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We describe a software application that enables owners of generation output from a virtualized Federal
Columbia River Power System to safely operate the system, while also shaping the generation to meet their
energy and economic needs. The application, the Optimizer, employs modern operations research techniques
to convert a highly nonlinear problem into a linear one to create a robust solution for the six-dam system on
an hourly basis, over a 10-day time horizon, and within a few minutes. The Optimizer helps to simultaneously
manage and optimize the generation portfolios for 13 utilities in a stringent time frame around the clock, and
enables hydroelectric (i.e., hydro) planners to ensure that the operation of the river meets all the requirements
for flood control, fish management, electrical reliability, safe dam operations, and recreation under high degrees
of uncertainty. The Optimizer allows utilities to integrate renewable, environmentally friendly wind and solar
generation into their resource portfolio with hydro generation, and empowers these utilities to rapidly make
decisions and adapt to changing conditions. We estimate that this project will reap benefits of $765-$952 million
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between 2011 and 2028.

Keywords: Columbia River; hydro optimization; mixed-integer programming.

lobal climate change has necessitated a major
shift in the way that the U.S. power industry
creates electricity. Power generators are transition-
ing from traditional fossil fuels such as coal toward
carbon-free, renewable hydroelectric (hydro) genera-
tion such as wind and solar. This shift creates sig-
nificant challenges to maintain a reliable energy grid,
because the system’s reliability depends on moment-
by-moment changes in electricity demand being met
by equal and offsetting changes in electricity supply.
Wind and solar, the two most viable forms of renew-
able generation at present, hinge on weather condi-
tions and daylight cycles; therefore, they cannot be
controlled to match changes in electricity demand.
Until large-scale electricity storage becomes feasi-
ble, the only two practical solutions to fill the gaps
between these new intermittent supply resources and
the variable demand for electricity are gas-fired gener-
ators and hydro generation. Gas-fired generators have
the capability to start quickly and adjust their output
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in real time to respond to the imbalances on the grid,
but are inefficient and carbon intensive. Hydro gener-
ation provides the electric grid with the needed flex-
ibility to integrate intermittent resources into the sys-
tem, and does so without emitting CO, or harmful
by-products.

Unfortunately, the ability to build new hydrogener-
ation capacity is limited by geography and ecological
concerns. In the Western United States, these limita-
tions on new hydrogeneration development are com-
pounded by the fact that the existing hydro system
at times operates at its maximum ability to absorb
rapid changes in supply and demand (i.e., integration
capacity).

Increased variability from renewable resources and
the inability to add new, clean hydro resources stresses
the importance of optimizing the use of existing hydro
resources to provide the maximum amount of flexi-
bility to the grid. The Energy Authority, Inc. (TEA)
has developed a hydrogeneration and water-routing
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optimizer, which we refer to as the Optimizer
throughout this paper. The Optimizer allows 13 small-
to-mid-size public utilities in the Pacific Northwest
to harness the power and flexibility of the vast Fed-
eral Columbia River Power System (FCRPS). They use
this resource to integrate renewable generation into
their power supplies and to meet their demands in an
environmentally responsible manner, while maintain-
ing low electricity rates for their customer owners.

A number of criteria drove the development of the
Optimizer. First, the FCRPS is complex; it consists of
many large dams on the Columbia River and Snake
River (see Figure 1), and is subject to a wide vari-
ety of operational constraints. For a utility to effec-
tively use this resource, cooperation and coordination
throughout the organization are required. Second, the
interplay between trading in wholesale markets and
the need to procure and move power from where it
is produced to where it is consumed on an hour-by-
hour basis requires rapid decision making around the
clock. The Optimizer addresses these requirements by
deploying an array of innovative operations research
techniques.

The Optimizer creates economic benefits in a num-
ber of ways. It maximizes the utility’s capability to
supply renewable integration and its flexibility to
respond to unexpected events, and greatly reduces
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the number of people required to operate this highly
complex FCRPS resource.

The Energy Authority

TEA is a nonprofit corporation established in 1997 by
three public power utilities—the South Carolina Pub-
lic Service Authority (Santee Cooper), the Municipal
Electric Authority of Georgia (MEAG), and JEA (for-
merly the Jacksonville Electric Authority)—to actively
participate in the deregulated energy marketplace and
take advantage of economies of scale. Its 187 employ-
ees in Jacksonville, Florida and Bellevue, Washington
provide a full range of power-supply management
services to eight member utilities and 41 partner util-
ities in 23 states across the United States.

Background

Federal Columbia River Power System and
Bonneville Power Administration

The FCRPS consists of 31 dams on the Columbia River
and Snake River in Washington, Oregon, and Idaho.
These dams were constructed by the U.S. Army Corps
of Engineers and U.S. Bureau of Reclamation between
1909 and 1975 to harness the power and volume of
these rivers to support agriculture, energy production,
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Figure 1: This plot shows the major dams in the FCRPS. The dams discussed in this paper are Grand Coulee
(GRC), Chief Joseph (CHJ), McNary (MCN), John Day (JDA), The Dalles (TDA), and Bonneville (BON).
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and flood control. Their total generation capacity of
20,460 megawatts represents one-third of 2013’s peak
summer demand in the region, making the FCRPS
the region’s predominant source of energy. The Bon-
neville Power Administration (BPA) was created by
the federal government in 1937 to manage the elec-
tricity output of the FCRPS. Its primary objective is
to supply low-cost power to the public. BPA provides
the bulk of this power to community-owned, not-for-
profit public utility districts (utilities) in the region.

Columbia River Basin

In addition to power generation, the Columbia River
and its tributaries are managed for recreation, irri-
gation, fish and wildlife habitat, and flood control.
The interplay of these interests introduces a wide set
of complex, sometimes conflicting, operating require-
ments for the FCRPS. BPA models these complex
requirements as operational constraints on the hydro
system. The reservoirs behind each dam form large
lakes. Lake elevations must be managed to sup-
port recreational needs, including camping, using
beaches, boating, swimming, fishing, and engaging
in hydroplane races and wind-surfing competitions;
however, rapid changes in lake elevations can erode
river banks.

In the spring growing season and the hot summer
months, water is diverted out of the river to support
the multibillion-dollar agricultural industry to irrigate
the farms that produce apples, cherries, grapes, pota-
toes, wheat, and a wide variety of other crops. When
this water is diverted, inflows artificially decrease and
less water is available for power generation.

The riverine ecosystem provides miles of habitat for
numerous fish and wildlife species. Many endangered
salmon species, for example, migrate to the Pacific
Ocean as juveniles and return as adults to spawn.
The FCRPS operates in several specific ways to sup-
port this life cycle. During spawning season, flows are
established to keep salmon nests at low elevations so
they are more likely to stay covered until the eggs
hatch. Juvenile salmon are encouraged to migrate
with spillwater that falls over the top of a dam rather
than passing through generation turbines. However,
spill must be carefully limited so dissolved gases are
within acceptable bounds and do not kill fish. During
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spill season, generating units operate within one per-
cent of their peak efficiency to assist the survival of
fish swimming through turbines.

Cold and wet weather conditions build winter
snowpack in the Cascade and Rocky Mountain ranges
and establish the yearly volume of water that flows
through the Columbia River Basin. During May, June,
and July, the ability to control runoff at storage dams
prevents the flooding of downstream cities such as
Portland, Oregon. Over the course of the water year,
the Army Corps of Engineers determines storage lev-
els at each dam to ensure sufficient capacity to store
the runoff when it arrives. Creating too much room
may endanger the ability to maintain necessary flows
for fish and irrigation requirements in the late sum-
mer and dry autumn seasons.

Regional Dialogue Power Sales Agreements

BPA sells the bulk of its power to public utilities in
accordance with provisions of the Pacific Northwest
Electric Power Planning and Conservation Act of 1980
and the Bonneville Project Act of 1937. These utili-
ties purchase their power through long-term power
sales agreements with BPA. The current contracts are
known as the regional dialogue power sales agree-
ments; energy deliveries began on October 1, 2011 and
extend through September 30, 2028. Beyond 2011, the
first contract year, the utility is responsible for meet-
ing any additional load growth and integrating any
nonfederal energy resources to meet such loads. There
are two regional dialogue contract types.

e The first contract is a full-requirements power
sales agreement by which the utility pays a set rate
and BPA ensures that the utility’s load is supplied
with electricity on an hour-by-hour basis (Bonnerville
Power Association 2003a).

* The second contract is a slice-block power sales
agreement (slice) by which the utility receives a fixed
percentage of the actual output of the FCRPS (Bon-
nerville Power Association 2003b). A slice utility pays
only for its slice of the actual FCRPS costs, and
receives an equal share of the benefits. Slice guaran-
tees the utility a minimum critical amount of power
plus any generation surplus; however, because FCRPS
generation varies significantly by season and year,
depending on precipitation, snowpack, and weather,
the utility also has the responsibility to prudently
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manage this flexibility and the corresponding risk that
energy and capacity requirements may not be met
during any given hourly, daily, or monthly period.
Under the slice contract, 16 utilities currently pur-
chase power from BPA; of these, 13 choose to do so
via the Optimizer.

Slice Water-Routing Simulator

A slice utility (i.e., a utility that participates in the
slice contract) determines its hourly entitled amount
of energy using the slice water-routing simulator that
BPA built in coordination with all the slice utilities.
In this simulator, each utility operates a virtual river,
which is a reasonable representation of the FCRPS
and is based upon actual river conditions and con-
straints. This simulated system is composed of six
hydraulically linked dams on the Columbia River (see
Figure 1). These six dispatchable dams produce up to
85 percent of the total FCRPS generation output.

Each slice utility runs its individual river system
independently, and both the historical and future state
of its virtual river depends crucially on how that util-
ity chooses to operate the river. Slice utilities route
water through the six dams in different ways to make
specific generation requests and receive their entitled
amount of energy hourly. A slice utility’s simulated
river does not directly affect how BPA chooses to
operate the real river; however, BPA has the obliga-
tion to honor the utility’s generation requests as long
as they are valid. Consequently, the decisions made
by all slice utilities have a collective impact on the
river’s real-time operation.

All requirements that the physical system faces are
translated and replicated into 25 constraints types. In
addition to these constraints, the system is subject to
regulated and unregulated inflows coming into the
system, which are forecasted values. To determine the
entitled energy, a slice utility submits a simulation
request that indicates how it wishes to route water
through each of the six dams for the next 10 days
without violating a constraint. If it violates a con-
straint, BPA will not honor the slice utility’s energy
request, and the utility must make up the difference in
the real-time wholesale market at a much higher cost.
Stated succinctly, BPA provides the feasibility region
as defined by a constraint set, and the slice utility’s
responsibility is to route the water optimally to suit
its needs.
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TEA Optimizer Solution

Design Objectives: Speed, Flexibility, and Control
TEA created the Optimizer for the slice utilities to
help them (1) address the virtual six-dam dispatch-
able hydro optimization within defined operating
constraints, (2) do so rapidly and robustly, while pre-
serving the full flexibility of the system to respond
to changes in variable supply, demand, and electric-
ity prices, and (3) do so in a manner that allows the
power traders and schedulers, who are agents trading
and scheduling electricity for the utilities, to quickly
make optimal decisions. In short, we faced three over-
arching design criteria: speed, flexibility, and control.
Not surprisingly, because these criteria are often con-
tradictory, we need to strike a careful balance between
them.

Speed: The overriding requirement for managing
the slice contract is to enable the real-time power
traders and schedulers to make good decisions within
the tight time frames of the wholesale power-trading
business. In TEA’s case, any single power trader must
simultaneously make decisions for as many as five
utilities. This led us to the decision to build a globally
linearized model with judicious use of mixed-integer
programming (MIP).

Flexibility: The second requirement is to preserve as
much of the solution space as possible to allow the
user to access the full range of generation output. As
we mention previously, the ability to adjust genera-
tion to respond to changes in both loads and variable
supply is of great value in today’s energy landscape.
A solution that provides fast answers by excluding
large parts of the solution space would be a poor
trade-off. This requirement led us to apply great care
and creativity to the linearization process.

Control: The drawback of a fast linearized solution
is that it is deterministic. In reality, supply, demand,
hydro conditions, river operations, and the market are
all uncertain and vary rapidly. To allow a system to
fully automate the dispatch process is not practica-
ble. The solution needs to permit users to account for
these uncertainties within strict time windows. They
need to be able to manage the solution space such
that the Optimizer provides solutions that help users
react to constantly changing conditions. This led us
to design a system that allows hydro planners, whose
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role is to ensure all slice utilities operate in compli-
ance with BPA constraints, to (1) modify the solu-
tion space with their own constraints, (2) be able to
weight those constraints based on the risks involved,
and (3) distill the entire complex set of variables to
two that are meaningful for a trader—total generation
and price.

We know of no other commercially available system
that meets all three of these requirements.

Related Work

Other solutions to hydro optimization problems are
available (Jacobs et al. 1995, Fleten and Kristoffersen
2008, Mo et al. 2001, Labadie 2004, De Ladurantaye
et al. 2009). In particular, the deterministic model
described in Hydro-Québec’s paper (De Ladurantaye
et al. 2009) is similar to the Optimizer model,
although it is on a smaller scale (560 megawatts ver-
sus 14,000 megawatts) and has a shorter horizon
(24 hours versus 240 hours). Moreover, our model-
ing challenge is more complicated. For example, the
Hydro-Québec model’s constraints exist for just a sin-
gle hour and apply only to flow and generation.
The constraints facing slice utilities can be formulaic,
apply to more variables, such as forebay (the reservoir
elevation) and tailwater (the level of the water imme-
diately downstream), and can span multiple hours, a
whole day, or even an entire week. The slice model
also has more complex nonlinear generation, volume,
and tailwater functions.

For slice, the highly complex nonlinearities of the
FCRPS constraints, the limited required solve time,
obligation to concurrently solve models for 13 unique
participants, the contractual requirement to submit
10-day schedules for each run, the validation over-
sight by BPA for feasibility, and the need to provide
robust flexibility to react to real-time market changes
present a technological challenge of a greater scale.

Solution Overview

The TEA Optimizer solution consists of load-balanced
and high-availability servers that collect the BPA con-
straints and run optimizations, and a user-facing
client application that allows users to set penal-
ties and user-defined constraints. Each optimization
server, equipped with Gurobi as the underlying MIP
solver, solves the Optimizer model for up to 240 hours
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within one to three minutes depending on the river
conditions and constraint regime. Furthermore, it pre-
serves system flexibility and provides excellent con-
trols for the hydro planners, power schedulers, and
electricity traders to drive the system to produce their
desired results. To achieve these goals, we developed
a novel MIP optimization model to approximate the
original slice hydro system and implemented several
unique techniques to enhance the solver performance,
while maintaining a high degree of accuracy. A typ-
ical 10-day model has about 50,000 variables (about
3,000 are binary), 40,000 constraints, and 300,000
nonzeros. Since the system went live on October 3,
2012, it has been running consistently to produce
optimized water-routing schedules that address BPA’s
constraints and observe various user-defined objec-
tives. In so doing, the Optimizer allows our utility
clients to fully utilize this highly complex and valu-
able hydro resource.

The Slice Model

The slice model consists of six dispatchable dams.
Figure 2 shows a graphical representation of a sin-
gle dam. The variables in the figure can be divided
into three categories: elevation, water, and electricity
(see Table 1). These variables are tightly coupled by
both linear and nonlinear equalities, as we describe
next.

* Total discharge of each dam is the sum of tur-
bine, spill, and bypass flow.

* Total generation is equal to turbine flow multi-
plied by the turbine efficiency factor.

* Turbine efficiency factor is a linear function of the
head, which is the height difference between forebay
and tailwater of a dam.

* Volume of a particular reservoir can be modeled
as a nonlinear function of forebay.

e Tailwater is a complex nonlinear function of total
discharge and forebay elevation of the downstream
dam.

In the slice model, all the dams are linked together
both chronologically and geologically. The system
state at a given hour depends on the system state
and the water-routing decisions made in previous
hours. Moreover, all the dams are hydraulically linked
together. The inflow of a dam depends on the outflow
of its immediate upstream dam a few hours earlier.
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Date_Hour Sideflows + Upstream = Total inflow Forebay — Tailwater = Head
6/22/2013_1 12.7kefs  + 271.9kcfs = 284.6 kcfs 337.9feet — 267.2feet = 70.8feet
Project Inflow + Change = Spillflow + Turbine flow + Bypassflow =  Outflow
MCN 284.6kcfs + —7.9kcfs = 150.0kcfs + 122.0kcfs + 46 kcfs = 276.7 kcfs
Turbine flow x H/IK = Generation
122.0 kefs  x 5.1 MWh/kcfs = 621.3 MWh
Sideflows
(kcfs) i
12.7
Inflow Spill flow
(kcfs) /\ kcfs) /\
284.6 Forebay (ft) 50.0 Head (ft)
337.9 70.8
Upstream Gen (MWh)
(kcfs) AU 621.3
271.9

4.6

Tailwater (ft)
267.2

Figure 2: This figure shows a single dam with associated variables and flows at a given hour (Meeker 2013).

At any given hour, the operation of each dam is sub-
ject to many operational constraints, which can apply
to a hydro variable, its change rate, or its average over
a specific period. The constraints may also span mul-
tiple hours, days, or even a week.

Dimension Reduction
The challenge to solve the slice model is a result of
complex nonlinearities, very limited time frames for

Category (measure) Key hydro variable

Elevation (feet) Forebay, tailwater, head

Water (kilo-cubic feet per second) Inflow, volume, discharge, spill flow,
turbine flow

Generation, incremental generation
reserve, decremental generation reserve

Electricity (megawatt hour)

Table 1: This table shows the taxonomy of hydro variables.
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solving the model, the requirement to solve it hourly
for a 10-day period, while being subject to validation
and penalties by a third party (BPA) for infeasibility,
and the requirement to provide enough flexibility to
react to real-time market changes.

The first step in addressing these challenges is to
reduce the model’s dimensionality. As we mention
previously, the variables in the system are tightly cou-
pled by several complex nonlinear equalities. Main-
taining these nonlinear equalities requires introducing
a multitude of nonlinear constraints; hence, it greatly
slows down the solver.

However, note that the system has only two degrees
of freedom: each hour, the utility must determine
how much water to discharge downstream and how
much water to release through the turbine as opposed
to spilling it over the dam. The key decision vari-
ables are discharge flow and turbine flow, both of
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which belong to the water category. Consequently,
we decided to simplify the model by consolidating
all variables into the water category. Because we no
longer needed to maintain the complex nonlinear
equalities between different variables, the run times
improved substantially. For example, a simple two-
day prototype model that previously took more than
two minutes to solve can now be solved in several
seconds; however, dimension reduction also has a
cost: this transformation must happen immediately.
Whenever BPA adds a new constraint or changes an
existing constraint, we must dynamically translate the
associated variables into the water-based variables.
Although the challenge around nonlinear equalities
may be addressed sufficiently, it still produces many
nonlinear constraints after the transformation; these
must be linearized to enter them into the MIP solver.

Nonlinearities
From a technical perspective, the most challenging
operational constraints are those that are nonlinear.
The two variables that present the greatest difficulties
to solve are the tailwater and the generation.
Tailwater is a complex nonlinear function of the
amount of total discharge from the dam and the
downstream forebay level; see the graph in Figure 3.
The tailwater is constrained for various reasons. It
may be constrained to provide habitat for fish, pre-
vent erosion of river banks, or support navigation and
recreational needs. Constraints include tailwater min-
imum constraints and rate-of-change constraints from

Tailwater
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Figure 3: This plot shows the tailwater function of the McNary dam.
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hour to hour and over the course of a day, and con-
straints that have tailwater as a parameter. Given the
complexity of the tailwater function and the nonlin-
ear nature of some tailwater constraints, we devoted
much work to linearizing these constraints.

For the minimum tailwater constraint, we can
imagine transecting the three-dimensional tailwater
curve shown in Figure 3 with a horizontal plane
at the minimum value of tailwater. Figure 4 shows
a plot of the curve that represents the intersection
of the constant (minimum) tailwater plane and the
tailwater function. The shaded region outside this
curve represents feasible regions in the downstream
forebay-discharge parameter space. Therefore, if we
can dynamically linearize the constraint in terms of
downstream forebay and discharge, we can place lin-
ear constraints on those variables. We also want to
preserve as much of the solution parameter space as
possible to help achieve our objective of preserving
the flexibility of the generation output.

We employ the standard piecewise linear approx-
imation algorithm as follows. Begin on the leftmost
end of the Figure 4 curve and move along the curve
to the right, drawing the tangent line at each point.
When the distance between the tangent line and the
starting point reaches a maximum allowed deviation,
add that tangent line to the linear approximation.
Then, to determine the stopping point for that tangent

Set tailwater > 262
261.5

261.0 Feasible region
260.5
260.0
259.5

259.0

258.5

Downstream forebay (feet)

258.0

50 100 150 200 250
Discharge (kilo-cubic feet per second)

257.5
0

Figure 4: This curve shows the minimum tailwater in the downstream fore-
bay discharge plane with linear approximation.



Downloaded from informs.org by [96.23.82.70] on 26 October 2015, at 20:15 . For personal use only, all rights reserved.

Hu et al.: The Energy Authority Optimizes Water Routing and Hydroelectric Generation

50

Interfaces 45(1), pp. 43-57, ©2015 INFORMS

line in the other (rightward) direction, extend that tan-
gent line to the right until the distance between the
tangent line and the curve again reaches the maxi-
mum allowed deviation. Repeat this process using the
end of one tangent line as the starting point for the
next one and add segments until the linear approxi-
mation is complete.

Generation is nonlinear because it is a product of
turbine flow and the turbine efficiency factor, which
is proportional to the head of the reservoir. Therefore,
generation is proportional to forebay minus tailwater
times turbine flow.

In deciding how to tackle this nonlinearity, we
took two approaches that we alternated depending
upon the conditions of the water system. In the first
approach, we examined historical data and deter-
mined that the head typically remains reasonably con-
stant over the 10-day horizon; to be more precise,
the 24-hour levels of the head remain fairly constant,
because the reservoirs typically fill up throughout the
night and empty throughout the day. Therefore, in
this approach, we keep the head constant throughout
the optimization, but preserve some generation buffer
(approximately five percent) within the feasible range
to allow for estimation error. Once the optimization is
complete and we know the forebays, tailwaters, and
turbine flows, we can calculate the correct generation.

This approach generally works well when the range
of generation is wide and the system is not overly
generation constrained. It also has the virtue of being
fast to solve; however, the range of allowed gen-
eration is sometimes narrow and can be less than
the set-aside buffer to account for the inaccurate effi-
ciency estimation. In some situations, typically during
spring runoff when the system is running full bore,
the system is highly generation constrained. For these
circumstances, we developed the second approach—
a more precise approximation to calculate the gener-
ation. The approach uses a Taylor series expansion of
the generation function around the most recent val-
ues of the generation function input variables (see
Appendix B). With this approximation, we reduce the
generation buffer from approximately five percent to
0.1 percent with little speed trade-off.

Measuring System Flexibility
Throughout the global linearization process, the Opti-
mizer must preserve the solution space as much as
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possible and measure the system’s generation flexibil-
ity. The task is harder than one might think; because
the dams are all serially coupled to each other, any
constraint upon a dam or a constraint at another
serially coupled dam can potentially be the binding
constraint upon minimum- or maximum-generation
output from that dam.

The solution is to add feasible minimum- and
maximum-generation variables to the model, in addi-
tion to the hydro and generation variables. These rep-
resent the minimum or maximum generation allowed
for each dam. Each constraint will include one or the
other of these variables in the constraint equation.
For example, for a maximum turbine flow constraint,
which can potentially limit the maximum amount of
generation, the feasible maximum generation divided
by the turbine efficiency factor must be less than the
maximum turbine flow and greater than or equal to
the turbine flow. With this approach, we can deter-
mine the maximum and minimum generation by the
most binding constraints for each dam.

Figure 5 shows the feasible minimum, maximum,
and optimal system generation and energy prices.
Figure 6 shows the breakdown of the total system
generation to individual dams combined and the
overall feasible minimum and maximum system
generations.

Two major benefits accrue from measuring system
flexibility. First, BPA requires slice utilities to give
back a certain amount of flexibility, which is speci-
fied by imposing minimum incremental and decre-
mental capacity constraints. Therefore, the Optimizer
can provide this flexibility in the most cost-effective
way. Figure 7 shows how the incremental capacity
is allocated among the different dams. The shades
of gray represent allocations to individual dams. As
the figure shows, it is a fairly complex allocation that
changes from hour to hour. It would be exceedingly
difficult for a manual solution to allocate the capacity
as efficiently. Second, knowing the system’s capabil-
ity allows power traders and schedulers to determine
how to manage customer portfolios by calculating the
available capacity to absorb real-time wholesale mar-
ket volatility and the uncertainty of various renewable
resources (e.g., wind and solar generations).
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Figure 5: This chart shows the total generation of the six dispatchable dams (circled line), feasible minimum
and maximum total generations (solid lines), and prices (dashed line).
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Figure 6: This chart shows the total system generation (in megawatts) with contribution for each dam, and the
system-wide feasible minimum and maximum generations (solid lines) over a 10-day period.
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Figure 7: This chart shows the incremental capacity by dam allocated by the Optimizer as a percentage of the
total incremental capacity of all six dams over a 10-day period.
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Handling Uncertainties

Because the Optimizer is a deterministic tool, hydro
planners are tasked with managing the uncertainties
that affect the system’s operation, particularly inflow
uncertainty and unexpected changes to the system
constraints. The Optimizer allows planners to accom-
plish both objectives by adding user-defined con-
straints to the system.

Planners determine when to draw down or fill the
storage reservoirs. They can add their own versions
of any type of constraints that BPA imposes. They can
also set the levels and the penalties associated with
these constraints. No constraint within the Optimizer
is a hard constraint; all constraints are implemented
with slack variables, which allow any constraint to
potentially be violated should the Optimizer find a
more optimal (i.e., lower-cost) solution by violating it.
Penalties applied to constraints are all denominated
in dollars per megawatt hour within the Optimizer.
These are the units in which power is priced in the
market; for example, by converting all penalties from
dollars per feet for elevations, or dollars per unit of
flow, to dollars per megawatt hour, planners can set
varying penalties in their preferred units of measure
for different constraints, and the Optimizer automat-
ically converts these penalty values into dollars per
megawatt hour.

TEA planners typically will set guidance con-
straints to protect the system against unexpected
changes in both inflows and BPA constraints. These
guidance constraints are intended to be enforced in
all cases, unless doing so would force violation of a

266.5
266.0
265.5 1

BPA constraint; the penalties for violating guidance
constraints are therefore high, but less than BPA con-
straint penalties. Figure 8 shows that the forebay
curve output from the Optimizer observes both the
BPA constraints and TEA guidance constraints.

The Fast Pace of Wholesale Power Trading
Although we designed the Optimizer to preserve as
much generation flexibility as possible, power traders
and schedulers will ultimately manage the slice sys-
tem in a fast-paced environment. Therefore, the Opti-
mizer must be easy to use and understand, and must
quickly solve the model.

The modern power industry runs on an hourly
clock. In regions such as the Northwest that rely on
bilateral power markets, the role that humans play
is based upon a repeated hourly process that occurs
every hour of the year. Within each hourly cycle,
the power scheduler for each utility must do the
following:

¢ Determine the expected electricity demand for
the next hour (and subsequent hours).

¢ Determine which generators are available to
meet that demand.

* Determine the hourly prices at which the utility
buys and sells electricity.

¢ Decide how much of the utility’s own generation
to use and how much to buy or sell in the wholesale
markets.

* Execute any trades required.

¢ Schedule the flow of power from generators to
loads over particular transmission paths.

¢ Communicate information required by BPA.

265.0
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264.0
263.5 1
263.0 1
262.5
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Figure 8: This chart shows the BPA constraint (solid lines), the TEA planner constraint (dashed lines), and the
actual forebay elevation (curve in the middle) at the Dallas dam.
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If renewable generators are in a utility’s portfolio,
the trader and (or) power scheduler must also fore-
cast that generation and how much it is changing.
Typically, the trader plans the system several hours in
advance to avoid having to buy or sell large amounts
of electricity at inopportune times.

Power schedulers have a small window of five to
10 minutes in which to make decisions and act on
them. During this time, they must determine how to
dispatch their slices of the system for the next hour
and submit that information to BPA. The slice con-
tract also includes additional requirements that inten-
sify the demands upon the slice utilities within this
limited time frame.

The slice contract requires utilities to manage their
slice of the six large dispatchable federal dams on
the main stem of the Columbia River under the same
constraints as those imposed on the actual river. All
schedules for hydro and other types of generation
must be feasible for each hour that they are submitted
to BPA. If they are not, the utility is penalized through
forfeiture of the power generated in that hour from
one or more of the dams (up to all six), depending on
the extent of the violation.

In addition to producing and submitting feasible
next-hour schedules to BPA each hour, the utility is
required to create and submit at least once a day a
fully feasible set of schedules for each hour of the next
10 days. Because of this requirement and the nature of
a hydro system (i.e., decisions made in one hour will
affect the system in all subsequent hours), the Opti-
mizer solution solves the full system each hour for
the next 10 days, and usually several times an hour,
for each TEA slice client.

From a process-flow perspective, two innovations
facilitate operations within the real-time framework.
Automatic runs of the entire workflow are initiated
each hour at the beginning of the hour when the
updated data are available from BPA. For all 13 utility
clients, updated data are automatically downloaded,
full 10-day optimizations are run, and the results are
uploaded to BPA. This automation creates a feasi-
ble set of schedules should the trader choose (or be
forced to choose because of contingencies on the trad-
ing desk) to accept that solution for that hour.

More typically, the traders will want to adjust
the schedule to balance changes in load or wind-
generation forecasts or to take advantage of current
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market conditions. Therefore, they will want to rerun
the optimization; however, although a full 10-day
optimization is usually performed within two to three
minutes, if the trader must do that for five utilities, the
time required is a significant portion of the approxi-
mately 20-minute window that trader has to finalize
the schedules for the next hour.

The solution was to introduce a process called
stitching. It allows the traders to adjust generation
for the next few hours, which will only affect the
hydro dispatch within the first day or two of the opti-
mization period. Therefore, we use the automatically
generated 10-day fully feasible solution as a starting
point; we then effectively freeze the solution for the
final eight or nine days. We allow only the first one
or two days to vary, but still force the solution to be
fully feasible over the entire 10 days. By doing so, we
reduce the optimization time by a factor of 10 or so,
to 10-20 seconds.

Model Run Performance

Production Statistics

The Optimizer has been operational since October
2012. Table 2 shows its performance during that
period. In more than 120,000 auto runs, we have

Simulation Feasibility 10-day opt. Stitching Stitching opt.
Year ~ Month  count percentage (mins:secs) count (mins:secs)

2012 Oct 6,264 96 1:45 9,460 0:11
2012 Nov 6,489 93 1:54 8,019 0:13
2012 Dec 6,696 93 1:18 7,794 0:12
2013 Jan 6,678 96 0:57 7,210 0:12
2013 Feb 6,191 93 1:34 6,774 0:12
2013 Mar 6,605 98 1:21 7,550 0:12
2013 Apr 6,472 94 3:50 7,159 0:16
2013 May 6,643 91 3:06 4,923 0:18
2013 Jun 6,733 92 3:17 5,756 0:24
2013 Jul 8,527 92 4:10 3,941 0:28
2013 Aug 8,388 98 3:30 5,162 0:22
2013 Sep 9,264 100 2:56 6,449 0:16
2013 Oct 9,668 100 2:42 6,806 0:24
2013 Nov 9,339 99 2:47 7,285 0:28
2013 Dec 9,628 99 3:10 6,461 0:25
2014 Jan 9,604 98 2:51 6,263 0:29
Average 7,699 96 2:34 6,688 0:18

Table 2: This table shows the Optimizer performance since it became
operational.
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achieved a fully feasible rate of 96 percent and an
average solve time of two minutes and 34 seconds.
Recall that all constraints have slack variables allow-
ing them to be violated if the violation results in a
lower-cost solution; by fully feasible, we mean that
all the BPA constraint slack variables have a value
of zero; that is, in a fully feasible solution, all the
BPA constraints are satisfied as if they were hard con-
straints. We have also achieved more than 100,000
stitching optimizations with an average solve time of
18 seconds.

Lazy Constraints

To further enhance system performance, we utilize
a simple, yet effective, approach. We identify a pri-
ori a set of lazy constraints that are less likely to
be binding, but we do not initially include them in
the model. Instead, we enter them into the solver
later through a callback during the branch-and-bound
step. The MIP solver rapidly solves the simplified
model without the lazy constraints; meanwhile, it can
also quickly adjust the solution upon receiving these
lazy constraints, because they are usually not binding.
The Optimizer can operate in both lazy and nonlazy
modes. For a group of 10 benchmarks, the average
optimization time on the lazy and nonlazy mode is
64.1 seconds and 219.1 seconds, respectively. More-
over, the run time is much more stable in lazy mode
(see Figure 9).
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Figure 9: This plot compares the run times of lazy mode (diamond curve)
and nonlazy (square curve) mode.
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Estimated Economic Benefits

As we mention previously, BPA provides two types of
power-delivery contracts for the utilities. Under the
BPA full-requirements contract, integration of nonfed-
eral power resources has an additional cost. Under
the slice contract, the utility is not obligated to use
resource integration, but must invest in the power-
supply management infrastructure. Each utility has
three options: (1) choose the BPA full-requirements
product and pay the additional integration cost;
(2) choose the BPA slice product, but implement the
slice product manually; or (3) choose the BPA slice
product and the TEA Optimizer solution. The benefits
of option (3) are its reduced costs versus options (1) or
(2) and the additional increased revenue it provides
as a result of optimization, which is only available in
option (3). We thus look at the following three com-
ponents of the benefits of option (3).

1. Reduced costs of renewable resource integration,
particularly wind, in comparison to option (1).

2. Reduced costs of the power-supply management
infrastructure in comparison to option (2).

3. Increased revenue through optimized hydro out-
put for sale in the wholesale power market.

Note that the reduced costs are not additive. We
thus calculate the reduced costs individually and take
the minimum of benefits (1) and (2) and then add
benefit (3) to estimate the total benefits of using the
Optimizer.

Reduced Costs of the Power-Supply Management
Infrastructure

An individual utility would require a full-time equiv-
alent (FTE) staff of between 14 and 19 people to
manually plan and execute a power-supply portfo-
lio using the BPA slice product. It would need at
least two shifts of 24-7 staff of five to seven employ-
ees per shift; one shift would be dedicated to mar-
keting and scheduling power in the hourly markets,
and one shift dedicated solely to manually calculating
a feasible hydro routing schedule every hour as per
the BPA slice contract. A utility that uses the Opti-
mizer does not require these 14 to 19 people. Instead,
TEA employs 46 shared FITE employees and main-
tains the Optimizer for all 13 utilities. The total cost
of a FTE is assumed to be $200,000, and the annual
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cost for Optimizer licensing and maintenance is
$1,000,000.

For each utility, the annual infrastructure cost
(without the Optimizer) is between $2,800,000 (14 x
$200,000) and $3,800,000 (19 x $200,000), and the
annual shared infrastructure costs with the Optimizer
is $784,615 [(46 x $200,000 + $1,000,000)/13]. Thus,
the net annual reduced infrastructure cost for the 13
utilities is:

e Low estimate = ($2,800,000 — $784,615) x 13 =
$26,200,000 per year;

* High estimate = (33,800,000 — $784,615) x 13 =
$39,200,000 per year.

Reduced Costs of Resource Integration
BPA'’s full-requirements customers integrate resources
through BPA’s diurnal flattening service (DFS)
and the resource-shaping charge (RSC). For TEA's
nine full-service utility clients, the expected
annual energy output of the 406-megawatt total
installed nonfederal resources is 1,478,338 megawatt
hours. The BPA DFS and RSC calculated unit
cost is $18.34 per megawatt hour (Bonnerville
Power Association 2009). We estimate the savings
through reduced costs of resource integration as
follows.

* Annual resource integration costs per utility =
($1,478,338 x 18.34)/9 = $3,012,524.

¢ Shared annual slice implementation costs per
utility = $784,615.

* Net avoided annual resource integration costs
for 13 utilities = ($3,012,524 — $784,615) x 13 =
$28,962,817 per year.

Optimization Result: Increased Revenue in
Wholesale Power Market

Estimated increased revenues of the Optimizer are
based on a prior analytical study that TEA con-
ducted over a defined study period; in this study,
TEA compared an optimized and unoptimized water-
routing solution. The optimized solution (average
price: $38.40 per megawatt hour) is from the Opti-
mizer. The unoptimized solution (average price:
$34.88 per megawatt hour) is based on the commonly
applied strategy of pass inflows (i.e., setting outflows
always equal to inflows). The estimated benefit is
about 10 percent of the expected realized value and
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is then halved to five percent because of the specu-
lative nature of how a utility that does not use the
Optimizer would manage the river. The annual esti-
mated revenue increase for the total 13 utilities is as
follows.

* Low = 63,072 gigawatt hours x 4.5877 percent x
$40 per megawatt hour x 5 percent = $18,402,000 per
year.

* Average = 83,220 gigawatt hours x 14.5877
percent x $40 per megawatt hour x 5 percent =
$24,280,000 per year.

¢ High =91,980 gigawatt hours x 14.5877 percent x
$40 per megawatt hour x 5 percent = $26,836,000 per
year.

The previous calculations are based on the follow-
ing: The expected total annual hydro system gener-
ation is 63,072 gigawatt hours (low), 83,220 gigawatt
hours (average), or 91,980 gigawatt hours (high),
depending on the water conditions. The total per-
centage of all 13 utilities is 14.5877 percent. Assumed
electricity price is $40 per megawatt hour based on
the Mid-Columbia wholesale power price curve as of
November 2013.

Total Combined Estimated Benefits

Finally, taking the minimum of the reduced costs
and then adding the estimated increased revenue, we
determine the annual total estimated benefits of the
Optimizer as follows.

¢ Low estimate = min($28,962,817, $26,200,000) +
$18,402,000 ~ $45,000,000 per year.

¢ High estimate=min($28,962,817, $39,200,000) +
$26,836,000 ~ $56,000,000 per year.

Thus, through the entire 17-year period of the slice
contract from October 1, 2011 through September 30,
2028, the total combined estimated benefits of the
Optimizer are

e Low estimate = $45,000,000 x 17 = $765,000, 000.

* High estimate=$56,000,000 x 17 =$952,000,000.
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Appendix A. Objective Function

The total objective function of the Optimizer is the sum of
the four terms in Table A.1.

Notation:

e t: hour 0-240.
d: one of the six dams.
® c: a constraint.
sys_gen(t): total system generation at hour f in
megawatt hours.

e Joad(t): total system load at hour ¢ in megawatt hours.

® buy(t): total purchases of electricity at hour t in
megawatt hours.

e sell(t): total sales of electricity at hour ¢ in megawatt
hours.

e frans_cost(t): total transaction cost at hour t in dollar
per megawatt hour.

e violation(t, d, ¢): violation amount of constraint ¢ for
dam d at hour t (normalized to per megawatt hour).

* penalty_violate_constraint(t, d, c): penalty violating unit
amount of constraint ¢ for dam d at hour f in dollars per
megawatt hour.

e target(t): total user requested generation amount in
megawatt hours.

o penalty_miss_target(t): penalty of missing target at
hour t in dollars per megawatt hour.

Term (in dollars) Expression

Total revenue of > {sys_gen(t) - price(t)}

electricity sale t
Total transaction cost ~ — > "{|sys_gen(t) — load(t) + buy(t)

— sell(t)| - trans_cost(t)}

= >>"> {violation(t, d, ¢)

e - penalty_violate_constraint(t, d, c)}
—>"{|sys_gen(t) — target(t)|

t

- penalty_miss_target(t)}

Total penalty
violating constraints
Total penalty violating

generation targets

Table A.1: This table shows the breakdown of the objective function.
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Appendix B. Multivariate Taylor Expansion for
Generation Constraints

Let G, Q, H, and n be the simulated generation, turbine
flow, water head, and turbine efficiency factor, respectively.
In the slice model, G=Q-1n=Q-(H-n*/H*), where n*, H*
stand for the average turbine efficiency factor and average
water head in the previous day, respectively. Consequently,
transforming a maximum generation constraint G < ¢ in
terms of turbine flow, we get Q < (c- H*/n*)/H. Note that
to linearize the aforementioned constraint, it suffices to
approximate 1/H as (c- H*/n*), which is a constant.

Note that water head, which is equal to forebay minus
tailwater, is a highly complex nonlinear function. Let H =
H(v, u,d) be the simulated water head, where v, u, and
d stand for volume, volume of the downstream dam, and
total discharge, respectively. Moreover, let v*, u*, and d* be
appropriate constant values of v, u, and d. Let x = (v, u, d)
and x* = (v*, u*, d*). We apply the following multivariate
Taylor expansion to estimate 1/H:

H(X)71 ~ H(X*)71 _ H(x*)—2 . VH(X*) 3 (X _ x*),

where VH(x*) = (% (x*), Z(x*), &5 (x*)). The high-order
terms are discarded to ensure the linearity of the approx-
imation. Applying this approximation, we can employ a
generation buffer as low as 0.1 percent as opposed to five
percent if we assume n = n*. This helps to preserve the gen-

eration flexibility of the hydro system.
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