
29

Are Multi-Language Design Smells Fault-Prone?

An Empirical Study

MOUNA ABIDI, MD SAIDUR RAHMAN, MOSES OPENJA, and FOUTSE KHOMH,

DGIGL, Polytechnique Montreal, Montreal, Canada

Nowadays, modern applications are developed using components written in different programming lan-
guages and technologies. The cost benefits of reuse and the advantages of each programming language are
two main incentives behind the proliferation of such systems. However, as the number of languages increases,
so do the challenges related to the development and maintenance of these systems. In such situations, devel-
opers may introduce design smells (i.e., anti-patterns and code smells) which are symptoms of poor design and
implementation choices. Design smells are defined as poor design and coding choices that can negatively im-
pact the quality of a software program despite satisfying functional requirements. Studies on mono-language
systems suggest that the presence of design smells may indicate a higher risk of future bugs and affects code
comprehension, thus making systems harder to maintain. However, the impact of multi-language design
smells on software quality such as fault-proneness is yet to be investigated.

In this article, we present an approach to detect multi-language design smells in the context of JNI systems.
We then investigate the prevalence of those design smells and their impacts on fault-proneness. Specifically,
we detect 15 design smells in 98 releases of 9 open-source JNI projects. Our results show that the design
smells are prevalent in the selected projects and persist throughout the releases of the systems. We observe
that, in the analyzed systems, 33.95% of the files involving communications between Java and C/C++ con-
tain occurrences of multi-language design smells. Some kinds of smells are more prevalent than others, e.g.,
Unused Parameters, Too Much Scattering, and Unused Method Declaration. Our results suggest that files with
multi-language design smells can often be more associated with bugs than files without these smells, and
that specific smells are more correlated to fault-proneness than others. From analyzing fault-inducing com-
mit messages, we also extracted activities that are more likely to introduce bugs in smelly files. We believe
that our findings are important for practitioners as it can help them prioritize design smells during the main-
tenance of multi-language systems.

CCS Concepts: • Software and its engineering → Software quality;

Additional Key Words and Phrases: Design smells, anti-patterns, code smells, multi-language systems, mining
software repositories, empirical studies

ACM Reference format:

Mouna Abidi, Md Saidur Rahman, Moses Openja, and Foutse Khomh. 2021. Are Multi-Language Design Smells
Fault-Prone? An Empirical Study. ACM Trans. Softw. Eng. Methodol. 30, 3, Article 29 (February 2021), 56 pages.
https://doi.org/10.1145/3432690

This work has been partially supported by the Natural Sciences and Engineering Research Council of Canada.
Authors’ addresses: M. Abidi, Md S. Rahman, M. Openja, and F. Khomh, DGIGL, Polytechnique Montreal, Montreal, 2500
Chemin de Polytechnique, Montréal, QC H3T 1J4; emails: {mouna.abidi, saidur.rahman, moses.openja, foutse.khomh}@
polymtl.ca.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1049-331X/2021/02-ART29 $15.00
https://doi.org/10.1145/3432690

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

https://doi.org/10.1145/3432690
mailto:permissions@acm.org
https://doi.org/10.1145/3432690

29:2 M. Abidi et al.

1 INTRODUCTION

Modern applications are moving from the use of a single programming language to build a sin-
gle application towards the use of more than one programming language [1–3]. Capers Jones [4]
reported in his book published in 1998, that at least one-third of the software application at that
time were written using two programming languages. He estimated that 10% of the applications
were written with three or more programming languages. Kontogiannis et al. [2] argued that these
percentages are becoming higher with the technological advances. Developers often leverage the
strengths and take the benefits of several programming languages to cope with the pressure of the
market.

A common approach to develop multi-language system is to write the source code in multiple
languages to capture additional functionality and efficiency not available in a single language. For
example, a mobile development team might combine Java, C/C++, JavaScript, SQL, and HTML5
to develop a fully functional application. The core logic of the application might be written in
Java, with some routines written in C/C++, and using some scripting languages or other domain-
specific languages to develop the user interface [5]. The cost benefits of reuse and the advantages of
each programming language are increasingly powerful reasons behind the proliferation of multi-
language systems.

However, despite the numerous advantages of multi-language systems, they are not without
some challenges. During 2013, famous websites, e.g., Business Insider, Huffington Post, and Salon,
were inaccessible, redirecting visitors to a Facebook error page. This was due to a bug related to the
integration of components written in different programming languages. The bug was in JavaScript
widgets embedded in Facebook and their interactions with Facebook’s servers.1 Another example
related to multi-language design smells is a bug reported early in 2018, which was due to the
misuse of the guideline specification when using the Java Native Interface (JNI), to combine Java
with C/C++ in libguests.2 There were no checks for Java exceptions after all JNI calls that might
throw them. In JRuby, several problems were also reported mainly related to incompatibilities
between languages and missing checks of return values and crashes related to the C language.3

Software quality has been widely studied in the literature and was often associated with the
presence of design patterns, anti-patterns, and code smells in the context of mono-language sys-
tems. Several studies in the literature have investigated the popularity and challenges of multi-
language systems [3, 6–9], but very few of them studied multi-language patterns and practices [7–
9]. Kochhar et al. [3] claims that the use of several programming languages significantly increases
bug proneness. They assert that design patterns and design smells are present in multi-language
systems and suggest that researchers study them thoroughly. Mono-language design smells are
conjectured in the literature to hinder software reliability. While a design smell may not defini-
tively identify an error, its presence suggests a potential trouble spot, that is, a place where there
is an increased risk of bugs or potential failure in the future.

However, despite the importance and increasing popularity of multi-language systems, to the
best of our knowledge, no approach has been proposed to detect multi-language smells. Also,
there is no existing study that empirically evaluates the impacts of multi-language smells on the
software fault-proneness. Through this article, we aim to fill this gap in the literature. We present
an approach to detect multi-language design smells. Based on our approach, we detect occurrences
of 15 multi-language design smells in 98 releases of nine open source multi-language projects (i.e.,
VLC-android, Conscrypt, Rocksdb, Realm, Java-smt, Pljava, Javacpp, Zstd-jni, and Jpype). We focus

1https://www.wired.com/2013/02/facebook-widget-snafu/.
2https://bugzilla.redhat.com/show_bug.cgi?id=1536762.
3https://www.jruby.org/2012/05/21/jruby-1-7-0-preview1.html.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

https://www.wired.com/2013/02/facebook-widget-snafu/
https://bugzilla.redhat.com/show_bug.cgi?id=1536762
https://www.jruby.org/2012/05/21/jruby-1-7-0-preview1.html

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:3

on the analysis of JNI systems because they are commonly used by developers and also introduce
several challenges [6, 10, 11]. Our analysis is based on a previously published catalog comprising
of anti-patterns and code smells related to multi-language systems [12, 13]. In this article, we
aim to investigate the evolution of multi-language design smells and the relations between these
smells and software fault-proneness. More specifically, we investigate the prevalence of 15 multi-
language design smells in the context of JNI open source projects and evaluate their impact on
fault-proneness.

Our four key contributions are: (1) an approach to automatically detect multi-language design
smells in the context of JNI systems, (2) evaluation of the prevalence of those design smells in
the selected projects, (3) empirical evaluation of the impacts of multi-language design smells on
software fault-proneness, and (4) text-based analysis to identify activities that are more likely to
introduce bugs once performed in files with design smells.

Our results show that in the analyzed systems, 33.95% of the files involving communication
between Java and C/C++ contain occurrences of the studied design smells. Some types of smells
are more prevalent than others, e.g., Unused Parameters, Too Much Scattering, and Unused Method
Declaration. We bring evidence to researchers that (1) the studied design smells are prevalent in
the selected projects and persist within the releases, (2) some types of design smells are more
prevalent than others, (3) files with the studied multi-language design smells are more likely to
be the subject of bugs than files without these smells, (4) some specific smells are more correlated
to fault-proneness than others i.e., Unused Parameters, Too Much Scattering, Too Much Clustering,
Hard Coding Libraries, and Memory Management Mismatch, and (5) data conversion, memory man-
agement, restructuring the code, API usage, and exception management activities could increase the
risk of inducing bugs once performed in smelly files. We believe that our results could help not
only researchers but also practitioners involved in the development of multi-language software
systems. We also provide evidence to developers and quality assurance teams of the importance
and usefulness of avoiding multi-language design smells.

The remainder of this article is organized as follows: Section 2 discusses the background of multi-
language systems and the design smells studied in this article. Section 3 describes our methodology.
Section 4 reports our results, while Section 5 discusses these results for deeper insights and impli-
cations. Section 6 summarises the threats to the validity of our methodology and results. Section 7
presents related work. Section 8 concludes the article and discusses future works. Appendix A de-
scribes the detection rules of the proposed multi-language smell detection approach. Appendix B
presents an overview of the validation of the smell detection approach.

2 BACKGROUND

To study the impact of multi-language design smells on fault-proneness, we first introduce a brief
background on multi-language (JNI) systems. We then discuss different types of multi-language
design smells and illustrate them with examples.

2.1 Multi-Language Systems

Nowadays, multi-language application development is gaining popularity over mono-language
programming, because of its different inherent benefits. Developers often leverage the strengths
of several languages to cope with the challenges of building complex systems. By using languages
that complement one another, the performance, productivity, and agility (i.e., the ability to act
rapidly) of the developers may be improved [14–16].

Java Native Interface (JNI) is a foreign function interface programming framework for multi-
language systems. JNI enables developers to invoke native functions from Java code and also Java
methods from native functions. JNI presents a simple method to combine Java applications with

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:4 M. Abidi et al.

Fig. 1. JNI HelloWorld Example.

either native libraries and/or applications [17, 18]. It allows Java developers to take advantage of
specific features and functionalities provided by native code. We present in Figure 1 an example
of a JNI code extracted from [17]. Figure 1(a) presents a Java class that contains a native method
declaration Print() and loads the corresponding native library while Figure 1(b) presents the C
file that contains the implementation of the native function Print().

2.2 Anti-Patterns and Code Smells

Patterns were introduced for the first time by Alexander et al. [19] in the domain of architecture.
From architecture, design patterns were then introduced in software engineering by Gamma et al.
[20]. They defined design patterns as common guidelines and “good” solutions based on the devel-
opers’ experiences to solve recurrent problems. Design smells (i.e., anti-patterns and code smells),
on the other hand, are symptoms of poor design and implementation choices. They represent vi-
olations of best practices that often indicate the presence of bigger problems [21, 22]. There exist
several definitions in the literature about code smells, anti-patterns, and their distinction [23, 24].
However, in this article, we consider design smells, in general, to refer to both code smells and anti-
patterns. Several studies in the literature studied the impacts of design smells for mono-language
systems and reported that classes containing design smells are significantly more fault-prone and
change-prone compared to classes without smells [25–28].

2.3 Multi-Language Design Smells

Design patterns, anti-patterns, and code smells studied in the literature are mainly presented in
the context of mono-language programming. While they were defined in the context of object
oriented programming and mainly Java programming language, most of them could be applied to
other programming languages. However, those variants consider mono-language programming
and do not consider the interaction between programming languages. In a multi-language con-
text, design smells are defined as poor design and coding decisions when bridging between dif-
ferent programming languages. They may slow down the development process of multi-language
systems or increase the risk of bugs or potential failures in the future [12, 13].

Our study is based on the recently published catalog of multi-language design smells [12, 13].
The catalog was derived from an empirical study that mined the literature, developers’ documenta-
tion, and bug reports. This catalog was validated by the pattern community and also by surveying
professional developers [11–13]. Some of those design smells could also apply to the context of
mono-language systems; however, in this study, we focus only on the analysis of JNI systems. In
this article, since we are not analyzing anti-patterns and code smells separately but as the same

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:5

entity, we will use the term design smells for both anti-patterns and code smells. In the following
paragraphs, we elaborate on each of the design smells; providing an illustrative example. More
details about these smells are available in the reference catalog [12, 13].

(1) Not Handling Exceptions. The exception handling flow may differ from one programming
language to the other. In case of JNI applications, developers should explicitly implement
the exception handling flow after an exception has occurred [10, 29, 30].4 Since JNI ex-
ception does not disrupt the control flow until the native method returns, mishandling
JNI exceptions may lead to vulnerabilities and leave security breaches open to malicious
code [10, 29, 30]. Listing 1 presents an example of occurrences of this smell extracted from
IBM site.4 In this example, developers are using predefined JNI methods to extract a class
field that was passed as a parameter from Java to C code. However, they are returning
the result without any exception management. If the class or the field C is not existing,
this could lead to errors. A possible solution would be to use the function Throw() or
ThrowNew() to handle JNI exception, and also to add a return statement right after one
of these functions to exit the native method at a point of error.

Listing 1. Design Smell - Not Handling Exceptions Across Languages.

(2) Assuming Safe Return Value. Similar to the previous design smell, in the context of JNI
systems, not checking return values may lead to errors and security issues [13, 29]. The
return values from JNI methods indicate whether the call succeeded or not. It is the
developers’ responsibility to always perform a check before returning a variable from the
native code to the host code to know whether the method ran correctly or not. Listing 2
presents an example of occurrences of this smell. If the class NIOAccess or one of its
methods is not found, the native code will cause a crash as the return value is not checked
properly. A possible solution would be to implement checks that handle situations in
which problems may occur with the return values.

Listing 2. Design Smell - Assuming Safe Multi-language Return Values.

(3) Not Securing Libraries. A common way to load the native library in JNI is the use of the
method loadLibrary without the use of a secure block. In such a situation, the code loads
a foreign library without any security check or restriction. However, after loading the

4https://www.ibm.com/developerworks/library/j-jni/index.html.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

https://www.ibm.com/developerworks/library/j-jni/index.html

29:6 M. Abidi et al.

library, malicious code can call native methods from the library. This may impact the
security and reliability of the system [13, 31]. Listing 3 presents an example of a possible
solution by loading the native library within a secure block to avoid malicious attacks.

Listing 3. Securing Library Loading.

(4) Hard Coding Libraries. Let us consider a situation in which we have the same code to run
on different platforms. We need to customize the loading according to the operating sys-
tem. However, when those libraries are not loaded considering operating-system-specific
conditions and requirements, but, for instance, with hard-coded names and a try-catch
mechanism, it is hard to know which library has really been loaded, which could bring
confusion especially during the maintenance tasks. Listing 4 provides an example of na-
tive libraries loaded without any information about how to distinguish between the usage
of those libraries.

Listing 4. Design Smells - Hard Coding Libraries.

(5) Not Using Relative Path. This smell occurs when the library is loaded by using an absolute
path to the library instead of the corresponding relative path. Using a relative path, the
native library can be loaded and installed everywhere. However, the use of an absolute
library path can introduce future bugs in case the library is no longer used. This may also
impact the reusability of the code and its maintenance because the library can become
inaccessible due to an incorrect path. System.loadLibrary(‘‘osxsecurity’’) is an
example of this design smell.

(6) Too Much Clustering. Too many native methods declared in a single class would decrease
readability and maintainability of the code. This will increase the lines of code within
that class and thus make the code review process harder. Many studies discussed good
practices about the number of methods to have within the same class, some examples
are the rule of 30 introduced by Lippert and Roock [32], or the 7 plus/minus 2 rule stating
that a human mind can hold and comprehend from 5 to 9 objects. Most of the relevant
measures are the coupling, cohesion, the single principle responsibility, and the separa-
tion of concerns. In this context, a bad practice would be to concentrate multi-language
code in few classes, regardless of their role and responsibilities. This may result in a blob
multi-language class with many methods and low cohesion. We present in Figure 2 an

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:7

Fig. 2. Illustration of Design Smell - Too Much Clusterings.

example that we extracted from ZMQJNI.5 In this example, native methods related to
cryptographic operations are mixed in the same class as the methods used for network
communication. This merging of concerns resulted in a blob multi-language class that
contains 29 native declaration methods and 78 attributes. In the current study, we are
considering the case of having an excessive number of calls to native methods within
the same class.

(7) Too Much Scattering. Similar to too much clustering, when using multi-language code, de-
velopers and managers often have to decide on a tradeoff between isolating or splitting
the native code. Accessing this tradeoff is estimated to improve the readability and main-
tainability of the systems [13]. This design smell occurs when classes are scarcely used in
multi-language communication without satisfying both the coupling and the cohesion.
In Figure 3 extracted from a previous work [12], we have three classes with only two
native methods declaration with duplicated methods. A possible good solution would
be to reduce the number of native method declaration by removing the duplicated ones
possibly by regrouping the common ones in the same class. This will also reduce the

5https://github.com/zeromq/zmq-jni/blob/master/src/main/java/org/zeromq/jni/ZMQ.java.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

https://github.com/zeromq/zmq-jni/blob/master/src/main/java/org/zeromq/jni/ZMQ.java

29:8 M. Abidi et al.

Fig. 3. Illustration of Design Smell - Too Much Scattering.

scattering of multi-language participants and concerns by keeping the multi-language
code concentrated only in specific classes.

(8) Excessive Inter-Language Communication. A wrong partitioning in components written
in different programming languages leads to many calls in one way or the other. This
may add complexity, increase the execution time, and may indicate a bad separation of
concerns. Occurrences of this design smell could be observed in systems involving dif-
ferent layers or components. For example, the same object could be used and/or modified
by multiple components. An excessive call of native code within the same class could be
illustrated either by having too many native method calls in the same class or having the
native method call within a large range loop. In Godot, the function process() is called
at each time delta. The time delta is a small period of time that the game does not process
anything i.e., the engine does other things than game logic out of this time range. The for-
eign function process() is called multiple times per second, in this case once per frame.6

(9) Local References Abuse. For any object returned by a JNI function, a local reference is
created. JNI specification allows a maximum of 16 local references for each method. De-
velopers should pay attention on the number of references created and always deleted
the local references once not needed using JNIDeleteLocalRef(). Listing 5 illustrates an
example of this design smell in which local references are created without deleting them.

Listing 5. Design Smell - Local References Abuse.

(10) Memory Management Mismatch. Data types differ between Java and C/C++. When using
JNI, a mapping is performed between Java data types and data types used in the na-
tive code.7 JNI handles Java objects, classes, and strings as reference types. Java Virtual
Machine (JVM) offers a set of predefined methods that could be used to access fields,

6https://github.com/godotengine/godot-demo-projects/blob/master/2d/pong/paddle.gd.
7https://www.developer.com/java/data/jni-data-type-mapping-to-cc.html.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

https://github.com/godotengine/godot-demo-projects/blob/master/2d/pong/paddle.gd
https://www.developer.com/java/data/jni-data-type-mapping-to-cc.html

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:9

methods, and convert types from Java to the native code. Those methods return pointers
that will be used by the native code to perform the calculation. The same goes for refer-
ence types, the predefined methods used allow us either to return a pointer to the actual
elements at runtime or to allocate some memory and make a copy of that element. Thus,
due to the differences of types between Java and C/C++, the memory will be allocated
to perform respective type mapping between those programming languages. Memory
leaks will occur if the developer forgets to take care of releasing such reference types.
Listing 6 presents an example in which the memory was allocated but not released using
ReleaseString or ReleaseStringUTF.

Listing 6. Design Smell - Memory Management Mismatch.

(11) Not Caching Objects. To access Java objects’ fields from native code through JNI and
invoke their methods, the native code must perform calls to predefined functions, i.e.,
FindClass(), GetFieldId(), GetMethodId(), and GetStaticMethodId(). For a given class, IDs
returned by GetFieldId(), GetMethodId(), and GetStaticMethodId() remain the same during
the lifetime of the JVM process. The call of these methods is quite expensive as it can
require significant work in the JVM. In such a situation, it is recommended for a given
class to look up the IDs once and then reuse them. In the same context, looking up class
objects can be expensive, a good practice is to globally cache commonly used classes,
field IDs, and method IDs. Listing 7 provides an example of occurrences of this design
smell that does not use cached field IDs.

Listing 7. Design Smell - Not Caching Objects’ Elements.

(12) Excessive Objects. Accessing a field’s elements by passing the whole object is a common
practice in object-oriented programming. However, in the context of JNI, since the Object
type does not exist in C programs, passing excessive objects could lead to extra overhead
to properly perform the type conversion. Indeed, these design smells occur when devel-
opers pass a whole object as an argument, although only some of its fields were needed,
and it would have been better for the system performance to pass only those fields ex-
cept the purpose to pass the object to the native side was to set its elements by the
native code using SetxField methods, with x the type of the field. Indeed, in the context
of object-oriented programming, a good solution would be to pass the object offering
a better encapsulation, however, in the context of JNI, the native code must reach back
into the JVM through many calls to get the value of each field adding extra overhead.
This also increases the lines of code which may impact the readability of the code [13].

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:10 M. Abidi et al.

Listing 8 presents an example smell of passing excessive objects. The refactored solution
of this smell would be to pass the class’ fields as a method parameters as described in our
published catalog [13].

Listing 8. Design Smell - Passing Excessive Objects.

(13) Unused Method Implementation. This appears when a method is declared in the host lan-
guage (Java in our case) and implemented in the foreign language (C or C++). However,
this method is never called from the host language. This could be a consequence of mi-
gration or refactoring in which developers opted for keeping those methods to not break
any related features.

(14) Unused Method Declaration. Similar to Unused Method Implementation, this design smell
(also known as Missing Implementation) occurs when a method is declared in the host
language but is never implemented in the native code. This smell and the previous one
are quite similar. However, they differ in the implementation part, while for the smell
Unused Method Implementation, the method is implemented but never called, in case of
the smell Unused Method Declaration, the unused method is not implemented and never
called in the foreign language. Such methods could remain in the system for a long period
of time without being removed because having them will not introduce any bug when
executing the program but they may negatively impact the maintenance activities and
effort needed when maintaining those classes.

(15) Unused Parameters. A long list of parameters make methods hard to understand [33]. It
could also be a sign that the method is doing too much or that some of the parameters
are no longer used. In the context of multi-language programming, some parameters
may be present in the method signature; however, they are no longer used in the other
components written in different programming languages. Since multi-language systems
usually involve developers from different teams, those developers often prefer not to re-
move such parameters because they may not be sure if the parameters are used by other
components. Listing 9 presents an illustration of this design smell where the parame-
ter acceleration is used in the native method signature. However, it is not used in the
implemented function.

Listing 9. Design Smell - Unnecessary Parameters.

3 STUDY DESIGN

In this section, we present the methodology we followed to conduct this study. Figure 4 provides
an overview of our methodology.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:11

Fig. 4. Schematic diagram of the study.

Table 1. Research Objectives and Research Questions

Research Objectives Methodology

Objective 1: Detect multi-language design smells Detection approach (case study of
JNI systems)

Objective 2: Investigate the prevalence of multi-language
design smells

RQ1 and RQ2

Objective 3: Study the relationship between
multi-language design smells and fault-proneness

RQ3 and RQ4

Objective 4: Identifying fault-inducing activities RQ5

3.1 Setting Objectives of the Study

We started by setting the objective of our study. Our objective is to investigate the prevalence of
multi-language design smells in the context of JNI systems and the relation between those smells
and software fault-proneness. We also aim to investigate what kind of activities once performed
in smelly files are more likely to introduce bugs. The quality focus in this study is the occurrence
of bugs due to the presence of design smells in JNI systems. The perspective is that of researchers,
interested in the quality of JNI systems, and who want to get evidence on the impact of design
smells on the software fault-proneness. Also, these results can be of interest to professional de-
velopers performing maintenance and evolution activities on JNI projects and who need to take
into account and forecast their effort, since like for mono-language projects, the presence of fault-
prone files is likely to increase the maintenance effort and cost. These results are also of interest
to testers since they need to know which files are more important to test. Finally, they can be
of interest to quality assurance teams or managers who could use design smells detection tech-
niques to assess the fault-proneness of in-house or to-be-acquired source code, to better quantify
the cost-of-ownership of JNI systems. Table 1 provides an overview of our research objectives and
the research questions that will be used to achieve those objectives.

We defined our research questions as follows:

RQ1: Do multi-language design smells occur frequently in open source projects?

Several articles in the literature discussed the prevalence, detection, and evolution of design
smells in the context of mono-language systems [34, 35]. Occurrences of design smells may
hinder the evolution of a system by making it hard for developers to maintain the system.
The detection of smells can substantially reduce the cost of maintenance and development
activities. However, most of those researches are focusing on mono-language systems. Thus,
we decided to fill this gap in the literature and investigate the frequency of design smells in
the context of multi-language systems. This research question is preliminary to the remain-
ing questions. It aims to examine the frequency and distribution of multi-language design

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:12 M. Abidi et al.

smells in the selected projects and their evolution over the releases of the project. We de-
fined the following null hypothesis: H1: there are no occurrences of the multi-language design
smells studied in the literature in the selected projects.

RQ2: Are some specific multi-language design smells more frequent than others in open

source projects?

Given that multi-language design smells are prevalent in the studied systems, it is impor-
tant to know the distribution and evolution of the different types of smells for a better un-
derstanding of the implication of their presence for maintenance activities. Developers are
likely to benefit from knowing the dominating smells to treat them in priority and avoid
introducing such occurrences. Consequently, in this research question, we aim to study
whether some specific types of design smells are more prevalent than others. We are also
interested in the evolution of each type of smells over the releases of the project. We aim
to test the following null hypothesis: H2: The proportion of files containing a specific type of
design smell does not significantly differ from the proportion of files containing other kinds of
design smells.

RQ3: Are files with multi-language design smells more fault-prone than files without?

Prior works reported that classes containing design smells in mono-language systems are
more prone to faults than other classes [25, 36]. Due to components written in different
languages, multi-language systems may have more complexities in architecture and inter-
component interactions. Given the known impacts of design smells on mono-language sys-
tems, it is thus important to investigate the impacts of multi-language design smells on the
corresponding software systems. To examine this, we aim to investigate whether source
files containing multi-language design smells are more likely to experience faults than files
without smells. We investigate whether files with multi-language design smells are more
fault-prone than others by testing the null hypothesis: H3: The proportion of files experi-
encing at least one bug does not significantly differ between files with design smells and files
without.

RQ4: Are some specific multi-language design smells more fault-prone than others?

During maintenance and quality assurance activities, developers are interested in identi-
fying parts of the code that should be tested and/or refactored in priority. Hence, we are
interested in identifying design smells that are more fault-prone than others. Thus, we de-
fined the null hypothesis. H4: There is no significant difference between the impacts of different
kinds of multi-language design smells on the fault-proneness of files containing those smells.

RQ5: What are the activities that are more likely to introduce bugs in smelly files?

During the maintenance of a project, having knowledge of possible risky activities could
help developers and managers to reduce the risk of bugs. They could benefit from that
knowledge to capture activities that should be performed with caution in smelly files.
Hence, we are interested in identifying what kinds of activities once performed in smelly
files are likely to introduce bugs. Capturing such information could provide insights about
what kind of activities could increase the risk of bugs in smelly files.

3.2 Data Collection

In order to address our research questions, we selected nine open source projects hosted on GitHub.
We decided to analyze those nine systems because they are well maintained, and highly active. An-
other criteria for the selection was that those systems have different size and belong to different
domains. They also have the characteristic of being developed with more than one programming
language. While those systems contain different combinations of programming languages, for this
study, we are analyzing the occurrences of design smells for only Java and C/C++ code. For each

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:13

Table 2. Overview of the Studied Systems

Systems Domain #Releases #Commits #Issues LOC Java C/C++

Rocksdb8 Facebook Database 189 8375 1748 487853 11% 83.1%

VLC-android9 Media Player and Database 176 12697 1091 125037 10.1% 6.7%

Realm10 Mobile Database 169 8244 3886 171705 82% 8.1%

Conscrypt11 Cryptography (Google) 32 3874 186 91765 85.3% 14%

Pljava12 Database 27 1236 123 71910 67% 29.7%

Javacpp13 Compiler 34 658 269 28713 98% 0.6%

Zstd-jni14 Data Compression (Facebook) 36 423 78 72824 4.3% 92.1%

Jpype15 Cross Language Bridge 14 895 305 53826 7.8% 58%

Java-smt16 Computation 22 1822 146 42049 88% 4.6%

Table 3. Analyzed Releases in Each Project

Systems #Releases Analyzed Releases Analysis Periods

Rocksdb 10 5.0.2 - latest release 2017-18-01 - 2019-14-08
VLC-android 10 3.0.0 - latest release 2018-08-02 - 2019-13-09
Realm 10 0.90.0 - 5.15.0 2016-03-05 - 2019-04-09
Conscrypt 11 1.0.0.RC11 - 2.3.0 2017-25-09 - 2019-25-09
Pljava 12 1_2_0 - latest release 2015-20-11 - 2019-19-03
Javacpp 13 0.5 - 1.5.1-1 2013-07-04 - 2019-05-09
Zstd-jni 11 0.4.4 - latest release 2015-17-12 - 2019-19-08
Jpype 11 0.5.4.5 - latest release 2013-25-08 - 2019-13-09
Java-smt 10 0.1 - 3.0.0 2015-27-11 - 2019-30-08

of the nine selected subject systems, we selected a minimum of 10 releases. For projects with
relatively frequent releases and comparatively a small volume of changes per release, we extended
our analysis to a few extra releases to cover a longer evolution period for our analysis. Tables 2
and 3 summarize the characteristics of the subject systems and releases. We also provide the per-
centage of the Java and C/C++ code in the studied projects in Table 2.

Among the nine selected systems, VLC-android is a highly portable multimedia player for vari-
ous audio and video formats. Rocksdb is developed and maintained by Facebook, it presents a per-
sistent key-value store for fast storage. It can also be the foundation for a client-server database.
Realm is a mobile database that runs directly inside phones and tablets. Conscrypt is developed
and maintained by Google, it is a Java Security Provider (JSP) that implements parts of the Java
Cryptography Extension (JCE) and Java Secure Socket Extension (JSSE). Java-smt is a common
API layer for accessing various Satisfiability Modulo Theories (SMT) solvers. Pljava is a free mod-
ule that brings Java Stored Procedures, Triggers, and Functions to the PostgreSQL backend via the

8https://github.com/facebook/rocksdb/.
9https://github.com/videolan/vlc-android.
10https://github.com/realm/realm-java.
11https://github.com/google/conscrypt.
12https://github.com/tada/pljava.
13https://github.com/bytedeco/javacpp.
14https://github.com/luben/zstd-jni.
15https://github.com/jpype-project/jpype.
16https://github.com/sosy-lab/java-smt.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

https://github.com/facebook/rocksdb/
https://github.com/videolan/vlc-android
https://github.com/realm/realm-java
https://github.com/google/conscrypt
https://github.com/tada/pljava
https://github.com/bytedeco/javacpp
https://github.com/luben/zstd-jni
https://github.com/jpype-project/jpype
https://github.com/sosy-lab/java-smt

29:14 M. Abidi et al.

standard JDBC interface. Javacpp provides efficient access to native C++ inside Java, not unlike the
way some C/C++ compilers interact with assembly language. Zstd-jni present a binding for Zstd
native library developed and maintained by Facebook that provides fast and high compression
lossless algorithms for Android, Java, and all JVM languages. Jpype is a Python module to provide
full access to Java from within Python.

3.3 Data Extraction

To answer our research questions, we first have to mine the repositories of the nine selected sys-
tems to extract information about the occurrences of smells existing in each file and also the bugs
reported for those systems.

3.3.1 Detection of Design Smells.

Detection Approach. Because no tools are available to detect design smells in multi-language
systems, we build a new detection approach closely inspired by DECOR and Ptidej tool Suite [35].
We used srcML,17 a parsing tool that converts source code into srcML, which is an XML format
representation. The srcML representation of source code adds syntactic information as XML ele-
ments into the source code text. Listing 11 presents the srcML representation of the code snippet
presented in Listing 10. The main advantage of srcML, is that it supports different programming
languages, and generates a single XML file for the supported programming languages. For now,
our approach includes only Java, C, and C++; however, it could be extended to include other pro-
gramming languages in the future. SrcML provides a wide variety of predefined functions that
could be easily used through the XPath to implement specific tasks. XPath is frequently used to
navigate through XML nodes, elements, and attributes. In our case, it is used to navigate through
srcML elements generated as an XML representation of a given project. The ability to address
source code using XPath has been applied to several applications [37].

Our detection approach reports smell detection results for a selected system in a CSV file. The
report provides detailed information for each smells detected such as smell type, file location,
class name, method name, parameters (if applicable). The approach also allows to post-process the
results and create a summary file. The summary results provide a CSV file that details for each
specific file or class in a specific release, the total number of occurrences of each type of smell, and
the date and other information related to that specific release. Two members of our research team
manually validated the results of smell detection for five systems.

Detection Rules. The detection approach is based on a set of rules defined from the documentation
of the design smells. Those rules were validated by the pattern community during the Writers’
Workshop to document and validate the smells. For example, for the design smell Local Reference
Abuse, we considered cases where more than 16 references are created but not deleted with the
DeleteLocalRef function. The threshold 16 was extracted from developers’ blogs discussing best
practices and the Java Native Interface specification [17].18, 19 We present in the following two
examples of rules as well as the thresholds used to define them and their detection process. All the
other rules are available in Appendix A. We also provide in the replication folder all the detection
rules for the design smells studied in this article and the detection results.20

17https://www.srcml.org/.
18https://www.cnblogs.com/cbscan/articles/4733508.html.
19https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#global_local.
20https://github.com/ResearchML/TOSEM_MLS_DesignSmells_Fault.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

https://www.srcml.org/
https://www.cnblogs.com/cbscan/articles/4733508.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#global_local
https://github.com/ResearchML/TOSEM_MLS_DesignSmells_Fault

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:15

Listing 10. Example of Java Code.

Listing 11. Example of Java Code Converted to SrcML.

(1) Rule for the Smell Not Handling Exceptions

(f (y) | f ∈ {GetObjectClass, FindClass,GetFieldID,GetStaticFieldID,
GetMethodID,GetStaticMethodID})

AND (isErrrorChecked (f (y)) = False ORExceptionBlock (f (y)) = False)

Our detection rule for the smell Not Handling Exceptions is based on the existence of
call to specific JNI methods requiring explicit management of the exception flow. The
JNI methods (e.g., FindClass) listed in the rule should have a control flow verification.
The parameter y represents the Java object/class that is passed through a native call for a
purpose of usage by the C/C++ side. Here, isExceptionChecked allows to verify that there is
an error condition verification for those specific JNI methods, while ExceptionBlock checks
if there is an exception block implemented. This could be implemented using Throw() or
ThrowNew() or a return statement that exists in the method in case of errors.

If we recheck Listing 1 in Section 2, the code illustrated in this example satisfies the
rule of using predefined methods to access classes and field IDs. Another condition is that
those methods are not followed by an explicit exception block. Thus, this example will be
captured by our approach as an occurrence of the design smell Not Handling Exceptions.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:16 M. Abidi et al.

Table 4. Validation of the Smell Detection Approach

Systems True Positive False Positive False Negative Recall Precision

Openj9 3293 137 250 93% 96%
Rocksdb 922 50 136 87% 95%
Conscrypt 556 29 133 80% 95%
Pilot project 32 0 0 100% 100%
Pljava 511 5 53 90% 99%
Jna 375 50 127 74% 88%
Jmonkey 2210 142 185 92% 94%

(2) Rule for the Smell Local References Abuse

(NbLocalRe f erence (f1 (y)) > MaxLocalRe f erenceThreshold) AND

(f1 (y) | f1 ∈ {GetObjectArrayElement ,GetObjectArrayElement ,NewLocalRe f ,AllocObject ,

NewObject ,NewObjectA,NewObjectV ,NewDirectByteBu f f er ,

ToRe f lectedMethod,ToRe f lectedField }) AND

(� f2 (y) | f2 ∈ {DeleteLocalRe f ,EnsureLocalCapacity})

The smell Local References Abuse is introduced when the total number of local ref-
erences created inside a called method exceeds the defined threshold and without
any call to method DeleteLocalRef to free the local references or a call to method
EnsureLocalCapacity to inform the JVM that a larger number of local references is
needed.

In the same vein, if we recall the example provided in Listing 5, in which a local reference
is created to retrieve an array element. This is implemented inside a loop (for). Thus, if
the total number for the count is more than 16, this indicates that we are exceeding the
authorized number of local references. In this situation, our approach will capture the
method exceeding the authorized number of local references and will then check for any
possible usage of functions to release the memory. Since this example does not provide any
functions to release the memory, this will be detected by our approach as an occurrence
of the design smell Local References Abuse.

Validation Approach.

To assess the recall and precision of our detection approach, we evaluated the results of our
detection approach at the first level by creating dedicated unit tests for the detector of each type
of smell to confirm that the approach is detecting the smells introduced in our pilot project. We
relied on six open-source projects used in previous works [12, 13] on multi-language design smells.
For each of the systems, we manually identified occurrences of the studied design smells. Two
of the research team members independently identified occurrences of the design smells in JNI
open-source projects, and resolved disagreements through discussions with the whole research
team. Using the ground truth based on the definition of the smell and the detection results, we
computed precision and recall as presented in Table 4 to evaluate our smell detection approach.
Precision computes the number of true smells contained in the results of the detection tool, while
recall computes the fraction of true smells that are successfully retrieved by the tool. From the six
selected systems, we obtained a precision between 88% and 99% and a recall between 74% and 90%.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:17

We calculate precision and recall based on Equations (1) and (2), respectively:

Precision =

{
existinд true smells

} ⋂ {detected smells}
{detected smells} (1)

Recall =

{
existinд true smells

} ⋂ {detected smells}
{
existinд true smells

} (2)

3.3.2 Detection of Fault-Inducing Commits. The studied systems use Github as the issue tracker.
We used Github APIs and PyDriller to mine the software repositories and get the list of all the com-
mit logs and resolved issues for the systems [38]. PyDriller provides a set of APIs to extract infor-
mation from Git repositories. These include important historical information regarding commits,
developers, and modifications. PyDriller is very convenient for mining software repositories to an-
alyze changes or bugs. It relies on the SZZ algorithm [39] to detect changes that introduce faults.
We used PyDriller because this approach was not only evaluated regarding existing tools but also
with experiments involving developers [38]. We started by retrieving all the information related
to the projects. We analyzed all commit messages to identify the fault-fixing commits. We used a
set of error-related keywords to identify commits related to fault-fixing using a heuristic similar to
that presented in the study by Mockus and Votta [40]. Our list of keywords includes “fix”, “crash”,
“resolves”, “regression”, “fall back”, “assertion”, “coverity”, “reproducible”, “stack-wanted”, “steps-
wanted”, “testcase”, “fail”, “npe”, “except”, “broken”, “bug”, “differential testing”, “error”, “address
sanitizer”, “hang”, “perma orange”, “random orange”, “intermittent”, “steps to reproduce”, “asser-
tion”, “leak”, “stack trace”, “heap overflow”, “freez”, “str:”, “problem ”, “overflow”, “avoid”, “ issue”,
“workaround”, “break”, and “stop”. To retrieve fault-inducing commits, given a commit, PyDriller
returns the set of commits that previously modified the lines from the files included in the given
commit. It applies the SZZ algorithm to find the commit when the bug was initially introduced
as used in some earlier studies [41–43]. To locate the fault-inducing commits, PyDriller algorithm
works as follows: for every file in the commit, it obtains the difference between the files, then ob-
tains the list of all deleted lines. It then blames the file to obtain the commits where the deleted lines
were changed. We tagged fault-inducing commits as buggy. We used this tag later to distinguish
between files containing bugs and files without.

Since Pydriller’s SZZ implementation was not previously evaluated, we manually examined the
bug inducing commits retrieved by Pydriller from two of our studied projects, Pljava and Zstd-jni.
We performed this manual analysis in two steps. First, we executed an existing implementation
of the SZZ algorithm available on GithHub21 on Pljava and Zstd-jni. We compared its reported
results with the results obtained from Pydriller. For each bug-fixing commit, we manually verified
if the related bug-inducing commit reported by Pydriller matches with the one reported by SZZ.
For that, we used two labels (True or False) to distinguish between the bug-inducing commits that
match with those retrieved by SZZ and those that do not match. Next, one of the authors manu-
ally verified if the changes in the bug-inducing commits reported by Pydriller were indeed related
to the changes performed in the corresponding bug-fixing commits. We also analyzed the commit
messages. We labeled each of the bug-inducing commits with three tags (True, False, and Unclear).
We used the tag True in situations in which we were convinced that the change performed in the
bug-fixing was indeed related to the changes applied in the bug-inducing. We assigned False in
situations in which it was evident that the changes are not related, and Unclear in situations in
which it was not completely evident to assign a True or False tag. We analyzed for Pljava and
Zstd-jni, respectively, a total of 113 and 96 bug-fixing commits. We performed a cleaning process

21https://github.com/saheel1115/szz.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

https://github.com/saheel1115/szz

29:18 M. Abidi et al.

on those commits and removed the commits related to typos fixing and merge commits. We kept
in our validation bug-fixing commits with their corresponding bug-inducing commits. Our final
dataset results on 61 bug-fixing commits for Pljava and 66 bug-fixing commits for Zstd-jni. From
our manual validation of fault-inducing commits reported by Pydriller for Pljava and Zstd-jni, we
found, respectively, precision values of 78.94% and 70.83%. Those values are computed consider-
ing only the True and False tags for Java and C/C++ files resulting from our manual validation.
From the comparison between Pydriller’s SZZ and the recent implementation of SZZ we found
for Pljava and Zstd-jni, respectively, precision values of 85% and 80%. We did not include in our
validation the recall because in our study we are considering only JNI code. However, SZZ is con-
sidering the whole project in general without considering multi-language interactions. So, those
results may not generalize to the whole system. However, the results of our manual validation do
not directly contribute to any of our empirical findings, and we did this validation as a comple-
mentary step to reduce the threats to validity of our study. We also analyzed changes related to
multi-language programming. Indeed, in many situations, the Java and C/C++ code are changed
within the same commit. This was helpful to validate the bug-inducing commits involving Java
and C/C++ code.

3.4 Analysis Method

We present in the following the analysis performed to answer our research questions.

3.4.1 Analyzing the Prevalence of Design Smells. We investigate the presence of 15 different
kinds of design smells. Each variable si, j,k reflects the number of times a file i has a smell j in a
specific release rk .

For RQ1, since we are interested to investigate the prevalence of multi-language design smells,
we aggregate these variables into a Boolean variable si,k to indicate whether a file i has at least
any kind of smells in release rk . We calculate the percentage of files affected by at least one of the
studied design smells, sj . We use our detection approach to detect occurrences of multi-language
design smells following the methodology described earlier. For each file, we compute the value of
a variable Smellyi,r which reflects if the file i has a least one type of smell in a specific release
r . This variable takes 1 if the file contains at least one design smell in a specific release r , and 0
otherwise. Similarly, we also compute the value of variable Nativei,r which takes 1 if the file i of
a specific release r is native and 0 if not. Since our tool is focusing on the combination of Java and
C/C++, we compute for each release the percentage of files participating in at least one JNI smells
out of the total number of JNI files (files involved in Java and C/C++).

For RQ2, we investigate whether a specific type of design smells is more prevalent in the studied
systems than other types of design smells. For that, we calculate for each system the percentage of
files affected by each type of the studied smells j. For each file i and for each release r , we defined
a flag Smellyi, j,r which takes the value 1 if the release r of the file i contains the design smell type
j and 0 if it does not contain that specific smell. Based on this flag, we compute for each release
the number of files participating in that specific smell. We also calculate the percentage of smelly
files containing each type of smell. Note that the same file may contain more than one smell. We
investigate the presence of 15 different kinds of smells. We also compute the metric si, j,k which
reflects the number of occurrences of smells of type j in a file i in a specific release rk .

3.4.2 Analyzing the Impacts of Smells on Bugs. For RQ3, we focus on each of the smells to study
whether the proportion of files containing at least one bug, significantly differs between files con-
taining smells and files without smells. We consider the number of bugs ci,k a file i encountered
between releases rk and rk+1, and convert ci,k into a Boolean variable fi,k (true if the file under-
went at least one bug, false otherwise). We rely on Fisher’s exact test [44] to check whether the

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:19

proportion of buggy files varies between two samples (files with and without smells). This test is
useful for categorical data that result from the classification of objects. It is used to examine the
significance of the association between the two kinds of classification. We also calculate the odds
ratio (OR) indicating the likelihood for an event (bug in our case) to occur. The odds ratio is calcu-
lated (as in Equation (3)) as the ratio of the odds p of an event occurring in a sample, i.e., the odds
that files with some specific smells contain a bug (defined as experimental group), to the odds q of
the same event occurring in another sample, i.e., the odds that files with no smells contain a bug
(defined as control group):

OR =
p/(1 − p)

q/(1 − q)
(3)

An OR equal to 1 indicates that the event of interest is equally likely in both samples. While
an OR greater than 1 stipulates that the event is more likely to occur in the first sample (files
participating in some design smells), having an OR less than 1 indicates that it is more likely to
occur in the second sample (control group of files not participating in any design smell).

We use the fisher_exact function of the stats module from scipy Python package to compute the
odds ratio and the p-value for statistical significance of the test. By processing the commits and
bug information, we set different flags for each of the source files. As mentioned earlier, the smelly
flag takes the value 1 if the associated source file contains at least one design smell of any type,
and 0 otherwise. The flag buggy takes the value 1 if the associated source file was identified by
SZZ algorithm as related to a fault-inducing commit, and 0 otherwise. Now, for a given release of a
system, we consider all JNI source files for analysis. We count the number of buggy and non-buggy
files with design smells. Similarly, we also count the number of buggy and non-buggy files without
design smells. With these four values, we form the 2x2 contingency table for Fisher’s exact test.

For RQ4, we investigate the relationship between different types of design smells with fault-
proneness. Unlike using logistic regression for prediction purposes ([34, 45]), we use it to examine
whether some types of design smells are more related to fault-proneness. Our analysis approach
is similar to the one presented by Khomh et al. [34] where they investigate the impacts of dif-
ferent types of anti-patterns on change- and fault-proneness using logistic regression model. The
multivariate logistic regression is based on Equation (4).

π (X1,X2, . . . ,Xn) =
eβ0+β1 .X1+· · ·+βn .Xn

1 + eβ0+β1 .X1+· · ·+βn .Xn

(4)

Here,

• Xi are the independent variables for the logistic regression model. In our case,Xi represents
the number of smells of type Si in a given source file and S = {S1, S2, . . . , Sn } is the set of
the types of smells investigated.

• βi are the model coefficients, and
• 0 ≤ π ≤ 1 is the value on the logistic regression curve representing the probability of bugs

for a file with smells.

In our regression model, independent variables are the number of occurrences of each type of
design smells. The dependent variable is the flag (buggy) representing the presence or absence
of bugs. Thus, the dependent variable is dichotomous and assumes values either 0 (non-buggy)
or 1 (buggy). For each system, we build a regression model and analyze the model coefficients
and p-values for individual types of smells. Each row in our data set contains the values of the
metrics (number of occurrences) for different smells, file size (LOC), number of previous bug-fix,
code churn, and the bug status (1 or 0).

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:20 M. Abidi et al.

Each logistic regression model gives the log odds (regression coefficient estimate) of individual
independent variables and their corresponding p-values for a particular system. The log odds rep-
resent the factors by which the odds of the dependent variable will change for a unit change in
values of corresponding independent variables. When the logistic regression coefficient is positive
(βi > 0), unit increase of the value of the corresponding independent variable will increase the
log odds of the dependent variable by βi assuming that other independent variables are either 0
or remain unchanged. For a negative regression coefficient (βi < 0), on the other hand, the value
of the log odds of the dependent variable will decrease by βi for unit increase in the value of the
associated independent variable. Thus, the higher the positive log odds of an independent variable,
the higher is the impact of that independent variable on bug-proneness. We rank the smells based
on the model coefficients and the corresponding p-values. We select files that contain at least one
smell of any type. For a given type of smell, if the model coefficients show higher log odds (LO) of
bugs in the majority (in percentage) of the systems, we consider the smell to be related to fault-
proneness. It is important to mention that we analyzed the data for correlation among smells and
dropped one independent variable from each pair of highly correlated variables. This ensures a
non-redundant set of variables for the logistic regression models. From a highly correlated pair,
we keep the variable representing smell type with a comparatively higher overall prevalence in
the studied systems. Because the following metrics are known to be related to fault-proneness
[36, 46, 47], we add the file size (LOC), code churn, and the number of the previous occurrence
of faults to our model, to control their effect. Here, (i) LOC: Number of lines of code in the file at
that specific release; (ii) Code Churn: The sum of lines added and removed in the file before that
specific release; (iii) No. of Previous-Bugs: The number of faults fixing related to that file before the
particular release r.

3.4.3 Topic Modeling to Identify Fault-Inducing Activities. For RQ5, we are interested in inves-
tigating what kind of activities once performed in smelly files, are more likely to introduce bugs
than other activities. We decided to analyze the commit messages that developers described when
they performed a change that was captured by the SZZ algorithm as a fault-inducing commit.
Having knowledge about those activities, developers could pay more attention to avoid introduc-
ing additional bugs. We collect all the fault-inducing commit messages related to smelly files as
described earlier. We then classify those commit messages into different topics of activities based
on the keywords mentioned by developers using a mix of automated and manual techniques. We
decided to apply both topic modeling strategies and manual text analysis. Similar to previous work
[48, 49], we used Latent Dirichlet Allocation (LDA) [50], a well-known topic modeling algorithm
to analyze the text and extract a set of frequently co-occurring words (i.e., topics). We treat the
commit messages as a corpus of textual documents, that is used as a basis for topic modeling. Given
a corpus of n documents f1, . . . , fn , topic modeling techniques automatically discover a set Z of
topics, Z = z1, . . . , zk . The variable k presents the number of topics. It is an input that controls the
granularity of the topics.

To generate the topic of activities introducing bugs, we combine both manual and automated
approaches to build a categorization of risky activities. Based on the developers’ commit messages,
similar to previous work [51], we used MALLET,22 a specific type of LDA implementation to gener-
ate a set of topics based on frequently co-occurring words. We removed stop words using MALLET
stop words list (e.g., a, the, is, this, punctuation marks, numbers, and non-alphabetical characters).
We also used Porter stemmer to reduce words to their root words (e.g., programmer became pro-
gram) [52]. Since our objective is to study the activities that could introduce bugs once performed

22http://mallet.cs.umass.edu/.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

http://mallet.cs.umass.edu/

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:21

Table 5. Percentage of JNI Files Participating in Design Smells in the Release of Nine Systems

Systems Releases Analyzed % Files with Smells Smells Density per KLOC

Zstd-jni 0.4.4 - latest release 61.36% 8.14

Javacpp 0.9 - 1.5.1-1 58.97% 17.84

Rocksdb 5.0.2 - latest release 36.30% 8.54

Java-smt 1.0.1 - 3.0.0 36.21% 26.08

VLC-android 3.0.0 - latest release 30.49% 17.67

Conscrypt 1.0.0.RC2 - 2.3.0 30.21% 14.05

Pljava REL1_5_STABLE - latest release 30.13% 7.59

Realm 0.90.0 - 5.15.0 11.67% 4.63

Jpype 0.5.4.5 - latest release 7.45% 7.45

Average 33.95% 12.44

in smelly files, we limited our study to the smelly files in which a bug was introduced (Flag = 1).
Thus, our dataset resulted in 2707 commit messages. We manually inspected the commit messages
to estimate the number of possible topics for each system and also to assign a meaningful name
to each topic. Once the number of possible topics was fixed, we used a python script that takes
as input the list of all the commit messages in a CSV file and returns the list of commit messages
with common keywords that could be used to build the topic. Two of the authors went through all
the topics extracted for all the systems, and manually assigned meaningful names to each topic.
The name of the topic was decided based on manual inspections of the commit messages and the
keywords used to build that topic. We relied on the keywords generated by MALLET but also
on frequent keywords captured during the manual analysis. We manually analyzed a total of 500
commits. To resolve the disagreements, two of the authors went through those commit messages
and discussed the main topics of activities performed on those commits. Through those analyses,
we aim to capture the possible types of activities that were described in the commit messages of
the bug-inducing commits.

4 STUDY RESULTS

In this section, we report on the results of our study by addressing the five research questions
defined in Section 3. We focus on the three key research objectives of our study. First, research
questions RQ1 and RQ2 investigate the prevalence of the multi-language design smells in software
systems. Then, research questions RQ3 and RQ4 evaluate the impacts of the design smells on
the fault-proneness of JNI systems. Finally, RQ5 investigates fault-inducing activities. We present
additional insights into the findings from the research questions later in Section 5.

4.1 RQ1: Do multi-language design smells occur frequently in open source projects?

We use our detection approach to detect occurrences of multi-language design smells following
the methodology discussed in Section 3. For each file, we compute the value of a variable Smellyi,r

that takes 1 if the file i contains at least one design smell in a specific release r , and 0 otherwise.
We also compute Nativei,r which takes 1 if the file i in a specific release r is native and 0 if not,
following the rules discussed in Section 3.4.1. Since our tool is focusing on the combination of Java
and C/C++, we compute for each release the percentage of files participating in at least one JNI
smell out of the total of JNI files (files involved in Java and C/C++).

Table 5 summarizes our results on the percentages of files with JNI smells in each of the studied
systems. We report in this table the average number of JNI files participating in at least one of the

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:22 M. Abidi et al.

Fig. 5. Evolution of design smells in the releases of the nine systems.

studied design smells for each system. The percentage for each release is available in our replication
folder.20 Our results show that, indeed, the JNI smells discussed in the literature are prevalent in the
nine studied open-source projects with average occurrences from 10.18% in Jpype system to 61.36%
in Zstd-jni. The percentage of files with smells differ from one project to another. We compute the
average of the percentage of smells in all the systems. We find that on average, one-third (33.95%)
of the JNI files in the studied systems contain multi-language design smells.

Besides analyzing in each system the percentage of files affected by each of the studied JNI
smells, we also investigate their evolution over the releases. Figure 5 presents an overview of the
evolution of the percentage of files participating in multi-language design smells in the releases of
each system. All the details and data are available in the replication folder. The X-axis in Figure 5
represents the releases analyzed. The Y-axis represents the percentage of files affected by at least
one of the studied design smells, while the lines are related to each system. Results show that these
percentages vary across releases in the nine systems with peaks as high as 69.04%. Some of these
systems i.e., Realm and Jpype contain respectively 4.61% and 6.41% in the first releases, but the
occurrences of smells increased over time to reach, respectively, 15.66% and 32.94%. Overall, the
number of occurrences of smells are increasing over the releases. Although, in some cases such as
in Rocksdb, the number of occurrences seems to decrease from one release to the next one, (from
43.78% to 31.76%). The fact that developers might not be aware of occurrences of such smells and
the lack of tools for their detection might explain the observed prevalence. The observed decrease
in the number of occurrences observed in certain cases could be the result of fault-fixing activities,
features updates, or any other refactoring activities. In general, as one can see in Figure 5, these
decreases are temporary; the number of occurrences often increase again in the next releases.
Overall, the proportions of files with smells are considerably high and the smells persist, thus
allowing the rejection of H1.

Summary of f indinдs (RQ1): JNI smells discussed in the literature are prevalent and persis-
tent in open-source projects. The number of their occurrences even increases over the releases.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:23

Table 6. Percentage of JNI Files Participating in Design Smells in the Releases of the Studied Systems

System↓/Smells→ UP UM TMS TMC UMI ASR EO EILC NHE NCO NSL HCD NURP MMM LRA

Conscrypt 79.60% 4.40% 0% 1.90% 0% 3.99% 0% 1.90% 3.99% 0% 5.71% 0% 3.80% 3.78% 3.78%

Realm 67.68% 3.066% 9.75% 14.86% 2.32% 4.33% 0% 12.58% 5.15% 0% 2.17% 0% 0 % 0% 0.79%

Java-smt 94.06% 2.96% 0% 2.96% 0% 0% 0% 0% 0% 0% 2.96% 0% 2.96% 0% 0%

Zstd-jni 10.46% 0.95% 13.98% 12.36% 3.47% 17.98% 0% 23.55% 21.45% 0% 5.74% 3.47% 0% 2.25% 0%

Rocksdb 44.55% 5.48% 34.48% 23.47% 0% 0.67% 0% 14.35% 0.67% 0.91% 2.85% 0.95% 0.95% 0.79% 0.10%

Javacpp 2.53% 31.70% 74.19% 19.49% 0% 0% 0% 69.14% 0% 0% 6.48% 2.51% 0% 0% 0%

Jpype 89.24% 0% 0% 0% 0% 1.78% 0% 0.35% 1.78% 0% 0% 0% 0% 8.25% 1.07%

Pljava 64.45% 35.62% 31.02% 8.42% 2.04% 0% 0% 4.36% 2.04% 0% 0% 0% 0% 2.04% 0%

VLC-android 63.67% 25.71% 24.74% 17.10% 7.34% 3.67% 0.82% 13.29% 3.67% 0% 3.92% 0% 6.01% 0% 3.67%

Median 64.45 4.4 13.98 12.36 0 1.78 0 12.58 2.04 0 2.96 0 0 0.79 0.1

Average 57.36 12.21 20.91 11.17 1.69 3.60 0.09 15.50 4.31 0.10 3.31 0.77 1.52 1.9 1.05

Acronyms: Up: UnusedParameter, UM: UnusedMethodDeclaration, TMS: ToomuchScattering, TMC: Toomuchclustring
UMI: UnusedMethodImplementation, ASR: AssumingSafeReturnValue, EO: ExcessiveObjects EILC: excessiveInterlang-
Communication, NHE: NotHandlingExceptions, NCO: NotCachingObjects, NSL: NotSecuringLibraries HCD: HardCod-
ingLibraries, NURP: NotUsingRelativePath, MMM: MemoryManagementMismatch, LRA: LocalReferencesAbuse.

4.2 RQ2: Are some specific multi-language design smells more frequent than others in

open source projects?

Similar to RQ1, we use our approach from Section 3 to detect the occurrence of the 15 design smells
in the nine subject systems. For each file and for each release, we defined a metric Smellyi,r which
takes the value 1 if the release r of the file contains the design smell type i and 0 if it does not
contain that specific smell. We compute for each release the number of files participating in that
specific smell. Note that the same file may contain more than one smell.

Table 6 shows the distribution of the studied smells in the analyzed open source systems. We
calculate the percentage of files containing these smells and compute the average. Since our goal
is to investigate if some specific smells are more prevalent than others, we compute the percent-
age of files containing that specific smell out of all the files containing smells. Our results show
that some smells are more prevalent than others, i.e., Unused parameter, Too much scattering, Too
much clustering, Unused Method Declaration, Not securing libraries, Excessive Inter-language com-
munication. In studied releases from Jpype, on average, 89.24% of the smelly files contain the smell
Unused parameter. In Java-smt, on average, 94.06% of the smelly files contain the smell Unused Pa-
rameters. Our results also show that some smells discussed in the literature and developers’ blogs
have a low diffusion in the studied systems, i.e., Excessive objects, Not caching objects, Local refer-
ence abuse, while the other smells are quite diffused in the analyzed systems. Conscrypt presents
79.60% occurrences of the design smell Unused Parameters. As described in the commit messages in
Conscrypt, this could be explained by the usage of BoringSSL which has many unused parameters.
Results presented in Table 6 report a range of occurrences from 0% to 94.06%. Some specific types
of smells seem to be more frequent than others. On average Unused Parameters represents 57.36%
of the existing smells, followed by the smell Too Much Clustering with 20.91%. We also report in
Table 7, the distribution of smells normalized by the number of KLOC.

For each system, in addition to analyzing the percentage of files affected by each type of smell,
we also investigate the evolution of the smell over the releases. Figures 6, 7, 8, 9, 10, and 11 provide
an overview of the evolution of smells respectively in Rocksdb, Javacpp, Pljava, Realm, Jpype, and
Java-smt releases. The X-axis in these figures represents the releases analyzed. The Y-axis repre-
sents the number of files in that specific system affected by that kind of design smells, while the
lines are related to the different types of smells we studied. Depending on the system, some smells

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:24 M. Abidi et al.

Table 7. Number of Design Smells per KLOC in the Releases of the Studied Systems

System↓/Smells→ UP UM TMS TMC UMI ASR EO EILC NHE NCO NSL HCD NURP MMM LRA

Conscrypt 6.091 7.089 0.0 0.022 0.0 0.07 0.0 0.07 0.16 0.0 0.15 0.0 0.25 0.02 0.13

Realm 1.81 0.086 0.075 0.097 0.024 0.04 0.0 2.36 0.12 0.0 0.011 0.0 0.0 0.0 0.010

Java-smt 8.34 16.56 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.15 0.78 0.0 0.0

Zstd-jni 2.0 0.22 0.11 0.23 1.09 1.08 0.0 1.60 1.15 0.0 0.078 0.07 0.0 0.50 0.0

Rocksdb 1.32 0.18 0.34 0.23 0.0 0.02 0.0 5.72 0.03 0.011 0.081 0.019 0.02 0.02 0.0

Javacpp 0.05 7.06 1.93 0.5 0.0 0.0 0.0 8.06 0.0 0.0 0.20 0.04 0.0 0.0 0.0

Jpype 3.18 0.0 0.0 0.0 0.0 1.37 0.0 0.007 1.32 0.0 0.0 0.0 0.0 1.5 0.08

Pljava 5.10 1.7 0.41 0.06 0.02 0.0 0.0 0.04 0.11 0.0 0.0 0.0 0.0 0.14 0.0

VLC-android 4.18 4.75 0.46 0.4 0.55 0.1 0.010 5.47 0.1 0.0 0.37 0.0 1.25 0.0 0.05

Acronyms: Up: UnusedParameter, UM: UnusedMethodDeclaration, TMS: ToomuchScattering, TMC: Toomuch-
clustring UMI: UnusedMethodImplementation, ASR: AssumingSafeReturnValue, EO: ExcessiveObjects EILC: exces-
siveInterlangCommunication, NHE: NotHandlingExceptions, NCO: NotCachingObjects, NSL: NotSecuringLibraries
HCD: HardCodingLibraries, NURP: NotUsingRelativePath, MMM: MemoryManagementMismatch, LRA: LocalRef-
erencesAbuse.

Fig. 6. Evolution of the different kinds of smells in Rocksdb releases.

seem more prevalent than the others. In Javacpp, Too Much Scattering, and Excessive Inter-language
Communication seem to be the predominant ones, while Unused Parameters is less frequent in this
system. However, in general, for other systems including Rocksdb and Realm, Unused Parame-
ters seems to be dominating. Results show that most of the smells generally persist within the
project. The smells tend to persist in general or even increase from one release to another.

Although, in some specific cases, for example, the design smell Unused Parameters in Rocksdb,
presented a peak of 82 and decreased to 28 in the next release. However, the number of files con-
taining this smell increased in the next releases and reached to 34 in the last release analyzed. We
studied the source code files containing some occurrences of the design smell unused parameters

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:25

Fig. 7. Evolution of the different kinds of smells in Javacpp releases.

Fig. 8. Evolution of the different kinds of smells in Pljava releases.

between releases (5.11.2 and 5.14.3) of Rocksdb to understand the reasons behind the peak and the
decrease. We found that some method parameters were unused on Rocksdb (5.11.2) and have been
refactored during the next releases by removing occurrences of this smell and also due to project
migration features. Another example of refactoring of the code smell Unused Parameters from one
release to another was observed in Conscrypt, where they refactored Unused Parameters occur-
rences due to errors generated by those occurrences in the release 1.0.0.RC14 (“commit message:
Our Android build rules generate errors for unused parameters. We cant enable the warnings in the
external build rules because BoringSSL has many unused parameters”). From our results, we can
clearly observe that occurrences of JNI smells are not equally distributed. We conclude that the

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:26 M. Abidi et al.

Fig. 9. Evolution of the different kinds of smells in Realm releases.

Fig. 10. Evolution of the different kinds of smells in Jpype releases.

proportions of files with specific smells vary significantly between the different kinds of smells.
We, therefore, reject hypothesis H2.

Summaryof f indinдs (RQ2): Some JNI smells are more prevalent than others, e.g., Unused
Parameters, Too Much Scattering, and Unused Method Declaration while others are less preva-
lent, e.g., Excessive Objects and Not Caching Objects.Most of the smells persist with an increas-
ing trend from one release to another in most of the systems.

4.3 RQ3: Are files with multi-language design smells more fault-prone than files

without?

Prior works [25, 36] show that design smells increase the fault-proneness of Java applications. Since
JNI systems introduce other kinds of design smells and those smells are prevalent as observed in

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:27

Fig. 11. Evolution of the different kinds of smells in Java-smt releases.

research questions RQ1 and RQ2, we are interested in studying the impacts of those design smells
on the fault-proneness of JNI systems. For that, we applied Fisher’s exact test [44] to check whether
the proportion of bugs varies between two samples (files with and without smells) as discussed
in Section 3.4.2. The columns Smelly-buggy (SB), Buggy-Notsmelly (BNS), Smelly-NotBuggy (SNB),
NotBuggy-NotSmelly (NBNS) in Tables 8 and 9 contain the values of the contingency tables for
the Fisher’s exact test; each row corresponding to a single release. The numbers reported in the
cells of these columns are the total number of JNI source code files (for the specific release) with
or without smells and with or without bugs, depending on the column. More specifically, these
columns present respectively: the total number of source code files with smells and are buggy
(SB), the total number of source code files containing bugs without occurrences of smells (BNS),
smelly source code files that are not buggy (SNB), and source code files that do not present any
occurrences of smells or bugs (NBNS). The value of the odds ratio (OR) greater than 1 from Fisher’s
exact test indicates that files with design smells have higher odds of being buggy compared to
files without design smells. The values OR < 1 indicate that files with design smells have lower
odds of having faults, while OR = 1 refers to no impact of design smells on fault-proneness of the
source files. The p-value shows the probability of observing the odds ratio by chance, and thus
lower values (<0.05) of p-value confirm the significance of the impacts of design smells on fault-
proneness. In addition to significant p-values, we examine the confidence intervals of the odds
ratios. A confidence interval specifies the range where the true odds ratio lies in. A significant
p-value value (<0.05) of an odds ratio (>1.0) with confidence interval not containing 1 confirms
a true relationship between design smells and fault-proneness. We marked the p-values of such
cases with (*) in Table 8 and Table 9.

Tables 8 and 9 report the results of applying Fisher’s exact test and present the values of odds
ratios for the studied systems. Each row of those tables shows, for each system and each release,
the odds for a file containing at least one type of design smells to be involved in a bug-inducing
change.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:28 M. Abidi et al.

Table 8. Fisher’s Exact Test Results for the Fault-Proneness of Files with and without Design Smells (1)

System Releases SB BNS SNB NBNS Odds Ratios p-values Confidence Interval

R
oc

k
sd

b

rocksdb-5.0.2 82 85 17 108 6.1287 <0.01* (1.2184, 2.4076)

rocksdb-5.4.6 89 90 23 98 4.2135 <0.01 (0.8979, 1.9787)
rocksdb-5.6.2 90 80 24 107 5.0156 <0.01* (1.0771, 2.1480)
rocksdb-5.9.2 97 84 30 101 3.8876 <0.01 (0.8563, 1.8592)
rocksdb-5.11.2 99 86 42 95 2.6038 <0.01 (0.4929, 1.4211)
rocksdb-5.14.3 50 101 38 88 1.1464 0.607 (−0.3729, 0.6462)
rocksdb-5.17.2 51 92 39 97 1.3787 0.249 (−0.1840, 0.8263)
rocksdb-5.18.3 50 101 43 88 1.0131 1.0 (−0.4848, 0.5109)
rocksdb-6.1.1 49 94 55 90 0.8529 0.541 (−0.6404, 0.3224)
rocksdb-latest release 49 101 56 83 0.7190 0.181 (−0.8108, 0.1511)

P
lj

a
va

pljava-1_4_3 0 36 0 100 - 1.0 -
pljava-rel1_5_stable 33 38 13 78 5.2105 <0.01 (0.9008, 2.4005)
pljava-1_5_0b3 32 33 14 83 5.7489 <0.01* (1.0026, 2.4954)
pljava-1_5_0 33 37 13 79 5.4199 <0.01 (0.9388, 2.4413)
pljava-1_5_1b1 32 38 14 78 4.6917 <0.01 (0.8077, 2.2839)
pljava-1_5_1b2 39 36 14 76 5.8809 <0.01* (1.0436, 2.4998)
pljava-1_5_2 38 34 15 78 5.8117 <0.01* (1.0392, 2.4806)
pljava-latest release 39 35 16 76 5.2928 <0.01 (0.9600, 2.3727)

R
ea

lm

realm-java-0.90.0 21 89 2 365 43.0617 <0.01* (2.2938, 5.2315)
realm-java-1.2.0 20 169 2 285 16.8639 <0.01* (1.3592, 4.2912)
realm-java-2.3.2 33 177 3 269 16.7175 <0.01* (1.6194, 4.0135)
realm-java-3.7.2 43 165 8 271 8.8280 <0.01* (1.3988, 2.9570)
realm-java-4.4.0 48 166 18 262 4.2088 <0.01 (0.8616, 2.0127)
realm-java-5.4.0 50 165 21 261 3.7662 <0.01 (0.7804, 1.8718)
realm-java-5.7.1 52 164 22 260 3.7472 <0.01 (0.7856, 1.8565)
realm-java-5.9.0 54 161 23 260 3.7915 <0.01 (0.8066, 1.8589)
realm-java-5.11.0 54 161 24 259 3.6195 <0.01 (0.7668, 1.8059)
realm-java-5.15.0 54 162 24 258 3.5833 <0.01 (0.7569, 1.7957)

V
L

C
-a

n
d
ro

id

vlc-android-3.0.92 19 23 8 40 4.1304 <0.01 (0.4460, 2.3907)
vlc-android-3.1.6 22 22 6 40 6.6666 <0.01 (0.8552, 2.9390)
vlc-android-3.1.0 22 22 6 40 6.6666 <0.01 (0.8552, 2.9390)
vlc-android-3.0.13 18 24 7 41 4.3928 <0.01 (0.4720, 2.4879)
vlc-android-latest release 21 23 13 33 2.3177 0.081 (−0.0322, 1.7134)
vlc-android-3.0.11 19 24 6 41 5.4097 <0.01 (0.6411, 2.7352)
vlc-android-3.0.0 19 22 6 43 6.1893 <0.01 (0.7709, 2.8747)
vlc-android-3.0.96 19 23 8 40 4.1304 <0.01 (0.4460, 2.3907)
vlc-android-3.1.2 22 22 6 40 6.6666 <0.01 (0.8552, 2.9390)

Jp
y

p
e

jpype-0.5.4.5 5 28 0 45 - <0.02 -
jpype-0.5.5.1 5 28 0 45 - <0.02 -
jpype-0.5.5.4 5 28 0 45 - <0.02 -
jpype-0.5.6 5 29 0 44 - <0.02 -
jpype-0.5.7 6 28 0 44 - <0.01 -
jpype-0.6.0 6 28 0 44 - <0.01 -
jpype-0.6.1 6 28 0 44 - <0.01 -
jpype-0.6.2 6 28 1 43 9.2142 <0.05 (0.0509, 4.3906)
jpype-0.6.3 6 28 3 43 3.0714 0.158 (−0.3432, 2.5875)
jpype-latest release 23 42 5 15 1.6428 0.430 (−0.6362, 1.6291)

* = significant p-values for odd ratios with confidence intervals not containing 1.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:29

Table 9. Fisher’s Exact Test Results for the Fault-Proneness of Files with and without Design Smells (2)

System Releases SB BNS SNB NBNS Odds Ratios p-values Confidence Interval

Ja
va

cp
p

javacpp-0.5 0 9 0 5 - 1.0 -
javacpp-0.9 10 4 3 3 2.5 0.612 (−1.0599, 2.8926)
javacpp-1.1 0 10 0 4 - 1.0 -
javacpp-1.2 9 5 5 2 0.72 1.0 (−2.2994, 1.6424)
javacpp-1.2.1 12 5 2 2 2.4 0.574 (−1.3449, 3.0958)
javacpp-1.2.7 7 4 7 3 0.75 1.0 (−2.1148, 1.5395)
javacpp-1.3 10 1 4 6 15.0 <0.05 (0.2942,5.1218)
javacpp-1.3.2 11 6 3 1 0.6111 1.0 (−2.9646, 1.9797)
javacpp-1.4 12 5 4 2 1.2 1.0 (−1.8101, 2.1747)
javacpp-1.4.2 14 4 3 3 3.5 0.306 (−0.6955, 3.2011)
javacpp-1.4.4 11 2 8 4 2.75 0.378 (−0.9147, 2.9379)
javacpp-1.5 14 5 5 1 0.56 1.0 (−2.9573, 1.7977)
javacpp-1.5.1-1 10 4 9 2 0.5555 0.660 (−2.5093, 1.3337)

Z
st

d
-j

n
i

zstd-jni-0.4.4 4 0 0 21 - <0.01 -
zstd-jni-1.3.0-1 13 0 9 15 - <0.01 -
zstd-jni-1.3.2-2 15 2 7 13 13.9285 <0.01 (0.8958, 4.3721)
zstd-jni-1.3.3-1 16 2 7 13 14.8571 <0.01 (0.9649, 4.4320)
zstd-jni-1.3.4-1 20 1 8 12 30.0 <0.01* (1.2025, 5.5998
zstd-jni-1.3.4-8 20 1 8 12 30.0 <0.01* (1.2025, 5.5998)
zstd-jni-1.3.5-3 20 1 8 12 30.0 <0.01* (1.2026, 5.5999)
zstd-jni-1.3.7 20 1 8 12 30.0 <0.01* (1.2026, 5.5998)
zstd-jni-1.3.8-1 20 1 8 12 30.0 <0.01* (1.2026, 5.5998)
zstd-jni-1.4.0-1 22 1 7 12 37.7142 <0.01* (1.4198, 5.8403)
zstd-jni-latest release 22 1 7 12 37.7142 <0.01* (1.4198, 5.8403)

C
on

sc
ry

p
t

conscrypt-1.1.1 42 52 12 46 3.0961 <0.01 (0.3758, 1.8844)
conscrypt-1.0.0.RC14 4 64 0 54 - 0.128 -
conscrypt-1.0.1 38 55 11 43 2.7008 <0.02 (0.2128, 1.7743)
conscrypt-2.1.0 47 53 17 42 2.1908 <0.05 (0.0975, 1.4711)
conscrypt-1.0.2 38 55 11 43 2.7008 <0.02 (0.2128, 1.7742)
conscrypt-1.4.2 6 0 55 97 - <0.01 -
conscrypt-1.2.0 45 52 15 46 2.6538 <0.01 (0.2697, 1.6823)
conscrypt-1.0.0.RC11 37 55 11 43 2.6297 <0.02 (0.1844, 1.7493)
conscrypt-1.0.0.RC2 23 20 6 90 17.25 <0.01* (1.8270, 3.8686)
conscrypt-1.0.0.RC8 26 59 11 46 1.8428 0.172 (−0.1922, 1.4148)

Ja
va

-s
m

t

java-smt-0.60 0 23 0 7 - 1.0 -
java-smt-1.0.1 21 20 5 9 1.89 0.3667 (−0.6165, 1.8896)
java-smt-2.0.0-alpha 22 16 11 12 1.5 0.5966 (−0.6357, 1.4467)
java-smt-2.2.0 30 19 9 10 1.7543 0.4132 (−0.5061, 1.6304)
java-smt-3.0.0 19 17 22 12 0.6096 0.3414 (−1.4556, 0.4658)

* = significant p-values for odd ratios with confidence intervals not containing 1.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:30 M. Abidi et al.

In most of the analyzed releases, Fisher’s exact test indicates a significant difference of propor-
tions between fault-prone JNI files with and without design smells. In some systems (e.g., Rocksdb,
Javacpp, and Java-smt), odds ratios for specific releases are less than one, or the p-value is not
statistically significant. However, in general, the values of odds ratios are high (in general, greater
than 2) in most cases. For Zstd-jni, we found odds ratios always higher than 13. Having this high
odds could be explained by the large number of smells contained in that system, as described in
Table 5, but also by the nature of smells existing in this system. The higher values of statistically
significant odds ratios in most cases and the confidence intervals of those significant odds ratios
being above the value 1 in some cases show that multi-language design smells are related to fault-
proneness. However, this relationship varies with systems and further investigation is necessary
to generalize.

From analyzing fault-fixing commit messages, we identified some commits reporting a refactor-
ing for specific smells e.g., “removing unused parameter”, “implementing the handling of exception”.
This could explain cases where Smelly-Buggy values decrease from one release to the other, while
the overall number of occurrences of smells are in general increasing from one release to the other,
as shown in Figure 5. For example, in Rocksdb, Smelly-Buggy values are decreasing from one re-
lease to the other, while Smelly-NonBuggy is increasing. This could be explained by the nature of
the smells and the refactoring applied. Since one file can contain more than one type of smell, the
refactoring of some specific types of smells could decrease the risk of bugs while leaving the file
still smelly. This suggests that some specific smells could be more correlated with bugs than oth-
ers. This hypothesis motivates us to further investigate the relationship between specific types of
smells and fault-proneness (RQ4) and also the activities that once performed in smelly files could
lead to bugs (RQ5).

We, therefore, conclude that, in most cases, there is a relation between multi-language design
smells and fault-proneness in the context of JNI systems: a greater proportion of JNI files partici-
pating in design smells experienced bugs compared to other classes. We therefore reject H3. The
rejection of H3 and the statistically significant odds ratios provide a posteriori concrete evidence
of the impact of multi-language design smells on fault-proneness in the context of JNI files.

Summaryof f indinдs (RQ3): Our results suggest that files with occurrences of the studied
smells are more likely to be associated with faults than files without these smells and this
relationship is statistically significant in most cases.

4.4 RQ4: Are some specific multi-language design smells more fault-prone than

others?

Findings from RQ3 suggest that source code files with smells in JNI systems are often more prone
to faults than files without smells. Although these findings give a general impression of the im-
pacts of smells on the fault-proneness of JNI systems, it is important to know which smell(s) are
more related to faults. When we are able to identify some specific smells to be more related to
faults, we can prioritize those smells during the maintenance of the JNI systems. As presented
in our methodology described in Section 3.4.2, we apply multivariate logistic regression to ex-
amine whether some types of design smells are more related to fault-proneness. In our logistic
regression models, independent variables are the number of occurrences of each type of design
smells. The dependent variable is a dichotomous flag (buggy) that assumes values either 0 (non-
buggy) or 1 (buggy). For each system, we build a logistic regression model and analyze the model
coefficients and p-values for individual types of smells. To address multicollinearity among the
independent variables, we drop one of the variables from each highly correlated pair of variables

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:31

from the models. From our analysis, we observed two pairs of smells highly correlated—(Not Han-
dling Exceptions, Assuming Safe Return Value) and (Not Securing Libraries, Not Using Relative Path)
with correlation (Spearman’s) coefficients of 0.91 and 0.60, respectively. We keep Not Handling
Exceptions and Not Securing Libraries as they are more prevalent in the systems compared to the
other smell in each correlated pair. Similarly, we drop the variable code churn from the model
as we found it to be highly correlated (0.99) with the file size (LOC). We chose Spearman’s rank
correlation as it is non-parametric and does not require data to be normally distributed.

We rank the independent variables based on the logistic regression model coefficients (log odds)
and the corresponding p-values. Table 10 presents the model coefficients and their ranking for each
system. The coefficients with significant p-values (<0.01) are presented in boldface. To evaluate
the relationships of individual types of smells with bug-proneness, we summarize the data from
Table 10 into Table 11 to identify the top five smell types that are more related to bugs. For each
smell type, Table 11 presents the percentage of systems where the smell type has positive log odds,
the number of times the smell type is in the top five in the ranking of positive log odds, and the
number of systems where the log odds are statistically significant. For each smell, we consider
only the system where we are able to calculate the model coefficients and thus we exclude the
systems where we do not get the coefficient values due to singularities. For the smell Too Much
Clustering for example, in Table 10, for eight (8) out of nine (9) systems (i.e., except Jpype) we have
values for model coefficients. Out of these eight systems, for five (5) systems (Conscrypt, Javacpp,
Rocksdb, VLC-android, and Zstd-jni i.e., 5/8 (62.5%) times) Too Much Clustering has positive values
for log odds. All of these five times (systems) the log odds were ranked in the top five, having
significant p-values in four systems (Conscrypt, Javacpp, VLC-android, and Zstd-jni). For all smell
types in Table 10, we present such summary in Table 11. We then report the top five smell types
(underlined in Table 11) based on the percentage of systems in which the smell have positive log
odds, number of times the positive log odds were in the top five ranking, and the number of systems
in which the log odds have significant p-values respectively as shown in Table 11. For the control
variables LOC and the number of previous bug-fix, we observed positive log odds in most of the
systems. So, these coefficients for the control factors agree with the known impacts of these two
variables on fault-proneness. We also observed negative log odds for the smells from the logistic
regression models for the studied systems. The negative regression coefficients might be inter-
preted as an indication that the corresponding smells are negatively related to fault-proneness.
However, this scenario varies across the studied systems.

As shown in Table 10, the log odds of the independent variables vary across the systems.
In four of the systems (Conscrypt, Javacpp, VLC-android, and Zstd-jni), we observe that the log
odds for the smells are statistically significant (<0.01). These four systems reject the hypoth-
esis H4, meaning that different smells have different impacts on fault-proneness. However, we
cannot generalize it to other systems to have a concrete conclusion. Thus, given the varying
log odds of the smells from our regression models for individual systems, we conclude that the
relationships between different types of multi-language smells and fault-proneness are system
dependent.

Given that we have limited evidence to draw a firm conclusion on the strength of the rela-
tionships between different types of smells and fault-proneness, we focus on identifying smells
that are relatively more related to faults based on the ranking of the values of the log odds and
their significance. In Table 11, the smell type Too Much Clustering has positive log odds in 62.5%
(5/8) of the systems. Each time, log odds were among the top 5 and was statistically significant
in three systems. Similarly, Too Much Scattering, Unused Parameters, Hard Coding Libraries and
Memory Management Mismatch are among the top five smells with positive log odds in 100%(6/6),
66.6%(6/9), 75%(3/4), and 50%(2/4) systems, respectively. These smells are likely to have a strong

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:32 M. Abidi et al.

T
a
b

le
10

.
L

o
g

L
ik

el
ih

o
o

d
o

f
D

iff
er

en
t

S
m

el
ls

fr
o

m
th

e
L

o
g
is

ti
c

R
eg

re
ss

io
n

m
o

d
el

s
fo

r
B

u
g
-p

ro
n

en
es

s
o

f
th

e
S

tu
d

ie
d

S
y

st
em

s

D
e
si

g
n

S
m

e
ll

s
↓

/
S

y
st

e
m

s→
C

on
sc

ry
p
t

Ja
va

-s
m

t
Ja

va
cp

p
Jp

y
p
e

P
lj

a
va

R
ea

lm
R

oc
k
sd

b
V

L
C

-a
n

d
ro

id
Z

st
d
-j

n
i

C
oe

ff
.R

an
k

C
oe

ff
.R

an
k

C
oe

ff
.

R
an

k
C

oe
ff

.
R

an
k

C
oe

ff
.R

an
k

C
oe

ff
.

R
an

k
C

oe
ff

.
R

an
k

C
oe

ff
.R

an
k

C
oe

ff
.

R
an

k

E
xc

es
si

ve
In

te
r-

la
n

gu
ag

e
−9

.5
3

8
e
+

1
5

N
A

−1
.7

6
5

e
+

1
4

−5
.3

80
e+

01
−4

.6
49

e+
01

4.
49

5
2

1.
64

0e
+

01
4
−7

.6
5

3
e
+

1
3

−4
.2

6
5

e
+

1
3

C
om

m
u

n
ic

at
io

n

T
oo

M
u

ch
C

lu
st

er
in

g
3

.2
8

0
e
+

1
5

1
−6

.8
64

e+
03

3
.2

8
0

e
+

1
5

1
N

A
−5

.4
88

e+
02

−9
.5

14
e+

01
8.

59
3e

+
02

3
1

.2
6

5
e
+

1
5

2
2

.9
4

9
e
+

1
4

3

T
oo

M
u

ch
Sc

at
te

ri
n

g
N

A
N

A
2

.3
0

4
e
+

1
4

4
N

A
1.

49
2e

+
02

1
9.

31
0e

+
01

1
1.

32
4e

+
03

2
3

.4
3

8
e
+

1
5

1
1

.0
7

7
e
+

1
5

2

U
n

u
se

d
M

et
h

od
D

ec
la

ra
ti

on
−6

.2
7

5
e
+

1
3

2.
84

6e
+

01
1

9
.7

9
9

e
+

1
3

6
N

A
4.

88
3e

+
01

2
−6

.0
92

e+
01

−6
.7

85
e+

01
−6

.3
5

9
e
+

1
2

−2
.4

4
8

e
+

1
3

U
n

u
se

d
M

et
h

od
Im

pl
em

en
ta

ti
on

N
A

N
A

N
A

N
A

−3
.4

46
e+

02
−2

.2
88

e+
02

N
A

−5
.2

3
7

e
+

1
4

9
.5

1
1

e
+

1
3

5

U
n

u
se

d
P

ar
am

et
er

8
.1

4
5

e
+

1
3

3
8.

49
7

2
7

.4
2

1
e
+

1
4

2
−5

.5
27

e-
02

−7
.0

90
e-

02
4.

82
8

3
−2

.2
86

e+
01

3
.3

6
3

e
+

1
3

3
2

.0
9

2
e
+

1
3

7

E
xc

es
si

ve
O

bj
ec

ts
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A

N
ot

H
an

dl
in

g
E

xc
ep

ti
on

s
2

.0
8

9
e
+

1
4

2
N

A
N

A
1.

99
3e

+
01

1
−1

.9
99

e+
02

−9
.4

45
e+

01
−4

.2
70

e+
01

−2
.9

5
1

e
+

1
5

2
.3

7
3

e
+

1
4

4

N
ot

C
ac

h
in

g
O

bj
ec

ts
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A
N

A

N
ot

Se
cu

ri
n

g
Li

br
ar

ie
s

−2
.9

1
5

e
+

1
3

1.
09

3
3

3
.3

0
8

e
+

1
4

3
N

A
N

A
−9

.2
01

e+
01

−2
.4

98
e+

03
−8

.1
8

5
e
+

1
4

−1
.5

6
9

e
+

1
5

H
ar

d
C

od
in

g
Li

br
ar

ie
s

N
A

−8
.6

65
e+

01
1

.2
3

5
e
+

1
4

5
N

A
N

A
N

A
4.

93
6e

+
03

1
N

A
2

.1
3

5
e
+

1
5

1

M
em

or
y

M
an

ag
em

en
t

M
is

m
at

ch
−1

.1
8

0
e
+

1
5

N
A

N
A

1.
16

2e
-0

1
2

N
A

N
A

−1
.3

93
e+

03
N

A
4

.6
8

4
e
+

1
3

6

Lo
ca

lR
ef

er
en

ce
s

A
bu

se
−1

.3
0

1
e
+

1
5

N
A

N
A

−2
.4

62
e+

02
N

A
−1

.8
91

e+
02

−3
.4

74
e+

04
−8

.6
2

0
e
+

1
5

N
A

LO
C

−8
.4

5
9

e
+

1
1

−4
.2

80
e-

03
1

.1
5

9
e
+

1
1

8.
46

8e
-0

5
5.

32
8e

-0
4

2.
48

8e
-0

3
8.

71
3e

-0
1

1
.0

9
1

e
+

1
1

5
.3

3
1

e
+

1
0

P
re

vi
ou

s
bu

g-
fi

x
6

.3
6

3
e
+

1
4

1.
86

4e
+

02
1

.2
9

3
e
+

1
5

5.
72

8e
+

01
3.

01
0e

+
02

9.
48

0e
+

01
1.

44
8e

+
03

7
.8

7
3

e
+

1
4

7
.4

3
7

e
+

1
4

N
u

ll
de

vi
an

ce
20

34
.3

5.
20

10
e+

02
34

9.
15

1.
09

02
e+

03
2.

39
75

e+
03

6.
63

78
e+

03
40

48
.2

4
12

45
.1

0
58

9.
62

R
es

id
u

al
de

vi
an

ce
15

13
.8

2.
72

56
e-

09
25

95
.1

4
3.

56
22

e-
10

4.
80

79
e-

10
8.

87
74

e-
10

8.
54

75
36

0.
44

25
95

.1
4

A
IC

15
35

.8
16

26
15

.1
16

20
24

34
.5

5
38

4.
44

11
07

.3

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:33

Table 11. Fault-Proneness of Different Types of Smells Based on Logistic Regression Analysis

Number and Percentage of Systems
Smell Types LO > 0 LO in Top 5 (LO > 0 and p < 0.01)
Excessive Inter-language Communication 25%(2/8) 2 0
Too Much Clustering 62.5%(5/8) 5 4
Too Much Scattering 100%(6/6) 6 3
Unused Method Declaration 37.5%(3/8) 2 1
Unused Method Implementation 25%(1/4) 1 1
Unused Parameters 66.6%(6/9) 5 4
Not Handling Exceptions 42.8%(3/7) 3 2
Not Securing Libraries 28.5%(2/7) 2 1
Hard Coding Libraries 75%(3/4) 3 2
Memory Management Mismatch 50%(2/4) 1 1
Local References Abuse 0%(0/5) 0 0
Excessive Objects NA NA NA
Not Caching Objects NA NA NA
LO = Log Odds of the corresponding smell from the logistic regression model.
NA = Corresponding Log odds are not available from the LR models due to singularities

relation with fault-proneness. Besides, the smells Not Handling Exceptions, Unused Method Dec-
laration, and Not Securing Libraries have significant positive log odds for 2 (Conscrypt, Zstd-jni),
1 (Javacpp), and 1 (Javacpp) system(s), respectively; indicating some degree of relation with fault-
proneness. Excessive Inter-language Communication and Local References Abuse which have no
significant positive log odds are less likely to be associated with faults.

We also build a single logistic regression model for all the systems combined to evaluate how
the findings from individual systems generalize. We presented the regression results for the smells
in Table 12. We observed that smells Excessive Inter-language Communication, Too Much Cluster-
ing, Too Much Scattering, Unused Method Declaration, Unused Parameters, and Not Handling Ex-
ceptions have positive log odds with significant p-values (<0.01). This is an indication that these
smells have statistically significant relationships with fault-proneness. This finding corroborates
our findings from the analysis of individual systems for most cases. However, we did not observe
significant relationships between multi-language smells and fault-proneness for the remaining
smell types (in the models for all systems combined). Now, if we consider positive log odds with
significant p-values in the logistic regression model for all systems combined (Table 12) and the
percentage of positive log odds for regression models for individual systems (Table 11), we observe
that the smell types Too Much Clustering, Too Much Scattering, Unused Parameters, Not Handling
Exceptions, and Hard Coding Libraries are the most related to fault-proneness. However, this rela-
tionship varies with systems. One important point to note is the fact that smells suggested by our
empirical results to be more related to fault-proneness constitute roughly over 80% of the smells
in the studied systems (details in Table 6). This further shows that it is important to detect and
remove these smells from the systems as soon as possible.

To study the relationships between multi-language smells and fault-proneness, we also inves-
tigate the correlation (Spearman’s) between the number of smells of individual types in a file and
the number of bugs associated with the corresponding file. We observed that Not Using Relative
Path (0.48), Not Handling Exceptions (0.32), Excessive Inter-language Communication (0.30), Local
References Abuse (0.24), Hard Coding Libraries (0.19), and Too Much Clustering (0.18) are the top

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:34 M. Abidi et al.

Table 12. Fault-Proneness of Different Types of Smells Based on Logistic

Regression Model for All Systems

Smell Types Log Odds p-values
Excessive Inter-language Communication 2.985e-01 1.11e-07 (<0.01)
Too Much Clustering 4.262e+00 0.000898 (<0.01)
Too Much Scattering 8.359e+00 1.82e-15 (<0.01)
Unused Method Declaration 9.078e-01 <2e-16 (<0.01)
Unused Method Implementation −1.255e+01 0.894915
Unused Parameters 5.695e-01 <2e-16 (<0.01)
Not Handling Exceptions 3.248e+00 0.000217 (<0.01)
Not Securing Libraries −4.469e-01 0.813090
Hard Coding Libraries 1.841e+00 0.546194
Memory Management Mismatch −9.255e+00 0.998258
Local References Abuse −1.172e+01 0.999968
Excessive Objects NA NA
Not Caching Objects NA NA
NA = Corresponding Log odds are not available from the LR models due to singularities

smells based on the correlation with faults, although most of these and the remaining correlations
are weak. Also, we mentioned that Not Using Relative Path was dropped from our logistic regres-
sion models because of its high correlation with Not Securing Libraries. So, we cannot draw a firm
conclusion on the impacts of smells on fault-proneness based on these correlation results.

To have better insights into the identified relationships between the different types of JNI smells
and bugs and to understand the bug-smell contexts in the studied systems, we further manually
investigated a random sample of commit messages associated with bugs. From analyzing these
commit messages, we found some commit messages clearly suggesting that some specific smells
are often related to bugs. For example, in the release 1.0.0.RC14 of Conscrypt, a commit message
is clearly specifying errors related to the code smell Unused Parameters (“Our Android build rules
generate errors for unused parameters. We can’t enable the warnings in the external build rules because
BoringSSL has many unused parameters”). The same goes for Memory Management Mismatch, in
Realm, a commit message was discussing errors related to memory management “DeleteLocalRef
when the ref is created in loop (#3366) Add wrapper class for JNI local reference to delete the local
ref after using it”. Another example from Conscrypt discussing bugs related to native memory
management “This fixes a memory leak in NativeCrypto_i2d_PKCS7. It never frees derBytes”. The
smell Not Handling Exceptions is also discussed as related to the bug 3482 in Realm (“Add cause
to RealmMigrationNeededException (#3482)”). VLC-android also presents bugs related to the smell
Not Handling Exceptions “rework exceptions throwing from JNI”. Similarly, other commit messages
were also describing bugs related to Unused Method Declaration. “There were a bunch of exceptions
that are being thrown from JNI methods that aren’t currently declared”, and “Fix latent bug in unused
method” present examples extracted respectively from Conscrypt and Pljava. Thus, we see that our
identified smells are often related to bugs which highlight practical contexts and usability of our
findings.

We also analyzed some quality attributes of our models such as Null deviance, Residual deviance,
and Akaike’s Information Criterion (AIC) as presented in Table 10. We observe that there are larger
differences between null deviance and the residual deviance for the models of all the systems
indicating a good fit of the regression models. We observe lower values for AIC for most of the

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:35

Table 13. Activities Introducing Bugs in Smelly Files

No Activities Example of Keywords Systems

1 Compression
tasks

compression, decode, memory, blocks, encode,
compaction, streaming, frames, block, dictionary.

Rocksdb, Zstd-jni

2 Data conversion parser, type, container, basic, declaration, write,
invalid, convert, string, coverage.

Rocksdb, Realm, Pljava, Javacpp,
Conscrypt, Java-smt, Zstd-jni

3 Memory
management

buffer, messagesize, memory, leak, local, reference,
flush, memtable, allocation, garbage.

Rocksdb, Realm, Conscrypt, Pljava,
Jpype, Javacpp

4 Restructuring the
code

add, update, remove, code, reorder, native, move,
public, improve, change.

Rocksdb, VLC-android, Conscrypt,
Jpype, Pljava

5 Database
management

stored, db, database, persistence, key, data, visible,
size, file, timestamp.

Rocksdb, Pljava

6 API usage external, library, api, include, expose, public,
integrate, allow, streaming, wrapper.

VLC-android, Realm, Conscrypt,
Rocksdb, Pljava, Zstd-jni,Java-smt

7 Feature migration upgrade, support, migrate, integrate, create, legacy,
simplify, add, format, update.

Realm, Javacpp, Rocksdb, Java-smt,
Zstd-jni

8 Network
management

sslsocket, encrypt, socket, nativessl, token,
hostname, protocol, platform, sslSession,
activesession.

Conscrypt, Rocksdb

9 Exception
management

occur, handle, check, exception, throw, return, fix,
pointer, illegal, runtime.

Conscrypt, Javacpp, Jpype, Java-smt

10 Threads
management

thread, pull, execution, reflect, client, transaction,
monitor, notify, mutex, log.

Pljava, Rocksdb, Realm

11 Performance
management

time, wrap, performance, execution-time,
regression, cache, shared, resources, bundle,
increase.

Zstd-jni, Rocksdb

12 Compiler
management

compiler, resolve, failure, check, warnings, support,
JNI_ABORT, error, illegal, dynamic.

Jpype, Rocksdb

regression models indicating the simplicity of the models with comparatively higher values for
Conscrypt, Javacpp, VLC-android, and Zstd-jni.

Summaryof f indinдs (RQ4): We conclude that, although not always significant, there exists
a relation between types of smells and the fault-proneness. The relationship is not consis-
tent for all types of smell and across all the systems. Smell types Too Much Scattering, Too
Much Clustering, Unused Parameters, Hard Coding Libraries, and Not Handling Exceptions are
observed to be more related to faults compared to other smells, and thus should be prioritized
during maintenance.

4.5 RQ5: What are the activities that are more likely to introduce bugs in smelly files?

Since the risk of having bugs could differ from one activity to the other, we decided to investigate
what kind of activities once performed in smelly files could increase the risk of bug occurrences.
Having knowledge of risky activities developers and maintainers could reduce the risk of bugs
in smelly files. To study the activities that could introduce bugs in smelly files, we collected the
fault-inducing commits messages and performed a topic modeling, combining a mix of manual
and automatic approaches as described in Section 3.

Table 13 lists 12 activities that are more likely to introduce bugs in smelly files. For each ac-
tivity the table lists the systems from which the activity was extracted. For each activity, we also
present examples of keywords used to build the topic for that activity. For example, the activ-

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:36 M. Abidi et al.

ity memory management, was extracted using a set of keywords including: buffer, memory, leak,
flush, reference, local, memtable from Rocksdb, Realm, Conscrypt, and Jpype. “Add more numbers
to float-conversion test, add new unit-test for float-conversion”, is an example of a commit message
describing data conversion activity when the bug was introduced, extracted from Java-smt. An-
other example of commit message that introduced bugs extracted from Rocksdb: “Another change
is to only use class BlockContents for compressed block, and narrow the class Block to only be used
for uncompressed blocks, including blocks in compressed block cache”. This commit message is re-
lated to compression activities. From Zstd-jni, the following commit messages “expose faster API to
allow re-using of dictionaries” refers to the usage of APIs. Those activities were extracted from com-
mit messages of fault-inducing commits. Developers performed those activities in files containing
occurrences of multi-language design smells when the bug was introduced.

From analyzing the commit messages and topics of activities, we found that activities related to
data conversion, memory management, API usage, code restructuring, and exception management
are the most common activities that could increase the risk of bugs when performed in smelly files.
Activities related to the compiler management, threads management, and compression tasks could
also induce bugs in smelly files.

To understand why these activities seem to be risky, we decided to investigate further these
activities at the source-code level. For example, zstd.java is a native class from Zstd-jni system.
This class contains 1351 lines of code with 75 native methods and exhibits the smell Too Much
Clustering. This class combines methods performing distinct responsibilities, i.e., compression, de-
compression, computation, data access, and utility methods. As per commit messages identified
as introducing bugs, the developer was reordering the statics methods, adding JNI wrappers, and
performing compression tasks “Reorder the static methods, All compression first then all decom-
pression then the rest, inputs checking + utility methods”, “Add Java wrappers and C implemen-
tations of compress/decompress using direct ByteBuffer”. This class contains two types of smells,
Too Much Clustering and Excessive Inter-language Communication. The nature of those two smells
is by definition adding complexity to the code by making the readability of such classes hard. Thus,
restructuring the code of a large native class could have increased the risk of introducing bugs.
Indeed, applying changes on multi-language code could bring some confusion if the developer
is not familiar with the components involved in the multi-language interaction. Similarly, activi-
ties related to compression are declared in Java side and mainly implemented in the C/C++ side
(jni_zstd.c). Developers should have knowledge of both implementations to correctly perform a
change, especially that this class contains Excessive Inter-language Communication between Java
and C/C++ when performing compression activities. Another example is illustrated by Listing 12.
It presents a function extracted from the C file jni_zdict.c from Zstd-jni system. A developer was
“adding support for legacy dictionary trainer” in this smelly function when the bug was intro-
duced. However, in the context of JNI, it is important to always perform checks to ensure that the
native execution was performed correctly. As described in Section 2.3, when checking JNI excep-
tions, we should add a return statement just after throwing the excepting to interrupt the execution
flow and exit the method in case of errors. The ThrowNew() functions do not interrupt the control
flow of the native method. In case an error occurred when retrieving the jclass, the exception will
not be thrown in the JVM until the native method returns. Developers should be aware of how to
implement the exception in the context of JNI systems to avoid introducing bugs related to mis-
handling JNI exceptions. Activities related to the conversion of types could also introduce bugs as
expressed by a commit message extracted from Javacpp ; i.e., “Provide ‘BytePointer’ with value
getters and setters for primitive types other than ‘byte’ to facilitate unaligned memory accesses”.

Another example of bugs related to the management of the memory is extracted from Pljava,
c source code file JNICalls.c, “Eliminate threadlock ops in string conversion”. Both of those files

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:37

exhibit the smell Memory Management Mismatch. Activities related to data and type conversion
could increase the risk of bug because when converting types from Java to C/C++, the conversion
will raise two categories of types; primitive types and reference types. Primitive types are simple
to convert, we usually add j in front of the type, e.g., int become jint, float become jfloat, and
so on. However, for the reference types, i.e., Class, Object, and String, developers should use the
predefined method to correctly perform the conversion. However, it happens that they forget to re-
lease the memory after such conversion which could introduce additional bugs including memory
leaks. Listing 13 presents an example extracted from Pljava as introducing bugs. In this example,
the method GetObjectArrayElement is used to capture a Java array. However, the memory is
not released after usage as done in Listing 12. From the above examples, we conclude that some
specific types of activities are relatively more frequently associated with bugs, especially in the
context of multi-language design smells. Developers should be cautious while performing those
activities.

Listing 12. Example of Bug in Smelly Method 1/2.

Listing 13. Example of Bug in Smelly Method 2/2.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:38 M. Abidi et al.

Summaryof f indinдs (RQ5): Activities related to data conversion, memory management,
code restructuring, API usage, and exception management are the most common activities that
could increase the risk of bugs once performed in smelly files, and thus should be performed
carefully.

5 DISCUSSION

This section discusses the results reported in Section 4.

5.1 Multi-language Design Smells

We used srcML parser due to its ability to provide a single xml file combining source code files
written in more than one programming language. Languages supported in the current version of
srcML include Java, C, C++, and C#.23 However, this could be extended to include other program-
ming languages [53]. The detection approach presents some limitations. The recall and precision
vary depending on the type of design smells and mainly on the naming convention used to imple-
ment the JNI projects. For the smell Unused Method Declaration, we are missing some occurrences
due to the syntax used in the C implementation that is not completely following the JNI naming
convention (e.g., Pljava jobject pljava_DualState_key). For Local References Abuse, we are not con-
sidering situations in which predefined methods could be used to limit the impact of this design
smell, i.e., PushLocalFrame24 and PopLocalFrame.25 These methods were excluded because by a
manual validation when defining the smells, we found that those methods do not always prevent
occurrences of the design smells and inclusion of those may result in false negatives. Our detection
approach also presents some limitations in the detection of Not Using Relative Path, particularly in
situations where the path could be retrieved from a variable or concatenation of strings. However,
this was not captured as a common practice in the analyzed systems. We refined our detection
rules to favor the recall over precision, as was done for smells detection approaches for mono-
language systems [35, 54]. However, by refining some rules as explained earlier for the smell Local
References Abuse, and mainly due to some situations that are not coherent with the standard imple-
mentation of JNI code, we ended up having on an average a better precision. The same goes for the
smell Memory Management Mismatch. Indeed, we implemented a simple detection approach that
could be applied to detect the smells following the definitions and rules presented in this article.
Thus, this could not be generalized to all memory allocation issues. The detection approach relies
on rules specific to the JNI usage. Thus, other native methods that could be implemented without
considering JNI guidelines could lead to false positives and false negatives. To reduce threats to the
validity of our work, we manually verified instances of smells reported by our detection approach
on six open source projects along with our pilot project and measured the recall and precision of
our detection approach as described in Section 3.

Distribution of JNI Smells. From our results we found that most of the studied smells specific to
JNI systems are prevalent in the selected projects. Results from the studied systems reflect a range
from 10.18% of smelly files in Jpype system to 61.36% of smelly files in Zstd-jni. On average, 33.95%
of the JNI files in the studied systems contain multi-language design smells. Multi-language sys-
tems offer numerous benefits, but they also introduce additional challenges. Thus, it is expected
to have new design smells specific to such systems due to their heterogeneity. The prevalence
of multi-language smells in the selected projects highlights the need for empirical evaluation

23https://www.srcml.org/about.html.
24https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#PushLocalFrame.
25https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#PopLocalFrame.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

https://www.srcml.org/about.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#PushLocalFrame
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#PopLocalFrame

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:39

targeting the analysis of multi-language smells and also the study of their impact on software
maintainability and reliability. We also analyzed the persistence of these smells. Our results show
that overall the number of smells usually increases from one release to the other. Such systems
usually involve several developers working in the same team and who might not have a good un-
derstanding of the architecture of the whole project. Thus, the number of smells may increase if
no tools are available to detect those smells and-or to propose refactored solutions.

Detection of Smells. We observed situations in which the number of smells could decrease from
one release to the next one. From investigating the commit message, we observed that some smells
were refactored from one release to the other. Most of them due to the side effect of other refac-
toring activities, but also due to specific refactoring activities, e.g., removing Unused Parameters,
unused methods, implementing the handling of native exceptions, and the like. This suggests that
some developers might be aware of the necessity to remove those smells. However, since no tools
are available to automatically detect such occurrences, it is hard for a developer to manually iden-
tify all the occurrences. However, we plan in another study to investigate the developers’ percep-
tions and opinions about those smells as well as their impacts on software quality.

Distribution of Specific Kinds of Smells. We investigated in RQ2 if some specific smells are more
prevalent than others. We found that the smells are not equally distributed within the analyzed
projects. We also investigated their evolution over the studied releases. Our results show that the
studied smells either persist or even mostly increase in number from one release to another. We ob-
served some cases in which there was a decrease from one release to the other and where smells
occurrences were intentionally removed (Rocksdb, Conscrypt) by refactoring. Those systems are
emerging respectively from Facebook and Google. In Realm, we also observed the awareness of
developers about the bad practice of not removing local references (commit message: “DeleteLo-
calRef when the ref is created in loop (#3366) Add wrapper class for JNI local reference to delete the
local ref after using it”). This could explain the decrease of smells occurrences in some situations.
However, since no automatic tool is available, it could be really hard to identify all the occurrences,
especially since such systems usually include different teams, which could explain the increase and
decrease of multi-language design smells occurrences.

Our results show that Unused Parameters is one of the most frequent smells in the analyzed
projects. This could be explained by the nature of the smell. This smell is defined when an un-
necessary variable is passed as a parameter from one language to another. Since multi-language
systems are emerging from the concept of combining heterogeneous components and they gener-
ally involve different developers who might not be part of the same team, it could be a challenging
task for a developer working only on a sub-part of a project to clearly determine whether that
specific parameter is used by other components or not. Thus, developers will probably tend to
opt for keeping such parameters for safety concerns. The same goes for Too Much Scattering and
Unused Method Declaration, these smells are defined, respectively, by occurrences in the code of
native methods declarations that are no longer used, and separate and spread multi-language par-
ticipants without considering the concerns. The number of these smells seems to increase over
the releases as shown in Figure 7. Under time pressure the developers might not take the risk
to remove unused code, especially since in the case of JNI systems, such code could be used in
other components. Similarly, the high distribution and increase of Too Much Scattering could be
explained in situations where several developers are involved in the same projects, bugs related to
simultaneous files changes may occur. When features are mixed together, a change to the behavior
of one may cause a bug in another feature. Thus, developers might try to avoid these breakages
by introducing scattered participants. Similarly, the design smell Not Securing Libraries is preva-
lent in the analyzed systems. We believe that developers should pay more attention to this smell.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:40 M. Abidi et al.

Malicious code may easily access such libraries. Occurrences of this smell can introduce vulnera-
bilities into the system, especially JNI systems that have been reported by previous studies to be
prone to vulnerabilities [6, 10]. Several problems may occur due to the lack of security checking.
An unauthorized code may access and load the libraries without permission. This may have an
adverse impact especially in industrial projects that are usually developed for sale or are available
for online use, or other safety-critical systems.

5.2 Smells and Faults

Relation between Smells and Faults. In RQ3, we analyzed the relation between smells and fault-
proneness. We used Fisher’s exact test and the odds ratios to check whether the proportion of
buggy files varies between two samples (with and without design smells). From our results, we
found that in general odds ratios are higher than one. This confirms previous insights from mono-
language studies in which researchers claimed that design smells could increase the risk of faults
[25, 55]. We cannot claim causation as we do not know whether such faults could have been caused
by other factors. Although, our results suggest that files with JNI systems are more likely to be
associated with faults than files without. In Zstd-jni, we found higher ORs than those of other
systems from 13.9285 to 37.7142; this could be explained by the nature of smells involved in this
system as reported in Table 6. Some types of smells could be more related to bugs than other types.
Out of all the 98 releases analyzed, we found eight releases with ORs less than one, however, none
of them was with a significant p-value. In Java-smt and Javacpp, p-values are not statistically
significant (higher than 0.05) in most releases.

From studying bug-fix commit messages, we observed that the impact is also smell-dependent.
Occurrences of some types of smells seem more related to bugs than others, which motivates us
to perform the RQ4. Some occurrences of smells related to bugs have been refactored from one
release to the next one. In many cases, we find a description in the commit message indicating
refactoring for removing specific smells that caused the bugs (commit message: e.g., “There were a
bunch of exceptions that are being thrown from JNI methods that aren’t currently declared”, “cleaning
up JNI exceptions (#252)”, “removed a few unused JNI methods”). Mono-language smells have been
widely studied in the literature and were reported to negatively impact systems by making classes
more change-prone and fault-prone.

Multi-language systems could introduce additional challenges compared to mono-language sys-
tems. Those challenges are mainly related to the incompatibilities of programming languages and
the heterogeneity of components. Thus, the design smells occurring on those systems are expected
to increase the challenges related to the maintenance of these systems. Even if some smells, e.g.,
Unused Method Declaration and Unused Method Implementation, could not be directly related to
bugs, they seem to increase the maintenance efforts because some of them are intentionally re-
moved by developers. Thus, we believe that developers should be cautious about files with JNI
smells, because they are more likely to be subject to faults and thus may incur additional main-
tenance efforts. Developers should also pay attention to avoid introducing occurrences of such
design smells when dealing with JNI systems.

Relation between Specific Smells and Faults. Results from RQ4 show that some smells seem more
related to faults than others: Unused Parameters, Too Much Clustering, Too Much Scattering, Hard
Coding Libraries, and Not Handling Exceptions. The smell types Memory Management Mismatch and
Not Securing Libraries are also found to be related to bugs. We believe that files containing these
smells should be considered in priority for testing and-or refactoring. The smell Not Handling Ex-
ceptions was previously reported as related to bugs [6, 56]. In fact, we discussed a bug related to
this smell early in Section 1. A bug related to this smell was reported in Conscrypt; developers

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:41

were not checking for Java exceptions after all JNI calls that might throw them. The management
of exceptions is not automatically ensured in all the programming languages. Incompatibility be-
tween the programming languages may lead to bugs and challenges related to the conversion,
management of memory, and other mismatches between programming languages. In JNI projects,
developers should explicitly implement the exception handling flow. Similarly, bugs in files con-
taining the smells Unused Parameters and Too Much Clustering could be explained as the impacts of
the noises that these two smells could introduce. Indeed, unused code or huge files with JNI code
could impact code maintainability and the comprehension of JNI systems, which may lead to the
introduction of bugs. From our detection approach, we identified files containing more than 200
method declarations that are not necessarily related in terms of responsibilities and that do not
follow the principle of separating the concerns. We believe that faults could be easily introduced
in such files, especially when dealing with JNI code; a developer might not be an expert on all
the languages used and the inter-language interfaces. Developers should be concerned about the
types of smells that are more likely to introduce bugs. The code containing these smells should be
prioritized for testing and refactoring.

5.3 Risky Activities

From RQ5, we found that activities related to data conversion, memory management, restructur-
ing the code, API usage, and exception management are among the activities that could increase
the risk of bugs when performed on smelly files. This is not surprising as several articles and de-
velopers’ blogs discussed bugs related to the management of the memory in JNI systems [6, 10].
Some of these activities are directly related to design smells discussed in this article, e.g., Memory
Management Mismatch and Local References Abuse. Developers who do not follow good practices
to avoid such design smells could perform activities that could increase the risk of future bugs
in those files. In the context of JNI systems, it is the developers’ responsibility to take care of the
management of memory because of the incompatibility between Java and C/C++. The same goes
for data conversion when using JNI. We should consider specific rules to convert and access data
between Java and C/C++. Primitive types could be easy to convert from Java to C/C++. However,
reference types are more complex and require additional knowledge on what kind of methods to
use to apply a proper conversion. Several studies also discussed issues related to exceptions in JNI
context. Unlike Java, C/C++ does not support the automatic handling of exceptions. Developers
could introduce bugs if they do not have enough knowledge about how to implement the exception
handling flow in JNI context. Such incompatibility between programming languages could intro-
duce bugs and other maintenance challenges including checking exceptions, buffer overflows, and
memory leaks [30]. Following formal guidelines and being aware of the practices to follow could
help to improve the quality of those systems [6, 10, 12, 13]. We also noticed that in some systems,
developers started paying more attention to this smell to avoid bugs related to the management of
exceptions Conscrypt: “This works towards issue #258. So the exception can be routed out properly, this
moves the SSL_get0_peer_certificates call to after doHandshake completes in ConscryptFileDescriptor-
Socket”. Another example from Realm, developers started paying more attention to the smell Local
References Abuse “DeleteLocalRef when the ref is created in a loop (#3366) Add wrapper class for JNI
local reference to delete the local ref after using it”. We believe that further investigations should be
performed to better understand the reasons for bug introduction in the presence of this smell.

5.4 Implications of the Findings

Based on our results we formulate some recommendations and highlight the implications of our
findings that could help not only researchers but also developers and anyone considering using
more than one programming language in a software system:

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:42 M. Abidi et al.

Our main goal was to investigate the existence of multi-language design smells and their impact
on software quality. We found that multi-language code smells frequently occur within the selected
projects and that they may increase the risk of bugs occurrence. Our results also highlight that the
frequency and impact differ from one smell to the other. We also studied the activities that could
introduce bugs once performed in smelly files.

Some of the implications of this study could be derived directly from the outcome of our research
questions. First, researchers could find interest in studying why and how some specific types of
smells are more frequent than others and the reasons behind their increase over time. They could
also investigate the reasons why some specific types of smells are more related to bugs than others.
The same goes for the activities, they could investigate further reasons behind the introduction of
bugs when those specific activities are performed. They could also explore the existence of other
activities that could introduce bugs. Second, practitioners could also take advantage of the out-
come of this article to reduce the maintenance cost of multi-language systems. In fact, most of the
smells discussed in this article (even those that are not always related to bugs) could introduce
additional challenges and increase the effort of maintenance activities. Having knowledge of their
existence and the potential impact could help to improve the quality of multi-language systems,
and avoid their introduction in systems during evolution activities. In fact, as reported earlier,
we found multiple commit messages in which developers explicitly mentioned issues caused by
the occurrence of a smell studied in this article. Studying each type of smell separately also al-
lowed us to capture their impact individually. The insights from this study could help developers
to prioritize multi-language smells for maintenance and refactoring activities. The same goes for
the activities introducing bugs. Being aware of those activities could help developers avoid issues
when performing them. Finally, the catalog of design smells studied in this article is not exhaus-
tive and presents only a small sample of possible multi-language smells and practices. Therefore,
researchers and developers could further investigate smells and practices in multi-language soft-
ware development. Our focus in this article was on the JNI systems, and the researchers could also
investigate other combination of programming languages. Additionally, they can also examine the
impact of design smells on other quality attributes.

We recommend that developers pay more attention to the design patterns and design smells
discussed in the literature that could be applied to the context of multi-language systems. Our
results highlight the need for more empirical studies on the impact of multi-language smells on
maintainability and program comprehension. We recommend to developers to be cautious when
editing files containing design smells Unused Parameters, To Much Clustering, Too much Scattering,
Not Handling Exception, Hard Coding Libraries since their occurrence seems to increase the risk of
fault introduction.

6 THREATS TO VALIDITY

In this section, we shed light on some potential threats to the validity of our methodology and
findings following the guidelines for empirical studies [57].

Threats to Construct Validity. These threats concern the relation between the theory and the
observation. In this study, these threats are mainly due to measurement errors. Most of the studied
projects rely on Github issues to report bugs. Therefore, we identified fault-fixing commits by
mining the Github commit logs using a set of keywords extracted from the literature [40, 48, 58].
We used a set of keywords similar to those previously used in studies focusing on bug prediction.
However, this technique may not capture all the commits related to fault-fixing if the commit
messages were not representative enough of the developer’s intention or were not containing any
of those keywords. Nevertheless, this methodology was successfully used in multiple previous
empirical studies [34, 36, 47, 58]. Moreover, in [59], the authors report that this technique can

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:43

achieve a precision of 87.3% and a recall of 78.2%. Another threat to construct validity is related to
the accuracy of the SZZ heuristic used to identify fault-inducing commits. Although this heuristic
does not achieve a 100% accuracy, it has been successfully employed and reported to achieve good
results in multiple empirical studies from the literature [60–62]. We also did a manual validation of
the bug inducing commits as described in Section 3.3.2 by inspecting the changes of a small sample
of bug-inducing commits. For our smell detection approach, we applied simple rules. We adapted
our detection approach to ensure a balanced tradeoff between the precision and the recall. For
some smells, e.g., Memory Management Mismatch, we considered specific situations in which the
smell occurs following simple rules and the definition presented earlier in Section 2.3. Thus, this is
not currently covering all possible issues related to memory management. However, the approach
could be extended to include other contexts and types of memory issues following other rules.

When analyzing the smelliness of files that experienced bugs, we considered the whole file as
participating in the design smell. Hence, the smell present in the file could be in different code
lines than the bug. There is a similar threat in our analysis of the activities introducing bugs. We
rely on commit messages provided by developers to identify the activities. We are aware that, in
some cases, developers might not have provided all the details of the activities performed or might
have used some abbreviations. However, we mitigated this threat by combining both manual and
automatic approaches to capture the possible activities that were performed. We are aware that
the retrieved topics may not be 100% accurate. However, we followed the coding methodology ap-
plied in previous studies [63, 64] and two of the authors manually validated a subset of the commit
messages. Through the manual analysis, we found that some commit messages describe more than
one activity in the same commit (e.g., Commit extracted from Zstd-jni: “Align the JNI names with
the new streaming API, Move to the new streaming API, Use the ZBUFF based streaming compres-
sion”) while they assigned by the automatic approach to a single category. Although, the category
to which they are assigned is based on the frequencies of the related keywords. We mitigated this
threat by performing a manual validation over 500 commit messages. We also investigated some
examples of activities at the source code level in the smelly code as described in Section 4.5. The list
of the activities may not be exhaustive and do not present a 100% recall and precision. However, in
this article, we are reporting our observation on the activities that once performed in smelly files
could introduce bugs without any empirical comparison of the risk introduced by each activity.
However, we consider this as our future work in which we plan to perform a full manual validation
approach to capture individual activities and the risk of introducing bugs related to each of them.

Threats to Internal Validity. We do not claim causation and only relate the presence of multi-
language design smells with the occurrences of faults. We report our observations based on empir-
ical results and explain these observations with manually analyzed examples from the studied sys-
tems to better contextualize our findings. We are aware that smells can depend on each other and
we select the subset of non-correlated smells while building the logistic regression models. How-
ever, the variations in the distribution of smells, and some smells being very infrequent can have
negative impacts on the regression models. As our model for each system considers all releases
of a particular system than individual releases separately, it helps compensate for the infrequent
classes by boosting the per-class data size. Our study is an internal validation of multi-language
design smells that we previously defined and cataloged. Thus, this may present a threat to validity.
However, this threat was mitigated by publishing our catalog in a pattern conference. The article
went through rounds of a shepherding process. In this process, an expert on patterns provided
three rounds of meaningful comments to refine and improve the patterns. The catalog then went
through the writers’ workshop process, in which five researchers from the pattern community had
two weeks before the writers’ session to carefully read the article and provide detailed comments

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:44 M. Abidi et al.

for each defined smell. The catalog was then discussed during three sessions of two hours each.
During these sessions, each smell was examined in detail along with their definition and concrete
examples. The conference chair also provided additional comments to validate the catalog. In ad-
dition, the results of this article have shown that the studied smells are related to bugs. From the
commit messages, we also found that some smells were explicitly discussed by developers who
contributed in the smelly files. For example, one developer discussed exception handling as “There
were a bunch of exceptions that are being thrown from JNI methods that aren’t currently declared”.
Therefore, we believe that the studied smells should be considered with caution by developers
since they may hinder the software maintenance and may lead to bugs.

Threats to External Validity. These threats concern the possibility to generalize our results. We
studied nine JNI open source projects with different sizes and domains of application. We focused
on the combination of Java and C/C++ programming languages. Nevertheless, further validation
of a larger number of systems with other sets of languages would give more opportunities to
generalize the results. We studied a particular yet representative subset of multi-language design
smells. Future works should consider analyzing other sets of design smells.

Threats to Conclusion Validity. These threats are related to the relationship between the treat-
ment and the outcome. We were careful to take into account the assumptions of each statistical
test. We mainly used non-parametric tests that do not require any assumption about the dataset
distribution.

Threats to Reliability Validity. We mitigate the threats by providing all the details needed to
replicate our study in Section 3. We analyzed open source projects hosted in GitHub. We also
provide an online access to all the data and scripts used to conduct this study.20

7 RELATED WORK

We now discuss the literature related to this work.

7.1 Multi-Language Systems

Several studies in the literature discussed multi-language systems. One of the very first studies, if
not the first, was by Linos [65]. They presented PolyCARE, a tool that facilitates the comprehension
and re-engineering of complex multi-language systems. PolyCARE seems to be the first tool with
an explicit focus on multi-language systems. They reported that the combination of programming
languages and paradigms increases the complexity of program comprehension. Kullbach et al.
[66] also studied program comprehension for multi-language systems. They claimed that program
understanding for multi-language systems presents an essential activity during software mainte-
nance and that it provides a large potential for improving the efficiency of software development
and maintenance activities. Linos et al. [1] later argued that no attention has been paid to the issue
of measuring multi-language systems’ impact on program comprehension and maintenance. They
proposed Multi-language Tool (MT); a tool for understanding and managing multi-language pro-
gramming dependencies. Kontogiannis et al. [2] stimulated discussion around key issues related to
the comprehension, reengineering, and maintenance of multi-language systems. They argued that
creating dedicated multi-language systems, methods, and tools to support such systems is expected
to have an impact on the software maintenance process which is not yet known. Kochhar et al.
[3] investigated the impact on software quality of using several programming languages. They re-
ported that the use of multi-programming languages significantly increases bug proneness. They
claimed that design patterns and anti-patterns were present in multi-language systems and sug-
gested that researchers study them thoroughly. Kondoh and Onodera [30] presented four kinds
of common JNI mistakes made by developers. They proposed BEAM, a static-analysis tool, that

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:45

uses a typestate analysis, to find bad coding practice pertaining to error checking, virtual machine
resources, invalid local references, and JNI methods in critical code sections. Tan and Croft [10]
studied JNI usages in the source code of part of JDK v1.6. They examined a range of bug patterns
in the native code and identified six bugs. The authors proposed static and dynamic algorithms to
prevent these bugs. Li and Tan [29] highlighted the risks caused by the exception mechanisms in
Java, which can lead to failures in JNI implementation functions and affect security. They defined
a pattern of mishandled JNI exceptions.

7.2 Impacts of Patterns and Smells

Several studies in the literature have studied the impact of design smells on software quality but
mainly for mono-language systems.

Khomh et al. [25] analyzed 9 releases of Azureus and 13 releases of Eclipse to investigate if
the classes with occurrences of design smells are more change-prone than classes without those
occurrences. They concluded that the classes with occurrences of design smells are more likely
to be the subject of changes than classes without those occurrences. Olbrich et al. [67] proposed
an approach that analyses the evolution of design smells and study their impact on the frequency
and size of changes. They study two design smells: God Class and Shotgun Surgery. They used
an automated approach based on detection strategies to detect the occurrences of design smells.
They identified different phases in the cycle of design smells evolution during the different phases
of the system development. They also found that components infected by design smells exhibit
different behavior. Abbes et al. [68] investigated the impact of occurrences of anti-patterns in
the developers’ understandability of systems while performing comprehension and maintenance
tasks. They conducted three experiments to collect data about the performance of developers and
study the impact of Blob and Spaghetti Code anti-patterns and their combinations. They concluded
that the occurrence of one anti-pattern does not significantly impacts comprehension while the
combination of the two anti-patterns negatively impact program comprehension. This finding was
corroborated by Politowski et al. [69]. Linares-Vasquez et al. [70] studied the potential relationship
between the occurrence of design smells and quality attributes as well as the possible relation
between design smells and application domains. They analyzed 1,343 Java Mobile applications in
13 different application domains. They concluded that anti-patterns negatively impact software
metrics in Java Mobile applications, in particular, fault-proneness. They observed that there is
a difference in the metric values between classes containing occurrences of smells and classes
without smells. They also found that some smells are more frequently present in a domain of
application while other smells are more present in other domains. Soh et al. [27] performed a study
with six developers, three maintenance tasks, and four equivalent functions in Java. They used the
Eclipse Mimec plugin and Thinkaloud sessions to analyze the effort spent by different developers
when performing different maintenance activities (editing, reading, navigating, searching, static
navigation, executing, and other activities). They concluded that design smells differently impact
the effort needed to perform the different activities. They also found that the effort needed for
reading, navigating, and editing is affected by three smells: “Feature Envy”, “God Class”, and “ISP
Violation”.

7.3 Patterns and Smells Detection Approaches

Van Emden and Moonen [71] proposed the JCosmo tool that supports the visualization of the
code layout and design defects locations. They used primitives and rules to detect occurrences
of anti-patterns and code smells while parsing the source code into an abstract model. Marinescu
[72] proposed an approach for design defects detection based on detection strategies. The approach
captures deviations from good design principles and heuristics to help developers and maintainers

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:46 M. Abidi et al.

in the detection of design problems. Lanza and Marinescu [73] presented the platform iPlasma
for software modeling and analysis of object-oriented software systems to detect occurrences of
design defects. The platform applies rules based on metrics from C++ or Java code. Moha and
Gueheneuc [74] introduced DECOR which detects design defects in Java programs. DECOR is
based on a domain-specific language that generates the design defect detection algorithms. Khomh
et al. [75] proposed a Bayesian approach to detect occurrences of design defects by converting
the detection rules of DECOR into a probabilistic model. Their proposed approach has two main
benefits over DECOR: (i) it can work with missing data and (ii) it can be tuned with analysts’
knowledge. Later on, they extended this Bayesian approach as BDTEX [76], a Goal Question Metric
(GQM)-based approach to build Bayesian Belief Networks (BBNs) from the definitions of anti-
patterns. They assessed the performance of BDTEX on two open-source systems and found that
it generally outperforms DECOR when detecting Blob, Functional Decomposition, and Spaghetti
code anti-patterns.

Kessentini et al. [77] proposed an automated approach to detect and correct design defects. The
proposed approach automatically finds detection rules and proposes correction solutions in term
of combinations of refactoring operations. Rasool and Arshad [78] proposed an approach to detect
occurrences of code smells that supports multiple programming languages. They argued that most
of the existing detection techniques for code smells focused only on Java language and that the
detection of code smells considering other programming languages is still limited. They used SQL
queries and regular expressions to detect code smells occurrences from Java and C# programming
languages. In their approach, the user should have knowledge about the internal architecture of the
database model to use the SQL queries and regular expressions. In addition, each language needs a
specific regular expression. Arcelli Fontana et al. [79] conducted a study applying machine learn-
ing techniques for smell detection. They empirically created a benchmark for 16 machine learning
algorithms to detect four types of code smells. The analysis was performed on 74 projects belong-
ing to the Qualitas Corpus dataset. They found that J48 and Random Forest classifiers attain
the highest accuracy. Liu et al. [80] proposed a smell detection approach based on Deep Learning
to detect Feature Envy. The proposed approach relies on textual features and code metrics. It relies
on deep neural networks to extract textual features. Barbez et al. [81] proposed a machine learn-
ing based method SMAD that combines several code smells detection approaches based on their
detection rules. The core of their approach is to extract metrics based on existing approaches and
use those metrics as features to train the classifier for smell detection. The proposed approach sup-
ports the detection of the smells of type God Class and Feature envy. Their approach outperforms
other existing methods in terms of recall and Matthews Correlation Coefficient (MCC). Palomba
et al. [82] proposed TACO, an approach that relies on textual information to detect code smells
at different levels of granularity. They evaluated their approach on ten open-source projects and
found that the proposed approach outperforms existing approaches.

While there are some studies in the literature that document the good and bad practices related
to multi-language systems, [7, 8, 10, 56, 83] to the best of our knowledge, this is the first study that
automatically detects occurrences of multi-language design smells in the context of JNI systems
and evaluates their impact on software fault-proneness. Other studies in the literature are focusing
on the detection and analysis of design smells in mono-language systems.

8 CONCLUSION

In this article, we present an approach to detect multi-language design smells and empirically
evaluate the impacts of these design smells on fault-proneness. We performed our empirical study
on 98 releases of 9 open source JNI systems. Those systems provide a great variety of services to
numerous different types of users. They introduce several advantages, however, as the number of

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:47

languages increases so does the maintenance challenges of these systems. Despite the importance
and increasing popularity of multi-language systems, studying the prevalence and impact of
patterns and smells within these systems is still under-investigated. In this article, we studied
the impact of multi-language design smells on the software fault-proneness. We investigated the
prevalence and impact of 15 design smells on fault-proneness. We showed that the design smells
are prevalent in the selected projects and persist across the releases. Some types of smells are more
prevalent than others. Our results suggest that files with JNI smells are more likely to be subject
of bugs than files without those smells. We also report that some specific smells, are more likely
to be of a concern than others, i.e., Unused Parameters, Too Much Scattering, Too Much Clustering,
Hard Coding Libraries, and Not Handling Exceptions. These smells seem more related to faults,
thus we suggest that practitioners consider them in priority for testing and-or refactoring. This
empirical study supports, within the limits of its threats to validity, the conjecture that multi-
language design smells are prevalent in the selected projects and that similar to mono-language
smells, JNI smells may have a negative impact on software reliability. From analyzing fault-
inducing commits we found that data conversion, memory management, code restructuring,
API usage, and exception management activities could increase the risk of bug introduction
when performed on smelly files. We believe that the results of this study could help not only
researchers but also practitioners involved in building software systems using more than one
programming language. Our future work includes (i) replicating this study with a larger number
of systems for further generalization of our results, (ii) studying the impact of design smells on
change-proneness, and (iii) investigating the occurrences of other patterns and defects related to
multi-language systems.

A APPENDIX

We present in the following appendix the smell detection rules of the proposed approach. These
rules are applied on the srcML elements generated as an XML representation of a given project as
described in Section 3.3.1. Since the smells described in this article are multi-language smells, the
following rules detect the occurrences of smells by using the XPath queries in the srcML repre-
sentation of the source code that contains Java and C/C++ native code.

(1) Rule 1: Not Handling Exceptions

(f (y) | f ∈ {GetObjectClass, FindClass,GetFieldID,GetStaticFieldID,
GetMethodID,GetStaticMethodID})

AND (isExceptionChecked (f (y)) = False ORExceptionBlock (f (y)) = False)

Our detection rule for the smell Not Handling Exceptions is based on the existence of a
call to specific JNI methods requiring an explicit management of the exception flow. The
JNI methods (e.g., FindClass) listed in the rule should have a control flow verification.
The parameter y presents the Java object/class that is passed through a native call for a
purpose of usage by the C/C++ side. Here, isExceptionChecked allows to verify that there
is an error condition verification for those specific JNI methods, while ExceptionBlock
checks if there is an exception block implemented. This could be implemented using
Throw() or ThrowNew() or a return statement that exists in the method in case of errors.

(2) Rule 2: Assuming Safe Return Value

x := f (y) | f ∈ {FindClass,GetFieldID,GetStaticFieldID,GetMethodID,GetStaticMethodID}
AND isErrrorChecked (x) = False AND IsReturn(x) = True

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:48 M. Abidi et al.

This rule is quite similar to the previous rule. However, it considers the return value
from the native code. Indeed, the JNI methods called in this context are used for specific
calculation and the result then needs to be passed as a method return value to the Java
side. Here, x presents the native variable used within the method to receive the returned
value and perform computation on the Java side. isErrrorChecked(x) allows us to verify if
there is an error condition verification applied to the variable x that will be returned back
to the Java code (IsReturn(x)=True). The use of the variable x as a return value by a native
method without any check of its correctness will introduce a smell of type Assuming Safe
Return Value given other conditions hold.

(3) Rule 3: Not Securing Libraries

IsNative(Lib) = True AND loadedWithinAccessBlock (Lib) = False

This rule implies that, in the Java code, a native library is used (IsNative(Lib) = True)
and that this library is loaded outside a block AccessController.doPrivileged without a try
and catch statements for safe handling of potential exceptions. This introduces a smell
of type Not Securing Libraries.

(4) Rule 4: Hard Coding Libraries

IsNative(Lib) = True AND AccessiblePath(Lib) = False AND OsBlock(m) = True

This rule implies that, in the Java code, a native library (Lib) is used in a native methodm
and that the path used for accessing that library is an absolute path while the code loading
the library depends on the operating systems. Here, the access to libraries is hard coded
for a specific operating system rather than implementing a platform-independent access
mechanism for libraries. This limits the portability of the code and may cause issues in
accessing the libraries for different operating systems.

(5) Rule 5: Not Using Relative Path

IsNative(Lib) = True AND RelativePath(Lib) = False

This rule implies that, in the Java code, a native library is used. However, the native
library is loaded from an absolute path and not from a relative path.

(6) Rule 6: Too Much Clustering

NbNativeMethods (C) >= MaxMethodsThreshold AND IsCalledOutside(m) = True

This rule detects cases where the total number of native methods (NbNativeMethods)
within any class C is equal to or higher than a specific threshold while those methods
m are used by other classes and not only the one where they are declared (IsCalledOut-
side(m) = True). In our case, we used the default values for threshold 8. However, all the
thresholds could be easily adjusted as discussed earlier in Section 3.3.1.

(7) Rule 7: Too Much Scattering

NBNativeClass (P) >= MaxClassThreshold

AND (NbNativeMethods (C) < MaxMethodsThreshold ANDC ∈ P)

The smell of type Too Much Scattering occurs when the total number of native classes
in any package P (NBNativeClass(P)) is more than a specific threshold (MaxClassThresh-
old) for the number of maximum native classes. In addition, each of those native classes
C contains a total number of native methods (NbNativeMethods(C)) less than a specific
threshold (MaxMethodsThreshold), i.e., the class does not contain any smell of type Too

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:49

Much Clustering. We used default values for the threshold three for the minimum number
of classes with each a maximum of three native methods each.

(8) Rule 8: Excessive Inter-language Communication

(NBNativeCalls(C,m) > MaxNbNativeCallsThreshold) OR

(NbNativeCalls(m(p)) > MaxNativeCallsParametersThreshold) OR

((NBNativeCalls (m) > MaxNbNativeCallsMethodsThreshold) AND IsCalledInLoop(m) =
True)

The smell Excessive Inter-language Communication is detected based on the exis-
tence of at least one of the three possible scenarios. First, in any class C, the to-
tal number of calls to a particular native method m exceeds the specified threshold
(NBNativeCalls(C,m) > MaxNbNativeCallsThreshold). Second, the total number of calls
to the native methods m with the same parameter p exceeds the specific threshold
(MaxNativeCallsParametersThreshold). Third, the total number of calls to a native method
m within a loop is more than the defined threshold (MaxNbNativeCallsMethodsThresh-
old).

(9) Rule 9: Local References Abuse

(NbLocalRe f erence (f1 (y)) > MaxLocalRe f erenceThreshold) AND

(f1 (y) | f1 ∈ {GetObjectArrayElement ,GetObjectArrayElement ,NewLocalRe f ,AllocObject ,

NewObject ,NewObjectA,NewObjectV ,NewDirectByteBu f f er ,

ToRe f lectedMethod,ToRe f lectedField }) AND

(� f2 (y) | f2 ∈ {DeleteLocalRe f ,EnsureLocalCapacity})

The smell Local References Abuse is introduced when the total number of local references
(NbLocalReference(f1(y)) created inside a called method exceeds the defined threshold
and without any call to method DeleteLocalRef to free the local references or a call to
method EnsureLocalCapacity to inform the JVM that a larger number of local refer-
ences is needed.

(10) Rule 10: Memory Management Mismatch

(mem ← f1 (y) | f1 ∈ {GetStrinдChars,GetStrinдUTFChars,GetBooleanArrayElements,

GetByteArrayElements,GetCharArrayElements,GetShortArrayElements,

GetIntArrayElements,GetLonдArrayElements,GetFloatArrayElements,

GetDoubleArrayElements,GetPrimitiveArrayCritical ,GetStrinдCritical })
AND (� f2 (mem) | f2 ∈ {ReleaseGetStrinдChars,ReleaseGetStrinдUTFChars,

ReleaseGetBooleanArrayElements,ReleaseGetByteArrayElements,

ReleaseGetCharArrayElements,ReleaseGetShortArrayElements,

ReleaseGetIntArrayElements,ReleaseGetLonдArrayElements,

ReleaseGetFloatArrayElements,ReleaseGetDoubleArrayElements,

ReleaseGetPrimitiveArrayCritical ,ReleaseGetStrinдCritical })

As discussed earlier, JNI offers predefined methods to manage the access of reference
types that are converted to pointers. These methods are used to create pointers and to
allocate the corresponding memory. The rule described here allows us to detect the native
implementation in which the memory was allocated by calling one of these allocation
methods; however, the memory allocated was never released. The rule detects situations

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:50 M. Abidi et al.

in which ‘get’ methods are used to allocate memory for specific JNI elements that are not
released after usage by calling the corresponding ‘release’ methods.

(11) Rule 11: Not Caching Objects

((Parameter (m,p) = Object) AND

((NbCalls (C,m) >= MaxNbCallsThreshold) OR (IsLoop (m) = True

ANDNoO f Iterations >= MaxCountThreshold))

AND (IsCalled (m, fn (y)) = True)

AND (fn (y) | fn ∈ {GetFieldID,GetMethodID,GetStaticMethodID}))
OR ((Parameter (m,p) = Object) AND (IsCalledInMethod (m, fn) = True

ANDNbCalls (fn (y)) >= MaxNbCallsThreshold) AND

(fn (y) | fn ∈ {GetFieldID,GetMethodID,GetStaticMethodID}))
This rule allows us to detect occurrences of the smell Not Caching Objects based on two
situations. The first one is where the total number of IDs that are related to the same
object p and that are looked up for the same class C through JNI allocation methods is
greater than or equal to a specific threshold, or the method is called within a loop. Indeed,
the IDs returned for a given classC remain the same for the lifetime of the JVM execution.
Considering that we have a native methodm and one of its parameters p is a Java object
(Parameter(m,p)=Object), this type is considered in the native code as a reference type.
Thus, unlike primitive types, its element could not be accessed directly by the native code
but should be accessed through the usage of the methods defined in (IsCalled(m,fn (y))
= True). In this first scenario, the total number of calls from the Java code to a native
method m that is defined in a class C exceeds a specific threshold (i.e., NbCalls(C,m) >=
MaxNbCallsThreshold) or the method is called within a loop. In the second scenario, the
number of times the same ID for an object p is looked up inside the same method m
(IsCalledInMethod(m, fn)=True) more than a given threshold even if the method m is
called only once (NbCalls(fn (y)) >= MaxNbCallsThreshold). This last scenario includes
the total number of calls to the predefined methods (NbCalls(fn (y)) independent of the
total number of calls to the method itself.

(12) Rule 12: Excessive Objects

(Parameter (m,p) = Object) AND (IsCalledInMethod (m, f1) = True) AND

(NbCalls (f1 (y)) >= MaxNbCallsThreshold) AND

(f1 (y) | f1ϵ {GetObjectField,GetBooleanField,GetByteField,GetCharField,GetShortField,
GetIntField,GetLonдField,GetFloatField,GetStaticObjectField}) AND

(� f2 (y) | f2 ∈ {SetObjectField, SetBooleanField, SetByteField, SetCharField,
SetShortField, SetIntField, SetLonдField, SetFloatField, SetStaticObjectField })

This rule identifies situations in which a JNI object is passed as a parameter
(Parameter(m,p)=Object) to the native code. In this context the total number of calls to
allocation methods to retrieve its field ID in the same method is higher than a specific
threshold (i.e., NbCalls(f1 (y)) >=MaxNbCallsThreshold), without a call to corresponding
set functions to set the object fields by the native code. However, as described in the
specification of the smell in Section 2.3, having the total number of calls to allocation
methods higher than the threshold is not considered as a smell only in situations where
the purpose of those calls was to set the object fields by the native code.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:51

(13) Rule 13: Unused Method Implementation

IsNative(m) = True AND IsDeclared(m) = True AND IsImplemented(m) = True
AND IsCalled(m) = False

This rule allows us to capture the native functionsm (IsNative(m)= True) implemented
in the C/C++ (IsImplemented(m) = True), declared in Java with the keyword native but
never used in the Java code (IsCalled(m)=False). It looks for the native methods that are
declared using the keyword native with a header in the Java code and looks for the cor-
responding native implementation nomenclature.

(14) Rule 14: Unused Method Declaration

IsNative(m)=True AND IsDeclared(m)=True AND IsImplemented(m)=False

This rule detects the native functions declared in Java with the keyword native (IsDe-
clared(m)= True) that are not implemented in C/C++ (IsImplemented(m)=False). This rule
allows us to retrieve the native methods that are declared with a header in the Java code
using the keyword native and checks for the corresponding implementation nomencla-
ture. However, those methods were never used or even implemented in the C/C++ code.

(15) Rule 15: Unused Parameters

(IsNative (m(p)) = True AND IsDeclared (m(p)) = True AND IsImplemented (m(p)) = True

AND IsParameterUsed (p) = False

This rule reports the method parameters that are used in the Java native method declara-
tion header using the keyword native (IsDeclared(m(p))=True). However, the parameter
is never used in the body of the implementation of the methods, apart from the first two
arguments of JNI functions in C/C++. The rule checks if the parameter p is used in the
corresponding native implementation (IsParameterUsed(p) = False).

B APPENDIX

We present in Table B.1 the results of the evaluation of the performance of our design smell de-
tection approach. The details of the results are available in the replication folder.20

The pilot project as described in Section 3 was the project we developed with the occurrences
of the smells along with the clean code without any smell to test and validate our approach. This
explains the 100% precision and 100% recall for all the smells. For other projects, the precision
and recall were evaluated through the manual investigation of the occurrences of the smell it-
self and the multi-language files associated with those smells. Most of the rules are trivial, and
so the corresponding smells could easily be detected by our approach. Therefore, the reasons for
false positives (FP) and false negatives (FN) are mainly related to the alternative implementation
choices of the multi-language code that do not follow JNI specification guidelines and therefore
are not currently covered by our approach. Indeed, our approach considers the JNI implementa-
tion with the appropriate naming convention as described in the JNI specification (e.g., using the
native keyword in the Java native method declaration, using JNIENV, JNIEXPORT, JNICALL, and
Java_ClassName_methodname) [84]. Thus, our detection approach could only be considered for
JNI systems that follow the JNI specification guidelines. The validation on some systems was done
earlier and thus on the older versions of the systems. Thus, the validation results only report on
the smell types available in the analyzed version.

As described in the Section 5, our approach may present some limitations for the smell Local
References Abuse in situations in which some specific methods are used to ensure the memory
capacity. However, as per our manual analysis when defining the smells, those methods are not

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:52 M. Abidi et al.

T
a
b

le
B

.1
.

V
a
li

d
a
ti

o
n

R
es

u
lt

s
fo

r
E

a
ch

T
y

p
e

o
f

S
m

el
ls

p
il

o
tp

ro
je

ct
co

n
sc

ry
p

t
p

lj
a

v
a

o
p

e
n

j9
ro

ck
sd

b
jm

o
n

k
e
y

jn
a

A
v

e
ra

g
e

D
es

ig
n

Sm
el

ls
FP

P
re

ci
si

on
FN

R
ec

al
l

FP
P

re
ci

si
on

FN
R

ec
al

l
FP

P
re

ci
si

on
FN

R
ec

al
l

FP
P

re
ci

si
on

FN
R

ec
al

l
FP

P
re

ci
si

on
FN

R
ec

al
l

FP
P

re
ci

si
on

FN
R

ec
al

l
FP

P
re

ci
si

on
FN

R
ec

al
l

P
re

ci
si

on
R

ec
al

l

1
E

xc
es

si
ve

In
te

r-
la

n
gu

ag
e

0
10

0%
0

10
0%

0
10

0%
0

10
0%

4
95

%
3

96
%

9
96

%
37

85
%

24
96

%
91

86
%

8
95

%
75

65
%

5
84

%
22

54
%

94
%

81
%

C
om

m
u

n
ic

at
io

n

2
T

oo
M

u
ch

C
lu

st
er

in
g

0
10

0%
0

10
0%

0
10

0%
0

10
0%

0
10

0%
0

10
0%

0
10

0%
0

10
0%

2
96

%
4

92
%

0
10

0%
0

10
0%

0
10

0%
0

10
0%

99
%

98
%

3
T

oo
M

u
ch

Sc
at

te
ri

n
g

0
10

0%
0

10
0%

-
-

-
-

0
10

0%
0

10
0%

0
10

0%
0

10
0%

5
92

%
5

92
%

0
10

0%
0

10
0%

0
10

0%
0

10
0%

98
%

98
%

4
U

n
u

se
d

M
et

h
od

D
ec

la
ra

ti
on

0
10

0%
0

10
0%

6
98

%
0

10
0%

1
98

%
42

67
%

29
95

%
40

94
%

2
88

%
0

10
0%

12
95

%
86

72
%

-
-

-
-

94
%

86
%

5
U

n
u

se
d

M
et

h
od

Im
pl

em
en

ta
ti

on
0

10
0%

0
10

0%
-

-
-

-
0

10
0%

0
10

0%
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

6
U

n
u

se
d

P
ar

am
et

er
0

10
0%

0
10

0%
15

95
%

13
2

67
%

0
10

0%
1

99
%

95
95

%
76

96
%

17
93

%
31

88
%

59
96

%
13

99
%

43
88

%
64

83
%

94
%

88
%

7
A

ss
u

m
in

g
Sa

fe
R

et
u

rn
V

al
u

e
0

10
0%

0
10

0%
3

0%
0

10
0%

-
-

-
-

0
10

0%
4

66
%

0
10

0%
0

10
0%

32
88

%
7

97
%

-
-

-
-

72
%

90
%

8
E

xc
es

si
ve

O
bj

ec
ts

0
10

0%
0

10
0%

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

0
10

0%
0

10
0%

-
-

-
-

-
-

9
N

ot
H

an
dl

in
g

E
xc

ep
ti

on
s

0
10

0%
0

10
0%

5
0%

0
10

0%
0

10
0%

0
10

0%
3

98
%

86
63

%
0

10
0%

0
10

0%
31

89
%

0
10

0%
0

10
0%

1
83

%
81

%
91

%

10
N

ot
C

ac
h

in
g

O
bj

ec
ts

0
10

0%
0

10
0%

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

11
N

ot
Se

cu
ri

n
g

Li
br

ar
ie

s
0

10
0%

0
10

0%
0

10
0%

0
10

0%
-

-
-

-
0

10
0%

0
10

0%
0

10
0%

3
73

%
0

10
0%

0
10

0%
0

10
0%

2
71

%
10

0%
88

%

12
H

ar
d

C
od

in
g

Li
br

ar
ie

s
0

10
0%

0
10

0%
-

-
-

-
-

-
-

-
-

-
-

-
0

10
0%

0
10

0%
-

-
-

-
0

10
0%

0
10

0%
-

-

13
N

ot
U

si
n

g
R

el
at

iv
e

P
at

h
0

10
0%

0
10

0%
0

10
0%

0
10

0%
-

-
-

-
0

10
0%

0
10

0%
0

10
0%

0
10

0%
0

10
0%

0
10

0%
-

-
-

-
10

0%
10

0%

14
M

em
or

y
M

an
ag

em
en

t
M

is
m

at
ch

0
10

0%
0

10
0%

0
10

0%
0

10
0%

0
10

0%
8

50
%

1
94

%
4

81
%

0
10

0%
2

75
%

-
-

-
-

-
-

-
-

98
%

76
%

15
Lo

ca
lR

ef
er

en
ce

s
A

bu
se

0
10

0%
0

10
0%

0
10

0%
1

80
%

-
-

-
-

0
10

0%
1

80
%

-
-

-
-

-
-

-
-

2
78

%
2

78
%

92
%

79
%

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:53

considered relevant to detect the smell and are not usually used. However, we are aware that, in a
similar situation, the approach may result in false positives. For the smells Unused Parameters and
Unused Method Declaration, when evaluating the recall and precision, we noticed that our approach
was not always able to correctly match the java and corresponding native implementation. This
was mainly due the syntax used in the C implementation that is not completely following the JNI
specification for the naming convention (e.g., Pljava jobject pljava_DualState_key). For the smells
Assuming Safe Return Value and Not Handling Exceptions, the false negatives in Conscrypt were
related an intermediate step that made the detection harder. In this intermediate step, the native
value was checked before returning it to the Java code. The same goes for the smell Memory Man-
agement Mismatch; our rules allow the detection of a specific type of memory issues and do not
cover other types of issues related to the memory.

REFERENCES

[1] Panagiotis K. Linos, Zhi-hong Chen, Seth Berrier, and Brian O’Rourke. 2003. A tool for understanding multi-language
program dependencies. In Proceedings of the 11th IEEE International Workshop on Program Comprehension, 2003. IEEE,
64–72.

[2] Kostas Kontogiannis, Panos Linos, and Kenny Wong. 2006. Comprehension and maintenance of large-scale multi-
language software applications. In Proceedings of the 22nd IEEE International Conference on Software Maintenance,

2006 (ICSM’06). IEEE, 497–500.
[3] Pavneet Singh Kochhar, Dinusha Wijedasa, and David Lo. 2016. A large scale study of multiple programming lan-

guages and code quality. In Proceedings of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution,

and Reengineering (SANER), Vol. 1. IEEE, 563–573.
[4] T. Capers Jones. 1998. Estimating Software Costs. McGraw-Hill, Inc.
[5] Jacob Matthews and Robert Bruce Findler. 2009. Operational semantics for multi-language programs. ACM Transac-

tions on Programming Languages and Systems (TOPLAS) 31, 3 (2009), 12.
[6] Byeongcheol Lee, Martin Hirzel, Robert Grimm, and Kathryn S. McKinley. 2009. Debug all your code: Portable mixed-

environment debugging. SIGPLAN Notes 44, 10 (Oct. 2009), 207–226.
[7] Michael Goedicke, Gustaf Neumann, and Uwe Zdun. 2000. Object system layer. In Proceedings of the5th European

Conference on Pattern Languages of Programms (EuroPLoP’2000) (2000).
[8] Michael Goedicke and Uwe Zdun. 2002. Piecemeal legacy migrating with an architectural pattern language: A case

study. Journal of Software Maintenance and Evolution: Research and Practice 14, 1 (2002), 1–30.
[9] Andrew Neitsch, Kenny Wong, and Michael W. Godfrey. 2012. Build system issues in multilanguage soft-

ware. In Proceedings of the 2012 28th IEEE International Conference on Software Maintenance (ICSM). IEEE,
140–149.

[10] Gang Tan and Jason Croft. 2008. An empirical security study of the native code in the JDK. In Proceedings of the 17th

Conference on Security Symposium (SS’08). USENIX Association, Berkeley, CA, 365–377.
[11] Mouna Abidi, Manel Grichi, and Foutse Khomh. 2019. Behind the scenes: Developers’ perception of multi-language

practices. In Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering.
IBM Corp., 72–81.

[12] Mouna Abidi, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2019. Anti-patterns for multi-language systems. In Proceed-

ings of the 24th European Conference on Pattern Languages of Programs. ACM, 42.
[13] Mouna Abidi, Manel Grichi, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2019. Code smells for multi-language systems.

In Proceedings of the 24th European Conference on Pattern Languages of Programs. ACM, 12.
[14] Federico Tomassetti and Marco Torchiano. 2014. An empirical assessment of polyglot-ism in github. In Proceedings of

the 18th International Conference on Evaluation and Assessment in Software Engineering (EASE’14). ACM, New York,
Article 17, 4 pages.

[15] Rolf-Helge Pfeiffer and Andrzej Wąsowski. 2012. TexMo: A multi-language development environment. In Proceedings

of the 8th European Conference on Modelling Foundations and Applications (ECMFA’12). Springer-Verlag, Berlin, 178–
193.

[16] Z. Mushtaq and G. Rasool. 2015. Multilingual source code analysis: State of the art and challenges. In Proceedings of

the 2015 International Conference on Open Source Systems Technologies (ICOSST). 170–175.
[17] Sheng Liang. 1999. Java Native Interface: Programmer’s Guide and Reference (1st ed.). Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

29:54 M. Abidi et al.

[18] John Hunt. 1999. Java for Practitioners: An Introduction and Reference to Java and Object Orientation (1st ed.). Springer-
Verlag New York, Inc., Secaucus, NJ.

[19] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Joaquim Romaguera i Ramió, Max Jacobson, and Ingrid
Fiksdahl-King. 1977. A Pattern Language. Gustavo Gili.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA.
[21] William H. Brown, Raphael C. Malveau, Hays W. McCormick, and Thomas J. Mowbray. 1998. AntiPatterns: Refactoring

Software, Architectures, and Projects in Crisis. John Wiley & Sons, Inc.
[22] Martin Fowler and Kent Beck. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional.
[23] Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. Journal of Systems and Software 138 (2018),

158–173.
[24] Min Zhang, Tracy Hall, and Nathan Baddoo. 2011. Code bad smells: A review of current knowledge. Journal of Soft-

ware Maintenance and Evolution: Research and Practice 23, 3 (2011), 179–202.
[25] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. 2009. An exploratory study of the impact of code

smells on software change-proneness. In Proceedings of the 16th Working Conference on Reverse Engineering, 2009

(WCRE’09). IEEE, 75–84.
[26] Daniele Romano, Paulius Raila, Martin Pinzger, and Foutse Khomh. 2012. Analyzing the impact of antipatterns on

change-proneness using fine-grained source code changes. In Proceedings of the 2012 19th Working Conference on

Reverse Engineering (WCRE). IEEE, 437–446.
[27] Zéphyrin Soh, Aiko Yamashita, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2016. Do code smells impact the effort

of different maintenance programming activities? In Proceedings of the 2016 IEEE 23rd International Conference on

Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. IEEE, 393–402.
[28] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells? An exploratory survey. In Proceedings

of the 2013 20th Working Conference on Reverse Engineering (WCRE). IEEE, 242–251.
[29] Siliang Li and Gang Tan. 2009. Finding bugs in exceptional situations of JNI programs. In Proceedings of the 16th ACM

Conference on Computer and Communications Security (CCS’09). ACM, New York, 442–452.
[30] Goh Kondoh and Tamiya Onodera. 2008. Finding bugs in java native interface programs. In Proceedings of the 2008

International Symposium on Software Testing and Analysis (ISSTA’08). ACM, New York, 109–118.
[31] Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland, and David Svoboda. 2013. Java Coding Guidelines:

75 Recommendations for Reliable and Secure Programs. Addison-Wesley.
[32] Martin Lippert and Stephen Roock. 2006. Refactoring in Large Software Projects: Performing Complex Restructurings

Successfully. John Wiley & Sons.
[33] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. 2012. Automatic detection of bad smells in code: An

experimental assessment.Journal of Object Technology 11, 2 (2012), 5–1.
[34] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. 2012. An exploratory study of

the impact of antipatterns on class change-and fault-proneness. Empirical Software Engineering 17, 3 (2012), 243–275.
[35] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise Le Meur. 2009. Decor: A method for

the specification and detection of code and design smells. IEEE Transactions on Software Engineering 36, 1 (2009),
20–36.

[36] Amir Saboury, Pooya Musavi, Foutse Khomh, and Giulio Antoniol. 2017. An empirical study of code smells in
javascript projects. In Proceedings of the 2017 IEEE 24th International Conference on Software Analysis, Evolution and

Reengineering (SANER). IEEE, 294–305.
[37] Georg Gottlob, Christoph Koch, and Reinhard Pichler. 2005. Efficient algorithms for processing XPath queries. ACM

Transactions on Database Systems (TODS) 30, 2 (2005), 444–491.
[38] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. Pydriller: Python framework for mining software

repositories. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. ACM, 908–911.
[39] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do changes induce fixes? SIGSOFT Softw.

Eng. Notes 30, 4 (May 2005), 1–5. DOI:http://dx.doi.org/10.1145/1082983.1083147
[40] Audris Mockus and Lawrence G. Votta. 2000. Identifying reasons for software changes using historic databases. In

Proceedings of ICSM. 120–130.
[41] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrea De Lucia. 2014. Do they really

smell bad? A study on developers’ perception of bad code smells. In Proceedings of the 2014 IEEE International Con-

ference on Software Maintenance and Evolution. IEEE, 101–110.
[42] Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink, and Alberto Bacchelli. 2018. When testing

meets code review: Why and how developers review tests. In Proceedings of the 2018 IEEE/ACM 40th International

Conference on Software Engineering (ICSE). IEEE, 677–687.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

http://dx.doi.org/10.1145/1082983.1083147

Are Multi-Language Design Smells Fault-Prone? An Empirical Study 29:55

[43] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. The scent of a smell:
An extensive comparison between textual and structural smells. IEEE Transactions on Software Engineering 44, 10
(2017), 977–1000.

[44] David J. Sheskin. 2003. Handbook of Parametric and Nonparametric Statistical Procedures. Chapman and Hall/CRC.
[45] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. 2005. Empirical validation of object-oriented metrics on open source

software for fault prediction. IEEE Transactions on Software Engineering 31, 10 (2005), 897–910.
[46] A. Güneş Koru, Khaled El Emam, Dongsong Zhang, Hongfang Liu, and Divya Mathew. 2008. Theory of relative defect

proneness. Empirical Software Engineering 13, 5 (2008), 473.
[47] Gehan M. K. Selim, Liliane Barbour, Weiyi Shang, Bram Adams, Ahmed E. Hassan, and Ying Zou. 2010. Studying the

impact of clones on software defects. In Proceedings of the 2010 17th Working Conference on Reverse Engineering. IEEE,
13–21.

[48] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A large scale study of programming
languages and code quality in Github. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering. ACM, 155–165.
[49] Abhishek Sharma, Ferdian Thung, Pavneet Singh Kochhar, Agus Sulistya, and David Lo. 2017. Cataloging Github

repositories. In Proceedings of the 21st International Conference on Evaluation and Assessment in Software Engineering.
ACM, 314–319.

[50] David Blei, Lawrence Carin, and David Dunson. 2010. Probabilistic topic models: A focus on graphical model design
and applications to document and image analysis. IEEE Signal Processing Magazine 27, 6 (2010), 55.

[51] Tse-Hsun Chen, Stephen W. Thomas, Meiyappan Nagappan, and Ahmed E. Hassan. 2012. Explaining software defects
using topic models. In Proceedings of the 2012 9th IEEE Working Conference on Mining Software Repositories (MSR).
IEEE, 189–198.

[52] Martin F. Porter. 2001. Snowball: A language for stemming algorithms. Online. Accessed 15 November, 2019.
[53] Michael L. Collard, Michael John Decker, and Jonathan I. Maletic. 2013. SRCML: An infrastructure for the explo-

ration, analysis, and manipulation of source code: A tool demonstration. In Proceedings of the 2013 IEEE International

Conference on Software Maintenance. IEEE, 516–519.
[54] Yann-Gaël Guéhéneuc and Giuliano Antoniol. 2008. Demima: A multilayered approach for design pattern identifica-

tion. IEEE Transactions on Software Engineering 34 (2008), 667–684.
[55] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh. 2013. Mining the relationship between anti-

patterns dependencies and fault-proneness. In Proceedings of the 2013 20th Working Conference on Reverse Engineering

(WCRE). IEEE, 351–360.
[56] Gang Tan, Srimat Chakradhar, Raghunathan Srivaths, and Ravi Daniel Wang. 2006. Safe java native interface. In

Proceedings of the 2006 IEEE International Symposium on Secure Software Engineering. IEEE, 97–106.
[57] Robert K. Yin. 2002. Applications of Case Study Research Second Edition (Applied Social Research Methods Series Volume

34). Sage Publications, Inc.
[58] Sarim Zafar, Muhammad Zubair Malik, and Gursimran Singh Walia. 2019. Towards standardizing and improving

classification of bug-fix commits. In Proceedings of the 2019 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM). IEEE, 1–6.
[59] Marco Castelluccio, Le An, and Foutse Khomh. 2019. An empirical study of patch uplift in rapid release development

pipelines. Empirical Software Engineering 24, 5 (2019), 3008–3044. DOI:http://dx.doi.org/10.1007/s10664-018-9665-y
[60] Gema Rodríguez-Pérez, Andy Zaidman, Alexander Serebrenik, Gregorio Robles, and Jesús M. González-Barahona.

2018. What if a bug has a different origin? Making sense of bugs without an explicit bug introducing change. In
Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. 1–4.

[61] Gema Rodríguez-Pérez, Gregorio Robles, and Jesús M. González-Barahona. 2018. Reproducibility and credibility in
empirical software engineering: A case study based on a systematic literature review of the use of the SZZ algorithm.
Information and Software Technology 99 (2018), 164–176.

[62] E. C. Neto, D. A. d. Costa, and U. Kulesza. 2019. Revisiting and improving SZZ implementations. In Proceedings of the

2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). 1–12.
[63] C. Treude and M. Wagner. 2019. Predicting good configurations for Github and stack overflow topic models. In

Proceedings of the 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). 84–95.
[64] Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiahui Jiang, Yanchao Li, and Liang Zhao. 2019. Latent Dirichlet

Allocation (LDA) and topic modeling: Models, applications, a survey. Multimedia Tools and Applications 78, 11 (2019),
15169–15211.

[65] Panagiotis K. Linos. 1995. Polycare: A tool for re-engineering multi-language program integrations. In Proceedings of

the 1st IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’95). IEEE, 338–341.
[66] Bernt Kullbach, Andreas Winter, Peter Dahm, and Jürgen Ebert. 1998. Program comprehension in multi-language

systems. In Proceedings of the 5th Working Conference on Reverse Engineering, 1998. IEEE, 135–143.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

http://dx.doi.org/10.1007/s10664-018-9665-y

29:56 M. Abidi et al.

[67] Steffen Olbrich, Daniela S. Cruzes, Victor Basili, and Nico Zazworka. 2009. The evolution and impact of code smells: A
case study of two open source systems. In Proceedings of the 2009 3rd International Symposium on Empirical Software

Engineering and Measurement. IEEE Computer Society, 390–400.
[68] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol. 2011. An empirical study of the impact

of two antipatterns, blob and spaghetti code, on program comprehension. In Proceedings of the 2011 15th European

Conference on Software Maintenance and Reengineering (CSMR). IEEE, 181–190.
[69] Cristiano Politowski, Foutse Khomh, Simone Romano, Giuseppe Scanniello, Fabio Petrillo, Yann-Gaël Guéhéneuc, and

Abdou Maiga. 2020. A large scale empirical study of the impact of spaghetti code and blob anti-patterns on program
comprehension. Information and Software Technology 122 (2020), 106278. DOI:http://dx.doi.org/10.1016/j.infsof.2020.
106278

[70] Mario Linares-Vásquez, Sam Klock, Collin McMillan, Aminata Sabané, Denys Poshyvanyk, and Yann-Gaël
Guéhéneuc. 2014. Domain matters: Bringing further evidence of the relationships among anti-patterns, application
domains, and quality-related metrics in java mobile apps. In Proceedings of the 22nd International Conference on Pro-

gram Comprehension. ACM, 232–243.
[71] Eva Van Emden and Leon Moonen. 2002. Java quality assurance by detecting code smells. In Proceedings of the 9th

Working Conference on Reverse Engineering, 2002. IEEE, 97–106.
[72] Radu Marinescu. 2004. Detection strategies: Metrics-based rules for detecting design flaws. In Proceedings of the 20th

IEEE International Conference on Software Maintenance, 2004. IEEE, 350–359.
[73] Michele Lanza and Radu Marinescu. 2007. Object-Oriented Metrics in Practice: Using Software Metrics to Characterize,

Evaluate, and Improve the Design of Object-Oriented Systems. Springer Science & Business Media.
[74] Naouel Moha and Yann-Gaël Guéhéneuc. 2007. P TIDEJ and D ECOR: Identification of design patterns and design

defects. In Companion to the 22nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications.
ACM, 868–869.

[75] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui. 2009. A Bayesian approach for the de-
tection of code and design smells. In Proceedings of the 9th International Conference on Quality Software, 2009 (QSIC’09).
IEEE, 305–314.

[76] Foutse Khomh, Stephane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui. 2011. BDTEX: A GQM-based
bayesian approach for the detection of antipatterns. Journal of Systems and Software 84, 4 (2011), 559–572.

[77] Marouane Kessentini, Wael Kessentini, Houari Sahraoui, Mounir Boukadoum, and Ali Ouni. 2011. Design defects
detection and correction by example. In Proceedings of the 2011 IEEE 19th International Conference on Program Com-

prehension (ICPC). IEEE, 81–90.
[78] Ghulam Rasool and Zeeshan Arshad. 2017. A lightweight approach for detection of code smells. Arabian Journal for

Science and Engineering 42, 2 (2017), 483–506.
[79] Francesca Arcelli Fontana, Mika V. Mäntylä, Marco Zanoni, and Alessandro Marino. 2016. Comparing and experi-

menting machine learning techniques for code smell detection. Empirical Software Engineering 21, 3 (2016), 1143–1191.
[80] Hui Liu, Zhifeng Xu, and Yanzhen Zou. 2018. Deep learning based feature envy detection. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering. 385–396.
[81] Antoine Barbez, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2020. A machine-learning based ensemble method for

anti-patterns detection. Journal of Systems and Software 161 (2020), 110486.
[82] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman. 2016. A textual-based technique for smell detection.

In Proceedings of the 2016 IEEE 24th International Conference on Program Comprehension (ICPC). 1–10.
[83] Michael Goedicke, Gustaf Neumann, and Uwe Zdun. 2001. Message redirector. In Proceedings of the 6th European

Conference on Pattern Languages of Programms (EuroPLoP’2001) (2001).
[84] Sheng Liang. 1999. The Java Native Interface: Programmer’s Guide and Specification. Addison-Wesley Professional.

Received February 2020; revised September 2020; accepted October 2020

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 29. Pub. date: February 2021.

http://dx.doi.org/10.1016/j.infsof.2020.106278
http://dx.doi.org/10.1016/j.infsof.2020.106278

