
Outils de Recherche
Opérationnelle en Génie - MTH 8414

Programmation en nombres entiers
Astuce de modélisation

Louis-Martin Rousseau

Office: A520.21 Tel.: #4569
Louis-Martin.Rousseau@polymtl.ca

Comment modéliser les cas où l’on est en présence de:
• variables ont des domaines discontinus;
• certaines ressources qui ont des coûts fixes;
• disjonctions de contraintes;
• contraintes conditionnelles
• de SOS et des fonctions linéaires par morceaux
• des produits de variables

Trucs et astuces de modélisation

2

• Que faire avec le cas où soit x = 0 OU l <= x <= u ?

• On peut considérer ceci comme deux contraintes, mais elles ne peuvent être vraies toutes les
deux à la fois…

• Pouvez-vous trouver des exemples d’applications ?

• Comment modéliser ceci avec un PLNE ?

Variables avec domaines discontinues

3

Chapter 7

Integer Linear Programming Tricks

This chapterAs in the previous chapter “Linear Programming Tricks”, the emphasis is on
abstract mathematical modeling techniques but this time the focus is on inte-
ger programming tricks. These are not discussed in any particular reference,
but are scattered throughout the literature. Several tricks can be found in
[Wi90]. Other tricks are referenced directly.

Limitation to
linear integer
programs

Only linear integer programming models are considered because of the avail-
ability of computer codes for this class of problems. It is interesting to note
that several practical problems can be transformed into linear integer pro-
grams. For example, integer variables can be introduced so that a nonlinear
function can be approximated by a “piecewise linear” function. This and other
examples are explained in this chapter.

7.1 A variable taking discontinuous values

A jump in the
bound

This section considers an example of a simple situation that cannot be formu-
lated as a linear programming model. The value of a variable must be either
zero or between particular positive bounds (see Figure 7.1). In algebraic nota-
tion:

x = 0 or l ≤ x ≤ u
This can be interpreted as two constraints that cannot both hold simultane-
ously. In linear programming only simultaneous constraints can be modeled.

0 l u
x

Figure 7.1: A discontinuous variable

ApplicationsThis situation occurs when a supplier of some item requires that if an item
is ordered, then its batch size must be between a particular minimum and
maximum value. Another possibility is that there is a set-up cost associated
with the manufacture of an item.

• Soit le problème suivant:

• La fonction de coût n’est ni linéaire ni continue...
• À quelle application pensez-vous ?
• Comment résoudre ce problème ?

Les coûts fixes

5

78 Chapter 7. Integer Linear Programming Tricks

Modeling dis-
continuous
variables

To model discontinuous variables, it is helpful to introduce the concept of an
indicator variable. An indicator variable is a binary variable (0 or 1) that indi-
cates a certain state in a model. In the above example, the indicator variable y
is linked to x in the following way:

y =

0 for x = 0

1 for l ≤ x ≤ u

The following set of constraints is used to create the desired properties:

x ≤ uy
x ≥ ly
y binary

It is clear that y = 0 implies x = 0, and that y = 1 implies l ≤ x ≤ u.

7.2 Fixed costs

The model A fixed cost problem is another application where indicator variables are added
so that two mutually exclusive situations can be modeled. An example is
provided using a single-variable. Consider the following linear programming
model (the sign “≷” denotes either “≤”, “=”, or “≥” constraints).

Minimize: C(x)

Subject to:
aix +

∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≥ 0

wj ≥ 0 ∀j ∈ J

Where: C(x) =

0 for x = 0

k+ cx for x > 0

As soon as x has a positive value, a fixed cost is incurred. This cost function
is not linear and is not continuous. There is a jump at x = 0, as illustrated in
Figure 7.2.

Application In the above formulation, the discontinuous function is the objective, but such
a function might equally well occur in a constraint. An example of such a
fixed-cost problem occurs in the manufacturing industry when set-up costs
are charged for new machinery.

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

• Soit le problème suivant:

• Où soit (1) ou (2) doit être respectée
• Des applications ?
• Comment faire ?

Une disjonction de contrainte

7

7.3. Either-or constraints 79

C(x)

k

0 x

c

Figure 7.2: Discontinuous cost function

Modeling fixed
costs

A sufficiently large upper bound, u, must be specified for x. An indicator
variable, y , is also introduced in a similar fashion:

y =

0 for x = 0

1 for x > 0

Now the cost function can be specified in both x and y :

C∗(x,y) = ky + cx

The minimum of this function reflects the same cost figures as the original
cost function, except for the case when x > 0 and y = 0. Therefore, one
constraint must be added to ensure that x = 0 whenever y = 0:

x ≤ uy

The equivalent
mixed integer
program

Now the model can be stated as a mixed integer programming model. The
formulation given earlier in this section can be transformed as follows.

Minimize: ky + cx
Subject to:

aix +
∑

j∈J
aijwj ≷ bi ∀i ∈ I

x ≤ uy
x ≥ 0

wj ≥ 0 ∀j ∈ J
y binary

7.3 Either-or constraints

The modelConsider the following linear programming model:

Minimize:
∑

j∈J
cjxj

80 Chapter 7. Integer Linear Programming Tricks

Subject to: ∑

j∈J
a1jxj ≤ b1 (1)

∑

j∈J
a2jxj ≤ b2 (2)

xj ≥ 0 ∀j ∈ J

Where: at least one of the conditions (1) or (2) must hold

The condition that at least one of the constraints must hold cannot be for-
mulated in a linear programming model, because in a linear program all con-
straints must hold. Again, a binary variable can be used to express the prob-
lem. An example of such a situation is a manufacturing process, where two
modes of operation are possible.

Modeling
either-or
constraints

Consider a binary variable y , and sufficiently large upper bounds M1 and M2,
which are upper bounds on the activity of the constraints. The bounds are
chosen such that they are as tight as possible, while still guaranteeing that the
left-hand side of constraint i is always smaller than bi +Mi. The constraints
can be rewritten as follows:

(1)
∑

j∈J
a1jxj ≤ b1 +M1y

(2)
∑

j∈J
a2jxj ≤ b2 +M2(1−y)

When y = 0, constraint (1) is imposed, and constraint (2) is weakened to∑
j∈J a2jxj ≤ b2+M2, which will always be non-binding. Constraint (2) may of

course still be satisfied. When y = 1, the situation is reversed. So in all cases
one of the constraints is imposed, and the other constraint may also hold. The
problem then becomes:

The equivalent
mixed integer
program

Minimize:
∑

j∈J
cjxj

Subject to: ∑

j∈J
a1jxj ≤ b1 +M1y

∑

j∈J
a2jxj ≤ b2 +M2(1−y)

xj ≥ 0 ∀j ∈ J
y binary

Une variante de ce problème survient lorsque certaines contraintes sont conditionnelles:

• Donnez des exemples d’application ?
• Comment traiter ce cas ?

Contraintes conditionnelles

9

7.4. Conditional constraints 81

7.4 Conditional constraints

The modelA problem that can be treated in a similar way to either-or constraints is one
that contains conditional constraints. The mathematical presentation is lim-
ited to a case, involving two constraints, on which the following condition is
imposed.

If (1) (
∑

j∈J
a1jxj ≤ b1) is satisfied,

then (2) (
∑

j∈J
a2jxj ≤ b2) must also be satisfied.

Logical
equivalence

Let A denote the statement that the logical expression “Constraint (1) holds”
is true, and similarly, let B denote the statement that the logical expression
“Constraint (2) holds” is true. The notation ¬A and ¬B represent the case
of the corresponding logical expressions being false. The above conditional
constraint can be restated as: A implies B. This is logically equivalent to writing
(A and ¬B) is false. Using the negation of this expression, it follows that ¬(A
and ¬B) is true. This is equivalent to (¬A or B) is true, using Boolean algebra.
It is this last equivalence that allows one to translate the above conditional
constraint into an either-or constraint.

Modeling
conditional
constraints

One can observe that

If (
∑

j∈J
a1jxj ≤ b1) holds, then (

∑

j∈J
a2jxj ≤ b2) must hold,

is equivalent to

(
∑

j∈J
a1jxj > b1) or (

∑

j∈J
a2jxj ≤ b2) must hold.

Notice that the sign in (1) is reversed. A difficulty to overcome is that the strict
inequality “not (1)” needs to be modeled as an inequality. This can be achieved
by specifying a small tolerance value beyond which the constraint is regarded
as broken, and rewriting the constraint to:

∑

j∈J
a1jxj ≥ b1 + ε

This results in:
∑

j∈J
a1jxj ≥ b1 + ε, or

∑

j∈J
a2jxj ≤ b2 must hold.

This last expression strongly resembles the either-or constraints in the pre-
vious section. This can be modeled in a similar way by introducing a binary

Que faire des problèmes où des termes contiennent le produit de deux variables booléennes x1x2

Éliminer les produits de variables

12

