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Abstract—Code smells are poor implementation choices applied by developers during software evolution that often lead to critical
flaws or failure. Much in the same way, community smells reflect the presence of organizational and socio-technical issues within a
software community that may lead to additional project costs. Recent empirical studies provide evidence that community smells are
often—if not always—connected to circumstances such as code smells. In this paper we look deeper into this connection by conducting
a mixed-methods empirical study of 117 releases from 9 open-source systems. The qualitative and quantitative sides of our
mixed-methods study were run in parallel and assume a mutually-confirmative connotation. On the one hand, we survey 162
developers of the 9 considered systems to investigate whether developers perceive relationship between community smells and the
code smells found in those projects. On the other hand, we perform a fine-grained analysis into the 117 releases of our dataset to
measure the extent to which community smells impact code smell intensity (i.e., criticality). We then propose a code smell intensity
prediction model that relies on both technical and community-related aspects. The results of both sides of our mixed-methods study
lead to one conclusion: community-related factors contribute to the intensity of code smells. This conclusion supports the joint use of
community and code smells detection as a mechanism for the joint management of technical and social problems around software

development communities.

Index Terms—Code smells, organizational structure, community smells, mixed-methods study

1 INTRODUCTION

SOFTWARE engineering is, by nature, a “social” activity
that involves organizations, developers, and stakehold-
ers who are responsible for leading to the definition of a
software product that meets the expected requirements [1].
The social interactions among the involved actors can
represent the key to success but can also be a critical issue
possibly causing additional project costs from an organiza-
tional and socio-technical perspective [1], [2].

In the recent past, the research community devoted effort to
understanding so-called social debt [3], which refers to the
presence of non-cohesive development communities whose
members have communication or coordination issues that
make them unable to tackle a certain development problem
and that can lead to unforeseen project cost. One of the recent
advances in this research field is represented by the definition
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of community smells, which were defined by Tambuurri et al. [2],
[4] as a set of socio-technical characteristics (e.g., high formality)
and patterns (e.g., repeated condescending behavior, or rage-
quitting), which may lead to the emergence of social debt.
From a more actionable and analytical perspective, community
smells are nothing more than motifs over a graph [5]; motifs are
recurrent and statistically significant sub-graphs or patterns
over a graph detectable using either the structural properties
and fashions of the graph or the graph salient features and char-
acteristics (e.g., colors in the case of a colored graph). For exam-
ple, the organizational silo effect [4] is a recurring network sub-
structure featuring highly decoupled community structures.

In turn, community smells are often connected to circum-
stances such as technical debt [6], i.e., the implementation of
a poor implementation solution that will make the main-
tainability of the source code harder.

In this paper we aim at empirically exploring the relation
between social and technical debt, by investigating the con-
nection between two noticeable symptoms behind such
types of debt: community and code smells. The latter refer
to poor implementation decisions [7] that may lead to a
decrease of maintainability [8] and an increase of the overall
project costs [9].

We conjecture that the presence of community smells can influ-
ence the persistence of code smells, as the circumstances reflected
by community smells (e.g., lack of communication or coordina-
tion between team members) may lead the code to be less main-
tainable, making code smells worse and worse over time.
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Fig. 1. Convergence Mixed-Methods, qualitative and quantitative inquiry
converge towards a confirmed theory [10], [11], [12].

Our empirical investigation features a convergence
mixed-methods approach [10], [11], [12] (see Fig. 1) where
quantitative and qualitative research are run in parallel
over the same dataset with the goal of converging towards
theoretical saturation. As mentioned, the theoretical satu-
ration in question is to be achieved via mixed-methods
convergence; our assumption is therefore that, if both quali-
tative and quantitative data lead to the same conclusions,
then our theory is saturated. Conversely, any disagreement
between the two theories would lead us to an improved ver-
sion of our initial theory that code and community smells
are somehow connected.

Following this research method, our qualitative investiga-
tion features a survey of 162 original developers of 117
releases belonging to 9 ApacHE and EcLIPsE systems in order
to answer the research question below:

o RQI1: What concerns affect the developers” decision to
eliminate or preserve code smells?

In other words, we aim at eliciting possible reasons for mak-
ing developers decide whether to remove code smells; the
purpose of this study is understanding whether commu-
nity-related issues might influence developer decisions to
retain or remove a code smell. This study is motivated by
the fact that developers, even if they perceive code smells as
implementation problems, are not inclined to remove them
by performing refactoring operations [13], [14], [15], [16],
[17]. The survey findings confirmed our initial hypothesis,
as over 80 percent of practitioners explicitly mention that
avoiding community problems (e.g., repeated disagree-
ments) is the reason why code smells are not refactored.
This means that it is more convenient to keep a technical smell
than deal with a community smell. Thus, the survey findings
highlighted that the persistence of code smells not only
depends on technical factors studied by past literature [8],
[18], [19], but also on the other fish of the sea, i.e., additional
aspects related to the social debt occurring in software com-
munities that have not been studied yet.

In parallel with the qualitative inquiry, we quantitatively
evaluate to what extent the community-related factors mea-
sured over the 9 projects in our dataset impact code smell
intensity [20], [21], i.e., an estimation of the severity of a
code smell:

o RQ2: To what extent can community smells explain the
increase of code smell intensity?

e RQ3: Does a community-aware code smell intensity pre-
diction model improve the performance of models that do
not consider this information?

We present a novel code smell intensity prediction model
that explicitly considers community-related factors when
predicting the future intensity of code smells, with the
aim of providing developers and project managers with a

practical technique that would allow them to preventively
take actions that preserve the maintainability of the source
code (e.g., refactoring of the team composition). To this aim,
we systematically investigate the relationship between all
the automatically detectable community smells [3], [4], i.e.,
Organizational Silo, Black Cloud, Lone Wolf, and Bottleneck,
and five code smells, i.e., Long Method [7], Feature Envy [7],
Blob [22], Spaghetti Code [22], and Misplaced Class. All these
code smells turned out to be relevant from the developers’
perspective in our survey study. As a result, we found that
a code smell intensity prediction model built using commu-
nity smells is able to more accurately predict the future
intensity of code smells than a model that does not explicitly
consider the status of software communities. The accuracy
of the devised prediction model is also confirmed by ten
industrial project managers, who were surveyed to qualita-
tively assess the latent relation between the community and
code smells considered by our model.

Contributions and Implications. In summary, the original
research contributions of this article are:

e A large survey study involving 162 practitioners
aimed at analysing the reasons why code smells are
not refactored;

e As a side effect of the survey study, we reveal
the existence of 4 previously unknown community
smells;

e A large-scale quantitative study where we assess the
impact of community-related information on the per-
formance of a code smell intensity prediction model.

e A comprehensive replication package, containing
anonymised qualitative and quantitative data used
in our study [23].

Our study has relevant implications for researchers,

practitioners, and tool vendors:

(1) Our findings represent a call for community-aware
software evolution techniques, that explicitly con-
sider community-related factors to recommend prac-
titioners how to evolve their code. Thus, both
researchers and tool vendors should take into
account those aspects when developing new tools;

(2)  Practitioners should carefully monitor the evolution
of software communities, and, emergence of commu-
nity smells. If needed, practitioners should take pre-
ventive actions;

(3)  Our study promotes a comprehensive research approach
for software maintenance and evolution: indeed, we
show that the circumstances occurring within the
development community directly affect the way
developers act in the source code. Thus, our study
encourages researchers to take into account commu-
nity-related aspects when studying the underlying
dynamics of software evolution.

Structure of the Paper. Section 2 introduces the terminol-
ogy we use in the paper, while Sections 3 and 4 outline our
research design and results for our research questions.
Section 5 outlines a theoretical convergence between the
two sides of our study, while Section 6 address the threats
to validity we detected and addressed. Section 7 outlines
related work. Finally, Section 8 concludes the paper.
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2 TERMINOLOGY

Our study aims at understanding the role of community
smells as factors contributing to the persistence of code
smells. The aforementioned concepts are defined as follows.

A software development community is a specific type of social
network upon which certain properties hold constantly (e.g.,
informal communication across electronic channels of open-
source projects) [24], [25]. Across such development, social
networks and their many possible properties (e.g., informal-
ity, goals, membership selection, intercommunication proto-
cols), communities can develop conditions that potentially
lead to socio-technical problems. Such conditions have been
defined as community smells [2], [4] in analogy to code smells.
The analogy signifies that, on the one hand, community
smells do identify unlikable circumstances (e.g., the lack of
communication across different modules of a software sys-
tem), but, on the other hand, these conditions do not neces-
sarily stop or void the organizational behavior across the
community. Rather, they prove detrimental and cause addi-
tional project cost in several possible ways (e.g., recurrent
delays in communication, wrongful knowledge sharing) [4].
Finally, with the term project, we identify the goal or shared
practice that the community maintains as its central
endeavor, e.g., the Apache Spark community holds the deliv-
ery of the Apache Spark product as its key project. Specifically
to the context of a project, on the one hand social debt
indicates the accumulated effect of problematic organiza-
tional conditions (e.g., community smells); on the other hand,
technical debt [26], notably refers to the additional project
cost connected to problematic technical conditions, repre-
sented in our study by code smells [7], namely poor design or
implementation solutions applied by programmers during
the development of a software product.

3 SURVEYING SOFTWARE DEVELOPERS

The goal of this study is to elicit possible reasons making
developers decide whether to remove code smells, with the
purpose of understanding if any community-related issue
(e.g., a community smell) might influence their decisions.
The specific research question targeted with the qualitative
study is the following;:

e RQI1: What concerns affect the developers’ decision to
eliminate or preserve code smells?

3.1 Context of the Study

The context of the study is represented by 117 major releases
of 9 large open-source projects belonging to two software
ecosystems, i.e., APACHE and Ecripse. Table 1 reports the list
of systems in the dataset along with their (i) number of com-
mits in the observed time period, (ii) number of developers,
and (iii) size as minimum-maximum number of classes and
KLOCs in the considered time period. The selection of these
systems was driven by our willingness to analyse projects
presenting different (a) codebase size, (b) longevity, (c)
activity, and (d) population. Starting from the list of projects
for the two ecosystems, we randomly selected 9 of them
having a number of classes higher than 500, with a change
history at least 5 years long, having at least 1,000 commits,
and with a number of contributors higher than 20. We used

TABLE 1
Software Projects in Our Dataset
System #Commits #Dev. #Classes = KLOCs
Apache Mahout 3,054 55 800-813  202-204
Apache Cassandra 2,026 128 546-586 102-111
Apache Lucene 3,784 62 5,187-5,506 131-142
Apache Cayenne 3,472 21 2,727-2,854 518-542
Apache Pig 2,432 24 824-826  351-372
Apache Jackrabbit 2,924 22 842-872  473-527
Apache Jena 1,489 38 646-663  187-231
Eclipse CDT 5,961 31 1,404-1,415 189-249
Eclipse CFX 2,276 21 651-655 98-106
Overall 32,889 436 546-5,506  98-542

reference sampling thresholds from literature [27], [28], as
they allowed us to focus on large and very active projects
having a notable amount of contributors: this is essential to
observe the presence of both community smells (very small
communities are likely to have less organizational issues)
and code smells (small systems contain less code smell
instances [8]).
As for code smell types, we investigated:

(1)  Long Method: a method that implements more than
one function, being therefore poorly cohesive [7];

(2)  Feature Envy: a method which is more interested in a
class other than the one it actually is in, and that
should be moved toward the envied class [7];

(3)  Blob Class: a class usually characterised by a high
number of lines of code, low cohesion, and that
monopolises most of the systems’s processing [22];

(4)  Spaghetti Code: a class without a well-defined struc-
ture, usually declaring many long methods [22];

(5)  Misplaced Class: a class that has more relationships
with a different package than with its own package
[91;

The choice of focusing on these smells was driven by the
desire to understand how “eliminate or preserve” decisions
are made for different types of code smells (e.g., highly com-
plex classes like Blob or source code violating OOP princi-
ples like Feature Envy) having different granularities (e.g.,
method-level smells like Long Method or class-level like
Blob).

3.2 Detecting Code Smells
The first step to answer RQI is concerned with the auto-
matic detection of the code smells considered. To this aim,
we relied on DECOR [29]. The tool uses a set of rules, called
“rule cards”,’ describing the intrinsic characteristics that a
class has when affected by a certain smell type. For instance,
the approach marks a class as a Blob instance when it has an
LCOMS5 (Lack of Cohesion Of Methods) [30] higher than 20,
a number of methods and attributes higher than 20, a name
that contains a suffix in the set {Process, Control, Command,
Manage, Drive, System}, and it has an one-to-many associa-
tion with data classes.

Among the code smell detection tools available in the
literature [31], [32], [33], [34], [35], [36], we selected DECOR

1. http:/ /www.ptidej.net/research/designsmells/
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because it has been employed in previous investigations on
code smells demonstrating good performance in terms of
precision, recall, and scalability [18], [37], [38], [39], [40], [41],
[42]. Overall, DECOR identified 4,267 code smell instances
over the 117 considered releases, i.e., a mean of ~36 instances
per release. A report of the distribution of each code smell
type is available in our online appendix [23].

To verify that the tool was actually suitable for this study,
we also validated the performance of DECOR on two of the
systems in the dataset, i.e., CAssaNDRA and LUCENE. In partic-
ular, we compared the recommendations provided by the
tool with a publicly available oracle reporting the actual
code smell instances affecting the systems [43]. As a result,
we found that the average precision of the tool was 79
percent, with a recall of 86 percent. Based on these results,
we can claim that the selected code smell detector has a per-
formance similar the one declared in previous studies [29],
being sufficiently accurate for conducting our study.

3.3 RQ1. Survey Design & Data Analysis

The goal of the survey was twofold: (i) to help practitioners
by highlighting the code smells in their code, and (ii) to
elicit the data we needed by questioning them on each
detected code smell, asking for comments and explanations
over that smell, as well as an elaboration over the reasons
why the smell was not addressed yet.

We opt for a limited, cognitively simple set of questions,
to promote responses by reducing the amount and cognitive
complexity of questions posed while increasing the devel-
opers” immediate benefit (in our case, by raising awareness
over a code problem) [44], [45]. The following list of manda-
tory questions was selected for our inquiry:

1) Were you aware of this code smell?

2)  Can you think of any technical root causes for the smell?

3) What are the reasons or risks that lead you to decide

whether or not to refactor the smell?

To survey developers that actually have knowledge on
social and technical circumstances around a smelly file, we
decided to focus on the developers that worked on a
smelly class the most (in terms of commits). Thus, we con-
tacted 472 developers that worked with one distinct smelly
class instance in any of the releases we considered. It is
worth noting that we excluded developers that worked
with more than one smelly class. The rationale here is that
developers who worked on several smelly classes might
potentially not really be focused on the history of one spe-
cific smelly class, e.g., they might have confused situations
appearing in the context of another smelly class with those
of the class we were targeting. To avoid any possible bias,
we preferred to be conservative and exclude them from
the target population of our survey: all in all, we discarded
168 developers.

Being aware of ethical issues commonly associated with
empirical software engineering studies, such as confidenti-
ality and beneficence, we adhered to the inquiry guidelines
of Singer and Vinson [46]. As such, we prepared an intro-
ductory text and clarified the anonymity of their responses.
To bootstrap the survey, we used bulk-emailing and email
auto-compose tools, posing care in not spamming any par-
ticipant—every single developer was never contacted more

than once. As a result, 162 developers responded out of the
472 contacted ones, for a response rate of 34, 32 percent—
that is almost twice than what has been achieved by previ-
ous papers (e.g., [41], [47], [48]). In our opinion, there are
three aspects that have contributed to this relatively high
response rate: (1) we contacted developers that committed
the highest number of changes to a smelly class: this means
that we only targeted developers who were expert of the
considered classes and that might have been more inter-
ested in gathering further information on the class they
were mainly in charge of; (2) looking at the overall number
of commits, we noticed that the involved developers are
among the most active in the project; and (3) the time and
amount of information required from developers were lim-
ited, in order to encourage them to reply to our e-mails.

It is worth highlighting that, given the methodology fol-
lowed to recruit survey participants, we did not collect
detailed information on the profiles of our interviewees. For
instance, we did not collect data on their programming
experience. However, this does not represent a threat in our
case. Indeed, we were interested in surveying developers
that actually worked on code smell instances, so that we
could ask the reasons why they did not refactor them: in
this sense, as far as they concretely worked on code smells,
it is fine for the type of questions we posed. At the same
time, while developers experience may have played a role
in the answers they provided, looking at the overall number
of commits, the involved developers are among the most
active in the considered projects: thus, we could assume
that they are among the most expert ones for the considered
projects.

Concerning data analysis, given the exploratory nature of
RQ1, we applied Straussian Grounded Theory [49] as fol-
lows: (i) microanalysis—we labelled survey responses,
applying a single label per every piece of text divided by
standard text separators (comma, semicolon, full-stop, etc.);
(i) categorisation—we clustered labels which were semanti-
cally similar or identical, i.e., applying the semantic similar-
ity principle [50], a direct consequence of this step is the
renaming of labels to reflect categories of labels; (iii) catego-
ries saturation, i.e., elaboration of core-categories—this step
entails continued addition of labels to other or new core-cat-
egories until no uncategorised label remained; (iv) taxonomy
building—we represented the tree of categories and labels to
visualise the grounded-theory extracted from our survey
responses. Indeed, our choice for Straussian Grounded-The-
ory is more appropriate for explorative contexts since it
does not assume the presence of any previous theory to be
tested over the data but rather it adopts a constructivist the-
ory-proving approach wherefore a theory is directly and
purely generated from the data. This not withstanding, to
increase inter-rater reliability, two authors independently
coded the dataset, subsequently evaluating coding agree-
ment, via the Krippendorff's alpha Kr, [51]. Agreement
measures to 0.87, considerably higher than the 0.80 standard
reference score [52] for Kr,.

3.4 RQ1. Analysis of the Results

Over 80 percent of the practitioners admitted being aware of
the problems we discovered, sometimes also highlighting
that the problems were indeed well-known across the
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community. It is important to note that, although a comple-
mentary “unknown” category was present, it was never
applied, since developers were always aware or well aware
of the problems we highlighted. This latter, however, could
be due to a confirmation bias—respondents might have felt
uncomfortable admitting that they were not well aware of

problems in their code. The output of our data analysis
process, summarizing the evidence from the developer
survey, is shown in Fig. 2. Generally speaking, developers
highlighted the presence of some well-known factors that
lead them to avoid refactoring. For instance, the fear of
introducing defects while modifying the structure of a
system as well as the lack of automated solutions to perform
refactoring have been frequently reported by our interview-
ees. This indicates the presence of important technical
“barriers” that do not allow developers to promptly
improve the quality of source code. At the same time, our
participants pointed out some interesting observations that
confirm our hypotheses on the role of community smells
and, more in general, community-related aspects on the per-
sistence of code smells. In particular, our findings reveal not
only that previously known community smells represent an
important factor in the refactoring decisional process, but
also that there are further community smells that were
unknown up to now but that influence the way developers
act on code smells. Table 2 provides an overview of the
smells we observed.

In the following sections we discuss our findings, focus-
ing on: (a) the community smells that were re-confirmed,
meaning that they were previously reported in industry and
are re-appearing in open-source as well; (b) newly-emerging
community smells, meaning the smells that were never
previously observed in industry; (c) other aspects and theoret-
ical underpinnings around community- and technical-related
factors.

3.4.1 Re-Confirmed Community Smells

The first finding that emerged from the survey analysis is
that community smells [4], i.e., symptoms of the presence of
social issues within a software development community,
represent one important factor leading developers to not
spend time in eliminating code smells: 80 percent of
practitioners explicitly mentioned that avoiding community

TABLE 2
Community Smells from Our Survey, an Overview
Community Smell Definition
Prima Donna [2], [4] Repeated condescending behavior, superiority, constant disagreement, uncooperative- 7
ness by one or few members.
Black Cloud [2], [4] Swarming of email or other communication around a new design or refactoring exercise— 15

overly complex and disagreeing repeated communication obfuscates actual truth.

organizational Silo [2], [4]

Siloed areas of the development community that do not communicate, except through 1

one or two of their respective members.

Lone Wolf [2], [4] Defiant contributor who apply changes in the source code without considering the 1
opinions of her peers.

Bottleneck [2], [4] One member interposes herself into every interaction across sub-communities 1

Dissensus new Developers cannot reach consensus w.r.t. the patch to be applied—same condition recurs 6

for other patches in other very complex areas of the code

Class Cognition new

The affected class, if refactored, would be made significantly more complex to discourage 3

further intervention and introducing a massive overhead to newcomers and other

less-experienced contributors
Dispersion new

A fix in the code causes a previously existing group or modularised collaboration 2

structure in the community to split up or rework their collaboration because
functionality becomes re-arranged elsewhere

Code Red new

This smell identifies an area of code (a class + immediately related ones) which is so 2

complex, dense, and dependent on 1-2 maintainers who are the only ones that can

refactor it
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problems (e.g., repeated disagreements) and other social
“smells” [4], is the reason why code smells are not
addressed, meaning that it is more convenient to keep a
technical smell than dealing with a community smell. More
specifically, we could confirm the recurrence of five previ-
ously known community smells such as Black Cloud (men-
tioned 15 times), Prima Donna (2), Organizational Silo (1),
Lone Wolf (1), and Bottleneck (1). The participants reported
that increasingly confusing information sharing and com-
munication is one of the most prominent reasons why they
avoid refactoring (i.e., the Black Cloud smell). Furthermore,
repeated uncooperative, condescending, or even defiant
behavior with respect to technical or organizational
arrangements in a community by a single member (the
Prima Donna effect) can motivate them to prefer avoiding
any type of restructuring for the fear of introducing addi-
tional chaos in the community.

A smaller number of developers also reported how the
presence of sub-teams that do not communicate with each
other (the Organizational Silo) or the absence of communica-
tion with one of the members who prefer working indepen-
dently from the others (the Lone Wolf) can explain their
refactoring decisions. Finally, the absence of flexibility in
the community—indicated by the presence of a member
that tries to interpose herself into every formal communica-
tions (the Bottleneck)—make that developers are not always
aware of the design decisions made by other people in the
community and, for this reason, they sometimes avoid
restructuring to not introduce defects and/or worsening the
overall program comprehensibility.

An interesting example of the discussion made so far is
presented in the quotation below, where a developer com-
mented on an instance of Long Method that was not
refactored:

“We are aware that this code is problematic, but we have
neither time and tools to correctly perform a splitting.
Furthermore, we have two subteams working on it, and
the communication with the other subteam is not good.”

Besides explaining that the lack of tools and time are
important factors in the decisional process, the developer
clearly pointed out the presence of an Organizational Silo
that involves two sub-teams that cannot properly communi-
cate with each other. As a consequence, the developer pre-
ferred to avoid any type of pervasive modification which
may have led to introduce additional problems. All in all,
the results presented and discussed so far can already con-
firm our conjecture: community smells can influence the
persistence of code smells.

3.4.2 Newly-Emerging Community Smells

Besides the five known community smells, our data indi-
cates the existence of 4 previously unknown community
smells recurring at least twice in two different projects, and
reported by two different developers. For example, we dis-
covered in 3 different projects that developers repeatedly
manifested a previously unknown Dissensus community
smell, namely, inability to achieve consensus on how to
proceed despite repeated attempts at it—as a consequence,
the code smell was kept as-is. For instance, a developer
reported that:

“Yes, we know this problem. But every time we talk about
it, we are not able to find a common solution.”

Note that this smell is not completely unknown in orga-
nizational literature: indeed Bergman et al. [53] indicate that
social conflict is associated with reduced productivity and
inability to reach consensus.

Our results also indicate that in all projects targeted by
our survey, practitioners often did not refactor code smells
since refactoring would cause a previously unknown Class
Cognition community smell, namely, that refactoring would
cause the modular structure and refactored classes to be
more difficult to understand and contribute to [54], e.g., for
newcomers. This is the case of a developer who analyzed a
Feature Envy instance reporting:

“Generally I try not to perform re-organization of the
code that implies the modification of the location of code
components. This because (i) other developers could waste
time and effort in understanding the new environment of
the method, and (ii) I cannot simply identify a suitable
new location for the code.”

Thus, she indicated that the re-location of the method
could have caused comprehensibility issues to other devel-
opers. The two smells discussed above were intuitively, but
precisely described by 6 and 3 distinct developers. In addi-
tion, we revealed the existence of the Code-red community
smell, that denotes the existence of extremely complex clas-
ses that can be managed by 1-2 people at most. As an exam-
ple, one of the participants who analyzed a Blob instance
explicitly reported that:

“Totally un-understandable code is difficult to touch. I
modified this class only for fixing a potential bug, but
generally only 1 or 2 devs can substantially modify it.”

Finally, we found the Dispersion community smell, which
concerns a fix or refactoring that caused a previously exist-
ing group of modularised collaboration to fragment and
work haphazardly because of functionality rearrangements.
In contrast to the Class Cognition community smell, this
smell has nothing to do with code understandability [55] to
newcomers, but rather it refers to making normal mainte-
nance activities in the community more difficult to carry out
and coordinate. To better explain the nature of this smell, let
us consider the following quote from one of our surveyed
developers:

“If the algorithm implemented in the method would be
split, then the developers working on that code would
become crazy since they are able to work pretty well on
the existing code.”

In this case, the developer was analyzing a Long Method
instance but they did not proceed with an Extract Method
refactoring in order to avoid the risk of other team members
losing their knowledge on the algorithm implemented in
the method, threatening its future reliability.

In conclusion, we can observe how all the newly emerg-
ing smells are socio-technical, i.e., blend together social and
technical aspects, which confirms the need for further quan-
titative analysis and exploration of the mutual relation
between code and community smells. It is worth mention-
ing that developers were not made aware of the notion of
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community smells and spontaneously, intuitively expressed
the repeated community characteristics causing or relating
to code smells—this intuition, feeling of unease, is by defini-
tion the indication of a community smell [4].

3.4.3 Additional Aspects Influencing Refactoring
Decisions

While most of the developers directly pointed out commu-
nity smells as one of the main reasons leading them to avoid
refactoring of code smells, some participants also indicated
the existence of additional aspects that impact on their
refactoring decisions. Specifically, our data indicates that
one of the most common reasons to avoid refactoring is the
fear of (i) wasting time or (ii) the technical consequences of
this action. Specifically, 7 developers pointed out the risks
to introduce new defects while performing refactoring, thus
confirming the findings by Kim et al. [56], who reported
that developers do not think of refactoring as a behavior-
preserving activity and, as a consequence, it may introduce
new defects in the codebase. At the same time, 6 developers
identified the lack of trust in the refactoring tools as the
main cause to not remove code smells—this is, again, in line
with previous findings in the field [56], [57]. Interestingly,
one developer reported that a co-occurring aspect to con-
sider when removing a code smell is whether the class also
contains a clone: in this case, the refactoring would be much
more costly as other code clones should be checked for the
presence of the smell and eventually refactored.

Still in the context of technical factors, ~ 10 percent of the
respondents elaborated on the perceived technical media-
tors for unresolved code smells, pointing to well-known
architectural reflection phenomena, such as architecture ero-
sion or architecture drift [58]. They also pointed out that a
high number of dependencies toward other classes can be
an important reason to avoid a refactoring action.

Furthermore, developers are often scared of one key con-
tingency, that is, modifying classes which are subject of both
code and community smells—refactoring these classes is
avoided or limited to conservative-fix only. Finally, our data
also indicates that developers devised a new maintenance
device to address classes which carry a strong indication of
code and community smells, besides re-organisation and
re-modularisation. On the one hand, community smells
exist at the boundary of people and code, i.e., they are pat-
terns which include both a people and a code component.
On the other hand, developers reportedly used organiza-
tional commenting within code, that is, including mainte-
nance and evolution instructions in source code comments
such that, for example, newcomers can contribute knowing
what to touch and what not to modify at all.

In conclusion, our main results from the analysis of the
additional factors influencing the persistence of code smells
show that (i) fault-proneness, (ii) lack of tools, (iii) co-occur-
rence of code clones, and (iv) coupling of a class are the
main technical factors explaining the willingness of devel-
opers to perform refactoring.

3.5 Summary of Findings
In summary, the main output of our qualitative analysis
revealed that the decision on whether to refactor a code

smells is dependent on a number of different factors. It is
indeed not only dependent on community or technical fac-
tors, but rather their combination better fits the developers’
willingness or ability to maintain code smells. This seems to
indicate that community-aware code smell prioritisation
approaches could better pinpoint to developers which code
smells can be more easily removed, thus providing a more
practical solution to deal with them.

The results also provide a clear indication that com-
munity and code smells are influenced by each other.
We adopted the Timeliness::Social-Then-Technical code to
responses of developers saying that they did not address a
code smell because it would cause a community smell—the
community smell is then the effect of the code smell. Con-
versely, the opposite is true for the Timeliness::Technical-
Then-Social code. Through content analysis we observed
that, for over 70 percent of the reported code smells, the
decision not to refactor was due to a potential community
smell, i.e., Timeliness::Social-Then-Technical. This evidence
seems to indicate a dimension of intentionality for code
smells themselves—oftentimes it is more convenient to
keep code smells rather than addressing community smells.
This result is particularly important, as it suggests the need
for practical solutions aiming at anticipating situations that
might become critical for persistence in the next future.

Summary for RQ1. Our evidence shows that community
smells, together with other technical factors, influence
the maintenance decisions for code smells. At the same
time, we observed that in several cases it is more conve-
nient to keep code smells rather than addressing com-
munity smells. These findings suggest the need for (1)
community-aware approaches for assessing the refactor-
ability of code smells and (2) automated ways to antici-
pate critical situations that may lead developers to not
refactor a code smell at all.

4 COMMUNITY VERSUS CODE SMELLS

In parallel to addressing RQ1, our goal was to study the rela-
tionship between community and code smells quantitatively,
with the purpose of understanding to what extent commu-
nity smells can be exploited to diagnose the persistence of
code smells. Therefore, this side of the study addresses the
following research questions:

o RQ2: To what extent can community smells explain the
increasing of code smell intensity?

e RQ3: Does a community-aware code smell intensity pre-
diction model outperform models that do not consider this
information?

In RQ2, we perform a fine-grained measurement of the
extent to which code smell intensity can be explained by
the presence of community smells, while in RQ3 we study
the feasibility of an automated solution that supports devel-
opers when diagnosing future code smell intensity by
explicitly taking into account the status of the software
community. With fine-grained, we indicate the feature of
our study of mapping code and community smells at the
level of software artifacts and the actual people working
on them; more specifically, every community smell was
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reported as relevant for our study (and the preparation of
the statistical model) if and only if it reflected on code-
smelly software code artifacts. This is the finest-grained
approach possible since it looks at the community structure
and technical structure around software at its most fine-
grained level. A more coarse-grained approach could have
considered the organizational structure as a whole, e.g., by
correlating its organizational characteristics/smells and its
technical outputs.

The choice of devising a community-aware code smell
intensity prediction model aimed at predicting the future
intensity of a code smell instance comes from some
observations:

e As shown in the context of RQ1, developers tend to
prefer keeping a code smell in the source code rather
than dealing with a community smell. Thus, one
might think that a code smell that co-occurs with a
community smell may not be taken into account by a
developer. While this may be true, the role of predic-
tion models is that of anticipating situations where
the co-occurrence might lead to more serious main-
tainability issues. For example, suppose in a certain
release R;, a code smell has a low intensity and that a
prediction model predicts the intensity of this smell
to increase in the subsequent release R;;; because
the features of the model related to community
smells. In this case, a project manager may immedi-
ately take action, trying to fix the community-related
issues with the aim of preventing the smell to
increase in its intensity.

e As shown by recent papers [59], [60], the perception
of code smells heavily depends on their intensity.
We argue that approaches able to precisely indicate
the future severity of code smell instances might
allow developers to (i) understand the possible criti-
cism of the software being developed that may arise
in the short-term future and (ii) deal with or simply
monitor evolution of the code smells [19].

e In the past, we have shown that the intensity of code
smells has a strong impact on fault-proneness [8]
and can be actually used to identify parts of source
code that are likely to be defective [61]: thus, inten-
sity prediction models can help developers assess
when a certain refactoring or other program transfor-
mations must be applied to not incur possible addi-
tional maintainability and/or reliability problems.

e Intensity can be used as a means for selecting the
code smell instances that need to be more urgently
fixed. As not all the smells are or can be removed, an
approach able to rank them based on their severity
might be worthwhile to allow developers selecting
the instances on which to focus more, or even those
that are more relevant to manage because of the co-
occurrence of a community smell.

For all the reasons reported above, we believe that the
definition of a community-aware code smell intensity pre-
diction model can be one of the most practical approaches
that developers and project managers can use to diagnose
the future persistence of code smells and eventually take
decisions on which instances should be refactored.

4.1 Context of the Study

The software systems and the code smells involved in the
context of this second study are the ones used for answering
RQ1. In addition, in this study we considered 4 of the com-
munity smells defined by Tamburri et al. [4], namely:

(1)  Organizational Silo Effect: siloed areas of the devel-
oper community that essentially do not communi-
cate, except through one or two of their respective
members;

(2)  Black-cloud Effect: information overload due to
lack of structured communication or cooperation
governance;

(3)  Lone-wolf Effect: unsanctioned or defiant contributors
who carry out their work irrespective or regardless
of their peers, their decisions and communication;

(4)  Bottleneck or “Radio-silence” Effect: an instance of
the “unique boundary spanner” [62] problem from
social-networks analysis: one member interposes
herself into every formal interaction across two or
more sub-communities with little or no flexibility to
introduce other parallel channels;

The choice of these community smells come from the
results of previous literature which theorises the co-occur-
rence with or the causality between code smells/problems
and all four effects we seek for [2], [4], [63].

Conversely, the community smells we identified in the
parallel qualitative study (see rows 3-6 of Table 2), were not
known yet during the setup of the quantitative study and
are not considered; what is more, they are an original contri-
bution of this study and are currently under operationalisa-
tion. Similarly, we could not consider the prima-donna
smell because of the lack of approaches and/or tools actu-
ally able to identify its presence.

4.2 Detecting Community Smells
In order to detect community smells, we exploit the CopeFa-
CE4SMELLS tool, a fork of CopeFack [64] designed to identify
developers’ communities. Starting from the developer net-
works built by CopeFAcE, we detect instances of the consid-
ered smells according to the following formalizations.
Organizational Silo. Let G,,, = (V,,, E,,) be the communi-
cation graph of a project and G, = (V,, E,) its collaboration
graph. The set of Organizational Silo pairs S is defined as the
set of developers that do not directly or indirectly communi-
cate with each other, more formally:

{(’01,”02)'1)1,’02 S ‘/(',7 (17171)2) g E’:L}’

where £ is the transitive closure of E,,. With transitive clo-
sure we indicate the transitive closure of a graph. More spe-
cifically, given a directed graph, the operation finds out if a
vertex j is reachable from another vertex i for all vertex pairs
@i, j) in the given graph. With reachable we mean that there is
a path from vertex i to j. The reach-ability matrix is called
transitive closure of a graph.

Similarly, the set of lone wolf pairs L is defined as the set
of collaborators that do not directly or indirectly communi-
cate with each other, more formally:

{(vi,v2)|v1,v2 € Ve, (v1,v2) € E, (v1,v2) € E} b
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It follows that, by definition, L C S, meaning that lone-
wolves are a subset, or a specific instance of organisational
silo effect.

Black-Cloud and Lone Wolf. Detection of the Black cloud and
Lone wolf smells starts with the detection of vertex clusters
as already implemented in CobpeFAcE. More specifically, let
P ={p1,...,pr} be a mutually exclusive and completely
exhaustive partition of V;,, induced by the clustering algo-
rithm. From the partition, black cloud is the set of pairs of
developers C that connect otherwise isolated sub-communi-
ties, more formally:

{('017'02)‘“1»'02 € Vin, (UI:UZ) € ETYL7Vi7j(((7-)1 eEpiNvy €
pj) = i # J) AV, v,((ve € pi Avy, € pj A (vs,0) €
Em) = Uy = U1 N Uy = 1}2))}.

Bottleneck. Finally, the bottleneck set B is the set of devel-
opers interposing themselves into every interaction across
two or more sub communities. More formally:

{vjv € V,,,,Fi(v € p; AV (vy € pi = v=0,))} U{v|ve
vav va,i,j(v € Di A Uy € pJ A (U7 Ul‘) S Em A VUy, Uz((vy S
i AUz € pj A (vy,0:) € Ep) = vy =)}

Meaning that developers can interpose themselves into
interactions if either they are the only member of their clus-
ter (left-hand side of the expression above) or they commu-
nicate with a member of the different cluster, and they are
the only member of their cluster communicating with this
different cluster (right-hand side of the expression above);
both these instances are united to form the set of Bottleneck
effects existing in a developer social network.

It is important to point out that the detection techniques
described were also evaluated in order to assess their actual
ability to identify community smells. Specifically, we ran
CopeFAce4SMELLS on 60 open-source projects and, through a
survey study, we asked the original developers of such sys-
tems whether the results given by the tool actually reflect the
presence of issues within the community. As a result, we dis-
covered that the recommendations of the tool highlight real
community-related problems. Furthermore, it should be
noted that the effectiveness of the operationalisations above
rely on the proven effectiveness of the approach by Joblin
et al. [64], building upon the “Order Statistics Local Optimi-
zation Method” (OSLOM) [65] featured inside CopDEFACE,
which was never previously applied before on developer net-
works. Further details of the operationalisation and evalua-
tion are discussed in the accompanying technical report [66].

It should be also noted that the projects considered for the
scope and context of this study were a selected subset of the
60 projects with which we evaluated the CopeFACE4SMELLS
tool; therefore, the smells we detected constitute actual and
validated occurrences. For the sake of completeness, we pro-
vide the full technical report of how the tool was evaluated.?

4.3 RQ2. Factors That Intensify Code Smells

To answer RQ2 and properly assess the role of community
smells in the variation of intensity of code smells, we

2. https:/ /tinyurl.com/CodeFace4Smells

defined a model relating a set of independent variables
(formed by both community smells and other control fac-
tors) to a dependent variable (that is, the intensity of code
smells). The following sections describe them further.

4.3.1 Dependent Variable

The variable of interest is code smell intensity. In the first
place, to compute the code intensity value, we consider
how much the value of a chosen metric exceeds a given
threshold [67]. The conjecture is that the higher the dis-
tance between the actual code metric value and the corre-
sponding fixed threshold value, the higher the intensity
of the code smell. In our case, the code smell detector
classifies a code entity (i.e., a method, a class, or a package)
as smelly analysing whether code metrics used by the
detector exceed the predefined threshold defined in the
corresponding rule card [29]. In the second place, the
actual measurement was done as suggested by previous
work [20], [68]: (i) we computed the differences between
actual metric values and reported thresholds; (i) we
normalised the obtained difference scores in [0;1], and
(iii) we measured the final intensity as the mean of those
normalised scores. Note that we are aware that the mean
operator might be biased by the presence of outliers
[69]: however, experimental tests—further described in
Section 6—showed that our results would not change if
the aggregation would have been done using the median.
Subsequently, we converted the floating-point double
value in a nominal value in the set {NULL,LOW,
MEDIUM, HIGH}: if a class is non-smelly (i.e., the detec-
tor does not detect any code smell instance), its intensity is
NULL, while if the class is smelly (intensity > 0), then the
code smell intensity is categorised as LOW, MEDIUM, or
HIGH. To assign the intensity to one of these classes, we
analysed the distribution of the intensity values for a given
project. Thus, if a code smell intensity is lower than the
first quartile of the distribution it has been assigned to
LOW; if it is between the first and third quartile, it has
been assigned to MEDIUM; if it is higher than the third
quartile, its corresponding class is HIGH. Our choice of
using quartiles to discriminate the levels of smelliness of
code components is given by the fact that quartiles repre-
sent classical methods for measuring the skewness of data
as is in our case; we simply chose to map each quartile to
an individual class (low, etc.) thus making our research
design void of any misinterpretation from a statistical per-
spective. Note that since our study focuses on five differ-
ent code smells (see Section 3.1), we computed and
analysed the intensity for each smell independently.

4.3.2 Independent Variables

We aim at understanding the impact of community smells
on the intensity of code smells. Thus, based on the output of
CopeFACE4SMELLS, we analysed whether a certain class C;
has been modified by developers involved in a community
smell in a time between the releases R;_; and R;. Thus, we
computed four boolean values representing the involve-
ment of such class in any of the four community smells con-
sidered. These metrics represent the principal factors that
we wanted to analyse.
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4.3.3 Non-Community-Related Control Variables

While the results of our parallel study highlighted that com-
munity smells might affect the way developers treat code
smells, it is important to remark that other factors related to
the structure of source code (e.g., number of lines of code)
as well as the development process (e.g., number of com-
mits performed on a class) might be the primary source of
information to understand code smell intensity. For this rea-
son, we defined a list of technical factors having the role to
control confounding effects when evaluating the role of com-
munity smells. Specifically, for each class we computed the
following metrics:

Lines of Code. LOC of a class is widely recognised as a
potential confounding factor of phenomena occurring on a
certain code entity [70], [71]. Thus, we compute the LOC of
each class C; in a release R;.

Coupling between Object Classes. The number of external
dependencies of a class might represent an important factor
that influences the persistence of code smells [29]: it is worth
noting that the practitioners” answers to the survey (see Sec-
tion 3.4) confirm the relevance of coupling. In our context,
we compute the CBO metric [72] of a class C; in a release R;.

Total Commits. A potential confounding factor might be
the number of commits performed on a class C;: here, the
conjecture is that the higher the number of times the class
changes the higher its proneness to deteriorate over time
[48]. Hence, we compute the number of commits modifying
C; up to the release R;.

Class Change Process. The way a class C; changes between
releases R;_; and R; might impact its size and complexity
[73], [74], thus possibly increasing the intensity of code
smells. For this reason, we measured (i) number of lines of
code added or modified in the class between R;_; and R; (a.
k.a., code churn) and (ii) number of commits performed on
the class between R;_; and R;.

Developer-Related Factors. Besides structural and process
metrics, also who touches a class C; might influence the
intensity of code smells [75], [76]. For this reason, we com-
puted the number of developers who committed changes to
C; between R;_; and R;. Next, we computed two metrics
measuring the experience of these developers. The first met-
ric is commit tenure [48]: it computes the general experience
within the same ecosystem as the number of months since
the developer’s first event on any APACHE (for APACHE PROJ-
Ects) or Ecripsk (for EcLipse PROJECTS) repositories; the second
one is project tenure [48] and measures the experience of a
developer on the project of interest as the number of months
since her first event on the project repository. Finally, met-
rics for developers that committed changes to C; between
R;_ and R; are aggregated by computing medians. As this
decision influences our research design, it constitutes a
threat to validity which encourages further replication of
this study, e.g., considering more structured metrics that
address the activity of the developer—for example, it might
be better to re-define the reputation/experience of the
developer as the “success rate” prior to committing the
report under consideration (see Hooimeijer et al. [77]).

Maintainability Measures. Previous work showed that
classes affected by problems in the past are more likely to
be problematic in the future [78], [79]. Hence, we measured

(i) code smell persistence, i.e.,, number of previous releases
(up to the release R;) in which the class C; has been affected
by a certain smell type and (ii) the value of the code smell
intensity in the previous release R;_;.

Moreover, we also considered the presence of code
clones and fault-proneness. As for the former, we employed
the DEckarD tool [80], a technique able to identify Type-3
clones: based on the output of the tool, we marked the class
as affected or not by a clone. It is important to note that we
selected this tool since it is publicly available and has high
detection accuracy [80]. As for the fault-proneness, we have
been interested in measuring what will be the fault prone-
ness of C; in a subsequent release: to tackle this problem,
we adopted the hybrid bug prediction model devised by Di
Nucci et al. [75]. It is able to provide an indication about the
fault-proneness of classes based on a mixture of product,
process, and developer-based metrics. Also in this case, the
choice of using this model is instigated by its high accuracy
[75]. We also empirically assessed the performance of these
two approaches on a subset of projects in our dataset, show-
ing that the levels of accuracy reported by the original
authors still hold in our context: more details on this assess-
ment are reported in Section 6.

4.3.4 Community-Related Control Variables

Finally, we also considered as possible confounding factors
aspects related to the community structure, as represented
by the intersection of a communication network (CommNet;
stemming from mailinglist data) and a collaboration net-
work (CollNet; stemming from co-commit relationships
among developers). Specifically, we controlled for:

Truck-Factor. Originally formulated as “The number of
people on your team who have to be hit with a truck
before the project is in serious trouble”” and established
in software engineering literature as well [81], [82], [83].
We operationalise truck-factor based on core and periph-
eral community structures identified by CopeFAck, as the
degree of ability of the community to remain connected
without its core part. Further details on how core and
periphery members are determined can be found in the
work of Joblin et al. [64].

Socio-Technical Congruence. Paraphrased from previous
work [84] as “the state in which a software development
organisation harbors sufficient coordination capabilities to
meet the coordination demands of the technical products
under development” and operationalised in this study as
the number of development collaborations that do commu-
nicate over the total number of collaboration links present
in the collaboration network.

Core-Periphery Ratio. This ratio has been confirmed to reg-
ulate communities [64]. We operationalise it as the ratio
between the median centrality of periphery members and
the median centrality of the core members. In other words,
we considered the importance of core developers with
respect to periphery ones.

Turnover. This quantity reflects the amount of people
who migrate from the community across subsequent 3-
month time-windows of our analysis [85], [86], [87]:

3. http:/ /www.agileadvice.com/2005/05/15/agilemanagement/
truck-factor/
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Leaving
(Populus + Size) /2

TO(CommNet, CollNet) = * 100%,

where, CommNet and ColINet are conjuncted using a 1-
Elementary Symmetric Sum between adjacency matrices
[88], i.e., (V;, UV, E,, UE,) in the notation above. Variables
in the formula above are as follows: (1) Leaving is the
number of members who left the project in the analysed
window; (2) Populus is the total number of members who
populated the community in the previous analysis window;
(3) Size is the total number of members populating the
community in the currently analysed window. Similar for-
mulations of turnover exist [48], [89] but we chose the
formulation above since it matches the definition of turn-
over and, by the way in which CopeFace computes the
formula variables, our formulation accounts for both core
and periphery member turnover; this differentiation is pre-
viously absent in literature and the easiest to operationalise
with our available tooling, e.g., CODEFACE determines Popu-
lus for both core and periphery communities, combining
both into one after a normalisation based on amount of
contribution.

Smelly-Quitters. This ratio reflects the amount of people P
who were part of a community smell C'x for two subsequent
time windows T, and T, but then left the community for the
remaining time windows (T»,, where y > 0) in the avail-
able range of data for the total set of community smells
found, i.e., C. More formally:

p_2PC)

-
The quantity in question is tailored from the social-net-
works analysis metrics also used for Social Network Disor-
der measurement [90], [91].

4.3.5 Data Analysis

To answer our research question, we build a classification
model and evaluate the extent to which community smells
are relevant by quantifying information gain [92] provided
by each independent variable in explaining the dependent
variable. We opted for this technique because it is able to
quantify the actual gain provided by a certain feature to the
performance of the model. The same would not be possible
with other techniques like, for instance, the Wrapper tech-
nique [93]—which is among the most popular ways to
assess feature selection [75], [94], [95].

We exploited the Gain Ratio Feature Evaluation algorithm
[92] integrated in the WEka framework [96], that ranks the
independent variables in descending order based on the
information gain provided. To statistically verify the ranks
provided by the algorithm, we adopted the Scott-Knott test
[97]. This test is widely used as a multiple comparison
method in the context of analysis of variance [98] because it
is able to overcome a common limitation of alternative mul-
tiple-comparisons statistical tests (e.g., the Friedman test
[99]), namely the fact that such tests enable the possibility
for one or more treatments to be classified in more than one
group, thus making it hard for the experimenter to really
distinguish the real groups to which the means should
belong [100]. In particular, the test makes use of a clustering

algorithm where, starting from the whole group of observed
mean effects, it divides, and keeps dividing the sub-groups
in such a way that the intersection of any two groups
formed in that manner is empty. In other words, it is able to
cluster the different ranks obtained into statistically distinct
groups, making more sound and easier the interpretation of
results. For these reasons, this test is highly recommended
and particularly suitable in our context. It is worth noting
that the selection of this test was driven by our specific need
to perform statistical comparisons over multiple datasets. In
this regard, the use of more popular statistical techniques
like, for instance, Wilcoxon [101] or Cliff’s Delta [102] is not
recommended because they might lead to inappropriate
interpretation of the results or even wrong application of
statistical tests [103].

4.4 RQ3. Evaluating a Community-Aware Code
Smell Intensity Prediction Model

As a final step of our study, we evaluated to what extent
software developers can benefit from the usage of commu-
nity smell-related information when evaluating the future
intensity of code smells, in order to improve the scheduling
of refactoring operations. To this aim, we took advantage of
the results of RQ2 to build a code smell intensity prediction
model for each code smell considered in the study. Specifi-
cally, starting from the output of the Gain Ratio Feature Eval-
uation algorithm [92], to avoid model over-fitting [104] we
first considered as relevant only the metrics providing infor-
mation gain higher than 0.10 as suggested by previous work
[92]. Then, we built three prediction models: (i) based on
technical metrics, (ii) based on technical metrics and com-
munity smells, and (iii) based on technical metrics, commu-
nity smells and the other community-related metrics
presented in Section 4.3.4. We selected these models since
we could (i) quantify how much the addition of only com-
munity smell information into a model considering techni-
cal metrics improves its performance and (ii) test whether
the addition of further metrics characterising the software
community is actually needed or the information provided
by community smells is already enough to capture relevant
community-related aspects.

As for the classifier, the related literature [105], [106] rec-
ommended the use of the Multinomial Regression technique
[107], as it is among the most reliable ones. However, other
machine learning algorithms might still perform better in
the context of code smell intensity prediction. Thus, to select
the most appropriate classifier we experimented with seven
different classifiers that have different characteristics and
make different assumptions on the underlying data, ie.,
ADTree, Decision Table Majority, Logistic Regression, Multilayer
Perceptron, Multinomial Regression, Support Vector Machine,
and Naive Bayes. We selected these approaches because they
were previously used in the context of code smell prediction
[108]. Specifically, we compared their performance using the
same validation strategy and evaluation metrics reported
later in this section. As a result, we could actually confirm
the superiority of Multinomial Regression, which achieved an
AUC-ROC 8 percent higher with respect to Support Vector
Machine, namely the classifier which performed the best after
Multinomial Regression. A complete report of this comparison
is available in our online appendix [23].
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We measured the performance of the prediction models
by applying an inter-release validation procedure, ie., we
train the prediction models using the data of release R;_;
and test it on the data of release R;. In this way, we simulate
a real-case scenario where a prediction model is updated as
soon as new information is available. To quantify the perfor-
mance, we use the F-Measure [109], and the Area Under the
Receiver Operation Characteristic curve (AUC-ROCQ), i.e.,
the overall ability of the model to discriminate between true
and false positive instances. We also report the Matthews
Correlation Coefficient (MCC) [110] and the Brier score
[111]. MCC represents the degree of correlation between
the independent variables adopted by the model and the
dependent variable: the closer MCC is to 1 the higher
the accuracy of the model. The Brier score measures the
distance between the probabilities predicted by a model
and the actual outcome. Higher performance is obtained
when the score is close to 0. All scores are produced as per-
centages in Table 4. To quantify whether and how much the
performance of the community-aware models improves
with respect to prediction models that do not consider com-
munity-related factors as predictors, we built baseline code
smell intensity prediction models that use as predictors
only the relevant variables that do not measure community
aspects. We also statistically verified the performance of the
models built by applying the Scott-Knott [97] test on the
AUC-ROC achieved by the experimental models.

Meaningfulness of the Results. While the analysis of the per-
formance of the machine learning models provided us with
insights on the extent to which they are properly able to clas-
sify the future intensity of code smells, we also verified
whether the results provided by the models are actually
meaningful in practice. To this aim, we conducted a further
qualitative analysis in which we involved ten industrial proj-
ect managers with an experience ranging between 5 and 18
years. With the aim of increasing the generalisability of our
findings we checked that none of the participants of the first
survey have participated in the second survey. We involved
project managers because they are expected to have a stron-
ger knowledge of the entire development teams they manage
and the artifacts they produce, as opposed to developers that
might have a deep knowledge only of their development
team. We invited them by e-mail and we asked them to fill-in
a brief survey composed of 4 questions, one for each commu-
nity smell considered. In particular, we adopted a vignette-
based approach [112], where participants were asked to rea-
son about possible scenarios occurring in a real context rather
than answering direct questions about the relationships
between community and code smells: the rationale behind
the use of such an approach is that participants might not be
aware of the formal definitions of community and code
smells, thus a reasoning based on scenarios might facilitate
the survey comprehension. Note that this approach has
already been successfully applied in the context of software
engineering [113]. In our case, each question started with a
scenario presenting the situations in which a community is
affected by one of the community smells analysed. All the
scenarios are reported in our online appendix [23]. For sake
of understandability of the methodology, we report herein
the case of Organizational Silo. In particular, we presented
the following scenario:

“Suppose your development team is working on the defi-
nition of a web-based application for the scheduling of
resources. During the development, you recognize the
existence of independent sub-teams that do not communi-
cate with each other except through one or two of their
respective members” .

The participants were first invited to answer a prelimi-
nary question:

“Do you think this situation can lead to the introduction
of code smells, i.e., poor implementation choices, in the
source code?”

If the answer was “yes”, we proposed them a set of sce-
narios describing the typical symptoms of the code smells
considered in this paper. For instance, we presented the fol-
lowing scenario in case of the Blob code smell:

“A poorly cohesive large class that centralises the behav-
ior of the system, and that is usually characterised by a
large number of unrelated attributes and methods and by
dependencies with classes acting as data holders” .

Then, we asked them to indicate the likelihood that each
scenario might arise in combination with the community
issue. In other words, they were required to answer to the
following question:

“Do you think this situation can appear in combination
with the organizational scenario previously proposed?”

The participants were allowed to answer using a five-
point Likert scale [114] ranging between “Very unlikely” to
“Very likely”, and rated a total of ten scenarios: in particular,
besides the scenarios related to the five code smells consid-
ered in this study, we also provided a set of scenarios
describing five code smells from the catalog by Fowler [7]
that we did not take into account, i.e., Long Parameter List,
Data Clumps, Primitive Obsession, Refused Bequest, and Parallel
Inheritance Hierarchies. This was done with the aim of limit-
ing confirmation biases. It is important to note that the addi-
tional smells proposed do not share any characteristics with
those studied in this paper, thus being suitable as a baseline.
We expected the participants to indicate that the code smells
we studied (e.g., Long Method) are more likely to emerge in
the presence of the related community smell, than the base-
line code smell (e.g., Data Clumps) in the presence of the
same community smell.

Finally, the project managers had the opportunity to
leave a comment on each scenario evaluated. Once we had
collected the participants’ feedback, we verified that the
results of the prediction models were in line with the opin-
ions of project managers, thus assessing the extent to which
the devised prediction model outputs meaningful recom-
mendations. Specifically, we computed the number of times
the managers highlighted relations similar to those pro-
duced by the code smell intensity prediction model, i.e.,
whether both the model and managers related the presence
of a certain community smell to the emergence of a certain
code smell. The counting process was manually conducted
by the first two authors of this paper in a joint meeting
where they inspected each survey and verified the concor-
dance between a manager’s answer and the relations dis-
covered by the machine learning model.
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TABLE 3
RQ2—Results after Information Gain Analysis
Long Method Feature Envy Blob Spaghetti Code Misplaced Class

Metric Gain  Scott-Knott | Metric Gain  Scott-Knott | Metric Gain  Scott-Knott | Metric Gain  Scott-Knott | Metric Gain  Scott-Knott
LOC 0.83 92 CBO 0.87 85 Period Commits 0.74 91 LOC 0.77 85 Organizational Silo  0.85 91
Churn 0.68 81 Previous Intensity  0.79 82 ‘ Previous Intensity  0.72 81 Churn 0.73 80 ‘ ST-Congruence 0.76 90
Previous Intensity  0.68 84 Churn 0.76 78 ST-Congruence 0.72 79 Previous Intensity ~ 0.71 77 Previous Intensity  0.61 77
Period-Commits 0.67 82 Lone Wolf 0.59 76 | cBO 0.69 72 Period Commits 0.65 71 | Black-Cloud 0.55 75
CS-Persistence 0.55 78 ST-Congruence 0.56 71 Churn 0.65 75 Lone Wolf 0.56 66 CBO 0.45 61
Black-Cloud 0.55 70 LOC 0.55 70 | Project Tenure 0.65 65 CS-Persistence 0.45 63 | Committers 0.35 59
Clones 0.46 67 Clones 0.53 64 LoC 0.57 59 Ratio Core-Periphery 0.38 60 Period Commits 0.33 55
Organizational Silo  0.27 63 Project Tenure 0.39 53 ‘ Organizational Silo 0.45 57 Organizational Silo  0.24 56 ‘ Ratio Core-Periphery 0.32 51
ST-Congruence 0.18 59 Truck Factor 0.23 41 Truck Factor 0.38 51 Project Tenure 0.23 45 Truck Factor 0.24 45
Turnover 0.17 43 Period Commits 0.15 16 ‘ Bottleneck 0.34 50 Smelly Quitters 0.22 4 ‘ Smelly Quitters 0.17 42
Commit Tenure 0.15 B5] Smelly Quitters 0.12 13 Clones 0.27 44 CBO 0.13 41 CS-Persistence 0.14 B5
Ratio Core-Periphery 0.12 27 Committers 0.12 11 | Committers 0.24 41 Total Commits 0.12 34 | Churn 0.12 31
CBO 0.12 23 3ottleneck 0.09 8 Turnover 0.23 33 Bottleneck 0.12 31 Project Tenure 0.12 24
Fault-proneness 0.12 14 O 1l Silo 0.08 7 | Smelly Quitters 0.16 27 Committers 0.09 5 Bottleneck 0.09 11
Lone Wolf 0.09 8 Fault-proneness 0.05 = Fault-proneness 0.14 19 Truck Factor 0.08 4 Total Commits 0.08 8
Total Commits 0.08 8 Turnover 0.05 4 | Ratio Core-Periphery 0.09 9 Commit Tenure 0.08 4 | Clones 0.08 8
Bott k 0.07 6 Ratio Core-Periphery 0.04 2 ck oud 0.04 > Fault-proneness 0.07 E] Lone Wolf 0.07 )
Committers 0.07 4 Total Commits 0.03 2 | 0.03 3 Clones 0.06 2 | Turnover 0.07 3
Truck Factor 0.05 2 CS-Persistence 0.03 2 CS-Persistence 0.03 2 Turnover 0.05 1 LOC 0.02 1
Smelly Quitters 0.04 2 ick Cloud 0.02 1 | Total Commits 0.01 1 Black C 0.04 1 | Commit Tenure 0.02 0
Project Tenure 0.02 1 Commit Tenure 0.01 0 Commit Tenure 0.01 1 ST-Congruence 0.03 1 Fault-proneness 0.01 0

Metrics contributing more than the threshold of 0.10 are highlighted in bold, while community smells are reported in italic.

4.5 Analysis of the Results

For sake of clarity and to avoid redundancies we discuss
the results for RQ2 (see Table 3) and RQ3 (see Tables 4
and 5) together. Table 3 reports for each code smell the
ordering of features according to the results of the infor-
mation gain algorithm, along with the likelihood that a
certain feature was ranked at the top by the Scott-Knott
test (a likelihood of 80 percent means that in 80 percent of
the datasets the gain provided by the feature was statisti-
cally higher than others). Looking at the results, we can
observe that for all the code smells but Misplaced Class
technical control factors such as LOC, CBO, Code Churn,
and number of commits between two releases are the
ones that more closely influence the code smell intensity.
These results were quite expected, since previous work
has shown there exist technical aspects of source code
(e.g., LOC) that “naturally” influence the evolution of
code smells [115], [116]. At the same time, also the previ-
ous intensity of a code smell plays an important role
when explaining the future intensity: likely, this is a
reflection of the fact that developers generally tend to not
refactor code smells and, when they do, the refactoring is
most of the times not effective [13], thus increasing the
intensity of smells over time.

Other technical factors have a relevant role only when
considering some code smell types: for example, the fault-
proneness seems to have a relationship only with Long
Method and Blob intensity, while it has marginal values in
all the other cases.

Turning the attention to the independent variables that we
wanted to assess, in the first place we observed that commu-
nity smells represent relevant features for all the considered
code smells, confirming the results achieved when surveying
developers. It is worth noting that the community-related
control factors (e.g., socio-technical congruence) are often not
able to explain the dependent variable better than community
smells, meaning that our independent variables are generally
more powerful “predictors” than such control factors. For
instance, the organizational Silo provides a higher entropy
reduction (0.27) than socio-technical congruence (0.18) when
considering the Long Method smell. In the second place, it is
important to note that different community smells are related
to different code smells, meaning that circumstances occur-
ring within a software community somehow influence the
persistence of code smells. In the case of Long Method,
such circumstances are related to non-structured or even
missing communications between developers, as highlighted
by the fact that community smells like Black Cloud and

TABLE 4
RQ3—Performance of Code Smell Intensity Prediction Models Built with and without Community-Related
Factors—AlIll Numbers Are Percentages

Model Long Method Feature Envy Blob Spaghetti Code Misplaced Class | Long Method Feature Envy Blob Spaghetti Code Misplaced Class
g g H g g H g H g g
3348283882938 829z38(82839¢4lg%3882¥38Y28388 29388 2%38Y:¢
L2 2 & £|d T 28 £ 4|2 2 & £ 4 T 2 F £ 4 T 2|E 2 L% 2 &2 4T 2 F 2|2 2 A £ E|T 2 E 2z L 2|2 E 2
Cassandra | Cayenne
Basic + Comm.-Smells + Comm.-Factors 71 68 73 28 66|69 68 78 36 64 72 74 81 31 77 71 76|75 38 63 74 73 8 28 61 70 69 73 28 74 69 66 73 26 71|73 73 8 30 75 6969 67 40 74 74 70 8 23 67
Basic + Comm.-Smells 70 68 72 29 63|66 66 77 37 59 70|71 78 33 68 70 70|73 38 60 72 71 79|30 58 70 68 73 31|72 67 70 71 27 69|73 73 82 30 75 66|67 64 40 71 71 68|79 25 65
Basic 68 66 71 29 45|62 62 75 40 51 64|64 68 39 50 67 62|67 39 61 63 63 59|40 52 69 67 71 37|62 62 69 68 39 61|64 65 73 35 63 63|63 62 40 66 61 60|58 34 58
Jackrabbit Jena
Basic + Comm.-Smells + Comm.-Factors 69 66 74 32 69 71 67 79 32 8 69 78 75 31 76 71 75|74 36 65 75 70 75|28 77 ‘ 71 72 72 30 71 69 68 78 37 81|71 75 79 36 77 71|76 68 34 78 78 77 76 21 75
Basic + Comm.-Smells 70 72 72 31 68|67 68 75 39 77 70|72 74 39 76 68 73|68 35 75 75 69 72|28 71 69 65 73 33|67 69 66 77 29 79|68 71 74 34 74 69|72 71 38 63 73 67|69 29 75
Basic 65 64 71 36 66|63 64 73 28 56 68|63 70 39 50 65 68|66 42 61 61 65 63|35 62 67 69 72 33|61 63 68 71 43 59|68 63 66 39 61 67|67 66 39 55 64 64|59 37 61
Lucene | Mahout
Basic + Comm.-Smells + Comm.-Factors 71 73 74 27 78|68 66 73 32 71 71 73 76 38 73 70 70|77 39 81 78 74 792 62 72 73 73 30 76 66 73 74 29 79|68 74 8 34 91 70|71 67 38 78 75 73 77 27 8
Basic + Comm.-Smells 71 71 73 30 76|66 66 74 35 67 70|68 75 34 71 69 71|76 39 80 75 71 73|28 61 71 69 71 32|73 63 71 74 33 77|65 72 79 36 8 69|70 67 38 74 74 72|77 28 8l
Basic 70 63 71 37 56 ‘ 59 66 75 36 66 63 ‘ 58 73 31 58 64 71|71 41 60 62 62 59[30 55 67 64 70 37 ‘ 62 60 63 68 42 58|61 61 72 44 61 65 ‘ 64 69 37 55 60 58 ‘ 60 33 59
Pig DT
Basic + Comm.-Smells + Comm.-Factors 71 72 73 30 6765 68 76 30 79 69 69 8 30 79 69 65|68 34 77 72 71 78[27 81 ! 72 70 71 33 75 69 70 72 31 79|72 70 77 29 76 71|63 67 41 8 77 72 78 25 70
Basic + Comm.-Smells 69 71 72 31 65|64 66 76 31 74 68|68 79 32 77 67 63|71 35 63 70 71 76|27 78 71 68 71 33|72 68 70 74 31 75|70 67 74 31 73 69|69 66 39 83 74 68|72 26 70
Basic 68 68 71 31 62|62 63 71 33 64 66|59 70 36 61 62 61|72 43 59 61 60 64|34 62 68 65 70 34|65 61 68 75 35 55|65 56 71 42 59 68|70 63 38 62 60 56|60 33 56
CFX Overall
Basic + Comm.-Smells + Comm.-Factors 73 73 73 31 79|67 76 73 29 77 73 68 80 30 83 71 62|71 41 8 76 73 7728 81 ! 71 70 73 30 73 65 69 75 31 75|71 73 79 33 81 71[70 70 38 76 76 73 78 26 72
Basic + Comm.-Smells 71 71 72 32 75|66 75 73 29 75 73|67 80 30 81 70 72|69 41 86 75 72 77|29 78 70 69 73 31|71 64 66 74 32 73|69 68 74 33 78 68|67 67 39 71 75 73|76 27 68
Basic 67 70 71 36 71|60 71 70 31 66 64|62 68 31 61 66 72|62 41 59 62 65 63|36 61 68 67 71 34|61 61 66 72 36 58|65 61 70 36 63 65|66 66 40 61 62 61|61 35 59

Grey rows indicate the most performing models based on AUC-ROC values.
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TABLE 5
RQ3—Each Cell Contains How Many Project Managers
Indicated the Relation between the Code and Community
Smell as Very Unlikely, Unlikely, Neither Unlikely
nor Likely, Likely, or Very Likely

Org. Black Lone  Bottleneck

Silo Cloud Wolf
Long Method 28 37 91--- 10,----
Feature Envy 91--- 10,--- =145 10,---
Blob 510 8,2,--- 10, =710
Spaghetti Code 91,--- 10,---- =~L18 91,---
Misplaced Class 7,27 10,4~ 91--- 91,---
Long Parameter List 10,---- 6,3,-1,- 10,---- 10,----
Data Clumps 10,---- 10---- 10---- 10----
Primitive Obsession 10,---- 10,---- 10,---- 10,----
Refused Bequest 10,---~- 10~ 91,--- 6211,
Parallel Inheritance Hierarchies 7,2,1,-- 10,---- 10,---- 10,--,--

Relationships between community and code smells expected according to the
prediction model are reported in bold; those with the grey background have
been confirmed by the survey.

organizational Silo are highly influential. For Feature Envy
and Spaghetti Code instances, we noticed that the Lone Wolf
community smell provides an important contribution in
explaining their intensity: this means that the presence of
developers working regardless of their co-committing devel-
opers has an impact of the evolution of both methods and
classes of a software system. The same happens with Blob,
where the organizational Silo and Bottleneck are highly rele-
vant, suggesting that missing communications or lack of
flexibility do not allow an effective management of Blob
instances. Finally, in the case of Misplaced Class we found
that the existence of siloed areas of a community is the most
important factor characterizing its intensity, thus indicating
once again that community issues might have a notable influ-
ence on technical aspects of the source code.

These observations are confirmed by the survey with
project managers, whose results are reported in Table 5.
In the first place, we notice that project managers consid-
ered as meaningful most of the relationships between
community and code smells that were ranked at the top
by the information gain analysis (see Table 3), while
they did not confirm three community-code smell pairs,
i.e., Spaghetti Code-Organizational Silo, Spaghetti Code-
Bottleneck and Misplaced Class-Black Cloud. This result
might be due to a lack of awareness of community or
code smells [59], however further analyses aimed at
investigating the presence/absence of such relationships
are needed. In terms of control, we see that the managers
are much more inclined to select the links between the
code smells we have focused upon rather than other code
smells. This strengthens our confidence that the relations
suggested by the prediction model correspond to percep-
tions of the practitioners. Indeed, they generally agreed
with the associations between community and code
smells extracted from the information gain analysis. It is
worth mentioning one of the comments left by a project
manager when evaluating the relationship between Blob
and Organizational Silo:

“The creation of extremely complex and poorly cohesive
classes in the presence of non-communicating sub-teams

is quite common because in such a scenario developers do
not share information with each other about the ideal
structure to implement, therefore creating classes that
perform a lot of different things”.

Summary for RQ2. We conclude that community smells
significantly influence the intensity of all the code smells
considered in this study, being even more important
than other community-related metrics (e.g., socio-techni-
cal congruence). Nevertheless, we observed that techni-
cal factors still give the major explanation of the
variation of code smell intensity.

As further evidence of the relationship between commu-
nity and code smells, when considering the performance
achieved by the investigated prediction models (see Table 4),
we observe that the “Basic + Comm.-Smells” model, i.e., the
one containing both technical factors and community smells,
achieves higher performance than the model built without
community-related factors when considering all the code
smells. For instance, the models including community
smell information have an overall AUC-ROC 2, 4, 3, 3, and
11 percent higher that the baseline models when considering
Long Method, Feature Envy, Blob, Spaghetti Code, and Mis-
placed Class, respectively. Thus, our results suggest that the
presence of community smells is a factor to take into account
when predicting the future persistence of code smells. It is
worth noting that the addition of other community-related
factors (rows labeled with “Basic + Comm.-Smells + Comm.-
Factors” in Table 4) provides a limited boosting of the perfor-
mance (on average, 2.4 percent in terms of AUC-ROC): this
result seems to confirm that community smells are more
important than other community-related factors when diag-
nosing the causes for the persistence of code smells.

The results are (i) consistent over all the individual
systems in our dataset and (ii) statistically significant, since
the Scott-Knott rank systematically reports “Basic + Comm.-
Smells + Comm.-Factors” before “Basic + Comm.-Smells”
and “Basic” (see column “SK-ESD” in Table 4). It is impor-
tant to note that even if sometimes the difference between
the “Basic + Comm.-Smells + Comm.-Factors” and “Basic +
Comm.-Smells” models is relatively small, we can still
observe that, despite the presence of community-related
factors, community smells still help improving the perfor-
mance of the model. This means that there is always a gain
in considering such smells. From a practical perspective, the
results tell us that explicitly considering community smells
enables a developer to better evaluate how the persistence
status of code smells will be in the future release, possibly
applying preventive actions aimed at improving the quality
of both code and community alike.

Summary for RQ3. We observe that the addition of commu-
nity smells as independent variable of a code smell inten-
sity prediction model enables an improvement of the
prediction capabilities. Furthermore, a model including
information related to both community smells and other
community-related factors improves the accuracy of the
prediction of the future intensity of code smells even more.
Thus, we conclude that organizational information should
be taken into account when analysing technical problems
possibly occurring in the source code.
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5 THEORETICAL CONVERGENCE

Recall that the aim of our study was understanding the role
of community smells as factors contributing to the persistence
of code smells. In the following we outline the convergence
of the theories generated by both qualitative and quantita-
tive inquiry over the scope of the research design previously
outlined. The convergence in question is outlined using the
theoretical lemmas that our data leads to and finally, the
theoretical convergence that both sides lead to.

From a qualitative perspective, our data shows that
open-source developers have a tendency to indeed develop
community smells which were previously only reported in
closed-source. Furthermore, those reported community
smells are repeated causes for keeping code smells such as
they are, out of fear of tampering with a delicate community
structure.

Lemma 1. Together with technical factors, community smells
influence the developers” decisions not to eliminate code smells.

Furthermore, from a quantitative perspective, statistical
modeling indicates that community smells are among fac-
tors intensifying the severity of code smells and contribut-
ing to prediction of code smell intensity. Community smells
are less important than technical factors but more important
than other community-related metrics.

Lemma 2. Together with technical factors, community smells
influence the intensity of code smells.

The theory that both sides of our study converge towards,
is strikingly simple but of considerable importance:

Theoretical Convergence. Community Smells Influence
Code Smells” Severity.

The impact that this convergence leads to is indeed con-
siderable since the above conclusion indicates at least that:
(a) community smells are a force to be reckoned with in
terms of software maintenance and evolution; (b) commu-
nity smells are a variable to consider when calculating and
managing technical debt. Further research is needed to
understand and scope the impact and implications of the
above conclusion.

6 THREATS TO VALIDITY

A number of threats might have affected our study. This
section discusses how we addressed them.

6.1 Threats to Construct Validity

Threats to construct validity concern the relationship
between theory and observation. In our study, they are
mainly due to the measurements we have performed. In the
first place, we classified code smell intensity in three levels
of severity plus one indicating the absence of smells follow-
ing the guidelines provided in previous work [20], [68]. Spe-
cifically, we computed the final severity as the mean of the
normalized scores representing the difference between the
actual value of a certain metric and its predefined threshold.
We are aware that our observations might be biased by the
fact that the mean operator can be affected by outliers. To

verify this aspect and understand the extent whether the
mean represented a meaningful indicator, we completely
re-ran our study computing the final intensity using the
median operator rather than the mean. As a result, we did
not observe differences with respect to the results reported
in Section 4. While a complete report of this additional anal-
ysis is available in our online appendix [23], we can con-
clude that in our case the use of the mean operator did not
influence our findings. At the same time, we are aware that
the intensity computation process is quite complex and for
this reason we are planning a sensitivity study to further
evaluate the way code smell intensity is set.

Furthermore, in RQ2 we relied on DeckarD [80] and the
hybrid bug prediction model built by Di Nucci et al. [75] to
compute code clones and fault-proneness, respectively. In
this regard, while those approaches have been extensively
empirically evaluated by the corresponding authors, it is
also important to note that they might still have output a
number of false positive information that might have biased
the measurements we have done in the context of our work.
To account for this aspect, we assessed the performance of
the two approaches targeting the systems in our dataset.
We could not perform a comprehensive evaluation because
of the lack of publicly available datasets reporting defects
and clones present in all the considered systems (the defini-
tion of such datasets would have required specialized
methodologies that go out of the scope of this paper). In par-
ticular, we performed the following steps:

e In the case of the DCBM defect prediction model, we
could test its performance on two of the systems
included in the study, i.e., LuceNE and PiG. Indeed,
the study conducted by Di Nucci et al. [75] comprises
these two systems and therefore a ground truth
reporting the actual defects contained in their
releases is available. Starting from the publicly avail-
able raw data, we ran the model and evaluated its F-
Measure and AUC-ROC. The results indicated that
on LUceNE the F-Measure was 83 percent, while the
AUC-ROC reached 79 percent; in the case of PiG,
instead, the F-Measure was 86 percent and the AUC-
ROC was 78 percent. Note that the percentages were
computed considering the median values obtained
by running the model over all the considered
releases. Of course, we cannot ensure that such per-
formance holds for all the systems considered, how-
ever our additional analysis makes us confident of
the fact that this approach can be effectively adopted
in our context. It is important to remark that our
results are in line with those reported by Di Nucci
et al. [75], but they are not the same. This is due to
the slightly different validation strategy: while they
trained and tested the model using a 3-months slid-
ing window, we needed to perform a release-by-
release strategy. This implied training and testing
the model on different time windows. We see some
additional value in this way to proceed: we could
not only confirm previous results, but as a side con-
tribution we provide evidence that the findings by
Di Nucci et al. [75] hold with a different validation
strategy.
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e With respect to DEckaRD, we assessed its preci-
sion* on the same set of systems considered for
the defect prediction model, i.e., LucENE and Pic.
Specifically, we ran the tool over each release and
manually evaluated whether its output could be
considered valid or not. To avoid any sort of bias,
we asked to an external industrial developer hav-
ing more than 10 years of experience in Java pro-
gramming to evaluate the precision of DECKARD
for us: the task required approximately 16 work
hours, as the tool output was composed of 587
candidate clones. As a result, 439 of the candi-
dates were correctly identified by DEckarp, lead-
ing to a precision of 75 percent. Also in this case,
we believe that the tool has a performance reason-
ably high to be used in our context.

Finally, to identify code smells we relied on DEcor. Our
choice was mainly driven by the fact that this tool can iden-
tify all the smells considered in our study. Furthermore, it
has a good performance, thus allowing us to effectively
detect code smell instances. As a further proof of that, we
empirically re-assessed its accuracy on two systems of our
dataset, finding that its precision and recall are around 79
and 86 percent, respectively.

6.2 Threats to Internal Validity

Threats to internal validity concern factors that might have
influenced our results. The first survey (RQ1) was designed
to investigate which are factors that influence the persis-
tence of code smells without explicitly asking developers’
opinions on social aspects of software communities: this
was a conscious design choice aimed at avoiding possi-
ble biases (e.g., developer might not have spontaneously
highlighted community-related factors) and allowing devel-
opers to express their opinions freely. Moreover, to avoid
errors or misclassification of the developers’ answers, the
Straussian Grounded Theory [49] process was first con-
ducted by two of the authors of this paper independently;
then, disagreements were solved in order to find a common
solution. Furthermore, we are making all the data freely
and openly available [23] to further encourage replication of
our work.

At the same time, the survey did not include a specific
question on whether a developer considered the proposed
smell as an actual implementation problem; thus, it is possi-
ble that the decision to not refactor some of the instances
was just driven by their lack of perception. However, we
tried to keep the survey as short and quick as possible in
order to stimulate developers to answer. For this reason, we
limited it to the essential questions needed to address our
research question. At the same time, it is important to note
that the developers were free to say that the piece of code
was not affected by any smell: while this did not avoid
potential confirmation biases, the fact that some developers
explicitly reported the absence of an actual implementation
problem in the analysed code (this happened 3 times) par-
tially indicate that the involved developers were not biased
when answering the survey.

4. We could not assess the recall because of the lack of an oracle.

Still in the context of RQ1, we only invited developers
who worked on single smelly classes rather than involving
those who worked on several smell instances because of our
willingness to survey participants having a deep knowledge
on both technical and social dynamics behind that classes.
As a consequence of this choice, we excluded 168 develop-
ers out of the total 640. However, it is worth recognizing
that (i) developers who worked with multiple smelly classes
might have had a better knowledge of the overall software
system design and (ii) code smells appearing in different
classes might have been linked to higher-level design or
community problems. Thus, replications of our study tar-
geting this potential threat are desirable.

Furthermore, to evaluate the effectiveness of the code
smell intensity prediction model, we used an inter-release
validation procedure while an n-fold (e.g., 10-fold) valida-
tion could be applied on each release independently and
then average/median operations could be used to interpret
the overall performance of the model on a certain project.
While this strategy could be theoretically implemented, the
results would not be comparable with those reported in our
paper. Indeed, on the one hand we would have a set of inde-
pendent classifications that are time-independent; on the
other hand, an evaluation done explicitly exploiting tempo-
ral relations, i.e., a time-dependent analysis. Thus, even if
we would have done this analysis, it would have not
increased at all the confidence of the results, but rather cre-
ated confusion. Given the nature of our analysis and the
need to perform a time-sensitive analysis, we believe that
our validation strategy is the best option in our case.

6.3 Threats to Conclusion Validity

Threats to conclusion validity concern the relation between
treatment and outcome. In RQ?2, to avoid a wrong interpre-
tation of the results due to the missing analysis of well-
known factors influencing code smell intensity, we exp-
loited a number of control factors that take into account
both social and technical aspects of software development.
Moreover, we adopted an appropriate statistical tests such
as the Scott-Knott one [97] to confirm our observations.
Furthermore, we have adopted the well known F-measure
which has been known to spark debates concerning its
appropriateness in specific contexts (e.g., see Powers
[117])—in this respect, it is worth noting that we computed
other threshold-independent evaluation metrics with the
aim of providing a wider overview of the considered pre-
diction models.

6.4 Threats to External Validity

As for the generalisability of the results, we have performed
a large-scale empirical analysis involving 117 releases of 9
projects. However, we are aware that we limited our analy-
sis to projects written in Java and only belonging to open-
source communities. Further replications of our study in
different settings are part of our future research agenda. In
RQ3 we performed a survey with ten project managers: we
are aware of the threats given by the limited number of sub-
jects, however we invited participants having a strong level
of experience and with a deep knowledge of the develop-
ment teams they manage and the artifacts they produced.
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Nonetheless, we plan to extend the study by surveying
more managers—although this does not warrant confirma-
tory or explanatory results, it would grant us more general-
isability, e.g., by sampling the population randomly and /or
embedding a Delphi study connotation (i.e., progressing
with surveying to achieve saturation in agreement).

7 RELATED WORK

In the past, the software evolution research community
mainly focused on technical aspects of software, by (i)
understanding the factors making technical products easier
to maintain [8], [17], [19], [118], [119], [120], [121], [122],
[123], [124] or (ii) devising techniques to support developers
during different evolutionary tasks [29], [41], [42], [125]. In
particular, Cunningham [126] introduced the technical debt
metaphor, which refers to programming practices that lead
to the introduction of bad implementation solutions that
decrease source code quality and will turn into additional
costs during software evolution. One noticeable symptom
of technical debt is the presence of code smells [7], i.e., bad
programming practices that lead to less maintainable source
code. Such circumstances have been studied extensively
over the years, even most recently [20], [127], [128], [129]—
these studies also include statistical modelling for code
smells prediction [130], [131]. What is still missing, is a sta-
tistical model which comprises both technical and organisa-
tional factors as well; in that respect, the contributions
reported in this paper are completely novel.

On the community perspective beyond the technical
aspects highlighted above, software communities have been
mainly studied from an evolutionary perspective [132],
[133], [134], while few investigations targeted the relation-
ships between community-related information and evo-
lution of technical products. Indeed, most of previous
literature focused on social debt, i.e., unforeseen project cost
connected to a suboptimal development community [3]. For
instance, Tamburri et al. [2] defined a set of community
smells, a set of socio-technical characteristics (e.g., high for-
mality) and patterns (e.g., recurrent condescending behav-
ior, or rage-quitting), which may lead to the emergence of
social debt. One of the typical community smells they found
is the Organizational Silo Effect, which arises when a soft-
ware community presents siloed areas that essentially do
not communicate, except through one or two of their respec-
tive members: as a consequence, the development activities
might be delayed due to lack of communication between
developers. Furthermore, Tamburri et al. [135] defined
YosHl, an automated approach to monitor the health status
of open-source communities and that might potentially be
used to control for the emergence of community smells.

Besides the studies on social debt, a number of empirical
analyses have been carried out on the so-called socio-techni-
cal congruence [136], i.e., the alignment between coordina-
tion requirements extracted from technical dependencies
among tasks and the actual coordination activities per-
formed by the developers. While studies in this category
had the intention to investigate the relationship between
social and technical sides of software communities (e.g.,
studying how the collaboration among developers influence
their productivity [137] or the number of build failures

[138]), they did not address the co-existence and compound-
ing effects between community and code smells, combining
community-related quality factors both from a qualitative
and quantitative perspective such as we do in this paper. In
this respect, our work is unique. As a final note, it is worth
highlighting that we preliminarily assessed how com-
munity smells influence code smells [139] by surveying
developers on such a relation. Our results indicated that
community-related factors were intuitively perceived by
most developers as causes of the persistence of code smells.
In this paper, we build upon this line by providing a large-
scale analysis of the relation between community and code
smells, and devising and evaluating a community-aware
code smell intensity prediction model.

8 CONCLUSION

The organisational and technical structures of software are
deeply interconnected [138]. We conjecture that the debts
existing in both structures, namely, social and technical
debt may be connected just as deeply. In this paper, we start
exploring this relation from the manifestations of both social
and technical debt, namely, code and community smells.
While previous work offered evidence that these two
phenomena occurring in software engineering may be corre-
lated [4], in this paper we reported a mixed-method empiri-
cal convergence evaluation aimed at providing evidence
of this relation.

On the one hand, in a practitioner survey we observed
that community-related issues (as indicated by the presence
of community smells) are actually perceived as indicators of
the persistence of code smells, thus indicating the existence
of other aspects that impact the maintainability of technical
implementation flaws.

On the other hand, in parallel, we experimented quanti-
tatively over the same dataset to observe a series of implicit
variables in the survey that lead to better predictions of
code smells, as part of a complex causal relationship linking
the social and technical debt phenomena. In response,
we designed a prediction model to predict code smell inten-
sity using community smells and several other known
community-related factors from the state of the art. We
found that the higher the granularity of the code smell, the
larger the gain provided by this new prediction model.
Such a model offers a valuable tool for predicting and man-
aging both social and technical debt jointly, during software
maintenance and refactoring.

In terms of industrial impact, the observations keyed in
this work offer valuable insights into understanding and
managing the joint interactions between social and techni-
cal debt at an industrial scale, for example, in terms of the
need to better understand the social counterpart to every
technical debt item or designing more precise strategies on
how to address both at the same time. In this respect, one
interesting future direction could be to replicate this study
in a proprietary software setting instead of open-source
environment, and highlight similarities and differences
with the theory empirically evaluated in the scope of this
manuscript.

Our future research agenda also includes a deeper analy-
sis of how different feature relevance mechanisms (e.g., the
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Gini index available with the Random Forest classifier [107])
impact the interpretation of the most important features of
the devised model as well as how the model works in a
cross-project setting [140]. Moreover, we aim at replicating
our study while targeting the new community smells that
emerged from our survey study, i.e., Dissensus, Class Cogni-
tion, Dispersion, and Code Red. To this aim, we will first need
to define novel detection techniques: while we cannot spec-
ulate too much on this point without having empirical data,
we hypothesize that some smells can be identified using
natural language processing and/or structural analysis. For
instance, the Dissensus smell arises when developers are not
able to reach a consensus with respect to the patch to be
applied: likely, in this case the conversations among devel-
opers will report contrasting opinions that can be identified
using opinion mining techniques or contrasting sentiment
detectable using sentiment analysis [141]. In this regard, it is
worth remarking that recent findings on sentiment analysis
[142], [143] revealed that existing tools are not always suit-
able for software engineering purposes, thus suggesting
that the ability of detecting community smells may depend
on the advances of other research fields. At the same time,
Code Red—which is the smell arising when only 1-2 main-
tainers can refactor the source code—may be structurally
identifiable looking at the developers’ collaboration net-
work and applying heuristics to discriminate how many
developers over the history of a class applied refactoring
operations on it. A similar reasoning may be done for
the detection of the Dispersion smell, where historical infor-
mation on the collaborations among developers might be
exploited in a prediction model aimed at predicting the
effect of a refactoring on the community structure of a proj-
ect. Other smells like Class Cognition or Prima Donna require
instead more analyses aimed at understanding the charac-
teristics behind them that would allow their automatic
detection.
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