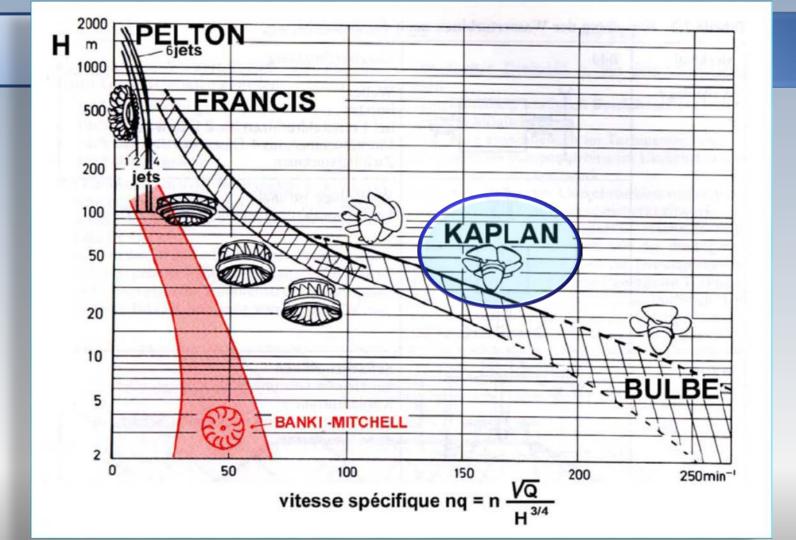
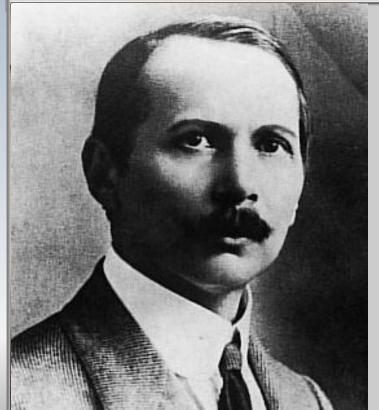
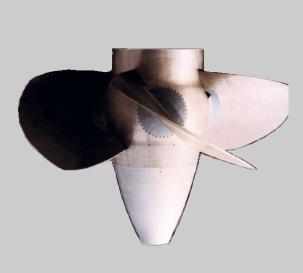
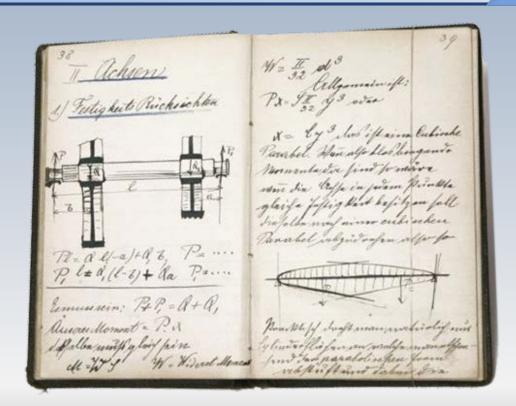


Turbomachines

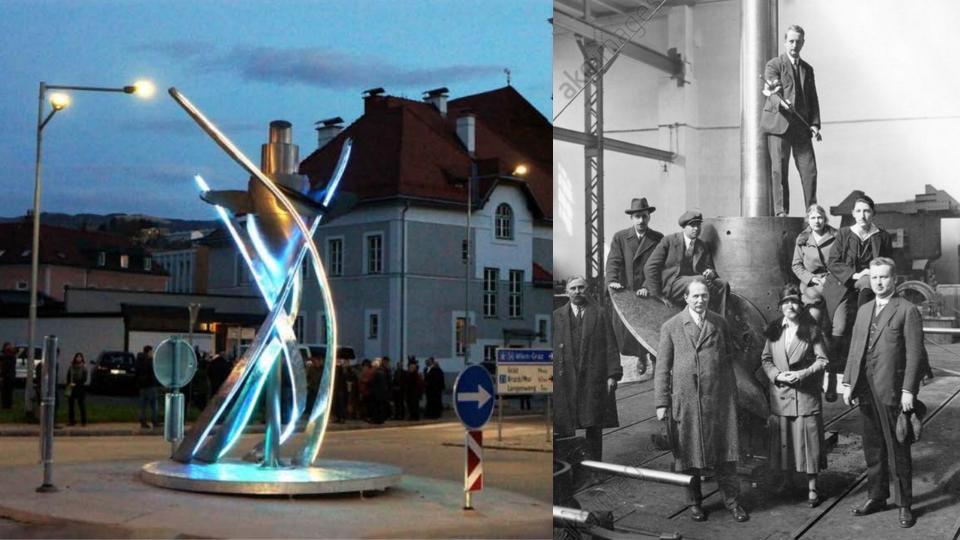

NRJ EN ROTATION

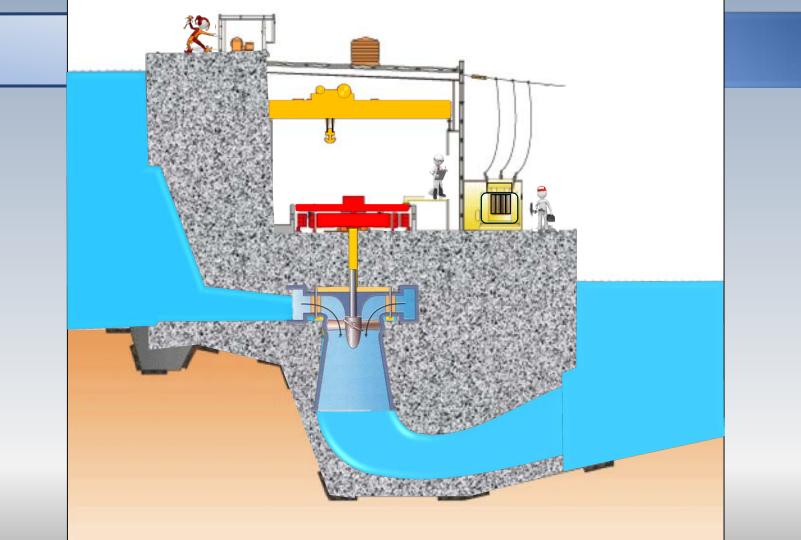

Turbine Kaplan



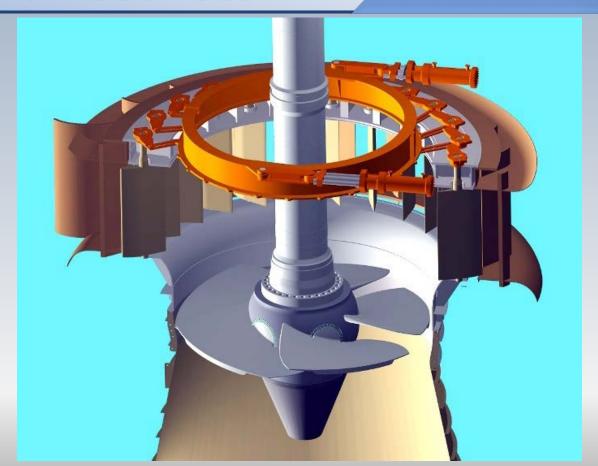


Au fond, je n'ai fait que ce que les fleuves se racontent depuis toujours Viktor Kaplan

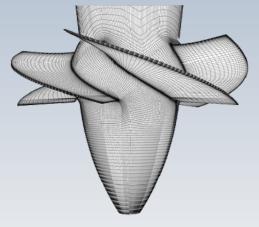

(1876 - 1934)

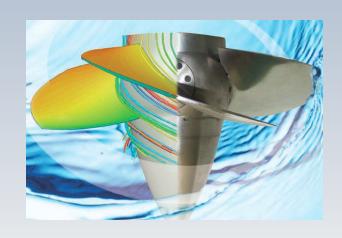


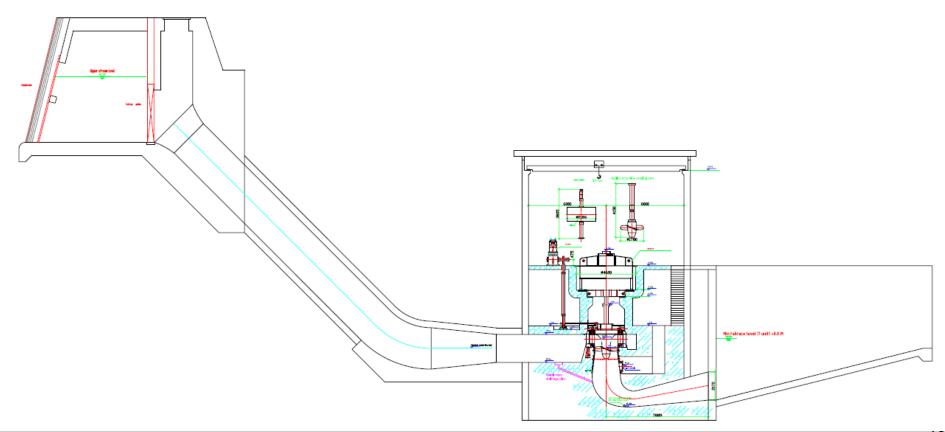
Notes de monsieur V. Kaplan



Maquette



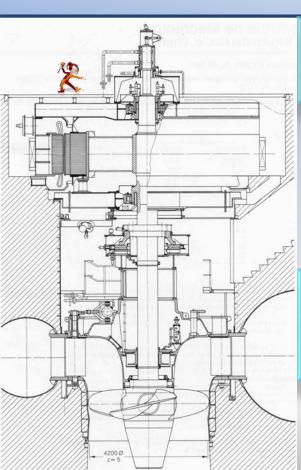

Rotor et directrices


Rotor réel + virtuel + écoulement

Plan d'un site

Quelques aménagements

Centrale	Fabricant	H[m]	nq	Z
JEBBA ^I	VA Tech EW	28	151	5
MACHICURA	Voith	37	151	5
LIGA III	Kvaerner	39	156	5
MANAVGAT	VA Tech HydroVévey	21	165	5
LIMESTONE	GE Canadá	28	167	5
TAQUARUÇÚ	Voith	22	291	5
VERBOIS (1)	VA Tech HydroVévey	18,2	193	6
VERBOIS (2)	VA Tech HydroVévey	19,2	193	4
YACRETA	Voith	21,3	194	5
GHEZOUBA I	DEMW	18,6	203	5
GHEZOUBA II	Harbin	18,6	200	5
WELLS DAM	Fuji	19,5	210	5
PORTO PRIMAVERA	Alstom Power	18,3	211	4


Aménagements 2004-2011

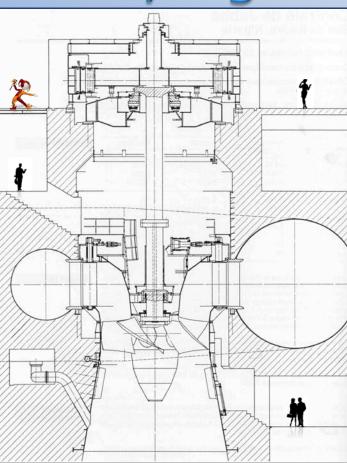
- L		
Barra dos Coqueiros (Brazil), 2010	46 MW per unit – 36 m head	
Cacu (Brazil), 2010	33 MW per unit – 26 m head	A TOP OF THE PROPERTY OF THE P
Estreito (Brazil), 2011	152 MVA generators, downstream gates	J
Monte Claro (Brazil), 2006	67 MW per unit – 39 m head	
Brillant (Canada), 2005	120 MW per unit, turnkey plant – 30 m head	
Grand Mere (Canada), 2004	77 MW per unit turbine/generator units, governors – 24 m head	
Longkou (China), 2009	100 MW per unit turbine/generator units – 31 m head	
Bujagali (Uganda), 2011	51 MW per unit, turnkey plant – 21 m head	

Francis et Kaplan

Usina	Quantidade	Potência (MW)	Tipo	Altura de Queda (m)	Rotação (rpm)	Peso Rotor (t)	Peso Turbina (t)	
14 DE JULHO	2	50	Kaplan	40	173,53	81,28005	353,3915	
BAGUARI	4	35	Bulbo	17,3	116,13	40	50	
BARRA DO BRAÚNA BARRA DOS	3	13	Francis	23,8	138,5	12,61522	105,1269	
COQUEIROS	3	30,6	Kaplan	36	225	47,54961	206,7374	
BATALHA	2	26,7	Kaplan	37,7	225	43,1385	187,5587	ľ
BAÚ	3	37,6	Kaplan	37,8	189,47	62,27831	270,7753	-
CAÇU	3	21,7	Francis	28,2	225	,	107,1947	É
CAPIM BRANCO II	2	71,6	Kaplan	43,4	163,64	109,5322	-	
CASTRO ALVES	3	43,3	Francis	92	300	17,1811	143,1759	
CORUMBÁ III	2	47,5	Francis	38,23	139	31,89847	265,8205	
ESTREITO	6	120,8	Francis	21	70,59	101,4016	845,0135	J
FOZ DO CHAPECÓ	4	213,75	Francis	52	85,71	132,8795	1107,329	
FOZ DO RIO CLARO	2	34,2	Kaplan	25,48	156,52	66,71025	290,0446	П
MONJOLINHO	2	34,4	Francis	63,1	180	21,0173	175,1442	-
PASSO SÃO JOÃO	3	27,8	Kaplan	27	171	54,0128	234,8383	П
RETIRO BAIXO	2	41	Kaplan	45	0	60,62922	263,6053	L
RONDON II	3	24,5	Francis	59,1	300	11,4156	95,13	
SALTO	2	54	Kaplan	19	240	68,1209	296,1778	
SALTO DO RIO VERDINHO	2	47,45	Francis	41	171,43	27,41958	228,4965	
SALTO PILÃO	2	91,2	Francis	17,93	450	21,92203	182,6836	
SÃO JOSÉ	3	17	Kaplan	19,8	189	35,39395	153,8867	
SÃO SALVADOR	2	121,6	Kaplan	22,66	94,7	236,2797	1027,303	
SERRA DO FACÃO	2	107	Francis	78,7	171,4	49,16319	409,6932	
SIMPLÍCIO	3	108,3	Francis	108	200	44,39071	369,9226	
TUCURUÍ 2	3	375	Francis	61,5	81,8	205,7184	1714,32	

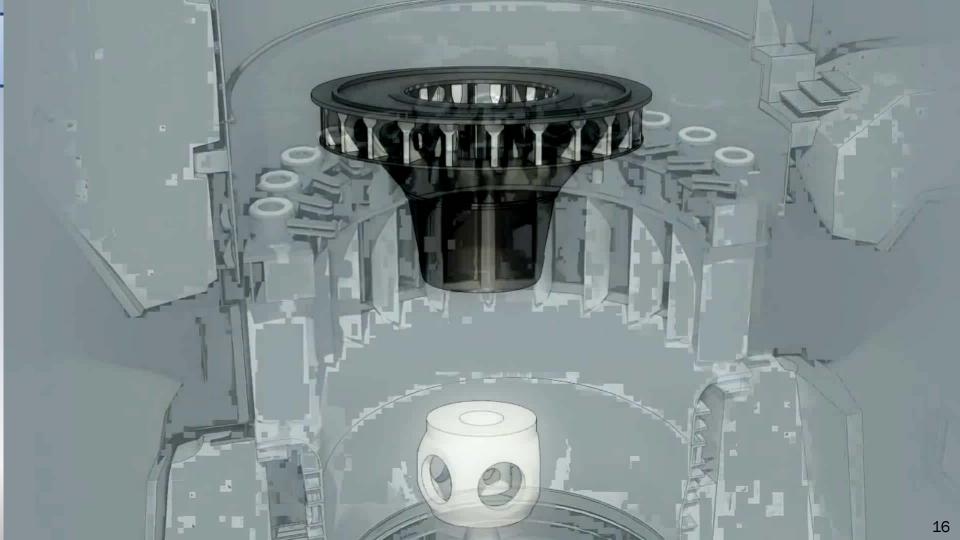
Machicura: Chili

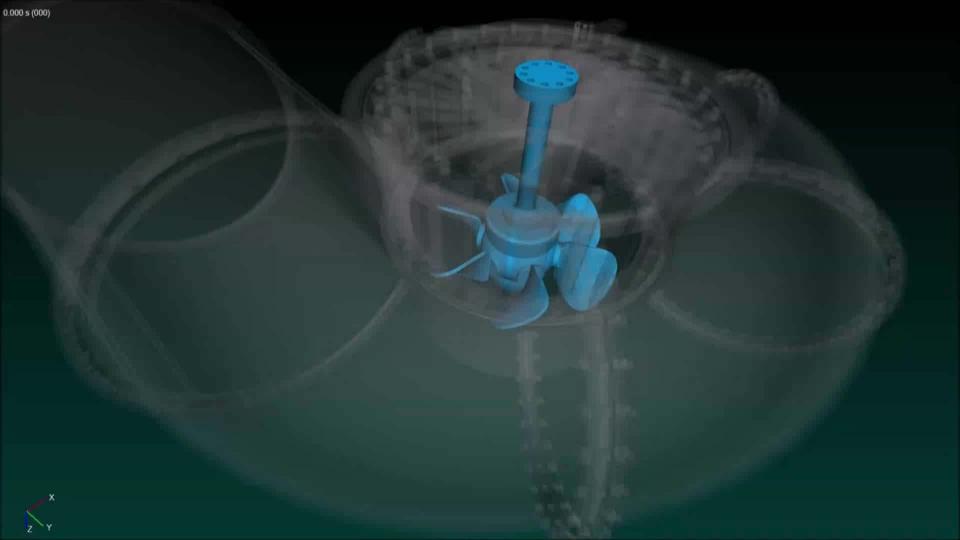
 $*Q = 144 \text{ m}^3/\text{s}$


*H = 36,7 m

 $*\dot{W} = 48 \text{ MW}$

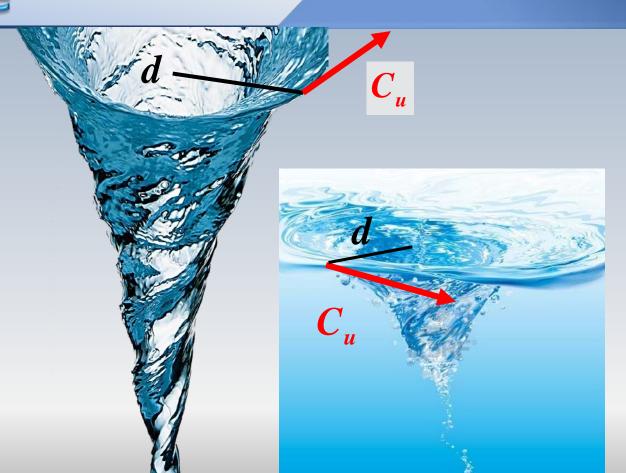
 $D_0 = 7.2 \text{ m}$ $D_e = 4.2 \text{ m}$ $D_i = 1.9 \text{ m}$ $B_0 = 1.3 \text{ m}$

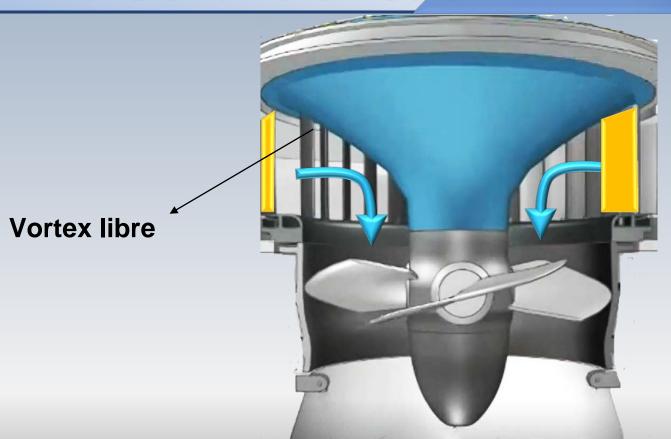

Jebba, Nigeria

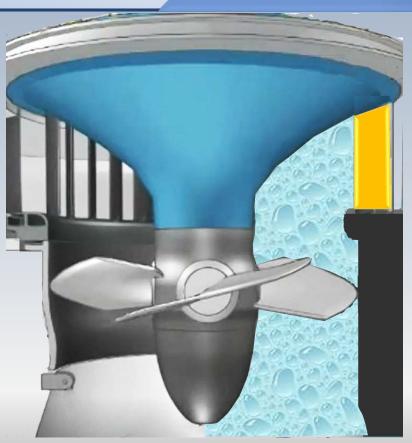


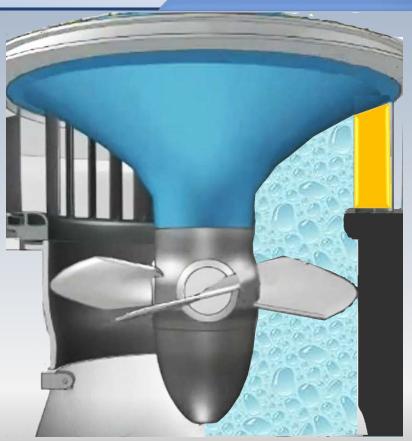
 $*Q = 376 \text{ m}^3/\text{s}$ *H = 27.6 m $*\dot{W} = 96 \text{ MW}$

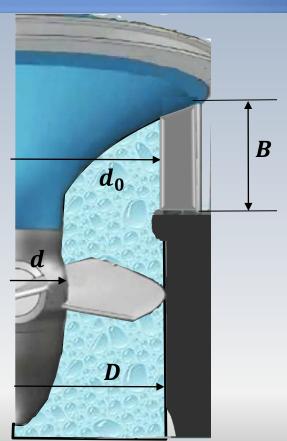
 $D_0 = 8.5 \text{ m}$ $D_e = 7.1 \text{ m}$ $D_i = 3.1 \text{ m}$ $B_0 = 2.8 \text{ m}$

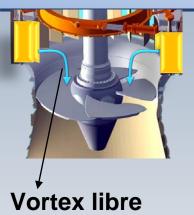


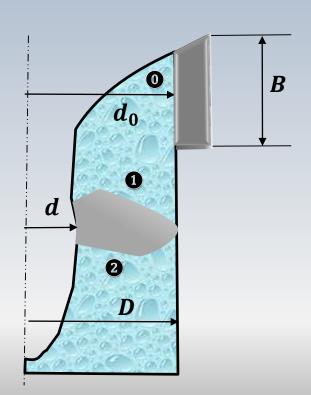


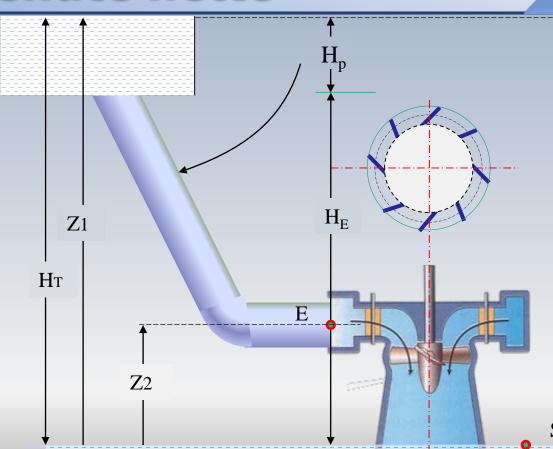



Vortex libre


 $C_u d = cnste$







$$C_{0u}d_0 = C_{1u}d$$

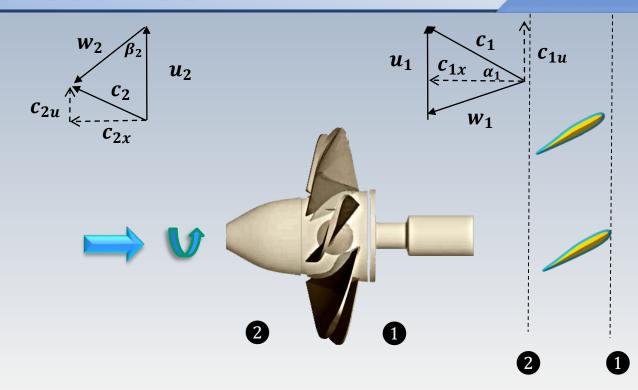
L'écoulement entre la sortie des avants directrices (station 0) et le bord d'attaque des pales de la turbine, (station 1) est modélisée au moyen d'un vortex libre

Chute nette

$$H_E = \left(\frac{V_E^2}{2g} + z_E + \frac{p_E}{\rho g}\right)$$

$$H_E = H_T - H_p$$

Chute nette

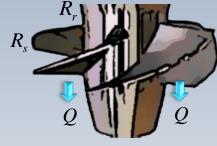

Chute nette (idéale) H

Différence entre l'énergie spécifique à l'entrée (E) et celle à la sortie (S) de la turbine. Cette variation d'énergie spécifique, gagnée par la roue, est sous forme de "hauteur de pression", de hauteur physique et de "hauteur de vitesse"

$$H = H_E - H_S \qquad H = \left(\frac{V_E^2}{2g} + z_E + \frac{p_E}{\rho g}\right) - \left(\frac{V_S^2}{2g} + z_S + \frac{p_S}{\rho g}\right)$$

$$H = \frac{V_E^2 - V_S^2}{2g} + z_E - z_S + \frac{p_E - p_S}{\rho g}$$

Puissance

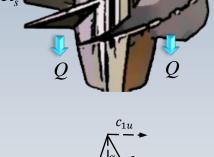

$$\dot{W}_{Kaplan} = \rho Q(c_{1u}u_1 - c_{2u}u_2) = \rho Qu(c_{1u} - c_{2u})$$

 $u_1=u_2=u$

$$u = u_1 = u_2$$

$$c_{1u} = \frac{1}{\tan \alpha_1}$$

$$\operatorname{an} \alpha_1$$



$$c_x = c_{1x} = c_{2x}$$

$$\frac{c_x}{\tan \beta_2}$$

$$c_{1u} - c_{2u} = \frac{c_x}{\tan \alpha_1} - u + \frac{c_x}{\tan \beta_2} \qquad c_{1u} - c_{2u} = c_x \left(\frac{1}{\tan \alpha_1} + \frac{1}{\tan \beta_2}\right) - u$$

$$\tan \beta_2$$

$$\frac{1}{1-\rho Qu^2}$$

 $|\dot{W}_{Kaplan}| = \rho Q^2 \left[\frac{u}{\pi (R_s^2 - R_r^2) \frac{\tan \alpha_1 \tan \beta_2}{\tan \alpha_1 + \tan \beta_2}} \right] - \rho Q u^2$ Formule simplifiée utilisant une vitesse périphérique moyenne u

Vitesse spécifique

$$n_{S} = \frac{n\sqrt{\dot{W}}}{H^{5/4}}$$

n_s dénote la vitesse nécessaire pour atteindre, dans une turbine similaire, la **puissance unitaire** avec un chute de **1m**.

$$n_q = \frac{n\sqrt{Q}}{H^{3/4}}$$

 n_q est la vitesse d'une turbine géométriquement similaire à une autre operant avec une chute de 1 m et par laquelle circule un débit $Q = 1 \text{ m}^3/\text{s}$

Équivalence n_s n_q

$$\frac{n_s}{n_q} = \frac{n\dot{W}^{1/2}H^{-5/4}}{nQ^{1/2}H^{-3/4}}$$

$$\dot{W}^{1/2} = \sqrt{\rho g} Q^{1/2} H^{1/2}$$

$$\frac{n_s}{n_q} = \frac{n\sqrt{\rho g}Q^{1/2}H^{1/2}H^{-5/4}}{nQ^{1/2}H^{-3/4}} = \sqrt{\rho g}$$

$$\frac{n_s}{n_q} = \sqrt{9800} = 99$$

Remarque historique: Lorsque la puissance était mesurée en CV et ρg en kiloforce, on trouvait le coefficient $\mathbf{n_s} = \mathbf{n_q} \sqrt{\mathbf{1000}/75} = \mathbf{3.65n_q}$

Variables réduites

 En pratique, pour les turbines hydrauliques, on définit des variables réduites

• Celles-ci correspondent à un fonctionnement en similitude d'une turbine de diamètre D = 1m, opérant avec une chute H = 1m On note ces variables avec un **double indice 1**

Variables réduites

Vitesse de rotation réduite n_{II}

$$\frac{n_{11} \times 1^2}{g \times 1} = \frac{n^2 \times D^2}{g \times H}$$

$$n_{11} = \frac{nD}{H^{1/2}}$$

Débit réduit Q_{II}

$$\frac{Q_{11}}{n_{11} \times 1^3} = \frac{Q}{n \times D^3}$$

$$Q_{11} = \frac{Q}{D^2 H^{3/2}}$$

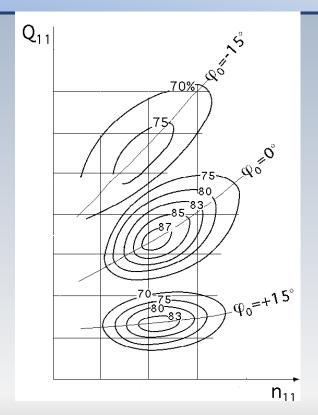
Puissance réduite P_{11}

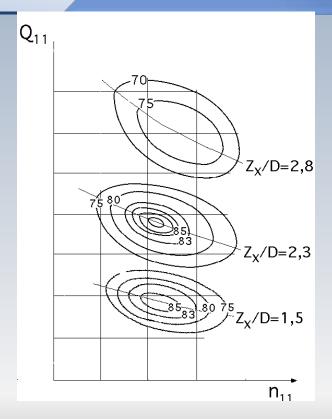
$$P_{11} = \frac{P}{D^2 H^{3/2}}$$

Remarque: les valeurs numériques de n_{11} , Q_{11} et P_{11} dépendent du système d'unités.

Colline de rendement

L'analyse de similitude et la construction de cartes d'opération des turbines Kaplan, requiert la prise en compte de **cinq paramètres**: la vitesse de rotation, le débit, le rendement, la position des aubes directrices et l'inclinaison des pales de la roue.

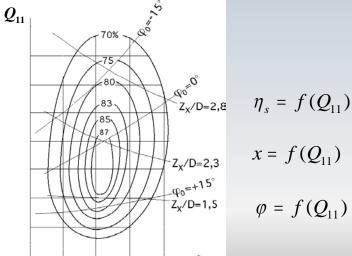

Ces deux derniers éléments qui régulent le débit, sont caractérisés respectivement, par un paramètre de **position** x et, par un **angle** φ_0


Étant donné la complexité entraînée par la présence de deux variables géométriques, on simplifie la représentation en fixant l'une de ces variables et en traçant deux séries de collines de rendement séparées

Colline de rendement

Dans un cas, on fixe la positon de l'aubage du rotor, soit φ_0 et on régule le débit au moyen de différentes ouvertures du distributeur

Dans l'autre cas, l'ouverture x du distributeur est maintenue constante et on contrôle la variation du débit en modifiant l'angle φ_0 des aubes de la roue

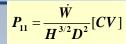

Collines de rendement obtenues en changeant l'angle des pales de la roue

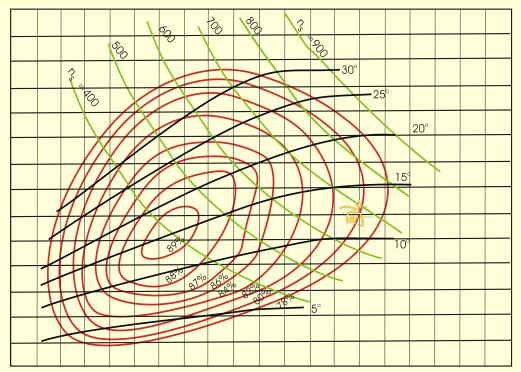
Collines de rendement obtenues en changeant l'ouverture du distributeur

Colline de rendement

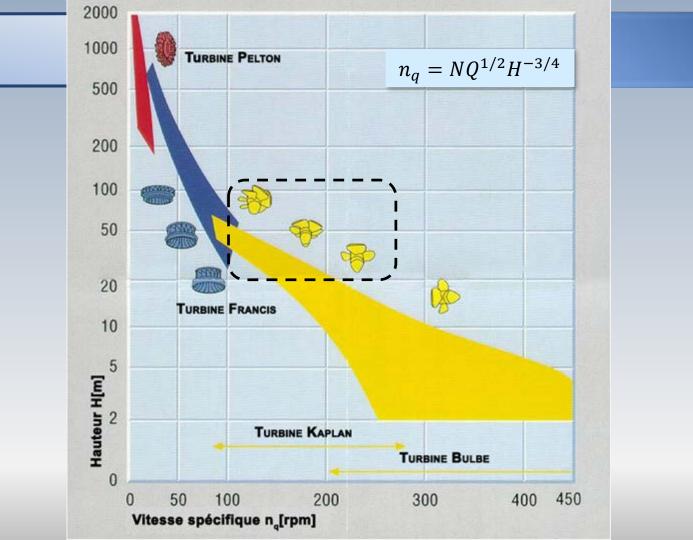
On note que pour chaque paire $Q_{11}-n_{11}$, les rendements sont différents. Cependant, pour chaque série il y aura une configuration particulière pour laquelle les rendements sont optimaux. Celle-ci correspond à la colline de rendement de la

turbine Kaplan.

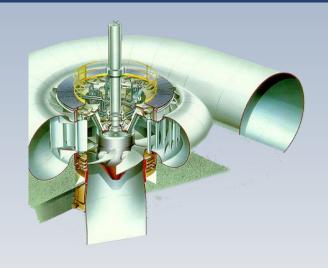


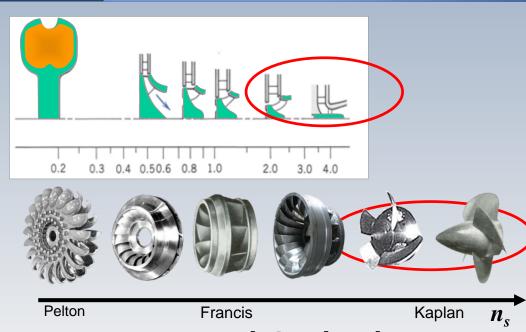

 n_{11}

Colline de rendement d'une turbine Kaplan

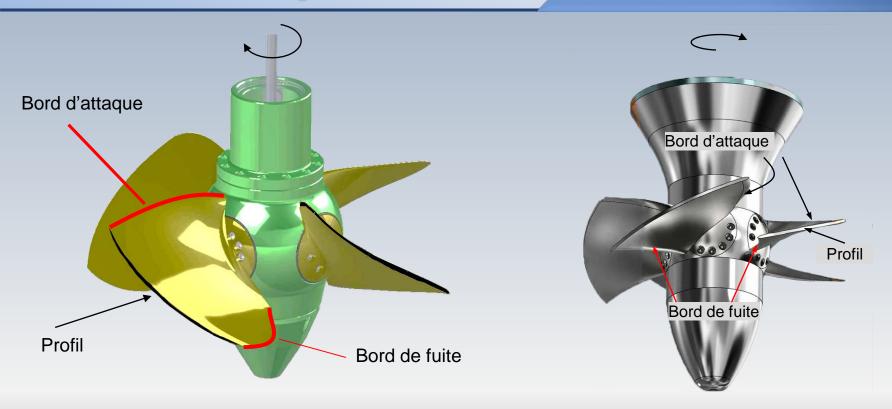

Colline de rendement

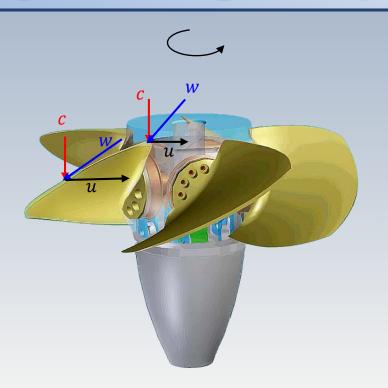
Industrielle





$$n_{11} = \frac{ND}{H^{1/2}}[RPM]$$

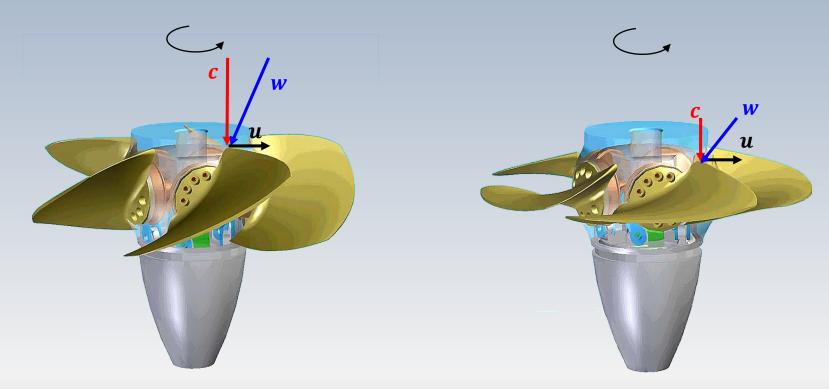

Turbine Kaplan



Turbine adéquate pour des faibles chutes et des débits élevés. Les valeurs de n_s sont élevées.

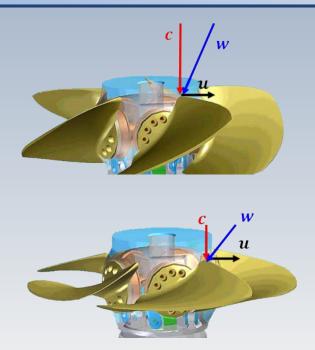
Bords d'attaque et fuite

Angle de w₁ et rayon



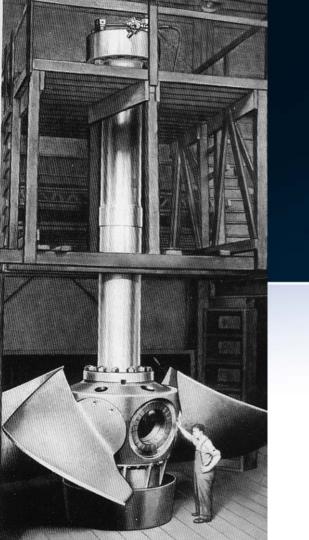
Dans un rotor, la vitesse tangentielle \boldsymbol{u} augmente dans la direction radiale. Ainsi, pour une vitesse axiale absolue \boldsymbol{c} , considérée constante, l'inclinaison de la vitesse relative \boldsymbol{w} change du moyeu vers le bout de la pale

Cette variation impose alors un modification de l'angle β_1 de la pale dans la direction radiale


Remarque: schéma simplifié sans l'écoulement tourbillonnaire (vortex libre)

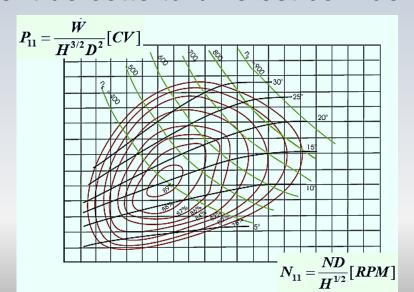
Débit et pivotage des aubes

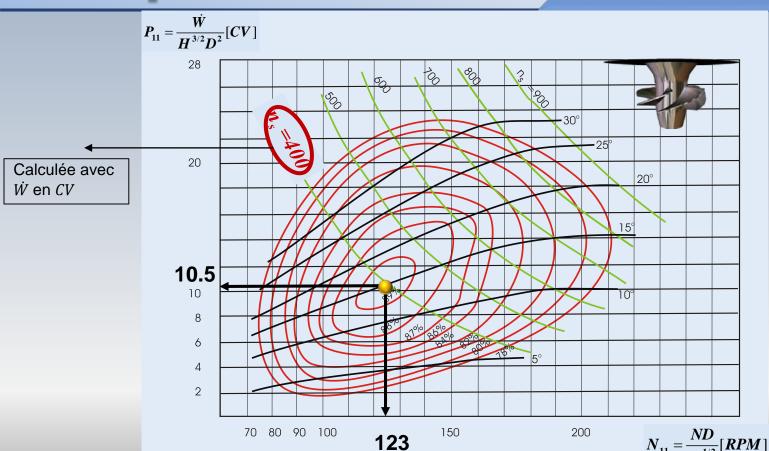
Remarque: schéma simplifié sans l'écoulement tourbillonnaire (vortex libre)

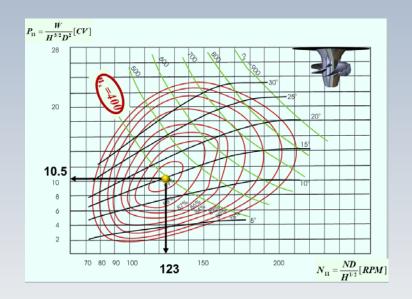

Débit et pivotage des aubes

Pour une même vitesse de rotation \boldsymbol{u} , lorsque l'angle d'inclinaison $\boldsymbol{\beta}_1$ de la pale change, les modules des vitesses relative \boldsymbol{w} et absolue \boldsymbol{c} , se modifient à cause de la variation de l'inclinaison de la pale.

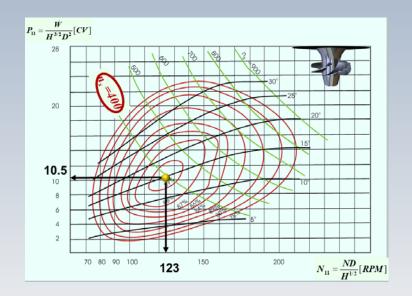
On constate alors que l'inclinaison des pales a un impact sur le débit **Q** qui dépend de la vitesse **c**.


Remarque: schéma simplifié sans l'écoulement tourbillonnaire (vortex libre)




PROBLÈMES

Trouver la vitesse de rotation N et le diamètre du rotor D pour une turbine Kaplan dont la chute est de H = 40m. La puissance cherchée et de $\dot{W} = 17800CV$. La turbine opère au **point nominal**. La colline de rendement de cette turbine est connue:

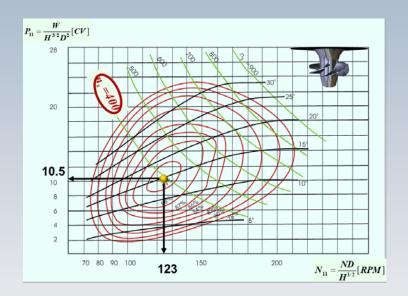

Pour trouver la vitesse de rotation N nous regardons la vitesse spécifique n_s

$$n_S = \frac{N\dot{W}^{1/2}}{H^{5/4}}$$

$$N = \frac{n_s H^{5/4}}{\dot{W}^{1/2}}$$

$$N = \frac{400 \times 40^{5/4}}{17800^{1/2}} = 300 \, rpm$$

H=40m, $n_s=400$, $\dot{W}=17800$ CV



Avec N connue et la valeur de $N_{11} = 123$ obtenue de la colline de rendement, nous pouvons calculer le diamètre **D**

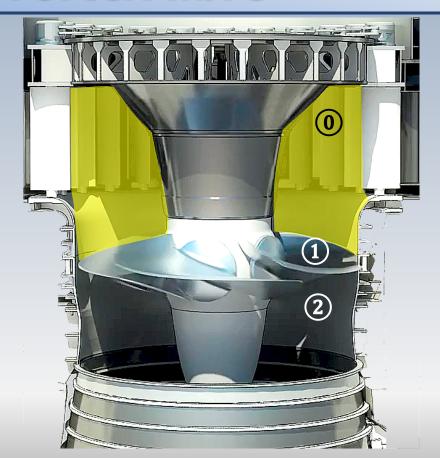
$$N_{11} = \frac{N\mathbf{D}}{H^{1/2}} rpm$$

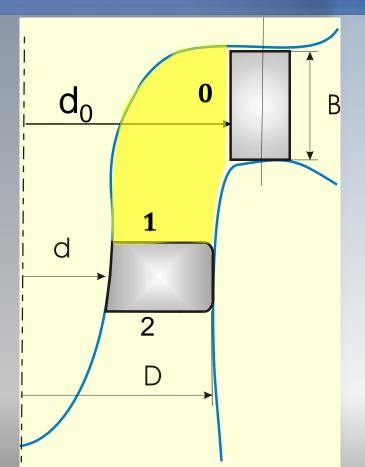
$$D = \frac{123 \times 40^{1/2}}{300} = 2.59 \, m$$

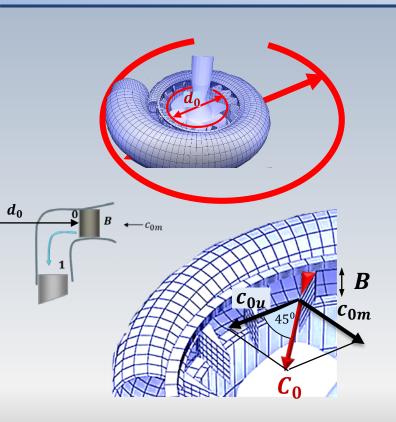
H=40m, $n_s=400$, $\dot{W}=17800$ CV

H=40m, $n_s=400$, $\dot{W}=17800$ CV

Nous pouvons emprunter une seconde voie pour calculer le diamètre \mathbf{D} . Celle-ci utilise la puissance réduite $P_{11} = 10.5$

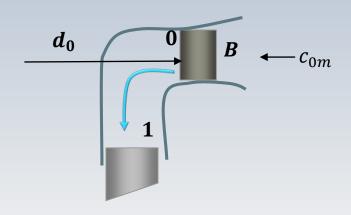

$$P_{11} = \frac{\dot{W}}{D^2 H^{3/2}}$$


$$D = \left(\frac{\dot{W}}{P_{11}H^{3/2}}\right)^{1/2}$$


$$\mathbf{D} = \left(\frac{17800}{10.5 \times 40^{3/2}}\right)^{1/2} = \mathbf{2.588m}$$

- La chute d'une turbine Kaplan de $\dot{W}=6700kW(92234~CV)$ est de H=34m et le débit est de $Q=225~m^3/s$ La hauteur du distributeur **est** B=1.8m et le diamètre à la sortie de celui-ci est $d_0=6.15m$. Le diamètre du moyeu du rotor est d=2.9m.
- Considérez que la vitesse absolue à la sortie du distributeur est à 45° par rapport à la direction périphérique. Supposez que la composante axiale de la vitesse demeure constante dans le rotor($c_{1x} = c_{2x} = c_x$)
- Calculez
 - les vitesses c_{1u} à la racine (R = 1.45m), au milieu (R = 2.15m), et au sommet (R = 2.85m) de l'aube
 - la vitesse de rotation n si $n_s = 460 \, rpm$ (calculée avec $\dot{W} \, en \, CV$)
 - la vitesse c_x (<u>moyenne et cnste</u>. pour les trois positions)
 - l'angle β₁ pour les trois niveaux indiqués

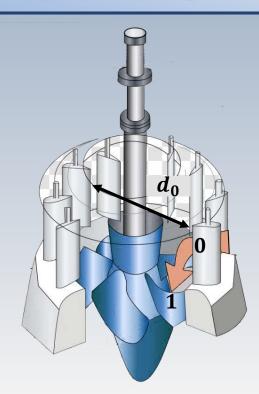
$C_u d = cnste$



Nous calculons d'abord la composante c_{0u} pour ensuite utiliser l'équation du vortex libre entre le distributeur et l'entrée du rotor

$$c_{0u} = C_0 \cos 45 = C_0 \sin 45 = c_{0m}$$

$$c_{0m} = \frac{Q}{\pi d_0 B} = \frac{225}{\pi \times 6.15 \times 1.8} = 6.2 \, m/s$$


$$W = 92234 \ CV, H = 34m, n_s = 460, Q = 225 \ m^3/s$$

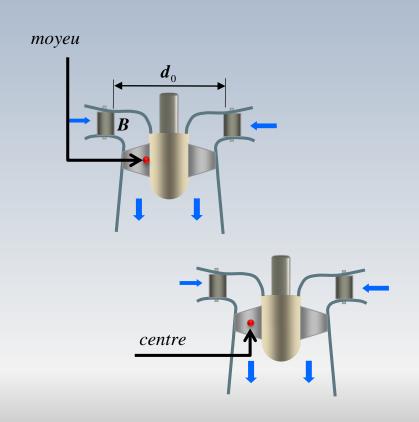
 $R_{1m} = 1.45m, R_{1c} = 2.15m, R_{1s} = 2.85m$
 $d_0 = 6.15m, B = 1.8m$

Connaissant c_{0u} , d_0 et un diamètre au niveau 1, nous pouvons appliquer l'équation du vortex libre entre les points 0 et 1

$$c_{0u} = 6.2 \, m/s$$

 $d_0 = 6.15 m$

$$W = 92234 \ CV, H = 34m, n_s = 460, Q = 225 \ m^3/s$$
 $R_{1m} = 1.45m, R_{1c} = 2.15m, R_{1s} = 2.85m$
 $d_0 = 6.15m, B = 1.8m$



$$c_{0u} = 6.2 \, m/s$$
 $d_0 = 6.15 m$
 $c_{0u}d_0 = c_{1u}d_1$
 $c_{ou}d_0 = 6.2 \times 6.15 = 38.1 = cnste$
 $c_{ou}d_0 = c_{1um}d_{1m} = c_{1uc}d_{1c} = c_{1us}d_{1s}$

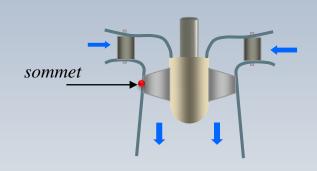
$$W = 92234 \ CV, H = 34m, n_s = 460, Q = 225 \ m^3/s$$
 $R_{1m} = 1.45m, R_{1c} = 2.15m, R_{1s} = 2.85m$
 $d_0 = 6.15m, B = 1.8m$

Entrée du rotor

$$c_{0u}d_0 = 38.1$$

$$c_{1um} = \frac{38.1}{2.9} = 13.14 \text{ m/s}$$

$$R=1.45 \text{ m}$$

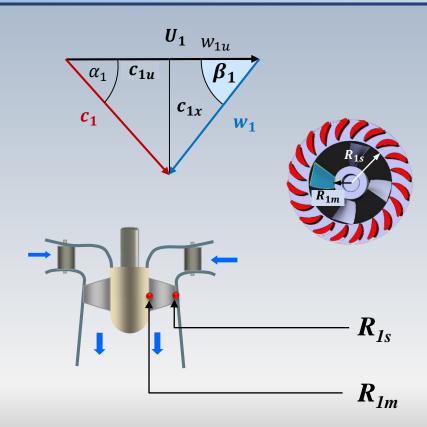

$$c_{1uc} = \frac{38.1}{4.3} = 8.85 \text{ m/s}$$

$$R=2.15 \text{ m}$$

$$W = 92234 \ CV, H = 34m, n_s = 460, Q = 225 \ m^3/s$$

 $R_{1m} = 1.45m, R_{1c} = 2.15m, R_{1s} = 2.85m$
 $d_0 = 6.15m, B = 1.8m$

Entrée du rotor

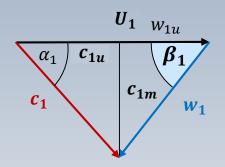

$$c_{0u}d_0 = 38.1$$

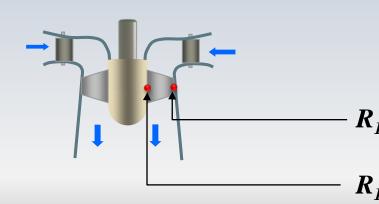
$$c_{1us} = \frac{38.1}{5.7} = 6.68 \ m/s$$

$$R=2.85 \ m$$

$$W = 92234 \ CV, H = 34m, n_s = 460, Q = 225 \ m^3/s$$

 $R_{1m} = 1.45m, R_{1c} = 2.15m, R_{1s} = 2.85m$
 $d_0 = 6.15m, B = 1.8m$



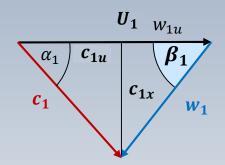

Pour calculer l'angle β_1 il nous faut c_{1x}, c_{1u}, U_1

 c_{1x} peut être obtenue à partir de l'équation de conservation de la masse. Notamment,

$$c_{1x} = \frac{Q}{\pi (R_{1s}^2 - R_{1m}^2)}$$

$$W = 92234 \ CV, H = 34m, n_s = 460, Q = 225 \ m^3/s$$

 $R_{1m} = 1.45m, R_{1c} = 2.15m, R_{1s} = 2.85m$
 $d_0 = 6.15m, B = 1.8m$

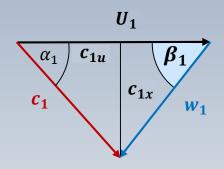


$$c_{1x} = \frac{225}{\pi (2.85^2 - 1.45^2)}$$
$$= 11.9 \ m/s$$

Pour calculer la vitesse U_1 nous utilisons la vitesse spécifique pour trouver N(rpm).

$$W = 9\dot{2}234 \ CV, H = 34m, n_s = 460, Q = 225 \ m^3/s$$

 $R_{1m} = 1.45m, \quad R_{1c} = 2.15m, \quad R_{1s} = 2.85m$
 $d_0 = 6.15m, \quad B = 1.8m$


$$N = \frac{n_S \times H^{5/4}}{\dot{W}^{1/2}}$$

$$N = \frac{460 \times 34^{5/4}}{92234^{1/2}} = 124.35 \, rpm$$

Avec N nous pouvons trouver la vitesse U_1 à partir de:

$$U_1 = \pi D N/60$$

$$W = 92234 \ CV, H = 34m, n_s = 460, Q = 225 \ m^3/s$$

 $R_{1m} = 1.45m, R_{1c} = 2.15m, R_{1s} = 2.85m$
 $d_0 = 6.15m, B = 1.8m$

$$\tan\beta_1 = \frac{c_{1x}}{U_1 - c_{1y}}$$

Nous aurons donc trois vitesses correspondantes à chacune des positions radiales

$$U_{1m} = 18.9 \, m/s$$
 $U_{1c} = 28 \, m/s$ $U_{1s} = 37.1 \, m/s$

Pour chaque rayon, l'angle β_1 sera calculé à partir de la relation trigonométrique décrite à gauche

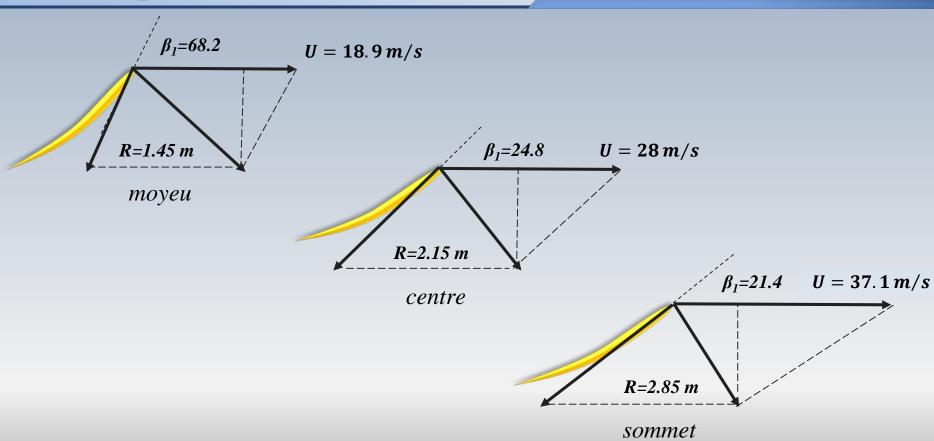
$$\tan \beta_{1m} = \frac{c_{1x}}{U_{1m} - c_{1um}} = \frac{11.9}{18.9 - 13.14} = 1.19$$
 $\beta_{1m} = 68.2^{\circ}$

H=34 m $n_{s} = 460$ $Q = 225 \text{ m}^3/\text{s}$ $d_0 = 6.15 \text{ m}$

 $\dot{W} = 92234 \text{ CV}$

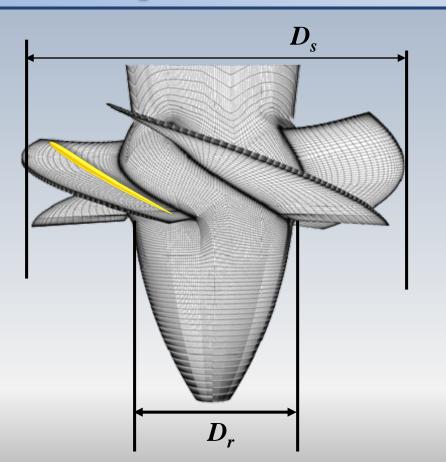
$$\tan \beta_{1c} = \frac{c_{1x}}{U_{1c} - c_{1uc}} = \frac{11.9}{28 - 8.85} = 0.433$$
 $\beta_{1c} = 24.8^{\circ}$

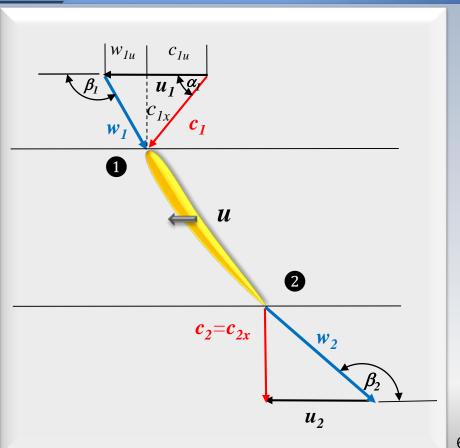
 $R_{\rm m} = 1.45 \, {\rm m}$ $R_c = 2.15 \text{ m}$


 $\tan \beta_{1s} = \frac{c_{1x}}{U_{1s} - c_{1us}} = \frac{11.9}{37.1 - 6.68} = 0.391$ $\beta_{1s} = 21.4^{\circ}$

 $R_s = 2.85 \text{ m}$ B = 1.8 m

 $U_{1m} = 18.9 \, m/s$ $U_{1c} = 28 \, m/s$ $U_{1s} = 37.1 \, m/s$


 $c_{1um} = 13.14 \, m / s$ $c_{1uc} = 8.85 \, m / s$ $c_{1us} = 6.68 \, m / s$ $c_{1x} = 11.9 \, m / s$



Une installation hydroélectrique utilise une turbine *Kaplan*. Les caractéristiques d'opération sont les suivantes: puissance *produite* $\dot{W}_p = 16000kW, H = 20m, \eta_g = 0.80$ (puissance produite/puissance disponible), $\eta_h = 0.90$ (puissance à l'arbre/puissance disponible), $D_s = 4.2m$ (sommet de la pale), $D_r = 2m$ (racine de la pale), $N_s = 3 \ rad$ (vitesse spécifique <u>adimensionnelle</u> basée sur \dot{W}_p).

L'écoulement à la sortie est purement axial!

N.B puissance disponible = puissance brute

On doit déterminer

- a) la *vitesse de rotation N* en radians et en *rpm*
- b) le débit Qet la puissance à l'arbre Warbre
- c) la vitesse axiale $c_{1x} = c_{2x} = c_x$ (moyenne et constante!)
- d) les composantes c_{1u} , w_{1u}
- e) les angles et β_1 , β_2 à l'entrée et à la sortie au moyeu et au sommet des pales

Vitesse de rotation *N*

$$N_{S} = N \left(\frac{\dot{W}^{1/2}}{\rho^{1/2} (gH)^{5/4}} \right) \leftarrow N_{S} = \frac{NQ^{1/2}}{(gH)^{3/4}} \leftarrow Q = \frac{\dot{W}}{\rho gH}$$

$$V_{S} = \frac{\dot{$$

$$N = 17.4 \, ra \, d/s$$
 $N = \frac{60 \times 17.4}{2\pi} = 2166.15 \, rpm$

Débit Q et puissance \dot{W}_{arbre}

$$\eta_{g} = \frac{\dot{W}_{produite}}{\dot{W}_{disponible}} = 0.80 \implies \dot{W}_{disponible} = \frac{\dot{W}_{produite}}{\eta_{g}} = \frac{16000}{0.80} = 20000 \, kW$$

$$\frac{\dot{W}_{p} = 16000 \, kW, \\ H = 20 \, m, \\ \eta_{g} = 0.80 \, (P_{p}/P_{disp}), \\ \eta_{h} = 0.90 \, (P_{arbre}/P_{disp}), \\ D_{s} = 4.2m \, (sommet), \\ D_{r} = 2m \, (racine), \\ N_{s} = 3 \, rad$$

$$\dot{W}_{v} = 16000 \, kW, \\ H = 20 \, m, \\ \eta_{h} = 0.90 \, (P_{arbre}/P_{disp}), \\ D_{r} = 2m \, (racine), \\ N_{s} = 3 \, rad$$

$$\dot{W}_{disponible} = \rho g \mathbf{Q} H \implies \mathbf{Q} = \frac{\dot{W}_{disponible}}{\rho g H} = \frac{20000 \times 10^3}{10^3 \times 9.8 \times 20} = \mathbf{101.9 \ m^3/s}$$

$$(\dot{W}_{produite} = \eta_g \rho g \mathbf{Q} H)$$

$$(\dot{W}_{produite} = \eta_g \rho g \mathbf{Q} H)$$

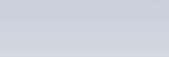
$$\eta_h = \frac{\dot{W}_{arbre}}{\dot{W}_{disponible}} = 0.9 \implies \dot{W}_{arbre} = \eta_h \dot{W}_{disp.} = 0.9 \times 20000 \, kW$$

$$= 18000 \, kW$$

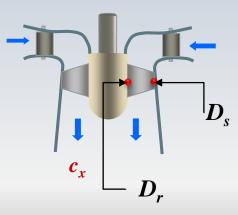
Exemple IIII L'écoulement à la sortie est purement axial $c_{x_i}c_{1u_i}w_{1u}$?

Vitesse axiale c_x (moyenne et constante)

$$c_x = \frac{Q}{\pi (D_s^2 - D_r^2)/4} = \frac{101.9}{\pi (4.2^2 - 2^2)/4} = 9.51 \, m/s$$

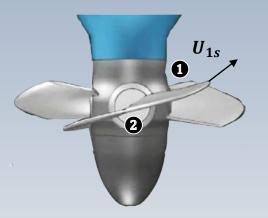


H=20 m, $\eta_g = 0.80 \, (P_p/P_{disp})$ $\eta_h = 0.90 \, (P_{arbre}/P_{disp})$ $D_s = 4.2m$ (sommet) $D_r=2m$ (racine) $N_s = 3 rad$


 $W_p = 16000 \, kW,$

$$\dot{W}_{arbre} = \rho Q(c_{1u}U_1 - c_{2u}U_2) \qquad \qquad \dot{W}_{arbre} = \rho Q c_{1u}U_1$$

$$\downarrow \qquad \qquad c_{2u} = \mathbf{0}$$



$$c_{1u} = \frac{\dot{W}_{arbre}}{\rho Q U_1} = \frac{18000 \times 10^3}{1000 \times 101.9 \times U_1}$$

Exemple III L'écoulement à la sortie est purement axial c_{1u} , w_{1u} ?

$$c_{1u} = \frac{\dot{W}_{arbre}}{\rho Q U_1} = \frac{18000 \times 10^3}{1000 \times 101.9 \times U_1}$$

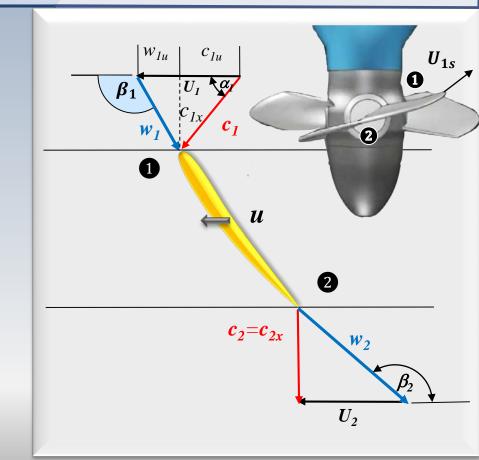
 $W_p = 16000 \, kW,$ $H=20 \, m,$ $\eta_g = 0.80 \, (P_p/P_{disp})$ $\eta_h = 0.90 \, (P_{arbre}/P_{disp})$ $D_s = 4.2m \, (sommet)$ $D_r = 2m \, (racine)$ $N_s = 3 \, rad$

Vitesse périphérique au sommet $(r_s=D_s/2)$

$$U_{1s} = N D_s/2 = 17.41 \times 4.2/2 = 36.6 m/s$$

$$c_{1us} = \frac{18000 \times 10^3}{1000 \times 101.9 \times 36.6} = 4.8 \, m/s$$

Exemple III L'écoulement à la sortie est purement axial w_{1u} , β_1 ?


Angle β_1 au sommet

Au sommet $r_s = D_s/2 = 2.1m$

$$w_{1us} = U_{1s} - c_{1us} = 36.6 - 4.8$$
$$= 31.8 \, m / s$$

$$\tan(180 - \beta_1) = \frac{c_{1x}}{w_{1us}} = \frac{9.51}{31.8}$$

$$\beta_1 = 163.4^0$$

Exemple III L'écoulement à la sortie est purement axial w_{1u} , β_1 ?

Angle β_1 au moyeu

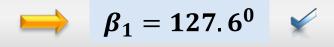
Au moyeu $r_m = D_m/2 = 1m$

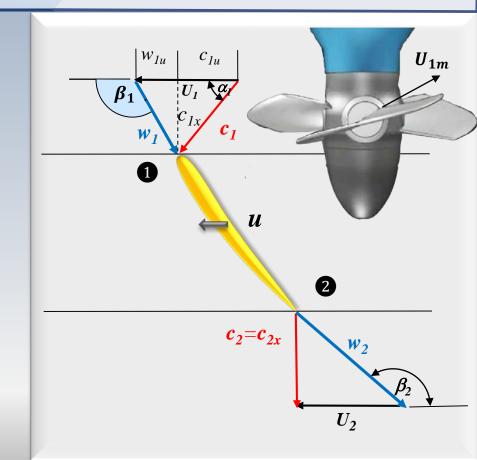
$$U_{1m} = N \times D_{1m} / 2 = 17.41 \times 2 / 2 = 17.41 m/s$$

$$c_{1um} = \frac{\dot{W}_{arbre}}{\rho Q U_{1m}} = \frac{18000 \times 10^{3}}{1000 \times 101.9 \times U_{1m}}$$

$$U_{1m} = 17.41 \text{m/s}$$

$$c_{1um} = 10.15 \ m/s$$


Exemple III L'écoulement à la sortie est purement axial w_{1u} , β_1 ?


Angle β_1 au moyeu

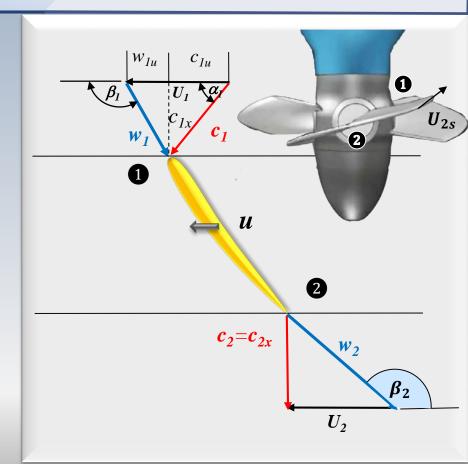
$$c_{1um} = 10.15 \, m / s$$

$$w_{1um} = U_{1m} - c_{1um} = 17.41 - 10.15$$
$$= 7.26 \ m/s$$

$$\tan(180 - \beta_1) = \frac{c_{1x}}{w_{1um}} = \frac{9.51}{7.26}$$

Exemple III L'écoulement à la sortie est purement axial w_{2u} , β_2 ?

Angle β_2 au sommet


Au sommet $r_s = 2.1m$

$$w_{2us} = U_{2s} = U_{1s} = 36.6 \ m/s$$

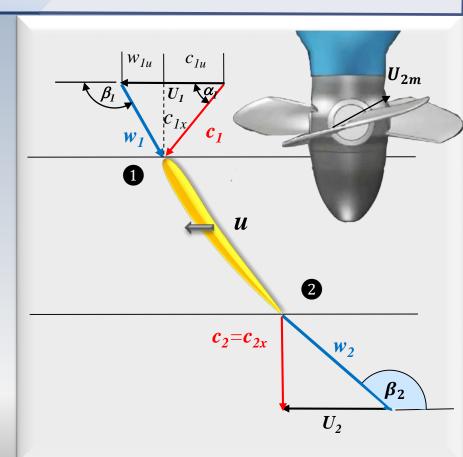
$$c_{2x} = c_{1x} = 9.51 \ m/s$$

$$\tan(180 - \beta_2) = \frac{c_{2x}}{w_{2us}} = \frac{9.51}{36.6}$$

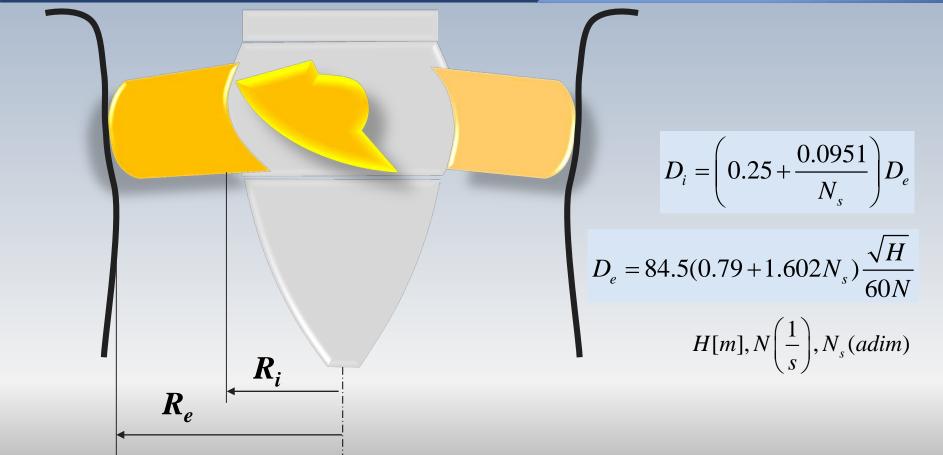
$$\beta_2 = 165.5^0$$

Exemple III L'écoulement à la sortie est purement axial w_{2u} , β_2 ?

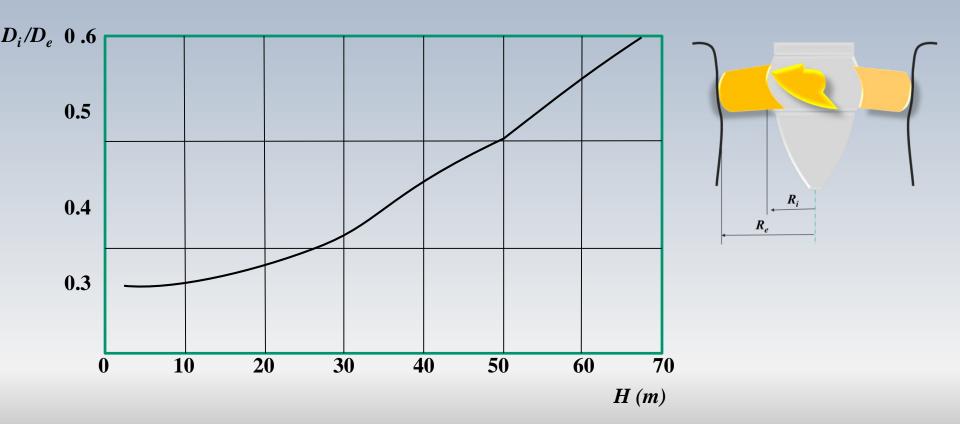
Angle β_2 au moyeu


Au moyeu $r_m = D_m/2 = 1m$

$$w_{2um} = U_{2m} = U_{1m} = 17.41 \ m/s$$


$$c_{2x} = c_{1x} = 9.51 \ m/s$$

$$\tan(180 - \beta_2) = \frac{c_{2x}}{w_{2um}} = \frac{9.51}{17.41}$$


$$\beta_2 = 151.4^0$$

Relations empiriques

Relations empiriques

