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Abstract—Although writing code seems trivial at times, prob-
lems arise when humans misinterpret what the code actually
does. One of the potential causes are “atoms of confusion”, the
smallest possible patterns of misinterpretable source code. Pre-
vious research has investigated the impact of atoms of confusion
in C code. Results show that developers make significantly more
mistakes in code where atoms are present. In this paper, we
replicate the work of Gopstein et al. to the Java language. After
deriving a set of atoms of confusion for Java, we perform a
two-phase experiment with 132 computer science students (i.e.,
novice developers). Our results show that participants are 2.7
up to 56 times more likely to make mistakes in code snippets
affected by 7 out of the 14 studied atoms of confusion, and
when faced with both versions of the code snippets, participants
perceived the version affected by the atom of confusion to be
more confusing and/or less readable in 10 out of the 14 studied
atoms of confusion.

Index Terms—software engineering, program comprehension,
atoms of confusion, empirical software engineering.

I. INTRODUCTION

Writing source code in such a way that developers effec-
tively understand it is fundamental for the sustainable develop-
ment, maintenance, and evolution of software systems [14, 26,
27]. In contrast to natural languages, programming languages
have an unambiguous meaning for a valid syntactical piece
of code [5]. However, developers may not always draw the
correct conclusions on the behaviour of a piece of code; they
can mistake the meaning of code and misjudge the program’s
behaviour, leading to errors [14].

Different programming languages give software developers
many ways of implementing a solution to a given problem.
For example, the simple task of converting a boolean true
or false value into a numeric integer value can be coded
in a vast amount of ways. An example can be found in
the difference in the answers given to the question How
to convert boolean to int in Java? in StackOverflow1. We
display eight different answers in Figure 1, ordered by their
amount of votes. The solutions show a significant amount of
variation in logic, readability, and understandability. Using the
ternary if operator (option 1) is considered the ‘most
readable’ by the commenters, and received the most votes,
making it the most accepted solution according to the rules of
the StackOverflow community. Interestingly, this is in contrast

1https://stackoverflow.com/questions/3793650/
convert-boolean-to-int-in-java. Accessed in July 25, 2019

with the findings of Gopstein et al. [14], which show that
the use of the conditional operator atom is found to be
significantly confusing. Furthermore, the author of the 8th
answer starts their answer with “If you want to obfuscate,
use this:” showing that the intention of this answer is not
readability, but instead showing a less known alternative to
solve the question.

Discussions about code misconceptions happen regularly.
On June 14th, 2019, Jonathan Wakely started a discussion
on the bug tracker of GCC about introducing warnings when
people use the boolean operator ∧ with integer literals.2 The ∧
operator represents a bitwise XOR operation in most program-
ming languages. Instead, developers confuse the symbol with
the mathematical representation of power. The author states:
“There’s nothing wrong about implicit fallthrough, misleading
indentation, ambiguous else, or missing parentheses in nested
logic expressions either. But people get it wrong all the time.
I can’t see a good reason to write 2∧16 when you mean
18, or 10∧9 when you mean 3, so it’s probably a bug. And
there’s an easy workaround to avoid the warning: just write
the exact constant as a literal, not an XOR expression.”3 Other
developers jumped in the discussion to show examples of
occurrences of this particular pattern on GitHub and other
source code hosting sites. Several of the responses provide
suggestions to specific cases when a warning should, or should
not be raised, depending on the use of literals or not. These
examples show that readable code is a relevant topic, and
that the details up to the smallest code snippets can make
a difference in understandability.

Gopstein et al. [14] observed a trend in notable software
bug examples, where the failure is caused by “a single, well-
contained, programming error at the syntactic or semantic
level, rather than the algorithmic or system-levels of the
project”. In this work, authors explored the idea of atoms of
confusion, or “atoms” for short, which they define as minimal
portions of code that cause a person to different conclusions on
the output. Castor [9] expanded this definition by formalizing
atoms as precisely identifiable, likely to cause confusion,
replaceable by a functionally equivalent code pattern that
is less likely to cause confusion, and indivisible. Atoms of
confusion do not include non-deterministic, undefined/non-

2https://gcc.gnu.org/bugzilla/show bug.cgi?id=90885
3https://gcc.gnu.org/bugzilla/show bug.cgi?id=90885#c6

ar
X

iv
:2

10
3.

05
42

4v
2 

 [
cs

.S
E

] 
 1

0 
M

ar
 2

02
1



portable, computational, and API-related code, since the target
of the atoms is the mistakes caused by misunderstanding.

In that work, Gopstein et al. [14] also show a significant
increase in misunderstanding caused by the C atoms of
confusion patterns, opposed to code without the atoms of
confusion in an experiment with 73 participating students.
To show the impact of these confusion patterns, authors also
performed a second experiment, with 43 participants and
more extensive confusing programs. The results of this second
experiment show statistically significantly higher error rates in
the evaluation of obfuscated variants of programs.

The goal of this paper is to generalize the knowledge on
atoms of confusion to the Java programming language and
gain insights in what makes these atoms confusing. To that
aim, we propose a two-step experiment with 132 computer
science students (i.e., novice developers). First, we evaluate
the impact of the atoms of confusion through an experiment
where we randomly show code snippets, that may or may not
contain an atom of confusion, to participants and ask them
to evaluate the output of the program (in a design similar to
the original research). Second, we measure the participants’
preferences by presenting both the confusing and the non-
confusion versions of the same code snippet to participants,
and asking them to indicate which one they perceive as more
confusing.

Our results show that (i) participants are 2.7 up to 56 times
more likely to make mistakes in code snippets affected by 7 out
of the 14 studied atoms of confusion, and (ii) when faced with
both versions of the code snippets, participants perceived the
version affected by the atom of confusion to be more confusing
in 10 out of the 14 studied atoms of confusion.

The contributions of this work are:
1) A set of atoms of confusion for the Java language, based

on the atoms of confusion proposed by Gopstein et al.
[14].

2) An empirical evaluation of the impact and the perception
of the Java atoms of confusion among 132 novice
developers (i.e., computer science students).

II. BACKGROUND AND RELATED WORK

Program comprehension is a widely explored domain in
computer science. For this study, we are mainly interested in
the skill level in program comprehension of novice program-
mers.

In 1985, Bonar and Soloway [6] stated that ‘many program-
ming bugs can be explained by novices inappropriately using
their knowledge of step-by-step procedural specifications in
natural language’. We can take away that certain bugs can be
caused by lack of expertise. Finding out what programming
code does, or what code is needed, our intuition sometimes
tries to connect our present knowledge from other fields to
find a solution. In that particular research, knowledge of
natural language tricked participants into making mistakes
when writing code.

Ajami et al. [1] use an experimental platform fashioned
as an online game-like environment to measure how quickly

1. i = b ? 1 : 0;

2. i = (Boolean b).compareTo(false);

3. i = Boolean.compare(b, false);

4. i = -("false".indexOf(""+b));

5. i = 5 - b.toString().length;

6. import org.apache.commons.lang3.
BooleanUtils;

i = BooleanUtils.toInteger(b);

7. if(b){
i = 1;

} else{
i = 0;

}

8. i = 1 & Boolean.hashCode( b ) >> 1;

Fig. 1. Examples from StackOverflow answers on how to convert boolean b
to an int in Java 3

and accurately 220 professional programmers interpret code
snippets with similar functionality but different structures. The
findings include that there is no relation between errors made
and time taken to understand the snippets, but snippets that
take longer to understand are considered harder [1]. When a
snippet contains a for loop, the code is considered much
harder to understand compared to snippets containing ifs.
Snippets with predicates become harder to understand when
negations are present, and for loops counting down are
harder to understand than loops that count up. This shows
that the slight differences in the way of expressing predicates
can be measured when compared against the use of known
idioms. The syntactic structures of code are shown to not
necessarily take up the biggest part in the measurement of
complexity of code. Authors also found that the metrics of
time to understanding and the amount of errors made are
not necessarily related. This means that the amount of errors
made is not related to how long a participant takes to solve a
problem.

By understanding what makes code less readable, we can
draw conclusions about what code constructs are understand-
able and which to avoid. This is shown by the research of
Gopstein et al. [14]. The main source of the code patterns used
for the atoms of confusion comes from a contest on writing
obfuscated code called IOCCC (the International Obfuscated
C Code Contest). Authors describe 19 atoms of confusion,
on which this research is based on. To show the real-world
relevance of these selected atoms of confusion, follow up
research from Gopstein et al. [16] shows that the 15 atoms
that were proven to be confusing, occur in practice once per 23
lines. Their research is based on the analysis of 14 of the most
popular and influential C and C++ software projects. Medeiros
et al. [21] also researched the rate of occurrences of most of
the atoms and show that all but one occur in the analyzed
projects. They based their numbers on a set of 50 open-source
C projects using a mixed method approach including repository
mining and developer surveys. Four of the 12 atoms researched



by Medeiros et al. [21] are shown to be commonly used.
In a more recent work, Gopstein et al. [17] performed a

think-aloud study in which researchers observe 14 developers
(students and professional developers) as they hand-evaluated
confusing code (i.e., code containing Gopstein’s previously
defined atoms of confusion). The results show that atoms may
confuse developers for many different reasons, i.e., developers
are not familiarized with that code construct, or are familiar-
ized with it but attributes incorrect semantics to it, or even
lack of attention when evaluating the entire snippet.

A similar approach to researching patterns of code that
cause misinterpretation can be found in the work of Dolado
et al. [11]. This work provides insights in misinterpretations
caused by code that has side-effects. The researched code
fragments are comparable to code examples used in this study.
The atoms pre increment decrement, post increment decrement
and logic as control flow have most similarities, as they also
make use of expressions with side-effects.

The perception on readability of 11 different coding style
practices is tested by dos Santos and Gerosa [12]. Using a
custom tool, participants were shown a pair of code examples,
one violating the coding practice while the other complied
with it. They find that 7 out of the 11 tested practices increase
readability, 1 decreased readability, and the remaining 3 did
not present statistically significant effects.

Ebert et al. [13] took a look at confusion in code reviews by
examining the comments left by reviewers. What they show is
that reviewers often do not understand the context of the code
change well, which has an impact on the understanding of the
code. However, reviewers are decently well in detecting and
pointing out sources of confusion.

III. METHODOLOGY

The goal of this study is to measure the impact of atoms of
confusion in Java code among computer science students. To
that aim, we propose the following research questions:

RQ1 Which atoms of confusion hinder the comprehensi-
bility of Java programs, and to what extent?

RQ2 How do students perceive confusion in Java pro-
grams that include atoms of confusion, as opposed
to the translated, confusion-free, Java programs?

In Figure 2, we illustrate our methodology. We first take the
tasks from Gopstein et al. [15], that were originally devised
for the C language, and manually translate them to Java code.
This process is described in Section III-A. With the code
snippets in hands, we devised a two-phase experiment. The
first part focuses on the effects of atoms of confusion. We give
random code snippets to participants (some of them containing
the atom of confusion) and ask participants to reason about
the output of the program, which we then compare to the
oracle answers. In the second part, we show random code
snippets containing the programs with and without the atom
of confusion, and we ask participants which one they perceive
as less confusing. We better describe the experiment in the
following sub-sections.

Survey 

Perception ExperimentEffect Experiment
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Fig. 2. The design of the study. Participants first take the effect experiment
(part 1, repeated 7 times) where they are presented with snippets that either
contain or does not contain the atom of confusion and are asked to write down
the output of the problem. In the perception experiment (part 2, repeated 5
times), participants are randomly presented with both versions of the snippet
and are asked to evaluate which one they perceive as more confusing.

A. The Set of Atoms of Confusion

We devise a set of code snippets containing different atoms
of confusion in Java, based on Gopstein et al. [14]’s work on
atoms of confusion in C.4 The code snippets are, in essence,
short programs with simple logic, and are affected by their
respective atom of confusion.

We first explored which atoms have a Java equivalent. This
was not case for seven of the proposed atoms of confusion. We
did not translate the Implicit Predicate atom, since Java’s type
system requires boolean values for predicates. The type system
also prevents the Pointer Arithmetic and Assignment as Value
atoms from having a suitable Java translation. In the case of
Pointer Arithmetic, a number cannot be added to a String type,
and in the Assignment as Value case, the inner assignment does
not have a valid return type for the outer assignment. The
Macro Operator Precedence and Preprocessor in Statement
atoms are not translated since preprocessing and macros are
not part of the language specification. Finally, the Comma
Operator and Reversed Subscripts atoms cannot be translated
as the syntax is not present, and we could not find similar
behaviour in the language.

With the list of possible atoms of confusion in Java, we
then translated the three variants (each containing the program
with and without the atom of confusion) that Gopstein et al.
[14] devised for each of the atoms. In order to stay in line
with the original study, we make the programming language-
related translations as similar as possible to the behaviour of
the original source.

We ended up with a list of 14 atoms of confusion, which
we show in Table I, and 80 different code snippets (14 atoms
of confusion × 2-3 variants per atom × with and without the
confusion). For two of the atoms, we could not translate one
code snippet. We removed Gopstein et al. [14]’s code example
number 52, related to “Change of Literal Encoding”, as we
argue that it unnecessarily requires participants to have knowl-
edge about the ASCII character tables. We also removed code

4https://atomsofconfusion.com/



example number 59, related to “Type Conversion” because
we did not find a trivial and small translation to an unsigned
cast operation. Thus, we ended up with 80 instead of 84 code
snippets, all shown in our online appendix [4].

B. Study Design

The study consists of two parts, which will answer the
first and second research questions, respectively. In the first
part of the study, we show participants code snippets, and
ask them to evaluate the code and predict its output based
solely on their thinking process. In the second part, we ask
participants to evaluate the code snippet, with and without the
atom of confusion, choose the one they believe to be the least
confusing, and explain why.

The experiment is conducted online, using the Survey-
Gizmo5 platform. The experiment starts with an introduction
to the study and an approximation of time needed. We briefly
explain the structure of the experiment and its guidelines. We
ask participants to fill in the answer solely based on their own
knowledge, without the help of others and tools. Furthermore,
the guide specifies several points of information, based on the
one used and provided by Gopstein et al. [14], and can be
summarized as follows:

• There is no time pressure, but the participant is encour-
aged to not stick to one question for too long.

• No syntax errors are present in the given code. If the
participant does think errors are present, he/she is asked
to explain in the comments where this error would take
place.

• Encouragement not to use a calculator, the computer or a
search engine for finding answers during the experiment.

• It is not possible to go back to previous questions.
• Discouragement of taking a break while filling in the

survey.
Participants then work on the two parts of the experiment

(the effects and their perception on atoms of confusion),
which are detailed in the following two sub-sections. After
participants finish the two tasks, we collect their demographic
information. Lastly, the participant can optionally leave an
email address to enrol for the possibility of winning a gift
card. The design of the survey was approved by the Human
Research Ethics Committee of our university.

The estimated total time required for the experiment is 15
minutes, and consists of 12 tasks, seven for the first part and
five for the second part. The entire experiment, code snippets,
and datasets can be found in the online appendix [4].

C. Part 1: The Effect of the Atoms of Confusion

The first part of the experiment is based on the study of
Gopstein et al. [14]. We set out to understand whether the
atoms of confusion hinder code understanding.

We show seven different code snippets, one at a time, to
each participant. Each code snippets shows a random program
and asks the participant to write down what this program will

5https://app.surveygizmo.com

print when executed. We randomly pick a program from our
database of code snippets; the code snippet may or may not
contain the atom of confusion. Participants do not have this
information.

In addition to the question on what the code will print, we
ask participants how certain they are of their answer. This
question can indicate when the participant answers a question
correctly while also being confused by the code, or even worse,
when the participant answers a question wrong, believing he
understood the code. We ask this question in the form of a
Likert scale [18]; the participant is asked to which degree
they agree/disagree with the statement “I am certain of the
correctness of my answer above.”

Before the participant is directed to the first real question,
we show one example exercise. A pre-defined code example is
given, with example answers already filled in for the questions.
The goal of the examples is to show the participant what is
expected and to give an example of how the open questions
can be answered.

Similar to the study by Gopstein et al. [14], we incorporate
strategies to cope with the possibility of a learning effect [22].
The code snippets we show to participants, and whether they
contain the atom of confusion or not, are randomly chosen,
distributing the bias of question order over the participants.
No specific actions are taken to prevent a single participant
from seeing multiple variants of the same atom category, but
it is guaranteed that pairs are only used for one question (e.g.,
the participant will not see the same snippet, with and without
the atom).

D. Part 2: Perception of the atom of confusion

In this part, we complement Gopstein et al. [14]’s study
design. We show participants two code snippets, side-by-side.
Both snippets are the same program, but one of them contains
the atom, and the other does not. Participants do not know
what atom of confusion is presented to that code snippet,
as well as which variant contains the atom of confusion and
which does not. We show five pairs of snippets, one at a time,
to participants.

We then ask which of the two code snippets the participant
perceives as more confusing. The four options are:

• 1 is more confusing
• 2 is more confusing
• Both are equally confusing
• Neither are confusing

These four options provide the participant to add some gran-
ularity to their answer while still being easily categorizable.
While the third and fourth options do not distinguish the two
variants, a difference in meaning is present in the options.
Answering “Both are equally confusing” would mean that
both variants of this atom are not very readable code and can
confuse developers, while answering “Neither are confusing”
hints that both variants are not confusing or sufficient readable.

Participants are also asked to optionally explain their an-
swer, enabling us to more precisely identify what the reason
of the confusion is. The confusion might be unrelated to the



TABLE I
ATOMS OF CONFUSION IN JAVA, BASED ON THE WORK OF GOPSTEIN ET AL. [14]

Atom Name Java Code Snippet with Atom of Confusion Java Code Snippet Free of the Confusion

Infix Operator Precedence 2 - 4 / 2 2 - (4 / 2)
Post-Increment/Decrement V1 = V2++; V1 = V2; V2 += 1;
Pre-Increment/Decrement V1 = ++V2; V2 += 1; V1 = V2;
Constant Variables V1 = V2; V1 = 5;

Remove Indentation atom
while (V2 > 0)

V2--;
V1++

while (V2 > 0)
V2--;

V1++

Conditional Operator V2 = V1 == 3 ? 2 : 1;
if (V1 == 3) { V2 = 2; }
else { V2 = 1; }

Arithmetic as Logic (V1 - 3) * (V2 - 4) != 0 V1 != 3 && V2 != 4

Logic as Control Flow V1 == ++V1> 0 || ++V2 > 0;
if ( !(V1 + 1 > 0) )

{ V2 += 1;}
V1 += 1

Repurposed Variablesa for(int V1 = 0;...; V1++) {
for(int V2 = 0;...; V1++) {

for (int V1 = 0;...; V1++) {
for (int V2 = 0;...; V2++) {

Dead, Unreachable, Repeated V1 = 1; V1 = 2; V1 = 2;
Change of Literal Encoding V1 = 013 V1 = Integer.parseInt("13", 8)
Omitted Curly Braces if (V1) F1(); F2(); if (V1) { F1(); } F2();
Type Conversion V1 = (int) 1.99f; V1 = (int) Math.floor(1.99f);

Indentation
if (V1 > 0) { }
V2 = 4

if (V1 > 0) { }
V2 = 4

aThe repurposed variables is the only atom where programs with and without it differ in semantics. While one may not consider it an
atom of confusion (but a bug), we kept this atom as to better compare to the related work.

purpose of the atom, and would indicate that (the representa-
tion of) this atom is not suitable.

The code snippets we show to participants are also randomly
selected from our dataset. We also ensure that the (also
randomly selected) code snippets that a participant sees in
Part 1 are not included in the set of code snippets that are
randomly selected for Part 2.

E. Data analysis

For RQ1, the answers participants gave on the question
“What do you think this code will print?” are compared
to the correct answer for that code example. We use the
results to compute the odds ratio and confidence interval
of wrong answers being caused by the atoms of confusion.
The corresponding confidence interval determines whether the
confusion caused by the atom is statistically significant. The
odds ratio, its standard error and 95% confidence interval are
calculated according to Altman [2]. Given that zeroes may
cause problems with computation of the odds ratio or its
standard error, we add an extra 0.5 to all input values [10, 23].

We use the question regarding the certainty of the answer
the participants to find out whether participants feel less certain
in more confusing situations. Additionally, the situation when
the participant indicates high certainty of their answer while
they answered incorrectly can be used as an indicator that this
atom is important to be avoided in real life.

For RQ2, we use the perceptions part of the survey as
input. The participants’ answers are collected and grouped per
atom. The results indicate to what extend the obfuscated atoms
are perceived as being more confusing than their transformed
counterpart. Additionally, we qualitatively analyzed the partic-

ipants’ answers in the open question that asked them to reason
about why they picked one option or another. We present these
reasons, per atom, in the Discussion section of this paper.

F. Participants

We targeted the Computer Science students from our uni-
versity as participants. We shared the experiment in the shared
labs and in the internal communication tool.

At the end, 132 students took our survey. When participants
do not finish the survey, the answers they filled in so far are
still stored. These responses will be marked as “incomplete”,
but the given answers might still be useful. The incomplete
responses with some answers filled in are extracted and used
in the described analysis.

96 students took the complete study, and 36 students par-
tially completed it. Out of the 96 participants that filled their
demographic information, 58 (60%) are 1st-year students, 14
(15%) are 2nd-year students, 5 (5%) are 3rd-year students, 14
(15%) are MSc students. In addition, we have two teaching
assistants and two students in the bridging program to the
Computer Science Master’s programme. One participant did
not provide a valid answer.

IV. RESULTS

A. RQ1: Which atoms of confusion hinder the comprehensi-
bility of Java programs, and to what extent?

In Table II, we show the observed number of correct and
wrong answers.

In total, 315 questions with an atom of confusion in the
question code were answered, of which 115 received a wrong



TABLE II
THE OBSERVED NUMBER OF CORRECT AND INCORRECT ANSWERS, PER ATOM OF CONFUSION, AND THEIR RESPECTIVE ODDS RATIO WITH 95%

CONFIDENCE INTERVALS. THE STAR (*) SYMBOL INDICATES A STATISTICALLY SIGNIFICANT DIFFERENCE.

With the atom Without the atom Confidence
of confusion of confusion interval

Atom Correct Wrong Correct Wrong Odds ratio From To

infix operator precedence 14 4 31 1 8.86 0.91 86.63
post increment decrement 14 17 32 3 12.95* 3.26 51.42
pre increment decrement 17 17 27 10 2.70* 1.00 7.26
constant variables 30 0 27 0 0.90 0.02 47.00
remove indentation atom 16 17 26 0 56.21* 3.16 998.97
conditional operator 23 6 27 0 15.21 0.81 284.53
arithmetic as logic 24 4 41 0 15.24 0.79 295.42
logic as control flow 5 22 20 8 11.00* 3.09 39.21
repurposed variables 13 12 14 18 0.72 0.25 2.05
dead unreachable repeated 25 2 29 0 5.78 0.27 126.15
change of literal encoding 4 16 12 10 4.80* 1.21 19.08
omitted curly braces 19 13 27 4 4.62* 1.30 16.36
type conversion 10 13 18 1 23.40* 2.66 206.16
indentation 31 2 24 0 3.89 0.18 84.78

Totals: 245 145 355 55 3.82* 2.69 5.42

answer, opposed to 46 wrong answers on 337 questions with
the atom translated out.

These numbers indicate a statistically significant difference
for seven out of the 14 tested atoms of confusion (i.e.,
post increment decrement, pre increment decrement, remove
indentation atom, logic as control flow, change of literal
encoding, omitted curly braces, and type conversion). In other
words, participants made significantly more mistakes in the
code snippets affected by these atoms than in the code snippets
not affected by them.

We also observe a statistically significant difference when
we group all the atoms. We see an odds ratio of 3.82
within a 95% confidence interval of [2.69, 5.42], indicating
that, in general, code with atoms of confusion causes more
understanding errors.

B. RQ2: How do students perceive confusion in Java pro-
grams that include atoms of confusion, as opposed to the
translated, confusion-free, Java programs?

We show the participants’ perception regarding the atoms
in Table III.

For 8 out of the 14 atoms (i.e., post increment decrement,
remove indentation atom, conditional operator, arithmetic
as logic, logic as control flow, dead unreachable repeated,
omitted curly braces, and indentation), more than 50% of
participants agreed that the obfuscated variant is more con-
fusing. In other two atoms (i.e., infix operator precedence,
pre increment decrement), while we observe most people still
choosing the version with the atom of confusion to be more
confusing, we observe some disagreement.

We also observe some atoms being considered less confus-
ing. For the constant variables, repurposed variables, and type
conversion atoms of confusion, we observe that combination
of neither or both being more popular among participants. In-
terestingly, the clean version of the change of literal encoding

TABLE III
THE NUMBER OF PARTICIPANTS THAT PERCEIVED THE ATOM, THE CLEAN,

BOTH, OR NEITHER VERSIONS OF CODE SNIPPETS CONFUSING.

Atom Clean Both Neither

infix operator precedence 18 (45.0%) 5 4 13
post increment decrement 23 (65.7%) 2 4 6
pre increment decrement 14 (41.2%) 5 7 8
constant variables 10 (27.8%) 1 0 25
remove indentation atom 20 (57.1%) 5 8 2
conditional operator 20 (60.6%) 5 0 8
arithmetic as logic 30 (71.4%) 2 3 7
logic as control flow 20 (55.6%) 10 2 4
repurposed variables 20 (47.6%) 6 13 3
dead unreachable repeated 23 (53.5%) 0 3 17
change of literal encoding 5 (27.8%) 8 3 2
omitted curly braces 28 (93.3%) 0 1 1
type conversion 8 (28.6%) 5 4 11
indentation 24 (72.7%) 1 2 6

Total 263 (54.2%) 55 54 113

atom was considered more confusing than the version with the
atom of confusion itself.

V. DISCUSSION

In Table IV, we summarise our observations, per atom. We
now discuss the consequences of our results, atom-by-atom.

A. Infix Operator precedence

The infix operator precedence atom is all about the order
of operations in single-line statements. The results in Table II
show that this atom is not significantly confusing. The targeted
confusion is caused by assuming an incorrect order of execu-
tion when more than one operator is used in the same line of
code. The transformed variant of the atom includes parenthesis
around the operators to make the order of operations more
straightforward. In RQ2, 45% of participants indicate the ob-
fuscated variant to be more confusing. The explanations from



TABLE IV
THE SUMMARY OF THE RESULTS, PER ATOM OF CONFUSION, IN

COMPARISON TO THE RESULTS OF GOPSTEIN ET AL. [14]

This work Gopstein et al.

Atom of confusion Confusion Perception Confusion

infix operator precedence No Yes Yes
post increment decrement Yes Yes Yes
pre increment decrement Yes No Yes
constant variables No No No
remove indentation atom Yes Yes Yes
conditional operator No Yes Yes
arithmetic as logic No Yes No
logic as control flow Yes Yes Yes
repurposed variables No Yes Yes
dead unreachable repeated No Yes No
change of literal encoding Yes No Yes
omitted curly braces Yes Yes Yes
type conversion Yes No Yes
indentation No Yes Yes

this group describe that the additional parenthesis improves
readability by making the order of operations more clear. One
of the participants in the work of Medeiros et al. [21] (in
the research on atoms of confusion in open-source projects)
states: “[s/he] prefers to have parenthesis always, to [him/her]
it makes it simpler to read”. Another 42.5% (combining the
“neither” and “both” answers) states there is no difference
between the two. Arguments here state that the order of
operations is clear, but knowledge of the precedence rules is
needed.

12.5% of answers given indicate the code without the con-
fusing pattern to be more confusing. All these answers came
from one specific used code example where the precedence of
the ! (negation) operator was made more explicit by adding
parenthesis. The translation changes the order the operations
are listed and adds optional parenthesis to indicate the order of
operations. In this example, as opposed to the other two exam-
ples, the parentheses are considered unnecessary and ‘making
it look cluttered’ or harder to follow/read by the participants.
The same phenomenon is also observed by Medeiros et al.
[21].

B. Post Increment Decrement

The post increment operator increments the variable and
returns the original value of this variable. Results in RQ1 show
that this atom is significantly confusing.

The confusion can be caused by different misconceptions.
First, the operator might not be recognized. However, only
two of the participants that had any question regarding the
post-increment atom indicated that they are not sure if the
value of the variable will be changed or if the value of the
original variable will be returned. This shows that this operator
is familiar to the participants.

A second possible misunderstanding is confusing the postfix
increment/decrement operator with the prefix increment/decre-
ment operator. Instead of returning the original value, the
pre-increment or decrement operator returns the result of the
expression. In the obfuscated variant of questions 8 and 9
(see appendix [4]), the majority of explanations provided for

wrong answers indicate that this is the cause of the answer
being incorrect. Another reason for the confusion is forgetting
that the operator changes the variable. One given answer
indicates: “. . . Not sure if it will change the value . . . ”.

Given these causes of confusion, and a significant result in
Table II, with a lower bound of the confidence interval of 3.26,
we argue that this atom is significantly confusing. Moreover,
65.7% of participants answer that the code examples with
the atom of confusion are perceived as more confusing. In
the explanations, most participants indicate they know they
are unsure about this atom. A participant indicates “I always
forget where V1++ evaluates to (old or new value).” clearly
describing what makes this participant confused. Another
participant answers “Pretty sure that having the ”++” after
the variable makes sure it is evaluated before it is incremented,
but I am still not sure and would probably have to just run the
code to find out” making it even more clear that he/she knows
where the confusion is and knows how to find the behaviour
in the current situation.

C. Pre Increment Decrement

The pre increment decrement atom is very similar to the
post-increment decrement atom. The difference, as explained
before, is that instead of the original value of the variable, the
result of the expression is returned.

In contrast to the previous atom, participants indicate they
do not know what --V1 would do. Five participants state
they are unsure about or are unfamiliar with the syntax. The
transformed variant of this atom does not remove the operator,
but instead isolates it. This removes the confusion with the
behaviour of prefix operator, but does not resolve confusion
caused by syntax.

The first experiment shows that this atom is confusing.
The confidence interval starts ever so slightly above 1. The
incorrect answers include “Idk if ++V1 is a thing. I always
use V1++” and “I have no clue what ”--v1” means”. This
shows that these people are confused by the atom. The second
experiment confirms this finding. The participant answering “I
can never remember what --V1 really does so to me this is con-
fusing” clearly indicates that this atom is causing confusion.
41.2% of the participants agree that the code variants with the
atom of confusion included are more difficult to understand.

One notable observation by participants is that the trans-
formed variant in the code snippet 10 (in our appendix) ini-
tializes two variables in the same line: int V1 = 5, V2;.
This causes unnecessary confusion since some participants
indicated this as the reason for confusion. We suggest future
replications to improve the code snippets for this atom of
confusion.

D. Constant Variables

The constant variable atom was not shown to be statistically
significant in the research by Gopstein et al. [14]. This research
confirms this result. None of the participants made a mistake
with this atom. The only slight confusion indicated by the
participants was the uncertainty whether the printed text would



include the .0, caused by the double type of the variable.
We considered answers not including the .0 to be correct
since this is not part of the confusion under study. 69.4%
of the answers in the second part of the survey indicate no
difference in confusion between the variants of the questions
for this atom. The majority of the explanations state that the
code is very simple to be understood. The main reason why
the obfuscated atom would be considered more confusing is
caused by the unnecessary extra code. The added verbosity
contributes to complexity in the used code examples. Future
research should investigate the effects of this pattern when
present in larger code snippets.

E. (Remove) Indentation Atom

Along with the atom indentation, these two atoms are
included in this research despite being removed in the original
experiment by Gopstein et al. [14]. In their errata6, authors
state that: “To remove the bias introduced by code formatting,
we chose not to study the effect of whitespace in this study”.
This study did include these two atoms to explore the impact
of misformatted code. The results show that the remove
indentation atom is indeed significant confusing. The lack of
indentation makes it difficult to see where scopes are ending,
resulting in a majority of wrong answers for the obfuscated
variants. All participants that encountered a variant without the
atom in the first part of the survey gave the correct answer.

Interestingly, in the indentation atom, the brackets are
included, and only the indentation itself is wrong or missing.
That atom is not significant confusing, with only two wrong
answers for the obfuscated variants.

One of our code snippet variants is an example of the
“dangling else” pattern as researched by Medeiros et al. [21].
Authors state that many coding standards enforce the use of
brackets to avoid this pattern. Our results cohere with this
conclusion, showing major confusion with missing indentation
when brackets are left out and no confusion when the brackets
are included.

F. Conditional (Ternary) Operator

In Java, the available ternary operator is the ? : op-
erator, which provides a shorthand way of writing an
if-then-else statement.7 Although 20% of the answers
for the variants containing this atom were wrong, and only
correct answers were given to the transformed variants, we
do not have enough data to draw significant conclusions. The
participants that provided incorrect and/or were less sure on
their answers state that they are unsure about the syntax.
The notes left by participants that correctly answered the
code snippet with the atom show they are unsure about
the functioning of the operator, but have a correct intuition.
Explanations regarding the second research question indicate
that a major part of confusion for the obfuscated variants
comes from the lack of parenthesis around the condition, e.g.,
V2 = (V1 == 3) ? 2 : 1;.

6https://atomsofconfusion.com/2016snippetstudy/errata.html
7https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html

A large number of participants indicate that the ternary
operator makes code unclear. Others state that it can be
confusing to people unfamiliar with the operator. On the
other hand, participants that preferred the if ternary instead of
traditional if-else statements argue that the if ternary reduces
the verbosity of the code; according to them, having to read
or write 4 or more lines of code instead of 1 makes the
understanding take longer when familiar with both syntax
variants. Kernighan and Pike [20] state in their book that using
the ternary operator to replace four lines of if-else code is a
good idea. Interestingly, Medeiros et al. [21] decided not to
investigate the effects of this atom given its popularity in real-
world codebases.

G. Arithmetic as Logic

Similarly to Gopstein et al. [14], our research shows that
this atom does not confuse developers. The main assumption
from Gopstein et al. [14] is that using arithmetic operators
instead of logical operations, will imply a non-boolean range,
which might be confusing. Due to the translation to Java,
the resulting number has to be explicitly compared to 0 to
create a boolean value, taking away this implication of a non-
boolean range. The results in the second part of our experiment
show that the variant with the atom of confusion is much less
preferred to read. The additional calculations that are unusual
lead to a much longer time to see the intention of the code,
according to the participants. Moreover, we observed some
complaints about the order of comparison in the translated
variants of this atom. Reversing the order of variable
<comparison operator> value is disliked by one of
the participants. The effect of the order reversal is interesting
for future research.

H. Logic as Control Flow

Due to lazy evaluation of the || and && logical operators,
they can also be used as conditional operators. This means that,
depending on the value of the left side, the right sight may
or may not be executed. The most significant single result for
this atom in part 1 of the experiment is that one of the variant
with the atom (code snippet 41 in our appendix) was answered
incorrectly by all the participants. In total, the variants with
this atom have an error rate of 81%; participants were 11 times
more likely to make mistakes in code containing this atom, in
contrast to code not containing it.

When comparing code snippets with and without the atom,
participants affirmed that: “Using logic expressions to perform
effect-full computation is cool [..], but more confusing because
it breaks the vertical flow of effect-full expressions/statements.”
and “++variables should be replaced with something more
clear”. Interestingly, we also observed participants defending
the atom: “I really dislike nesting whiles and ifs as done in
[transformed variant]. You cannot easily trace it back yourself.
[Obfuscated variant] is not perfectly readable, but it only has
one check which is easier to do by hand.”



I. Repurposed Variables

The repurposed variables atom “misuses” an already exist-
ing variable for another purpose. An exceptional result for this
atom is that the variants where code examples did not include
the atom of confusion are answered incorrectly more often
than the variants with the atom of confusion. For the variants
with the atom of confusion, 13 participants answered correctly
and 12 gave an incorrect answer. The variants without the atom
of confusion resulted in 14 correct and 18 incorrect answers.

The results of the perception part of the experiment fall
more in line with the expected results. 47.6% of participants
agreed that the variant with the atom of confusion is indeed the
more confusing. A substantial amount of participants indicated
that they found both variants to be confusing (38.1%). This
is more in line with the findings in the first part of the
experiment.

J. Dead, Unreachable, Repeated

This is one of the atoms that did not cause significant
confusion, according to Gopstein et al. [14]. In the case of
our experiment, only two wrong answers were given, out of
the 56 times this atom was present in the first part of the
experiment, which seems to be inline with previous findings.

The shared factor in the three terms of this atom’s name is
that the removal of the corresponding line(s) of code will not
change the behaviour of the program.

K. Change of Literal Encoding

This atom focuses on the general case when the encoding
of the characters written down will change in the meaning of
the program, For example, prepending a number with a 0 tells
Java to parse this number in the octal numbering system, e.g.,
013 results in the decimal value of 11.

We observe a statistically significant difference between
code snippets with and without atoms. Interestingly, in one
of the code snippets, we observed participants answering
this question quite fast, in terms of time. This indicates that
participants may quickly jump to a wrong conclusion in code
containing this atom of confusion. On the other hand, we
observed that, when faced with the code snippet with and
without the variants, participants chose the clean version of
the snippet as more confused. This might indicate that, while
this atom may cause confusion, developers should carefully
decide how to write the alternative implementation.

L. Omitted Curly Braces

This atom is similar to the Remove Indentation Atom and
the Indentation atom in the sense that the targeted confusion
is related to unclear separation between code blocks. Code
snippets affected by this atom do not contain the curly braces
(i.e., { ... }) that normally follow if statements, while
loops, and other branch instructions, which clearly mark the
beginning and the end of that code block. One participant
identifies the confusion as: “Putting several statements on one
line is unnecessarily confusing.” Another participant says: “I
thought Java only executes the next statement after a for-loop

without brackets but it also could be that the whole next line
is executed.”

41% of participants that were asked to evaluate a task with
this atom of confusion in the code answered incorrectly. This
atom is significant confusing (4.62 times more likely to make
mistakes in code with the atom). Moreover, a stunning 93% of
participants agree that it is more confusing to omit the curly
braces from these code blocks.

M. Type Conversion

The Type Conversion atom is about converting one type into
another, e.g., (int) 1.99f;. This atom was the one where
participants had the most uncertainty when answering. The
particular code snippet regarding casting to the byte primitive
type is especially often answered wrong.

Our results show that this atom causes significantly more
confusion than the version without the atom. When presented
with both snippets of code, 28.6% of the participants indicate
that the code examples including the atom of confusion are
indeed harder to understand. The argument given is that the
code free of the atom is much more explicit in what is
happening: “You would have to know what happens if a float
is cast to an int”. Interestingly, a large portion of participants
also indicates that neither of the code variants is confusing. A
participant states that: “I believe that casting to an integer
automatically floors the value, while it might be easier to
understand by flooring as well, I don’t think adding redundant
code makes it less confusing. While the second simply casts
to an integer, flooring it as well.”

N. Indentation

Only two (out of 33) participants answered incorrectly. As
for the perception of the participants towards this atom, the
majority agrees that the variants with the atom present are
more confusing. Furthermore, the explanations heavily gear
to the intended explanation of this atom. The comments often
mention indentation or formatting, and how this affects the
clearness of the distinction between different branches. One
participant provides an interesting reason for this that “if
you’re skimming the code you could misread and think the
[line of code] was in the if statement”.

These results indicate that this atom of confusion is easily
recognized, and therefore will not often cause actual misun-
derstanding. Participants, however, have a strong preference to
avoid this atom.

VI. RECOMMENDATIONS AND FUTURE WORK

Our results indicate that atoms of confusion may hinder
the developers’ abilities to comprehend the code; in particular,
novice developers. Given that software development teams are
often composed of developers with mixed levels of experience,
we recommend teams to either avoid writing code that contains
any of the atoms of confusion we observed to be significantly
confusing, or to make sure developers of all levels are trained
to understand them.



Educators can play an important role in making sure that
the future generations of software developers suffer less from
these atoms of confusion. We suggest educators to incorporate
atoms of confusion in their teaching materials. The tasks
that are used in this experiment can serve as examples.
Interestingly, computer science education researchers have
long been studying programming misconceptions and mistakes
that novice developers make (e.g., [7, 8, 19, 24]). However,
the intersection between the misconceptions observed in these
studies and the atoms of confusion that are currently studied
by the software engineering community appears to be small.
In fact, the atoms of confusion we study here do not appear
in any of the educational papers we cite. We suggest both
communities to work together in finding ways to improve the
way developers learn about such code constructs.

Finally, there is still research to be done in the code
comprehension of atoms of confusion. We suggest researchers
to investigate: (i) the impact of these atoms of confusion
among more experienced developers, i.e., do they also affect
experienced developers, or do they only affect more novice
developers? (ii) the impact of atoms of confusion in larger
code snippets; while larger code snippets will reduce the
control of the experiment, it would better reflect the real-world
scenario where those atoms are embedded in larger methods,
(iii) other atoms/code constructs that may cause confusion;
the list of atoms from Gopstein et al. [14] originated from an
obfuscation competition; diving into other possible atoms of
confusion, that were not necessarily created with the purpose
of confusing, (iv) given that the atoms we study are based on
the atoms from Gopstein et al, we may have not studied atoms
of confusion that are specific to the Java language, which can
be the focus of future studies, and (v) while most of our results
matched with the ones from Gopstein et al [14], some did not;
an interesting line of inquiry would be to understand why some
atoms are perceived as confusing in one language but not in
another.

VII. THREATS TO VALIDITY

Threats to Construct and Internal Validity. The tasks (i.e.,
code snippets) were inspired by the question set used by
Gopstein et al. [14]. In their work, the subjectiveness of
making this set is mentioned as a threat to validity, which
this work naturally inherits.

Moreover, all code examples used in the experiment use
short, non-descriptive identifier names like V1, V2. Non-
descriptive identifier names reduce comprehension of source
code [25]. Since the code examples are isolated, it is hard to
describe the meaning of the individual variable names, and
finding names that will not introduce additional bias between
the different code examples will be even harder. However, this
does not rule out the effect the identifier names have on the
comprehensibility of the source code atoms.

Finally, we note that the same participant provides data
points for different atoms of confusion. We opted for not per-
forming any type of correction (e.g., Bonferroni) for multiple
comparisons. As suggested by Armstrong [3], given that we

are not testing an universal hypothesis (i.e., we test each atom
of confusion separately) and that our study does not require all
tests to be significant in order to validate the main hypothesis,
correction is not required. Nevertheless, all the data is available
in our appendix [4] for researchers to experiment with different
forms of correction.

Threats to External Validity. This study makes use of com-
puter science students as participants. Our Computer Science
and Engineering curriculum starts with a course on object-
oriented programming (OOP), where the used language is
Java. After that, the students took part in an OOP project
course, requiring the students to build an application in Java.
While it is unsure if all participants passed the course, they
have been in contact with the Java programming language for
a minimum of half a year. This gives us a strong indication of
the minimal amount of experience for every participant. Nev-
ertheless, we do not argue that our findings are generalisable
to any novice developers, computer science students, or the
population of developers in general. Replications of this work
are required.

Finally, as we mentioned before, we evaluate a set of atom
of confusion that was initially proposed by Gopstein et al.
[14]. We do not argue that this set is complete and covers all
possible atoms of confusion for the Java language. Expanding
the set of atoms of confusion is part of our future agenda.

VIII. CONCLUSIONS

Code that is easy to comprehend is fundamental for sus-
tainable software maintenance. In this paper, we explored the
effects of atoms of confusion by measuring the reactions and
impact of these confusing patterns in Java code among novice
developers.

Our results show that (i) participants are 4.6 up to 56 times
more likely to make mistakes in code snippets affected by
7 out of the 14 studied atoms of confusion, and (2) when
faced with both versions of the code snippets, participants
perceived the version affected by the atom of confusion to
be more confusing and/or less readable in 10 out of the 14
studied atoms of confusion.

In other words, our results show that atoms of confusion
can cause confusion among novice software developers. We
suggest software companies to investigate how often these
atoms happen in their codebases, and how much they actually
impact in the productivity of their developers.

Finally, given that this paper shows that some atoms can
indeed be confusing to Java developers, we suggest future
research to explore other language-specific atoms. In addition,
the Java community has long been proposing different code
idioms, guidelines, and best coding practices. Future work
should explore the pros and cons of such guidelines from a
program comprehension perspective.
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