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Single-regime models / Multiregime models 
 Previously introduced models are all single-regime models: they have only one 

equation that applies to the entire driving process and do not consider different 
driving scenarios or regimes.

 Such models are simple and mathematically attractive.
 However, their descriptive power is frequently of concern.
 A driver may encounter different regimes such as start-up, speedup, free flow, 

cutoff, following, stop and go, trailing, approaching, and stopping. A one-equation 
model may or may not apply to all regimes.

 Multiregime models might be helpful in capturing different driving scenarios. 
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Gipps Model
 The Gipps car-following model is based on the 

following assumption:
“The driver of the following vehicle selects his speed 
to ensure that he can bring his vehicle to a safe stop 
should the vehicle ahead come to a sudden stop”

 Put another way, at any moment the following driver 
should leave enough safe distance in front such that 
in case the leading vehicle commences an emergency 
brake, the subject driver has time to respond and 
decelerate to a stop behind the leading vehicle 
without a collision.

 This scenario is depicted in Figure:

Gipps car-following scenario
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Gipps Model
 At time 𝑡𝑡, vehicle 𝑖𝑖 is located at 𝑥𝑥𝑖𝑖(𝑡𝑡) and the leading 

vehicle 𝑖𝑖 − 1 is at 𝑥𝑥𝑖𝑖−1(𝑡𝑡).
 At this moment, vehicle 𝑖𝑖 − 1 at speed �̇�𝑥𝑖𝑖−1 𝑡𝑡  

commences an emergency brake at a rate of 𝐵𝐵𝑖𝑖−1.
 Alerted by the braking light in front, driver 𝑖𝑖 at speed 

�̇�𝑥𝑖𝑖 𝑡𝑡 goes through a perception-reaction process of 
duration 𝜏𝜏𝑖𝑖, trying to understand the situation, 
evaluate potential options, and then decides to brake 
as well at a tolerable rate of 𝑏𝑏𝑖𝑖.

 Hence, the vehicle starts to decelerate from �̇�𝑥𝑖𝑖(𝑡𝑡 +
𝜏𝜏𝑖𝑖) to a stop, with the most adverse situation being 
stopped right after vehicle 𝑖𝑖 − 1.

Gipps car-following scenario
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Gipps Model
 Therefore, the distance traveled by vehicle i − 1 during its 

emergency brake is: 
 Since 𝐵𝐵𝑖𝑖−1 is negative, so the vehicle stops at location:

Gipps car-following scenario

 Meanwhile, vehicle i travels a certain distance during 
the perception-reaction time:

 Then travels a braking distance:
 Hence, the vehicle stops at location:

 To be conservative, Gipps added an extra buffer time 
(𝜃𝜃) appended to the perception-reaction time:
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Gipps Model
 To ensure safety, the following relationship must hold:

Therefore, the 
target speed 

that the driver 
tries to achieve 

next is

Considering 𝜃𝜃 =
 𝜏𝜏𝑖𝑖/2 as suggested by 

Gipps, the roots of the 
above quadratic 

equation are

The actual 
spacing is
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Gipps Model
 Consider the signs of the roots and that speed is a positive value, the above 

equation translates to the following :

Gipps car-following scenario
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Macroscopic Bridge – Gipps Model
 If one ignores the speed change during the perception-reaction process and the 

additional buffer time 𝜃𝜃, and sets both sides equal, then, rearranging terms 
yields:

 Under equilibrium conditions, the above car-following model leads to the 
following speed-density relationship:

 Where
• 𝑘𝑘 is traffic density, 𝛾𝛾 = − 1/2𝑏𝑏 + 1/2𝐵𝐵 ,
• 𝑏𝑏 < 0 is the average tolerable braking rate,
• 𝐵𝐵 < 0 is the average emergency braking rate,
• 𝑣𝑣 is the average traffic speed,
• 𝜏𝜏 is the average perception-reaction time,
• and 𝑙𝑙 is the average nominal vehicle length.
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Macroscopic Bridge – Gipps Model
 The corresponding flow-speed relationship is:

 To find the capacity, one takes the first derivative of flow q with respect to v and 
sets the result to zero: 

 Solving the equation yields:

𝑎𝑎𝑎𝑎𝑎𝑎,
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Microscopic Benchmarking – Gipps Model
 The above benchmarking is based on the set of 

parameters presented in the table below.
 Start-up: The model is able to start the vehicle 

up from standstill. See when 𝑡𝑡 > 0 𝑠𝑠.
 Speedup: The model is able to speed the vehicle 

up realistically to its desired speed. See when 
0 < 𝑡𝑡 < 100 𝑠𝑠.

 Free flow: The model is able to reach and settle 
at the desired speed under free-flow conditions. 
See when 0 < 𝑡𝑡 < 100 𝑠𝑠.

Microscopic benchmarking of Gipps’ model
Microscopic benchmarking parameters 

of the Gipps model
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Microscopic Benchmarking – Gipps Model
 Cutoff: The model over decelerates slightly, 

which causes a small oscillation in speed, but in 
general the model retains control and responds 
reasonably when a vehicle cuts in in front.
See around 𝑡𝑡 = 100 𝑠𝑠.

 Following: The model is able to adopt the 
leader’s speed and follow the leader at a 
reasonable distance.
See when 100 < 𝑡𝑡 < 200 𝑠𝑠.

 Stop and go: The model is able to stop the 
vehicle safely behind its leader and start the 
vehicle moving when the leader departs.
See when 200 ≤ 𝑡𝑡 ≤ 300 𝑠𝑠.

Microscopic benchmarking of Gipps’ model
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Microscopic Benchmarking – Gipps Model
 Trailing: The model is able to speed up 

normally without being tempted to speed up 
by its speeding leader.
See when 300 < 𝑡𝑡 < 400 𝑠𝑠.

 Approaching: The model is able to 
decelerate properly when approaching a 
stationary vehicle at a distance.
See when 400 ≤ 𝑡𝑡 <  420 𝑠𝑠.

 Stopping: The model is able to stop the 
vehicle safely behind the stationary vehicle.
See when 𝑡𝑡 ≥ 420 𝑠𝑠.

Microscopic benchmarking of Gipps’ model
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Macroscopic Benchmarking – Gipps Model
 The fundamental diagram implied by the Gipps 

model is plotted against empirical observations.
 The model parameters are presented in the table 

below.
 The model fits empirical data reasonably well 

except for free-flow conditions (i.e., in the low-
density range).

 In addition, the critical flow predicted by the 
Gipps model is much lower than it should be.

Fundamental diagram implied by the Gipps model.
Macroscopic benchmarking 

parameters of the Gipps 
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Newell Nonlinear Model
 Newell proposed a car-following models in 1961, which is referred to as the 

“Newell nonlinear” car-following model.
 It takes the following form:

 Where 
• �̇�𝑥𝑖𝑖 𝑡𝑡  is the speed of the vehicle 𝑖𝑖 at time 𝑡𝑡,
• 𝜏𝜏𝑖𝑖 is driver 𝑖𝑖’s perception-reaction time,
• 𝑣𝑣𝑖𝑖 is driver 𝑖𝑖’s desired speed,
• 𝜆𝜆𝑖𝑖  is a parameter associated with driver 𝑖𝑖 (i.e., the slope of driver 𝑖𝑖’s speed-spacing 

curve evaluated at �̇�𝑥𝑖𝑖 𝑡𝑡 ),
• 𝑠𝑠𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖 is the spacing between vehicle 𝑖𝑖 and its leader 𝑖𝑖 − 1,
• 𝑙𝑙𝑖𝑖 is the minimum value of 𝑠𝑠𝑖𝑖 , which can be viewed as the nominal vehicle length.

 Newell Nonlinear Model is based on empirical studies and it leads to an 
equilibrium speed-density curve that resembles field observations.
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Newell Nonlinear Model
 Under equilibrium conditions, Newell nonlinear model reduces to the following 

speed-density relationship:

 Where:
• 𝑣𝑣 is traffic speed, which is aggregated from vehicle speed �̇�𝑥𝑖𝑖,
• 𝑣𝑣𝑓𝑓 is freeflow speed, which is aggregated from𝑣𝑣𝑖𝑖,
• 𝜆𝜆 is a parameter aggregated from 𝜆𝜆𝑖𝑖,
• 𝑘𝑘 is traffic density, which is the reciprocal of average spacing 𝑠𝑠, which, in turn, is 

aggregated from spacing 𝑠𝑠𝑖𝑖 ,
• 𝑘𝑘𝑗𝑗 is jam density, which is the reciprocal of average vehicle length 𝑙𝑙, which, in turn, is 

aggregated from nominal vehicle length 𝑙𝑙𝑖𝑖

Alizadeh H. (2024) École Polytechnique de Montréal– CIV6705 Autumn 2024 15



Microscopic Benchmarking – Newell Nonlinear Model
 The benchmarking result of the Newell nonlinear 

model is plotted and summarized as follows.
 Start-up: The model is able to start a vehicle up from 

standstill.
See when 𝑡𝑡 > 0 𝑠𝑠.

 Speedup: The model allows the vehicle speed to jump 
from 0 to 30 𝑚𝑚/𝑠𝑠 in one time-step, resulting in an 
acceleration of 30 𝑚𝑚/𝑠𝑠2. This is unrealistic, so an 
external logic has to be imposed to limit the maximum 
acceleration. 
See when 0 < 𝑡𝑡 < 100 𝑠𝑠.

Microscopic benchmarking of the Newell nonlinear modelMicroscopic benchmarking parameters of 
the Newell nonlinear model
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Microscopic Benchmarking – Newell Nonlinear Model
 Free flow: The model is able to reach and settle at the 

desired speed under free-flow conditions. See when 0 <
𝑡𝑡 < 100 𝑠𝑠.

 Cutoff: By itself, the Newell nonlinear model would 
predict a deceleration of about −184.6 𝑚𝑚/𝑠𝑠2 when the 
third vehicle cuts in and an acceleration of 182.9 𝑚𝑚/𝑠𝑠2 
in the next time step. This is a very unrealistic jerking, so 
an external logic has to be imposed to limit the 
maximum acceleration and deceleration, and the same 
argument as for speedup applies here.
See around 𝑡𝑡 = 100 𝑠𝑠 after these external conditions 
have bene incorporated.

 Following: The model is able to adopt the leader’s speed 
and follow the leader at a reasonable distance.
See when 100 < 𝑡𝑡 < 200 𝑠𝑠.

Microscopic benchmarking of the Newell nonlinear model
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Microscopic Benchmarking – Newell Nonlinear Model
 Stop and go: The model is able to stop the vehicle safely 

behind its leader and start the vehicle moving when the 
leader departs.
See when 200 ≤ 𝑡𝑡 ≤ 300 𝑠𝑠.

 Trailing: The model is able to speed up normally without 
being tempted to speed up by its speeding leader.
See when 300 < 𝑡𝑡 < 400 𝑠𝑠.

 Approaching: With the above external logic on limiting 
deceleration, the model is able to decelerate properly 
when approaching a stationary vehicle.
See when 400 ≤ 𝑡𝑡 < 420 𝑠𝑠.

 Stopping: The model is able to stop the vehicle safely 
behind the stationary vehicle.
See when 𝑡𝑡 ≥ 420 𝑠𝑠.

Microscopic benchmarking of the Newell nonlinear model
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Macroscopic Benchmarking – Newell Nonlinear Model
 The fundamental diagram implied by the 

Newell nonlinear model is depicted.
 The model meets the boundary conditions 

at (𝑘𝑘 = 0, 𝑣𝑣 = 𝑣𝑣𝑓𝑓 ) and (𝑘𝑘 = 𝑘𝑘𝑗𝑗 , 𝑣𝑣 = 0).

 The flow-density exhibits a concave shape, 
and the fitting quality is reasonably good 
given that only three parameters are 
employed.

Fundamental diagram implied by the Newell nonlinear model.
Macroscopic benchmarking parameters of the 

Newell nonlinear model
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Newell Simplified Model
 After about 40 years, Newell published a simplified car-following model
 It simply translates the leading vehicle’s trajectory
 If vehicle 𝑖𝑖 − 1’s trajectory 𝑥𝑥𝑖𝑖−1(𝑡𝑡) is given, vehicle 𝑖𝑖’s trajectory can be 

directly determined by the following equation:

 Graphically, this means translating trajectory 𝑥𝑥𝑖𝑖−1(𝑡𝑡)to the right by a 
horizontal distance of 𝜏𝜏𝑖𝑖 and then downward by a vertical distance of 𝑙𝑙𝑖𝑖 
 One can squeeze a rectangle with dimensions 𝜏𝜏𝑖𝑖 × 𝑙𝑙𝑖𝑖 between the two 
trajectories.
• The physical meaning of 𝑙𝑙𝑖𝑖 is the minimum value of the spacing, that is, the 

nominal vehicle length.
• 𝜏𝜏𝑖𝑖 is the reciprocal of the tangent to the speed-spacing relationship drawn at 

point (0, 𝑙𝑙𝑖𝑖).
• Evidence shows that 𝜏𝜏𝑖𝑖 can most likely be interpreted as the perception-

reaction time of driver 𝑖𝑖 Newell simplified car-following model

𝑥𝑥𝑖𝑖−1(𝑡𝑡)

𝑥𝑥𝑖𝑖(𝑡𝑡)
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Newell Simplified Model

 This is the same as the Pipes/Forbes model, which in 
turn, is equivalent to GM1. 

Newell simplified car-following model

𝑥𝑥𝑖𝑖−1(𝑡𝑡)

𝑥𝑥𝑖𝑖(𝑡𝑡)

It can be seen 
from the figure:

In addition, the locations of 
vehicle i at time t and t+τi 
can be related as

Combining the above 
three equations, we get:
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Intelligent Driver Model
 The intelligent driver model (IDM) is expressed as follows:

 Where
 �̈�𝑥𝑖𝑖 is driver 𝑖𝑖’s acceleration,
 𝐴𝐴𝑖𝑖 is driver 𝑖𝑖’s maximum acceleration when starting from standstill,
 𝛿𝛿 is the acceleration exponent,
 𝑠𝑠𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖 is the spacing between vehicle 𝑖𝑖 and its leader 𝑖𝑖 − 1,
 The desired spacing 𝑠𝑠𝑖𝑖∗ is a function of speed �̇�𝑥𝑖𝑖 and relative speed (�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖−1):

 Where 𝑠𝑠0, 𝑠𝑠1, and 𝑇𝑇𝑖𝑖 are parameters
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Macroscopic Bridge – IDM
 Under equilibrium conditions, 𝐼𝐼𝐼𝐼𝐼𝐼 model reduces to the following density-speed 

relationship:

 If one further assumes that 𝑠𝑠0 = 𝑠𝑠1 = 0 and 𝛿𝛿 = 1, a special case results:

 Where 𝑇𝑇 is the average safe time headway, 𝑠𝑠 = 1/𝑘𝑘 is the average spacing, and 𝑘𝑘 
is traffic density.
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Microscopic Benchmarking – IDM
 The benchmarking result of the IDM is plotted, and 

the set of parameters is presented in table below.
 Start-up: The model is able to start the vehicle up 

from standstill. See when 𝑡𝑡 > 0 𝑠𝑠.
 Speedup: The model can speed the vehicle up 

realistically to its desired speed. See when 0 < 𝑡𝑡 <
100 𝑠𝑠.

 Free flow: The model can reach and settle at the 
desired speed under free-flow conditions. See 
when 0 < 𝑡𝑡 < 100 𝑠𝑠.

Microscopic benchmarking of the IDMMicroscopic benchmarking parameters of the IDM
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Microscopic Benchmarking – IDM

Microscopic benchmarking of the IDM

 Cutoff: The model retains control and responds 
reasonably when a vehicle cuts in in front. See around 
𝑡𝑡 = 100 s.

 Following: The model can adopt the leader’s speed 
and follow the leader at a reasonable distance. See 
when 100 < 𝑡𝑡 < 200 𝑠𝑠.

 Stop and go: The model exhibits some oscillation in 
acceleration, stopping behind the leading vehicle. The 
model can start moving when the leader departs. See 
when 200 ≤ 𝑡𝑡 ≤ 300 𝑠𝑠.

 Trailing: The model can speed up normally without 
being tempted to speed up by its speeding leader. See 
when 300 < 𝑡𝑡 < 400 𝑠𝑠.

 Approaching: The model is able to decelerate 
properly when approaching a stationary vehicle. See 
when 400 ≤ 𝑡𝑡 < 420 𝑠𝑠. 

 Stopping: The model is able to stop the vehicle safely 
behind the stationary vehicle. See when 𝑡𝑡 ≥ 420 𝑠𝑠
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Macroscopic Benchmarking – IDM
 The fundamental diagram implied by the IDM is 

depicted.
 The model employs four parameters and exhibits a 

desirable shape with good fitting quality.
 The above benchmarking is based on the set of 

parameters in Table below
 The outcome may differ for a different set of 

parameters.
 The model meets the boundary conditions at (𝑘𝑘 =

0, 𝑣𝑣 = 𝑣𝑣𝑓𝑓 ) and (𝑘𝑘 = 𝑘𝑘𝑗𝑗 , 𝑣𝑣 = 0).

Fundamental diagram implied by the IDMMacroscopic benchmarking parameters of the IDM
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Van Aerde Model
 The Van Aerde car-following model combines the Pipes model and the 

Greenshields model into a single equation:

 where 𝑣𝑣𝑓𝑓 is the free-flow speed of the roadway facility, 𝑘𝑘𝑗𝑗 is the jam density, and 
𝑣𝑣𝑚𝑚 is the optimal speed at capacity 𝑞𝑞𝑚𝑚.
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Macroscopic Bridge – Van Aerde Model
 Under equilibrium conditions, the Van Aerde model reduces to the following 

density-speed relationship:
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Microscopic Benchmarking – Van Aerde Model
 The benchmarking result of the Van Aerde model is 

plotted, and the set of parameters is presented in table 
below.

 Start-up: The model is able to start the vehicle up from 
standstill. See when 𝑡𝑡 > 0 s.

 Speedup: The same argument as in the corresponding 
part for the Newell nonlinear car-following model 
applies here. See when 0 < 𝑡𝑡 < 100 s.

 Free flow: The model is able to reach and settle at the 
desired speed under free-flow conditions. See when 
0 < 𝑡𝑡 < 100 s.

Microscopic benchmarking of the Van Aerde model.Microscopic benchmarking parameters of the Van Aerde model
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Microscopic Benchmarking – Van Aerde Model
 Cutoff: The same argument as in the corresponding part 

for the Newell nonlinear car-following model applies 
here. See around 𝑡𝑡 = 100 s.

 Following: The model is able to adopt the leader’s speed 
and follow the leader at a reasonable distance. See when 
100 < 𝑡𝑡 < 200 s.

 Stop and go: The model is able to stop the vehicle safely 
behind its leader and start the vehicle moving when the 
leader departs. See when 200 ≤ 𝑡𝑡 ≤ 300 s.

 Trailing: The model is able to speed up normally without 
being tempted to speed up by its speeding leader. See 
when 300 < 𝑡𝑡 < 400 s.

 Approaching: With limiting deceleration, the model is 
able to decelerate properly when approaching a 
stationary vehicle. See when 400 ≤ 𝑡𝑡 < 420 s.

 Stopping: The model is able to stop the vehicle safely 
behind the stationary vehicle. See when 𝑡𝑡 ≥ 420 s. Microscopic benchmarking of the Van Aerde model.
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Macroscopic Benchmarking – Van Aerde Model
 The fundamental diagram implied by the Van 

Aerde model is depicted.
 The model employs four parameters and exhibits 

a desirable shape with good fitting quality.

Fundamental diagram implied by the Van Aerde model.Macroscopic benchmarking parameters of the Van Aerde model
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Psychophysical Model
 The psychophysical model got its name because it 

involves both psychological activities (such as 
perception-reaction threshold and unconscious car 
following) and physical behavior (e.g., accelerating and 
decelerating efforts).

 Compared with the models introduced before, this 
model captures more driving regimes explicitly, such as
• free flow (no reaction area),
• approaching (reaction area),
• following (car following area),
• and decelerating (deceleration area).

 A typical psychophysical model is the one proposed by 
Wiedemann in 1974.

Illustration of a psychophysical model
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Psychophysical Model
 The model considers two major factors influencing 

driver’s operational control:
 relative position ∆𝑥𝑥 = 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖
 relative speed ∆�̇�𝑥 = �̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖−1.

 Hence, the working principle of the model can be 
illustrated by a diagram with ∆�̇�𝑥 as the horizontal axis 
and ∆𝑥𝑥 as the vertical axis.

 The operating condition of a vehicle 𝑖𝑖 in relation to its 
leading vehicle 𝑖𝑖 − 1 can be represented as a point 
(�̇�𝑥, 𝑥𝑥) in the diagram.

 As vehicle 𝑖𝑖 moves, its operating point changes 
accordingly, leaving a trajectory in the diagram.

Illustration of a psychophysical model
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Psychophysical Model
 If the point is on the negative side of ∆�̇�𝑥, vehicle 𝑖𝑖 is 

traveling more slowly than vehicle 𝑖𝑖 − 1, while the relation 
is reversed if the point is on the positive side of ∆�̇�𝑥.

 In addition, the point is always on the positive side of ∆𝑥𝑥 
since vehicle 𝑖𝑖 − 1 is in front.

 The smaller 𝑥𝑥 is, the closer the two vehicles are to each 
other.

 Hence, the two vehicles collide if ∆𝑥𝑥 is less than one vehicle 
length 𝑙𝑙.

 This situation is depicted by the collision area in the 
diagram bounded by the horizontal axis and a horizontal 
line at ∆𝑥𝑥 =  𝑙𝑙.

 On top of this area is another area, denoted the 
deceleration area, where the two vehicles are so close that 
an imminent collision causes the following vehicle to back 
up for safety.

Illustration of a psychophysical model
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Psychophysical Model
 Now, suppose vehicle 𝑖𝑖 is traveling on a highway 

with the leading vehicle 𝑖𝑖 − 1 far ahead and vehicle 
𝑖𝑖 is faster than vehicle 𝑖𝑖 − 1.

 The operating condition can be represented by point 
𝐴𝐴, which has a large positive ∆𝑥𝑥 and a positive ∆�̇�𝑥.

 Since vehicle 𝑖𝑖 − 1 is far ahead, driver 𝑖𝑖 does not 
have to respond to vehicle 𝑖𝑖 − 1. This area is 
denoted as no reaction in the diagram. 

 As vehicle 𝑖𝑖 keeps moving, the relative speed ̇∆𝑥𝑥 
remains unchanged, but the relative separation ∆𝑥𝑥 
decreases.

 Hence, the operating point moves downward. 
 Sooner or later, vehicle 𝑖𝑖 will catch up and begin to 

respond to vehicle 𝑖𝑖 − 1 as the gap is closing. 
Illustration of a psychophysical model
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Psychophysical Model
 However, the cutoff point is rather vague since this is a 

subjective matter.
 Perhaps a better way to draw the line is to set an upper 

limit such as point 𝐵𝐵, before which drivers are less 
likely to respond, and a lower limit such as point 𝐵𝐵′ , 
after which drivers definitely need to respond.

 Note that points 𝐵𝐵 and 𝐵𝐵′ vary as ∆�̇�𝑥 changes.
 The trajectory of point 𝐵𝐵 or point 𝐵𝐵′under different ∆�̇�𝑥 

separates the reaction area from the no reaction area.
 Since driver 𝑖𝑖 is likely to respond to vehicle 𝑖𝑖 −  1 by 

slowing down (if lane change is not an option), the 
operating point moves downward and left toward to 
point 𝐶𝐶 and finally to point 𝐼𝐼 when the two vehicles 
are traveling at the same speed.

Illustration of a psychophysical model
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Psychophysical Model
 Now the two vehicles are in the car-following regime, 

during which driver 𝑖𝑖 tries to keep the same pace as 
vehicle 𝑖𝑖 − 1 separated by a comfortable distance.

 However, drivers are easily bored and distracted, 
especially during long trips.

 As a result, driver 𝑖𝑖 might slow down unconsciously.
 Consequently, ∆�̇�𝑥 becomes negative and keeps 

decreasing while ∆𝑥𝑥 increases.
 As such, the operating point moves from 𝐼𝐼 toward 𝐸𝐸, 

at which point the opening gap reminds driver 𝑖𝑖 that 
he or she is falling behind.

 Hence, the driver begins to catch up.

Illustration of a psychophysical model
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Psychophysical Model
 This corresponds to a transition from 𝐸𝐸 to 𝐹𝐹, when the 

two vehicles are again traveling at the same speed but 
with a large gap in between.

 Next, driver 𝑖𝑖 may want to keep accelerating in order to 
shorten the gap to a comfortable level, which is 
denoted as a transition from 𝐹𝐹 back to 𝐶𝐶.

 Therefore, as the driver oscillates back and forth 
around his or her comfortable car-following distance, 
the operating point drifts around within an area in the 
diagram denoted as car following.

Illustration of a psychophysical model
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Neural Network Model
 Perhaps the approach that best mimics driver behavior is 

artificial neural networks.
 This is because artificial neural networks are capable of 

associating, recognizing, organizing, memorizing, learning, and 
adapting.

 A neural network typically consists of many interconnected 
working units called neurons.

 A neuron receives inputs 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 which are weighted 
𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛, respectively.

 The total input to the neuron is the weighted sum of individual 
inputs: 𝑧𝑧 = ∑𝑖𝑖=1𝑛𝑛 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

 The output of the neuron 𝑦𝑦 depends not only on 𝑧𝑧 but also on 
the threshold of the neuron 𝜃𝜃.

 The neuron outputs 1 if 𝑧𝑧 ≥  𝜃𝜃 and 0 otherwise.
Illustration of a neural network model
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Neural Network Model
 Neurons with such a simple functionality can be organized into 

neural networks of varying complexity and topology.
 Figure illustrates an example of a back-propagation neural 

network.
 The network consists of one input layer (which in turn consists 

of a set of neurons), one output layer, and one or more hidden 
layers.

 Each neuron feeds its output only forward to neurons in the 
next layer, without backward feeding and cross-layer 
connection.

Illustration of a neural network model
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Neural Network Model

Illustration of a neural network model

 To apply neural networks to the modeling of car-following behavior, 
one first identifies a set of factors to be considered that influence the 
driver’s operational control.

 For example, these influencing factors can be spacing 𝑠𝑠, speed �̇�𝑥, 
relative speed ∆�̇�𝑥, etc.

 It is also possible to include other factors not considered before, such 
as a tailgating vehicle behind, weather, and lighting conditions, time 
of day, etc.

 These factors are represented by neurons in the input layer.
 The output layer in this example consists of only one neuron: 

acceleration/deceleration.
 If one needs to model not only longitudinal but also lateral motion, a 

second neuron is necessary to represent steering effort.
 Between input and output layers lie one or more hidden layers.
 The more hidden layers the network has, the more flexible it is, but 

the more complex it becomes.
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Neural Network Model

Illustration of a neural network model

 After the neural network has been constructed, it needs to be trained 
before it can be useful.

 The training process starts with data collection.
 For example, from field experiments, one observes that, at time 𝑡𝑡1, a 

vector of input [𝑠𝑠(1), �̇�𝑥(1),∆�̇�𝑥(1), … ] results in driver operational control 
[�̈�𝑥(1)], and more patterns are observed at 𝑡𝑡2, 𝑡𝑡3, … , 𝑡𝑡𝑚𝑚.

 After initializing the neural network (i.e., assigning initial values to 
connection weights and neuron thresholds), if the computed output is 
different from the observed output, the error is propagated backward 
layer by layer to adjust their connection weights and neuron thresholds.

 This is why networks of this kind are called back-propagation networks.
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Neural Network Model

Illustration of a neural network model

 After the error has been propagated backward, the same input is imposed again 
at the input layer and the network computes a new output.

 This time, the output error, if any, should be smaller than in the previous round.
 Again, the error needs to be propagated back, and all the weights and thresholds 

are adjusted for a new round of learning.
 The process continues until the computed output becomes sufficiently close or 

equal to the observed output.
 This completes the learning of the first input-output pattern.
 Next, one continues with the training of the second row, the third row, etc.
 The training is completed after all data in the set have been trained and the 

neural network is able to associate the correct output with the corresponding 
input.

 The trained neural network is now ready to be applied to vehicle operational 
control.

 In addition, the neural network may continue learning while working, and hence 
adapt to a new environment which it has never encountered before.
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