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Abstract

Performance issues in mobile applications (i.e., apps) often have a direct impact on the
user experience. However, due to limited testing resources and fast-paced software develop-
ment cycles, many performance issues remain undiscovered when the apps are released. As
found by a prior study, these performance issues are one of the most common complaints
that app users have. Unfortunately, there is a limited support to help developers avoid or
detect performance issues in mobile apps. In this paper, we conduct an empirical study on
performance issues in iOS apps written in Swift language. To the best of our knowledge,
this is the first study on performance issues of apps on the iOS platform. We manually
studied 225 performance issues that are collected from four open source iOS apps. We
found that most performance issues in iOS apps are related to inefficient UI design, mem-
ory issues, and inefficient thread handling. We also manually uncovered four performance
anti-patterns that recurred in the studied issue reports. To help developers avoid these perfor-
mance anti-patterns in the code, we implemented a static analysis tool called iPerfDetector.
We evaluated iPerfDetector on eight open source and three commercial apps. iPerfDetector
successfully detected 34 performance anti-pattern instances in the studied apps, where 31
of them are already confirmed and accepted by developers as potential performance issues.
Our case study on the performance impact of the anti-patterns shows that fixing the anti-
pattern may improve the performance (i.e., response time, GPU, or CPU) of the workload
by up to 80%.
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1 Introduction

The number of mobile phone applications (i.e., apps) has increased significantly in recent
years. As of 2018, there are almost six million apps on the two most popular app stores:
Google Play Store and Apple’s App Store (Statista 2018). Such large number of apps makes
the app stores highly competitive, since there exist many apps with similar functionalities.
Hence, in addition to functional requirements, one important aspect that may affect users’
perception of an app is the app’s performance (Khalid et al. 2015; Liu et al. 2014).

Performance issues in mobile apps usually have a direct impact on the users. Prior
studies (Khalid et al. 2015; Hu et al. 2018) found that performance issues are one of the
most common complaints that app users have. However, existing research often focuses on
studying performance issues in the system applications (e.g., enterprise applications or web
servers) (Chen et al. 2014; Grechanik et al. 2012; Jin et al. 2012a; Nistor et al. 2015; Nistor
et al. 2013b). Such performance issues may not be applicable to mobile apps, since mobile
apps have different characteristics compared to system applications (Syer et al. 2013). For
example, mobile phones have limited resources (e.g., battery and network), and mobile apps
are usually Ul-driven applications. A recent study by Liu et al. (2014) aimed to characterize
performance issues in Android apps. However, the performance issues in Android may not
be generalizable to iOS apps due to the differences in the two platforms and the used pro-
gramming languages (Hu et al. 2018). Moreover, most prior research on mobile app APIs
or code smells focused only on the Android platform (Martin et al. 2017); even though iOS
is the second largest mobile platform in the world.!

Therefore, to provide a better understanding of performance issues in mobile apps, we
focus our study on iOS. We conducted an empirical study on 225 performance issue reports
in four open source iOS apps written in the Swift programming language (i.e., Firefox,
WordPress, Wire, and Chart) to study common types of performance issues. We also manu-
ally uncovered and documented four types of performance anti-patterns that recurred in the
studied issue reports. Finally, we implemented a static analysis tool, called iPerfDetector, to
detect the uncovered anti-patterns in Swift files. We collaborated with our industrial part-
ner, and evaluated iPerfDetector on three commercial and eight open source apps. In total,
iPerfDetector detected 34 performance anti-pattern instances, where 32 of them we manu-
ally verified as true positives. We reported these 32 anti-pattern instances to developers, and
31 of them are confirmed and accepted by developers. Our case study on the performance
impact (i.e., in terms of response time, GPU, and CPU usage) of the anti-pattern shows that
fixing the anti-pattern may improve the performance of the workload (e.g., scrolling a table
in the app) by 5.8% to 80%. iPerfDetector received positive feedback from both commer-
cial and open source developers, and it is now used by our industrial partner to ensure the
performance of their iOS apps.

To the best of our knowledge, this is the first study on performance issues in iOS apps.
In summary, we answer the following research questions:

— RQ1: What are the common causes of performance problems in iOS apps? We
discuss our process of selecting and manually studying performance issue reports in
open source iOS apps. We found three common types of performance issues in the four
open-source apps that we studied: inefficient UI design, memory issues, and inefficient
thread handling.

Thttps://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app- stores/
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— RQ2: What are the common iOS performance anti-patterns? We document recur-
rent i0S performance anti-patterns that we found during our manual study. We found
that accessing data model on the Ul thread, updating UI controls on background threads,
applying UI blurring effect inefficiently, applying UI transparency effect inefficiently,
and object references causing retain cycles are the most common anti-patterns. We also
provide a detailed discussion on the above-mentioned iOS performance anti-patterns.

— RQ3: How many iOS performance anti-patterns can we detect and verify in both
commercial and open source apps? We implement a static analysis tool, iPerfDe-
tector, to detect instances of the uncovered anti-patterns. iPerfDetector detected 34
anti-pattern instances in eight open source and three commercial apps, where 31 of them
are already confirmed and accepted by developers as potential performance issues.

— RQ4: What is the performance impact of the iOS anti-patterns? We conduct a case
study on the anti-patterns introduced in RQ2, to measure their performance impact. Our
case study shows that fixing the anti-patterns may improve the performance by 5.8%
to 67% in terms of GPU usage, 34.15% in terms of CPU usage, and by over 80% in
response time.

Paper Organization Section 2 briefly introduces the background of iOS app develop-
ment. Section 3 discusses the motivation, approach, and results of our research questions.
Section 4 discusses threats to validity of our study. Section 5 surveys related work. Finally,
Section 6 concludes the paper.

2 Background

iOS is a closed-source operating system developed by Apple for mobile devices such as
iPhone and iPad. To date, iOS is one of the most widely used mobile operating systems in
the world, and iOS apps generate much higher revenues compared to Android apps (Statis-
tia 2018). To provide better usabilities and functionalities in the app, developers usually rely
on interacting with the APIs provided by the iOS Software Development Kit (SDK). Ini-
tially, i10S apps were all implemented in the Objective-C programming language. In 2014,
Apple introduced the Swift programming language as an alternative for iOS app develop-
ment. Compared to Objective-C, Swift offers a cleaner syntax that makes the apps easier
to maintain (Apple 2018a). Since then, Swift has become more popular among developers
compared to its predecessor (RedMonk 2018). Hence, in this paper, we focus our study on
the iOS apps that are written in Swift.

iOS apps are often developed using the Model-View-Controller (MVC) design pattern.
The MVC pattern separates the app’s data access and business logic from the visual presen-
tation. The layers in MVC help abstract the underlying device differences, such as screen
sizes, and simplifies app development. Below, we briefly discuss the background of iOS
development based on three major software layers in an app: model, view, and controller.

Model Layer Model layer is a set of Ul independent objects, responsible for managing the
persisted objects in the database. Developers often use the Core Data persistent framework
that is provided by iOS SDK to manage object persistence in order to access the model
layer (Guide 2017). By using Core Data, developers can directly access or modify object
states in a database through API calls in the app’s model layer, which reduces the complexity
of the code (Apple 2018d).
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View Layer View layer is responsible for displaying the user interface (UI) components
and for users to interact with the app (e.g., by tapping on buttons). Developers can call
subclasses of the UIKit class (e.g., UILabel or UlIButton class) to design and organize Ul
components. Developers may also call APIs in the iOS SDK to customize UI components
or add different Ul effects (e.g., transparency or blurring). Since mobile apps are Ul-driven,
by default, every function call will be executed on the main thread (i.e., UI thread) (Apple
2018b). If the main thread is blocked or delayed due to heavy computation, users may
experience poor Ul responsiveness.

Controller Layer The controller layer implements the business of an app. For example, how
often should the UI be updated/refreshed, or what should be stored in the model layer when
users tap a button. In other words, the controller layer translates actions in the view layer to
the corresponding actions in the model layer and vice versa (Apple 2018e). To ensure that
the UI component is responsive when processing the business logic, iOS provides multi-
threaded APIs. Heavy operations (e.g., complex calculation) or long-running processes
(e.g., access the persisted objects in the model layer) can be executed on a background
thread, instead of on the main thread.

3 i0S Performance Anti-Patterns and Their Impact

In this section, we answer the research questions we discussed in Section 1.

Figure 1 shows an overview of our study. We first manually study iOS apps issue reports
to find the common root causes of performance issues (RQ1). Second, we extract and char-
acterize iOS performance anti-patterns (RQ2). Third, we detect performance anti-patterns in
commercial and open-source apps, and verify our findings with developers (RQ3). Finally,
we study the performance impact of anti-patterns (RQ4). Below, we discuss each RQ in
detail using the following template:

Motivation: We discuss the motivation of each RQ.
Approach: We describe the approach we take to answer the research question.
Results:  We discuss our experiment results and answer the research question.

RQ1: What are the common causes of performance problems in iOS apps?
Motivation

In order to understand the common causes of performance problems in iOS apps, we manu-
ally study issue reports in open-source iOS apps. Understanding the common performance
problems may help developers avoid the problems and inspire future research.

Issue
reports

Fig.1 An overview of our study

Search issue reports
and manually verify 05
search result

Common types

RrRQ1 of performance Anti-pattern

erformance  |m— | issues .
.p ! RQ3 detection and
issue reports
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Table 1 An overview of the studied apps

System Category Num. of stars on GitHub LOC Num. of issue reports Num. of perf bug reports

Firefox Utilities 8K 39K 1.1K 78
Wordpress Productivity 2.3K 85K 4.6K 82
Wire Business 24K 61K 308 32
Charts Chart library 18K 31K 29K 33
Approach

We conducted our manual study on open source iOS apps. We selected 21 popular open
source Swift iOS apps according to Medium (2016) and the top 20 trending open source
Swift repositories on GitHub (2018). Then, we applied four selection criteria on the apps.
First, the selected apps should be related to iOS mobile app development, because Swift is
a general purpose language that can be used for tasks such as implementing web servers.
Second, a candidate app should use an issue report system, since we need to study the issue
reports to uncover the types of performance issues. Third, the candidate app should con-
tain issue reports that are related to performance issues. Finally, the app should be actively
maintained. Since mobile APIs are constantly evolving (McDonnell et al. 2013), we want to
ensure that new problems related to API usages are included in our study. We ended up with
four open source iOS apps that met our criteria. Table 1 shows an overview of the studied
apps. Mozilla Firefox client app (or simply Firefox) is a free and open-source web browser
written in Swift.2 We used the master branch of the Firefox iOS browser, which is written
in Swift 4.2. WordPress is an open-source content management system (CMS).> Wire is a
cross-platform and encrypted instant messaging client.* Charts is a library for drawing var-
ious types of charts for iOS apps.” In general, the studied apps cover different categories,
are popular (with 2.3K to 18K stars on GitHub), and are large in size (up to 39K LOC).

We used the keywords: “slow”, “performance”, “thread” and “memory” to search for
performance-related issue reports. These keywords are commonly used in prior studies or
are known as common performance problems (Liu et al. 2014; Jin et al. 2012b; Smith and
Williams 2001; Chen et al. 2016b). In total, we found 960 issue reports in the studied apps
that contain the keywords. We manually go through all 960 issue reports to identify the
relevant issue reports. We first remove all the issue reports that do not have a fix (e.g.,
marked as unresolved or won’t fix). Then, we remove the false positives that are caused
by the keywords we used. For example, by using the keyword “thread”, we found that in
some cases, developers may be referring to “issue thread”. This filtering process was done
by the first author of the paper and verified by the second author. After the manual filtering
process, we ended up with 225 performance issue reports for our manual study.

Table 1 shows the number of performance issue reports that we studied in each app. To
categorize the studied performance issues based on their effect, we manually studied all of
the 225 issue reports and all associated information (e.g., pull requests, code changes, and
developers’ discussions). We determined the categories of the anti-patterns based on their
root causes. Our categorization process is as follows. We started our manual study with no

Zhttps://github.com/mozilla-mobile/firefox-ios
3https://github.com/wordpress-mobile/WordPress-iOS
“https://github.com/wireapp/wire-ios
Shttps://github.com/danielgindi/Charts
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specific category in mind and we took a note on the root cause of the problem. After the
first author manually studied the issue reports, she created the categories based on the root
causes that we found, and the second author verified the categorization.

Results

In general, we found three common types of performance issues in the studied iOS apps:
inefficient Ul design, memory issues, and inefficient thread handling. Note that since one
issue may be assigned to more than one type (e.g., an issue report may be related to two dif-
ferent types of performance issues), the accumulated percentage may not be exactly 100%.
There is also around 15% of the issues that do not belong to these three types. We found that
such issues are often related to app-specific performance optimization, such as using more
efficient data structures, reducing the number of log lines that are printed (Chowdhury et al.
2018), or optimizing database queries.

Below, we summarize the issues that we found in each type. To encourage future research
on this topic, we also release our manually annotated data online (Afjehei and Chen 2018).

Inefficient Ul Design We found that 20% of the issue reports tried to address inefficient
UI design. One common Ul-related performance issue that we studied happens when users
scroll through a table. For example, developers may be using computationally intensive text
styling in table cells (Wire bug 1751), dynamically calculating the height of each cell in a
table instead of using a fixed height (Wire bug 5672), or displaying emojis in table cells
(Wire bug 267). Such heavy Ul-related operations in table cells may make scrolling a table
sluggish. Another common problem that we saw is related to applying heavy Ul effects. For
example, developers may be applying UI blurring effect repetitively in a loop (Firefox bug
1221118). Since the main thread is responsible for Ul rendering, applying heavy Ul effects
in a repeating fashion on the main thread will make the app temporarily unresponsive (i.e.,
the main thread is blocked to compute the effects). In summary, many performance issues
that we saw are related to inefficient usage of i0S’s Ul-related APIs.

RQ2 further discusses the performance anti-patterns that are related to computing UI
effects.

Memory Issues We found that 34% of the studied issue reports are related to memory
issues. Furthermore, about 44% of the memory related issues address memory leaks. In
particular, retain cycles are the most common cause of memory leaks that we found. Retain
cycle happens when two or more objects keep references to each other (i.e., a reference
cycle). This may prevent the objects from being garbage collected even if they cannot be
accessed elsewhere from the heap. Other types of memory problems include memory leaks
(e.g., in Firefox bug 1278006, UI objects are not released even if they are not visible to the
user anymore) and out of memory errors (e.g., WordPress bug 7892).

Inefficient Thread Handling We found that threading-related issues are the most common
causes of performance issues in our studied issue reports (36%). As mentioned in Section 2,
there is a main thread (i.e., Ul thread) and background threads in i0S. We found that most
issues that we studied are related to inefficient uses of i0OS’s threading APIs. For example,
developers may forget to execute heavy computation (e.g., data accesses) in a background
thread, which may result in causing the Ul to be temperately unresponsive (e.g., as discussed
in WordPress 578 and Firefox 532).

@ Springer
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We found that there are three main types of performance issues: inefficient Ul design
(20%), memory issues (34%), and inefficient thread handling (36%). We also found
that most problems we studied are related to how developers use iOS-specific APIs
(e.g., Ul effect or threading).

RQ2: What are the common iOS performance anti-patterns?
Motivation

During our manual study of the iOS performance issue reports, we found several recurring
code patterns that are common causes of the studied iOS performance issues. Hence, in this
RQ, we document the recurring code patterns that we uncovered into four iOS performance
anti-patterns.

Approach

In our study, we tried to derive the performance anti-patterns that are specifically related
to i0OS development and occur several times. Hence, we excluded other non-iOS and
application-specific performance problems in the studied issue reports (e.g., displaying
emojis, adding too many logs, tuning database queries, switching to a faster data structure
etc). To derive the anti-patterns, we manually analyzed the fixes in the issue reports and
took notes regarding code changes (e.g., what did developers change to fix the problem).
Then, we went through the note and manually summarized and extracted the code changes
as the anti-pattern.

Results

Table 2 summarizes the manually-uncovered iOS performance anti-patterns and the number
of anti-pattern instances we found. Below, we discuss each anti-pattern in detail. To provide

Table 2 Description of the manually-uncovered iOS performance anti-patterns and their corresponding
category

Category Anti-pattern Description Abbr. No of issues
Inefficient thread Accessing data mod- Developers access the model layer DM 17
handling els on the UI thread (i.e., access data) in the UI thread,

which may cause bad user experiences
due to unresponsive UI.

Updating Uls on Ul updates (e.g. update label text) that UIBG 30
background threads are executed on a background thread,
which may lead to app crashes.

Inefficient Applying UI blurring Adding computationally expensive BLEF 4
Ul design effect inefficiently blurring effect to complex UI compo-
nents (e.g., table with multiple cells).

Applying UI trans- Adding computationally expensive TREF 4
parency inefficiently  transparency effect to complex UI

components (e.g., table with multiple

cells).

Memory issues Retain cycle The condition when two objects RETAIN 22
keep a reference to each other and
are retained, which creates memory
leaks (Apple 2012).
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more detailed information and breakdown of each studied iOS performance anti-pattern, we
discuss each pattern using the following template:

Description Description of when and how the anti-pattern would take place.
Example An example of the anti-pattern from the real-world studied apps.

Examples of Developer Awareness We summarize some of developers’ discussion that
we found in the issue reports. We also searched on developer forums (e.g., Stack Overflow)
and documents (e.g., Apple official documents) and summarize our findings on how the
anti-pattern may affect other developers.

Possible Solutions We discuss possible solutions to resolve the anti-pattern.

Accessing Data Model on the Ul Thread

Description Mobile apps that implement the MVC design pattern usually require a model
layer to manage user information or application-specific data. In iOS app development,
developers often use Core Data for data access (Apple 2018g). Core Data is an object per-
sistent framework provided by Apple that allows developers to manage the model layer
and to interact with persisted objects (Guide 2017). However, such data accesses can be
time-consuming and computationally intensive. Hence, if Core Data is used inside the UI
thread (i.e., the main thread), the UI may be temperately unresponsive until the data access
is finished.

Example As an example, there is a discussion on fixing this performance anti-pattern on
WordPress.°

The following function, save, is persisting the changed data to the model layer using
Core Data (line 4).

(void) save {

NSError =xerror;

// saving changes to the model layer by calling
managedObjectContext, which is the API for using Core
Data

if (![[self managedObjectContext] save:&error])
DDLogError (@"Unresolved Core Data Save error %@ %@",

error, [error userInfol);

exit (-1);

!
(void) remove { // will be executed on the main thread

[self save]; // calling data access through Core Data

Shttps://github.com/wordpress-mobile/WordPress-iOS/pull/578
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However, this save function is called inside another function named remove (line 12),
which is executed on the main thread. As a result, the UI will be temperately unresponsive
due to having heavy data accesses on the main thread (i.e., because of a chain of function
calls that result in executing the remove function).

Developers Awareness As mentioned in Apple’s iOS development document (Apple
2018g), any data processing should be avoided on the main thread. However, we still found
that sometimes such anti-patterns may be difficult to find due to the complexity of the software
design and interactions of function calls’ (Chen et al. 2014, 2016a). Namely, developers
may not notice that the function that they call may eventually result in data access.

Possible Solutions One way to address this iOS performance anti-pattern is that develop-
ers can leverage APIs that are provided by Apple to execute the data access on a background
thread asynchronously (Apple 2015). Another solution is to add a separate layer in the code
to take care of NSManagedObjectContext(s) (i.e., call to Core Data). For example, devel-
opers may use the parent-child managed object contexts, where changes to the children
objects will only be persisted when the parent object is persisted. Therefore, developers
only need to make sure that calls to the parent objects are executed in background threads
(i.e., developers do not need to make scatter code changes to make sure every child access
is executed in the background thread). The first solution would require fewer changes to
the code, but may introduce maintenance difficulties due to scattering code changes. On
the other hand, the second solution may require significant code refactoring for the added
abstraction layer. Developers may need to decide which solution is more suitable for the
design of their app after considering the trade-offs, as indicated by WordPress developers.®

Updating UI Controls on Background Threads

Description We observed that sometimes developers may perform inappropriate perfor-
mance optimization by moving heavy Ul operations to a background thread. As an example,
Firefox developers had a discussion regarding moving a Ul rendering computation to a
background thread in order to make the UI more responsive.” However, such optimization
may result in some problems. As part of the iOS architectural design, updating UI (e.g.,
resize or refresh) on a thread other than the main thread can be problematic. According to
Apple’s development guideline, this anti-pattern may lead to problems such as missed UI
updates, incorrect Ul displays, or even crashes (Apple 2017a). Developers also discuss that
such issues can cause delays in UI updates.'?

Example Consider an example from WordPress.!! In the code snippet below, there is a class
function resizeGallerylmageURL, which resizes and scales the image (the implementation
detail is omitted for better readability). The class function resizeGallerylmageURL is then
used in another function named formatContentString (line 11).

https://github.com/wordpress-mobile/WordPress-iOS/pull/578
8https://github.com/wordpress-mobile/WordPress-i0S/pull/578

“https://github.com/mozilla-mobile/firefox-ios/pull/1215/commits/4ba952a58bf34ecta555a805817c9a20c15
4997d

10https://stackoverflow.com/questions/28137380/updating-ui- from-background- thread- swift
https://github.com/wordpress-mobile/WordPress-iOS/pull/7864
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// resize an image
public class func resizeGalleryImageURL(_ string: String,
isPrivateSite isPrivate: Bool) -> String {

public class func formatContentString( string: String,
isPrivateSite isPrivate: Bool) -> String {

// will result in resizing the image

content = resizeGalleryImageURL (content, isPrivateSite:
igPrivate)

return content

The function formatContentString is called in the function sanitizeCommentContent (line
4 in the code snippet shown below), which is then called inside the performBlock of man-
agedObjectContext (line 13). managedObjectContext.performBlock is a way of executing
operations in an asynchronous fashion (i.e., in a background thread, when a private man-
aged object context is defined). As a result, this caused WordPress to crash due to resizing
an image in background threads.!?

(NSString *)sanitizeCommentContent: (NSString x)string
isPrivateSite: (BOOL) isPrivateSite(

// calling formatContentString
content = [RichContentFormatter formatContentString:content
isPrivateSite:isPrivateSite]

[self.managedObjectContext performBlock: " {

// May result in calling resizeGalleryImageURL in a
background thread, which led to application crashes in
WordPress

remoteComment .content = [self
sanitizeCommentContent : remoteComment .content
igPrivateSite:isPrivateSite];

b

2https://github.com/wordpress-mobile/WordPress-i0S/pull/7864
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Examples of Developer Awareness In September 2017, Apple released a dynamic analy-
sis tool called the Main Thread Checker that can detect UI API calls in background threads
and provides warnings on the Xcode console (Apple 2017a). Even though such a tool is
available, during the manual study, we still found that developers may not fully utilize the
tool, and thus, resulted in app crashes. As an example, we counted the number of reports
that were opened after the tool was released (by comparing the release date of the tool and
the issue creation date), and found that about half of the anti-pattern instances in Word-
Press were reported by users after the tool was released. Namely, developers did not fully
utilize the tool during development, so the anti-pattern instances remained unfixed when
the app was released. One reason may be that the Main Thread Checker is only enabled
when running apps with the Xcode debugger (Apple 2017a). Developers may not exercise
the anti-pattern instances in the code when using the debugger, so the instances may not be
detected. Compared to the dynamic approach provided by Main Thread Checker, iPerfDe-
tector provides a lightweight static approach and does not introduce overhead during testing.
Another reason may be that such warnings are difficult to notice due to hundreds or even
thousands of other messages on the console (Jiang et al. 2008; Chen et al. 2017).

Possible Solutions All UI operations should be executed on the main thread. This can
be done by dispatching the UI update operation to the main thread by calling the update
operations in code blocks such as DispatchQueue.main.sync{...} (the code inside the code
block would be executed in the main thread).

Applying Ul Blurring Effect Inefficiently

Description As mentioned in Section 2, Ul-related tasks (e.g., refresh or update) are pro-
cessed on the main thread (i.e., Ul thread). As a result, any time-intensive operation in
the main thread may cause the Ul to be temporarily non-responsive, which results in bad
user experience. We found that blurring effect can be computationally expensive, especially
when the blurring effect is applied in a repeated fashion (e.g., applying the effect on each cell
of a table or in a loop). Applying such blurring effect inefficiently may result in noticeable
delays in the UL

Example Consider an example from Firefox!. In the code snippet below, we can see that
an object instance of class UlVisualEffectView is instantiated (defines a blurring effect in
line 4) and is referred by a variable named backgroundEffect. In the second function init()
(line 13), where a cell is initialized, we can see that backgroundEffect is added (line 15)
to each cell in a table (line 18) when initializing the table object. Hence, iOS needs to
recalculate the blurring effect for each table cell. Applying the blurring effect repetitively
is computationally expensive and can result in noticeable UI delays, especially when users
are scrolling the table.

Bhttps://bugzilla.mozilla.org/show_bug.cgi?id=1191058
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// configuring the blur effect
lazy var backgroundEffect: UlIVisualEffectView? = {

let blur = UIBlurEffect (style: UIBlurEffectStyle.Light)

let vib = UIVibrancyEffect (forBlurEffect: blur)

let effect: UIVisualEffectView? =
DeviceInfo.isBlurSupported () *?
UIVisualEffectView(effect: blur) : nil

return effect

1O

override init (frame: CGRect) {
imageWrapper.addSubview (backgroundEffect)

// adding blur effect to every cell in the table
contentView.addSubview (imageWrapper)

Examples of Developer Awareness In the above-mentioned example from Firefox, devel-
opers complained that “the blur we render for each top site item is causing noticeable
slowdowns in frame rate of the application”.!* We also found many other developers com-
plained about the potential problems of applying blurring effect inefficiently during the
manual study. In our study, we found that 33% of the Ul-related performance issues reported
in Firefox are related to applying Ul blurring effect inefficiently.

Possible Solutions To fix this anti-pattern, developers sometimes choose to remove the
blurring effect if the effect is not important to the UI design. For example, one Firefox
developer in the above-mentioned issue report asked “just curious, how important is it to use
blurring instead of a flat or alpha faded color?”.!3 Another approach to fix the anti-pattern
is to calculate the burring effect once and reuse the calculated effect for every cell, instead
of recomputing the effect for each cell. However, sometimes developers may apply different
blurring parameters to each cell in a table. In addition, if the screen needs to be frequently
refreshed, calculating the blurring effect for every Ul frame may still be expensive. In such
cases, removing the blurring effect may be a better performance optimization approach.

Applying Ul Transparency Effect Inefficiently

Description Similar to blurring, we found that Ul transparency effect may be compu-
tationally expensive if used inefficiently (e.g., applied repeatedly, which requires more
computation). Such inefficient Ul design may result in unresponsive Ul and bad user
experience.

4https://bugzilla.mozilla.org/show_bug.cgi?id=1191058
Shttps://bugzilla.mozilla.org/show_bug.cgi?id=1191058
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Example Consider an example from Firefox. The Ul transparency effect is configured and
returned as the variable faviconView (an instance of the UllmageView class). Then, favi-
conView is used in the init function of a table cell (line 14), and the transparency effect is
added to each cell in the table (i.e., by calling addSubview(faviconView)). When the table is
refreshed (e.g., when scrolling), the transparency effect will be recomputed for each cell in
the table and result in unresponsive UL

lazy var faviconView: UIImageView = {

// setting the transparency level
faviconView.layer.borderColor = UIColor (white: 0, alpha:
0.1) .cgColor

return faviconView

1O

override init (style: UITableViewCellStyle, reuseldentifier:
String?) {

// adding transparency effect to each table cell
contentView.addSubview (faviconView)

Examples of Developer Awareness In the studied issue reports, we found that some devel-
opers did not know the performance overhead of the transparency effect until users reported
the problems. Namely, developers did not completely understand the performance profile
of the app. For example, a WordPress developer was informed by a user that: “[d]rawing is
improved when views that have solid backgrounds are set to opaque.”.'® The manual obser-
vation also highlights the needs of developing research tools to help developers improve the
performance of their apps.

Possible Solutions Similar to applying blurring effect inefficiently, the approach to fix this
anti-pattern is to remove the UI transparency effect when the effect is not important to
the UI design. As an example, Firefox developers even mentioned that they think avoiding
partial transparencies, whenever the effect is not required, would be the best way to ensure
the performance of the app.!” Other developers on Stack Overflow also discussed that the
overhead to compute transparency is high and should be avoided if possible.'?

16https://github.com/wordpress-mobile/WordPress-10S/issues/419
Thttps://github.com/mozilla-mobile/firefox-ios/pull/1215/commits/4ba952a58bf34ecfa555a8058f7c9a20c
54997d

18 https://stackoverflow.com/questions/9270723/what-is-the-better-way-to-set-an-uiview-backgroundcolor-to-
transparent
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We found that the most common performance anti-patterns in iOS are: accessing data
model on the Ul thread, updating Ul controls on background threads, applying Ul
blurring effect inefficiently, applying UI transparency effect inefficiently, and object
references causing retain cycles.

RQ3: How many iOS performance anti-patterns can we detect and verify in both
commercial and open source apps?

Motivation

We found that many of the anti-patterns that we studied are related to the complex calling
relationship among the user-defined functions and iOS-specific APIs that may be difficult
to find without tool assistance (Liu et al. 2014; Chen et al. 2016a). For example, developers
may not notice that, after a chain of function calls, a function on the main thread will result
in data accesses. Hence, to help developers improve the quality of their apps, we create a
static analysis tool to detect the anti-patterns. In this RQ, we want to study whether our tool
can detect the anti-patterns with a high precision.

Approach

We implemented a static analysis tool, called iPerfDetector, to detect instances of the uncov-
ered anti-patterns. iPerfDetector analyzes the abstract syntax tree (AST) of the Swift code
in iOS apps to detect the anti-patterns. iPerfDetector first uses an open source tool called
SwiftAST (SwiftAST 2018) to parse the Swift code and generate the ASTs. Then, iPerfDe-
tector applies different detection algorithms on the ASTs to detect the manually-uncovered
i0S performance anti-patterns. Below we provide more details on how iPerfDetector detects
each anti-pattern. Note that iPerfDetector focuses on detecting the types of performance
anti-patterns that existing tools do not. Since prior tools (e.g., Facebook’s Infer (2017)
and Apple’s Instruments (2018c)) focus on detecting memory-related issues, we implement
iPerfDetector to detect inefficient thread handling and inefficient UI design.

Detecting Accessing Data Model on the Ul Thread Developers use Core Data APIs by
calling the class NSManagedObjectContext that is provided by the iOS SDK to interact with
the persisted objects (Apple 2017b). Hence, every data access is made through this spe-
cific class. iPerfDetector first traverses all the classes in an app searching for objects that
are instances of NSManagedObjectContext. Then, iPerfDetector applies points-to analysis
to identify all the functions that contain data accesses (e.g., calling functions such as save,
fetch, insert, or delete on the NSManagedObjectContext object). After this step, we obtain
a list of functions that contain data access calls. Then, iPerfDetector constructs an inter-
procedural call graph, and traverses all the functions that are executed in the main thread.
Since functions are executed in the main thread by default, iPerfDetector decides that a
thread is executed in the main thread if the thread is not executed on background threads,
such as not within in the code blocks of DispatchQueue.global.async and performBack-
groundTasks. Finally, if any executed functions in the main thread may result in data access,
an instance of this anti-pattern is detected by iPerfDetector.

Detecting Updating Ul Controls on Background Threads To detect this anti-pattern,
iPerfDetector traverses the entire source code and identifies all the instantiated UI objects
(e.g., buttons, text fields, and labels). After this step, iPerfDetector obtains the locations
of all the UI objects and their corresponding functions. Then, iPerfDetector constructs an
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inter-procedural call graph. iPerfDetector traverses the call graph and looks for functions
that are executed in background threads (e.g., called within the code block of perform-
BackgroundTask or DispatchQueue.global.async{...}, which are the APIs provided by the
iOS SDK for executing tasks in background threads). An anti-pattern instance is detected
if we see that a Ul-related object or function is called within the code blocks that will be
executed in a background thread.

Detecting Applying Ul Blurring Effect Inefficiently We found that there are two situations
where applying blurring effects may result in bad user experience. The first situation is when
an object instance of VisualEffectView (i.e., for setting visual effects) is added to a cell. A
cell in iOS Ul can be represented by any class that is extended from classes TableViewCell (a
type of cell that repeats in a table vertically) or CollectionViewCell (a type of cell that repeats
in a table horizontally). The second situation is when an object instance of VisualEffectView
is added to another view (i.e., objects that are instances of UlView, which manages the
contents on the screen) inside a loop. In these two situations, the blurring effect is computed
multiple times (e.g., once for each cell) whenever the frame is updated (e.g., when scrolling
a table).

To detect this anti-pattern, iPerfDetector first traverses all the source code files searching
for object instances of VisualEffectView with the blurring effect turned on. iPerfDetector
detects an instance of anti-pattern by using taint analysis. Namely, iPerfDetector checks
the calls/usages of the object instance of VisualEffectView, and verifies whether the object
instance will eventually be added as a subview to other object instances that represent
cells in iOS UI (i.e., sub-classes of TableViewCell or CollectionViewCell). If the VisualEf-
fectView object instance is used in a loop (e.g., for or while), an anti-pattern instance is also
detected.

Detecting Applying Ul Transparency Effect Inefficiently To detect this anti-pattern,
iPerfDetector first traverses all the source code files searching for objects that are instances
UlView and have transparency configured (i.e., the alpha value is larger than O and less than
1). Then, similar to detecting inefficient blurring effect, iPerfDetector uses taint analysis
to verify where the partially transparent object instance is called. Namely, iPerfDetector
tracks the usages and calls to object instance, and an anti-pattern instance is detected if the
object instance is used in classes that are of the type CollectionViewCell or TableViewCell,
and the object instance is added as a subview to the cell. An anti-pattern instance is also
detected if the partially transparent object instance is used in a loop.

Furthermore, in order to evaluate iPerfDetector, we apply it on both commercial and open
source apps, to find out how many anti-patterns iPerfDetector can detect. Then we report
our findings to developers and ask them to verify our results.

We collaborated with a company named Seeb Smart Solutions,'® and used iPerfDetector
to help improve the quality of their apps. Table 3 shows the applications that we used to
evaluate iPerfDetector. We evaluated iPerfDetector on three apps from our industrial partner.
Appl is an application for travel guides (similar to TripAdvisor to some extents). App2 is a

https://www.linkedin.com/company/seeb/
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Table 3 Apps that we use to evaluate iPerfDetector

App Name Category LOC Availability Version
Firefox Utilities 145K Open Source 8.0
WordPress Productivity 84K Open Source 8.5
Wire-i0S Business 60K Open Source 33
Charts Library 31K Open Source 3.03
Yep Social Network 71K Open Source 1.3
Sync Library 8K Open Source 323
TSWeChat Social Network 8.5K Open Source 1.0
SugarRecord Library 2.5K Open Source 1.0
Appl Travel 5to 25K Commercial Latest
App2 Travel 15 to S0K Commercial Latest
App3 News 5 to 25K Commercial Latest

ride sharing application (e.g., similar to Uber) that is commonly used in Iran. Finally, App3
is a news app that informs users regarding technology news over the globe. In addition to
commercial apps, we also applied iPerfDetector on the latest version of four additional open
source 10S apps (i.e., eight open source apps in total). The categories of these apps range
from social network to business and iOS libraries. These four apps are popular on Github
(i.e., more than 2K stars) and are relatively large in size (more than 2.5K LOC). We did not
select these four apps for our manual study in RQ1 due to a lack of performance-related
issue reports. We applied iPerfDetector to the latest versions of the studied apps, and we
focused our study on the source code files (i.e., we excluded the ones that were detected in
the test files).

To verify the detection results, we took a two-step approach. First, we manually studied
all of the detected anti-pattern instances to examine whether they are true positives or not.
Then, we reported the detected anti-pattern instances to developers in order to receive their
feedback.

Results

Table 4 shows the performance anti-pattern detection results. Note that the detected
instances in WordPress, Wire-10S, Firefox, and Charts are new issues that were not dis-
covered/discussed in the manually studied issue reports. In total, iPerfDetector detected 34
anti-pattern instances in 11 studied apps. The execution time of running iPerfDetector is
around three minutes or less per app, depending on the size of the app. We executed iPerfDe-
tector on a desktop machine with 16 GB of memory and 2.6 GHz Intel-Core i5 CPU. Note
that some anti-patterns may not be applicable in the studied iOS app (e.g., an app does
not have data models or it is an iOS framework that does not have a UI), so we show the
detection result for such anti-patterns as “N/A” in the table.

In our manual verification, we found only two false positives among all the 34 detected
anti-pattern instances (i.e., a precision of 94%). The two false positives were both DM
anti-pattern that were detected in Sync. We found that, in these two specific cases, Sync
developers added some app-specific code to avoid data accesses in the main thread. The
code checks whether the data access will be executed in the main thread, and if so, an error
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Table 4 iOS performance anti-pattern detection result

App Name DM TREF BLEF UIBG

Detected  Verified Detected Verified Detected Verified Detected Verified

Wordpress 2 2 0 0 0 0 0 0
Wire-iOS 2 2 0 0 0 0 0 0
Firefox N/A N/A 1 1 1 1 0 0
Charts N/A N/A 0 0 0 0 0 0
Sync 18 16 N/A N/A N/A N/A 0 0
Yep N/A N/A 3 3 0 0 0 0
TSWeChat N/A N/A 2 2 0 0 0 0
SugarRecord 1 1 N/A N/A N/A N/A 0 0
Appl N/A N/A N/A N/A 1 1 0 0
App2 N/A N/A 0 0 1 0 0
App3 2 2 0 0 0 0 0 0

“N/A” means that the anti-pattern is not applicable to the studied iOS app (e.g., the app does not have data
models or it is an i0OS framework that does not have a Ul). Detected shows the number of anti-pattern
instances that are detected by iPerfDetector. Verified shows the number of anti-pattern instances that are
manually verified to be true positives by the authors

will be thrown. Since iPerfDetector did not consider such app-specific code in the detection
algorithm, these two anti-pattern instances were detected as false positives. We reported
the remaining 32 detected anti-pattern instances (after removing the two above-mentioned
false positives) to developers. We contacted the developers by creating issue reports on bug
tracking systems (e.g., Bugzilla or Jira), or by sending emails to developers. Overall, we
received positive responses for the 31 reported anti-pattern instances (we are still waiting for
responses of one reported anti-pattern instance in SugarRecord). Developers acknowledged
the reported problems and expressed interest in our detection tool.

For example, a developer from Sync agreed to the reported DM anti-pattern instances
and said:

My recommendation is never do calls from the main thread. Another recommendation
is: use NSFetchedResultsController when possible...2

The developer suggests using the NSFetchedResultsController API or an API wrapper that
he developed to avoid the DM anti-pattern. However, after manually checking the API and
the wrapper, we found that the API is only able to handle one particular case of the DM
anti-pattern: when the data retrieved from the database is used directly in a Ul table. Hence,
even though the developers are aware of the anti-pattern, the problems still exist in the app.
This also shows that iPerfDetector is able to help developers detect undiscovered problems
in iOS apps.

As another example, developers from Yep responded to our email and acknowledged the
reported problem:

I think you’re right about the anti-pattern issue, the code isn’t perfect yet. This views
are not in the main scenes, so the performance is tolerated [...]

20https://github.com/3lvis/Sync/issues/509
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Developers from TSWechat agreed that iPerfDetector is helping them detect problems
in their app. They also mentioned how iPerfDetector helped their app detect the problems
early in the development process:

Yeah, absolutely yes. I didn’t do anything about the performance of this project so
far. So we can improve the performance of this project [based on the anti-pattern
instances] that you [detected].?!

We found that in some cases, developers acknowledged that the reported anti-pattern
instances are problematic, but the performance impact may not be clear. For example, a
Firefox developer mentioned that:

...Changing this alpha might not make a measurable impact on CPU perf, maybe it
saves some power demand on the GPU though... 22

Nevertheless, some developers think these anti-patterns are bad practices that one should
always avoid. However, fixing the anti-patterns in a matured app can be a challenging
task (e.g., may require refactoring the design of the app). For example, developers from
WordPress mentioned that:

In my opinion it’s not a matter of whether to do it or not, but more about deciding
when to do it...Moving CoreData operations to a background thread could be one of
those improvements as it would allow us not to lock the main thread... we have to
evaluate how moving that operation to the background (ie: making it asynchronous)
would impact the rest of the code.??

We also got positive feedback from commercial apps’ developers. All the reported anti-pattern
instances were acknowledged as problematic by our industrial partner, and developers are
in the process of fixing them. iPerfDetector is now integrated into the quality assurance
process of our industrial partner to help them ensure the performance of their apps.

iPerfDetector detected a total of 34 anti-pattern instances in the studied apps, where
we manually verified 32 of them as true positives. We reported the detected anti-
pattern instances to developers and 31/32 are confirmed as potential performance
problems (we are still waiting for developers’ response for the remaining case).

RQ4: What is the performance impact of the iOS anti-patterns?
Motivation
To provide a better understanding of the iOS performance anti-patterns, in this RQ, we

conduct a case study and see if these anti-patterns actually have a negative performance
impact (i.e., in terms of GPU usage, CPU usage and response time).

Approach

We choose one detected anti-pattern instance from each of DM, BLEF, and TREF in the
studied apps. We did not conduct the study on all the detected problems because generating
a fix, in many cases, requires significant manual investigation and refactoring of the existing

2Ihttps://github.com/hilen/TSWeChat/issues/42
22https://github.com/mozilla-mobile/firefox-ios/issues/39611
B https://github.com/wordpress-mobile/WordPress-i0S/pull/578
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code. However, for each anti-pattern, the root cause is the same across all detected instances.
We choose TREF and BLEF from Firefox due to its popularity and size. We choose DM
from one of the commercial apps to show that the studied anti-patterns exist and have a per-
formance impact in both open source and commercial apps. We did not include UIBG in this
study since the effect of UIBG is usually related to app crashes or missing Ul updates (i.e.,
visual performance problems from the perspective of the users). We measured GPU usage
when BLEF and TREF anti-patterns were happening, because as mentioned by developers
in forums and Apple Documents, color blending parts of the screen, which are common
causes of sluggish scrolling in tables, are highly associated with GPU usages (Medium
2015; Apple 2018f). For the DM instance, we measure the CPU usage and response time,
since as stated in Apple Core Data related tutorials, processing data on the main thread
specifically affects CPU (Apple 2018g).

We first measure the performance of the workload (e.g., scrolling a table) before fix-
ing the anti-pattern. Then, we measure the performance improvement after we manually fix
the anti-pattern. We used an iPhone 6 for the experiment in our case study and we used
the Apple’s Instrument to collect performance metrics (Apple 2018c). We repeat each exe-
cution 10 times, and take the average value to minimize the effect of fluctuation during
performance measurement (Chen et al. 2014). Note that the performance impact of each
anti-pattern instance may vary for different cases (e.g., some anti-pattern instances that are
executed more frequently or are related to larger tables would have a larger performance
impact) (Chen et al. 2016a). Hence, our goal in this case study is to find out whether the
anti-pattern has an impact on the performance in a controlled environment.

Results

For both TREF and BLEF, we measured the GPU usage since the anti-patterns are related
to processing Ul effect. We apply the same experimental setting to these two anti-pattern
instances. Table 5 shows the GPU usage before and after fixing the BLER and TREEF anti-
patterns. The executed workload involves scrolling a table in Firefox. We set the table to
contain 15 and 30 rows to study the performance impact when the size of a table increases.
We monitor the GPU usage before and after removing the heavy Ul effect. We wrote test
cases to automate the scrolling and profile the GPU usage during test execution. We found
that, when the table contains 15 rows, fixing the TREF anti-pattern instance improved the
GPU usage by 5.8% (improved from 15.3% to 14.4%). On the other hand, fixing the BLEF
anti-pattern instance improved the GPU usage by 72% (improved from 43.4% to 12.1%).
When the table contains 30 rows, fixing the TREF anti-pattern instance improved the GPU
usage by 29% (improved from 22.5% to 16%). For BLEF, we observed less improvement
when fixing the anti-pattern instance in a larger table. The GPU usage was improved by
70% (improved from 50.2% to 15.3%) when BLEF is fixed.

Table 5 GPU usage (percentage) changes in median, average, and standard deviation, after resolving the
BLER and TREEF anti-pattern instances

15 rows 30 rows

Before After Before After
Median Avg+StDv Median Avg=+StDv Median Avg=+StDv Median Avg=£StDv

BLEF 43.5% 43.4%+3.02% 12.5% 12.1%+4.04% 50% 50.2%£3.19% 16% 16.5%+1.71%
TREF 13% 15.3%+4.05% 13.5% 14.4%=%3.74% 21.5% 22.5%+8.19% 18% 20.1%+4.2%
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Table 6 CPU usage changes (percentage) in median, average, and standard deviation, and response time
changes (percentage) after resolving the DM anti-pattern instance

Before After

Median Avg+StDev Median Avg+StDev
CPU 27% 28.91%+6.42% 18.66% 19.03%+4.15%
Resp time - 80%

Due to the confidentiality agreement, we only show the percentage improvement for the response time

For DM, we monitored response time and CPU usage of App3, when one anti-pattern
instance is happening before and after moving Core Data access to a background thread (the
operation takes less than a second). Table 6 shows the CPU usage before and after fixing the
DM anti-pattern. It also shows the response time improvement after fixing the anti-pattern.
The executed workload involves fetching 90 objects from the database. Although we cannot
report the actual response time due to the confidentiality agreement, the response time of
the task that contained the anti-pattern instance improved by over 80%, after the anti-pattern
was fixed. The average CPU usage improved by 34.15% (from 28.9% to 19.03%).

In summary, we found that fixing the anti-pattern instances has a non-negligible per-
formance improvement. Moreover, our performance measurements show that the average
values of the performance metrics are very close to the median values, which shows the
there is little fluctuation in our analysis (i.e., the results are stable). iPerfDetector can help
developers detect the anti-pattern instances, and developers may decide when and how to
fix the problem (e.g., problems that are commonly triggered by the users may need to fixed
earlier).

We found that fixing the anti-pattern instances may improve performance (i.e., in terms
of response time, GPU, and CPU usage) by 5.8% to 67% in GPU usage, 34.15% in
CPU usage, and by over 80% in response time of the exercised workload.

4 Threats to Validity
4.1 Internal Validity

In this paper, we conducted a manual analysis on the performance issue reports. Similar to
prior studies (Liu et al. 2014; Jin et al. 2012b), we used keywords such as “performance”
and “slow” to identify performance-related issue reports. We found that some issue reports
may not be related to performance issues even though they contain the keywords. Therefore,
to reduce the bias in the data, we manually went through all 960 matched issue reports to
identify the relevant reports. Although we tried to use more general search terms, we may
still miss some performance-related issue reports. However, we have a much larger number
of performance issues compared to prior performance studies (e.g., we studied 225 issue
reports after the manual filter process, where Liu et al. (2014) only studied 70 issue reports).

As mentioned in Section 3, iPerfDetector does not detect retain cycles. Facebook’s Infer
focuses on using static analysis to detect null pointer dereferences and memory leaks, which
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makes it a great complement to our tool. Our tool is detecting performance anti-patterns that
are not implemented in Infer’s detection algorithm. Apple’s Instruments, on the other hand,
is a profiling tool that is able to show the performance information (e.g., object memory
graphs and CPU usages of user events) when running an app. Therefore, developers may
use Instruments to monitor the detailed activities of an app and try to diagnose the prob-
lems. However, compared to our approach, Instruments offers more flexibility in detecting
performance problems, but it can not directly pinpoint developers to the root causes (i.e.,
anti-pattern in the code) and requires developers to dynamically exercise the problematic
code in the app. Moreover, our empirical study shows the common performance problems
that happen in iOS apps and compare our findings with prior studies in Android apps.
Future studies may build upon our findings and provide better techniques to help improve
the performance of i0S apps.

A number of projects may still use Objective-C code in some parts of the app (e.g., not
yet migrated or in third party libraries). In such cases, our tool will not be able to detect
the anti-patterns. Even though our tool can only detect anti-patterns in Swift code at the
moment, the studied anti-patterns are related to how developers interact with the iOS SDK
(i.e., the problem can occur whether an app is implemented in Swift or Objective-C). For
example, developers may be calling iOS APIs to compute heavy Ul effects in tables when
developing apps in either language. Hence, the anti-patterns that we studied are applicable
to both languages.

4.2 External Validity

We found that there is a limited number of mature and open source iOS apps that contain
performance issue reports. Hence, we only conducted the manual study on four open source
iOS apps that met the selection criteria. Although these apps are widely used and are large in
scale, the performance issue reports that we studied may not be generalizable to other apps.
However, we found that the manually-uncovered performance anti-patterns also exist in
seven other iOS apps (three commercial and four open source apps), which means that these
performance problems are not unique to the four manually-studied apps. We conducted a
case study to measure the performance improvement when the anti-pattern instances are
fixed. However, the performance improvement may vary in different cases. Various factors,
such as number of cells in a table, number of iterations in loops, and how frequently users
may trigger the anti-pattern instance in the code, may all affect the performance impact
of the anti-pattern instance. Nevertheless, our result highlights the potential impact of the
performance anti-patterns. Moreover, our tool can help detect the anti-pattern instances, and
developers may decide when or how they want to fix the problem (e.g., the problems that
are frequently triggered by users may need to be fixed earlier).

The performance problems that we found are mostly related to data access and UI
rendering. The reason may be that we focus the study on iOS apps, so most of other
problems (e.g., network-related issues) that we found are related to testing and exception
handling. For example, we found some developers discussed how to test various features
in an app when the network connection is slow.2*?3 In most cases, app developers do not
have control of external systems (e.g., the network speed and the servers that they are

24https://github.com/wordpress-mobile/WordPress-i0S/issues/9993
Zhttps://github.com/wordpress-mobile/WordPress-i0S/pull/10111
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communicating with). We did find some problems that are implicitly related to network,
where developers are storing the received data in the database inefficiently. In such cases,
we classify the problem as the data model (DM) anti-patterns. Future research should con-
sider studying performance problems that exist in servers that are handling requests from
iOS apps.

4.3 Construct Validity

We use static analysis to detect the iOS performance anti-pattern in the studied apps. Since
we do not have the ground truth of the anti-pattern instances in the studied apps, it is
impossible for us to compute a recall value. However, iPerfDetector was able to detect
the anti-pattern instances that we manually studied in the issue reports, as well as the new
anti-pattern instances that we detected in the latest version of the app.

During the manual study, we found that UIBG (i.e., doing Ul-related operations in back-
ground threads) is a common anti-pattern (nearly 18%) among all the studied issue reports.
However, iPerfDetector did not detect any such anti-pattern instance in the latest versions
of the apps. We conjecture that the Main Thread Checker may have helped developers avoid
such problems during app development. As we mentioned in Section 3, the Main Thread
Checker is a dynamic analysis tool released by Apple that helps developers detect UIBG
when running the app in debug mode (Apple 2017a). To verify the assumption, we conduct
a small experiment on the studied issue reports in WordPress. Interestingly, we found that
almost half of UIBG anti-patterns were reported by users after the Main Thread Checker
was released for a while. Namely, developers did not fully utilize the Main Thread Checker
to detect these anti-pattern instances during development, so these problems were reported
by the users after the apps were released. The reason that iPerfDetector did not detect any
UIBG may be that the studied apps have been used by many users for a long period of time,
so most UIBG instances were already reported and fixed. Future studies are needed to study
how developers interact with different bug detection tools to provide better development
supports.

Finally, our tool currently analyzes the source code of an app, so if the source code is
not available, we cannot detect the anti-patterns. Hence, if an app is using external libraries,
which the source code is not available, we will not be able to detect the problems.

5 Related Work

In this section, we discuss the related work along two dimensions: 1) detecting perfor-
mance anti-patterns in software applications, 2) code smells in mobile apps, and 3) empirical
studies on Swift-based applications.

5.1 Detecting Performance Anti-patterns in Software Applications

Much research effort has been devoted to understanding and detecting performance anti-
patterns in system applications (e.g., enterprise or database systems). According to Fowler
et al. (1999), a code smell is any characteristic in the code (e.g., code design or pattern)
that may indicate a deeper problem. Zaman et al. (2012) empirically studied the differences
between performance and non-performance issues, and suggested that performance issues
have their unique characteristics that would require specialized detection approaches. Nis-
tor et al. (2013a) further supported the finding, where they found that, unlike functional
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issues, most performance issues are uncovered through code reasoning with tool supports.
Jin et al. (2012c) empirically studied 109 performance issues in system applications (e.g.,
MySQL) and derived rules for detecting performance anti-patterns. Nistor et al. (2013b,
2015) proposed both dynamic and static approaches to detect inefficient memory access
in loops. Chen et al.(2014, 2016a, b) proposed a series of approaches that help developers
detect database access performance anti-patterns in enterprise applications.

5.2 Code Smells in Mobile Applications

Most other prior studies focus on studying code smells in Android apps. Table 7 further
clarifies the differences and similarities between our work and prior work on mobile per-
formance code smells (i.e., anti-patterns). Most anti-patterns discussed in the prior studies
are different than the ones we studied. We classify the anti-patterns based on the three
main categories that we manually uncovered when studying the issue reports. We find that
although some anti-patterns may be similar to the ones that we studied (e.g., blocking the
main thread), prior studies are mostly all in the Android platform and our study revealed
some unique problems that were not studied before. Below, we discuss each related work
in detail.

To the best of our knowledge, there is only one prior study on iOS code smells. (Habchi
et al. 2017) conducted a study on the Object-Oriented code smells in iOS apps and compare
with that of Android apps. They found that iOS apps are less prone to Object-Oriented
code smells. They also documented several iOS code smells (e.g., abuse of the singleton
design pattern, ignoring low memory warning, and downloading the same files multiple
times) based on reading Apple’s iOS documentation, developer blogs, and Stack Overflow
posts. However, most of the code smells that they found are different from the ones that we
studied in this paper, and they did not provide an evaluation of the detection results. Also,
different than their study, we studied bug reports from popular open source projects to find
the real-world root-causes of anti-patterns.

Hecht et al. (2016) conducted an empirical study on the impacts of three Android code
smells (i.e., private getter/setter, member ignoring method, and using hashmap instead of
array map). They found that fixing some code smells may reduce the number of delayed
frames, improve the UI drawing performance, or improve energy efficiency in some cases.
However, some of the performance problems may no longer exist in newer versions of
Android. We study a broader range of anti-patterns and also provide a tool to detect those
anti-patterns. Reimann et al. (2014) compiled a list of common code smells and refactoring
solutions in Android apps. Palomba et al. (2017) implemented a tool to detect Android-
related code smells that are presented in the study by Reimann et al. (2014). All of the
anti-patterns they discussed are different from the ones we found in our study. Mannan
et al. (2016) conducted a literature survey to identify common code smells in mobile apps.
They found that there was no prior study on code smells in iOS apps. They further com-
pared the types and distributions of code smells in mobile and desktop applications. Prior
studies Gottschalk et al. (2014) and Morales et al. (2017) also studied the relationship
between the above-mentioned code smells and energy consumption in Android apps. Jindal
et al. (2013) study wakeLocks and the scope of the code paths which should be protected
by wakeLocks and look for cases of where it is over-used, which increases battery con-
sumption, or under-usage which affects apps correctness. Pathak et al. (2012) developed an
energy profiler named eprof, to help developers find instances of energy bugs caused by
wakeLocks. In another study, Pathak et al. (2011) also provided the taxanomy of energy
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bugs (ebugs) in a variety of categories, such as hardware ebugs, Software ebugs, and ebugs
caused by external conditions. Under software energy bugs category, they focused on bugs
caused by OS processes and configuration changes, and applications and framework ebugs.
such as unnecessary loops (i.e., app repeatedly trying to connect to the remote server) and
apps respawning in spite of being killed by users. These two studies also focus on Android
platform.

The energy code smells introduced by these studies, are only validated in Android plat-
form, and the results cannot be generalized to iOS platform. Moreover, we believe that our
performance case study may help identify which types of code smell or anti-pattern may
consume more energy (e.g., base on the CPU or GPU usage), without needing to deploy
complex hardware environment.

Morales et al. (2017) proposed a search-based approach to provide refactoring sugges-
tion to developers. They found that fixing the code smells may reduce the number of delayed
frames and improve the Ul drawing performance. A study by Cruz and Abreu (2017) also
focuses on performance related Ul intensive anti-patterns, such as ViewHolder, Obsolete-
LayoutParam, and also memory issues such as Recycle and DrawAllocation, all in Android
mobile apps. They selected the most common performance related suggestions given by
lint, and published a benchmarking suite for energy consumption in Android.

Lin et al. (2015) implemented a refactoring tool for fixing an async programming bad
practice in Android apps. The anti-patterns include improper uses of primary construct,
AsyncTask, which can lead to memory leaks, results getting lost, and waste of energy.

A study by Okur et al. (2014) focuses on uses and misuses of asynchronous constructs
in Windows Phone applications. They also developed a set of tools for refactoring 2 of
the common async programming bad practices. The anti-patterns studied in this paper are
specific to async constructs in Windows Phone.

The study by Liu et al. (2014) is the closest to the problems that we studied in this paper.
They manually studied 70 performance issue reports in Android apps and developed a static
analysis tool to detect two manually-uncovered performance anti-patterns. In this paper, we
focus our study on another popular mobile app platform, iOS. iOS apps were rarely stud-
ied in prior research, even though they have different characteristics compared to Android
apps (Hu et al. 2018). Different from the study by Liu et al. (2014), we conducted our study
on 225 performance issue reports. We found that many performance anti-patterns in the
studied iOS apps are related to inefficient Ul design (e.g., using inefficient UI effects such
as blurring) and thread handling. We also provided a case study to illustrate the performance
impact of the studied anti-patterns. To the best of our knowledge, we are the first study on
performance issues in iOS apps. Future studies are needed to further help mobile developers
with not only Android, but also iOS app development.

5.3 Empirical Studies on Swift-based Applications

Cassee et al. (2018) conducted a study on most frequently asked questions about Swift
programming language on Stack Overflow. They found that 14.6% of the questions are
about data storage, 12.8% are related to UI actions, and around 9% are related to multi-
threading issues. Their results also echo with the importance of the anti-patterns we studied.
They also surveyed iOS developers and discovered that they found Swift easy to adopt.
Rebougas et al. (2016) studied open-source repositories to find out to what extent Swift
developers apply best practices of error handling provided by guidelines and tutorials.
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6 Conclusion

In this paper, we conducted an empirical study on 225 performance issue reports in four
open-source i0S applications (i.e., apps) that are written in Swift. Our manual study on the
issue reports found that inefficient Ul design, memory issues, and inefficient thread han-
dling are the most common types of performance issues. In particular, we found that most
problems we studied are related to how developers use iOS-specific APIs (e.g., UI effect or
threading). Hence, we manually derive four performance anti-patterns that are related to i0S
API usage. We documented these four anti-patterns and implemented a static analysis tool,
called iPerfDetector, to detect these patterns. We evaluated iPerfDetector on 11 iOS apps
(eight open source and three commercial apps). iPerfDetector was able to detect a total of 34
anti-pattern instances (where we manually verified two as false positives). We reported 32
of the detected anti-pattern instances and 31 of them are accepted by developers as poten-
tial performance problems. iPerfDetector is now used by our industrial partner to ensure
the quality of their apps. To the best of our knowledge, this is the first study on iOS per-
formance issues. Our study highlights some common problems that may be unique to iOS
development. However, the current research community often only focuses on Android app
development. Future studies should investigate problems in iOS development and provide
further support to developers.
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