
Quantifying the Performance Impact of SQL
Antipatterns on Mobile Applications

Yingjun Lyu, Ali Alotaibi, William G. J. Halfond
Department of Computer Science

University of Southern California

Email: {yingjunl, aalotaib, halfond}@usc.edu

Abstract—In mobile applications, local databases have become
an important component, providing mobile users with a respon-
sive and secure service for data access and management. However,
using local databases comes with a cost. Studies have shown
that they are one of the most resource consuming components
on mobile devices. Improper usage of the local database can
even severely impact the responsiveness of an application. In this
paper, we conducted a literature review and a benchmark study
to investigate problematic programming practices with respect to
database usage. Our results present a comprehensive overview of
the current knowledge about these practices, and introduce new
knowledge about the impact of these practices on the resource
consumption of mobile applications.

Index Terms—SQL antipatterns, mobile applications, database,
energy, performance, security

I. INTRODUCTION

Developers provide innovative services via their apps by

combining data from a wide assortment of sensors and ser-

vices. Easy access and management of that data has become

essential in many mobile apps. To provide this data manage-

ment service, many developers incorporate the use of local

databases, such as SQLite [1], in their apps. Local databases

store information directly on the mobile devices and help

apps to provide reliable and responsive service even when the

underlying mobile device does not have a reliable connection.

The benefits of local databases have led to their widespread

use and popularity; a recent study found that they are used in

over 50% of all mobile apps [2].

Although local databases offer many benefits to developers,

their use comes with potential problems. Many database

operations, such as transactions, require file locking, rollback

capabilities, and extensive I/O. As a result, these operations

can consume a large amount of mobile device resources,

such as energy and CPU time. In fact, recent studies have

found that local database services are one of the top three

resource consuming services on mobile devices [3], [4]. High

resource usage can lead to complaints about the app’s battery

usage and responsiveness, and even lower ratings for the apps

[5], [6], [7]. Therefore, developers strive to ensure the good

performance of their apps even when they make use of local

databases.

Despite a clear motivation to efficiently use database oper-

ations, developers face two general problems. First, they lack

consolidated information about the good and bad ways to use

database operations. Although practitioners and researchers

have tried to distill the various improper ways of using

database operations into SQL antipatterns, the information

about these antipatterns is scattered across different books

and research papers. The studies that target the discovery,

detection, or repair of SQL antipatterns usually only cover

a small set of the wide range of SQL antipatterns. Second,

developers lack information about the potential tradeoffs of

these antipatterns in terms of their impact on the runtime and

energy usage of their mobile apps. This lack of performance

information is due to two reasons. First, existing performance

studies on local databases focus on the cost of individual

local database operations on mobile devices and do not take

the SQL antipatterns into consideration (e.g., [8], [9], [2]).

Second, existing studies on SQL antipatterns do not cover the

performance impact on mobile apps (e.g., [10], [11], [12], [13],

[14], [15]). They target web applications and remote databases,

which are substantially different from mobile applications,

where local databases are frequently used. Furthermore, the

energy aspect of antipatterns, which is essential to mobile

devices, is not considered in those studies.

Although important, assessing the impact of SQL antipat-

terns on app performance can be very challenging. This is

due to fact that SQL antipatterns can manifest differently

in different applications. For the same antipattern, different

instances can have a different impact depending on many

factors, such as what kind of SQL statements are issued,

how large are the underlying database tables, etc. A naive

approach that overlooks how local databases are used in

mobile application would not be able to comprehensively

quantify the performance impact of SQL antipatterns.

To address these issues, we conducted a large scale study

to identify the different types of SQL antipatterns and their

impact on the performance of mobile apps. We conducted

a systematic survey that follows best practices of literature

reviews [16] so as to explore the current knowledge about

SQL antipatterns. We then carried out a benchmark study

to quantify the impact of the discovered SQL antipatterns

on the runtime and energy usage of mobile apps. In our

benchmark study, we employed a range of dynamic and static

program analysis techniques. These techniques allowed us to

(1) identify real-world antipattern instances from a large pool

of mobile apps, (2) build a representative benchmark suite,

and (3) quantify and compare the performance impact of SQL

antipatterns in a uniform manner.

53

2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSME.2019.00015

Our investigation revealed several interesting observations

that provide concrete guidelines for app developers and moti-

vate areas for future research work in the software engineering

community. We summarized eleven SQL antipatterns through

our literature review. We discovered that eight of them have a

significant impact on the runtime and energy consumption of

local database operations. As for the rest of the eleven SQL

antipatterns, they are security oriented and we discovered that

they can be fixed with a minor performance cost.

The rest of the paper is organized as follows: In Section II

and Section III, we explain the methodologies of the literature

review and benchmark study, respectively. In Section IV, we

report our findings. We discuss the threats to the validity of

our study in Section V and conclude our paper in Section VI.

II. LITERATURE REVIEW METHODOLOGY

In this section, we present our literature review protocol.

Based on Kitchenham’s [16] systematic review guidelines, we

first specify the research questions (Section II-A). We then

present the search process, which includes the initial search

strategy (Section II-B1), the selection criteria (Section II-B2),

and the citation search strategy (Section II-B3).

Fig. 1: Literature review process flow

A. Research Questions

The goal of the study is to provide a comprehensive

overview of SQL antipatterns covering their definition, impact,

detection methods, and repair methods. In this study, we

address the following research questions:

RQ 1: What are the SQL antipatterns known to date?
The information about SQL antipatterns is very fragmented.

The vast majority of related papers often focus on specific

problems and only cover a small set of SQL antipatterns.

The aim of this research question is to distill the scattered

antipatterns from the literature and provide a comprehensive

collection of SQL antipatterns.

RQ 2: In what aspects do the SQL antipatterns affect
the software quality?

The impact of SQL antipatterns on the software quality can

be multidimensional. The purpose of this research question is

to qualitatively explore which aspects of software quality each

SQL antipattern affects and why it affects them.

RQ 3: What is the current state of research with respect
to the detection and optimization of the SQL antipatterns?

The SQL antipatterns target different database programing

problems. It is likely that some SQL antipatterns received

more research attention than others. The aim of this research

question is to explore the methods proposed to detect and fix

each of the discovered SQL antipatterns.

B. Literature Search Protocol

The literature search protocol aims to identify related studies

that form the basis of the survey. The workflow of the search

process is shown in Figure 1. Our search protocol has three

major steps: conducting an initial search to collect a primary

set of related literature, applying selection criteria to filter the

search results, and performing a citation search iteratively to

maximize the set of related studies.

1) Initial Search: The goal of of this step is to collect an

initial set of the related studies. In this section, we explain our

search strategy, which includes the selection of search engines,

keywords, and search methods.

To collect an initial set of papers, we started our search with

the papers that were published in the related major conferences

during the past ten years. Since the studies on SQL antipat-

terns may involve research in multiple areas, i.e., software

engineering, database, and security, the initial set of papers

were selected from these fields. The conferences selected are

shown in Table I, each of which represents top conferences in

its field. As the publications of these conferences are stored

in the electronic databases, IEEE Explore and ACM Digital

Library, we utilized their searching capability as explained

below.

Given the scope of our literature review, we focused on

the selected keywords to perform the search on the papers’

titles and abstracts. Since each research domain has its own

terminology, different keywords were chosen for different

research fields. The keywords chosen are listed under the

“Keyword” column in Table I. To retrieve all related papers,

each research domain in our search string was represented as

a disjunction of corresponding keywords provided above. This

means that for example, in the security domain, any paper that

has “database” or “sql” in its title or abstract would be selected

as the initial set.

2) Selection Criteria: Not all of the papers returned by

the search engines can help to answer the research questions.

Therefore, we used the following inclusion and exclusion

criteria to further filter the candidate papers.

Inclusion Criteria. A search result should be included if it:

(1) discovers/defines at least one SQL antipattern, (2) explores

the impact of at least one SQL antipattern, (3) proposes

detection methods, or (4) develops repair mechanisms.

Exclusion Criteria. A search result should be excluded if it:

(1) focuses on general coding practices or antipatterns that are

not related to databases, (2) discusses problems at the system

level, such as the database system, operating system, or file

system, or (3) discusses problems at the design level instead

of the implementation level.

54

TABLE I: Initial Conferences

Venue Research Field Abbreviation Keyword

International Conference on Software Engineering Software Engineering ICSE code smell, antipattern, database, sql
Foundations of Software Engineering Software Engineering FSE code smell, antipattern, database, sql
Automated Software Engineering Software Engineering ASE code smell, antipattern, database, sql
Computer and Communications Security Security CCS database, sql
Security and Privacy Security S&P database, sql
Special Interest Group on Management of Data Database SIGMOD database application, developer

Each selected paper obtained from the search went through

a manual inspection of the title, keywords, and abstract. The

inspection applied the above criteria leading to the inclusion

or exclusion of the papers.

3) Forward/Backward Citation Search: The objective of

this step is to obtain a more comprehensive list of studies

by investigating the citations. After performing the previous

two steps, we had an initial set of studies. However, these

primary studies only covered the selected conferences in the

selected years. To expand the list of studies, we performed an

iterative forward and backward citation search. The forward

search investigated the works that cite the primary studies. The

backward search inspected the articles that are cited by the

primary studies. The inspection followed the same selection

criteria and protocol defined in Section II-B2. This citation

search process leverages the authors’ knowledge and expertise

in their domain to identify additional closely related work.

As shown in Figure 1, we conducted this step iteratively for

multiple rounds in order to maximize the list of related studies.

The iteration continued until the newly obtained citations

highly overlapped with the previous collected studies. In other

words, until few new articles that meet the selection criteria

could be found.

III. BENCHMARK STUDY METHODOLOGY

The goal of the benchmark study is to understand the impact

of the SQL antipatterns on the resource consumption of mobile

applications. In this section, we present the methodology of

the study. We specify the research question in Section III-A,

explain the design of the benchmark suite in Section III-B,

and present the process of measuring the performance impact

in Section III-C.

A. Research Question

Using the benchmark suite, we aim to answer the following

research question:

RQ 4: How do the SQL antipatterns impact the re-
source consumption of local database operations in mobile
applications? Fixing an antipattern may lead to consuming

more or less resources. It is also possible that the resource

consumption stays unchanged after the fix. The purpose of this

research question is to explore the quantitative performance

impact (in terms of runtime and energy) of the discovered

SQL antipatterns on mobile applications.

B. Benchmark Design

Benchmarks are one of the most popular tools to compare

the performance characteristics of different implementations.

In order to write high-performance code, developers often

write small benchmark programs to measure the relative

performance of one approach against another. A benchmark

suite contains a group of benchmarks that share a similar

performance testing purpose.

In order to quantify the performance impact of the different

SQL antipatterns, we constructed a benchmark suite that was

designed to measure the resource consumption of two imple-

mentations, the antipattern version and the fixed version, of

performing the same database related task. When designing the

benchmark suite, we aimed at ensuring that the performance

impact we obtained from our study are generalizable to the

real-world impact of SQL antipatterns. Achieving this goal

is challenging because there are many factors that can affect

the costs of database operations, as well as the quantitative

performance impact of the SQL antipatterns. The values of

these factors can vary across different applications as well. A

manually synthesized benchmark, such as the one published

in an online blog post [17], may not reflect how developers

use local databases in mobile applications.

To overcome this challenge, we based the antipattern version

of the implementation on real-world antipattern instances

that were collected at a large scale. In order to ensure the

generalizability of the study results, our benchmark suite took

different performance affecting factors into consideration and

simulated their representative values in mobile applications.

In the following sections, we explain how the performance

affecting factors were chosen and varied (Section III-B1),

and how the antipattern version and the fixed version of the

implementation were constructed (Section III-B2).

1) Controlling Performance Affecting Factors: In order to

isolate the performance impact of the SQL antipatterns, the

factors that can affect the performance of database operations

must be controlled. Since our study focused on the antipatterns

that are in the coding aspects, we varied the factors that can

be changed in the application code and controlled the other

factors. In our study, the varied factors are the number of SQL

statements issued, the SQL statement forms, the underlying

table forms, the size of the table, and the two ways of

implementation (i.e., the antipattern and its fix). The SQL

statement form is defined to be the SQL keywords contained

in a SQL statement in order, e.g., SELECT FROM ORDER
BY, DELETE FROM, etc. The table form is defined to be a

multiset where the elements are the types of columns in the

table, e.g., {INTEGER, INTEGER, TEXT}. As for the other

factors, including the hardware, the file system, the database

management system, the database configuration, etc, these

were controlled to be the same across different measurements.

55

When we varied the values of the performance affecting

factors, we aimed at choosing values that are representative

of their typical values in mobile applications. However, this is

very challenging because the values may differ in individual

applications. A naive approach that arbitrarily chooses the

varied values from a predetermined range may not reflect

how developers use local databases in mobile applications. To

overcome the challenge, we made use of static and dynamic

analyses, which allowed us to analyze mobile applications at

a large scale and to identify representative factor values.

For the two factors, SQL statement forms and table forms,

we utilized static analysis to obtain their representative values

from the real-world antipattern instances. More specifically,

we first implemented a set of static detectors based on the

detection algorithms we discovered in our literature review. In

case of the absence of a detection algorithm, we came up with

a preliminary analysis based on the definition and rationale of

the corresponding SQL antipattern. We then ran our detectors

on a set of 1,000 marketplace applications from the Google

Play app store [18]. These apps were chosen by collecting the

top ranked apps from each of the 34 app categories defined

in the store. It took around fifteen hours for the detectors to

analyze these apps and identify the various SQL antipattern

instances. After identifying the real-world instances, we split

them into equivalence classes based on their SQL statement

forms. We then ranked the equivalence classes based on their

sizes. (The sizes represent how frequently the corresponding

forms appeared in the detected instances.) For each of the

top ranked equivalence classes, we randomly selected one

instance. We applied the same process to the table forms.

Following this protocol, we selected 52 antipattern instances,

whose SQL statement forms and table forms represented at

least 72% and on average 90% of all the detected instances.

Similar to the SQL statement forms and table forms, we

also need to vary the values for the number of SQL statements

issued and the size of the tables. Since the number of columns

and the column types have been determined by the table

form, the size of the table depends on the number of rows

and the size of the columns whose sizes are flexible, e.g.,

the string/text/varchar types of columns. Instead of naively

selecting random values for these numeric factors, we tried

to estimate a range of values from real-world apps. We ran

the 1,000 apps in our application corpus using a widely-used

workload generation tool, PUMA [19]. During the execution,

we logged the SQL statements issued along with their ex-

ecution timestamps. From the logs, we computed empirical

values for the number of rows in a table, the size of a string

type column, and the number of SQL statements issued. These

were estimated by computing the average number of insert

statements to a table, the average length of string data values

in the insert statements, and the average number of SQL

statements issued in a consecutive sequence. Lastly, we chose

the average values and varied them by one and two standard

deviations.

After identifying the values of the performance affecting

factors, the last challenge is to determine the way to combine

them. In order to thoroughly test the impact of the antipatterns

under different settings, we used the Cartesian product on the

sets of factor values. Each tuple in the resulting Cartesian

product corresponds to a benchmark in the benchmark suite.

A test in the suite consists of the two benchmarks that share

the same factor values except for the programming practice,

i.e., one of them is the antipattern version while the other one

is the fixed version.

2) Constructing the Antipattern and its Fix: To generate

the antipattern version of the implemention, we utilized the

selected real-world antipattern instances. We minimized the

app code so that only the database operations and code

constructs that are related to the detected antipattern instances

were included in our benchmark. Note that we manually

verified the decompiled code to ensure that they were true

positives before using them as benchmarks.

To generate the fixed version of the implementation, we

followed the strategies proposed in the literature and fixed the

antipattern version of the benchmark. For each of the SQL

antipatterns, the literature would generally illustrate what kind

of database access task a developer wants to perform, how the

developer would implement it in an inefficient/insecure manner

(i.e., the antipattern) and in an efficient/secure manner (i.e., the

fix). We summarized these characteristics of SQL antipatterns

and their fixes in Section IV.

C. Performance Evaluation

In the evaluation, we measured and analyzed the energy con-

sumption and runtime of the benchmark code. In the process,

we first inserted probes to the source code of the benchmark.

We recorded the start and end times of the part of the code

that was changed or inserted after fixing the antipattern. We

then deployed the app containing the benchmark code on a

Samsung Galaxy S5 that was connected to a power meter.

When the app was launched, the code was automatically

triggered and the energy and runtime measurements were

recorded during the execution.

Measuring Energy Consumption and Execution Time:
We leveraged the Monsoon power meter [20] to measure

energy. This power measurement platform sampled the power

consumption of the smartphone at a frequency of 5KHz and

synchronized these samples with the standard Unix time.

By aligning starting and ending times with the Monsoon

measurement samples, we obtained power measurements for

each target API invocation. After calculating the individual

runtime and energy consumption, their values were summed

up as the overall cost.

Conducting Experiment: To reduce the impact of any

non-deterministic or uncontrolled behavior, we repeated the

measurements fifteen times. We obtained an average relative

standard error of 4.4%, which demonstrated the stability of

our measurement results. In general, a relative standard error

of 25% or greater are subject to high sampling error and

should be used with caution [21]. The relative standard error

we obtained was significantly smaller than this threshold.

56

For each measurement, the database was reinitialized to en-

sure consistency across different measurements. Between each

measurement, we added a waiting time to avoid any impact

from tail energy behavior and to allow the device to cool down.

Analyzing Data: For each antipattern, we measured the

energy consumption and runtime difference between two code

versions under various settings. We did not assume the mea-

surement data followed a normal distribution and ran a Mann-

Whitney U test (α = .05) to compute the statistical significance

of the differences in measurements for both the energy and

runtime measurements. The mean and median differences were

also computed.

IV. RESULTS

Following the literature review protocol, we identified 57

related studies (these included 56 research papers and 1 book).

To answer the research questions, we manually inspected the

collected literature.

In the following sections, we list the definitions and ratio-

nales for the eleven identified SQL antipatterns. For each of

them, we also present and discuss the detection and repair

methods, along with the quantitative impact we obtained from

the benchmark study.

In Table II, we summarize the performance impacts. A

positive number means the resource consumption increases

after fixing the antipattern. A negative number means the

resource consumption decreases. For each antipattern, we

show the mean (absolute value and percentage) and median of

the differences in resource consumption. Since we constructed

benchmarks for each antipattern using various detected antipat-

tern instances under different settings, in the table, we show

the benchmark tests that established statistical significance in

the runtime and energy differences. In general, there were less

cases that established statistical significance for energy than

runtime. This is because there were more fluctuations in the

energy measurements.

A. Antipattern: Unbatched-Writes

Definition: A sequence of database writes issued separately

instead of being batched in a single transaction [14], [22], [23],

[2].

Rationale: If the database writes trigger transactions repet-

itively, the transaction processing overhead of each write

request can lead to significant inefficiency.

1) Techniques: Chen and colleagues [14] targeted the

Unbatched-Writes antipattern for applications developed using

Object-relational Mapping (ORM) frameworks. These frame-

works map standard APIs to SQL statements and allow devel-

opers to access the database by manipulating objects. Chen’s

technique statically detects the database-accessing functions

that are invoked inside a loop without being optimized by

some ORM batching annotations (e.g., Batch).

Tamayo and colleagues [12] developed a technique that can

suggest batching opportunities by analyzing the dependencies

between multiple SQL statements. If a sequence of data writes

does not have certain data dependencies, the technique will

suggest submitting all the write statements together with a

single database write API.

RAT-TRAP [24] statically detects database writes that hap-

pen within loops and that will trigger inefficient autocommit

behaviors. RAT-TRAP then uses additional analyses to identify

those that are optimizable and rewrites the code.

2) Performance Impact:
a) Repair Strategy: As suggested by Lyu et al. [24], we

inserted explicit transaction control so as to batch the writes.

b) Result: As shown in Table II, after fixing the antipat-

tern, the runtime and energy were both reduced by over 90%

on average with statistical significance. The results suggest that

transactions can be very resource-intensive. The more implicit

transactions are triggered, the more performance impact this

antipattern can make. The average runtime reduction even

exceeded 100 ms (a common threshold for human to perceive

delay [25], [26]), which means this antipattern can noticeably

impact user experience.

B. Antipattern: Not-Merging-Projection-Predicates

Definition: Instead of issuing a single SQL query to read

all the needed columns at once, developers issue multiple

queries, each of which only reads a subset of the required

columns [10], [27]. For example, “SELECT name FROM
User” and “SELECT id FROM User” could have been merged

to “SELECT id, name FROM User”.

Rationale: This antipattern describes the problem of trans-

mitting too many small database requests instead of aggregat-

ing them. The processing overhead of each request, e.g., the

cost of network round trip (when communicating with remote

databases) and query processing, can introduce unnecessary

inefficiency.

1) Techniques: Manjhi and colleagues [10] developed static

analyses to detect the Not-Merging-Projection-Predicates an-

tipattern. Their analyses check if (1) the second query is

executed whenever the first query is executed, and (2) the

queries are identical except for the projection predicates. To

automate the transformation, they used a source-to-source

compiler to merge the queries.

Arzamasova and colleagues [27] analyzed the existing SQL

query logs to look for the Not-Merging-Projection-Predicates

antipattern. Their log analyzer checks if a sequence of SQL

queries has equivalent FROM and WHERE clauses, but a

different SELECT clause.

2) Performance Impact:
a) Repair Strategy: To fix this antipattern, we merged the

projection predicates and read all the needed columns with one

query as suggested by Manjhi et al. [10].

b) Result: As shown in Table II, the runtime and energy

consumption were reduced 32% and 36% on average. Most

of the runtime differences established statistical significance.

These results suggest that Not-Merging-Projection-Predicates

can introduce performance overhead to local database opera-

tions. Although there does not exist a network communication

overhead in local databases, the other costs, such as scanning

the database tables and finding the target data, can be resource

57

TABLE II: SQL antipatterns and their performance impacts

Antipattern Runtime mean (ms) Runtime median (ms)
Runtime

significance
Energy mean (mJ) Energy median (mJ)

Energy
significance

Unbatched-Writes -263.99 (-94%) -218.03 108/108 -152.65 (-96%) -104.57 105/108
Not-Merging-Projection-Predicates -7.93 (-32%) -2.73 34/36 -5.04 (36%) -1.03 18/36
Not-Merging-Selection-Predicates -18.59 (-66%) -9.9 14/18 -5.64 (-66%) -1.63 12/18

Loop-to-Join -1467.58 (-94%) -538.13 9/9 -3455.40 (-96%) -863.33 9/9
Vulnerable-Query 1.43 (18%) 0.40 7/45 0.49 (15%) 0 4/45

Not-Using-Parameterized-Query -21.70 (-50%) -11.07 49/54 -31.02 (-55%) -11.27 48/54
Not-Caching -8.37 (-7%) -3.87 24/27 -7.06 (-6%) -0.53 14/27

Unnecessary-Column-Retrieval -8.90 (-27%) -2.93 95/126 -10.42 (-29%) -2.07 78/126
Unnecessary-Row-Retrieval -9.41 (-65%) -2.20 35/45 -10.31 (-70%) -1.67 28/45

Unbounded-Query 1.57 (7%) 0.80 31/81 1.18 (7%) 0.07 11/81
Readable-Password 0.84 (0.5%) 0.67 9/18 0.10 (0.1%) 0 2/18

expensive. By merging the projection predicates and retrieving

the necessary columns at once, the aforementioned costs can

be reduced.

C. Antipattern: Not-Merging-Selection-Predicates

Definition: Instead of issuing a single SQL query to read

all the needed rows at once, developers issue multiple select

queries, each of which only reads a subset of the required

rows [10], [27].

Rationale: The rationale behind this antipattern is similar

to the Not-Merging-Projection-Predicates antipattern, as they

both describe the problem of not aggregating the queries and

introduce performance overheads.

1) Techniques: To detect this antipattern, Manjhi and col-

leagues [10] developed static analyses to check if (1) the

second query is executed whenever the first query is executed,

and (2) the queries are identical, except one selection clause.

To automate the transformation, they used a source-to-source

compiler to merge the queries.

Arzamasova and colleagues [27] also covered the Not-

Merging-Selection-Predicates antipattern in their query log

analyzer. The analyzer identifies the SQL queries that have

equal SELECT and FROM clauses, but a different WHERE

clause.

2) Performance Impact:
a) Repair Strategy: As suggested by Arzamasova et

al. [27], we merged the selection predicates and retrieved all

the needed rows with one query. The columns used in the

merged selection predicates were added to the projection at-

tributes. For example, “SELECT id FROM ScaleTable WHERE
Name = ‘Optimism’” and “SELECT id FROM ScaleTable
WHERE Name = ‘Caring’” were merged to “SELECT id,
Name FROM ScaleTable WHERE Name in (‘Optimism’,
‘Caring’)”. To ensure that the functionality of the program

remained unchanged, the returned rows were split in the

application code according to the values in the Name column.

b) Result: The runtime and energy consumption were

both reduced 66% after fixing the antipattern. However, not

all of the performance differences established statistical sig-

nificance. We even observed two cases where the resource

consumption increased after the fix. When looking in depth

at those cases, we found that in the antipattern version, the

cost of the queries was low. After merging them in the fixed

version, the performance gain was lower than or similar to

the overhead of splitting the data. Nevertheless, in most of

the cases, there was a big performance reduction after fixing

the antipattern. This was because multiple costly queries were

combined. These results demonstrated that the Not-Merging-

Selection-Predicates antipattern can have a negative impact on

the resource consumption of local database operations, but this

impact depends on the cost of the queries and the overhead of

splitting the results.

D. Antipattern: Loop-to-Join

Definition: Instead of joining two tables and querying from

the joint table, developers first query from one table to get

multiple values and then for each value (using a loop structure)

query from another table [28], [10], [29].

Rationale: This antipattern causes unnecessary frequent

database requests. The processing overhead of each request

can introduce unnecessary inefficiency.

1) Techniques: Manjhi and colleagues [10] proposed a de-

tection analysis for the Loop-to-Join antipattern. The analysis

checks if: (1) the loop iterates using the result of a previous

query, (2) the loop issues a query in each iteration, and (3) the

previous query is executed whenever the loop executes. Once

the pattern is identified, they used the work done by Kim [30]

to replace the small queries by a merged query.

Cheung [28] and Emani [31] both proposed techniques to

optimize the Loop-to-Join antipattern for applications devel-

oped using ORM. Their techniques automatically transform

imperative code fragments (written using ORM and nested

loops) into SQL queries that use joins.

2) Performance Impact:
a) Repair Strategy: To fix this antipattern, we joined

the two tables that were used in the first query and second

query, and then queried from the joint table as suggested by

the literature [10], [28], [31].

b) Result: As we can see in Table II, the runtime and

energy consumption were reduced 94% and 96% on average

after fixing the antipattern. The statistical test established

statistical significance for all of the results. As the runtime

difference was over 100 ms, this antipattern is very likely to

noticeably impact user experience. The reason behind this big

performance impact is that fixing the antipattern can reduce the

number of queries issued from 1+N (N stands for the number

58

of rows retrieved from the first table) to 1. By looking in depth

at the results, we found that when the size of the retrieved data

exceeded a certain limit, the time required to iterate over the

retrieved rows increased significantly. In Android, the retrieved

data is stored in a Cursor object [32]. It has a buffer of 2

MB in size by default to store the retrieved data. When a row

that is not in the buffer is requested and the buffer is full, the

memory needs to be freed and the buffer will be refreshed.

In the antipattern version, the buffer refreshing overhead was

triggered when the application code iterated over the data that

was retrieved from the first table. In the fixed version, since

the result iteration was avoided by joining the tables, the buffer

refreshing overhead was avoided as well. In summary, fixing

the antipattern can reduce the number of database operations,

reduce the amount of data transferred, and reduce the time that

is required to iterate over the result. These ultimately led to

significant performance improvement in terms of runtime and

energy.

E. Antipattern: Vulnerable-Query

Definition: A vulnerable input is not properly sanitized and

is concatenated to a SQL query [33], [34], [35], [36]. For

example, if a string derived from an untrusted source, such as

user input, is concatenated to a query using string operations,

the resulting query would be considered a vulnerable query.

Rationale: This antipattern is the root cause of the SQL

injection vulnerability. SQL injection refers to a type of attack

in which data that derives from untrusted input sources is

included in an SQL query in such a way that part of the

vulnerable input is treated as SQL code. This allows the

attacker to manipulate the syntax of the SQL query, threatening

the security of the application and its underlying database.

1) Techniques: There is a wide range of techniques in the

security domain that tackle this antipattern. These techniques

include, but are not limited to static code checkers [37], [38],

combined static and dynamic analyses [39], [40], taint based

approaches [41], [42], [43], etc. These techniques have been

well-summarized by existing surveys [44], [45], [46].

2) Performance Impact:
a) Repair Strategy: To fix this antipattern, we sanitized

the vulnerable input using the encoding functions provided by

the OWASP Enterprise Security API (ESAPI) Toolkits [47].

The encoding functions use the proper escaping scheme for

the database and sanitize the provided input. The DBMS

will not confuse the sanitized input with the SQL code

written by the developer, thus avoiding any possible SQL

injection vulnerabilities. Sanitizing the input is not the only

way to tackle SQL injection. Another typical way is to used

parameterized queries. In Section IV-F, we also evaluated how

parameterization would impact the performance.

b) Result: Our experiment results showed that sanitizing

the vulnerable input can increase the runtime and energy

consumption by 18% and 16%, respectively. But as we can

see in Table II, the absolute cost was relatively low. The

performance increases did not establish statistical significance

for most of the cases as well. When we investigated into the

ones with significant differences, we discovered that calling

the sanitization API for the first time had a relatively high cost

(10 ms on average). This was introduced by the initialization

process of the sanitizer. Overall, the experiment results suggest

that developers can improve the security of their applications

with a relatively low performance cost if they sanitize the

vulnerable input.

F. Antipattern: Not-Using-Parameterized-Query
Definition: A parameterized query (also called a prepared

statement) takes the form of a template that contains the logical

purpose of the query. It leaves certain values unspecified,

called parameters or placeholders. The actual values of those

parameters are bound at runtime. This antipattern arises when

a query could have been parameterized but it is not [48], [49],

[23], [36].
Rationale: By parameterizing the queries, the DBMS can

parse, compile, and perform query optimization on the SQL

statement template. The processed template can be used for

the future execution with input parameters. From a security

perspective, parameterized queries are very useful against

SQL injection because the parameter values are syntactically

bound to the positions of string literals and are therefore not

interpreted as commands. From a performance perspective,

parameterized queries can reduce parsing time because the

preparation on the query is done only once no matter how

many times the query is executed. Therefore, not parameter-

izing the query would lose these benefits.
1) Techniques: TAPS [48], [49] is an automated technique

for query parameterization. It analyzes the parsed structure

of the SQL statements to identify data arguments for the

parameterized query. It then traverses the program backwards

to the program statements that generate these arguments, and

substitutes the arguments with placeholders (i.e., the symbol

“?”).
2) Performance Impact:

a) Repair Strategy: To fix this antipattern, we param-

eterized the queries and reused the precompiled template as

suggested by Karwin [36].
b) Result: As shown in Table II, the runtime and energy

of the database operations were reduced 50% and 55% on

average after fixing the antipattern. Statistical significance was

established for most of the cases. These results suggest that

using parameterized queries is not only a more secure way,

but also a more resource-efficient way to interact with local

databases.

G. Antipattern: Not-Caching
Definition: Multiple syntactically equivalent or partially

equivalent queries are issued to retrieve data from the database

[13], [50], [29], [51], [22]. These queries can be exactly the

same or they share a common subexpression.
Rationale: Not caching query results often leads to redun-

dant computation being performed. If the database contents

have not been altered between the execution of a group of

syntactically equivalent queries, caching their results can help

to improve performance.

59

1) Techniques: CacheOptimizer [13] is a technique that

helps developers optimize the configuration of caching frame-

works for web applications that are implemented using Hi-

bernate (a Java ORM framework). CacheOptimizer leverages

existing web logs to discover the optimal cache configuration

so that the caching framework of Hibernate can cache the

query results properly.

Yan and colleagues [29] proposed a technique to detect the

Not-Caching antipattern in web applications that are developed

using ORM. ORM frameworks allow users to construct queries

by chaining multiple function calls (e.g., where, join), with

each chain translated into a SQL query. To detect the equiv-

alent or partially equivalent queries, the proposed technique

analyzes the query call chains using static analysis: if the

same ORM query function is used in two different ORM

query function chains, the corresponding queries will share

a common expression.

Sqlcache [51] is a compiler optimization technique that au-

tomatically adds sound SQL caching to Web applications. Sql-

cache computes conditions for irrelevance [52] between read

queries and write queries. If relevant, Sqlcache instruments

the application where the write query with cache invalidations

automatically.

As mentioned previously in the Unbatched-Writes section,

the technique by Tamayo and colleagues [12] analyzes the

dependencies between multiple SQL statements. In addition

to finding batching opportunities, the technique also looks for

caching opportunities by checking if multiple queries always

return the same result in their dependency graph.

2) Performance Impact:
a) Repair Strategy: Since the existing repair methods

usually rely on adding a cache layer, of which software

developers may not have control over, we experimented with

a strategy that can fix this antipattern by code refactoring.

We avoided issuing repeated queries by reusing the Cursor
object [32]. This object is returned by the select query API

and it stores the query results.

b) Result: The experiment results showed that fixing

this antipattern can reduce the runtime and energy of the

database operations by 7% and 6%, respectively. When we

investigated into the savings, we found that the resource

consumption of retrieving data reduced significantly, but the

time required to iterate over the retrieved data (i.e., the cursor),

remained unchanged. This is because caching the data helps

to reduce the amount of data transferred from the database

to the application, but does not help to reduce of amount

of data that the application needs to iterate over. Therefore,

the buffer refreshing overhead would still occur. Nevertheless,

the absolute energy and runtime savings were still relatively

high. Many of them established statistical significance as well,

suggesting the benefits of fixing this antipattern.

H. Antipattern: Unnecessary-Column-Retrieval

Definition: Developers issue a query that reads more

columns than needed [15], [22], [29], [36]. For instance, the

query “SELECT * FROM User” retrieves all the columns, but

in the application, a subset of the retrieved columns is never

used.

Rationale: The more columns the SQL query fetches,

the more data must travel between the application and the

database. While the data transfer comes with a cost, retrieving

columns that are not needed in subsequent computation can

be harmful to performance and scalability.

1) Techniques: Chen and colleagues [15] proposed an ap-

proach that combines static and dynamic analysis to detect this

Unnecessary-Column-Retrieval antipattern. The static analysis

part of the approach identifies and instruments database-

accessing functions. The dynamic analysis part obtains the

code execution traces and the SQL queries. Then, the approach

discovers instances of this antipattern by examining the data

access mismatches between the needed columns and the

requested columns.

Yan and colleagues [29] proposed a detector using only

static analysis. The detector identifies the columns retrieved

by each query and checks if there are subsequent uses of

the retrieved columns. If there are no such uses, it means

the Unnecessary-Column-Retrieval antipattern occurs in the

application.

2) Performance Impact:
a) Repair Strategy: As suggested by Yan et al. [29],

we modified the query so that it only retrieved the needed

columns.

b) Result: The experiment results showed that after fix-

ing the antipattern, the runtime and energy consumption of the

database operations can be reduced 27% and 29% on average,

respectively. The differences established statistical significance

for most of the runtime results. We investigated into the cases

that did not show a statistically significant impact. We found

that the unnecessarily retrieved column had an integer type,

whose size was small. As for the cases that had a significant

impact, we found that fixing the antipattern can reduce the

time of retrieving data since less data needed to be transferred.

This demonstrates that even though the data does not need

to travel over the network, there is still a significant cost for

retrieving data from a local database. Moreover, we discovered

that retrieving less columns could also save the resources

consumed by iterating over the results. Although fixing the

antipattern did not reduce the number of retrieved rows, it

reduced the total amount of retrieved data as less columns

were fetched. As a consequence, the memory pressure was

alleviated and the buffer refreshing rate was decreased. These

ultimately led to less resource consumption.

I. Antipattern: Unnecessary-Row-Retrieval

Definition: Developers issue a query that reads more rows

than needed [23], [53]. When table rows are retrieved from the

database, not all of them may be needed by the application.

This antipattern arises when the retrieved rows are filtered by

the application logic and only a subset of the rows are actually

used by the application.

Rationale: Similar to the Unnecessary-Column-Retrieval

antipattern, redundant row retrieval is a waste of resources

60

and can harm performance. The filtering conditions could have

been specified in the selection clause of the query so as to

reduce the amount of data transfer.

1) Techniques: Chaudhuri and colleagues [23] proposed a

cost estimation tool to alleviate this antipattern. They first used

dynamic profiling to compute the number of rows consumed

by the application and the total number of rows returned by

the query. If the query returns many rows (say N) and the

application consumes only k rows (k � N), then it may be

beneficial to pass a query hint to the database server requesting

that the plan should be optimized for returning the top k

rows quickly. Based on the profiling information, Chaudhuri

developed a Fast-k analysis tool that can estimate how the cost

of the query varies with k. Such information can be used by

developers to decide if it is appropriate to rewrite their query

to use the hint.

Dugan and colleagues [53] did not propose specific tech-

niques for automated detection and optimization. They ana-

lyzed the antipattern using software performance engineering

modeling techniques and compute several metrics, such as the

number of disk I/O operations. Using the same methodology,

they also examined several solutions to the antipattern using a

lower bound and upper bound in the query to limit the number

of retrieved rows.

DBridge [31] includes an optimization mechanism for un-

necessary row retrieval. It identifies filters on query results

expressed using conditional imperative constructs, such as if,

and pushes them into the query as a selection.

2) Performance Impact:
a) Repair Strategy: As suggested by Emani et al. [31],

we modified the query so that it only retrieved the needed

rows.

b) Result: The experiment results showed that by fixing

the antipattern, the runtime and energy can be reduced 65%

and 70% on average, respectively. The statistical test estab-

lished statistical significance for most of the runtime results.

The ones that did not show a significant improvement were

from an instance with statement form SELECT DISTINCT.

In that instance, since only the distinct rows were retrieved,

the antipattern version only retrieved two more rows than the

fixed version, resulting in a negligible performance difference.

When we looked in depth at the results that showed a

significant difference, we found that fixing this antipattern can

not only reduce the time needed to retrieve the data but also

reduce the time needed to iterate over the retrieved result.

This is because there was less data transferred and less rows

needed to be iterated over. Similar to fixing the Unnecessary-

Column-Retrieval antipattern, when the total amount of data

to read became larger and exceeded the threshold, optimizing

the Unnecessary-Row-Retrieval antipattern can significantly

reduce the time needed to iterate over the result; because it

can avoid or alleviate the buffer refreshing overhead.

J. Antipattern: Unbounded-Query

Definition: A query that may return an unbounded number

of records is issued and there exists a subsequent computation

over the returned records [29], [22], [34], [54].

Rationale: From a performance perspective, if the applica-

tion directly renders the results of the query (whose size can be

potentially very large), the responsiveness of the application

can be affected because of the long rendering process [29].

From a security perspective, attackers can carry out a second-

order denial-of-service attack by tainting the database table

with a large number of records [34]. Then if an unbounded

query is issued to retrieve data from the table, and the number

of executions of a loop is controlled by the query result, CPU

exhaustion may happen.

1) Techniques: The work by Yan and colleagues [29]

examines if a query is bounded by checking if (1) the query

always returns a single value (e.g., a COUNT query); (2) the

query always returns a single record (e.g., retrieving using a

unique identifier); or (3) the query uses a LIMIT keyword

bounding the number of returned records.

Olivo and colleagues [34] verified if this antipattern occurs

by statically checking if (1) a database attribute can be tainted

by a user input, (2) a query uses the tainted database attribute

in its selection clause, and (3) the number of executions of a

loop is controlled by the tainted query result.

Panorama [54] suggests a variety of refactorings that can

fix this antipattern, such as pagination, asynchronous loading,

etc. It identifies opportunities for applying such refactoring in

web applications, and automatically suggests patches.

2) Performance Impact:
a) Repair Strategy: For this antipattern, carrying out a

repair can be challenging. This is because changing a query

from unbounded to bounded can alter the semantics and even

the display of the program. Depending on the functionality

of the application, developers can choose to use the SQL

keyword LIMIT to simply limit the number of retrieved rows.

A sophisticated change at the design level, such as employing

pagination [54], can also be applied. Although there can be a

variety of repair strategies, there is one check that developers

can always insert to the code before issuing the unbounded

queries, which is to check the number of rows that are going

to be retrieved and iterated over. If this number is under certain

threshold, the original unbounded query can be issued anyway.

Otherwise, a fixed version of the code would be executed.

Since there does not exist a universal repair strategy for this

antipattern, in our experiment, we measured the performance

overhead of checking the number of retrieved rows.

b) Result: Our experiment results showed that the run-

time and energy consumption were both increased 7% on

average after adding the bound check. The absolute runtime

and energy increase were 1.57 ms and 1.18 mJ, respectively.

Comparing to the performance impact of other antipatterns,

this overhead was relatively low. The low cost was due to the

fact that the bound check did not require the application to load

all the necessary rows of data from the database to the memory.

Developers can check the number of retrieved rows using the

COUNT() function in SQL, which returns a single number. By

checking the number of retrieving rows in advance, developers

can improve the security of their applications with a low

61

performance cost. Developers can choose to apply a fix to

this antipattern on top of the bound check so as to further

improve the performance and security.

K. Antipattern: Readable-Password

Definition: Sensitive information, such as a user password,

is stored in plain text in the database [36]. This antipattern

arises if an application stores the password by specifying the

password as a string literal in an insert or update statement.

When authenticating the password, this antipattern can also

appear if the application compares the user’s input to the

password string stored in the database. For example, “SELECT
* FROM Accounts WHERE account id = ‘123’AND password
= ‘opensesame’”.

Rationale: This programming practice results in security

vulnerabilities because if attackers can read the SQL statement,

they can see the plain text password. Hackers can steal a

password by searching SQL statement logs, or reading data

from database backup files.

1) Techniques: We have not identified any technique that

targets this antipattern.

2) Performance Impact:
a) Repair Strategy: To fix this antipattern, we encrypted

the sensitive information before storing it to the database as

suggested by Karwin [36].

b) Result: The experiments showed that the runtime and

energy were increased 0.5% and 0.1% on average after fixing

the antipattern. The absolute runtime increased 0.84 ms and

the energy consumption increased 0.1 mJ. These costs are

relatively low given 100 ms the threshold for humans to

perceive delay [25], [26]. These results mean that fixing this

antipattern by encryption comes at a low performance cost.

V. THREATS TO VALIDITY

A potential threat is that our benchmark study was based

on SQLite, which could have different performance charac-

teristics than other database management systems. However,

SQLite is the default and dominant local database service

in mobile devices [2]. Therefore, our experiment results are

generalizable to most mobile apps.

We collected the energy and runtime measurement results

from a single device, a Samsung Galaxy S5 running Android

5.0. Other devices and operating systems may have different

runtime and energy characteristics. To mitigate this threat, we

repeated the measurements on a Nexus 5 running Android

6.0.1 and a Google Pixel running Android 7.1.2. We observed

that although the absolute values may differ from the results

we obtained from the S5, the percentage differences were

consistent.

We used an automated workload generator to generate the

workload, which may not be representative of real user work-

load. However, this potential bias was not likely to undermine

our conclusion as our experiment was based on a large number

of applications and SQL statement executions. In addition, our

benchmark suite only required an estimated range of values

for the varied factors instead of an accurate number.

We evaluated the performance impact on a synthesized

benchmark suite, which may not reflect the realistic impact

of the SQL antipattern on real apps. We made several efforts

to mitigate this threat. First, the code in the benchmark suite

was replicated from SQL antipattern instances detected in

real apps. Second, we chose representative values of the

performance affecting factors to be used in the benchmark

suite. For example, the selected table forms and statement

forms represented 90% of all instances detected in the real

apps.

We fixed the antipattern instances manually. If the repair

was carried out incorrectly and altered the functionality of the

original program, it may affect the validity of the performance

results we obtained. To ensure that the code functionality re-

mained consistent before and after the fix, we added additional

checks to the benchmark code. If the detected SQL antipattern

instance involved database reads, we checked if the read data

that was used by the application remained consistent before

and after the fix. If database writes were involved, we verified

the corresponding database table and checked if the content

and size remained the same. Note that these checks were not

part of the measurements.

It is worth noting that this paper focuses on the performance

impact of SQL antipatterns. The repair strategies we used may

affect some other aspects of the software, such as readability

and maintainability. Our study presents the performance cost

of SQL antipatterns to developers and they can consider

whether it is worth fixing the problem.

VI. CONCLUSIONS

In this paper, we presented a consolidated overview of the

current knowledge about SQL antipatterns and demonstrated

their performance impact on local database operations in

mobile applications. We identified eleven SQL antipatterns

through our literature review. We discovered that eight of

them have a significant impact on the runtime and energy

consumption of local database operations. Out of these eight

SQL antipatterns, two of them (Unbatched-Writes and Loop-

to-Join) are particularly impactful and can noticeably affect

user experience. For the three security oriented SQL an-

tipatterns, we discovered that the repair only introduced a

minor performance cost. In terms of the detection and repair

techniques, we found that there exist automated detection or

repair approaches for ten out of the eleven SQL antipatterns.

Overall, our study provides interesting insights that give

concrete guidelines for app developers to improve their apps

and motivate areas for future research work in the software

engineering community. The benchmark suite and the raw

measurement data is available from https://github.com/USC-

SQL/SQLABenchmark.

VII. ACKNOWLEDGMENTS

This work was supported, in part, by US NSF grant 1619455

and ONR grant 14-17-1-2896.

62

REFERENCES

[1] Google, “Android SQLite Documentation,” https://developer.android.
com/reference/android/database/sqlite/SQLiteDatabase.html, 2017.

[2] Y. Lyu, J. Gui, M. Wan, and W. G. J. Halfond, “An empirical study
of local database usage in android applications,” in 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
Sept 2017, pp. 444–455.

[3] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of
the energy consumption of android applications,” in Proceedings of
the International Conference on Software Maintenance and Evolution
(ICSME), September 2014.

[4] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: an empirical study,” in Proceedings of the 11th
Working Conference on Mining Software Repositories (MSR), 2014.

[5] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What Do Mobile
App Users Complain About?” IEEE Software, vol. 32, no. 3, pp. 70–77,
May 2015.

[6] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond, “Truth in
advertising: The hidden cost of mobile ads for software developers,”
in Proceedings of the 37th International Conference on Software Engi-
neering (ICSE), May 2015, to Appear.

[7] J. Gui, M. Nagappan, and W. G. Halfond, “What Aspects of Mobile
Ads Do Users Care About? An Empirical Study of Mobile In-app Ad
Reviews,” arXiv preprint arXiv:1702.07681, 2017.

[8] J.-M. Kim and J.-S. Kim, “Androbench: Benchmarking the storage
performance of android-based mobile devices,” in Frontiers in Computer
Education. Springer, 2012, pp. 667–674.

[9] O. Kennedy, J. Ajay, G. Challen, and L. Ziarek, “Pocket data: The need
for tpc-mobile,” in Technology Conference on Performance Evaluation
and Benchmarking. Springer, 2015, pp. 8–25.

[10] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry, and A. Tomasic,
“Holistic query transformations for dynamic web applications,” in 2009
IEEE 25th International Conference on Data Engineering, March 2009,
pp. 1175–1178.

[11] A. Cheung, S. Madden, and A. Solar-Lezama, “Sloth: Being lazy is
a virtue (when issuing database queries),” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 931–942.
[Online]. Available: http://doi.acm.org/10.1145/2588555.2593672

[12] J. M. Tamayo, A. Aiken, N. Bronson, and M. Sagiv, “Understanding
the behavior of database operations under program control,” in
Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA ’12.
New York, NY, USA: ACM, 2012, pp. 983–996. [Online]. Available:
http://doi.acm.org/10.1145/2384616.2384688

[13] T.-H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora,
“Cacheoptimizer: Helping developers configure caching frameworks for
hibernate-based database-centric web applications,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2016, pp. 666–677.

[14] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser,
and P. Flora, “Detecting performance anti-patterns for applications
developed using object-relational mapping,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 1001–1012. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568259

[15] T. H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and
P. Flora, “Finding and evaluating the performance impact of redundant
data access for applications that are developed using object-relational
mapping frameworks,” IEEE Transactions on Software Engineering,
vol. 42, no. 12, pp. 1148–1161, Dec 2016.

[16] B. Kitchenham, “Procedures for performing systematic reviews,” vol. 33,
08 2004.

[17] J. Feinstein, “Squeezing Performance from
SQLite: Insertions,” https://medium.com/@JasonWyatt/
squeezing-performance-from-sqlite-insertions-971aff98eef2, April
2017.

[18] “https://play.google.com/store/apps.”
[19] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:

Programmable ui-automation for large scale dynamic analysis of mobile
apps,” in Proceedings of the ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys), June 2014.

[20] Monsoon Solutions, Inc, “Monsoon Power Monitor,” http://www.msoon.
com/LabEquipment/PowerMonitor, 2017.

[21] S. Horn, Guide to Standard Errors for Cross Section Estimates. Mel-
bourne Institute of Applied Economic and Social Research, 2004.

[22] J. Yang, P. Subramaniam, S. Lu, C. Yan, and A. Cheung, “How not to
structure your database-backed web applications: a study of performance
bugs in the wild,” 2018.

[23] S. Chaudhuri, V. Narasayya, and M. Syamala, “Bridging the application
and dbms profiling divide for database application developers,” in VLDB.
Very Large Data Bases Endowment Inc., September 2007.

[24] Y. Lyu, D. Li, and W. G. J. Halfond, “Remove rats from your
code: Automated optimization of resource inefficient database writes
for mobile applications,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2018. New York, NY, USA: ACM, 2018, pp. 310–321. [Online].
Available: http://doi.acm.org/10.1145/3213846.3213865

[25] R. B. Miller, “Response time in man-computer conversational
transactions,” in Proceedings of the December 9-11, 1968, Fall Joint
Computer Conference, Part I, ser. AFIPS ’68 (Fall, part I). New
York, NY, USA: ACM, 1968, pp. 267–277. [Online]. Available:
http://doi.acm.org/10.1145/1476589.1476628

[26] B. A. Myers, “The importance of percent-done progress indicators
for computer-human interfaces,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’85.
New York, NY, USA: ACM, 1985, pp. 11–17. [Online]. Available:
http://doi.acm.org/10.1145/317456.317459

[27] N. Arzamasova, M. Schler, and K. Bhm, “Cleaning antipatterns in an
sql query log,” IEEE Transactions on Knowledge and Data Engineering,
vol. 30, no. 3, pp. 421–434, March 2018.

[28] A. Cheung, A. Solar-Lezama, and S. Madden, “Optimizing database-
backed applications with query synthesis,” in Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’13. New York, NY, USA: ACM, 2013, pp.
3–14. [Online]. Available: http://doi.acm.org/10.1145/2491956.2462180

[29] C. Yan, A. Cheung, J. Yang, and S. Lu, “Understanding database
performance inefficiencies in real-world web applications,” in
Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, ser. CIKM ’17. New York,
NY, USA: ACM, 2017, pp. 1299–1308. [Online]. Available:
http://doi.acm.org/10.1145/3132847.3132954

[30] W. Kim, “On optimizing an sql-like nested query,” ACM Trans.
Database Syst., vol. 7, no. 3, pp. 443–469, Sep. 1982. [Online].
Available: http://doi.acm.org/10.1145/319732.319745

[31] K. V. Emani, T. Deshpande, K. Ramachandra, and S. Sudarshan,
“Dbridge: Translating imperative code to sql,” in Proceedings of the
2017 ACM International Conference on Management of Data, ser.
SIGMOD ’17. New York, NY, USA: ACM, 2017, pp. 1663–1666.
[Online]. Available: http://doi.acm.org/10.1145/3035918.3058747

[32] A. Developer, “Android Cursor Documentation,” https://developer.
android.com/reference/android/database/Cursor, March 2019.

[33] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan,
“Candid: Preventing sql injection attacks using dynamic candidate
evaluations,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security, ser. CCS ’07. New
York, NY, USA: ACM, 2007, pp. 12–24. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315249

[34] O. Olivo, I. Dillig, and C. Lin, “Detecting and exploiting second order
denial-of-service vulnerabilities in web applications,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 616–628.
[Online]. Available: http://doi.acm.org/10.1145/2810103.2813680

[35] S. Son, K. S. McKinley, and V. Shmatikov, “Diglossia: detecting code
injection attacks with precision and efficiency,” in Proceedings of the
2013 ACM SIGSAC conference on Computer & communications
security, ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 1181–
1192. [Online]. Available: http://doi.acm.org/10.1145/2508859.2516696

[36] B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Pro-
gramming, 1st ed. Pragmatic Bookshelf, 2010.

[37] C. Gould, Z. Su, and P. Devanbu, “Jdbc checker: A static analysis
tool for sql/jdbc applications,” in Proceedings of the 26th International
Conference on Software Engineering, ser. ICSE ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 697–698. [Online]. Available:
http://dl.acm.org/citation.cfm?id=998675.999476

63

[38] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static checking of
dynamically generated queries in database applications,” ACM Trans.
Softw. Eng. Methodol., vol. 16, no. 4, Sep. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1276933.1276935

[39] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’06. New York, NY, USA: ACM, 2006, pp. 372–382. [Online].
Available: http://doi.acm.org/10.1145/1111037.1111070

[40] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree
validation to prevent sql injection attacks,” in Proceedings of the 5th
International Workshop on Software Engineering and Middleware, ser.
SEM ’05. New York, NY, USA: ACM, 2005, pp. 106–113. [Online].
Available: http://doi.acm.org/10.1145/1108473.1108496

[41] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo, “Securing web application code by static analysis and runtime
protection,” in Proceedings of the 13th International Conference on
World Wide Web, ser. WWW ’04. New York, NY, USA: ACM, 2004, pp.
40–52. [Online]. Available: http://doi.acm.org/10.1145/988672.988679

[42] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis,” in Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14, ser. SSYM’05. Berkeley,
CA, USA: USENIX Association, 2005, pp. 18–18. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251398.1251416

[43] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation
for java,” in Proceedings of the 21st Annual Computer Security
Applications Conference, ser. ACSAC ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 303–311. [Online]. Available:
https://doi.org/10.1109/CSAC.2005.21

[44] W. G. Halfond, J. Viegas, A. Orso et al., “A classification of sql-injection
attacks and countermeasures,” in Proceedings of the IEEE International
Symposium on Secure Software Engineering, vol. 1. IEEE, 2006, pp.
13–15.

[45] D. A. Kindy and A. K. Pathan, “A survey on sql injection: Vul-
nerabilities, attacks, and prevention techniques,” in 2011 IEEE 15th
International Symposium on Consumer Electronics (ISCE), June 2011,
pp. 468–471.

[46] R. Johari and P. Sharma, “A survey on web application vulnerabilities

(sqlia, xss) exploitation and security engine for sql injection,” in 2012
International Conference on Communication Systems and Network Tech-
nologies, May 2012, pp. 453–458.

[47] OWASP, “Category:OWASP Enterprise Security API,” https://www.
owasp.org/index.php/Category:OWASP Enterprise Security API, Au-
gust 2018.

[48] P. Bisht, A. P. Sistla, and V. N. Venkatakrishnan, “Taps: Automatically
preparing safe sql queries,” in Proceedings of the 17th ACM Conference
on Computer and Communications Security, ser. CCS ’10. New
York, NY, USA: ACM, 2010, pp. 645–647. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866384

[49] P. Bisht, A. P. Sistla, and V. Venkatakrishnan, “Automatically preparing
safe sql queries,” in International Conference on Financial Cryptography
and Data Security. Springer, 2010, pp. 272–288.

[50] J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner, “Efficient
exploitation of similar subexpressions for query processing,” in
Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’07. New York, NY, USA:
ACM, 2007, pp. 533–544. [Online]. Available: http://doi.acm.org/10.
1145/1247480.1247540

[51] Z. Scully and A. Chlipala, “A program optimization for automatic
database result caching,” ACM SIGPLAN Notices, vol. 52, no. 1, pp.
271–284, 2017.

[52] J. A. Blakeley, N. Coburn, and P.-V. Larson, “Updating derived
relations: Detecting irrelevant and autonomously computable updates,”
ACM Trans. Database Syst., vol. 14, no. 3, pp. 369–400, Sep. 1989.
[Online]. Available: http://doi.acm.org/10.1145/68012.68015

[53] R. F. Dugan, Jr., E. P. Glinert, and A. Shokoufandeh, “The sisyphus
database retrieval software performance antipattern,” in Proceedings
of the 3rd International Workshop on Software and Performance, ser.
WOSP ’02. New York, NY, USA: ACM, 2002, pp. 10–16. [Online].
Available: http://doi.acm.org/10.1145/584369.584372

[54] J. Yang, C. Yan, C. Wan, S. Lu, and A. Cheung, “View-centric
performance optimization for database-backed web applications,”
in Proceedings of the 41st International Conference on Software
Engineering, ser. ICSE ’19. Piscataway, NJ, USA: IEEE Press, 2019,
pp. 994–1004. [Online]. Available: https://doi.org/10.1109/ICSE.2019.
00104

64

