the detection de-
vices of the UAV, the higher is the detection probability.
In general, to use our approach, the potential search

area should be investigated in advance such that the
area subdivision andmost parameters for probability
estimation have been predetermined. Otherwise, the
instance construction can be time-consuming and
thus cannotmeet the emergency needs. Moreover, we
should get the information (e.g., physical conditions
and behavior intentions) of the missing persons in as
much detail as possible. When searching for a person
in an uninvestigated area and with little available
information, using local greedy search or contour
search methods is preferable.

Solution Method
The problem we present is highly complex; thus, tra-
ditional exact algorithmswould bevery time-consuming
or impractical for even relatively small instances. We
propose a bioinspired algorithm to solve the problem
using the following steps:

1. Randomly initialize a population of candidate
solutions.

2. Add a solution produced by a greedy proce-
dure to the population.

3. For each solution, use Equations (A.12) and
(A.13) in the section “A Bio-Inspired Algorithm for
the Problem” in the appendix to calculate an emi-
gration rate that is proportional to the solution fitness
and an immigration rate that is inversely proportional
to the solution fitness, as illustrated by Figure 3.

Figure 3. BBO Migration Model
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4. For the search sequence of each team or UAV in
each solution with a probability proportional to its
immigration rate, immigrate features from the cor-
responding sequence in another solution selected
with a probability proportional to the emigration rate.

5. Perform local search on some good solutions to
enhance accuracy.

6. Replace stagnant solutions with randomly gener-
ated solutions to improve diversity.

7. Repeat steps 3 through 6 until the stopping con-
dition is met (i.e., the computational time is used up).

In this way, the algorithm evolves the population
toward the global optimal or a near-optimal solution
by continually migrating features from probably
high-fitness solutions to low-fitness ones. More de-
tailed descriptions of the algorithm, including the
pseudocode of the main algorithm and the greedy

procedure, are given in the section “A Bio-Inspired
Algorithm for the Problem” in the appendix.

Computational Experiments
We use 15 problem instances (Table 1), which are ex-
tended from the pure UAV search instances in Wang
et al. (2017) to collaborate human–UAV search by
adding human rescue teams, to test the proposed
method. Note that these instances use identical UAVs
and identical teams, which most practical applications
use; however, our problem allows different UAVs and
teams for generality. On the test set, we compare the
proposed biogeography-based optimization (BBO) al-
gorithmwith the following five UAV search algorithms:
• A greedy algorithm in which each UAV uses a

simple one-step look-aheadmethod (denoted asGreed;
Bourgault et al. 2006).
• An algorithm based on a partially observable

Markov decision process (denoted as POM; Waharte
and Trigoni 2010).
• A PIO algorithm (Li and Duan 2014).
• An ACO algorithm (Perez-Carabaza et al. 2018).
• A hyperheuristic algorithm (denoted as Hyper;

Wang et al. 2017).
These methods were originally proposed for pure

UAV search. We implement two versions for each
of them: one uniformly regards all human teams as
“slow UAVs” (denoted by a suffix “U” added to the
algorithm name), and the other plans human team
paths as lines 12–19 of Algorithm A.1 to make them
move toward high-probability subareas close to the
UAVs (denoted by a suffix “F”).
For each instance, we perform a maximum of 500

simulation runs, each placing a target in a subarea se-
lected based on its target location probability. The sim-
ulation is conducted on a computer with an i7-6500
2.5-GH central processing unit, a NVIDIA Quadro
M500M card with 192 graphics processing unit

Table 1. Summary of Test Instances of the Collaborative
Human–UAV Search Problem

No. n I1 I2 K1 K2 A d̄ T

1 10 1 1 2 4 9.6 1.5 30
2 10 1 3 2 4 9.6 1.5 30
3 20 1 2 2 4 21.0 3.9 30
4 20 2 3 2 4 21.0 3.9 30
5 27 1 2 2 4 21.0 3.5 60
6 27 2 3 2 5 21.0 3.5 60
7 46 1 3 3 4 38.3 4.1 90
8 46 2 5 3 5 38.3 4.1 90
9 56 2 2 3 5 43.6 3.9 120

10 56 2 5 3 6 43.6 3.9 120
11 88 2 5 3 5 95.2 3.6 240
12 88 4 6 3 6 95.2 3.6 240
13 106 3 8 3 6 133.5 4.2 360
14 152 5 10 3 6 170.9 4.6 480
15 193 6 12 3 6 224.8 5.3 720

Note. Here A is the area (in square kilometers) of the search map, d is
the average distance (in kilometers) between subareas, and the search
time T is in minutes.

Table 2. Success Rates of the Algorithms on the Test Instances

No. GreedU GreedF POMU POMF PIOU PIOF ACOU ACOF HyperU HyperF BBO

1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 93.70 98.89 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
7 91.52 97.61 96.96 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
9 96.80 98.60 98.00 99.00 99.40 100.00 100.00 100.00 100.00 99.80 100.00

10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
11 75.80 98.40 90.00 97.60 97.00 99.20 92.60 100.00 95.20 100.00 100.00
12 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
13 17.80 59.40 21.00 65.00 11.00 92.60 44.40 100.00 57.80 99.80 100.00
14 0.60 16.80 0.60 18.40 3.40 31.40 16.40 26.00 13.80 47.60 100.00
15 0.00 0.00 0.00 0.00 0.40 1.60 0.60 3.00 0.00 2.40 98.40
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cores, and 8 GB of random-access memory. For a fair
comparison, all the algorithms use the same running
time of 10 minutes for problem instances 1–6 and 15
minutes for instances 7–15 because higher response
times would be unacceptable in most emergency
operations. The algorithm performance is evaluated
in terms of threemetrics: the success rate (i.e., the ratio
of the number of runs in which the target is reached to
the number of total runs, Table 2), the average de-
tection times TD (Figure 4), and the average reaching
time TR (Figure 5). The results show that

• In instances 1–4, which are small in size, all the
algorithms achieve a 100% success rate, and there is
no significant difference in either TD or TR.
• In instances 5–10, which aremedium in size, most

of the algorithms can achieve a 100% success rate.
However, Greed and POM fail to reach the target
occasionally; although the TD values obtained by the
proposed BBO algorithm are not the smallest (typi-
cally, smaller than the “F” versions but larger than the
“U” versions of the other algorithms), the TR values of
BBO are always the smallest.

Figure 4. (Color online) Average Detection Times (in Minutes) of the Algorithms in the Test Instances

Figure 5. (Color online) Average Reaching Times (in Minutes) of the Algorithms in the Test Instances
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• In the remaining instances, which are large in
size, BBO can still achieve a success rate of 100% in
instances 11–14 and 98.4% in instance 15, but most of
the other algorithms fail to do so (in instance 12, all the
algorithms have a 100% success rate because the
number of teams andUAVs is relatively sufficient). In
particular, in instances 14 and 15, in most simulation
runs, the solutions of other algorithms cannot reach
the target within the time limits. In terms of TR, the
performance advantage of BBO becomes more sig-
nificant with increasing instance size (in instance 15,
the TR of BBO is not the smallest because the TR values
of the other algorithms are averaged over only a few
successful runs).

In summary, the proposed BBO exhibits the best
performance among the algorithms. Although it does
not always achieve the earliest detection time, it al-
ways achieves the earliest rescue time, which dem-
onstrates its effectiveness in collaborative human–
UAV search for ultimately reaching the target.

Real-World Applications
We have applied the proposed method to the Hua’e-
shan National Nature Reserve in Southwest China.

The reserve has an area of 48,203 hectares (119,112
acres). Each year, tens of thousands of tourists visit
the reserve, and some of them go missing. Through
analysis of the terrain and the historical search ex-
periences, we divided the reserve into 63 subareas
and preconstructed an empirical model for estimat-
ing each subarea’s initial target location probability
based on the environmental features and the distance
from the last place the tourist was seen. We provide
details about estimating target location probabilities
in the “Estimating the Prior Distribution on Target
Location” section of the appendix.We also predefined
a procedure for updating the probability distribu-
tion according to the previous search results and
the predicted movement of the target. Consequently,
when a new tourist-missing event is reported, we are
able to quickly calculate the initial probability distri-
bution and the subsequent probability updates and
thus save significant preparation time for search path
planning.
Our method was used to generate solutions for

search and rescue of missing tourists in two cases.
The first one was November 15, 2017. At 17:28, a 55-
year-old man who had entered the reserve in the

Figure 6. (Color online) Search Paths of the UAVs and Human Teams in the First Real-World Operation

Note. For clarity, we draw only the paths that could be completed within the first 60 minutes of searching.
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morning was reported to be out of contact. The ad-
ministration office arranged two quad-rotor UAVs
and four human teams and used the BBO algorithm
to generate the search paths of the UAVs and teams
(Figure 6). The preparation time was 24 minutes,
including six minutes for program startup and prob-
lem instance construction, 15 minutes for algorithm
execution, and 3 minutes for solution delivery. The
search began at 17:53; after 48 minutes, a UAV de-
tected the target in subarea 13 at 18:41, and the nearest
team in subarea 28 took an additional 80 minutes to
reach him at 20:02. The tourist was found seriously
wounded, and the medical staff in the rescue team
gave on-site emergency treatment and sent him to a
hospital, where he recovered after two weeks. His
doctor estimated that if the treatment had been
delayed by more than 45 minutes, the tourist would
likely have died.

The second case was on March 6, 2018. At 15:23, a
group of university students, who had entered the
reserve the day before, called the police and said that
two classmates had lost contact with the group. The
office used three UAVs and two human teams to
search for the missing students based on the plan

produced by our BBO algorithm. The preparation
time was 22 minutes, including 4 minutes for pro-
gram startup and instance construction, 15 minutes
for algorithm execution, and 3 minutes for solution
delivery. Figure 7 shows the planned paths. The
search began at 15:45. After 59 minutes, a UAV de-
tected the students in subarea 9 at 16:44, and the
nearest team took an additional 47 minutes to reach
them at 17:31.
Later, for the two cases, we simulated the imple-

mentation of the solutions produced by the prior
method used by the office, which allocates subareas to
available UAVs in decreasing order of target location
probability and constructs paths for human teams
such that the total accumulated probability of paths
is maximized (Liu et al. 2012). The results showed
that in the first case, using the prior method would
have taken about 50 minutes to detect the target and
an additional 161 minutes to reach the target. In the
second case, it would have taken about 66 minutes to
detect the target and an additional 190 minutes to
reach the target. Figure 8 compares the prior method
with our method. Using our method, the time re-
quired to detect the target was shortened by 2 and 7

Figure 7. (Color online) Search Paths of the UAVs and Human Teams in the Second Real-World Operation

Note. For clarity, we draw only the paths that could be completed within the first 75 minutes of searching.
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minutes and the total time required for reaching the
target was shortened by 79 and 147 minutes in the
two cases, respectively. Thus, our method greatly
improved these life-critical operations.

Conclusion and Discussion
This paper presents a collaborative human–UAV
search-planning problem, the objective of which is
to minimize the expected time required to reach the
target by human rescuers. We propose a simple yet
efficient biogeography-inspired algorithm to solve
the problem. Computational experiments and appli-
cation to real-world operations demonstrate the per-
formance of the proposed method. Although our
applications involve searching for missing tourists in
nature reserves, the approach can be used for target
search in a variety of environments. Currently, we are
cooperating with local police forces of more than 20
cities in China in deploying our approach for tasks
such as searching for criminals and victims in suburbs
and field environments. We also plan to extend the
approach for humanitarian search-and-rescue oper-
ations (including multinational operations) in more
countries.

From the experiments and applications, we iden-
tified the following limitations to be addressed in
future studies:

• The time required for search plan preparation
(including instance construction and solution gen-
eration and delivery) is still relatively long. For ex-
ample, in the two real-world applications we discuss,
the preparation time was approximately 22–24 min-
utes, and the time for mobilizing the teams and UAVs
was approximately 16–18 minutes, which means that
the teams and UAVs had to wait for about six minutes.
Currently, we are developing a more intelligent user
interface to simplify the process of instance construction
and further improving the algorithm performance by
better balancingglobal and local search (Zheng 2015) to
shorten the response time.

• The estimation and update of target location
probabilities depend on the environment. Thus, if the
environment changes dramatically (e.g., a snowstorm
occurs) during the operation, we may need to update
the probability estimation model and regenerate the
solution, which might significantly reduce the effi-
ciency of the operation. One way to cope with this
situation is to simultaneously generate some alter-
native solutions by taking possible changes into
consideration (Zheng et al. 2014a).
• In general, for human teams, the estimation of

their detection probabilities is relatively accurate, but
the estimation of their travel and search times often
deviates from reality. On the contrary, for UAVs, the
estimation of travel and search times is more accurate
than the estimation of detection probabilities. Our
ongoing work also includes using fuzzy models (Liu
2007) to express the uncertainty of times and prob-
abilities to improve the robustness of our method.

Appendix
Problem Formulation
Formally, the problem is to schedule I1 human rescue teams
and I2 UAVs to search for a target in a wide area V, which is
divided into n subareas. The target location is unknown, but
we have a prior probability pv(0) of target location in each
subarea v ∈ V. If the target is in v, the posterior probability
that it will be detected by the team i searching the subarea
with mode k is ph(i, v, k), where 1 ≤ i ≤ I1, 1 ≤ k ≤ K1, and K1

is the number of human search modes. Typically, we
consider two search modes of human teams; that is, K1 � 2,
where k � 1 denotes a detailed search and ph(v, 1) is as-
sumed to be one and k � 2 denotes that the team simply
passes through the subarea and ph(v, 2) ≤ 1. Similarly, the
posterior probability of being detected by the UAV i
searching v with mode k is pu(i, v, k), where 1 ≤ i ≤ I2,
1 ≤ k ≤ K2, and K2 is the number of UAV search modes
defined according to different UAV altitudes and sensor
operation modes. Without loss of generality, we assume
that a smaller k indicates a more detailed search mode (and,
hence, a higher detection probability). The symbols and ex-
planations are given in Table A.1.

Figure 8. (Color online) Comparison of Our Method and the Method Used Previously for Two Real-World Operations
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The dynamics of target existence depend on the target
motion model, team actions x, and UAV actions y and can
be expressed as follows:

p(t + 1) � fp p(t), x(t), y(t)( )
, (A.1)

where p(t) � {p1(t), . . . , pn(t)}, x(t) � {x1(t), . . . , xI1 (t)} (each
xi(t) defining in which subarea team i is located and which
mode the team adopts), y(t) � {y1(t), . . . , yI2 (t)} (each yi(t)
defining inwhich subarea UAV i is located andwhichmode
the UAV adopts), 0 ≤ t ≤ T, and T is the upper limit of the
search time.

We are also given the time th(i, v, k) for team i searching
subarea v with mode k, the time �th(i, v, k, v′, k′) for team i
traveling from subarea vwith mode k to another subarea v′
with mode k′ (1 ≤ v ≤ n; 1 ≤ i ≤ I1; 1 ≤ k, k′ ≤ K1), the time
tu(i, v, k) for UAV i searching subarea vwith mode k, and the
time �tu(i, v, k, v′, k′) for UAV i flying from subarea v with
mode k to subarea v′ with mode k′ (1 ≤ v ≤ n; 1 ≤ i ≤ I2;
1 ≤ k, k′ ≤ K2). Normally, the larger the search time th(i, v, k)
or tu(i, v, k), the higher is the probability ph(i, v, k) or
pu(i, v, k). The search mode may also have an effect on the
travel time; for example, if a UAV searches v at a high al-
titude and searches v′ at a low altitude, the travel time from
v to v′ (gliding) is less than that from v′ to v (climbing). For
simplicity, we omit the modes and write �th(i, v, v′) or
�th(i, v, , v′, ) in case the effect is trivial or k is indicated by
the context.

The problem is to determine team actions x(t) and UAV
actions y(t) (0 ≤ t ≤ T) so as to minimize T∗, the time at
which the target is reached by (at least) a human rescue
team. This can be divided into two cases: (1) the target isfirst
detected by any human teamat timeT†

h � T∗, or (2) the target
is first detected by any UAV at T†

u < T∗ and then reached by
the nearest team after a time of (T∗ − T†

u).
In the first case, because the events of detecting the

target by the teams are mutually exclusive, the probability

of T†
h � t for each time t (0 ≤ t ≤ T) can be iteratively calcu-

lated as

P(T†
h � 0)� 0, (A.2)

P(T†
h � t) � P(T†

h � t|T†
h ≥ t ∧ T†

u ≥ t)P(T†
h ≥ t ∧ T†

u ≥ t)

� ∑I1
i�1

∑n
v�1

∑K1

k�1
pv(t)ph i, v, k|xi(t)( )

( )

· 1−∑t−1
τ�0

P(T†
h �τ)

( )
1−∑t−1

τ�0
P(T†

u�τ)
( )

,

(A.3)

where

ph i, v, k|xi(t)( ) � ph(i, v, k) if xi(t) � (v, k)
0 otherwise.

{
(A.4)

Similarly, in the second case, the probability of T†
u� t for

each time t (0 ≤ t ≤ T) can be iteratively calculated as

P(T†
u � 0) � 0, (A.5)

P(T†
u � t) � P(T†

u� t|T†
h ≥ t ∧ T†

u ≥ t)P(T†
h ≥ t ∧ T†

u ≥ t)

� ∑I2
i�1

∑n
v�1

∑K2

k�1
pv(t)pu i, v, k|yi(t)( )( )

· 1−∑t−1
τ�0

P(T†
h �τ)

( )
1−∑t−1

τ�0
P(T†

u�τ)
( )

,

(A.6)

where

pu i, v, k|yi(t)( ) � pu(i, v, k), if yi(t) � (v, k),
0, otherwise.

{
(A.7)

For the second case, we assume that when the target is
detected by a UAV, it stops moving and waits for rescue.
Let T∗

u be a hypothetical time at which the target is reached
by a team after it is found by a UAV. Then T∗

u� t indicates

Table A.1. Nomenclature

I1 The number of human rescue teams
I2 The number of UAVs
V The set of subareas
n The number of subareas
K1 The number of search modes of human rescue teams
K2 The number of search modes of UAVs
pv(t) The probability that the target exists in subarea v at time t
ph(i, v, k) The detection probability of team i searching subarea vwith mode k if the target is in v
pu(i, v, k) The detection probability of UAV i searching subarea vwith mode k if the target is in v
th(i, v, k) The time required by team i to search subarea v with mode k
�th(i, v, k, v′, k′) The time required by team i to travel from v with mode k to subarea v′ with mode k′
tu(i, v, k) The time required by UAV i to search subarea v with mode k
�tu(i, v, k, v′, k′) The time required by UAV i to travel from v with mode k to subarea v′ with mode k′
xi(t) The action of team i at time t, including the subarea searched and the searchmodel used
yi(t) The action of UAV i at time t, including the subarea searched and the searchmodel used
T The upper limit of the completion time of the operation
T∗ A hypothetical time at which the target is reached
T†
h A hypothetical time at which the target is detected (and reached) by any human team

T†
u A hypothetical time at which the target is detected by any UAV

T∗
u A hypothetical time at which the target is reached by a team after it is found by a UAV
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that the target isfirst detected by aUAVat t′ < t and reached
by the nearest team after a period of (t−t′). Thus, we have

P(T∗
u � 0) � 0, (A.8)

P(T∗
u � t)

� P(T∗
u � t|T†

h ≥ t ∧ T∗
u ≥ t)P(T†

h ≥ t ∧ T∗
u ≥ t)

� P ∃t′< t : T†
u� t′ ∧ min

1≤i≤I1
�th i, xi(t), v,( ) � t−t′

( )
· P(T†

h ≥ t)P(T∗
u ≥ t)

� ∑t−1
t′�1

∑I2
i�1

∑n
v�1

∑K2

k�1
pv(t′)pu i, v, k|x(t′), yi(t′)( )( )

· 1−∑t−1
τ�0

P(T†
h�τ)

( )
1−∑t−1

τ�0
P(T∗

u�τ)
( )

,

(A.9)

where

pu i, v, k|x(t′), yi(t′)( )
�

pu(i, v, k), if yi(t′) � (v, k) and t−t′
� min

1≤i′≤I1
�th i, xi′ (t′), v,( ),

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (A.10)

Combining the two mutually exclusive cases, we have
P(T∗ � t) � P(T†

h � t) + P(T∗
u� t), and hence, the problem ob-

jective can be expressed as

minE(T∗) � ∑T
t�1

t · P(T†
h� t) + P(T∗

u� t)( )
. (A.11)

A Bioinspired Algorithm for the Problem
The algorithm randomly initializes a population of solu-
tions and then adds a potentially good solution produced
by the greedy procedure to the population to accelerate the
convergence of the algorithm. Algorithm A.1 presents the
pseudocode of the greedy procedure, in which lines 4–10
give priority to UAVs that can search subareas of high prob-
ability within a short time and lines 12–19 make the teams
move toward those subareas. Note that the next subarea of
a UAV is chosen from the whole set V, and the next subarea
of a human team is chosen from its neighborhood.

The main algorithm is based on the BBO metaheuristic
(Simon 2008), which is inspired by the mathematical models
of biogeographic distribution and evolution of species rich-
ness. The original BBO is for unconstrained global optimi-
zation problems. We adapt it to this complex discrete-time
optimization problem and further introduce a local neigh-
borhood structure (Zheng et al. 2014c) to the algorithm to
avoid fast premature convergence and increase solution
diversity. Algorithm A.2 presents the framework of the
main algorithm, in which rand() creates a random num-
ber uniformly distributed in [0,1], η is a parameter that
linearly decreases from ηmax to ηmin to control the proba-
bilities of local and global migration, and ĝ is the maxi-
mum number of generations that a solution can keep in the
population.

Each solution z � {x1, . . . , xI1 , y1, . . . ,yI2} consists of (I1 +
I2) parts, and each part is the sequence of subareas to be
searched by the team/UAV. We calculate an immigration

rate λ(z) and an emigration rate μ(z) for z based on the
sinusoidal migration model (Ma 2010) as

λ(z) � 1
2
+ 1
2
cos

fmax − f (z) + ε

fmax − fmin + ε
π

( )
, (A.12)

μ(z) � 1
2
+ 1
2
cos

f (z) − fmin + ε

fmax − fmin + ε
π

( )
, (A.13)

where fmax and fmin are the maximum and minimum ob-
jective values in the population, respectively, and ε is a
small constant to avoid a zero-division error such that λ(z) is
proportional to f (z), whereas μ(z) is inversely proportional
to f (z), as illustrated in Figure 3.

Algorithm A.1 (Greedy Method for Collaborative Human–
UAV Search Planning)

1. Let t � 0 and k � 1;
2. repeat
3. Let UI be the set of all idle UAVs;
4. while |UI | > 0 do
5. for all i ∈ UI do
6. Calculate v∗i � argmaxv∈V [pv(t + �tu(i, vi, v))pu(i, v, k)]/(

[�tu(i, vi, v) + tu(i, v, k)]), where vi is the current location of i;
7. end for
8. Let i∗ � arg maxi∈UI

[pv(t + �tu(i, vi, v∗i ))pu(i, v∗i , k)]/
(

[�tu(i, vi, v∗i ) + tu(i, v∗i , k)]);
9. Assign i∗ to search v∗i∗ , remove i∗ from UI , and remove v∗i∗

from V;

10. end while
11. Let HI be the set of all idle human teams and VS be the

set of subareas to be searched by UI ;
12. while |HI | > 0 do
13. for all i ∈ HI do
14. Let VN(i) be the set of neighboring subareas of the

current location of team i;

15. Let v∗i � arg maxv∈VN (i)(maxv′∈VS pv(t + �tu(i, viv′ , v′))
pu(iv′ , v′, k)/�th(i, v, v′)), where iv′ is the UAV for searching v′;

16. end for
17. Let i∗ � argmaxi∈HI

(maxv′∈VS pv(t + �tu(i, viv′ , v′))pu(iv′ ,
v′, k)/�th(i, v∗i , v′));

18. Assign i∗ to search v∗i∗ , remove i∗ fromHI , and remove v∗i∗
from V;

19. end while
20. Let TC be the maximum search completion time of

subareas in VS;
21. if TC > T/(k + 1) then k ← k + 1; end if
22. t ← t + 1, and update the status of the UAVs and teams;
23. until t ≥ T or V � ∅

Algorithm A.2 (BBO Algorithm for Collaborative Human–
UAV Search Planning)

1. Randomly initialize a population of solutions
2. Use the greedy method to produce a solution and add it

to the population
3. repeat
4. Calculate the migration rates of the solutions
5. for all solution z in the population do
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6. for i � 1 to I2 do
7. if rand() < λ(z) then
8. if rand() < η then select a neighboring z′ with probability

proportional to μ(z′)
9. else select a nonneighboring z′ with probability pro-

portional to μ(z′)
10. end if
11. Migrate from y′i to yi
12. Perform the Nawaz-Enscore-Ham (NEH) method to

reorder yi
13. end if
14. end for
15. for i � 1 to I1 do
16. if rand() < λ(z) then
17. if rand() < η then select a neighboring z′ with proba-

bility proportional to μ(z′)
18. else select a nonneighboring z′ with probability pro-

portional to μ(z′)
19. end if
20. Migrate from x′i to xi
21. end if
22. end for
23. Resolve repeated search of subareas
24. Assign all unsearched subareas
25. end for
26. if themigrated solution is better than the original z then
27. for all v ∈ V do
28. Obtain a neighbor z′ by changing the searchmode k of v

to k ± 1
29. if z′ is better than z then z ← z′; end if
30. end for
31. else if z is not the current best solution and z has not

been improved for ĝ generations then
32. Replace z with a new solution randomly generated
33. end if
34. until the stopping criterion is satisfied

Migration. We follow the work of Zheng et al. (2014c),
which improves the original BBO by using a ring structure
in which each solution has two neighbors. Based on the
neighborhood structure, we define two migration opera-
tors: (1) local migration between neighboring solutions and
(2) global migration between nonneighboring solutions.
The latter is preferred in early stages for facilitating global
search, and the former is preferred in late stages for en-
hancing local search (Zheng et al. 2014b). Migration per-
forms differently on team and UAV search sequences:

• When migrating a team sequence x′i in the emigrating
solution z′ to the corresponding team sequence xi in the
immigrating solution z, we first obtain the set VC(i, i′) of
subareas in both x′i and xi: if the set is empty, we set xi as x′i ;
otherwise, we randomly select a v ∈ VC(i, i′) and set the
subsequence starting from v in xi as that in x′i while re-
moving duplicated subareas from xi.

• When migrating a UAV sequence y′i in z′ to yi in z, we
first obtain the set VD(i, i′) of subareas in yi but not in y′i and
the set V′

D(i, i′) vice versa and then randomly remove some
subareas inVD(i, i′) from yi and add some subareas inV′

D(i, i′)

to yi. Afterward, we employ the NEH method (Nawaz et al.
1983) to reorder all subareas in yi such that it has the mini-
mum total probability-weighted time.

For example, when migrating from x′i � {5, 8, 1, 2, 4} to
xi � {3, 2, 8, 6, 5}, we haveVC(i, i′) � {5, 8, 2}. Assume that 8 is
randomly chosen from VC(i, i′); then subsequence {8, 1, 2, 4}
in x′i is copied to xi while the old 2 is removed. As a result,
we obtain xi � {3, 8, 1, 2, 4}.

If migrating from y′i � {5, 8, 1, 2, 4} to yi � {3, 2, 8, 6, 5}, we
have VD(i, i′) � {3, 6} and V′

D(i, i′) � {1, 4}. Assume that 6 is
randomly chosen fromVD(i, i′) and 1 is chosen fromV′

D(i, i′);
then yi is set to a sequence that has the minimum to-
tal probability-weighted time among all permutations of
{3, 2, 8, 5, 1}.

In spite of the different forms, the key idea of migration is to
make the immigrating solution learn from the emigrating so-
lution such that good solution components aremore likely to be
shared among the population. After migration, a solution may
have some repeatedly searched subareas, for which we use the
following strategies to improve the solution:

• For each subarea v searched bymultiple UAVs, letU(v)
be the set of these UAVs and tv,i be the time at which UAV i
completes the search of v. We select an i∗ � argmaxi∈U(v)
pv(tv,i)pu(i, v, k)/tv,i( )

as the UAV for searching v and remove
v from the sequences of the other UAVs.

• For each subarea v searched by multiple teams, let H(v)
be the set of these teams and tv,i be the time at which team i
completes the search of v. We select an i∗ � argmaxi∈H(v)
pv(tv,i)ph(i, v, k)/tv,i
( )

as the team for searching v and remove v
from the sequences of the other teams (but the teams can still
pass through v without searching it).

Finally, we sort all unsearched subareas (if they exist) in
decreasing order of the target location probability and then
assign each of them to a teamor aUAV such that the subarea
can be searched as early as possible.

Local Search. To enhance solution accuracy,we also perform
a local search on each new offspring z that is better than its
parent. The operator produces at most 2n neighbors of z,
each being obtained by changing the search mode k of
a subarea v ∈ V to k ± 1 (subject to k not exceeding the
range). The best neighbor, if better than z, replaces z in the
population.

Estimating the Prior Distribution on Target Location
Toestimate apriorprobabilitypv(0)of the target being located
in each subarea v at time t � 0, we first estimate a value
αv(0) ∈ [0, 1] based on the terrain of subarea v and the weather
conditions at time 0. The more suitable the terrain features
and theweather conditions are for travel, the higher α0(v) is.
Next, we assume that the target is moving from the last seen
place v0 to v and calculate a basic distance d∗(v0, v) that the
target is most likely to travel from v0 to v as follows:

d∗(v0, v) � ν(v0, v)t0 , (A.14)

where t0 denotes the time passed since the report of the
missing tourist, and ν(v0, v) is the estimated average speed
of the target from v0 to v during the period [0, t0].

Let d(v0, v) be the distance from v0 to v; if Δdv(0) �
d(v0, v) − d∗(v0, v), then pv(0) is estimated as follows:
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(1) If Δdv(0) is larger than an upper limit dU, then the
target cannot move to v within t0, and thus, pv(0) � 0.
(2) Otherwise, pv(0) follows a normal distribution with

mean zero and variance proportional to |Δdv(0)|/α0(v) and is
calculated as

pv(0) � c ·1 0,
b · |Δdv(0)|
d̄ · α0(v)

( )
, (A.15)

where d̄ is a coefficient related to the size of the search area,
and c is a coefficient that is adjusted to ensure that the total
probability equals 1.

During the search operation, we need to update not only
pv(t) in a manner similar to Equation (A.15) but also the
estimated speed of the target (as the target’s physical
strength diminishes), the value of αv(t) (with the change in
weather conditions), the place last seen (if new information
about the target is provided), and the coefficient c (to ensure
that the total probability still equals 1). In particular, if a
team or UAV i has completed the search of a subarea v at
time t but has not detected the target, the location proba-
bility pv(t) should be updated as pv(t)(1 − ph(i, v, k)) or
pv(t)(1 − pu(i, v, k)). However, in the current implementation
of our algorithm, we simply remove a searched subarea from
the set V because the detection probabilities are usually
high, and the subsequent rescheduling needs to be com-
pleted in a shorter time.
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