DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL

CALCUL SCIENTIFIQUE POUR INGÉNIEURS SÉANCE DE TRAVAUX DIRIGÉS IV

Directives : Cette séance de travaux dirigés porte sur la différentiation et l'intégration numériques.

Différentiation numérique

1. On considère la formule aux différences

$$f_h^{(3)}(x) = \frac{f(x+2h) - 2f(x+h) + 2f(x-h) - f(x-2h)}{2h^3},$$

une approximation de la dérivée troisième $f^{(3)}(x)$.

(a) On dispose des valeurs suivantes de la fonction f(x):

<i>x</i>	f(x)	X	f(x)
0,80	0,088 967 97	1,05	
0,85	0,07961783	1,10	0,049 115 91
0,90	0,071 633 24	1,15	0,045 126 35
0,95	0,064 766 84	1,20	0,041 597 34
1,00	0,058 823 53		

En vous servant de la formule aux différences $f_h^{(3)}(x)$, calculer deux approximations de $f^{(3)}(1)$ et estimer numériquement *l'ordre de précision* de cette formule aux différences sachant que $f^{(3)}(1) = -1,10343506$.

(b) À l'aide de développements de Taylor appropriés, on peut montrer que

$$f_h^{(3)}(x) = f^{(3)}(x) + \frac{1}{4}h^2f^{(5)}(x) + \mathcal{O}(h^4).$$

Déduire de ce résultat *l'ordre de précision* de l'approximation $f_h^{(3)}(x)$.

(c) En vous servant des 2 approximations de $f^{(3)}(1)$ obtenues en (a), obtenir une meilleure approximation de $f^{(3)}(1)$. Donner l'ordre exact de cette approximation. Justifier votre réponse.

Référence : Recueil d'exercices , no. 100

2. On veut utiliser la formule de différence centrée

$$f'(x) \simeq \frac{f(x+h) - f(x-h)}{2h} \tag{1}$$

pour approcher la dérivée d'une fonction définie sur l'intervalle [a, b] vérifiant

$$\max_{a \le x \le b} |f'''(x)| \le M,$$

où M est une constante positive.

Supposons que l'utilisation d'un ordinateur produit une erreur e(x+h) et e(x-h) dans l'évaluation de f(x+h) et f(x-h) respectivement. C'est donc dire que si f^* représente la valeur calculée :

$$\begin{cases}
f(x+h) = f^*(x+h) + e(x+h); \\
f(x-h) = f^*(x-h) + e(x-h),
\end{cases}$$

alors l'erreur totale due à l'utilisation de la formule (1) avec f^* au lieu de f sera

$$f'(x) - \left[\frac{f^*(x+h) - f^*(x-h)}{2h}\right] = \frac{e(x+h) - e(x-h)}{2h} - \frac{h^2}{6}f'''(\xi),$$

où ξ appartient à l'intervalle [a,b]. Le premier terme représente l'erreur due aux arrondis et le second est l'erreur de troncature liée à l'approximation de la dérivée.

(a) En supposant que $|e(x+h)| < \varepsilon$ et $|e(x-h)| < \varepsilon$, montrer que la valeur absolue de l'erreur totale commise est bornée par

$$g(h) = \frac{\varepsilon}{h} + \frac{h^2}{6}M.$$

(b) On veut approcher f'(0,9) pour la fonction tabulée suivante :

X	f(x)
0,800	0,71736
0,895	0,78021
0,898	0,782 08
0,902	0,78457
0,905	0,78643
0,950	0,81342

En vous servant de l'expression (1), calculer deux approximations de f'(0,9) pour h=0,002 et pour h=0,005. Sachant que f'(0,9)=0,621 61, calculer les erreurs commises et expliquer les résultats obtenus.

(c) Sachant que $f(x) = \sin(x)$ et que tous les chiffres des approximations de f(x) du tableau sont significatifs, déterminer analytiquement la valeur de h qui donne la meilleure approximation de f'(0,9) en utilisant la formule (1). Il s'agit donc de trouver analytiquement la valeur de h pour laquelle g(h) sera minimale.

Référence: Recueil d'exercices, no. 98

Intégration numérique

3. Le tableau suivant présente la vitesse d'écoulement de l'eau dans une conduite cylindrique

\overline{t}	υ	
(s)	(m/s)	
0	2,00	
10	1,89	
20	1,72	
30	1,44	
35	1,21	
40	1,01	

La vitesse moyenne de l'eau en écoulement dans cette conduite cylindrique peut être calculée à l'aide de la relation

$$v_{\text{moy}} = \frac{1}{40} \int_0^{40} v \, dt$$

- (a) En vous servant de toutes les données du tableau, calculer une approximation au moins d'ordre 4 de la vitesse moyenne d'écoulement de l'eau.
- (b) Est-ce que l'on pourrait utiliser une quadrature de Gauss pour un tel problème? Expliquer.

Référence: Recueil d'exercices, no. 149

4. Considérons l'intégrale

$$I = \int_{-1}^{1} e^{x^2} \, dx.$$

- (a) Calculer une approximation de I en appliquant la méthode de Simpson $\frac{1}{3}$ simple.
- (b) Pour la méthode des trapèzes composée, quel est le nombre minimal d'intervalles à utiliser pour obtenir une approximation de I qui a une erreur d'au plus 10^{-4} ?
- (c) Considérons la quadrature de Lobatto :

$$\int_{-1}^{1} f(x) dx \simeq w_1 [f(-1) + f(1)] + w_2 [f(-x_1) + f(x_1)].$$

Sachant que cette quadrature est exacte pour toutes les fonctions $f(x) = x^p$, avec $p = 1, 3, 5, \cdots$, déterminer le système d'équations qui doit être résolu (**ne pas résoudre**) pour trouver w_1 , w_2 et x_1 pour que la quadrature de Lobatto soit au moins de degré de précision 5.

(d) Est-il possible d'obtenir avec la méthode des trapèzes composée (en utilisant un nombre suffisamment grand d'intervalles) une approximation de *I* qui soit meilleure que celle que l'on peut calculer par la quadrature de Labatto developpée en (c) (degré de précision 5 au moins)? Justifier votre réponse.

Référence : Recueil d'exercices , no. 132