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Introduction to meet growing demand while managing costs. Al-
In the past decade, China’s domestic warehouse area though the boom of e-commerce and the expectations
increased from 550 million square meters to 1.12 billion ~ of shorter and shorter delivery times are not unique to
square meters, and the number of employees increased ~ the Chinese market and are witnessed globally, these
from 511,000 to 1.18 million. Labor costs increased  challenges are particularly severe in China because its
from $3,100 to $13,900 per person per year, an increase ~ e-commerce demand accounts for approximately 70%
of 4.5 times. In addition, the annual express parcel vol-  of the total express-market demand. These challenges
ume skyrocketed from 3.67 billion to 83 billion, a nearly ~ have made the Chinese logistics industry realize pro-
23-fold increase. Furthermore, China has a nearly  ductivity cannot rely primarily on human labor for the
10-fold increase in e-commerce parcel volume during  future development of business.

promotion days, such as 618 Grand Promotion (June In response to these developing needs, companies
18) and Singles Day (November 11), among many oth- ~ have recently explored the use of conventional stacker
er promotional campaigns throughout the year. Both  and automated conveyor equipment. Although the
demand and labor costs increase yearly, thus causing  efficiency can be improved and the logistics cost can
challenges for companies to balance the urgent need  be controlled effectively, the installation of automated
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equipment is extremely time consuming and the equip-
ment is difficult to maintain. Additionally, the automat-
ed equipment lacks flexibility in production, making
adapting to the characteristics of the peaks and troughs
of the Chinese e-commerce business difficult. Many
companies believe flexible and intelligent warehouses
equipped with mobile robots represent the future of the
industry.

JD.com, also known as Jingdong, has been com-
mitted to the use of logistics assets and technology.
As a leading Chinese business-to-consumer (B2C)
e-commerce company, JD.com dabbled in the field of
e-commerce in 2004. Its net revenues and operations
income, based on other than generally accepted ac-
counting principles, for 2020 were $114.3 billion and
$2.4 billion, respectively. As an online retailer and a
marketplace for third-party sellers, JD.com has been
distinguishing itself from its competitors by a strong
commitment to customer service. Its “211 program,”
which provides same-day delivery for orders submit-
ted prior to 11 am. and next-day delivery (before 3
p-m.) for orders submitted before 11 p.m., set a new
standard in China’s B2C e-commerce sector. In 2020,
approximately 90% of the total online retail orders
processed through JD.com’s logistic network were deliv-
ered on the same day or the day after the order
was placed, with over 60% of the total online retail or-
ders covered by the 211 program. JD.com currently
serves over 471 million active customers and manages
the flow of millions of stock-keeping units (SKUs)
through China’s largest nationwide fulfillment network.

JD.com is a major innovator in the use of autonomy
in logistics. It made a strategic decision to invest in
in-house logistics instead of relying on third-party
logistics. Starting in 2007, it began to establish its self-
operated, nationwide logistics forces. In 2012, it
registered its own logistics company. JD.com also set
logistics automation as a strategic goal. On April 25,
2017, JD Logistics was officially established (JD.com
2017b). This new business unit focuses on innovating
the next generation of intelligent logistics technologies,
with a particular emphasis on automated fulfillment ca-
pabilities, including automated warehouse technolo-
gies, autonomous delivery vehicles, and drones (Huang
2017, Lin and Singer 2017). With the mission of reduc-
ing logistics costs for the entire Chinese logistics indus-
try, JD Logistics is committed to sharing with society
the infrastructure, management experience, and profes-
sional technology it has accumulated and becoming a
global supply chain infrastructure service provider. At
present, D Logistics has six comprehensive logistics net-
works covering small- to medium-sized items, large-
sized items, cold chain, B2B, cross-border, and crowd-
sourcing. With the global coverage of these six large
networks and the application of big data, analytics,
cloud computing, and intelligent equipment, JD Logistics

encompasses an intelligent supply chain service system,
including warehousing, transportation, and distribution.
With control over fulfillment and delivery, JD.com has
been able to offer same-day or next-day deliveries on
most orders, a competitive strategy that had won cus-
tomers over the years.

The company is aware of the importance of opera-
tions research and advanced analytics to manage
warehouses. Research scientists from JD Logistics and
several universities have conducted joint research to
support various operations in its intelligent ware-
houses, one of its major recent innovations. JD.com’s
intelligent warehouse technology has significantly
boosted warehouse efficiency and reduced operational
costs. Robots were introduced into its production pro-
cess in 2016, and intelligent warehouses have become
common within the company. A highlight of JD.com’s
intelligent warehouse network is the development in
2017 of a fully automated warehouse located at its
Asia No. 1 logistics center (Asia No. 1 refers to
JD.com’s large fulfillment centers, which are used for
both stocking and e-commerce order fulfillment) in
Shanghai’s Jiading District, which covers a combined
floor area of more than 400,000 square feet and stores
60,000 boxes of goods (China Daily 2017). All opera-
tions in the warehouse are fully automated, including
receiving goods, storage, packaging, and sorting. It is
equipped with nearly 1,000 robots with varying func-
tions, including three types of six-axis mechanical
arms used for storage and packaging and three types
of automatic guided vehicles (AGVs) for sorting and
order picking. They can sort 3,600 items per hour and
the warehouse can process over 200,000 orders a day.
We refer interested readers to JD.com (2017a) for a vid-
eo about this warehouse.

Problem Description

One of the major challenges in operating an intelligent
warehouse is the management and dispatching of
AGVs. In this section, we provide a high-level over-
view of this problem. In a conventional picker-to-parts
warehouse system, workers walk or drive along the
storage aisles, pick up requested items from storage
racks, and return to accumulate, sort, and pack the or-
ders. As distinguished from the conventional picker-
to-parts warehouse system, in a modern parts-to-picker
intelligent warehouse system, storage racks of inven-
toried items are transported to workstations where the
picking occurs. In an intelligent warehouse, SKUs are
initially stored on storage racks in the picking area. A
large number of AGVs, which pick up racks and trans-
port them in the warehouse, surround the storage
racks. Figure 1(a) shows a typical rack that an AGV
(the small disk-shaped robot at the bottom) carries.
Figure 1(b) shows a corner of the warehouse. Approxi-
mately 70%-80% of these racks have two sides to store
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Figure 1. (Color online) (a) Storage Rack and an AGV Carrying It and (b) a Small Section of the Warehouse

(a)

products; the remainder of the racks have only one
side (usually for oversized products). Each side of a
rack has 10-20 storage grids, and each grid stores only
one type of SKU. A typical warehouse handles hun-
dreds of SKUs. The distribution of SKUs is intentional-
ly designed such that one type of SKU can be placed
on many different storage racks.

Workstations that receive the orders and pick the
SKUs from the rack to fulfill the orders are on the
edge of the picking area. Each workstation contains
several berths for the AGVs. The orders are periodi-
cally sent to the workstations. A typical order consists
of various types of SKUs. After receiving an order, the
dispatch center examines the types and the number of
SKUs in that order and sends commands to one or
multiple AGVs to pick up and transport racks to the
workstation. The candidate racks include the ones in
the picking area and the ones already being carried by
AGVs. Because the number of candidate racks is typi-
cally large, the dispatch center must determine how to
make optimal dispatching decisions.

If a rack has been assigned to a workstation, it
needs to be transported by an AGV. In particular, if a
rack is currently not moving, an idle AGV will be as-
signed to pick it up and deliver it to the target work-
station. When an AGV carrying a rack arrives at the
workstation, it will park in a berth near the worksta-
tion. Based on the order received, either a human
picker or robot arm of the workstation will select the
required SKUs from the racks. Depending on the type
of the warehouse, this process can be either fully auto-
mated or semiautomated, in which case the rack stor-
age and retrieval operations are automated, whereas
the picking process is still manual. The majority of
JD.com’s intelligent warehouses are semiautomated.
Once the desired products have been picked from the
rack, the AGV will carry the rack back to the picking

area. If the workstation has no empty berth at the mo-
ment, no rack is assigned to this workstation. Further-
more, because of the technical difficulties, when a
double-sided rack arrives at a workstation, the robot
arm can select only the products from the chosen side.
Therefore, when assigning a rack to a workstation, the
central dispatching system must also decide which
side of the rack is assigned.

The previous problem description applies to ware-
houses that stock small SKUs, where multiple items
are usually consolidated into one package before
shipping. The operation is different in a warehouse
that holds medium-sized SKUs. These items can be
picked by robotic arms, and one package usually in-
cludes only one item (i.e., multiple-item orders are
split and shipped separately). Finally, we emphasize
that the previous description applies to only the dis-
patching aspect of the warehouse operating system.
In this paper, we do not discuss other important and
challenging problems, such as which racks to stow
received inventory, how to allocate orders to work-
stations, how to balance the workload among dis-
joint zones, where to store a paired AGV and rack
when they leave a workstation, and how to route
AGVs without collision.

Generally speaking, compared with the picker-to-
parts system, the parts-to-picker system can boost the
picker productivity (Wurman et al. 2008, Wulfraat
2012). The parts-to-picker system also provides flexi-
bility in adding and removing robots, which is particu-
larly important in an e-commerce environment with
volatile demand. This revolutionary system was first
patented in the United States by Kiva Systems Inc.
(Mountz et al. 2008), which was later acquired by Ama-
zon. Increasingly more providers are competing in this
growing market (Banker 2016). The parts-to-picker sys-
tem is also referred to as the robotic mobile fulfillment
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(RMF) system in the academic literature. The perfor-
mance of such RMF systems has had little scientific
study (Azadeh et al. 2019). Although recent investiga-
tions, including Boysen et al. (2017), Yuan et al. (2018),
Yuan et al. (2019), Cezik et al. (2021), and Wang et al.
(2021), have been conducted on related operations plan-
ning and control problems, the real-time dispatching
problem in a large-scale intelligent warehouse, as we
describe in this paper, has not been documented in the
academic literature. We refer the interested readers to a
comprehensive review of robotized and automated
warehouse systems (Azadeh et al. 2019). We also em-
phasize that simply installing Kiva-type robots does
not necessarily lead to the desired benefits, and opera-
tions research concepts and analytics play a key role in
achieving the benefits.

Framing AGV Dispatching as a Matching
Assignment Problem

To run an efficient intelligent warehouse-management
system, we aim to effectively dispatch AGVs to racks
and workstations and to minimize the operating cost
and order-fulfillment time. To achieve this goal, we
build and solve a complex online tripartite matching
problem. The three components of the flow network
are (1) AGVs, (2) racks, and (3) workstations (also in-
cluding those for restocking and charging). At a high
level, AGVs are assigned to racks and workstations by
using a tripartite network flow paradigm (Figure 2).
Rather than explicitly minimizing order-fulfillment
time, in our model, we minimize the volume of unsa-
tisfied demand as a surrogate for minimizing order-
fulfillment time. Given the demand for each type of
SKU at any time, the warehouse management system
makes decisions such as to execute the following AGV
actions:

e An AGV picks up a rack within the picking area
and brings it to a workstation, where some requested
SKUs are retrieved.

e An AGYV picks up a partially empty rack within the
picking area and brings it to a restocking station, where
it is stocked with additional SKUs.

Figure 2. (Color online) Tripartite Network Flow Problem Is
to Assign AGVs to Racks and then to Workstations

Racks

AGVs Workstations

e An AGV retrieves a partially empty rack from a
workstation and returns it to the picking area.

o An AGYV retrieves a partially empty rack from a
workstation and brings it to a restocking station.

e An idle AGV travels to a charging station, where
its battery is recharged.

We focus only on the first bullet (i.e., an AGV
picks up a rack within the picking area and brings it
to a workstation) to emphasize the key concepts;
however, the solution procedure, as we describe,
generalizes to the other cases. We model the overall
problem as a bicriteria optimization problem, where
the goal is to minimize the total travel distance of
the AGVs, subject to the constraint that as many or-
ders as possible must be met in a timely fashion. We
face additional constraints that complicate the prob-
lem beyond a mere minimum-cost flow problem, be-
cause the same SKU type may be located in many
different racks. For example, if we require 100 units
of a specific SKU type, we must decide whether to
use two AGVs to collect two nearby racks with 50
units each or use one AGV to collect a single rack
that contains 100 units but is farther away. These
constraints essentially correspond to set-covering
style constraints that couple the decision variables in
a way that makes the constraint matrix lose total
unimodularity.

The matching problem we describe here must be
solved in each operating period, because the numbers
of idle AGVs, racks in the picking area, available
berths, and inventory of each rack (side) change over
time. In our system, one operating period is less than
five seconds. Thus, the matching problem must be
solved within three seconds. Given the problem size,
the major challenge is the constraint on the computa-
tional time. As such, we focus only on a static problem
for practical reasons and do not consider a more com-
plex dynamic version of the problem incorporating
demand forecasting.

We solve this problem by separating it into two
subproblems by introducing Lagrange multipliers.
After the decomposition, one subproblem is a
much smaller integer program. We relax its inte-
grality constraints to create a linear programming
model that we enhance with cutting planes to im-
prove the solution quality. The resulting solution
is rounded to the nearest integer values. We also
adopt a preprocessing procedure to reduce the
subproblem size, for example, by eliminating from
consideration the possibility of an AGV traveling a
considerable distance to a rack side unless its in-
ventory can completely satisfy the required quanti-
ty of a workstation’s SKU. The other subproblem is
an unbalanced assignment problem and is equiva-
lent to a linear program, which we solve via the
Hungarian algorithm. Please see the appendix for
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further details of the model formulation and solu-
tion methodology.

It is plausible to attack this problem by first deter-
mining the matching between racks and workstations
and then determining the matching between AGVs
and racks, that is, by decoupling the problem. Al-
though this approach results in an algorithm that runs
much faster, the quality of the solution is not guaran-
teed. For example, when ignoring the locations of
AGVs, this algorithm could match workstations with
racks that are further away from AGVs.

Integration of Algorithms with

Management Systems

The architecture of the intelligent warehouse system
contains four layers—the integrated management lay-
er, warehouse management layer, intelligent dispatch-
ing layer, and device control layer—which we discuss
briefly below. The integration management layer inter-
faces with various external business systems (e.g.,
enterprise resource planning and the warehouse man-
agement system) and decouples the intelligent ware-
house system from the external systems. It is mainly
responsible for receiving business requests from the
external systems and converting the messages into
standard formats. The warehouse management layer
includes several functional modules closely related to
warehouse management, such as inventory center, or-
der center, and location center. It receives messages in
standard formats from the integrated management
layer and implements various warehousing opera-
tions, such as inbound/outbound activities and inven-
tory checking. The intelligent dispatching layer is the
brain of the intelligent warehouse system. It uses dif-
ferent algorithms based on different purposes. For ex-
ample, when receiving a customer order, it determines
how to optimally fulfill the order based on the infor-
mation in the order (e.g., merchandise, shelf inventory
distribution, workstations). When the intelligent dis-
patching layer determines which resources to use to
complete a task, it sends commands to the device con-
trol layer, which then dispatches AGVs to complete
the task. The device control layer is mainly responsible
for coordinating and dispatching different devices to
complete tasks together. It includes two subsystems:
the task center and the AGV console. The device con-
trol layer communicates with a single AGV through
the AGV console to control the action of a single AGV.
The AGV receives a task issued through the controller
and converts it into robot instructions to drive the in-
ternal executors (e.g., servo motors) to complete the
task. The design ensures that the replacement and up-
grade of devices have the least impact on the system to
ensure that the system scales well and responds quick-
ly to demands.

When designing an algorithm, it is important to
consider its compatibility with the existing hardware.
For example, our dispatching model does not consider
the possibility of reassigning an occupied AGV
although doing so may lead to an improved solution
because of the following practical reason. Frequent re-
writing of tasks involves more input/output (I/0)
communication, which increases the chances of sys-
tem errors. AGVs operate in a wireless communica-
tion environment and must maintain high-frequency
I/0O communication with the central dispatching sys-
tem at all times. Frequent rewriting of tasks amplifies
the amount of communication, thereby increasing the
probability of communication errors and resulting in
fatal order fulfillment and inventory errors. Such er-
rors are undesirable, especially in an e-commerce en-
vironment that requires a high picking accuracy. As
such, the project team ruled out this design for
system-stability reasons.

Managerial, Political, and Financial
Implementation Challenges

Rome was not built in one day. Having conducted re-
search to determine the best solution, the project
team’s most important task was to find a warehouse
to verify the efficiency of the solution. In the real
world, JD.com’s warehouses are concentrated in seven
regions: north, east, south, southwest, central, north-
east, and northwest. To deploy a new warehouse, the
company’s central warehouse planning department
had to first communicate with the seven operation
centers to confirm the new warehouse requirements
and determine a target warehouse. Then, the team
proposed a plan for the joint review of the warehouse
planning department and the region. If approved, the
team went to the site to deploy and implement the
plan. Two major challenges arose: (1) Could the team
convince the warehouse planning department to ap-
prove this new warehouse model? (2) Was any region
willing to carry out the pilot study and build the very
first model?

The project team solved the first problem by per-
suading the warehouse planning department to con-
duct a simulation comparison. The team modeled the
layout of a conventional warehouse under the jurisdic-
tion of the North China Operations Center in a
computer-simulated environment. At the same time,
the team also built an intelligent warehouse solution
under the same conditions in the computer-simulated
environment. Then, it compared the two approaches
based on one month of real data from the conventional
warehouse, including daily inventory and the num-
bers of online orders and pickers. The results showed
the intelligent warehouse saved a considerable amount
of human labor and also met the requirement for time-
liness in meeting order deadlines. In addition, based
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on the results of a stress test, the peak order volume
processed by the intelligent warehouse was much
higher than the volume in the conventional ware-
house. Moreover, based on calculating the return on
investment (ROI), the team concluded that the intelli-
gent warehouse would be able to recover the invest-
ment cost within five years provided that the daily or-
der volume reached a certain threshold. Therefore, the
warehouse planning department approved the project
team’s attempt to promote the intelligent warehouse
model and contacted the manager responsible for the
East China Operations Center to deploy the first intel-
ligent warehouse.

Within JD.com the regional operations centers are
critical decision makers; thus, building the first intelli-
gent warehouse required their support. To solve the
second problem, the team not only demonstrated the
benefits of the intelligent warehouse model by simula-
tions, but also discovered the true concern of the East
China Operation Center management through fre-
quent communication: a large number of robots de-
ployed in this model would put great pressure on the
depreciation cost of the region. To address this con-
cern, the project team made a proposal: if the region
would agree to deploy an intelligent warehouse, the
depreciation costs of the equipment would be linked
to the project team and not be associated with the re-
gion for the first two years. After resolving this issue,
the East China Operations Center agreed to deploy
the first intelligent warehouse.

In addition to building a new intelligent warehouse
from scratch, converting existing conventional ware-
houses is an important way to deploy intelligent ware-
houses. The first intelligent warehouse converted from
an existing, conventional one was in Beijing under the
jurisdiction of the North China Operations Center. It
was a warehouse for computer, consumer electronics,
and communication (3C) products. Additionally, the
conversion process of an existing warehouse differed
from the deployment process of a new warehouse. For
a new warehouse, the project team needed only to pol-
ish the ground so that it was smooth enough for robots
to run and then complete routine steps, such as label-
ing, shelf placement, workstation installation, robot
entry, and inventory allocation to shelves. However,
for a conversion, before polishing the ground, addi-
tional steps were required, for example, shutting
down the warehouse operation, temporarily relocating
inventory to a nearby warehouse, and removing old
equipment. An emerging challenge to converting a
conventional warehouse to an intelligent one was the
assignment (or reassignment) of the warehouse employ-
ees because the intelligent warehouse model would
need fewer operating personnel. The agreement reached
between the project team and managers of the operation
center was to retrain existing employees to become local

equipment maintainers and thus improve their skills
and eventually improve their productivity. Layoffs
were not an option. This solution not only allowed
most employees to keep their jobs but also solved the
problem of providing a local maintenance team for the
equipment. Because of the nature of converting the con-
ventional warehouses, the team was confronted with
the challenge of converting an existing warehouse into
an intelligent one without compromising normal ware-
house operations and the stability of the employees.
Fortunately, the team meticulously thought out its
plan, addressed various concerns from different per-
spectives, implemented the plan, and eventually com-
pleted the conversion of this conventional warehouse.
We refer interested readers to CCTV-4 (2017) for a vid-
eo showing media coverage of this warehouse after its
conversion; in particular, see the section between 0:50
and 4:47 of the video.

JD.com had built more than 20 intelligent ware-
houses by the end of 2017; however, the deployments
did not always go smoothly. According to a summary
report at the end of that year, the processing efficiency
of some intelligent warehouses did not meet the
planned targets and the average daily order volume of
intelligent warehouses did not reach the threshold for
recovering investment returns. The expansion was
temporally suspended because of the concerns about
the operating efficiency of intelligent warehouses, and
the team was urged to improve the efficiency of exist-
ing intelligent warehouses. After the analysis, the team
found that the inefficiency was due to (1) insufficient
inventory (e.g., some warehouses did not stock
enough inventory because the warehouse managers
were skeptical about the new technology and there-
fore too conservative) and (2) the lack of optimization
on many details of the operation (e.g., to pick items
on upper levels of racks, raising the height of the
workstation is preferable to using ladders). The team
then spent an entire quarter on adjusting and improv-
ing the processes. At the company’s first quarterly
meeting in 2018, the data suggested that the overall
processing efficiency had reached the planned level.
Management once again affirmed the role of the intel-
ligent warehouse model for the company’s long-term
development and restarted the project. Subsequently,
the intelligent warehouse project progressed faster
than ever.

With the ongoing work of the project team, the ma-
turity of the method and deployment efficiency have
gradually improved. Today the team can build a new
intelligent warehouse within one month and convert
an existing warehouse within two months, thus greatly
improving the deployment and efficiency of intelligent
warehouses within JD.com. Furthermore, every intelli-
gent warehouse must undergo a rigorous ROI analysis
before implementation. A key criterion for approving a
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Table 1. Relevant Statistics Gathered During the Nanxiaoying Stress Test

Panel A

Orders Items SKU types Workstations Workers AGVs Area (sq. ft) Time (h)

Automated 24268 56,283 424 8 38 64 30,139 16
Conventional 49,101 109,962 3,001 38 98 NA 86,111 16
Panel B

Orders/hour/workstation Items/hour/workstation Items/hour/worker Items/sq. ft

Automated 190
Conventional 81
Ratio 2.3:1

440 93 1.87
181 70 1.28
2.4:1 1.3:1 1.5:1

deployment plan is whether building an intelligent
warehouse will recover the investment cost within five
years. In the calculation process, JD.com first determines
the cost of fulfilling a single order under the convention-
al warehouse operation mode and then calculates the
corresponding cost under the intelligent warehouse op-
eration mode. If the five-year cost saving, that is, the
cost difference per order multiplied by the estimated or-
ders handled by the warehouse over the ensuing five
years, is greater than the cost of investment (including
construction, equipment, labor, management, energy
consumption, and packaging), it will be considered
as a good investment. Otherwise, the plan will not be
implemented.

Finally, the team also encountered a challenge
caused by the cash-flow constraint when rapidly pro-
moting the intelligent warehouse technology. To re-
solve this challenge, when the technology was mature
enough, the intelligent warehouse model was commer-
cialized and made available for sale to external clients.
Through revenues from external sources, the team was
able to self-finance the project and raise startup capital
for the deployment of intelligent warehouses and effec-
tively achieve strong internal and external circulations.
Internal circulation refers to the expanded use of intelli-
gent warehouses within JD.com and the use of JD Lo-
gistics scenarios to further advance the technology. The
continuous accumulation of practice and experience in
the internal circulation enables JD.com to be a trusted

partner for its external clients. The external circulation
refers to the commercialization of JD.com’s intelligent
warehouse technology. The revenues generated by the
commercialization can further accelerate the expansion
of intelligent warehouses in internal circulation. The
driving effect of the two-part circulation promotes the
continuous and robust development of the intelligent
warehouse solution.

Stress Tests

To conduct an apples-to-apples comparison, JD.com
conducted two real-life stress tests to compare an au-
tomated warehouse with a conventional warehouse
that relies on human labor. Both tests took place on
November 11, 2017, one in Nanxiaoying and one in
Gu’an (both of which are located near Beijing). Note
that November 11 is China’s most important annual
promotion day and also the world’s largest online
shopping festival. The results of the two tests are sum-
marized in Tables 1 and 2, suggesting that the im-
provement automation provided is dramatic by all
relevant metrics. Specifically, in the Nanxiaoying test,
the automated warehouse was 30,139 square feet and
processed 24,268 orders (including 56,283 items and
424 SKU types) within 16 hours by employing eight
workstations, 38 workers (including workers other
than pickers), and 64 AGVs. By contrast, the conven-
tional warehouse was 86,111 square feet and proc-
essed 49,101 orders (including 109,962 items and 3,001

Table 2. Relevant Statistics Gathered During the Gu’an Stress Test

Panel A

Orders Items SKU types Workstations Workers AGVs Area (sq. ft) Time (hr)

Automated 8,918 26,086 198 3 20 26 21,528 20
Conventional 18,705 26,950 6,415 18 72 NA 161,459 20
Panel B

Orders/hour/workstation Items/hour/workstation Items/hour/worker Items/sq. ft

Automated 149
Conventional 52
Ratio 2.9:1

435 65 1.21
75 19 0.17
5.8:1 3.4:1 7.1:1
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SKU types) within 16 hours by employing 38 worksta-
tions and 98 workers. The automated warehouses
stocked only fast-moving items, whereas the conven-
tional warehouses also stocked slow-moving items.
Their ratios of the number of processed orders per
hour per workstation, the number of processed items
per hour per workstation, the number of processed
items per hour per worker, and the number of proc-
essed items per square feet were 2.3, 2.4, 1.3, and 1.5
times, respectively. The improvement was even more
significant in the Gu’an test for many reasons, includ-
ing number of SKU types, size and layout of the ware-
house, and workers” proficiency. Finally, compared
with the claim in the literature (Wurman et al. 2008,
Woulfraat 2012) that pick rates of 600 items per hour
per workstation are achievable under the assumption
that the Kiva system can deliver a new rack face every
six seconds by keeping a small queue of work at the
picking station, our pick rates were only 440 and 435,
respectively, during the stress tests. However, we
found that the rates depended heavily on workers’
proficiency and could exceed 600 as workers became
more experienced with the new system.

As a result of the success of the stress tests, JD.com
subsequently built a warehouse that can handle
200,000 orders a day but employs only four people,
whose jobs are centered around servicing the AGVs
(Palmer 2018). Optimization combined with modern
robotics technology resulted in tremendous improve-
ments in picking efficiency and warehouse space
utilization.

Estimated Impact

As part of the company’s strategic plan, JD.com has
been aggressively expanding its warehouse network.
We refer the reader to Table 3 for a summary of the
growth in warehouses and warehouse space experi-
enced since the company went public on Nasdaq in
2014. In particular, it is currently operating over 900
warehouses in which it largely applies intelligent
warehouse technology. Some of the intelligent ware-
houses can process more than 1.3 million orders per
day during peak seasons. JD.com’s application of in-
telligent technologies is the most extensive in the field
of e-commerce logistics in China. Armed with ad-
vanced operations research concepts and analytics, its

Table 3. Growth of JD.com’s Warehouse Network Since
2014, Including the Number of Warehouses (Both
Conventional and Intelligent) and the Warehouse Gross
Floor Areas (Million Square Meters)

2014 2015 2016 2017 2018 2019 2020

Number of warehouses 123 213 256 486 550 700 900
Gross floor area 22 40 56 100 120 169 21.0

intelligent warehouse technology has significantly im-
proved warehouse efficiency. It also has helped the
company lower its number of inventory turnover
days to 33.3 and to decrease its fulfillment expense ra-
tio from 7.2% in 2016 to a world-leading level of 6.5%.
The construction of intelligent warehouses has led to
an estimated hundreds of millions of dollars in annual
savings. In 2020, 90% of JD.com’s first-party retail or-
ders were delivered on the same day or on the day af-
ter they were placed, raising the industry’s bar for
customer satisfaction.

The agility of such intelligent warehouses not only
enables JD.com to handle 10 times the normal volume
of orders during peak sales seasons, such as 618
Grand Promotion (June 18) and Singles Day (Novem-
ber 11), but also helped the company respond quickly
to the many complexities associated with the COVID-
19 pandemic and ensure the rapid recovery of produc-
tion capability. The sudden outbreak of COVID-19
swept through the world in 2020, and crowds were
perfect hotbeds for the virus to spread. When conven-
tional warehouses were shut down to prevent the
spread of the virus, JD.com’s intelligent warehouse
played a key role in this battle against COVID-19. In-
telligent warehouses effectively prevented warehouse
workers from gathering, functioned normally and effi-
ciently in virus-ridden areas, and ensured supplies
were distributed to their destinations in a timely
manner.

As the company that pioneered same-day delivery
as a standard service in China’s B2C e-commerce sec-
tor 10 years ago, JD.com continues to pursue balanc-
ing the urgent need to alleviate pressure on logistics
workers while maintaining the high-quality logistics
services that define the company’s brand. Before the
deployment of intelligent warehouses, logistics work-
ers across the industry faced unprecedented pressure
in the form of physical labor. For example, warehouse
employees often managed heavy loads, causing seri-
ous joint problems; pickers walked the length of al-
most a marathon each day; and workers in cold chain
warehouses transitioned frequently between normal
temperatures and temperatures as low as -30°C.
JD.com’s intelligent warehouse technology team has
been exploring ways to address these issues and im-
prove working conditions.

As part of its Retail-as-a-Service strategy, in addition
to improving its own operations, JD.com became a re-
tail infrastructure service provider and began provid-
ing the integrated technology services of both software
and automation solutions to its logistics peers and a
wide range of industries in 2018. It has built a brand im-
age for its intelligent warehouse technology in over a
hundred opening-up programs (i.e., programs to com-
mercialize the technology for external clients) across
industries, including 3C, apparel, industrial products,
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education, fast-moving consumer goods, retail, auto-
motive, fresh produce, and manufacturing, facilitating
the optimization of warehousing and replenishment. For
example, Company L, the 3C electronics industry
manufacturing giant, anticipates that JD.com’s intelli-
gent warehouse solutions can help create without inter-
ruption a downstream production line from an up-
stream raw material storage warehouse. Company L has
a production line on the first floor of a production site
and has a raw material storage warehouse above it. Ac-
cording to the production line schedule and economies
of scale, the raw materials on the second floor must
be supplied periodically to the first floor. JD.com de-
signed a solution by using AGVs via a hoist to replen-
ish raw materials from the second floor to the first
floor for manual picking. At present, JD.com exports
thousands of AGVs annually through its intelligent
warehouse solutions.

JD.com’s intelligent warehouse technology has re-
ceived intense media coverage since its deployment,
including a highly publicized featured appearance on
the April 21, 2018, broadcast on Xinwen Lianbo, China
Central Television’s nightly news program (CCTV
2018). This program is shown simultaneously by all lo-
cal TV stations in mainland China, making it one of
the world’s most-watched programs. Furthermore, as
a representative of contemporary Chinese science and
technology showing the world the achievements of
China’s development in the new era, JD.com was also
featured during the closing ceremony of the Pyeong-
Chang 2018 Winter Olympics in an eight-minute pro-
motional video for the 2022 Winter Olympics, which
will be held in Beijing; see JD.com (2018) for a summa-
ry of the coverage.

With the application of intelligent technologies,
China’s ratio of social logistics cost to GDP has steadi-
ly decreased from 18% to 14.2% in the past decade.
JD.com’s management believes the entire industry
will see benefits long into the future, and logistics au-
tomation will lead in global efficient circulation and
sustainable development.

Milestones
We highlight the following milestones for JD.com’s in-
telligent warehouse technology.

e 2010: JD.com began to develop intelligent storage
technology, including the application of operations re-
search and analytics in storage.

e 2015: In June, 14 Asia No. 1 warehouses were com-
pleted, marking the success of the first stage of self-
developed intelligent storage technology. In October,
JD.com began to invest in the research and develop-
ment of next-generation warehousing technology: intel-
ligent warehouse technology mainly involving robotics
and data-driven decision making.

e 2016: In June, an engineering team started to work
on an AGV control model and algorithm in intelligent
warehouses. The engineering team included 10 algo-
rithm engineers and 50 development engineers. In De-
cember, the first intelligent warehouse project was
completed.

e 2017: In October, JD.com completed construction
of a flagship intelligent warehouse located at the Asia
No. 1 logistics center in Shanghai’s Jiading District,
achieving fully unattended operations in the processes
of receiving, storing, order picking, packaging, and
sorting. Subsequently, this warehouse was able to han-
dle more than 200,000 orders a day.

At present, JD.com’s intelligent warehouse team
has been expanded to hundreds of engineers, includ-
ing warehouse design engineers, algorithm engineers,
software development engineers, hardware engineers,
and implementation engineers. They have completed
the research and development of six types of storage
robots and three core intelligent storage systems.

Lessons for Other Organizations

For organizations wishing to implement intelligent
warehouse solutions, JD.com’s practice provides sever-
al lessons. First, 100% automation is impractical and
not ideal and JD.com does not aim for full automation.
Compared with manual picking, the types of commod-
ities that can be processed by intelligent warehouses
are relatively limited, and restrictions on intelligent
warehouse locations and layout are in place. As a re-
sult, the processing efficiency of intelligent warehouses
has an upper limit. By contrast, manual picking is
more flexible in terms of efficiency and responsiveness
to complex scenarios. Ideally, the proportion of intelli-
gent and conventional warehouses should be adjusted
dynamically to allow companies to cope better with
situations such as large e-commerce promotions and
the handling of parts with special shapes. Second, in
the process of upgrading conventional warehouses to
intelligent warehouses, planning ahead and continu-
ing to employ existing workers (e.g., retraining them
to perform emerging jobs) is critical. Third, when deal-
ing with optimization and decision-making problems,
relying completely on complex models and sophisti-
cated algorithms is not ideal. Sometimes in-depth busi-
ness analysis and simple strategies can greatly simplify
the complexity of the problem, and excellent outcomes
can be achieved without particularly complex models
and algorithms. Fourth, a gap always exists between a
theoretically ideal solution and reality. A perfect solu-
tion in the model may not work in reality simply be-
cause of unexpected problems, and repeatedly testing
and then making adjustments is necessary. No perfect
plan exists—only continuous improvement of the im-
plemented model.
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Future Focus

Current intelligent warehouse solutions only solve the
problem of efficient picking and fulfillment operations
and not the problem of high-density storage. Paying
more attention to the balance between high-density
storage and efficient picking/fulfillment operations is
necessary. Furthermore, investing in technologies oth-
er than warehousing, such as drones and driverless
cars, is important. Finally, the long-term social impact
of the intelligent warehouse technology must be con-
sidered and evaluated.
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Appendix. Model Formulation and Solution
Methodology

We explain our approach in more detail in this appendix.
As we explain previously, our problem can be modeled
as an online tripartite network flow problem with addi-
tional constraints involving demand for SKUs. Below, we
describe our integer programming formulation and solu-
tion method. In each operating period, we solve an on-
line tripartite matching problem for AGVs, racks, and
workstations. Note that the model/algorithm we de-
scribe here is the basic version developed when the team
first explored this problem. The currently implemented
model/algorithm is a variant of the basic version.

Model Parameters

o Let 7 =7, U 7, be the index set of all AGVs in the pick-
ing area, where Z, denotes the set of idle AGVs and 7, de-
notes the set of occupied AGVs. We use the letter i to indicate
the index of the AGVs.

o Let 7 =U7,U J, be the index set of every side of the
racks in the picking area. Here, J, denotes the set of all rack
sides on the stationary racks and J, denotes the set of all
sides on the moving racks (i.e., the racks that are currently
carried by AGVs). We use the letter j to indicate the side of
the rack.

e Let 7 be the index set of all the racks in the picking area.
We use t to denote the index of a rack. We know the mapping
between the sides and the racks; that is, given the index of the
rack, we know whether it is double sided or single sided. In
addition, given the index of one particular side, we know the
index of the rack to which this side belongs.

e Let K be the index set of all workstations. We use the let-
ter k to indicate the workstation.

e Let S be the index set of SKU types. We use the letter s to
indicate the product type.

o Let {¢j}icrjey and {cjzk}j€ 7xex be the travel-distance cost
matrices. More specifically, c}j is the travel distance between

the current location of AGV i€Z and the rack side je€ J,
whereas c]?k is the travel distance between the rack side j € J

and the workstation k € . We note previously that robot
arms can select SKUs from only one side of the rack. When
AGV iis carrying rack t and rack side j; on rack t is the one
ready for selecting, we set c}h = 0. However, because of tech-

nical difficulties, a distance cost will arise if an AGV wants to
turn the rack around. Therefore, if the rack on AGV i is dou-
ble sided and the other side is j,, we have c}jz > 0.

o Let {O }rex ses e the requirement (i.e., demand) matrix
of SKUs from workstations. The element O, denotes the
number of the type s € S of SKUs required by the workstation
k € K. Here, we treat Oy, as an input of our matching prob-
lem. Allocating orders/items to workstations is an important
and challenging problem; however, for brevity, we omit the
discussion.

o Let {gjs}jesses be the inventory matrix of SKUs on the
sides of racks. The element g;; denotes the number of the type
s € S of SKUs on the sidej € 7.

o Let {Bi}iex be the vector of numbers of available berths
for all the workstations; that is, no more than By racks can be
parked at the k-th workstation. Note that in our matching
problem, we only consider workstations with positive By;
that is, if B, = 0 for some k, the associated workstation will be
removed from [ in this round of matching.

o Let ay, ay, and a3 be weighting parameters: o, represents
the weight assigned to the total cost of moving AGVs to
racks; a, represents the weight assigned to the total cost of
moving racks to workstations; and @5 represents the weight
assigned to the total amount of unsatisfied demands. Here,
a; and a, can be different, because it costs more energy when
AGVs are moving with racks than without racks.

We also have the following information:

e For each rack t € 7, we have a subset 7; C 7 that consists
of the index (indices) of the rack side(s) on rack t. For one-
sided rack ¢, |7;| = 1. For double-sided rack ¢, |7;| =2, we
have | 7| <2|7|.

o For each AGV i € 7, that is currently transporting a rack,
we know the index ¢; of the rack. 7}, is then the set of indices
(index) of the sides on this rack.

Decision Variables

To find the best tripartite matching between the AGVs,
sides (racks), and workstations in our problem, we intro-
duce decision variables for a matching between the AGVs
and sides (rack), a matching between the sides and work-
stations, and the number of SKUs representing the unsa-
tisfied demands. These definitions are as follows:

o Let X :={x;; €{0,1}};¢7 jes be the matching variables be-
tween the AGVs and sides. It is x;; = 1 if the AGV i€ T is as-
signed to the side j € 7 and x;; = 0 otherwise.

o Let Y:={y; € {0, 1}}jeg ke be the matching variables be-
tween the sides and workstations. It is y; = 1 if the side j € J
is assigned to the workstation k € K and y; = 0 otherwise.

o Let Z := {z; € Zy }ycx ses De the variables representing the
unsatisfied demand required for the product type s € S at the
workstation k € K.

The total number of variables equals |Z| X |J|+|J]|X
I+ K] % |S].
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Objective Function

Our target is to minimize the total travel-distance cost
while fulfilling the order requirements as much as possi-
ble. Minimizing the travel distance is a common objective
in the literature, because order picking is generally consid-
ered to be the most critical function and typically accounts
for the majority of warehouse operating costs (Eisenstein
2008, Bartholdi and Hackman 2016). The total travel-
distance cost can be divided into two parts: the distance
cost of AGVs picking up racks and the distance cost of the
selected racks being transported to workstations. We do
not explicitly model the travel-distance cost from worksta-
tions to the rack-storage area upon the completion of pick-
ing tasks, because the storage area is divided into zones
and racks are assigned to the zones based on their velocity
(e.g., fast-moving and slow-moving zones) and racks are
randomly stored in their zones upon the completion of
tasks. How well the order requirements are met is mea-
sured by the total number of the unsatisfied pieces of de-
mand. Thus, we have the following objective function:

P min 0112 Z C,-ljxij + azz Z Cjzkyjk + a32 Z Zks-

i€l jeJ j€J keK ke seS

Constraints
Our warehouse system has the following constraints:

>ix <1, Viel, (A1)
je7

in]' <1, VjeJ, (A.2)
i€l

Sk <1, VjieJ, (A.3)
ke

D yx < B, VkeK, (A4)
ji€d

D= Dy Vied, (A.5)
i€l kek

Sk s 2 O — 2k, VEEK, €S, (A.6)
je7

xj=0, VieT, jeT, (A7)
Xij = 0, Viel, ] ¢ L7ti/ (A8)
Z inj <1, Vte T, (A9)
i€l je;

xj€{0,1}, VieZ, jeJ, (A.10)
yr€{0,1}, VjieJ, keKk, (A11)
Zks 20, zks €Zy, YkeEK,s€S. (A.12)

We interpret these constraints as follows:

e Constraint (A.1) requires that each AGV can be assigned
to at most one side.

e Constraint (A.2) requires that each side can be picked up
by at most one AGV.

e Constraint (A.3) requires that each side can be assigned
to at most one workstation.

e Constraint (A.4) requires that the number of rack sides
assigned to a workstation cannot exceed the number of avail-
able berths in that workstation.

e Constraint (A.5) requires that whenever an AGV is as-
signed to a rack side, the rack side must also be assigned to a

workstation. Otherwise, if a rack side is not assigned to an
AGYV, it should not be assigned to any workstation.

o Constraint (A.6) requires that when some rack sides are
assigned to a workstation, the SKUs on these rack sides are
used toward fulfilling the order requirement in that worksta-
tion, while any unsatisfied requirements are recorded in zs.

o Constraint (A.7) requires that an idle AGV should never
be assigned to a rack side in movement.

o Constraint (A.8) requires that an occupied AGV cannot
be assigned to rack sides except the one or two rack sides on
the rack that the AGV is currently transporting. As we dis-
cuss previously, for system-stability reasons we do not reas-
sign an occupied AGV.

e Constraint (A.9) requires that on a double-sided rack,
only one side can be chosen when we want to assign an AGV
to pick up the rack. Therefore, only one AGV will be assigned
to a rack and only one side of the rack could be ready for se-
lecting by the robot arms each time, regardless of whether the
rack is double sided.

e Constraints (A.10), (A.11), and (A.12) define the domain
of the decision variables.

Constraints (A.5) and (A.9) collectively also guarantee
that both sides of a double-sided rack will not be assigned
to workstations at the same time.

Solution Method

Problem (P) is a large-scale integer programming prob-
lem, which is hard to solve for the exact solution in prac-
tice. Furthermore, this tripartite matching problem needs
to be solved in an extremely limited computational time;
for example, the operating time for one period is only
three seconds. To give some approximate figures, in a typ-
ical warehouse, we deploy |Z| =250 AGVs, 1,800 racks
(with |J]=3,300 rack sides), and |K|=50 workstations to
handle more than |S|=2,000 different types of products.
Thus, if we use model (P) to guide our dispatching deci-
sions, Problem (P) has approximately 0(10°) decision var-
iables and O(10°) constraints, where O(-) is the “Big O”
notation and indicates order of magnitude. To find a good
solution (although possibly not optimal given the time
constraint), we mainly adopt the idea of the “divide and
conquer” approach and separate the main problem into
two smaller ones and solve them separately.

In Problem (P), because only Constraint (A.5) links the
decision variables {x;} and {y;}, we divide the problem into
two subproblems by introducing the Lagrange multipliers
associated with Constraint (A.5). Let A:={A;>0,j€ J} be
the Lagrange multipliers. We then consider the following
partially relaxed problem (P(A)):

P(A) min DD @ > ik

i€l jeJ jeJ kek
3 S+ S S~ )
kel se§ jeTg kek i€T

(st.) {X,Y,Z} satisfy Constraints (A.1)-(A.12).

Below, we use V(:) to denote the optimal objective value of
problem (). According to the duality theory, for any A, the
optimal objective value V(P(A)) provides a lower bound of
the original problem (P), that is, V(?(A)) < V(P). Generally
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speaking, we can strengthen such a lower bound by finding
the optimal dual variable A*, that is, A* = argmax, V(P(A)).
However, searching for the optimal dual variable A is still a
difficult problem. At this stage, we assume we have some
known A for Problem (P(A)). For any fixed A, we can re-
write the objective function of Problem (P(A)) as

)r{nllfnz 22 ey = A+ D7 > (@acg + Ay

€T jeJ JET kek

+ 3D D 2k

kek seS

Based on the previous formulation, we observe that the de-
cision variables {x;} and the variables {yy,z} are totally
separated in Problem (P(A)). Thus, solving Problem (P(A))
is equivalent to solving two subproblems (P'(A)) and
(PA(A)):
PYUA): min > 2 = Ay
i€l jeJ
(s.t.) X satisfies Constraints (A.1), (A.2), (A.7),
(A.8), (A.9), and (A.10),

and

PAA): min 20 2 G+ Ayt as 3 >z

Y,z j€T kek kek seS
(s.t.) {Y,Z} satisfy Constraints (A.3), (A.4), (A.6),
(A.11), and (A.12).

In general, the first problem represents the matching be-
tween rack sides and AGVs and the second problem repre-
sents the matching between rack sides and workstations.
Note that solving the previous two subproblems sep-
arately may not provide a feasible solution to the origi-
nal problem (P), because Constraint (A.5) may not be
satisfied. A better way to use the previous decomposi-
tion structure is to solve the subproblem (P*(A)) first
and use the solution of the subproblem (P*(A)) as the
input for the subproblem (P'(A)). More specifically, af-
ter we achieve the solution {y}fk} from Problem (P*(A)),

we solve the modified version of the subproblem
(PY(A)) as follows:

mm Z Z CjiXij

i€l jeJ
(st) D x> > vy Vied,
i€l keK
X satisfies Constraints (A.1), (A.2), (A.7), (A.8),

(A.9), and (A.10).

Compared with Problem (P'(A)), Problem (P') has an ad-
ditional constraint Xz x;; > Zke/cyk to ensure the feasibili-
ty of the solution. Here, {y ) prov1des the information of
rack sides that are chosen to match the demand in differ-
ent workstations. Using {y]*.k} as the input in Problem (P?)
gives the matching solution {x;} of the AGVs for these
rack sides. We also found that changing the coefficients in
the objective function from a;c} j—Ajto C1] does not impact
the quality of the solution. Hence, we use {cj} in the ob-
jective function of Problem (P').

The key issue is to now find a good value for the dual
variable A. After solving the continuous relaxation of the
original problem (P), we can get the correspondent dual
variables A of Constraint (A.5). We then use A as a surro-
gate of the optimal A. However, the solution to the con-
tinuous relaxation of Problem (P) is not fast enough to
match the operating period. Fortunately, updating A in
each operating period is not necessary. We update A only
if doing so is necessary, for example, computing A in a
longer time interval. In summary, we adopt the following
steps to solve Problem (P) in each operating period:

1. Update A if doing so is necessary;

2. Solve Problem (P?(A)) for solution {y %t and {z,.};

3. Solve Problem (P') by using {y} as the input for the so-
lution {x};}. Below, we discuss in c{etall how to solve Prob-
lems (P? (A)) and (PY).

Solutions for Two Subproblems (P') and (P%(A))

Let us focus first on the second subproblem (P2(A)). The
subproblem (P?(A)) is still an integer programming prob-
lem, although a smaller one than the original problem
(P). Our main idea is to solve the corresponding linear re-
laxation problem (e.g., relax yj €{0,1} to y; € [0,1] for all
i€Z,jeJ and zj € Zy to zj €R,) and round the continu-
ous solutions to the integer solutions. We use (’P (A)) to

denote the relaxed problem for Problem (PZ(A)). We
adopt the following heuristic to enhance the quality and
efficiency of the previous solution procedure.

We add some cutting planes in the relaxed problem
(73 (A)) to tighten the constraints, which force the integer
solutlon to expose itself at the extreme points. We mainly
add two types of cuts: the lifting cuts and the minimum
cover cuts. We refer the interested reader to Sierksma and
Zwols (2015) for a detailed discussion of these cuts. We
introduce these two types of cuts to strengthen the
demand-satisfaction Constraint (A.6) and illustrate in the
next sentence how to add the cuts. For some ke K and
s€S, Constraint (A.6) essentially says Xjcs Y- s = Ogs
(here we ignore the auxiliary variable z, for illustrative
purposes).

We first talk about lifting cuts. If we can identify some
J* such that g;- s > Oy, we may introduce a new constraint
Sieg Yik *Gjs — Yk 8 = Ok, where s =gj. s — Os. Substituting
s in the previous constraint gives

> Yk i+ Yk Ok = Ogs. (A.13)
J&T 1 j#

We can thus see that Constraint (A.13) is tighter than the
original one. Thus, in our implementation, if we can find
some j*, we replace Constraint (A.6) by Constraint (A.13).
This procedure has the similar effect of adding a valid in-
equality but avoids adding new constraints. If multiple j*
exist, repeat the same procedure for all j.

We next discuss minimum cover cuts. A minimum cov-
er cut is usually referred to the cut designed for the knap-
sack problem. We slightly misuse the name here because
our method is developed in the same spirit. We sort {g;s}
with respect to j in a descending order, namely, g; s>
s > ... If € >1 exists such that X/, g, s > O, we may
add a constraint Y7y 2 (", interpreted as requiring at
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least ¢* rack sides to satisfy the workstation-SKU combina-
tion (k, s). This constraint is particularly useful when all
the racks have relatively low inventory levels (i.e., g are
all small and ¢ is large). By contrast, if j exists such that
gjs > Ok, then £"=1 and the constraint F;7yx>1 be-
comes trivial and less useful.

Note that adding cuts does not guarantee an integer
solution by solving the relaxed problem. The purpose of
adding these cuts is to enhance the quality of the solu-
tion derived from the relaxed problem (P,ZP(A)), namely,
to achieve a better outcome after the rounding proce-
dure. We also found that even a small number of cuts is
sufficient to find a high-quality (albeit suboptimal)
solution.

In addition to the technique of strengthening the con-
straints, we adopt the preprocessing procedure to reduce
the problem size before solving the relaxed problem. Intui-
tively speaking, for each workstation k, if a rack side is far
away from this workstation and its inventory is not suffi-
cient to satisfy the requested SKU, we may eliminate this
rack side. More specifically, for each workstation k, we in-
troduce the cost-benefit value for each rack side as follows:

Vij = (azcjzk +A)) + a3 max{0, O —q;s}, j€ J.
s€S
We then set up a cost-benefit threshold: if Vj; is greater
than the threshold, we eliminate the corresponding rack
side from the candidate set.

When we solve the linear programming problem
(Plzp(A)), we adopt the dual simplex method (Bersimas
and Tsitsiklis 1997), because the number of constraints is
far fewer than the number of decision variables. Adopting
the dual simplex method significantly speeds up the solu-
tion process.

In the rounding process, we only need to round the sol-
utions of {y/fk}. Then, {z;,} can be computed as below:

ths = max{O, Oks — Z]/;k . qjs}/ keK,seS.
jeJ

Next, we move to the subproblem (P'), which is an unbal-
anced assignment problem. Such a problem is known to be
equivalent to its linear programming relaxation, which can
be solved efficiently by, for example, the Hungarian algo-
rithm (e.g., Bersimas and Tsitsiklis 1997, Burkard and Cela
1999). The complexity of this algorithm is approximately
O(max{|Z],|7}*). In our implementation, we further re-
duce the size of Problem (P!) by a decision-variable re-
placement. In Problem (P'), we need to match the AGVs
with the chosen racks but not AGVs with the rack sides.
Once we know {y]*.k}, we have the information about which

racks are chosen. Thus, in Problem (P'), we replace the
original variables that represent the match between the
AGVs and the rack sides with the new variables that repre-
sent the match between AGVs with racks. Such a replace-
ment may help us reduce almost half of the decision varia-
bles in Problem (P').

In summary, we decompose the original problem (P) into
two subproblems (PY) and (P?), where (P') is essentially a
linear programming problem and (P?) is a much smaller in-
teger program. For example, in a typical warehouse with 250
AGVs, 1,800 racks (with 3,300 rack sides), 50 workstations,
and 2,000 SKUs, Problem (P) has approximately 0(10%)

decision variables. After the decomposition, Problem (P is
still large (but it is essentially a linear program), whereas the
size of the integer programming problem (P?) is reduced sig-
nificantly (by approximately 75%).

To evaluate the performance, we compare our algo-
rithm with the commercial mixed-integer programming
solver. For details on this performance, please see the elec-
tronic companion.
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