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The LWR Model

➢ As previously illustrated, using the conservation law, one obtains a system of three 
equations involving three unknown variables describing a dynamic traffic model:

➢ where 𝑞 = 𝑞(𝑡, 𝑥) is flow, 𝑘 = 𝑘(𝑡, 𝑥) is density, and 𝑣 = 𝑣(𝑡, 𝑥) is mean traffic 
speed.

➢ If one combines the second and third equations by eliminating 𝑣, one obtains a 
flow-density relationship 𝑞 = 𝑄(𝑘), and the dynamic model becomes: 

➢ Or further:

➢ Where:

➢ This is the so-called 𝐿𝑊𝑅 model to honor the three pioneers, Lighthill, Whitham, 
and Richards, who originally studied this problem.

➢ The LWR model is essentially a first-order, homogeneous, quasi-linear partial 
differential equation.
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The LWR Model

➢ If we apply the results discussed previously, the LWR model with initial condition 𝑘(0, 𝑥) = 𝑘0(𝑥) 
can be solved as follows:
1. Construct a time-space diagram (i.e., the 𝑡 − 𝑥 plane) with initial condition 𝑘0(𝑥) labeled on 

the 𝑥-axis.
2. Start with an arbitrary point on the 𝑥-axis (0, 𝑥∗), and determine the 𝑘 value at this point 

𝑘0(𝑥
∗) and the value of 𝑐(𝑥∗) = 𝑄 (𝑘0(𝑥

∗)).
3. Draw a straight line 𝑠 from point (0, 𝑥∗) with slope 𝑐(𝑥∗). The line equation is 𝑥𝑠 = 𝑐(𝑥∗)𝑡 +

𝑥∗, which represents a characteristic along which the 𝑘 value is constant 𝑘(𝑡, 𝑥𝑠) = 𝑘0(𝑥
∗).

4. Apply the previous two steps to other points on the 𝑥-axis and construct their corresponding 
characteristics.

5. If two characteristics intersect, terminate both characteristics at their intersection and note 
the intersection as a point on a shock path. If a characteristic has multiple intersections, use 
the Rankine-Hugonoit jump condition to determine the right intersection. Repeat this step and 
find adjacent intersections. Connect these intersections to form a shock path. The solution at 
both sides of the shock path should be piecewise smooth with a jump along the shock path 
which forms a shock wave.
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The LWR Model

6. If two families of characteristics diverge and, hence, leave a wedge-shaped area in between, 
fill this area with a fan of characteristics and construct a rarefaction wave solution in this 
area.

7. If an area has multiple rarefaction solutions, apply the entropy condition to select a solution 
that makes the most physical sense.

8. After the above steps have been followed, the solution space should be filled with 
characteristics. Each point in the solution space should be swept by one and only one 
characteristic.

9. If an arbitrary point (𝑡, 𝑥) is of interest, one simply follows its characteristic all the way back 
to the 𝑥-axis and reads𝑘0(𝑥) off the initial condition. This𝑘0(𝑥) is the 𝑘 value at the time-
space point in question. Consequently, one finds the corresponding 𝑞(𝑥, 𝑡) = 𝑄(𝑘(𝑡, 𝑥))
and 𝑣(𝑡, 𝑥) = 𝑞(𝑡, 𝑥) 𝑘(𝑡, 𝑥) . Hence, the solution 𝑘(𝑡, 𝑥), 𝑞(𝑡, 𝑥), and 𝑣(𝑡, 𝑥) of any time-
space point (𝑡, 𝑥) can be determined.
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LWR with Greenshields Model

➢ The Greenshields model assumes the following linear 𝑣 − 𝑘 relationship

• Where 𝑣𝑓 is free-flow speed and 𝑘𝑗 is jam density.

➢ This model implies the following quadratic 𝑞 − 𝑘 relationship

➢ If the parameters are traffic speed 𝑣𝑓 = 60 miles per hour and density 𝑘𝑗 = 240 vehicles 

per mile, the explicit form of the 𝐿𝑊𝑅 model becomes:

➢ Find solutions at points (𝑡 = 1/2ℎ, 𝑥 = 25𝑚𝑖𝑙𝑒𝑠) and (𝑡 = 1ℎ, 𝑥 = 65𝑚𝑖𝑙𝑒𝑠) with use of 
the following initial condition:

➔
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LWR with Greenshields Model

➢ Construct a time-space diagram.

➢ Illustrate the initial condition at the side of the diagram.

➢ Identifies the two points in question.

➢ Constructs characteristics.

➢ All characteristics drawn between 0 < 𝑥 ≤ 10 miles will bear a 𝑘 value 
of 40 vehicles per mile, which can be read from the initial condition, so 

the slope of these characteristics is 𝑐 = 60 −
𝑘

2
= 40 miles per hour.

➢ Point (𝑡 = 1/2 , 𝑥 = 25) is within this area, and the characteristic 
passing this point intercepts the 𝑥-axis at (0, 5). Hence, 𝑘( 1/2 , 25) =
𝑘(0, 5) = 40 vehicles per mile.

➢ Similarly, All characteristics drawn from 𝑥 > 10 miles have slope 𝑐 =
50 miles per hour, and point (𝑡 = 1, 𝑥 = 65) is within this area.

➢ The characteristic passing this point intercepts the 𝑥-axis at (0, 15). 
Hence, 𝑘(1, 65) = 𝑘(0, 15) = 20 vehicles per mile.

Example of LWR with Greenshields model
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LWR with Greenshields Model

➢ This example involves two platoons: A fast one running in front and a 
slow one trailing behind.

➢ Each platoon corresponds to a family of characteristics called a 
kinematic wave.

➢ The characteristics of the fast platoon have a slope of 50 miles per 
hour, which is the speed of the fast kinematic wave.

➢ Similarly, the speed of the slow kinematic wave is 40 miles per hour.

➢ Noticeably, there is a wedge between the two families of 
characteristics starting from (0, 10), meaning there is an increasing 
“vacuum” (or gap) between the two platoons.

Example of LWR with Greenshields model
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LWR with Greenshields Model

➢ If the two platoons are reversed—that is, the slow platoon leads 
the fast platoon, sooner or later the fast platoon will catch up with 
the slow platoon.

➢ When this occurs, the first vehicle in the fast platoon will have to 
adopt the speed of the last vehicle in the slow platoon.

➢ Shortly afterward, the second vehicle in the fast platoon will have 
to slow down, and so will the third vehicle, the fourth vehicle, and 
so on.

➢ The “slowing down” effect will propagate backward along the fast 
platoon.

➢ The propagation of a sudden change of traffic condition creates a 
shock wave which delineates regions of different traffic 
conditions.

➢ The trajectory of the shock wave in the 𝑥 − 𝑡 plane is called a 
shock path.

Example of LWR with Greenshields model
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LWR Model – General Q-K Relationship

➢ In the above example, the underlying 𝑞 − 𝑘 relationship is explicitly given by the 
Greenshields model.

➢ Hence, it is convenient to determine the speed of a kinematic wave from the initial 
condition.

➢ However, it is recognized that the Greenshields model suffers from inaccuracy, and 
often the underlying 𝑞 − 𝑘 relationship is graphically given by fitting from empirical 
data.

➢ In this case, the solution to the 𝐿𝑊𝑅 model with a general 𝑞 − 𝑘 relationship is 
typically determined graphically.

➢ Consider the following LWR model with a general 𝑞 − 𝑘 relationship:
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LWR Model – General Q-K Relationship

➢ The 𝑞 − 𝑘 relationship is illustrated in Figure.

➢ Point 𝐴 denotes an operating point characterized by flow 
𝑞𝐴, density 𝑘𝐴, and speed 𝑣𝐴, and similar notation applies 
to point 𝐵.

➢ A time-space diagram is constructed below the 𝑞 − 𝑘
relationship with the initial condition at the side. 

➢ As discussed Previously, if 𝑐 is a constant or dependent on 
𝑘 but not explicitly dependent on t or 𝑥, the resultant 
characteristic is a straight line.

➢ Each kinematic wave has a constant slope, and the shock 
path will be a straight line.

➢ From the initial condition, there are two kinematic waves: 
kinematic wave 𝐴 emitted from 𝑥 ≤ 0, and kinematic 
wave 𝐵 emitted from 𝑥 > 0.

Example of LWR model with a general q-k relationship
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LWR Model – General Q-K Relationship

➢ The speed of kinematic wave 𝐴 is the derivative of the 𝑞 −
𝑘 relationship evaluated at operating point 𝐴.

➢ This is the tangent to the 𝑞 − 𝑘 curve at point 𝐴. 

➢ Therefore, one constructs kinematic wave 𝐴 by drawing a 
family of straight, parallel lines drawn from 𝑥 ≤ 0 with 
slope 𝑤𝐴.

➢ Similarly, the speed of kinematic wave 𝐵, 𝑤𝐵, is the 
tangent to the 𝑞 − 𝑘 curve at point 𝐵, and the wave can be 
constructed accordingly.

Example of LWR model with a general q-k relationship
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LWR Model – General Q-K Relationship

➢ Kinematic wave B represents a heavy, slow platoon in front.

➢ Kinematic wave A represents a light, fast platoon behind.

➢ Kinematic wave A will catch up with kinematic wave B, 
creating a shock wave.

➢ Since the slope (speed) of the shock wave is determined by 
the Rankine Hugonoit jump condition, the shock path is a 
straight line.

➢ The slope of this line is determined using: 

➢ This happens to be the slope of the line connecting points 𝐴
and 𝐵 in the 𝑞 − 𝑘 curve.

➢ In addition, one already knows from the initial condition 
that the shock path starts at the origin in the time-space 
diagram. Therefore, one can determine the shock path by 
drawing a line from the origin with slope 𝑈𝐴𝐵.

Example of LWR model with a general q-k relationship
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LWR Model – General Q-K Relationship

➢ Characteristics in the two kinematic waves will terminate 
once they meet the shock path.

➢ Hence, the shock wave solution is graphically 
constructed, and consists of two piecewise smooth 
solutions.

➢ The region above the shock path has a uniform traffic 
condition 𝐵 (𝑞𝐵, 𝑘𝐵 , 𝑢𝐵).

➢ The region below the shock path has condition 
𝐴 (𝑞𝐴, 𝑘𝐴, 𝑢𝐴).

➢ Although characteristics are used to illustrate how to find 
the shock path, they are not necessary.

➢ With a known point on the shock path and known shock 
speed, the shock path can be determined directly without 
characteristics being drawn. Example of LWR model with a general q-k relationship
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Shock Path and Queue Tail

➢ As illustrated in the Figure, the shock path represents the time-varying 
location, which separates the fast platoon and the slow platoon ➔ The tail of a 
moving queue.

➢ As the leading vehicle of the fast platoon catches up with the tail of the slow 
platoon, that vehicle joins the slow platoon and becomes its new tail.

Shock path and queue tail

➢ Since the slow platoon is still moving, the 
location of its tail changes dynamically 
depending on how quick the fast platoon 
arrives.

➢ Figure shows a few snapshots to illustrate 
such a dynamic process.
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Speed-Flow-Density Relationship

➢ Given a stationary observer of the traffic flow:

• Point 𝐴 represents the traffic condition with flow 𝑞𝐴
and density 𝑘𝐴

• The corresponding traffic speed under condition 𝐴, by 
definition:

• Graphically, this can be represented as the slope of the 
line connecting the origin 𝑂 and operating point 𝐴.

• If 𝑘𝐴 decreases, point 𝐴 will move along the curve 
toward the origin 𝑂. In the limiting case where 𝑘𝐴 →
0, line 𝑂𝐴 becomes the tangent to the curve at the 
origin. The slope of this tangent denotes the traffic 
speed when the density is close to zero. 

Speed-flow-density graphical relationship
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Speed-Flow-Density Relationship

• If one draws a line tangent to the curve at point 𝐴, as 
discussed above, the slope of this tangent is the speed 
of a kinematic wave carrying traffic condition 𝐴:

• If A and B represent two different traffic conditions, as 
discussed above, the slope of chord AB is the speed of 
the shock wave separating the two traffic conditions. 

Speed-flow-density graphical relationship
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Speed-Flow-Density Relationship

➢ Given a moving observer of the traffic flow:

• If the observer is riding on the kinematic wave carrying 
traffic condition A, he will observe less flow than he 
would have observed if stationary:

• This is equivalent to drawing a line from the origin with 
𝑤𝐴 as its slope.

• Then run a vertical line through point 𝐴 intersecting 
the drawn line at 𝐴′ and the horizontal axis at 𝐴′′. 

• The length of 𝐴𝐴′is 𝑞𝐴, the segment of 𝐴′𝐴′′is 𝑤𝐴𝑘𝐴, 
and the segment of 𝐴𝐴′′is the relative flow, 𝑞𝐴, 
observed by the moving observer. 

Speed-flow-density graphical relationship
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Speed-Flow-Density Relationship

• As another example, suppose traffic is operating at 
condition 𝐵 which is on the congested side of the 𝑞 −
𝑘 curve. The kinematic wave speed is now 𝑤𝐵, which is 
negative. What happens if an observer is moving along 
with wave 𝑤𝐵?

• With the same treatment, one obtains

• This is equivalent to drawing a line from the origin 𝑂
with slope 𝑤𝐵 which slants downward.

• Run a vertical line through point 𝐵 intersecting the 
drawn line at 𝐵′′ and the horizontal axis at 𝐵′.

• The absolute value of relative flow (i.e., the length of 
𝐵𝐵′′) in this case is the sum of 𝐵𝐵′and 𝐵′𝐵′′ because 
𝑤𝐵 takes a negative value.

Speed-flow-density graphical relationship
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LWR Model – Bottleneck

Problem

➢ Traffic arriving at the upstream point of a highway was initially under condition 𝐴
(see Table).

➢ At 9: 00 𝑎.𝑚., the arriving traffic switches to condition 𝐵.
➢ After 1 ℎ, the arriving traffic switches back to condition 𝐴.
➢ The capacity at the bottleneck is 1400 vehicles per hour.

Find how far the queue extends back and how long the queue persists.

Alizadeh H. (2022) École Polytechnique de Montréal– CIV6705 Autumn 2022 19



LWR Model – Bottleneck

Solution

➢ The rate at which the queue grows is:

The queue tail extends back at this rate for 1 h, so the farthest point 
it reaches is 6.67 km upstream of the bottleneck.

➢ The rate at which the queue dissipates is:

➢ So the time needed to dissipate the queue is 6.67/6.60 = 1.01 ℎ, 
and the total time for which the queue persists is 2.01 ℎ.

A highway bottleneck with varying traffic demand
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LWR Model – Moving Bottleneck

Problem

➢ In this section we consider a more complicated example, namely a moving bottleneck that is present 
on a road over a given distance during a given period.

➢ A practical example of a moving bottle-neck is a slow-moving vehicle, e.g. an agricultural tractor 
with a speed of 20 km/h, on a two-lane road. The capacity of the bottleneck is determined by the 
overtaking opportunities, hence by the opposing flow and the overtaking sight distance. Those two 
factors can lead to a more or less constant capacity of the b-n.

➢ Consider the following conditions:

➢ Roadway:

➢ Capacity = 4500 veh/h;
➢ Speed 𝑢𝑐 = 90 km/h;
➢ Jam density 𝑘𝑗 = 250 veh/km.

Find when the impact of the truck will disappear.

➢ The moving bottleneck
➢ Speed ො𝑣 = 20 km/h
➢ Distance = 4 km.
➢ Capacity = 1800 veh/h, 
➢ Capacity speed = 60 km/h 
➢ 𝑘𝑗 = 125 veh/km
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LWR Model – Bottleneck

Solution
➢ In general terms the bottleneck will lead to congestion upstream and 

free flow downstream.
➢ The downstream flow is expected to be equal to the capacity of the 

bottleneck.
➢ After the bottleneck is removed the congestion will decay until free 

flow is restored over the total affected road section.
➢ It is obvious that in the bottleneck the traffic flow state is the cap: 

state 2.
➢ At the upstream end of the bottleneck a transition from a congested 

state 3 to the state 4 must occur and move with speed ො𝑣.
➢ This implies that in the 𝑞 − 𝑘 plane the shock waves are represented 

by the line going through the capacity point of the bottleneck with a 
slope equal to ො𝑣.

➢ Consequently the state in the congestion upstream the bottleneck is 
state 3 and the state downstream the bottleneck is state 4. 

A moving bottleneck with constant demand
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LWR Model – Bottleneck

Solution

➢ Note that the flow of the free flow downstream the bottleneck is 
not equal to the capacity of the bottleneck, but it is less.

➢ Free flow state 1 and congested state 3 determine the speed of the 
shock wave at the tail of the queue (a shock wave with speed 𝜔13).

➢ The origin in the x-t diagram is where the bottleneck starts.

➢ It moves with speed ො𝑣 until it leaves the road again.

➢ At a given moment and position the moving bottleneck leaves the 
road (point 𝐵).

➢ The congested traffic, state 3, then transforms to the capacity state 
5 and a shock wave between state 3 and state 5 starts and makes 
the size of congestion shrink.

A moving bottleneck with constant demand
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LWR Model – Bottleneck

Solution

➢ Shock waves 𝑆13 and 𝑆53 meet at point 𝐶, and then starts a shock 
wave representing the transition from the undisturbed state 1 to 
capacity state 5.

➢ Line 𝐴𝐵 represents a shockwave with the speed 𝜔24.

➢ Note: downstream point 𝐵, Daganzo’s diagram works out less 
realistically. The three states 4, 5, and 1 propagate all with the same 
speed and do not mix. In reality, 𝑢4 > 𝑢1 > 𝑢5 and drivers will 
accelerate to areas with a lower density.

A moving bottleneck with constant demand
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Types of Shock Waves

Frontal stationary shock waves
➢ Formed when the capacity suddenly 

reduces to zero at an approach or set of 
lanes, for example the red indication at a 
signalized intersection or when a highway is 
completely closed because of a serious 
incident.

Backward forming shock waves
➢ Formed when the capacity is reduced below 

the demand flow rate resulting in the 
formation of a queue upstream of the 
bottleneck. This may occur on a highway 
where the number of lanes is reduced.

➢ Several types of shock waves can be formed, depending on the traffic conditions that lead to 
their formation.

Backward recovery shock waves
➢ Formed when the demand flow rate becomes less than 

the capacity of the bottleneck or the restriction causing 
the capacity reduction at the bottleneck is removed. 
The intersection of the backward forming shock wave 
and the backward recovery shock wave indicates the 
end of the queue.

Rear stationary and forward recovery shock waves
➢ formed when demand flow rate upstream of a 

bottleneck is first higher than the capacity of the 
bottleneck and then the demand flow rate reduces to 
the capacity of the bottleneck
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Types of Shock Waves
Types of Shock Waves at Signalized Intersection

The red signal reduced the 
capacity to zero resulting in 
the formation of a frontal 

stationary shock wave.

The capacity reduction below the demand 
flow rate results in the formation of a 

queue upstream of the bottleneck.

The signals turns green, the 
traffic on that approach is free to 

move across the intersection.
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Types of Shock Waves

➢ During the off-peak period when the demand 
flow is less than the tunnel capacity, no shock 
wave is formed.

➢ When demand becomes higher than the 
tunnel capacity during the peak hour, a 
backward forming shock wave is formed.

➢ This shock wave continues to move upstream 
of the bottleneck as long as the demand flow 
is higher than the tunnel capacity.

➢ As the end of the peak period approaches, the 
demand flow rate tends to decrease until it is 
the same as the tunnel capacity.

➢ At this point, a rear stationary shock wave is 
formed until the demand flow becomes less 
than the tunnel capacity resulting in the 
formation of a forward recovery shock wave.

Types of Shock Waves Due to a Bottleneck
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Shockwave – Bottleneck

➢ Let us now consider the situation where the normal 
speed on a highway is temporarily reduced at a section 
of a highway where the flow is relatively high but lower 
than its capacity.

➢ For example, consider a truck that enters a two-lane 
highway at time 𝑡1 and traveling at a much lower speed 
than the speed of the vehicles driving behind it.

➢ The truck travels for some time on the highway and 
eventually leaves the highway at time 𝑡2.

➢ If the traffic condition is such that the vehicles cannot 
pass the truck, the shock waves that will be formed are 
shown in Figure.

➢ The traffic conditions prior to the truck entering the 
highway at time 𝑡1 is depicted as section 1.

Shock Wave Created By Slow Traffic
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Shockwave – Bottleneck

➢ At time 𝑡1, vehicles immediately behind the truck 
will reduce their speed to that of the truck. This 
results in an increased density immediately 
behind the truck resulting in traffic condition 2➔
The moving shock wave with a velocity of 𝜔12 is 
formed.

➢ Also, because vehicles ahead of the truck will 
continue to travel at their original speed, a section 
on the highway just downstream of the truck will 
have no vehicles thereby creating traffic condition 
3➔ This also results in the formation of the 
forward moving shock waves with velocities of 
𝜔13, and 𝜔32.

Shock Wave Created By Slow Traffic
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Shockwave – Bottleneck

➢ At time 𝑡2 when the truck leaves the highway, the 
flow will be increased to the capacity of the 
highway with traffic condition 4. This results in the 
formation of a backward moving shock wave 
velocity 𝜔24 and a forward moving shock wave 
with velocity 𝜔34.

➢ At time 𝑡3, shock waves with velocities 𝜔12 and 
𝜔24 coincide resulting in a new forward moving 
shock wave with a velocity 𝜔41. It should be noted 
that the actual traffic conditions 2 and 4 depend 
on the original traffic condition 1 and the speed of 
the truck.

Shock Wave Created By Slow Traffic
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Numerical Solutions

➢ The LWR model, the procedure for its solution, and a few concrete 
examples were provided to show how to apply the procedure.

➢ These problems were solved graphically by manually working on a time-
space diagram using the method of characteristics.

➢ Though illustrative, the graphical approach has limitations since it can deal 
only with simple problems, which involve only one homogeneous highway 
section and simple initial conditions.

➢ In the real world, a traffic system may consist of a network where multiple 
segments or highways are considered with traffic flowing in and out via 
ramps.

➢ In addition, the initial and boundary conditions may be more complicated.

➢ In these cases, the graphical approach is insufficient and sometimes 
infeasible.

Alizadeh H. (2022) École Polytechnique de Montréal– CIV6705 Autumn 2022 31



Numerical Solutions

➢ Moreover, the purpose of solving LWR problems is to predict traffic 
dynamics so that traffic engineers can anticipate congestion and to 
develop strategies to alleviate congestion.

➢ In such applications, timing is a critical issue, and solving these problems in 
real time is desirable.

➢ Moreover, the wide deployment of intelligent transportation systems 
makes it possible to provide real-time traffic conditions and allow online 
prediction.

➢ Therefore, a computerized solution to the LWR model is essential to cope 
with more complicated real-world problems, to enable real-time 
prediction, and to automate such predictions by the development of online 
applications.
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Discretization Scheme

➢ The first step to develop a computerized solution is to 
discretize time and space.

➢ Computers are digital machines which can work only in a 
discrete fashion, so computerized solutions to the LWR 
model must be numerical and discrete.

➢ Figure illustrates a time-space diagram where time t is the 
horizontal axis and space 𝑥 is the vertical axis with a 
roadway drawn at the side.

➢ The roadway is partitioned into a series of segments labeled 
as 𝑗 ∈ (0, 1, … , 𝐽). If 𝑥0 is chosen as the reference point 
and segment length 𝑥 is uniform, the location of the end of 
segment 𝑗 is:

Discretization scheme
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Discretization Scheme

➢ Similarly, the time is divided into a series of durations 
𝑖 ∈ (0, 1, … , 𝐼) with step size 𝑡. If the reference point 
of time is 𝑡0, the end of duration 𝑖 is at time:

➢ In general, the following relationship is required in a 
discretization scheme, where 𝑣𝑓 is the free-flow speed, 

to ensure that a vehicle should not traverse more than 
one segment 𝑥 within a time step 𝑡 :

Discretization scheme
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Discretization Scheme

1. A typical numerical solution to the 𝐿𝑊𝑅 problem starts with initial 
conditions by determining the number of vehicles contained in each 
roadway segment one by one from the upstream end to the 
downstream end.

2. For easy reference, the time-space region bounded within duration 𝑖
and segment 𝑗 is referred to as a cell and is denoted as (𝑖, 𝑗) and the 
number of vehicles contained in segment 𝑗 at the end of duration 𝑖 is 
denoted as 𝑛(𝑡𝑖 , 𝑥𝑗).

3. After this, time advances one step, and the above process starts over 
again.

4. Hence, the numerical solution consists of two loops: time 𝑡𝑖 as the outer 
loop and space 𝑥𝑗 as the inner loop.

5. The process finishes when all cells have been traversed, and the solution 
is given as cell storage

or, alternatively, traffic condition

➔
➔

➔

1

2

3

4
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FREFLO

➢ FREFLO is an early (if not the earliest) computerized macroscopic 
traffic simulation model, developed by Payne in the late 1970s.

➢ Like the LWR model, FREFLO consists of three equations with a 
discretization scheme, shown in Figure.

➢ The first equation is the conservation law:
• Storage in the current cell = Storage at previous step + Vehicles 

arrived from upstream - Vehicles departed to downstream + Vehicles 
entered via on-ramp - Vehicles exited via off-ramp

➢ Mathematically, this can be expressed as:

➢ where 𝑔(𝑡𝑖 , 𝑥𝑗) is the net inflow via ramps—that is,𝑔(𝑡𝑖𝑖, 𝑥𝑗) =

𝑟𝑜𝑛(𝑡𝑖, 𝑥𝑗) − 𝑟𝑜𝑓𝑓(𝑡𝑖, 𝑥𝑗).

➢ Note that 𝑛 = 𝑘∆𝑥, and the above equation becomes

Discretization in FREFLO
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FREFLO

➢ The second equation of FREFLO is the identity in discrete form:

➢ For the third equation, FREFLO uses a dynamic speed-density 
relationship:

speed in current cell = speed in previous step - convection + 
relaxation + anticipation

• Convection - vehicles tend to continue their speeds when they travel 
in the upstream section,

• Relaxation - vehicles tend to adopt the equilibrium velocity-density 
relationship,

• Anticipation - vehicles tend to adjust to downstream condition, i.e. 
slow down if congested.

Discretization in FREFLO
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FREFLO

➢ Mathematically, this can be expressed as:

𝑐𝑇 and 𝑐𝑏 are relaxation 
time and anticipation 
coefficients, respectively

➢ Using observed data, the equilibrium speed-density relationship 𝑉(𝑘) takes the 
following form:

➢ With the above equations, one can determine the state (𝑞, 𝑘, 𝑣) of each cell by 
starting from initial conditions and following the numerical solution procedure.
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Cell Transmission Model

➢ The cell transmission model (CTM) was proposed by 
Daganzo in the mid-1990s.

Minimum Principle

➢ Figure shows a triangular flow-density relationship.
➢ The relationship consists of three sections:

• Uncongested (left), with free-flow speed 𝑣𝑓 equal to 

forward wave kinematic speed 𝑤𝑓 ,

• Capacity (middle) 𝑞𝑚,
• And, congested (right), with backward wave speed 

𝑤𝑏 and jam density 𝐾.

Triangular flow-density relationship
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Cell Transmission Model

Minimum Principle

➢ A vertical line at any density 𝑘 will intersect the three 
sections at height 𝑘𝑤𝑓 , 𝑞𝑚, and (𝐾 − 𝑘)𝑤𝑏. Hence, flow 

corresponding to this density is found as the minimum of 
the three intersections:

➢ Physically, if one considers the left section as conditions 
dictated by arrival traffic, the middle section as local 
capacity, and the right section as conditions dictated by 
downstream traffic, the above equation basically says that 
traffic flowing through a point of highway should not 
exceed the upstream arrival rate, local capacity, and the 
rate allowed by downstream conditions.

Triangular flow-density relationship
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Cell Transmission Model

Mainline Scenario

➢ The CTM uses the same discretization scheme presented before.
➢ Everything else remains the same except for one thing: the cell now has a uniform 

length as the distance traveled by a vehicle at free-flow speed during one-time step:

➢ According to the minimum principle, traffic that can flow into segment 𝑗, 𝑞𝑗 (𝑡𝑖), is 

constrained by the following:

➢ Hence, the number of vehicles that can move into segment 𝑗, 𝑦𝑗(𝑡𝑖), is found by 

multiplying both sides by ∆𝑡:

➢ Note that 𝑛 = 𝑘∆𝑥, 𝑥 = 𝑣𝑓∆𝑡, and 𝑣𝑓 = 𝑤𝑓 owing to the triangular flow-density 

relationship.
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Cell Transmission Model

Mainline Scenario

➢ The previous equation can be transformed to the following form: 

➢ The above equation stipulates that the number of vehicles that can move into 
segment 𝑗, 𝑦𝑗(𝑡𝑖), is constrained by:

➢ The number of vehicles in 𝑗 − 1 previously: 𝑛𝑗−1 (𝑡𝑖−1), 

➢ The capacity of segment 𝑗, 𝑞𝑚∆𝑡,

➢ The empty space in 𝑗: 
𝑤𝑏

𝑤𝑓
(𝐾∆𝑥 − 𝑛𝑗 (𝑡𝑖−1))

➔
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Cell Transmission Model

Mainline Scenario

➢ The previous equation can be further reduced to:

➢ Therefore, the evolution of traffic on a freeway mainline can be stated as

➢ Mathematically, this can be expressed as:

Flow being sent from an upstream position

Flow ready to be received downstream
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High-Order Models

➢ The macroscopic traffic flow models discussed so far, including both analytical and numerical models, 
have been focused on the LWR model and its variants.

➢ At the center of these models is mass or vehicle conservation, which can be mathematically 
expressed as a first-order partial differential equation:

where 𝑘 and 𝑞 are density and flow, which depend on time 𝑡 and space 𝑥.

➢ Hence, these models are referred to as first-order models.

➢ Common to first-order models is their prediction of a shock wave when two kinematic waves meet.

➢ Consequently, a vehicle crossing the shock wave has to change its speed abruptly, which is physically 
impossible.

➢ Efforts to address these undesirable features has led many researchers to seek more realistic models 
to represent traffic dynamics.

➢ These efforts gave rise to high-order dynamic traffic flow models.
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High-Order Models

➢ Daganzo noted that, the LWR model, which is a first-order continuum flow model, is 
proposed for dense traffic with an equilibrium and it is flawed for traffic at light traffic 
conditions. 

➢ When passing is allowed, the LWR model produces unsatisfactory results in the following 
aspects:

• The LWR model predicts an abrupt speed change when a vehicle passes through a 
shock wave, an action that is unrealistic in the real world.

• The LWR model fails to predict instabilities of stop-start traffic.

• The LWR model assumes zero reaction time, which does not happen in the real world.

➢ These shortcomings imply that when passing is allowed, the LWR model fails to recognize 
that the preferred speed for each vehicle varies over time and the desired speeds among a 
group of vehicles vary as well.

➢ These variations can cause a platoon to disperse in a way that is not predicted by the LWR 
model.
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High-Order Models

➢ Given these deficiencies, the continuum flow models developed so far have been 
trying to fix the deficiencies, and almost all of these models follow the direction of 
incorporating a momentum conservation equation.

➢ Payne and Whitham proposed a dynamic model, the so-called PW model (1971), 
trying to smooth out the discontinuity in speed change across shock waves.

➢ A momentum equation was introduced in this model to describe the structure of a 
shock wave. 

➢ This seminal work has inspired many future works.
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PW Model (1971)

➢ Proposed by Payne and independently by Whitham, the PW model consists of a system of 
two equations:

➢ The first is the conservation of mass given in the LWR model,

➢ The second equation is derived from the Navier-Stokes equation of motion for a one-
dimensional compressible flow with a pressure and a relaxation term.

➢

where 𝑣 is traffic speed, 𝑉𝑑(𝑘) is the equilibrium speed-density relationship, 𝑃(𝑘) is 
traffic pressure, and 𝜆 is a coefficient.

➢ The momentum equation in this model describes the structure of a shock wave. 

➢ This equation tries to smooth out the discontinuity in speed change across shock waves.

➢ Note that FREFLO (presented previously) is a numerical solution to the PW model.

Alizadeh H. (2022) École Polytechnique de Montréal– CIV6705 Autumn 2022 47



PW Model (1971)

➢ Several deficiencies are found in the PW model:

1. It does not remove all the shock waves.

2. Vehicles in the PW model can adjust their speeds in response to disturbance 
from behind, while in reality, vehicles typically respond to their leaders. 

3. The PW model incorporates a momentum equation, which is derived from a car-
following model. This momentum equation does not consider second-order and 
higher-order terms of spacings and speeds, which may not be negligible when 
spacings and speeds are not slowly varying.

4. The PM model as well as other high-order models always produces wave speeds 
that are greater than traffic speeds. This is an unattractive property of 
macroscopic models because it implies that future conditions of a vehicle are 
partially decided by what happens behind it.
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PW Model (1971)

➢ Several deficiencies are found in the PW model:

5. The strength that high-order models smooth out shocks turns out to be these 
models’ weakness. This is because any model that attempts to smooth all the 
discontinuities must sometimes predict negative speeds and such negative 
speeds cannot be removed by convergent numerical approximation methods.

6. Sixth, but probably not the last, high-order models involve more complex partial 
differential equations and more variables, which increases computational 
complexity, and are more difficult to calibrate and implement.

➢ Given these limitations, many researchers tend to believe that high-order models, 
despite their added complexity and additional parameters, might not be superior to 
the LWR model.
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