

- Les problèmes ne se présentent pas toujours sous une forme qui soit naturellement linéaire.
- Toutefois comme la PL est une technique très efficace, il est souvent avantageux de «reformuler » un problème de manière à ce qu'il soit linéaire.
- On présente donc ici quelques trucs et astuces en vrac...
- À noter que leur efficacité dépend de chaque solveur et de leur capacité à effectuer un prétraitement sur les modèles.
- Cette section est tirée du chapitre 6 du livre AIMMS-modeling.

Valeur absolue: un exemple

- La valeur absolue représente souvent une déviation (un écart positif ou négatif) par rapport à une cible souhaitée.
- Prenons l'exemple d'une régression linéaire:
- On veut déterminer la droite qui permet le mieux possible d'expliquer un ensemble de points $\left(v_{j}, w_{j}\right)$
- Les coefficients de la droite sont donnés par a et b de sorte que $w=a v+b$ (a est la pente de la droite et b est l'ordonnée à l'origine).
- Le problème de la régression linéaire est posé comme suit :

Minimize:

$f(z)$

Subject to:

$$
w_{j}=a v_{j}+b-z_{j} \quad \forall j \in J
$$

Valeur absolue: un exemple

- Dans ce modèle z_{j} représente la différence entre $a v_{j}+b$ (la prédiction de la droite) et w_{j} (l'observation réelle). C'est en quelque sorte l'erreur d'approximation par une droite.

Minimize:

$$
f(z)
$$

Subject to:

$$
w_{j}=a v_{j}+b-z_{j} \quad \forall j \in J
$$

- On minimise $f(z)$, une fonction de l'erreur qui peut être :
- La somme des carrés
$f(z)=\sum_{j \in J} z_{j}^{2}$
- La somme des valeurs absolues
$f(z)=\sum_{j \in J}\left|z_{j}\right|$
- L'erreur maximale

$$
f(z)=\max _{j \in J}\left|z_{j}\right|
$$

Valeur absolue
Soit le problème linéaire suivant (le signe \lessgtr signifie $\leq \mathrm{ou} \geq$):

$$
\begin{array}{ll}
\text { Minimize } & \sum_{j \in J} x_{j}\left|c_{j}\right|
\end{array} c_{j}>0
$$

- La valeur absolue n'étant pas une fonction linéaire, il faut trouver une manière de s'en débarrasser...

Objectif minimax

Considérons le modèle suivant (le signe \lessgtr signifie \leq ou \geq):

$$
\min \quad \max _{\mathrm{k} \in K} \sum_{j \in J} c_{k j} x_{j}
$$

subject to

$$
\begin{array}{cc}
\sum_{j \in J} a_{i j} x_{j} \gtrless b_{i} & \forall i \in I \\
x_{j} \geq 0 & \forall j \in J
\end{array}
$$

- Si par exemple on a $K=\{1,2,3\}$ et $J=\{1,2\}$ alors l'objectif sera:
- Minimiser $\max \left(c_{11} x_{1}+c_{12} x_{2}, c_{12} x_{2}+c_{22} x_{2}, c_{31} x_{1}+c_{32} x_{2}\right)$
- On retrouve ce type de problème lorsqu'on veut réduire le pire cas, comme l'erreur maximum, la violation maximale, etc.

Objectif fractionnaire

Considérons le modèle suivant :

$$
\min \quad\left(\sum_{j \in J} c_{j} x_{j}+\alpha\right) /\left(\sum_{j \in J} d_{j} x_{j}+\beta\right)
$$

subject to.

$$
\begin{array}{cc}
\sum_{j \in J} a_{i j} x_{j} \lessgtr b_{i} & \forall i \in I \\
x_{j} \geq 0 & \forall j \in J
\end{array}
$$

- Ici nous avons un ratio de deux termes linéaires, et tout le reste du modèle est linéaire. Il faut donc transformer l'objectif.
- On retrouve ce genre de modèle lorsqu'on traite des données financières par exemple (taux de rendement).

