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Introduction
 There is considerable analytic value in modeling the time between the arrivals of successive 

vehicles 
 The most simplistic approach to vehicle arrival modeling is to assume that all vehicles are equally 

or uniformly spaced.
 This results in what is termed a deterministic, uniform arrival pattern.
 Under this assumption, if the traffic flow is 360 𝑣𝑣𝑣𝑣𝑣/𝑣, the number of vehicles arriving in any 5-

minute time interval is 30 and the headway between all vehicles is 10 seconds (because 𝑣 will 
equal 3600/𝑞𝑞).

 However, actual observations show that such uniformity of traffic flow is not always realistic 
because some 5-minute intervals are likely to have more or less traffic flow than other 5-minute 
intervals.

 This is due to the fact that the passing of vehicles at a cross-section is to a certain extent a matter 
of chance.

 Thus a representation of vehicle arrivals that goes beyond the deterministic, uniform assumption is 
often preferred.
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Poisson Model
 If drivers are considered free (as opposed to constrained) in their choices, they will behave 

independently from each other.
 This implies that the passing of a cross-section becomes a pure random phenomenon.
 In general, this will be the case if there is relatively little traffic present (a small volume and 

density) and if there are no upstream disturbances, such as signalized intersections, that 
result in a special ordering of the vehicles in the stream.

 The problem then becomes one of selecting a probability distribution that is a reasonable 
representation of observed traffic arrival patterns.

 An example of such a distribution is the Poisson distribution, which is expressed as:
where:
• 𝑃𝑃(𝑛𝑛) is the probability of having 𝑛𝑛 vehicles arriving in time 𝑡𝑡,
• 𝜆𝜆 is the average vehicle flow or arrival rate in vehicles per unit time,
• 𝑡𝑡 represents the duration of the time interval over which vehicles are counted,
• 𝑣𝑣 is the base of the natural logarithm (𝑣𝑣 =  2.718).

Alizadeh H. (2024) École Polytechnique de Montréal– CIV6705 Autumn 2024 3



Poisson Model
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Probability function of Poisson with ∆𝑡𝑡 =  20𝑠𝑠; left 𝑞𝑞 =
 90𝑣𝑣𝑣𝑣𝑣/𝑣; right 𝑞𝑞 =  720𝑣𝑣𝑣𝑣𝑣/𝑣.

 A special property of the Poisson distribution is that 
the variance equals the mean.

 This property can be used to test in a simple way if 
the Poisson process is a suitable model: from a series 
of observations, one can estimate the mean and the 
variance. If the variance over the mean does not 
differ too much, then it is likely that Poisson is an 
adequate model.
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Poisson Model
Example 1: Vehicle arrivals as a poisson process
An observer counts 360 veh/h at a specific highway location. Assuming that the arrival of vehicles at this 
highway location is Poisson distributed, estimate the probabilities of having 0, 1, 2, 3, 4, and 5 or more 
vehicles arriving over a 20-second time interval.
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Poisson Model
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Solution 1
λ=360 veh/h, or 0.1 (veh/s).
Using the Poisson equation with 
t = 20 s, the probabilities of 
having exactly 0, 1, 2, 3, and 4 
vehicles arrive  

Histogram of the Poisson 
distribution for λ = 0.1 vehicles 

per second. 
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Poisson Model
Example 2: Vehicle arrivals as a poisson 
process
Traffic data are collected in 60-second intervals at a 
specific highway location as shown in Table.
Assuming the traffic arrivals are Poisson distributed 
and continue at the same rate as that observed in the 
15 time periods shown, what is the probability that six 
or more vehicles will arrive in each of the next three 
60-second time intervals (12:15 P.M. to 12:16 P.M., 
12:16 P.M. to 12:17 P.M., and 12:17 P.M. to 12:18 
P.M.)? 
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Observed Traffic Data
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Poisson Model
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Solution 2
• According to the Table, a total of 101 vehicles arrive in the 15-minute period from 12:00 P.M. to 12:15 P.M.
• Thus the average arrival rate, λ, is 0.112 veh/s. (101/(15*60)=0.112)
• To find the probabilities of exactly 0, 1, 2, 3, 4, and 5 vehicles arriving.
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Limitations of the Poisson Model
 Empirical observations have shown that the assumption of Poisson-distributed traffic 

arrivals is most realistic in lightly congested traffic conditions.
 As traffic flows become heavily congested or when traffic signals cause cyclical traffic 

stream disturbances, other distributions of traffic flow become more appropriate.
 The primary limitation of the Poisson model of vehicle arrivals is the constraint imposed 

by the Poisson distribution that the mean of period observations equals the variance.
 For example, the mean of period-observed traffic in Example 2 is 6.733 and the 

corresponding variance, 𝜎𝜎2 , is 7.210. Because these two values are close, the Poisson 
model was appropriate for this example.

 If the variance is significantly greater than the mean, the data are said to be over-
dispersed.

 If the variance is significantly less than the mean, the data are said to be under-dispersed.
 In either case the Poisson distribution is no longer appropriate, and another distribution 

should be used
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Binomial distribution
 When the flow of a traffic stream increases, more and 

more vehicles form platoons (clusters, groups), and the 
Poisson distribution is no longer valid.

 A model that is suitable for this situation is the model of a 
so-called Binomial-process, with probability function: 

 The binomial distribution describes the number of 
‘successes’ 𝑘𝑘 in 𝑛𝑛 independent trials, at which the 
probability of success per trial equals 𝑝𝑝.

 Unfortunately, this background does not help to 
understand why it fits the arrival process considered here.

 In the case of a binomial distribution, the variance over 
the mean is smaller than 1.
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Binomial probability function with ∆𝑡𝑡 =  20𝑠𝑠; left 𝑞𝑞 =
 90𝑣𝑣𝑣𝑣𝑣/𝑣; right 𝑞𝑞 =  720𝑣𝑣𝑣𝑣𝑣/𝑣.
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Negative Binomial Distribution
 It has been mentioned that the Poisson distribution does 

not fit the traffic conditions downstream of a signalized 
intersection.

 When this is the case, one can state that high and low 
intensities follow each other.

 The variance of the number of arrivals then becomes 
relatively large, leading to variance over mean being larger 
than 1.

 In that case the model of a Negative Binomial distribution 
is adequate : 

 As with the Binomial-process a traffic flow interpretation 
of the Negative-Binomial-process is lacking.

Alizadeh H. (2024) École Polytechnique de Montréal– CIV6705 Autumn 2024

Negative binomial probability function with ∆𝑡𝑡 =  20𝑠𝑠; left 
𝑞𝑞 =  90𝑣𝑣𝑣𝑣𝑣/𝑣; right 𝑞𝑞 =  720𝑣𝑣𝑣𝑣𝑣/𝑣.
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Parameter Estimation
 From observations one calculates the sample mean 𝑚𝑚 and the sample variance 𝑠𝑠2.
 From these two parameters follow the estimations of the parameters of the three 

probability functions:
• Poisson: �𝜇𝜇 = 𝑚𝑚
• Binomial: �̂�𝑝 = 1 − ⁄𝑠𝑠2 𝑚𝑚 and �𝑛𝑛 = ⁄𝑚𝑚2 (𝑚𝑚− 𝑠𝑠2)
• Negative binomial: �̂�𝑝 = 𝑚𝑚/𝑠𝑠2 and �𝑛𝑛 = ⁄𝑚𝑚2 (𝑠𝑠2 − 𝑚𝑚)
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Mean, variance, standard deviation and, relative standard 
deviation of the three arrival distributions.
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Applications
Example 3: Length of left-turn lane
 One has to determine the length of a lane for left turning vehicles.
 In the peak hour the traffic flow of the left turning vehicles equals 360 veh/h 

and the period they are confronted with red light is 50 𝑠𝑠.
 Suppose the goal is to guarantee that in 95% of the cycles the length of the lane 

is sufficient.
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Applications
Solution 3: Length of left-turn lane
 In 50 s will arrive on the average (50/3600) x 360 = 5 veh.
 From these two parameters follow the estimations of the 

parameters of the three probability functions:
• Poisson: �̂�𝜇 = 5
• Binomial with 𝑠𝑠2 = 2.5 : �̂�𝑝 = 1 − ⁄2.5 5 = 0.5 and �𝑛𝑛 =

⁄25 (5 − 2.5) = 10
• Negative binomial with 𝑠𝑠2 = 7.5: �̂�𝑝 = 5/7.5 = 0.667 and 

�𝑛𝑛 = ⁄25 7.5 − 5 = 10

 With these parameter values the probability functions, and the 
distributions can be calculated.

 From the graph can be read that the 95-percentile of:
• Binomial = 7,
• Poisson = 9,
• Negative Binomial = 10.

 These differences are not large but on the other hand one extra 
car requires 7 to 8 extra m of space. 
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Results of the estimated Binomial, Poisson 
and Negative-Binomial distributions
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Applications
Example 4: Probe-vehicles
 Suppose one has to deduce the state of the traffic stream at a 2 𝑘𝑘𝑚𝑚 long road 

section from probe-vehicles that broadcast their position and mean speed over the 
last 𝑘𝑘𝑚𝑚.

It is known that on the average 10 probe vehicles pass per hour over the 
considered section. The aim is to have fresh information about the traffic flow 
state every 6 minutes. The question is whether this is possible.
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Applications
Solution 4: Probe-vehicles
 It is likely that probe vehicles behave independently, which implies the validity 

of the Poisson-distribution.
 Per 6 minutes the average number of probes equals: (6/60) · 10 = 1 probe.
 The probability of 0 probes in 6 minutes then equals: 𝑣𝑣−1 =  0.37 
 This seems to be much too large for a reliable system.
 If one decides to update the traffic flow information every 20 minutes

�𝜇𝜇 =
20
60

∗ 10 = 3.33

 Therefore, the probability of zero probes equals: 𝑣𝑣−3.33 =  0.036 
 This might be an acceptable probability of failure.
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Exponential Distribution
 The assumption of Poisson vehicle arrivals also implies a distribution of the 

time intervals between the arrivals of successive vehicles (time headway).
 To show this, note that the average arrival rate is:
 Where

• 𝜆𝜆 is the average vehicle arrival rate in 𝑣𝑣𝑣𝑣𝑣/𝑠𝑠,
• 𝑞𝑞 is flow in 𝑣𝑣𝑣𝑣𝑣/𝑣, 
• Number of seconds per hour is equal to 3600. 

 Substituting this into the Poisson Model gives:

 Note that the probability of having no vehicles arrive in a time interval of 
length 𝑡𝑡, 𝑃𝑃(0), is equivalent to the probability of a vehicle headway, 𝑣, 
being greater than or equal to the time interval t. 

 This distribution of vehicle headways is known as the negative exponential 
distribution and is often simply referred to as the exponential distribution.
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Exponentially distributed probabilities 
of headways greater than or equal to t, 
with q = 360 veh/h.
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Exponential Distribution
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 In more general terms:

The probability that a stochastic variable 𝐻𝐻 is larger than a 
given value 𝑣.

 This is called the survival probability or the survival function 
𝑆𝑆 𝑣 .

 On the other hand, the complement is the probability that a 
stochastic variable is smaller than a given value  the 
distribution function.

 Consequently, the distribution function of headways 
corresponding to the Poisson-process is:

 This is called the exponential distribution function.
Survival function S (h) and distribution function P 
(h) of an exponential distribution, 𝑞𝑞 = 600 𝑣𝑣𝑣𝑣𝑣/𝑠𝑠
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Exponential Distribution
 Note that, for the exponential distribution the standard deviation divided by the mean, 

equals 1. 

 The probability density function (p.d.f.) of the distribution function 𝑃𝑃(𝑣)  =  Pr{𝐻𝐻 ≤  𝑣} 
is calculated by differentiation:
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The mean value 
becomes 

The mean headway µ 
equals the inverse of 

the intensity 𝑞𝑞


The variance of 
the headways 
becomes 


The variation coefficient 
(the standard deviation 

divided by the mean) = 1
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Exponential Distribution
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Example 5: Headways and the exponential distribution
Consider the traffic situation in Example 1 (360 veh/h). Again, assume that the vehicle arrivals 
are Poisson distributed. What is the probability that the headway between successive 
vehicles will be less than 8 seconds, and what is the probability that the headway between 
successive vehicles will be between 8 and 10 seconds?
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Exponential Distribution
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Solution 5
• This expression gives the probability that 

the headway will be less than 8 seconds 
as:

• Compute the probability that the 
headway will be greater than or equal to 
10 seconds:

• So the probability that the headway will 
be between 8 and 10 seconds is: 1 − 0.551 − 0.368 = 0.081
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Real Data and Headway Distribution
 Figure shows headways collected at a specific location for 

periods of time representing different flow situations.
 The four traffic flow levels depicted are for 10-14, 15-19, 20-

24, and 25-29 vehicles per minute.
 Individual headways are rarely less than 0.5 seconds (1-2%).
 Individual headways are rarely over 10 s, unless the flow 

rate is below 15 veh/min.
 The median headway is always less than the mean. They 

converge as the flow rate increases.
 The mean headway tracks the 67 cumulative percentile 

curve.
 The ratio of standard deviation to the mean time headway 

approaches 1 under low flow rate conditions but decreases 
continuously as the flow rate increases. 
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Observed time headway distributions

Cumulative percentage 
of headways

Mean time headways
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Real Data and Exponential Distribution
 The smallest headways are the most likely to occur and 

probabilities consistently decrease as the headway 
increases. 

 The two distributions are very different, particularly under 
higher flow conditions.

 The theoretical probabilities are higher for intervals less 
than 1 s and lower for headways between 1.5 s to 4.5 s.

 The standard deviation for the measured distribution is 
always less than the standard deviation of the 
corresponding random distribution but appears to be 
converging at lower flow rate levels.
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Observed time headway distributions and the 
exponential headway distributions 
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Real Data and the Exponential Distribution
 In general, the exponential distribution (ED) of the 

headways is a good description of reality at low flow rate 
and unlimited overtaking possibilities.

 If both above-mentioned conditions are not fulfilled, then 
there are interactions between the vehicles in the stream, 
leading to driving in platoons.

 In that case the ED is fitting reality badly.
 The minimum headways in a platoon are clearly larger 

than zero, whereas according to the ED the probability of 
extreme small headways is relatively large.

 The differences between the ED and reality have led to the 
use of other headway models at higher intensities

 Next, we will discuss some simple and a few more complex 
alternatives for the ED model.

Alizadeh H. (2024) École Polytechnique de Montréal– CIV6705 Autumn 2024

Histogram of observed headways 
compared to the exponential probability 

density function
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Alternatives for the Exponential Distribution
Shifted Exponential Distribution
 The shifted exponential distribution is characterized by a 

minimum headway 𝑣𝑚𝑚, leading to the distribution function: 
 The probability density function:

 The mean value is:

 The variance equals:

 The variation coefficient:

which is always smaller than 1 as long as 𝑣𝑚𝑚 > 0. 
 In practice it is difficult to find a representative value for 𝑣𝑚𝑚. 
 The abrupt transition at 𝑣𝑚𝑚 does not fit reality very well.

Alizadeh H. (2024) École Polytechnique de Montréal– CIV6705 Autumn 2024

non-shifted and a shifted probability density with the same 
mean value (µ = 6 s) and a minimum headway hm= 1 s.
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Alternatives for the Exponential Distribution
Erlang distribution
 A second alternative is the Erlang distribution with a less abrupt 

function for small headways.
 The Erlang distribution function is defined by

 and the corresponding probability density:
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Erlang probability densities
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Alternatives for the Exponential Distribution
Erlang distribution
 Note that for 𝑘𝑘 =  1 we have 𝑝𝑝(𝑣)  =  (1/µ)𝑣𝑣−ℎ/µ.
 Consequently, the exponential distribution is a special Erlang 

distribution with parameter 𝑘𝑘 = 1.
 For values of 𝑘𝑘 larger than 1 the Erlang p.d.f. has a form that better 

suits histograms based on observed headways.
 The mean = µ
 The variance: µ2/𝑘𝑘 
 The coefficient of variation: �1 𝑘𝑘 which is smaller or equal to 1.

 Figure shows densities for µ = 6 𝑠𝑠 and 𝑘𝑘 =  1, 2, 3 and 4.
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Erlang probability densities
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Alternatives for the Exponential Distribution
Lognormal distribution
 If one has a set of observed headways 𝑣𝑖𝑖, then one can investigate whether 

𝑥𝑥𝑖𝑖 = log𝑣𝑖𝑖 has a normal distribution.
 If this is the case, then the headways themselves have a lognormal 

distribution. The p.d.f. of a lognormal distribution is:

 The mean µ∗:

 The variance:

 The coefficient of variation:

 In contrast to the previously discussed distributions, the coefficient of 
variation of the lognormal distribution, can be smaller as well as larger than 1.
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The parameters of the p.d.f., µ and 𝜎𝜎 
are not the mean and st. dev. of the 

lognormal variate but of the 
corresponding normal variate. If µ ∗ and 
𝜎𝜎∗2 are given, µ and 𝜎𝜎2 follow from:
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Composite Headway Models
 Comparisons of observed histograms of headways and the simple models discussed earlier have often 

led to models badly fitting data.
 This has been an inspiration to develop models that have a stronger traffic behavioristic background 

than the ones discussed.
 In so-called composite headway models, it is assumed that drivers that are obliged to follow the 

vehicle in front (because they cannot make an overtaking or a lane change), maintain a certain 
minimum headway (the so-called empty zone or following headway). They are in a constrained or 
following state.

 If they have a headway which is larger than their minimum, they are called free drivers.
 Driver-vehicle combinations are thus in either of two states: free or constrained.
 As a result, the p.d.f. 𝑝𝑝(𝑣) of the headways has two components: a fraction 𝜑𝜑 of constrained drivers 

with p.d.f. 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓(𝑣) and a fraction (1 − 𝜑𝜑) with 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑣)

 The remaining problem is how to specify the p.d.f. of both free drivers and constrained drivers.
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Composite Headway Models
 The two distributions appear to have the same general 

shape
 The two distributions are most different under low flow 

rate conditions but become more similar as the flow 
level increases.

 Large differences occur when headways lie between 1 s 
and 2.5 s.
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Observed time headway distributions and the 
composite headway distributions 
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Distance Headway Distributions
 Most results discussed for time headways are also valid (with 

occasional modifications) for distance headways.
 It is easier to observe time headways than distance headways, for the 

same reason as it is easier to observe intensity than density.
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Individual Vehicle Speeds
 Just as time and distance headways, speeds have a 

continuous distribution function.
 It is observed that speeds usually have a Normal (or 

Gaussian) distribution.
 That means the p.d.f., with parameters mean µ and 

standard deviation 𝜎𝜎 is:

 If the histogram of observed speeds is not symmetric, 
then the Lognormal distribution is usually a good 
alternative as a model for the speed distribution.

 As with the mean speed, that could be defined locally 
and instantaneously, one can consider the 
distribution of speeds locally and instantaneously.
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Probability density functions of local speeds collected at the 
A9 two-lane motorway in the Netherlands, for different 

density values. The distributions are compared to Normal 
probability density functions (dotted lines)
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Number of Overtakings
 Vehicles on a road section usually have different speeds, which leads to faster ones catching up 

the slower ones, and a desire to carry out overtakings.
 One can calculate the number of desired overtakings from the quantity of traffic and the speed 

distribution.
 Consider a road section of length 𝑋𝑋 during a period of length 𝑇𝑇. 
 Assume the state of the traffic is homogeneous and stationary.
 Assume further that the instantaneous speed distribution is Normal with mean µ and standard 

deviation 𝜎𝜎.
 Then the number of desired overtakings is:

 Note that the number of overtakings is:
• Linear dependent on the time-distance one considers;
• Increases with the squared of the quantity of traffic (term 𝑘𝑘2); 
• Is larger if the speeds are more different (term 𝜎𝜎).

Alizadeh H. (2024) École Polytechnique de Montréal– CIV6705 Autumn 2024 33



Number of Overtakings
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Example 6: Overtakings in a bike lane
Consider a one-way path of 1 𝑘𝑘𝑚𝑚 length, for 1 hour.
The bicycle (bike) intensity = 600 𝑏𝑏𝑏𝑏𝑏𝑏/𝑣 
The moped (mop) intensity = 150 𝑚𝑚𝑚𝑚𝑝𝑝/𝑣.
From observations it is known that speeds of bikes and mops have, with a good approximation, a 
Normal distribution:

• 𝑢𝑢𝑏𝑏𝑖𝑖𝑏𝑏 = 19 𝑘𝑘𝑚𝑚/𝑣;
• 𝜎𝜎𝑏𝑏𝑖𝑖𝑏𝑏 = 3 𝑘𝑘𝑚𝑚/𝑣;
• 𝑢𝑢𝑚𝑚𝑓𝑓𝑚𝑚 = 38 𝑘𝑘𝑚𝑚/𝑣;

• 𝜎𝜎𝑚𝑚𝑓𝑓𝑚𝑚 = 5 𝑘𝑘𝑚𝑚/𝑣.
Assess the operational quality of the bike lane.
It is assumed that the quality of operation is negatively influenced by the number of overtakings a 
cyclist has to carry out (active overtakings) or has to undergo (passive overtakings).
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Number of Overtakings
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Solution 6: Overtakings in a bike lane
𝑂𝑂𝑇𝑇[𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏𝑏𝑏]  =  (600/19)2 3/ 𝜋𝜋  =  1688
𝑂𝑂𝑇𝑇[𝑚𝑚𝑚𝑚𝑝𝑝 −𝑚𝑚𝑚𝑚𝑝𝑝] = (150/38)2 5/ 𝜋𝜋 = 44

The number of calculated 𝑂𝑂𝑇𝑇[𝑚𝑚𝑚𝑚𝑝𝑝 − 𝑏𝑏𝑏𝑏𝑏𝑏] is valid when both speed distribution do not have 
overlap and in practice that is the case, and is calculated using:

𝑛𝑛2 = 𝑋𝑋𝑇𝑇𝑘𝑘1𝑘𝑘2(𝑣𝑣1 − 𝑣𝑣2)
𝑂𝑂𝑇𝑇[𝑚𝑚𝑚𝑚𝑝𝑝 − 𝑏𝑏𝑏𝑏𝑏𝑏] = (600/19) (150/38) (38— 19) = 2341

The outcomes of the calculation show clearly that the mopeds are responsible for an enormous 
share in the OT’s.
The operational quality for the cyclists will increase much if mopeds do not use cycle paths.
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