APPENDIX B

Developing Equations for Computing Regression Coefficients

L
et a dependent variable Y and an independent variable x be related by an estimated regression function

$$
\begin{equation*}
Y=a+b x \tag{B.1}
\end{equation*}
$$

Let Y_{i} be an estimate and y_{i} be an observed value of Y for a corresponding value x_{i} for x. Estimates of a and b can be obtained by minimiing the sum of the sqares of the differences (R) between Y_{i} and y_{i} for a set of observed values, where

$$
\begin{equation*}
R=\sum_{i=1}^{n}\left(y_{i}-Y_{i}\right)^{2} \tag{B.2}
\end{equation*}
$$

Substituting $\left(a+b x_{i}\right)$ for Y_{i} in EqB.2, we obtain

$$
\begin{equation*}
R=\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2} \tag{B.3}
\end{equation*}
$$

Differentiating R partially with respect to a, then with respect to b, and eqating each to ero, we obtain

$$
\begin{align*}
& \frac{\partial R}{\partial a}=-2 \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)=0 \tag{B.4}\\
& \frac{\partial R}{\partial b}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-a-b x_{i}\right)=0 \tag{B.5}
\end{align*}
$$

From EqB.4, we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} y_{i}=n a+b \sum_{i=1}^{n} x_{i} \tag{B.6}
\end{equation*}
$$

giving

$$
\begin{equation*}
a=\frac{1}{n} \sum_{i=1}^{n} y_{i}-\frac{b}{n} \sum_{i=1}^{n} x_{i} \tag{B.7}
\end{equation*}
$$

From EqB.5, we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} y_{i}=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} x_{i}^{2} \tag{B.8}
\end{equation*}
$$

Substituting for a, we obtain

$$
\begin{equation*}
b=\frac{\sum_{i=1}^{n} x_{i} y_{i}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \tag{B.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& n=\text { number of sets of observation } \\
& x_{i}=i \text { th observation for } x \\
& y_{i}=i \text { th observation for } y
\end{aligned}
$$

Eqations B. 8 and B. 9 may be used to obtain estimated values for a and b in EqB.1. To test the suitability of the regression function obtained, the coeffient of determination, R^{2} (which indicates to what extent values of Y_{i} obtained from the regression function agree with observed values y_{i}) is determined from the expression

$$
\begin{equation*}
R^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} \tag{B.10}
\end{equation*}
$$

which is also written as

$$
\begin{equation*}
R^{2}=\frac{\sum_{i=1}^{n}\left(x_{i} y_{i}-n \bar{x} \bar{y}\right)^{2}}{\sum_{i=1}^{n} R\left(x_{i}^{2}-n \bar{x}\right)\left(\sum_{i}^{n} y_{i}^{2}-n \bar{y}^{2}\right)} \tag{B.11}
\end{equation*}
$$

The closer the value of R^{2} is to 1 , the more suitable the estimated regression function for the data.

