

Current traffic solutions require multiple technologies to address the cities data needs

- Extremely expensive to install and maintain
- Requires road closure
- Limited data about presence of cars
- No other type of road users
- Requires underground wiring

- Requires 4 sensors per intersection
- Requires road closure
- Limited data about presence of cars
- No other type of road users

- Unreliable under adverse weather and lighting conditions.
- Privacy concerns.
- Mainly used for planning/surveillance

OVERVIEW

Reliable

Collect data in any lighting or weather conditions.

Multi-modal

On-board AI classifies your data between vehicles, pedestrians and bikes.

Non-Intrusive

Single-sensor solution to cover whole intersection.

Connected

Powered by LTE/5G, Explorer delivers real-time access to your data.

Privacy-Protected

No privacy concerns

Lidar History: From Military to Commercial

Real-time object detection, classification and tracking

A replacement for costly to maintain technologies

Virtual loops for all road users

Real-Time Communication with Traffic Controller

Speed Analysis

- Use Cases:
 - Driver Behavior Analysis
 - Traffic Light Timing Efficiency
 - Effect of weather/lighting conditions on speed distribution
 - Monitor over speeding

Conflict Analysis

Near miss detection PET estimation

PET = t_2 - t_1

PETs less than 4 seconds are considered as **unsafe** conflict PETs less than 2 seconds are considered as **critical** conflict

Surrogate Safety Analysis – Proactive Approach on Safety

☑ Bicycle - Passenger Vehicle☑ Passe

PET value in seconds BCT_3D_4G_0104001

PET Details

Date/Time that conflict happened

Location of the conflict

Speed of leading object

Sensor: BCT_3D_4G_0104001 **Location:**-113.50848°, 53.54626°

Monitor Critical Conflicts
Validate it with watching a 10-second
video clip

Recording of selected conflict

								
PET VALUE (s)	SPEED (km/h)	VIDE	O CLIP	FOLLOWING OBJECT	LEADING OBJECT	FOLLOWING MOVEMENT	LEADING MOVEMENT	TIMESTAMP
2.3	20.2	Play	MP4 <u>↓</u>	Car	Car	WN	EW	4/27/2021, 11:12:31 AM
3.5	22.1	Play	MP4 <u>↓</u>	Car	Car	WN	EW	4/27/2021, 1:44:20 PM
1.9	23.6	Play	MP4 <u>↓</u>	Car	Car	WN	EW	4/27/2021, 4:25:52 PM
2.9	18.6	Play	MP4 <u>↓</u>	Car	Car	WN	EW	4/27/2021, 4:36:43 PM
1.8	22.8	Play	MP4 <u>↓</u>	Car	Car	WN	EW	4/27/2021, 6:02:50 PM
3.4	22.5	Play	MP4 <u>↓</u>	Car	Car	WN	EW	4/27/2021, 9:07:34 PM
1.9	17.7	Play	MP4 <u>↓</u>	Car	Car	WN	EW	4/28/2021, 8:16:26 AM
1.6	19.8	Play	MP4 <u>↓</u>	Car	Car	WN	EW	4/28/2021, 9:42:37 AM
2.4	19.5	Play	MP4 <u>↓</u>	Car	Car	WN	EW	4/28/2021, 12:19:16 PM
1.9	22.3	Play	MP4 <u>↓</u>	Car	Car	WN	EW	4/28/2021, 5:08:05 PM

Close

Case Study 1: Comparison of lidar and camera data

	Bluecity	Competitor		
Sample screenshot	2020-11-23 04:45:47	2020-11-23 04:45:47		
Install footprint	1 Lidar	2 cameras		
Data accuracy	98.7%	96.1%		
Consistency	All weather/lighting	Proper weather/lighting		

City: Repentigny, QC.
Consulting partner: CIMA+

Case Study 2: Comparison of lidar and loop

Count Comparison

Date	ISD	Blue City	Difference	Difference (%)
2021-05-03	11,734	12,161	427	4%
2021-05-04	11,936	12,326	390	3%
2021-05-05	12,314	12,740	426	3%
2021-05-06	12,463	12,889	426	3%
2021-05-07	12,199	12,526	327	3%
2021-05-08	9,476	9,623	147	2%
2021-05-09	8,281	8,418	137	2%
Grand Total	78,403	80,683	2,280	3%

Speed Comparison

Date	ISD	Blue City	Difference (km/h)	Difference (%)
2021-05-03	39.4	40.3	0.9	2%
2021-05-04	39.2	40.1	0.9	2%
2021-05-05	39.7	40.5	0.8	2%
2021-05-06	39.0	40.3	1.3	3%
2021-05-07	38.6	39.7	1.1	3%
2021-05-08	36.2	37.8	1.6	4%
2021-05-09	38.5	39.6	1.1	3%
Average	38.7	39.8	1.1	3%

Velodyne
High Resolution Lidar
(Alpha Prime)
Integrated with
Bluecity's Perception
Software

Alpha Prime 128 Pixel Lidar Integrated with Bluecity's Perception Software 260m (850ft) coverage with a single sensor and real-time detection

Case 1: Red Light Running / Near-Miss

• PET: 0.9 seconds

• Object 1: Bike

• Direction: South to North

• Object 2: Car

• Direction: East to West

• Speed: 35km/h

Case 2: Red Light Running / Near-Miss

• PET: 1.3 seconds

• Object 1: Bike

• Direction: South to North

• Object 2: Car

• Direction: East to West

• Speed: 28km/h

Case 3: Jaywalking / Near-Miss

• PET: 1.3 second

• Object 1: Pedestrian

• East Approach

• Object 2: Car

• Direction: East to West

• Speed: 25km/h

Case 4: Jaywalking / Near-Miss

• PET: 1.7 second

• Object 1: Pedestrian

• East Approach

• Object 2: Car

• Direction: West to East

• Speed: 30km/h

Case 5: Near-Miss

• PET: 1.2 seconds

• Object 1: car

• Direction: North to South

• Speed: 40 km/h

• Object 2: Car

• Direction: South to West

AI + Lidar + 5G

