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Abstract. All modes of freight transportation are subject to flow imbalances that affect the
efficiency of asset utilization. The use of mathematical programming optimization models
has a rich history of application to this problem. We use variations and extensions of the
classical assignment problem to find globally optimal or near-optimal solutions to the
problem of assigning a large number of individual resources (transportation assets) to tasks
(freight movements). We address a particularly difficult variant of this problem that occurs
in the bulk transport (fuels and chemicals) division of Schneider National Inc. This group
accepts 350 customer orders per day, involving 10,000 distinct commodities, with pickup
and delivery locations across the continental United States. The corresponding freight
movements are executed using a fleet comprising a 1,000 drivers and 1,600 tanker trailers.
Chemical interaction properties of these commodities impose complex product-sequencing
constraints, interorder tanker wash and preparation processes, and the selection of specific
trailer configurations. Schneider National must consider these complexities in addition
to those encountered in more common fleet dispatch problems. To address this problem,
the engineering group at Schneider National designed and implemented a multiphase,
multidimensional matching algorithm and developed new business processes that enable
business planners to leverage optimized solution recommendations. We documented over
$4 million in annualized operational and capital cost savings, as well as significantly
improved productivity and customer service, which this new system has been delivering
since its implementation.

Keywords: vehicle routing • driver scheduling • multiphase optimization • column generation • mixed-integer programming •
resource assignment • freight transportation networks

Introduction
The efficient, timely transport of commercial freight across
public road networks depends on many complex oper-
ational decisions. A significant percentage of freight in
North America is transported by large-scale for-hire full-
truckload carriers. In operations of this type, carriers are
tendered freight orders that originate and are delivered
across a wide geographic range of customer locations.
Because of service and cost considerations, full-truckload
carriers operate random one-way networks. This con-
trasts with less-than-truckload (LTL) and small-package
operators (e.g., UPS, FedEx) who operate structured net-
works consisting of predefined hubs and lanes.

In random one-way operations, resources (i.e., drivers
with tractors and trailers) are typically assigned to
specific freight orders with a lead time of several hours
to several days prior to pickup activity. Within a specific
lead-time horizon, several thousand drivers may become
available (after completing earlier orders or returning
from time off) and ready to be assigned to a similar
number of customer orders that the carrier has accepted.
Most large fleets maintain trailer pools that allow
for loading and unloading to occur separately from

pickup and delivery activity, which enables more ef-
ficient utilization of assets. In this scenario, tractor and
trailer assignments are considered separately and solution
techniques based on a classical two-dimensional assign-
ment problem are no longer applicable.
In this paper, we address a particularly challenging

variant of this problem that arises in the transport of
liquid-chemical products and fuels with bulk tanker
trailers. The nature of this freight requires the con-
sideration and modeling of two additional compli-
cating factors: (1) prevention of hazardous interactions
between different commodities and (2) the washing
and cleaning of tanker compartments between orders.

Problem Description
Schneider National’s Bulk Transport division operates
a national fleet comprising roughly 1,000 tractors and
1,600 tanker trailers, across which it dispatches 350 new
orders per day. Over the course of a year, 10,000 distinct
commodities may be transported. Chemical-interaction
properties of these commodities impose complexproduct-
sequencing constraints, interorder tanker wash and
preparation processes, and the selection of specific
trailer configurations. In almost all cases, tanker trailers

403

http://pubsonline.informs.org/journal/inte/
mailto:giffordt@schneider.com
http://orcid.org/0000-0002-7861-354X
http://orcid.org/0000-0002-7861-354X
mailto:opickat@schneider.com
mailto:sinhaa@ksu.edu
mailto:daniel.vandenbrink@thyssenkrupp.com
mailto:gifforda@schneider.com
mailto:rrandall@princeton.com
https://doi.org/10.1287/inte.2018.0956


must be routed to independent facilities where they are
washed and prepared for their next use.

The dispatch problem that we address can be viewed
as a multidimensional matching problem in which
several types of constrained resources are matched to
a collection of complex tasks. These tasks, customer
requests to transport liquefied chemicals, are charac-
terized by a set of attributes consisting of an origin-
destination location pair, pickup and delivery time
windows, a product-commodity specification, and
possibly special equipment or handling instructions.
The execution of each task requires several interde-
pendent sourcing decisions that determine an appro-
priate tanker trailer and one or more drivers to complete
execution of the order. The selection of the tanker trailer,
in turn, requires several subdecisions related to tanker
attributes, wash activity, and the product-sequence
constraints we allude to above.

The tank-choice decision comprises several steps:
(1) determining a collection of suitably cleaned, prepped,
and configured tanker trailers that are compatible with
order requirements, (2) further reducing this trailer set
by checking whether previous contents of the tanker
meet compatibility rules relative to the prospective
contents, (3) selecting a tankwash location where such
tankers will be available, and (4) selecting a second
tank wash location at which the selected trailer will be
washed and prepped for a subsequent order.

The bold lines in Figure 1 illustrate a single episode
(i.e., coverage of a single order) in the life cycle of
a tanker trailer. In this case, a customer order specifies
loading and pickup at customer location P1 and de-
livery at D1. A suitable tanker is identified at wash
location W1 and moved clean to P1 for loading. The
loaded tanker is then transported to consignee locationD1.

After unloading at D1, the dirty tanker is then reposi-
tioned to wash location W4, where it will be cleaned
and prepped for its next order. The nonbold lines
in Figure 1 depict an alternative (nonselected) as-
signment choice for the selected trailer to a different
order (W1-P2-D2-W4) or use of a different tank for this
order (W2-P1-D1-W4). The task of the tanker route
optimization model (Phase 1) is to determine optimal
(and near-optimal) solutions from the feasible com-
binations that are identified. Prewash location alterna-
tives (e.g., W2-P1) are considered in the context of both
costs (e.g., distance) and constraints (e.g., inventory
balancing). Postwash alternatives (e.g., D1-W3) at-
tempt to account for relative opportunity future value
based on tanker type and attributes. The “Planned Im-
provements” section will describe plans to integrate
this work with our order forecast system to improve
the accuracy of these future-value estimates.
At most customer locations, loading or unloading may

take several hours to a day or longer. Consequently, most
orders require two or more distinct driver assignments
so that drivers do not incur undue idle time. Driver-
assignment options are evaluated for cost and feasibility
against a subset of trailer routes that were determined to
be either optimal or near optimal in the tanker route
optimization phase. Generally, the direct cost difference
between alternative drivers executing tanker moves is
minimal. Consequently, the focus of the second phase
optimization is on minimizing unproductive driver ac-
tivity, while ensuring that driver work rules and other
considerations are met.
The maps in Figure 2 indicate the number and

geographic distribution of the locations that compose
the network over which bulk dispatch optimization
occurs. Maps (a) and (b) depict pickup and delivery

Figure 1. (Color online) Tankered Trailers Revisit Wash Facilities After Servicing Customer Orders
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locations, respectively. Although many locations enter
the problem in both roles (e.g., manufacturing facili-
ties in which raw material commodities are inbound
and finished product commodities are outbound), many
sites are exclusively pickup or exclusively delivery points.
Schneider National currently has approximately 9,000
distinct customer and consignee locations.

Map (c) indicates wash locations, which are operated
by external vendors and shared across the bulk trans-
port industry. These facilities vary in both handling-
capacity size and wash capability (i.e., commodities

washed and prep procedures offered), and the dis-
patch optimization system must account for this. Of
the roughly 150 active wash facilities, approximately
half are used on a regular basis. Additional complexity
is introduced by customer-specific requirements that
often specify different procedures, although the com-
modities may be chemically equivalent.
Customer-specific requirements also drive prior-

product (i.e., previous commodities that have been
in the tank) compatibility rules that together with
trailer physical attributes (e.g., lining material, heaters,
pumps) determine the subset of tanker trailers that are
feasible for a given order. One of the early challenges
of this project was to gain control over this process
and establish comprehensive, consistent, and reliable
data stores to enable automated, high-speed check-
ing and validation of prior-product conditions. Prior
to implementation of new systems at SchneiderNational,
customer requirements and compatibility rules were
delivered using various formats (e.g., PDF, XLS, DOC)
with no standardization and no process in place to
convert and maintain this information in digital for-
mat. Some requirements apply across generic chemical-
compound names; however, many specifically pertain
to unique customer products. We developed a new data
model and associated maintenance and rules-engine
logic tools to facilitate automation. We will describe
aspects of these in the subsequent sections.

Related Work
The dispatch decision process for a network of tanker
trucks transporting chemicals or liquid bulk lies in
the intersection of heterogeneous-fleet vehicle routing,
driver scheduling, and integrated fleet-assignment
problems. Gifford (2011) discusses the general prob-
lems of optimizing ongoing operations of for-hire fleets
of tractors and trailers in a large-scale network.
One of the classes of rich vehicle routing problems

deals with a system of heterogeneous fleets of vehicles.
The heterogeneous vehicle routing problem,whichwas
first introduced by Golden et al. (1984), addresses
operations with fleets of vehicles that differ in terms of
vehicle type, capacity, and costs. Later, Taillard (1999)
introduced the heterogeneous fixed fleet vehicle rout-
ing problem (HFVRP) using a set of predefined vehi-
cles. Unlike classical vehicle routing problems with
multiple identical vehicles (Dantzig and Ramser 1959),
to the best of our knowledge, the HFVRP has not yet
been solved by an exact approach (Koç et al. 2016).
Studies on heterogeneous vehicle routing focus

mainly on developing heuristic approaches and de-
termining good lower and upper bounds on the optimal
solution (Desrochers and Verhoog 1991, Yaman 2006, Li
et al. 2007, Euchi and Chabchoub 2010). Choi and Tcha
(2007) develop a combination of column-generation and
dynamic programming-based schemes to generate tight

Figure 2. (Color online) The Geographic Distribution of
Customer and Tank Wash Facility Locations
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bounds on the optimal solution for a heterogeneous
vehicle routing problem. They first formulate the problem
as a set-covering model, then use dynamic programming
to efficiently generate feasible columns and, finally, solve
the linear programming (LP) relaxation. Subramanian
et al. (2012) analyze a single-depot vehicle routing
problem with heterogeneous fleets using a hybrid
algorithm that utilizes local-search-based heuristics to
generate routes and follow with a set-partitioning for-
mulation. Later, Penna et al. (2013) improve the hybrid
approach by integrating the local-search heuristic with
a variable neighborhood descent procedure. Nazi-Azmi
and Salari (2013) develop an integer programming-based
heuristic for a heterogeneous vehicle routing problem
that destroys and repairs the initial solution to solve the
model to optimality.

Another class of vehicle routing problems addresses
integrated fleet assignment and driver scheduling
(Savelsbergh and Sol 1998, Sherali et al. 2013, Goel and
Vidal 2014). From that perspective, Xu et al. (2003) used
column generation and dynamic programming to ana-
lyze amultiperiod vehicle routing problemwithmultiple
timewindows for pickup and delivery, andDepartment
of Transportation (DOT) driver hours-of-service rules.
Goel and Irnich (2016) develop an exact branch-and-
price-based algorithm to schedule drivers for a vehicle
routing problem that also considers DOT rules. Cacchiani
and Salazar-Gonzalez (2017) develop a multiphase ap-
proach that utilizes column-generation and dynamic
programming procedures to solve an integrated fleet-
assignment and crew-scheduling problem.

In contrast to these studies, our work on bulk dis-
patch involves four levels of decisions— order selection,
tanker trailer, driver scheduling, and wash locations—
in addition to practical constraints (e.g., chemical

interactions and wash and tanker-type requirements)
that create additional complexity. Except for approaches
to relatively small problems and those with special
structures or constraints that limit the space of fea-
sible solutions, approaches to complex problems must
rely partly on heuristic strategies. In addition to ele-
ments represented by the problems described in related
literature, the practical aspects of our problem tend
to achieve short processing times, while discount-
ing the value of the exact solutions. We believe our
approach exhibits a theoretically appropriate and
operationally pragmatic balance between heuristic
procedures and explicit optimization steps. For small
test problems, our approach becomes provably optimal
because the generation allows us to uncover all rea-
sonable candidate routes and schedules.

Business Processes
In this section, we describe the business processes as-
sociated with the life cycle of a customer order and
explain the interactions between the “human in the
loop” and the various software components that sup-
port dispatch decisions.
The process begins with order tender offers from

a customer to Schneider National via electronic data
interchange (EDI), telephone, or email attachments. In
almost all cases, pricing and other customer specifics
have been agreed to in advance and are automatically
supplied to processes and models as needed. Figure 3
depicts the main decision steps and their typical timing
relative to the beginning of actual execution.
Order information includes specific-product commod-

ity, origin-pickup location, destination-delivery location,
and associated time constraints. Commodity, customer
and location details, tanker trailer characteristics, wash

Figure 3. (Color online) Sequence of Business Steps Associated with an Order
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instructions, and required driver certifications are re-
trieved andmade available for subsequent selection steps.
Prospective prewash and postwash locations are desig-
nated using static tables that are periodically reviewed by
business analysts. These preliminary selections serve as
an aid to regional planners and are often overwritten by
the optimization solver as current information regarding
trailer inventories at wash facilities and driver avail-
ability by geography becomes available. As we note in
Figure 3, these preliminary wash-location assignments
are normally made four days before the pickup date.

Two days before the scheduled pickup, results from
the trailer route optimization solver (TROS) provide
preliminary trailer-assignment recommendations. These
are provisional assignments that may be revised either
in subsequent TROS runs or when the combined trailer
driver-optimizer (TDOS) is run.

An integral component of selecting a feasible tanker
trailer is ensuring that the previous contents of the con-
tainer are chemically compatiblewith a prospective order.
Restrictions are such that even with consideration of in-
tervening washes, the commodities associated with the
three prior loadsmayneed to be considered. Products that

may appear to be chemically similarmay also be subject to
customer-specific rules. Prior to the implementation of
the new system, this process was manual, inefficient, and
subject to errors and rework. With a conservative per-
spective, trailers were often unnecessarily held idle to
compensate for inaccurate or incomplete information. In
the “Business Benefits and Challenges” section, we de-
scribe savings associated with reducing the number of
customer rejections of incompatible trailers.
As a prerequisite to developing the optimization

models, we had to develop an integrated tool to manage
and enforce prior-product constraints. The supporting
data model can catalog restrictions by customer, loca-
tion, and product-commodity specifics.
Figure 4 gives a view of the user interface for this tool.

The tool supports compatibility and incompatibility
specifications at various levels of aggregation. A hierarchy
is maintained in order tominimize the number of rules
that must be examined. The strictest level supports
rules that pertain to customer-specific proprietary com-
pounds. Lower levels allow the grouping of products
with a similar chemical composition (e.g., dioxides)
or for industrial purposes (e.g., dyes and inks). The lowest

Figure 4. (Color online) Prior-Product Relationships Are Maintained for All Products

Gifford et al.: Dispatch Optimization in Bulk Tanker Transport Operations
Interfaces, 2018, vol. 48, no. 5, pp. 403–421, © 2018 INFORMS 407



level can refer to general properties (e.g., water solubility,
odor, or pH). Rules are structured to flexibly allow for
the combining of inclusion and exclusion logic.

As we mention in the previous section, most orders
require multiple drivers. The driver changes are referred
to as relays and cause an order to be split into relay legs
or shipments. Many relays are planned in advance to im-
prove driver productivity or accommodate circumstances
such as driver-certification requirements or international-
border crossings. A number of unplanned relays are,
however, predicated by conditions not known at the
time of the original assignments.

Examples of such conditions include breakdowns,
traffic delays, and driver work-schedule issues. Ap-
proximately 60% of orders are relayed at least once
and over 50% are relayed two or more times. In the
“Planned Improvements” section, we discuss ongoing
work to provide additional automation and optimi-
zation capabilities to the relay determination process.

Finally, drivers are assigned to individual shipment
legs. Assignment recommendations are provided by the
combined TDOS, which often changes trailer solutions
when a lower overall cost can be achieved. The full
optimization cycle runs approximately every 10 minutes
to be responsive to ongoing changes in order, driver, or
trailer availability information. It is important to note that
the dispatch optimization system is a decision support
tool, not a decision-making tool. Despite best efforts, it is
impossible for such a system to accurately capture and
adjust to all relevant real-world information in such a
way that all decision recommendations remain durable
through to execution. The stated objective of the system is

to produce recommendations that are acceptedwith little
or no human review at an 80%–90% rate. As such, we
devoted considerable effort to providing an integrated
user interface or cockpit control panel that allows
the planner and dispatcher to interact with the op-
timization functions and perform various queries that
facilitate intelligent overrides and responses to con-
ditions outside the scope of the optimizer. Figure 5
provides a screenshot of this user interface.
The main screen of this application is organized into

several key sections: list of shipments, trailer list, driver
list, and assignment evaluation information. Planners
apply various filters to focus on their areas of respon-
sibility. Optimization model output includes reduced-
cost estimates (LP relaxation dual values) to provide
plannerswith information to evaluate alternatives if they
believe that the optimal solution recommendations are
not practicable. As we will describe in the “Route and
Assignment Optimization” section, we implemented
several trade-offs and related judgment parameters as
soft costs or constraint thresholds. We also provided
additional user-interface elements to allow network
managers to adjust these parameters and other business-
rule conditions. Examples include costs incurred for
nonrevenue miles, unproductive driver hours, maxi-
mum allowable deadhead distance, and penalties to be
assessed if orders are uncovered (i.e., not delivered) or
wash-facility capacity limits are violated.

Route and Assignment Optimization
In this section, we describe key components of the
software and mathematical models that support the

Figure 5. (Color online) Dispatchers Use a Multipanel Screen to Manage Dispatch Activity
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dispatch decision process. As we described in the
“Business Processes” section, this process comprises the
following sequence of assignment decisions: (1) a specific
tanker trailer and the prewash facility from which it will
be sourced, (2) a potentially different driver and (or)
trailer to execute eachmove, and (3) the postwash facility
to which the trailer will be repositioned after delivery of
the product to the customer. Figure 6 gives an overall
view of the sequence of resource assignments required to
execute an order. In this diagram, the path of arcs rep-
resents covering order O3 with a trailer at wash facility
W1 and assigning drivers D2, D3, andD1, respectively, to
the prewash, loaded, and postwash shipment legs, and
finally positioning the trailer at a postwash site. The
groups of connected dotswithin the driver nodes (i.e., D1,
D2, and D3), each of which represents an individual
driver, depict different driver work-assignment se-
quences, only one of which can be active for a given
driver. The other arc paths suggest how the remaining
portions of activated driver work-assignment sequences
might participate in the execution of other orders.

During a single solution cycle, this assignment pro-
cess will typically attempt to cover several thousand
individual orders extending over amultiple-day horizon.
Approximately 1,000 potentially available tanker trailers
will be spread across 100 prospective wash locations.

The number of drivers whose next available time
falls within the horizon is usually around 500. Conse-
quently, the number of feasible order-execution sce-
narios is in the billions.

To address this size complexity, we designed a multi-
phase process that breaks the problem into a sequence of
interleaved candidate-generation and optimization steps

(Figure 7). The overall process is heuristic rather than true
optimization because the candidate-generation steps
implement search trees that prune (locally) unpromising
candidates, but do not guarantee that such a candidate
would not be in an optimal solution. InAppendixA.4, we
provide empirical analysis that strongly supports our
confidence that solutions obtained are practically optimal.
Given the dynamic nature of the transport op-

erations, the recommendations provided by the op-
timizer must accurately reflect changes to the
underlying data in near real time. As such, the solver
processes run continuously, completing each cycle in
under 10 minutes. Only a modest percentage of the
recommendations associated with a given solver run
(i.e., either trailer routes or work-assignment se-
quences) actually may be dispatched before the next
cycle completes. However, most recommendations

Figure 7. (Color online) The Solution Technique Comprises Interleaved Generation and Optimization Processes

Figure 6. (Color online) Assignment Decisions Required to
Execute an Order
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remain durable over a long sequence of consecutive
solver runs. Between successive solution cycles, 10% of
order information is typically changed because of new
additions, cancellations, or other information updates.
Similarly, approximately 10% of tanker or driver
availability information changes. These changes typi-
cally affect about 20% of trailer route recommendations
and about 10% of driver work-assignment sequences.

Tanker Trailer Feasibility
The first step of the solution process is to determine the
set of feasible, available tanker trailers, which depends
on the chemical composition of products, customer
requirements, and intervening wash cycles. This is the
preprocessing step for trailer route generation, which
we will describe in the “Trailer Route Generation”
subsection. As mentioned in the previous section,
this process is enabled by a business rules engine and
corresponding database that capture prior-product
compatibility and incompatibility relationships and sup-
port rapid identification of allowable tankers for pro-
spective order of tanker new-order feasibility. Figure 8
depicts that logic flow to generate a set of feasible tanker
trailers.

This process comprises a series of filtering checks to
narrow the set of tank trailers to a subset that meets the
required conditions. The sequence of these steps has
been optimized to minimize the average evaluation
time. In Phase 1, we check for manufacturer-specific
constraints on a tanker profile and follow by matching
product specifications and restrictions against the
previous contents of the remaining trailers. To facilitate
the rapid elimination of unacceptable trailers, this
matching algorithm leverages both inclusion and ex-
clusion lists and hierarchically descends from broad
product families (similar chemical properties) to at-
tribute classes and then to rules defined for specific
compounds. The initial project plan assumed use of
commercial rules-engine software; however, it resulted
in unacceptable response times. With a redesign using
a purpose-specific data structure and rules process-
ing, complete prior-product feasibility filtering for
a single order completes in about 0.05 ms. This rep-
resents an improvement of two orders of magnitude
over the commercially available alternative.

Trailer Route Generation
After a set of product-compatible tanker trailers has
been identified, we entered Phase 1 of the optimization
process to generate and cost out possible trailer as-
signments for each order (Box 1A in Figure 7). Because
the number of possible distinct tanker trailer route
combinations required to cover even a modest number
of orders is extremely large, the process makes extensive
use of parallel processing to generate and determine
costs for hundreds of thousands of trailer-assignment

options. To limit the number of routes, we consider
prewash location options, but postwash choices are
deferred unless they are internal to a multiple-order
assignment. Each trailer route consists of the sequence
of moves required to execute one or more orders and
associated wash activities (excluding the final post-
wash). Multiple-order assignments are generated only
when their total elapsed time falls within the planning
horizon. In addition to standard costs reflecting trailer
repositioning and loaded moves, additional cost factors
contribute to the total route cost. These include penalties
for late arrival (also subject to hard-constraint bounds),
tank wash and prep costs (which may vary according to
prior products), and bonus or penalty values reflecting
the associated inventory impact (of trailer choice) at
specific wash locations.
The penalty (and bonus) values used in costing phases

fall into two categories: those that can be directly in-
ferred from financial impacts; (e.g., empty miles, driver
wait time, and wash cost differences) and those that are
intended to influence solution characteristics, which are
more difficult to quantify (e.g., late arrivals and inventory
drawdowns). These values are based on a combination
of business judgment and interactive tuning, wherein
representative model problems are rerun with different
values until a related outcome metric is achieved.
A good example of this is the relationship between the
late-arrival penalty and the achievement of an on time
service level that meets customer expectations. Another
example is the value associated with selecting the wash
location to which a tanker will be repositioned after
unloading. In the “Planned Improvements” section, we
will discuss a new automated forecast-aware approach
that will be used to determine this factor.

Trailer Route Optimization
These routes are then provided as columns to an LP
relaxation of the initial trailer route set-covering opti-
mization model (i.e., TROS) to find a reasonably sized set
with promising routes to which final postwash options
will be added for further evaluation; Box 1B in Figure 7
and Appendix A.1 show a detailed model. The opti-
mization model minimizes the total cost of the route
while ensuring the following constraints: (1) each order
and trailer can be assigned to at most one route, (2) ca-
pacity at the tank washes should not be exceeded on
a given day or week, and (3) number of trailers of a given
type meet the minimum andmaximum requirements for
each region and area. To limit the number of trailer routes
provided to the next step, we generate postwash options
for the best several hundred thousand feasible options
based on reduced costs from this LP relaxation (Boxes 1C
and 1D in Figure 7). These final trailer routes are then
entered into the TROS integer program (Box 1E in
Figure 7). Although a set of optimal trailer assignments
represents a lowest-cost deployment of tankers from
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wash location to order completions, the locations,
capabilities, and available times of drivers may
suggest that nonoptimal tanker assignments (in this
narrow sense) may lead to better overall solutions

when drivers are considered. For this reason, many
nonoptimal assignments (columns) with relatively
low reduced cost (from the LP relaxation) are
identified and included in the final phase.

Figure 8. (Color online) The Logic Used to Validate Prior-Product Compatibility
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Driver Work-Assignment Schedule Generation
Phase 2 in the optimization process includes a column-
generation process that identifies feasible drivers and
corresponding costs to execute the candidate trailer-
order combinations (Box 2A in Figure 7). This is
a many-to-one scheme in which several drivers with
different work profiles (i.e., local, regional, nationwide)
may complete different legs of the order (e.g., prewash
to pickup, pickup to delivery, delivery to postwash).
The process begins by decomposing orders, covered
by the trailer routes, to collections of work assign-
ments. Next, the set of available drivers is evaluated
against each work assignment to find feasible driver
work-assignment combinations, called driver work-
assignment schedules. Several feasibility considerations,
including hazmat requirements, power-unit accessory
needs, and customer-specific certifications, may prevent
a driver from beingmatched to a givenwork assignment.
As feasible work-assignment schedules are generated,
corresponding costs are accumulated. These costs con-
sider empty miles, driver idle time, and penalties for
undesirable (but sometimes unavoidable) consequences,
such as late arrivals or driver-type mismatches (e.g., long-
haul driver on regional order). Estimates of unused hours
and arrival times are determined by simulating the driver
execution of a work assignment, considering location
open hours and including estimated breaks necessary for
hours-of-service compliance. As subsequent assignments
are added, the number of work-assignment sequences
could grow into the millions. To limit the number con-
sidered to several hundred thousand, we empirically
determined threshold ceilings that we use to discard
options unlikely to be of further interest. These are dis-
cussed in Appendix A.4.

Combined Trailer Driver Optimization
Finally, a candidate set of driver work assignments and
trailer routes are entered into the combined TDOS,
which recommends a feasible combination of driver
and trailer assignments to minimize overall operating
costs subject to a variety of structural and business gen-
erated constraints; Box 2B in Figure 7 and Appendix A.2
provide the detailed model. The model retains all costs
from TROS (trailer only) in addition to other driver-
related costs, such as unused hours cost, and driver-
based bonuses and penalties. The model requires that
each driver be associated with at most one work-
assignment sequence and links constraints between
driver work assignments and the relevant trailer. Al-
though this model provides a recommendation for the
postwash location, planners sometimes need to con-
sider other options. To facilitate this, additional post-
wash options are added to the model (Box 2C in
Figure 7) and an LP version (Box 2D in Figure 7) of this
expanded problem is solved to provide reduced costs
associatedwith alternativewash locations. Planners then

use these values as partial guidance when choosing
among alternatives.

Business Benefits and Challenges
This new system was developed and implemented
over a one-year period from May 2016 to May 2017.
The data depicted in Figure 9 outline the milestone
dates for the major components. In Appendix A.3, we
give implementation details.
The principal users of the system are area planning

managers (APMs) who have the responsibility to plan
and assign the resources required to execute customer
orders. We will describe their roles in the “Planned
Improvements” discussion.
As with almost all large-scale software development

projects, we had numerous challenges to address and
overcome. The primary technical challenge was to
balance the need for fast response time and solution
quality, which would stand up to user scrutiny, with
the dynamic nature of the data inputs and the large
problem size resulting from the combinatorial explo-
sion of feasible options as wash location, trailer choice,
and driver selections are considered. The business
challenges were driven by the usual scope, schedule,
and cost considerations. User acceptancewas identified
as a concern early on, due to the perception by APMs
that their work was heavily dependent on extensive
“tribal” knowledge, intuition, and human judgement.
One of the outstanding successes of the project has been
to move these users to an appreciation of the strengths
of computer-based decision support and the realization
that their work has become more enjoyable as they
were able to focus more effort areas that require expert
human judgement.
The new system substantially increases automation

and uses mathematical optimization techniques to select
optimal assignment choices. In the first few months of
operation, this system generated significant gains in
productivity for assets, drivers, office staff, and man-
agement personnel, as well as significant direct cost
savings in fuel and other direct expenses.
Schneider’s engineering and business teams join-

tly performed an initial project assessment prior to

Figure 9. Start and End Dates of the Project Phases

Gifford et al.: Dispatch Optimization in Bulk Tanker Transport Operations
412 Interfaces, 2018, vol. 48, no. 5, pp. 403–421, © 2018 INFORMS



authorizing the financial investment in this project.
This analysis determined three main benefit areas.
These included (1) $2 million in cost avoidance, due
primarily to a reduction in the number of nonrevenue
miles driven, (2) $2.1 million in additional revenue
opportunity, driven primarily by increased driver and
tractor productivity, and (3) a 28% improvement in
the productivity of office staff engaged in planning
and dispatch functions. In addition, several other
benefit areas that are either difficult to quantify or not
easily interpretable inmonetary termswere identified.
The benefits described below have been reaffirmed
and are now based on performance for the three-
month period from June to August 2017 and are net
of year-over-year (YOY) differences that are unrelated
to the project (e.g., changes in business climate). In the
subsections below, we will describe these benefits in
more detail.

Our development cycle leveraged an agile method-
ology in which we deployed a succession of minimum
viable products to the business (in production) at one-to-
two-month intervals with incremental releases every two
weeks. This approach allowed us to benchmark benefit
metrics before and during the project and facilitated
course corrections that kept the realization of benefits in
focus. This agile approachwas key to the team’s ability to
exceed the ROI targets set at project inception.

Nonrevenue Miles Reduction
Almost all bulk orders incur nonbillable miles both
prior to and following the tank wash, pretank wash
and posttank wash, respectively. The pretank wash
miles occur prior to pick up as a clean and prepped
trailer is brought from a tank wash to the shipper. The
posttank wash miles occur after delivery when the
empty trailer is repositioned to another tank wash to be
washed and prepped for its next order. As the new
system was implemented, we saw an average 16-mile
reduction prior to the tank wash side and an 8-mile
reduction following the tank wash, a reduction of over
1 million nonbillable miles annually. In our south re-
gion, we saw a reduction of 86 miles per order YOY.
This will provide an annualized reduction of over
1 million empty miles. We have also seen a significant
reduction in the volatility of nonbillable miles, from
a range of 290–460 in 2016 to 260–310 in 2017. This
decrease is having a pronounced positive impact on
planning functions.

Driver Productivity Improvement
In addition to selecting pre- and posttank wash trips,
the dispatch system optimizes the selection and
scheduling of drivers to service both these and loaded
moves (i.e., commodity carrying from customer to
consignee). This optimization has led to a significant
decrease in the number of miles that need to be driven

to position drivers for order-based activity. Although
some of this positioning supports tank wash moves,
which are needed anyway, a significant portion con-
sists of bobtail trips (i.e., trips without a trailer). Our
analyses indicate that each 2.5-mile reduction in non-
billable driver miles enables one additional revenue-
producing mile over the same asset base. We are
now forecasting $2.5 million in additional annual
revenue.

Unused Hours
For the three-month period ending August 31, 2017, we
realized a reduction of unused driver time of 2.5 hours
per shipmentwithout an appreciable change in shipment
characteristics. At current average monthly volumes,
this represents roughly 202,500 additional available
hours per year over a constant driver population. Using
a conservative estimate of the percentage of these hours
that can be applied to additional freight and the re-
sultant margin, this represents $1.8 million in additional
annual earnings before interest and taxes (EBIT).

Planner Productivity Improvement
Prior to full implementation of the new system, APM
roles were separated; four planners covered the se-
lection of tanker trailer and wash locations, nine were
responsible for driver-tractor assignments, and three
were qualified to do either task as needed. We now
have 11 planners in the combined role. In addition, two
full-time planners provide flex support. Consequently,
in a YOY comparison, we are now able to plan an
additional 900 orders with three fewer associates.
This represents a 28% productivity improvement,
considering both reduced headcount and increased
throughput. We expect additional productivity gains
when associates have gained expertise with the new
processes and additional enhancements to the op-
timization models are made. While this represents a
modest cost benefit, the greater advantage is in
allowing associates more time to focus on problems
and complex issues that need attention and are beyond
the scope that automated systems can address. As we
stated above, our goal is to achieve 80%–90% com-
pliance with model recommendations. Currently, these
compliance values are 60% for driver selection and 75%
for trailers. However, as model tuning and other en-
hancements are implemented, we fully expect to reach
our target.

Better Equipment Optimization
The system has enabled a structure change on the
network planning team. Managing both driver and
trailer assignment has been combined into a single
planner role; this was not possible prior to imple-
menting the new system. The APM now has com-
plete visibility to all dispatch activity in a market.
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Consequently, we have been able to reduce idle days
by one day per trailer-month. This equates to ap-
proximately 12,000 additional days of trailer capacity
availability per year, effectively adding 60 trailers to the
fleet at no additional cost.

Prior-Product Validation
Prior to implementation of the subsystem to manage
and enforce prior-product compatibilities, feasible
trailer identification and verification would often take
30 minutes. The process now completes in 3–5 minutes
and often in much less time. This translates to several
thousand person-hours per year.

Improved Customer Experience
Because of errors in prior-product validation, drivers
would sometimes arrive at a customer location with an
infeasible trailer. A resultant rejection by the customer
is expensive with respect to unbillable miles and ero-
sion of customer good will. Trailer rejections for
incompatible prior products have been reduced sub-
stantially and customer feedback has been strongly
positive; as we provide better information to customers,
we are helping them improve their own processes.
Additionally, when trailers are rejected erroneously, the
new system supports quick recognition of the customer
error and enables timely billing for costs incurred.
Conversely, when customers correctly reject trailers, we
are now able to update rules and data to prevent repeat
occurrences. We are still working on efforts to record
and quantify this impact.

Order-Acceptance Response Time
The new system has enabled quicker and more
accurate visibility to available and projected capa-
bility. This has led to a reduction in the time re-
quired to make an acceptance decision. Assessing
the financial impact of this benefit is a task still to be
completed.

We note that these are conservative estimates based
on actual performance during the first several months
of operation. As the system matures and learnings are
incorporated into improvements and enhancements,
we are confident that these benefit measures will
increase.

Planned Improvements
During the development of this system, several impor-
tant features were deferred in accordance with our Agile
development methodology and the time-to-market
benefits of a minimum viable product. With the system
described in this paper fully operational, we are
completing the design and beginning development of
additional capabilities. We mention these briefly in this
section.

Relays
A considerable number of orders are subject to a relay
between drivers, which may occur at wash facilities,
customer sites, or some specified location along
a longer load route. Safety and security requirements
dictate that these relay locations may have certain
physical characteristics that will necessarily limit their
number. We will be implementing a network-design
solution to determine a limited and fixed set of loca-
tions that will best service network freight flows, as
well as a real-time rerouting tool that will consider out-
of-route (extra) miles, commodity and driver limita-
tions, and relay location characteristics to provide
updated solutions to meet driver needs and to help
alleviate driver capacity imbalances across space
and time.

Local Driver Optimization
Bulk tractor drivers are subdivided into three general
work configurations: (1) over-the-road (OTR) drivers
are assigned primarily to long-distance legs of sev-
eral hundred miles or more; (2) regional drivers are
assigned work that limit the number of consecutive
nights away from home; and (3) local drivers are
assigned work that allow them to return home every
night. Currently, driver-assignment optimization uses
various bonus and penalty adjustments to direct drivers
to appropriate shipments. We believe that we can
achieve significant additional cost reductions and pro-
ductivity improvements, particularly for local drivers,
by introducing additional algorithmic enhancements.
We recently began work in this area.

Integration with Demand Forecasts
When considering wash location options, particularly
for postwash, an understanding of near-term geo-
graphic differences in demand for various tanker
configurations can lead to positioning choices that
reduce the nonrevenue miles associated with sub-
sequent prewash to customer moves. The current
system makes limited use of historical patterns to
inform these choices. Planned improvements will
more actively integrate location-selection evaluations
with demand forecasting and order-acceptance
processes.

Dynamic Wash Rebates
The costs associated with tank washes, which are
performed by third-party vendors, can vary signifi-
cantly and are sometimes subject to volume discounts.
The current costing tools are driven by transactions
and are unable to model the step-function nature of
volume discounts. Standard volume-discount tech-
niques have limited value because distance-to-wash-
facility trade-offs must be considered. We are in-
vestigating a new scenario analysis approach that will
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better incorporate demand forecasts to project when
volume discounts will outweigh additional-distance
considerations.

Conclusion
Although Schneider National has been developing and
implementing optimization-based decision support for
over 25 years, this project has offered important in-
sights and new ideas into the process of developing
data-driven decision support models to govern and
respond to real-time changes in a dynamic and com-
plex operational environment. In particular, we have
gained an enhanced appreciation of the importance of
building feedbackmechanisms directly into the process
rather than as an afterthought. Providing timely and
actionable feedback to frontline planners and dis-
patchers and their direct managers has been invalu-
able in driving the adoption of a new system that was
met with considerable initial skepticism by business
experts who were insistent that their work was too
complex to allow even modest automation. The true
power of the system is that it has freed these business
experts from tasks that are well-suited for mathe-
matical sophistication and allowed them to focus on
the 10% of dispatch planning work that requires
human judgment and resolution of issues that are
affected by factors that the automated processes
cannot address.

Feedbackmechanisms also provide a systematic way
for the engineer and developer to monitor and improve
model performance. The close connection of this opti-
mization system to real-world conditions and exigencies
requires the model to balance sometimes-competing
objectives. Because these are generally handled with
soft constraints and associated bonus or penalty fac-
tors, we are able to efficiently link the tuning of model
parameters to the solution characteristics desired by
the business.

From a software development perspective, this project
has provided an opportunity to develop a methodology,
platform, templates, and reusable components to
facilitate development and delivery of new dispatch
optimization systems for our intermodal dray and
standard-trailer truckload businesses.

From a technical and algorithmic perspective, our
decomposition approach, which reduces problem com-
plexity by initially separately considering the decision
components (i.e., wash locations, tanker trailers, and
drivers) and then combining them in a multiphase
optimization framework, represents an innovative way
to address and successfully solve a practical problem that
is both structurally complex and of significant size.
We have been able to achieve this with processing
times that meet the requirements of a real-time dis-
patch system and still provide solution quality that

exceeds business expectations and is theoretically near
optimum.

Appendix
A.1. Trailer-Only Optimization Model
In this section, we describe the “trailer-only” optimization
model that determines an optimal set of trailer routes to cover
a set of orders and their associated wash operations.

Let % be set of equipment (i.e., tanker trailers), 1 be set of
network nodes that include wash locations, 0⊆1, order
pickup locations, 3⊆1, and final delivery locations, ^⊆1,
for customer orders.

We let t,t∈7, index the sequence of periods (days) under
consideration; e, e∈%, denote the individual equipment items,
and w,w∈0, the wash facility locations. For each customer
order o,o∈2, we are provided the pickup and delivery lo-
cations (po, fo), po ∈3, fo ∈^, and will generate a number of
route options for equipment e as “walks,” represented by re �
(w1, po, fo,w2),w1,w2 ∈0, re ∈5, where w1 is the prewash lo-
cation andw2 is the postwash location. Each equipment route re
incurs a cost Cre comprising empty-mile costs, late-arrival costs,
and appropriate bonuses and penalties. We also classify the

Table A.1. Sets of Equipment Routes

Tours Description

5e Set of routes for equipment e ∈%, 5e ⊆5
5o Set of routes that cover order o∈2, 5o ⊆5
5w Set of routes that use wash w∈0, 5w ⊆5
5g Union of routes for equipment contained

in group g∈&, 5g ⊆5

Table A.2. Three Additional Sets for Driver Optimization

Sets Description

Ω
d Collection of candidate work-assignment

sequences for driver d∈$, Ωd ⊆Ω

Ω
s Collection of work-assignment sequences that

contain work assignment s ∈6, Ωs ⊆Ω

Ω
i Collection of work-assignment sequences that

intersect equipment route i∈5

Figure A.1. Typical Problem Sizes and Run Times for the
Generation Processes

Figure A.2. Typical Problem Sizes and Run Times for the
Optimization Steps
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equipment into nonoverlapping groups with similar physical
characteristics, such as the interior liningmaterial, the number of
compartments, and the location of valves. Let g, g∈& index
these groups. We define additional sets of routes in Table A.1.

Let xi, xi ∈X be a binary variable that equals 1 if equipment
route i is selected, and 0 otherwise. For a given set of feasible
routes5feasible, we develop a set-partitioning formulation with
side constraints, called TO, as follows:

Table A.3. Typical Problem Sizes and Run Times for the Generation Processes

Process Method No. generated Time

Generate trailer routes without postwash Tree search with pruning 20,000 <5 s
Trailer routes with postwash Tree search extension 500,000 <5 s
Select routes for driver phase Heuristic pruning 20,000 <3 s
Generate driver work sequences Tree search with simulation 1,000,000 <1 min
Generate additional wash options Tree search extension 500,000 <2 s

Table A.4. Typical Problem Sizes and Run Times for the Optimization Steps

Model Method No. of variables No. constraints Time

Preliminary trailer optimization Linear program 70,000 3,000 <10 s
Final trailer-only optimization Mixed integer 225,000 3,000 <1 min
Main driver-trailer optimization Mixed integer 500,000 9,000 <2 min
Final optimization (adjust postwash) Linear program 50,000 3,000 <10 s

Figure A.3. Cost Values for the Route Options Generated for Several Different Trailers
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TO : min z1 �
∑

i∈5
Cixi +

∑

o∈2
Boξo +

∑

w∈0
t∈7

Bw,tξw,t

+ ∑

g∈&,w∈0
(BL

g,wξ
L
g,w + BU

g,wξ
U
g,w).

(A.1)

Subject to
∑

re∈5e

xre + ξe � 1,∀e ∈ % (A.2)
∑

ro∈5o

xro + ξo � 1,∀o ∈ 2 (A.3)
∑

rw∈5w

xrw − ξw,t ≤Kw,t ∀w ∈ 0,∀t ∈ 7 (A.4)
∑

rg,w∈5g∩5w

xrg,w + ξLg,w ≥θL
g,w,∀g ∈ &,∀w ∈ 0 (A.5)

∑

rg,w∈5g∩5W

xrg,w + ξUg,w ≤θU
g,w,∀g ∈ &,∀w ∈ 0. (A.6)

In the above formulationTO, the objective defined byEquation
(A.1) minimizes the total costs that include the following costs
terms: (a) total cost of the route,

∑
i∈5Cixi, (b) total penalty cost

for not covering an order by any equipment route,
∑

o∈2Boξo,
where Bo and ξo are the corresponding penalty cost and slack
variable associated with not covering order o with any
equipment route, and (c) total penalty cost for exceeding the

tank-wash capacity,
∑

w∈0,t∈7Bw,tξw,t, where Bw,t and ξw,t are
the corresponding penalty cost and slack variable associated
with exceeding the tank-wash capacity Kw,t at tank wash w at
period t, respectively, and (d) the total penalty cost for not
meeting the lower andupper thresholds of equipment group at
a tank wash,

∑
g∈&,w∈0(BL

g,wξ
L
g,w + BU

g,wξ
U
g,w), where BL

g,w,B
U
g,w are

the penalty costs associated with lower threshold θL
g,w and

upper threshold θU
g,w, respectively, and ξLg,w, ξ

U
g,w are the cor-

responding slack variables.
Next, we describe the constraints for the model.

Equation (A.2) ensures that for each piece of equipment e,
we can only have one route scheduled in the optimal so-
lution. Equation (A.3) ensures that each order o is either
assigned to a route or incurs a penalty cost for being un-
scheduled. Equation (A.4) enforces tank-wash capacity
Kw,t for tank wash w for each period t. Finally, Equations
(A.5) and (A.6) ensure that for each equipment group (e.g.,
type, valve location) g, a minimum threshold θL

g,w and
maximum threshold θU

g,w of equipment must arrive at the
tank wash w at the end of time t.

A.2. Driver Scheduling with Trailer Optimization
In this section, we present the combined driver-trailer wash
optimization model that schedules drivers to perform work
assignments against an order and may select a different
trailer than the one that was provisionally selected in the

Figure A.4. Cost Values for the Work-Assignment Schedules for Several Different Drivers
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trailer-only phase. We let 6 represent the union of work as-
signments (shipments) across all orders. Each order o ∈2 is thus
decomposed into a sequence of work assignments, so,m,m �
1, . . . , lo that includewash-to-pickup, pickup-delivery, delivery-
to-wash legs, and possibly additional stops or relays. We use
$ to represent the set of drivers.

If we designate the pickup and delivery location pair as
(ps, fs), ps ∈3, fs ∈^ for each work assignment s∈6, then
a work-assignment sequence for driver d can be considered
as a walk represented by ωd � (w1, ps1, fs1, . . .),w1 ∈0,ωd ∈Ω.
Note that a typical driver work-assignment sequence will
include shipment legs from several different orders. Each
candidate driver work-assignment sequence ωd ∈Ω incurs
a cost Cωd comprising unused hour costs and various bo-
nuses and penalties. We define some additional sets related
to work-assignment sequences in Table A.2.

Let yj ∈Y be a binary variable that equals 1 if driver work-
assignment sequence j is selected, and 0 otherwise. For
a given set of feasible work-assignment sequencesΩfeasible, we
develop a set-partitioning formulation with side constraints,
called DO as follows:

DO : min z2 � z1 +
∑

j∈Ω
Cjyj +

∑

s1∈6
Bsξs +

∑

d∈$
Bdξd (A.7)

Subject to

∑

re∈5e

xre + ξe � 1,∀e ∈ % (A.8)
∑

ro∈5o

xro + ξo � 1,∀o ∈ 2 (A.9)
∑

rw∈5w

xrw − ξw,t ≤Kw,t ∀w ∈ 0,∀t ∈ 7 (A.10)
∑

rg,w∈5g∩5W

xrg,w + ξLg,w ≥θL
g,w,∀g ∈ &,∀w ∈ 0 (A.11)

∑

rg,w∈5g∩5w

xrg,w + ξUg,w ≤θU
g,w,∀g ∈ &,∀w ∈ 0 (A.12)

∑

ωd∈Ωd

yωd + ξd � 1,∀d ∈ $ (A.13)
∑

ωs∈Ωs

yωs + ξs � 1,∀s ∈ 6 (A.14)
∑

ωi∈Ωi

yωi ≤mxi,∀i ∈ 5,m sufficiently large (A.15)

Figure A.5. Cost Values for the Options Generated to Cover Several Different Orders
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In the above formulation DO, the objective defined by
Equation (A.7) minimizes an overall cost comprising the
following costs terms: (a) the total cost associated with se-
lected trailer routes TO, z1, (b) the total cost of selected driver
work-assignment sequences,

∑
s1∈6Bsξs including penalty and

(or) bonus costs related to pickup time violations and work-
assignment priorities and a penalty for not covering work
assignment swith any driver, and (c) a penalty for leaving an
available driver idle (i.e., with no work-assignment sequence
within the time scope of the optimization run).

Next, we describe the constraints used in model DO.
Equations (A.8)–(A.12) are similar to the Equations (A.2)–(A.6)
used in the trailer-only optimization model TO. Equation
(A.13) ensures that a driver d can only have one driver
work-assignment sequence scheduled in the optimal solution.
Equation (A.14) ensures that each work assignment s can be
assigned to a route or it can be unscheduled. Equation (A.15)
matches the driver work assignments to the corresponding
equipment routes.

A.3. Implementation Details
The system is primarily written using Java (v1.8). The code
that implements user interactions was developed using Java
Swing class libraries; the persistence model and data storage
are built on an Oracle database; optimization models are
implemented using IBM Java Concert APIs; and the linear
programming/mixed-integer programming (LP/MIP) solver
is IBM CPlex (v12.7). With the current CPlex settings, the
realized MIP gap ranges from 0.05% to 0.17%. Typical ob-
jective function values (less penalty terms) are in the range of
$1.6 million, so the achieved solutions are within $300 to
$1,000 of the optimal solution.

The system interoperates with several commercial software
systems also developed by Oracle. These include Seibel
order management and Oracle Transportation Management
(OTM) execution management. Order and customer data
are transmitted from the order management system to the

dispatch system. Driver and trailer information is maintained
by the execution management system and assignment rec-
ommendations are passed back to that system. The dispatch
system runs on a virtual server running Oracle Enterprise
Linux (v6.8) with 10 cores and 48 GB of memory. The un-
derlying physical hardware is an active-active failover cluster
of 10 Lenovo blade servers, each with 40 CPUs at 2.26 Ghz.

Figures A.1 and A.2 give representative instance sizes and
processing times for the solution components referenced in
Figure 7. For the optimization models, the number of vari-
ables is equivalent to the number of potential solutions.

Tables A.3 and A.4 give representative instance sizes and
processing times for the solution components referenced in
Figure 7. For the optimizationmodels the number of variables
is equivalent to the number of potential solutions.

A.4. Empirical Analysis of Heuristic Steps
As we mentioned in the main paper, the heuristic aspect
of our methodology is that candidate solutions for trailer
routes and for driver work-assignment schedules are not
generated exhaustively. While the generation methodology
ensures the new candidates for routes and schedules are
discovered in increasing-cost order, it is possible that we
may terminate the search for candidate solutions before the
true optimal choice is uncovered. To keep processing time
under the business-imposed limit, we currently have cutoff
thresholds set as the maximum cost of a driver schedule =
$1,000; the maximum number of drivers per work assign-
ment = 50; the maximum number of work assignments per
driver = 100; and the threshold for adding additional as-
signments to a work schedule = 36 hours. For a random
sample of specific actual problem instances, we have in-
creased these limits and have not achieved overall solution
improvements. It should also be noted that these cutoffs are
well above what a planner would evaluate when manually
considering assignment options.

Figure A.6. Percentage Rank of the Selected Optimum and Candidate-Set Size for the Collection of Orders in a Representative
Solution Run
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We have also looked at how the costs associated with an
optimization-selected option compare with those of all other
candidates generated. Figures A.3–A.5 give this information
for the candidate sets of a few trailers, drivers, and orders,
respectively. Here, the intuition is that it is highly unlikely
that ungenerated options (i.e., options with yet higher costs)
would have been selected.

In the case of order coverage, where the candidate-set
size can be in the thousands, we performed an additional
analysis. We observed that in rare cases where the cost of the
optimal-selection cost is near the maximum of the candidate
set, the size of the candidate set is relatively small. This is
a strong indication that in these cases there are no ungen-
erated higher-cost options. Figure A.6 shows that orders
covered by selections near the maximum have relatively
small candidate-set sizes.
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Verification Letter
John Bozec, Senior Vice President/General Manager of
Schneider Bulk Division, writes:

“Please consider this letter aswritten verification of success in
practice for this application for the 2017 Daniel H. Wagner
Prize for Excellence in Operations Research Practice.

The Schneider Bulk Transport Dispatch Optimizer System
is a suite of software components and associated business
processes that support and recommend real-time decisions
allocating truck drivers, tractors, and bulk tanker trailers to
orders from customers to transport liquid chemicals. As
described in the accompanying abstract, this assignment
problem is rendered particularly difficult by operational
complexities introduced by the chemical properties of the
commodities transported, interorder tank wash require-
ments, tanker trailer configuration options, and driver work
rules and conditions.

Prior to implementation of this system, the process was
largely manual (and in our estimation remains so throughout
the industry) and overly reliant on human judgment, tribal
knowledge, and disparate, difficult-to-maintain data sources.
The new system substantially increases automation and uses
mathematical optimization techniques to select optimal as-
signment choices. As a consequence, it has, in its first few
months of operations, already generated significant gains in
productivity for assets, drivers, office staff, and management;
as well as significant direct cost savings in fuel and other
direct expenses. I will quantify some of these savings below.

Project Financial Justification
An initial project assessment was performed prior to au-
thorizing the financial spend. Three main benefit areas were
identified: cost avoidance, revenue generation, and associate
productivity. Since the inception of the project, annualized
benefits have been

$2.3 million cost avoidance (empty mile improvement):
19% more than projected

$2.5 million additional revenue (improved driver pro-
ductivity): 20% more than projected

28% planner productivity: 18% more than projected

Empty Mile Reduction
Every bulk order incurs both pretank wash (TW) and post-TW
empty miles. The pre-TW miles are prior to pick up when
a clean and prepared trailer is brought from a TW to the
shipper. The post-TWmiles occur after delivery and the empty
trailer needs to be brought to a TW for cleaning. Combined,
these are termed “unbilled miles per order” (UBMPO). The
project has led to a 24-mile reduction (16 pre, 8 post) inUBMPO.
This provides an annualized reduction of over 1 million empty
miles. With complete rollout in the initial market (South), we
are seeing a total reductionUBMPOhas been reduced year over
year by 86 miles per order (bobtail + deadhead) in March. It is
also less volatilewith the dailyUBMPO ranging from260 to 310
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in 2017. The same date range in 2016 saw a fluctuation 290 to
460 miles per order.

Driver Productivity Improvement
Avoiding unbilled empty miles has resulted in drivers able to
run more revenue generating miles. Approximately 40% of
avoided empty miles directly result in a billed mile. This
generates $2.5 million additional revenue.

Planner Productivity Improvement
Year over year, an additional 900 orders have been planned
by four fewer associates. This is a 28% productivity im-
provement. Additional productivity gains are expected when
associates have gained expertise with the new processes and
additional enhancements to the optimizationmodels aremade.

Additional Project Benefits
There are additional process improvement, asset utiliza-
tion, and customer satisfaction benefits as a result of the project.
Some benefits have objective metrics and others are anecdotal.

Better Equipment Optimization. The system enabled a
structure change on the network planning team. Managing
both driver and trailer assignment has been combined into
a single planner role (this was not possible prior to the new
system). The Area Planning Manager now has complete
visibility to all dispatch activity in a market. Consequently,
we have been able to reduce idle days by 1 day per trailer-
month. This equates to approximately 12,000 additional days
of trailer capacity availability per year, effectively adding 60
trailers to the fleet at no additional cost.

Associate Productivity: Prior Product. Prior to imple-
mentation of the business rules and associated databases that
maintain and enforce prior product (previous commodity
contents of tank) compatibilities, feasible trailer identifi-
cation and verification would often take 30 minutes. The
process now completes in 3–5 minutes and often much less.
This translates to several thousand man-hours per year.

Improved Customer Experience. Prior products were
previously searched for manually. Because of the technical
nature of the process, errors are common and drivers arrive
with trailers that don’t meet requirements. This results in
rejected trailers which is both costly in unbilled miles and
frustrating for customers. Trailer rejections for bad prior
products have already been reduced substantially and
customer feedback has been very positive (as better in-
formation from us helps them improve their own pro-
cesses. Additionally, when trailers are wrongly rejected,
the new systems and processes support quick recognition
of this and allow timely billing of customer for costs incurred.
Conversely, when customers correctly reject trailers we are
now able to update data to prevent repeat occurrences.

Unused Hours. The percentage of driver assignments with
excess unused hours (waste) has already significantly decreased
in the South in cases in which model recommendations are

followed. This has improved driver retention and increased
driver and asset utilization.

Order Acceptance Response Time. The new system has
enabled quicker and more accurate visibility to available and
projected capability. This has led to a reduction in the time
required to make an acceptance decision. It remains to assess
the financial impact of this benefit.

This conservative estimate is based on actual performance
during the first several months of operation. As the systems
mature and learnings are incorporated into improvements
and enhancements, this number will increase.”

Ted Gifford is a distinguished engineer at Schneider
National Inc., where he previously served as Vice President of
Engineering & Research. Prior to joining Schneider, Gifford
was a member of mathematical sciences faculty and an
associate dean at the University of Alaska. His various
technical leadership and research roles include President of
Computer Consultants of Alaska, Director of Quantitative
Research at McKinley Capital Management, and Senior En-
gineering Manager at Symantec Corporation.

Tracy Opicka is a senior optimization engineer in the
Engineering and Advanced Analytics group at Schneider
National Inc. She earned a bachelor’s degree in mathematics/
computer science from St. Norbert College and a master’s
degree in industrial engineering from Purdue University.

Ashesh Sinha is an assistant professor at the Department
of Industrial and Manufacturing Systems Engineering at
Kansas State University. He received a bachelor’s degree at
the Indian Institute of Technology in Kharagpur, India. He
earned a master’s degree in manufacturing systems engi-
neering and a doctorate in industrial engineering at the
University of Wisconsin-Madison. Before coming to Kansas
State, he worked as an optimization engineer at Schneider
National Inc. from 2016 to 2017.

Daniel Vanden Brink is head of Global Analytics for
ThyssenKrupp Aerospace. In his previous role, he was Vice
President of Engineering and Analytics at Schneider National
Inc. Prior to this, he led IBM’s Worldwide Optimization and
Supply Chain Team. He has a master’s degree in Operations
from IIT and a bachelor’s degree in Industrial Engineering
from Iowa State University.

Andy Gifford is a software developer at Schneider Na-
tional Inc. He received a bachelor’s degree in computer sci-
ence from the University of Wisconsin Oshkosh in 2010. His
primary focus has been on the development of transportation
planning and dispatch applications.

Robert Randall is a senior optimization specialist at
Princeton Consultants, where he develops custom pro-
duction optimization models and decision support systems
in areas such as fractional airline scheduling, less-than-
truckload (LTL) flow plan optimization, rail car alloca-
tion, and bulk chemical trailer assignment. He earned
a PhD in industrial engineering from Clemson University,
with a focus on metaheuristic design and development.
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