

ELE 6705 Traitement numérique

des signaux

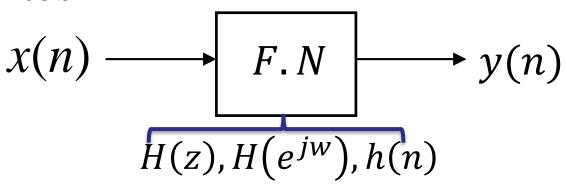
Hassan Bensalah

Chap. IV: Filtres Numériques

Sujets abordés

- Généralités
- Filtres RII: Invariance à l'impulsion
- Filtres RII: Évaluation Numérique de l'équation différentielle
- Filtres RII: Évaluation Numérique de l'intégration
- Filtres RII: Optimisation
- Filtres RIF: Méthode des fenêtres
- Filtres RIF: Approximation optimale
- Transformation en fréquence
- Effet de la précision finie dans la réalisation des filtres

Généralités



Avantages:

- programmables en changeant uniquement des variables et non pas le circuit;
- La simulation se fait de manière exacte sur l'ordinateur;
- Pas de dégradation avec le temps et la température;

> Inconvénients:

- Mais à ne pas utiliser à haute puissance;
- Infrastructure lourde: donne des circuits complexes même pour des filtres simples;
- Quantification, précision finie.

- > Représentations des filtres numériques:
 - ☐ Fonction de transfert:

$$H(z) = \frac{N(z)}{D(z)} = \frac{\sum_{k=0}^{N-1} b_k z^{-k}}{1 + \sum_{k=1}^{N-1} a_k z^{-k}} = \frac{Y(z)}{X(z)}$$

• N est l'ordre du filtre

$$H(z) = b_0 \frac{\prod_{i=1}^{N-1} (z - z_i)}{\prod_{i=1}^{N-1} (z - p_i)} = b_0 \frac{\prod_{i=1}^{N-1} (1 - z_i z^{-1})}{\prod_{i=1}^{N-1} (1 - p_i z^{-1})}$$

- z_i sont les zéros et p_i sont les pôles de H(z)
- La stabilité du filtre est déterminée par l'appartenance des pôles au cercle unité ($|p_i| < 1$)
- ❖ Le filtre à minimum de phase si les zéros appartenant au cercle unité ($|z_i|$ < 1)

☐ Réponse impulsionnelle:

$$H(z) = \sum_{n=0}^{N-1} h(n)z^{-n}$$

La CNS de la stabilité du filtre est donnée par:

$$\sum_{n} |h(n)| < \infty$$

h(n) est la réponse impulsionnelle du filtre, sa TDF:

$$H(e^{iw}) = \sum_{n=0}^{N-1} h(n)e^{-jwn}$$

$$y(n) = x(n) * h(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$
Follow MTI

ELE6705

- ☐ Équation aux différences:
 - ❖ Une transformation en z inverse de la fonction de transfert H(z) nous donne:

$$y(n) = \sum_{k=0}^{N-1} b_k x(n-k) - \sum_{k=1}^{N-1} a_k y(n-k)$$

Valeur courante et valeurs Valeurs précédentes de la précédentes de l'entrée x(n)

sortie y(n)

- b_k et a_k sont des coefficients réels et constants du filtre;
- \clubsuit Selon si les a_k sont non nuls ou nuls, on parlera donc des filtres récursifs ou non récursifs.

- Catégories des filtres
 - ☐Filtre à réponse impulsionnelle infinie(RII)
 - Si $a_k \neq 0$, les filtres RII sont récursifs, la sortie y(n) dépend à la fois des entrées et des sorties précédentes;
 - \clubsuit La fonction de transfert H(z) contenant des pôles;
 - Si N(z) n'est pas divisible par D(z) on 'a un nombre infini de termes dans la division polynomiale de $\frac{N(z)}{D(z)}$

- **Exemple**
- \square Soit la réponse impulsionnelle $h(n) = a^n 1(n)$
- \square La fonction de transfert: $H(z) = \frac{1}{1-az^{-1}} = \frac{Y(z)}{X(z)}$
- ☐ L'équation aux différences déduite de la transformée en z $Y(z) = X(z) + aY(z)z^{-1}$ est donnée par:

$$y(n) = x(n) + ay(n-1)$$

Récursivité

- ☐Filtre à réponse impulsionnelle finie(RIF)
 - \Rightarrow si $a_n = 0$ le filtre s'appelle non récursif ou RIF (à Réponse Impulsionnelle Finie);
 - La fonction de transfert <math>H(z) contenant que des zéros;
 - $Arr H(z) = \sum_{k=0}^{N-1} b_k z^{-k}$, avec N est la longueur de la réponse impulsionnelle du filtre;
 - La sortie est définie comme suit:

$$y(n) = \sum_{k=0}^{N-1} b_k x(n-k) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

Largement utilisés: ils possèdent des propriétés uniques (phase linéaire, stabilité, flexibilité).

Exemple

Les filtres FIR sont des filtres non-récursifs, mais pouvant être réalisés selon une structure récursive

$$\Box \text{Soit } h(n) = 1(n) - 1(n - N)$$

$$\Box y(n) = h(n) * x(n) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

Engendre une structure non-récursive

$$\Box H(z) = \frac{1}{1 - z^{-1}} - \frac{z^{-N}}{1 - z^{-1}} = \frac{1 - z^{-N}}{1 - z^{-1}} = \frac{Y(z)}{X(z)}$$

$$\square y(n) = x(n) - x(n-N) + y(n-1)$$

Engendre une structure récursive

- ➤ Analyse: Possibilité de filtrage sans distorsion de phase(délai constant)
 - □Condition de linéarité de la phase pour (RIF)

$$H(e^{j\omega}) = \sum_{n=0}^{N-1} h(n)e^{-j\omega n} = |H(e^{j\omega})|e^{j\varphi(\omega)}$$
 (1)

- Avec $|H(e^{j\omega})|$ est l'amplitude et $\varphi(w)$ est la phase;
- $\tau_g(\omega)$ le temps de propagation de groupe exprimé en unité de temps définit par:

$$\tau_g(\omega) = -T \frac{d\varphi(\omega)}{d\omega}$$

Poly MTL

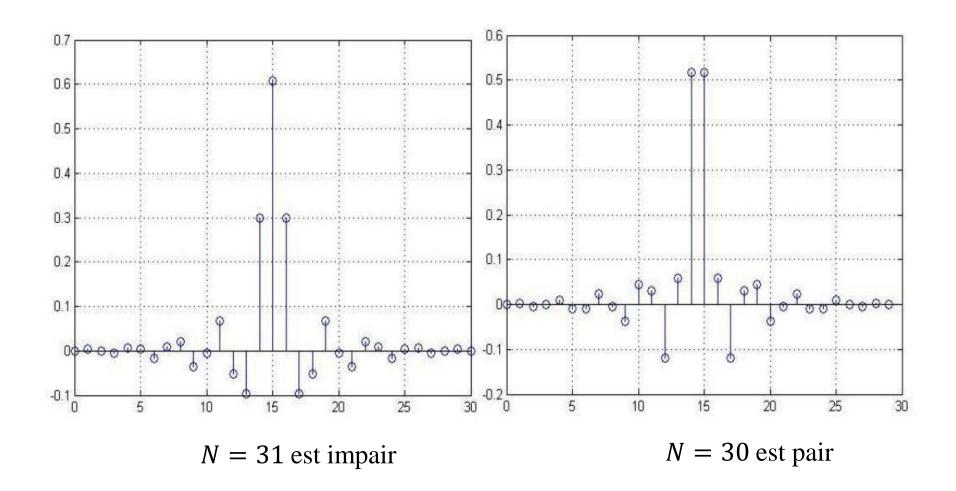
- Imposons $\varphi(\omega) = -m\omega + \varphi_0(\text{lin\'eaire});$
- Résolution de l'équation (1) aboutit à deux solutions

11

Pour chaque valeur de N, une seule valeur m assure une phase strictement linéaire dont la réponse h(n) est symétrique soit:

$$\begin{cases} h(n) = h(N - n - 1) \\ m = \frac{N - 1}{2}, 0 \le n \le N - 1 \\ \varphi_0 = 0 \end{cases}$$

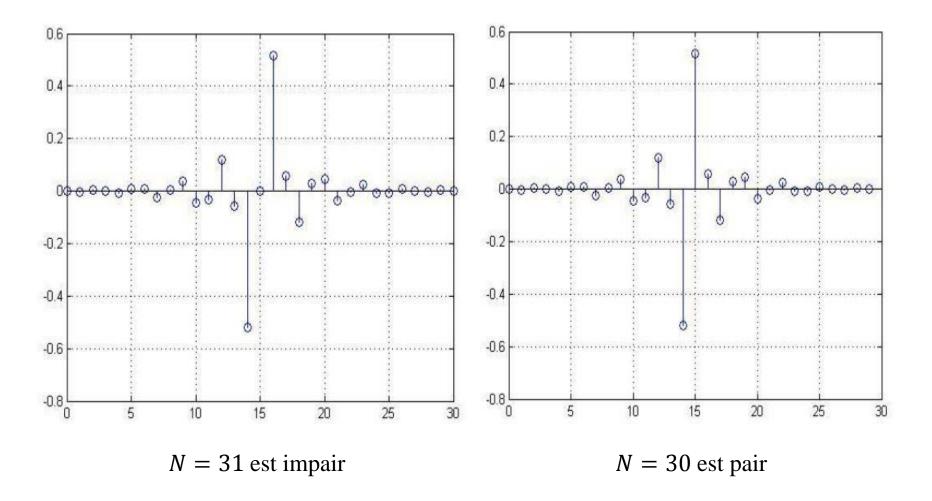
- Si N est impair, m et $\tau_g(\omega)$ sont tous les deux des entiers. Le centre de symétrie de la réponse impulsionnelle coïncide avec un échantillon;
- Si *N* est pair, *m* n'est pas entier. Le centre de symétrie de la réponse impulsionnelle est situé entre deux échantillons.



Deuxième solution est donnée par:

$$\begin{cases} h(n) = -h(N-n-1) \\ m = \frac{N-1}{2}, 0 \le n \le N-1 \\ \varphi_0 = \pm \frac{\pi}{2} \end{cases}$$

- La réponse impulsionnelle h(n) est antisymétrique;
- Si *N* est impair, le point de symétrie de la réponse impulsionnelle coïncide avec un échantillon;
- Si *N* est pair, le point de symétrie de la réponse impulsionnelle est situé entre deux échantillons.



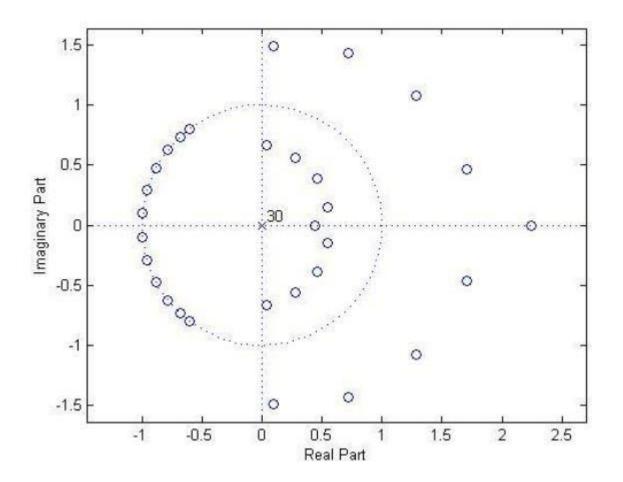
- □Pour un filtre RIF avec une phase linéaire nous avons quatre types possibles:
 - Type I: N est impair $(N = 2l + 1) \implies h(n) = h(N n 1)$ ✓ Déphasage $\varphi(\omega) = -\omega \frac{\tau}{\tau}$, temps de propagation de groupe $\tau = lT$
 - Type II: N est pair (N = 2l) $\Longrightarrow h(n) = h(N n 1)$ ✓ Déphasage $\varphi(\omega) = -\omega \frac{\tau}{T}$, et $\tau = (l - \frac{1}{2})T$
 - Type III: N est impair $(N = 2l + 1) \implies h(n) = -h(N n 1)$
 - ✓ Déphasage $\varphi(\omega) = -\omega \frac{\tau}{T} + \frac{\pi}{2}$, temps de propagation de groupe $\tau = lT$
 - Type II: N est pair $(N = 2l) \Longrightarrow h(n) = -h(N n 1)$ V Déphasage $\varphi(\omega) = -\omega \frac{\tau}{T} + \frac{\pi}{2}$, et $\tau = (l - \frac{1}{2})T$

■ À partir des conditions de la symétrie et antisymétrie des filtre RFI, on peut localiser le zéros associés à H(z), nous avons alors la relation suivante:

$$H(z^{-1}) = \pm z^{N-1}H(z)$$

■ Les zéros de H(z) sont aussi les zéros de $H(z^{-1})$;

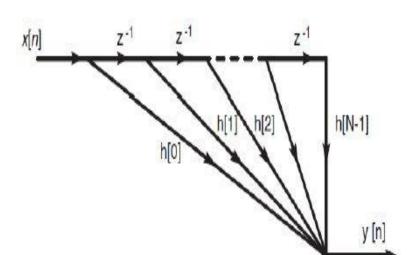
Les zéros des filtres RIF à phase linéaire sont situés sur le cercle unité $(r_k = |z_k| = 1)$, ou se présentent en symétrie quadrantale $(r_k \neq 1)$,



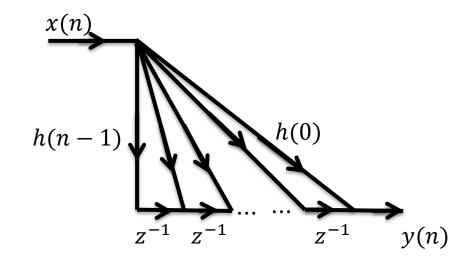
> Structure de réalisation des filtres RIF à phase linéaire

$$y(n) = \sum_{k=0}^{N-1} b_k x(n-k) = \sum_{k=0}^{N-1} h(k)x(n-k)$$

Forme directe

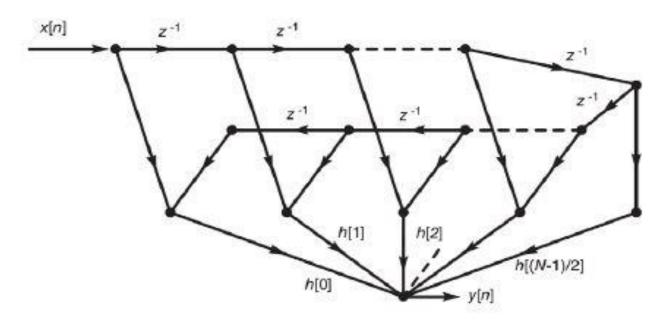


■ Forme transposée



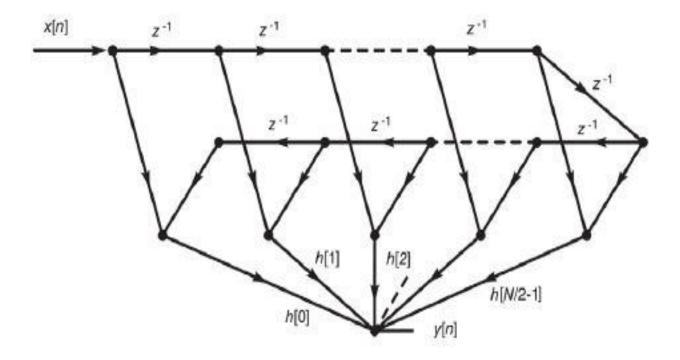
- Diminution du nombre de multiplication
 - ❖ N est impair

$$H(z) = \sum_{n=0}^{\frac{N-3}{2}} h(n) \left(z^{-n} + z^{-(N-1-n)}\right) + h\left(\frac{N-1}{2}\right) z^{-\frac{N-1}{2}}$$



❖ N est pair

$$H(z) = \sum_{n=0}^{\frac{N}{2}-1} h(n) (z^{-n} + z^{-(N-1-n)})$$



- Design d'un filtre RII: Invariance à l'impulsion
 - □ Principe : Échantillonnage de la réponse impulsionnelle d'un filtre analogique
 - Soit une fonction de transfert d'un filtre analogique(filtre passe-bas):

$$H_a(s) = \sum_{k=1}^K \frac{A_k}{s - p_k} \implies h_a(t) = \sum_{k=1}^K A_k e^{p_k t} u(t)$$

Échantillonnage selon une fréquence

$$h(n) = Th_a(nT) = T \sum_{k=1}^{K} A_k e^{p_k nT} u(n)$$
T pour conserver le gain du filtre

❖ Transformation inverse en z nous donne:

$$H(z) = T \sum_{k=1}^{K} \frac{A_k}{1 - e^{p_k T} z^{-1}}, \quad |z| > e^{p_k T}$$

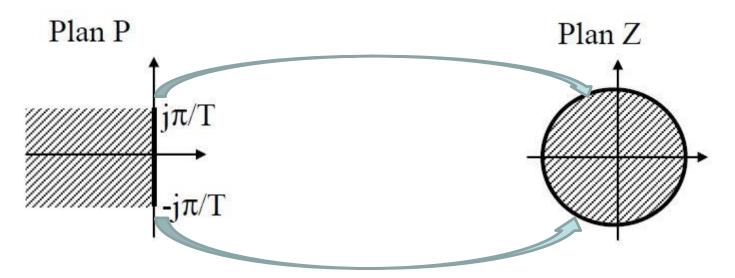
❖ Dans le domaine fréquentiel nous aurons:

$$H(e^{j\omega}) = T\frac{1}{T}\sum_{n}H_{a}\left(\frac{\omega - 2\pi n}{T}\right)$$

*L'échantillonnage de $h_a(nT)$ engendre du recouvrement spectral de la réponse analogique $H_a(\Omega)$

Le filtre numérique garde la même forme que le filtre analogique à condition que:

$$H_a(\Omega) \approx 0$$
, $|\Omega| \ge \frac{\pi}{T}$ alors $H(e^{j\omega}) = H_a(\frac{\omega}{T})$, $\omega \le \pi$

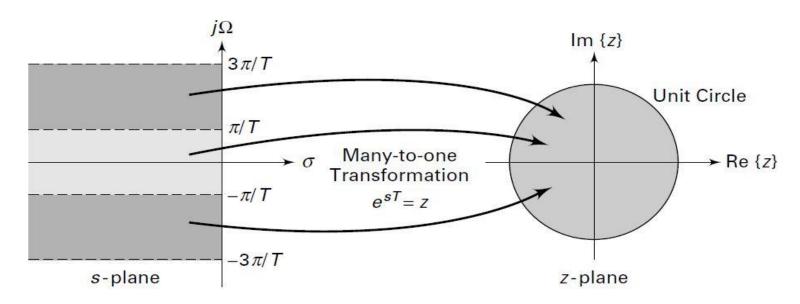


❖ Méthode de l'invariance impulsionnelle n'est applicable qu'aux filtres à bande limitée

*Relation entre les fréquences digitale et analogique est donnée par:

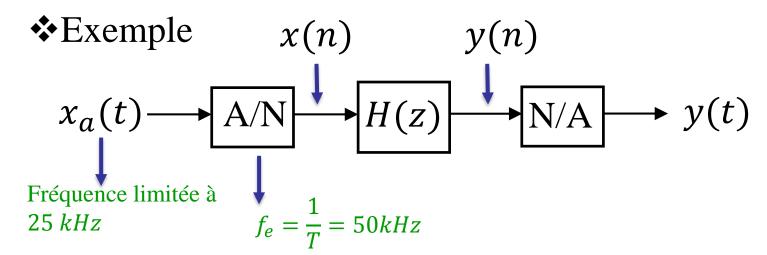
$$\omega = \Omega T$$
; $e^{j\omega} = e^{j\Omega T}$

- \clubsuit Le cercle unitaire est défini par $z = e^{j\omega}$
- L'axe imaginaire est défini par $s = j\Omega$
- $z = e^{j\omega}$ est alors la transformation de s-plan à z-plan



ELE6705

Poly MTL



 $\checkmark x_a(t)$ doit être filtré par un passe-bas d'ordre 1 coupant à $f_c = 5kHz$

$$H_a(s) = \frac{1}{s+1} | \xrightarrow{s=\frac{s}{2\pi f_c}} = \frac{2\pi/10T}{s+2\pi/10T}$$

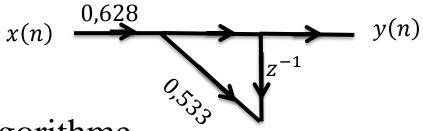
$$H(z) = T \sum_{k=1}^{K} \frac{A_k}{1 - e^{p_k T} z^{-1}} \begin{vmatrix} K = 1 \\ A_k = 2\pi/10T \\ p_k = -2\pi/10T \\ T = 1/50000 \end{vmatrix}$$
ELE6705

Poly MTL

Poly MTL

$$\checkmark H(z) = \frac{0,628}{1 - 0,533 z^{-1}}$$

$$\checkmark y(n) = 0.628x(n) + 0.533y(n-1)$$



✓ Algorithme

x: Entrée Présente

y: Entrée Présente

yz: Entrée Précédente

$$yz=0$$

1 Lire x

$$y(n) = 0.628x + 0.533yz$$

Écrire y

$$yz = y$$

Aller à 1

ELE6705

- Design d'un filtre RII: Évaluation numérique de l'équation différentielle
 - ❖ Une fonction de transfert en "s" est une équation différentielle dans le temps:

$$y(t) \stackrel{Laplace}{\longleftrightarrow} Y(s)$$

$$\frac{dy(t)}{dt} \stackrel{Laplace}{\longleftrightarrow} sY(s)(CI nulle)$$

Approximation numérique

$$\frac{y(n)-y(n-1)}{T} \longrightarrow \frac{1-z^{-1}}{T}Y(z)$$

♦ On peut remplacer s par $\frac{1-z^{-1}}{T}$

$$H(z) = H_a(s) \left| s = \frac{1 - z^{-1}}{T} \right|$$

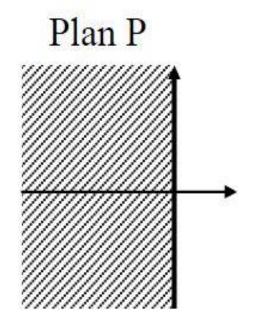
- Remarque: Un système analogique stable donne un système numérique stable: Re(s) < 0, |z| < 1
- \bullet Posons $s = j\Omega$ la transformation inversée est donnée par

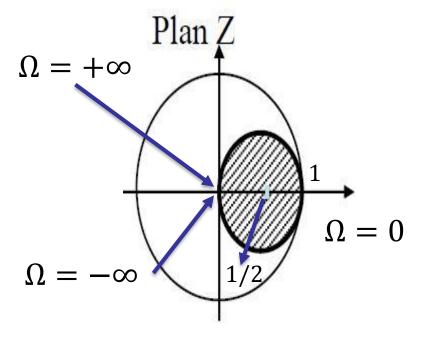
$$z = \frac{1}{1 - j\Omega T} = \frac{1 + j\Omega T}{1 + \Omega^2 T^2}$$

$$z = \frac{1}{2} \left(1 + e^{j2\varphi(\Omega)} \right)$$

 \checkmark Avec la phase $\varphi(\Omega) = \arg(z) = \arctan(\Omega T)$

 \clubsuit La variable z parcourt un cercle de centre z = 1/2 et de rayon 1/2





ightharpoonupPosons $z = e^{j\omega}$ la transformation en s est donnée par

$$s = \frac{1 - e^{-j\omega}}{T}$$

$$Re(s) = \frac{1 - \cos \omega}{T}$$

$$j \Omega = j \frac{\sin \omega}{T}$$

$$\left(Re(s) - \frac{1}{T}\right)^2 + \Omega^2 = \frac{1}{T^2}$$

❖La variable s parcourt un cercle de centre s = 1/T et de rayon 1/T

- *L'utilisation de cette méthode n'est intéressante que si la « zone d'intérêt » de l'axe ω des fréquences numérique est très étroite. C'est le cas lorsque la fréquence d'échantillonnage est très élevée,
- Augmenter la fréquence d'échantillonnage n'est pas toujours toléré;
- L'évaluation numérique peut être effectuée selon des différences avant ou arrières d'ordre quelconque
- *Réflexion:
 - ✓ Montrer qu'une approximation de dérivée par la relation

$$\frac{dy(t)}{dt} = \frac{y(n+1) - y(n)}{T}$$

peut aboutir à des filtres numériques instables

Design d'un filtre RII: Évaluation numérique de l'intégration

$$y(t), x(t) \stackrel{Laplace}{\longleftrightarrow} Y(s), X(s)$$

$$y(t) = \int_{t_0}^{t} x(u) du \stackrel{Laplace}{\longleftrightarrow} Y(s) = \frac{1}{s} X(s) (CI nulle)$$

Approximation numérique(méthode du trapéze)

$$y(n) = y(n-1) + T/2(x(n) + x(n-1))$$

$$Y(z) = z^{-1}Y(z) + T/2(1 + z^{-1})X(z)$$

$$Y(z) = \frac{T}{2} \frac{1 + z^{-1}}{1 - z^{-1}} X(z)$$

ELE6705

Poly MTL

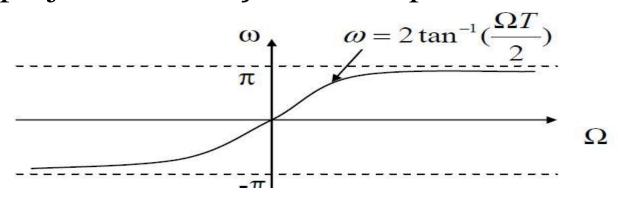
❖La transformation bilinéaire

$$H(z) = H_a(s) \left| s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \right|$$

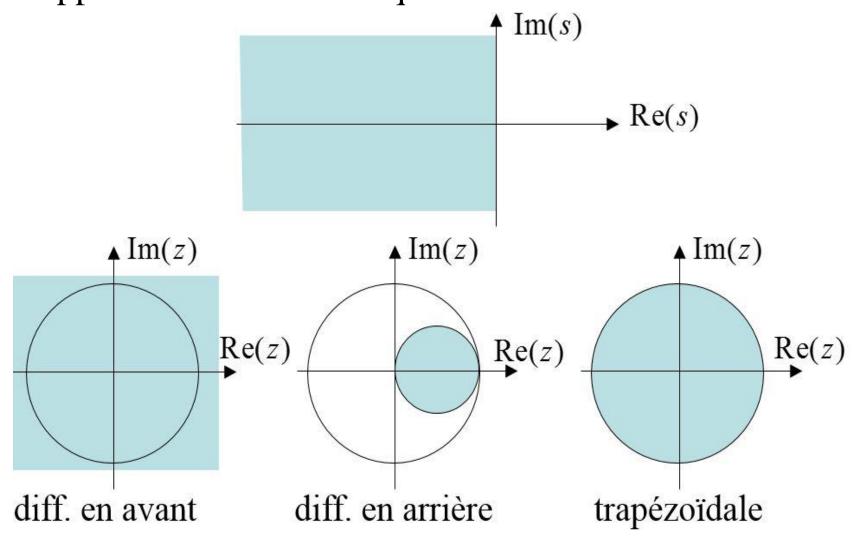
 \bullet Domaine fréquentiel, remplaçant $z = e^{j\omega}$

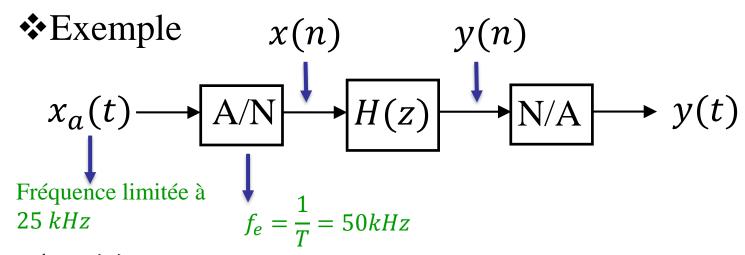
$$s = \frac{2}{T}j\tan\left(\frac{\omega}{2}\right)$$

Le résultat étant purement imaginaire, le cercle unité est projeté sur l'axe jω dans le plan « s »

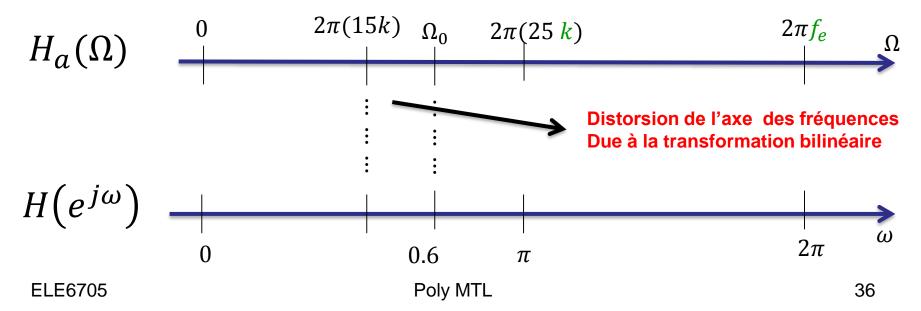


Approximations numériques





 $\checkmark x_a(t)$ doit être filtré par un passe-haut d'ordre 1 coupant à $f_c = 15kHz$



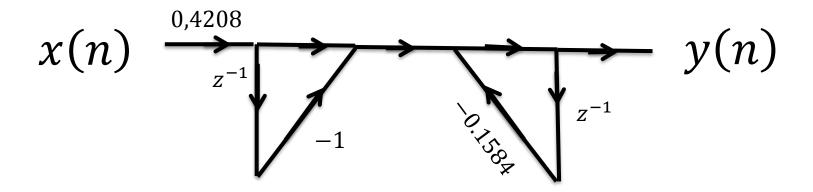
- Pour éviter la distorsion on prend $\omega = 0.6\pi$
- *Transformation bilinéaire $\longrightarrow \Omega = \frac{2}{T} \tan \left(\frac{\omega}{2} \right)$

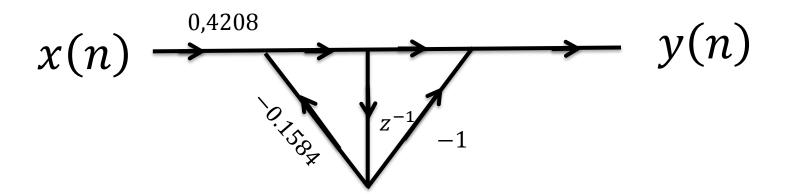
$$\checkmark H_a(s) = \frac{1}{1 + \frac{\Omega_0}{s}}$$

$$\checkmark H(z) = H_a(s) \left| s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \right|$$

$$\checkmark H(z) = \frac{1}{\Omega_0 \frac{T(1+z^{-1})}{2(1-z^{-1})} + 1} = \frac{1-z^{-1}}{2.3764 + z^{-1}0.3764}$$

$$\checkmark y(n) = 0.4208(x(n) - x(n-1)) - 0.1584y(n-1)$$





ELE6705

- Design d'un filtre RIF : Méthode des fenêtres
- Soit La fonction de transfert désirée $H_d(e^{j\omega})$:
- La Réponse impulsionnelle désirée du filtre est donnée par:

$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$

Tronquons $h_d(n)$ sur une fenêtre pour rendre ce filtre causal :

$$h(n) = \begin{cases} h_d(n), & 0 \le n \le N-1 \\ 0, & ailleurs \end{cases}$$

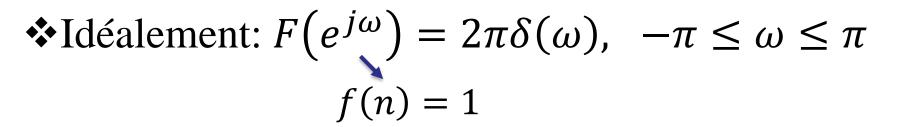
ELE6705

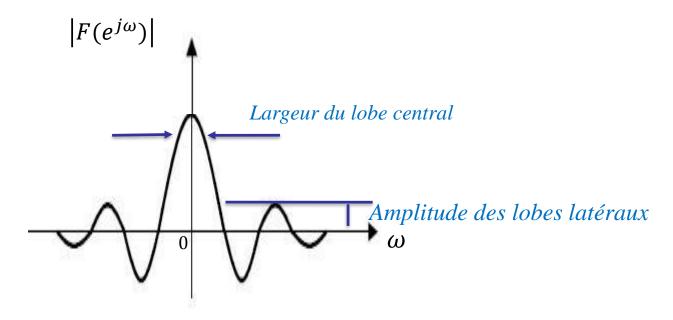
h(n) peut être représentée comme le produit du filtre idéal $h_d(n)$ avec une fenêtre à durée finie f(n):

$$h(n) = h_d(n)f(n)$$

$$H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\theta}) F(e^{j(\omega-\theta)}) d\theta$$

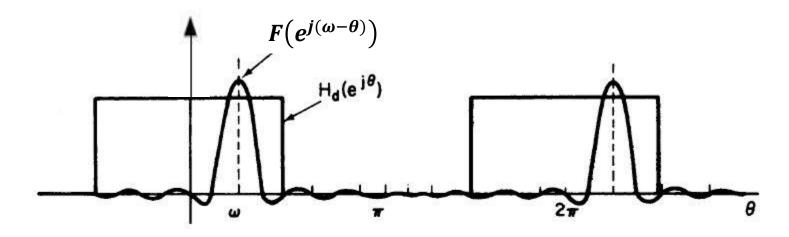
$$H(e^{j\omega}) = H_d(e^{j\omega}) * F(e^{j\omega})$$



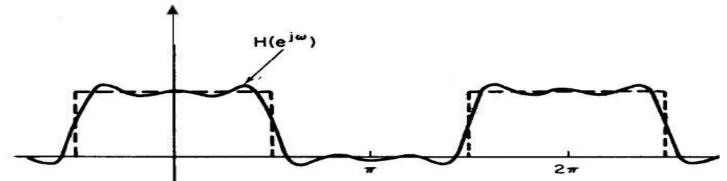


 \clubsuit En pratique $F(e^{j\omega})$ doit être le plus étroit possible

La multiplication dans le temps correspond à une convolution dans le domaine de fréquence :

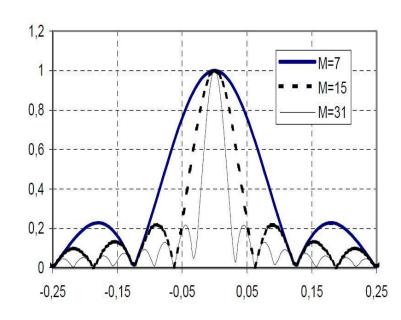


La réponse fréquentielle résultant est la réponse "arrondie" du filtre désiré



- ❖ Discontinuités du filtre idéal sont remplacées par des ondulations autour de ces sauts;
- *Plus la variation de $H_d(e^{j\omega})$ est important, plus nous avons besoins d'un $F(e^{j\omega})$ pointu ce qui se traduit par une fenêtre plus longue;
- \clubsuit En augmentant le M, la largeur (fréquentielle) du lobe principal de $F(e^{j\omega})$ diminue

$$f(n) = \begin{cases} 1, & 0 < n \le M - 1 \\ 0, & ailleurs \end{cases}$$



*Autres méthodes de fenêtrage:

✓ Bartlett (Triangulaire):

$$f(n) = \begin{cases} \frac{2n}{N-1}, & 0 < n \le \frac{N-1}{2} \\ 2 - \frac{2n}{N-1}, & \frac{N-1}{2} \le n \le N-1 \\ 0, & n < 0 \text{ et } n \ge N \end{cases}$$

✓ Hanning:

$$f(n) = \begin{cases} 0.5 - 0.5 \cos\left(\frac{2\pi n}{N - 1}\right), & 0 < n \le N - 1 \\ 0, & ailleurs \end{cases}$$

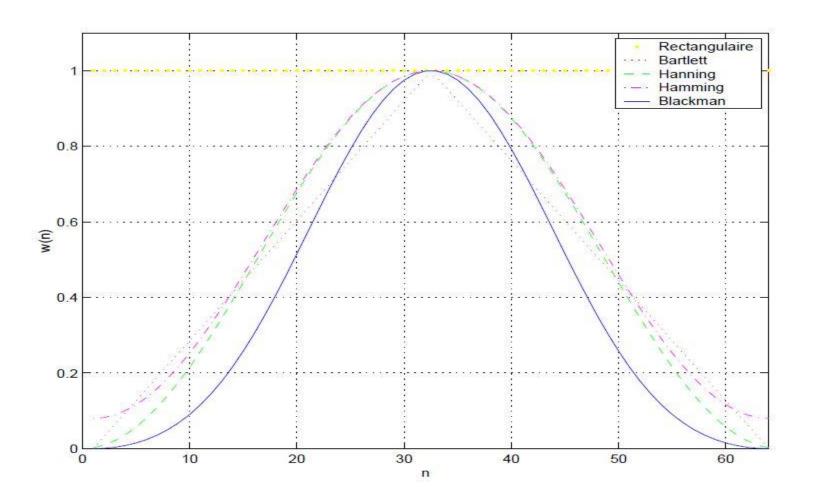
✓ Hamming:

$$f(n) = \begin{cases} 0.5 - 0.46 \cos\left(\frac{2\pi n}{N - 1}\right), & 0 < n \le N - 1 \\ 0, & ailleurs \end{cases}$$

✓ Blackman:

$$f(n) = \begin{cases} 0,42 - 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right), & 0 < n \le N-1 \\ 0, & ailleurs \end{cases}$$

*Réponses temporelles des principales fenêtres:



- > Transformations en fréquence
- ❖But: Modifier le type de filtre tout en maintenant la stabilité;
- ❖ Méthode: Transposer dans le domaine numérique les transformations analogiques par la transformation bilinéaire;
- Développement d'une transformation pour obtenir d'un filtre numérique, des filtres passe-bas, passe-bande, passe-haut et coupe-bande;
- ❖ Transformation doit être rationnelle et le filtre doit être stable et causal.

- Soit à obtenir $H_2(z)(\omega_c = \omega_2)$ à partir de $H_1(z)(\omega_c = \omega_1)$
 - ✓ Posons par convention z pour le filtre désiré $H_2(z)$
 - ✓ Posons par convention Z pour le filtre d'origine $H_1(Z)$
- Soit $G(z^{-1})$ la Transformation qui projette l'intérieur du cercle unité sur le plan Z à l'intérieur du cercle unité sur le plan Z:

$$Z^{-1} = G(z^{-1}) = \pm \prod_{k=1}^{N} \frac{z^{-1} - \alpha_k}{1 - \alpha_k z^{-1}}, \qquad |\alpha_k| < 1$$

Transformation la plus simple(passe-bas –passe-bas):

$$Z^{-1} = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$$

- Présentation fréquentielle:
 - \checkmark $Z = e^{j\omega_1}$, Cercle unité sur le plan Z pour le filtre de départ $H_1(Z)$
 - \checkmark z = $e^{j\omega_2}$, Cercle unité sur le plan z pour le filtre obtenu $H_2(z)$

❖Domaine analogique:

✓ Soit à obtenir $H_{a2}(s)(\Omega_c = \Omega_2)$ à partir de $H_{a1}(s)(\Omega_c = \Omega_1)$

$$H_{a2}(s) = H_{a1}(s) \underset{s = \frac{s\Omega_1}{\Omega_2}}{\longrightarrow}$$

Utilisation de la transformation bilinéaire:

$$H_{2}(z) = H_{1}(z) | \frac{1}{\frac{2(1-z^{-1})}{T(1+z^{-1})}} = \frac{\frac{2(1-z^{-1})}{T(1+z^{-1})}}{\frac{T(1+z^{-1})}{\Omega_{2}}} \Omega_{1}$$

$$\Omega_1 = \frac{2}{T} \tan\left(\frac{\omega_1}{2}\right), \qquad \Omega_2 = \frac{2}{T} \tan\left(\frac{\omega_2}{2}\right)$$

*Développement:

$$\frac{1 - Z^{-1}}{1 + Z^{-1}} = \frac{(1 - Z^{-1})}{(1 + Z^{-1})} \frac{\Omega_1}{\Omega_2}$$

$$Z^{-1} = \frac{-\frac{(\Omega_1 - \Omega_2)}{(\Omega_1 + \Omega_2)} + z^{-1}}{1 - \frac{(\Omega_1 - \Omega_2)}{(\Omega_1 + \Omega_2)} z^{-1}}$$

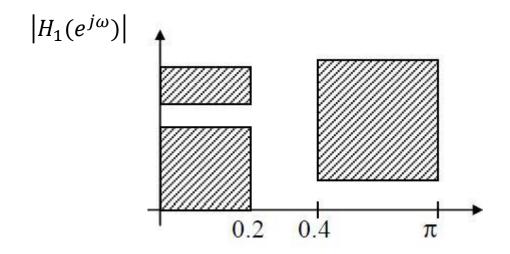
Avec:

$$\frac{(\Omega_1 - \Omega_2)}{(\Omega_1 + \Omega_2)} = \frac{\tan\left(\frac{\omega_1}{2}\right) - \tan\left(\frac{\omega_1}{2}\right)}{\tan\left(\frac{\omega_1}{2}\right) + \tan\left(\frac{\omega_1}{2}\right)} = \frac{\sin\left(\frac{\omega_1 - \omega_2}{2}\right)}{\sin\left(\frac{\omega_1 + \omega_2}{2}\right)}$$

$$H_2(z) = H_1(z) \xrightarrow[z^{-1} = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}} \quad \text{Avec:} \quad \alpha = \frac{\sin\left(\frac{\omega_1 - \omega_2}{2}\right)}{\sin\left(\frac{\omega_1 + \omega_2}{2}\right)}$$

>Exemple:

✓ Le gabarit d'un filtre passe-bas est donné sur la figure ci-dessous. Sachant que le paramètre $\alpha = 0.5$, tracez le gabarit du filtre obtenu par la transformation ci-dessus.



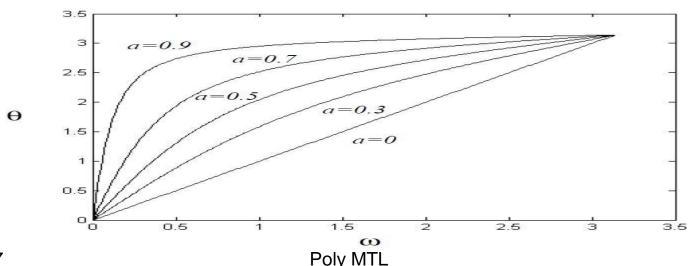
 \checkmark À partir de $z^{-1} = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$ on peut écrire la relation suivante

$$e^{-j\theta} = \frac{e^{-j\omega} - \alpha}{1 - \alpha e^{-j\omega}}$$

 $\checkmark Z = e^{j\theta}$, Cercle unité sur le plan Z pour le filtre de départ $H_1(Z)$

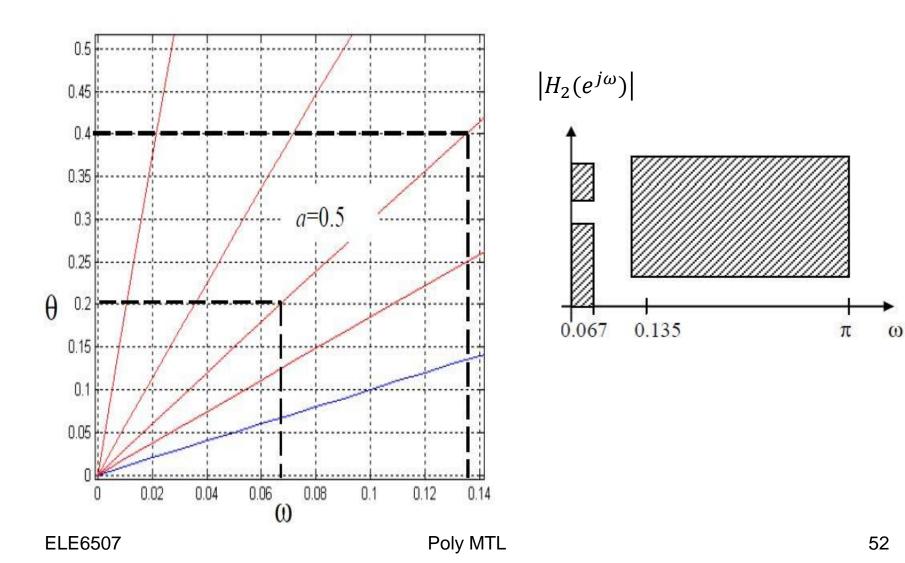
 \checkmark z = $e^{j\omega}$, Cercle unité sur le plan z pour le filtre obtenu $H_2(z)$

$$\omega = \tan^{-1} \left(\frac{(1 - \alpha^2) \sin(\theta)}{2\alpha + (1 + \alpha^2) \cos(\theta)} \right)$$



ELE6507

> En appliquant la formule on obtient:



> Autres transformations

TRANSFORMATIONS FROM A LOWPASS-DIGITAL-FILTER PROTOTYPE OF CUTOFF FREQUENCY θ_{p}

Filter Type	Transformation	Associated Design Formulas
Lowpass	$z^{-1} = rac{Z^{-1} - lpha}{1 - lpha Z^{-1}}$	$\alpha = \frac{\sin\left(\frac{\theta_{p} - \omega_{p}}{2}\right)}{\sin\left(\frac{\theta_{p} + \omega_{p}}{2}\right)}$ $\omega_{p} = \text{desired cutoff frequency}$
Highpass	$-\frac{Z^{-1}+\alpha}{1+\alpha Z^{-1}}$	$\alpha = -\frac{\cos\left(\frac{\omega_p + \theta_p}{2}\right)}{\cos\left(\frac{\omega_p - \theta_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Bandpass	$-\frac{Z^{-2}-\frac{2\alpha k}{k+1}Z^{-1}+\frac{k-1}{k+1}}{\frac{k-1}{k+1}Z^{-2}-\frac{2\alpha k}{k+1}Z^{-1}+1}$	$\alpha = \frac{\cos\left(\frac{\omega_2 + \omega_1}{2}\right)}{\cos\left(\frac{\omega_2 - \omega_1}{2}\right)}$ $k = \cot\left(\frac{\omega_2 - \omega_1}{2}\right) \tan\frac{\theta_2}{2}$ $\omega_2, \omega_1 = \text{desired upper and lower cutoff frequencies}$
Bandstop	$\frac{Z^{-2} - \frac{2\alpha}{1+k}Z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}Z^{-2} - \frac{2\alpha}{1+k}Z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_2 + \omega_1}{2}\right)}{\cos\left(\frac{\omega_2 - \omega_1}{2}\right)}$ $k = \tan\left(\frac{\omega_2 - \omega_1}{2}\right) \tan\frac{\theta_p}{2}$ $\omega_2, \omega_1 = \text{desired upper and lower cutoff frequencies}$

➤ Effet de la précision finie dans la réalisation des filtre numérique

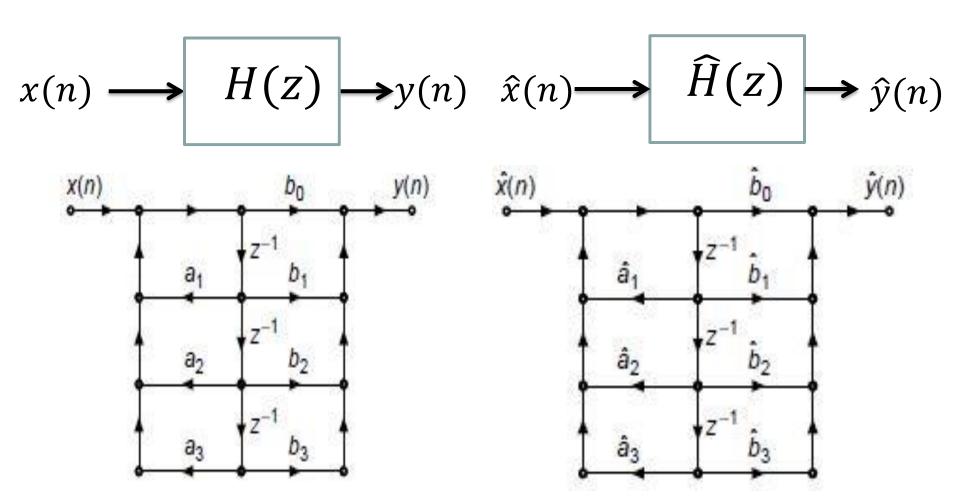
Problématique:

- ✓ Utilisation de coefficients avec précision finie;
- ✓ Obtention de résultats intermédiaires et finals avec précision finie.

Facteurs déterminants:

- ✓ Type de quantification (quantification par arrondi ou par troncature);
- ✓ Type d'arithmétique (point fixe ou flottante, binaire, avec signe, complément de 1, de 2,...).

Quantification des coefficients



Structure directe canonique(forme II). Précision infinie

Structure directe canonique forme II. Précision finie

ELE6705

Poly MTL

 \bullet Soit H(z) un filtre IIR:

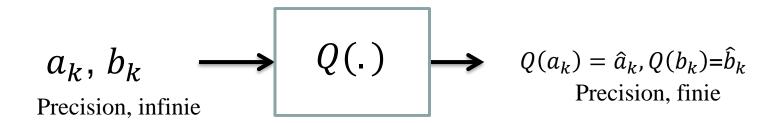
$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

- \checkmark a_k et b_k sont les coefficients de H(z) représentés par
- $\clubsuit \widehat{H}(z)$ le filtre IIR réalisé par précision finie

$$\widehat{H}(z) = \frac{\sum_{k=0}^{M} \widehat{b}_k z^{-k}}{1 + \sum_{k=1}^{N} \widehat{a}_k z^{-k}}$$

 $\checkmark \hat{a}_k$ et \hat{b}_k des nombres avec précision finie: les quantifiant des coefficients a_k et b_k

❖Bloque de quantification:



$$H_Q(z) = \frac{\sum_{k=0}^{M} Q(b_k) z^{-k}}{1 + \sum_{k=1}^{N} Q(a_k) z^{-k}}$$

Erreur de la quantification est donné par:

$$\Delta a_k = Q(a_k) - a_k, \quad \Delta b_k = Q(b_k) - b_k$$

❖Effet de quantification sur le placement des pôles-zéros du filtre

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-1}}{1 + \sum_{k=1}^{N} a_k z^{-1}}$$

$$H(z) = \frac{b_0 (1 - z_1 z^{-1}) \cdots (1 - z_M z^{-1})}{(1 - p_1 z^{-1}) \cdots (1 - p_N z^{-1})} = \frac{N(z)}{D(z)}$$

Analyse de la stabilité du filtre

$$D(z) = D(p_1, \dots, p_N) = \prod_{l=1}^{N} (1 - p_l z^{-1})$$

$$\checkmark \text{ Avec } p_l = f(a_1, \dots, a_N), \ l = 1, \dots, N.$$

Erreur sur les pôles

$$dp_{l} = \sum_{k=1}^{N} \frac{\partial p_{l}}{\partial a_{k}} da_{k} \xrightarrow{\Delta} \Delta p_{l} = \sum_{k=1}^{N} \frac{\partial p_{l}}{\partial a_{k}} \Delta a_{k}$$

> Avec:

$$\frac{\partial p_l}{\partial a_k} = -\frac{p_l^{N-k}}{\prod_{\substack{i \neq l \\ i=1}}^{N} (p_l - p_i)}$$

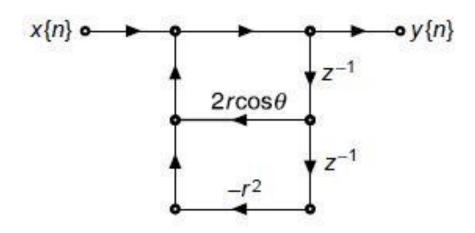
Formule mesurant le mouvement de l^{ieme} pôle p_l versus le coefficient a_k . Sensibilité

&Exemple

Cosiderons un IIR dont H(z) est donnée par:

$$H(z) = \frac{b_0}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

$$> a_1 = -0.9, \ a_2 = 0.81 \text{ et } b_0 = 1$$



Réalisation du filtre IIR

 \triangleright Représentons les coefficients a_1 et a_2 sur 3-bits signés

$$\checkmark \hat{a}_1 = 1.111 = -0.875 \text{ et } \hat{a}_2 = 0.110 = +0.75$$

$$\checkmark |\Delta a_1| = 0.025 \text{ et } |\Delta a_2| = 0.06$$

$$\checkmark \frac{\partial p_1}{\partial a_1} = -\frac{p_1^{2-1}}{(p_1 - p_2)} = \frac{e^{\frac{j\pi}{3}}}{\sqrt{3}}$$

$$\sqrt{\frac{\partial p_2}{\partial a_2}} = -\frac{p_2^{2-2}}{(p_1 - p_2)} = \frac{1}{0.9\sqrt{3}}$$

$$\checkmark |\Delta p_1| \le \left| \frac{\partial p_1}{\partial a_1} \right| |\Delta a_1| + \left| \frac{\partial p_2}{\partial a_2} \right| |\Delta a_2| = \frac{1}{\sqrt{3}} 0.0,25 + \frac{1}{0.9\sqrt{3}} 0.06 = 0.0529$$

$$\checkmark \widehat{D}(z) = 1 - 0.875z^{-1} + 0.75z^{-2} = 0$$

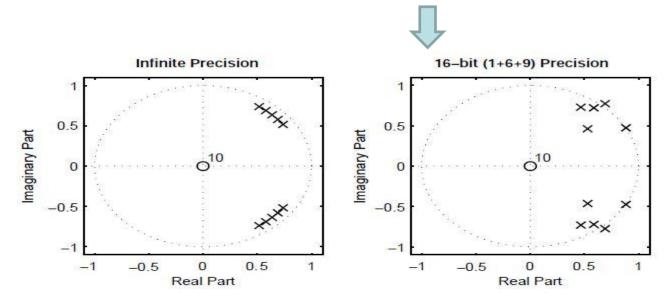
$$\hat{p}_1 = \hat{p}_2^* = 0.866e^{j0.331\pi}$$

$$\checkmark |0.9e^{j\pi/3} - 0.866e^{j0.331\pi}| = 0.0344 \le 0.0529$$

$$\checkmark$$
 Posons $a_1 = -2r\cos(\theta)$, $a_2 = r^2$ et $b_0 = 1$

 \checkmark Les pôles seront $\hat{p}_1 = \hat{p}_2^* = re^{j\theta}$

Pour r = 0.9 et $-0.3056\pi \le \theta \le 0.3056\pi$



❖Effet de quantification sur la réponse impulsionnelle

$$H(e^{j\omega}) = \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{1 + \sum_{k=1}^{N} a_k e^{-j\omega k}}$$

✓ Si a_k et b_k sont quantifiés respectivement par \hat{a}_k et \hat{b}_k la représentation du filtre avec précision finie est donnée \hat{b}_k des nombres avec précision finie:

$$\widehat{H}(e^{j\omega}) = \frac{\sum_{k=0}^{M} \widehat{b}_k e^{-j\omega k}}{1 + \sum_{k=1}^{N} \widehat{a}_k e^{-j\omega k}}$$

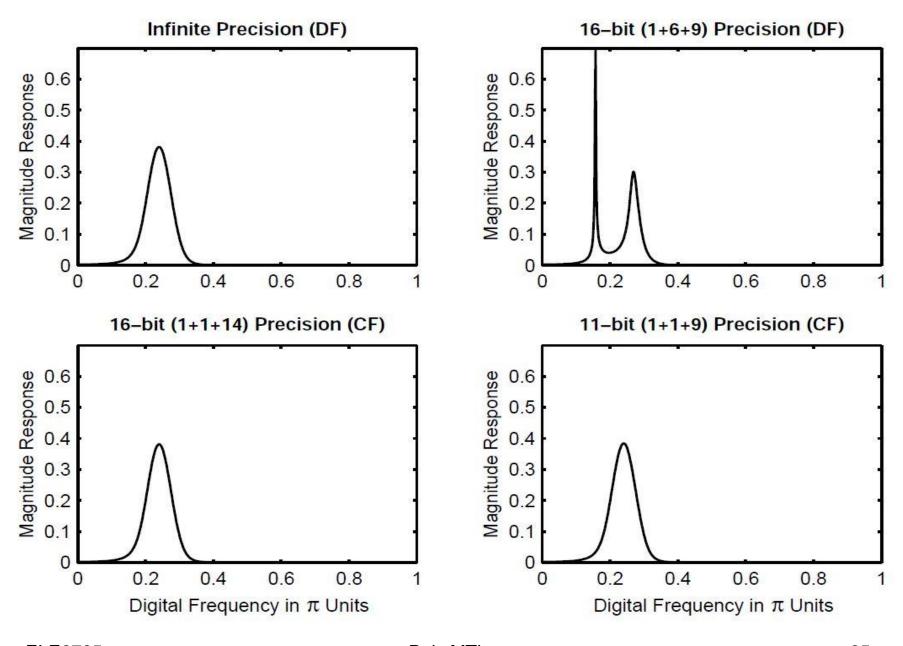
&Exemple

> Cosiderons un filtre IIR défini par

$$H(e^{j\omega}) = \frac{1}{1 - 2r\cos(\theta) e^{-j\omega} + r^2 e^{-2j\omega}}$$

$$r = 0.9 \text{ et } -0.3056\pi \le \theta \le 0.3056\pi;$$

- ➤ On calcul l'amplitude de la réponse en utilisant les deux structures(directe et cascade);
- L'amplitude de la réponse sera présentée avec précision infinie puis avec précision finie codé sur 16-bits et sur 11-bits.

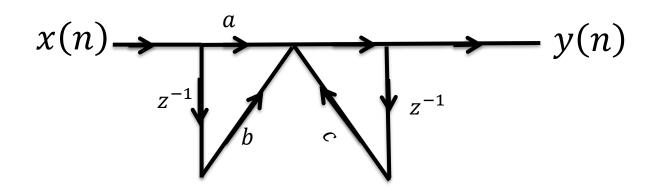


Analyse: Modèle Linéaire

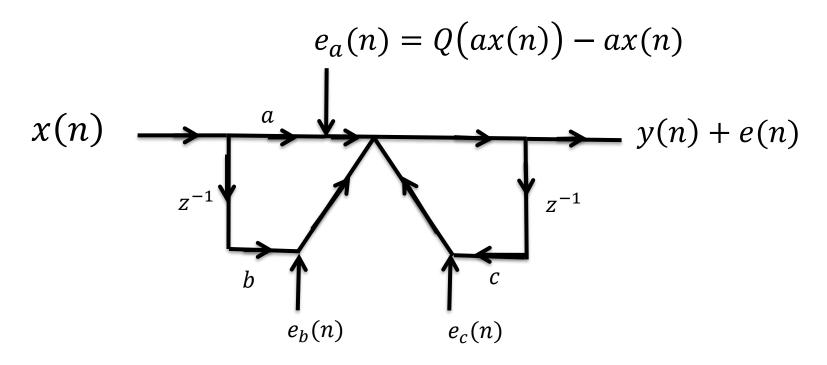
$$\checkmark \text{ Soit } y(n) = ax(n) + bx(n-1) + cy(n-1)$$

$$H(z) = \frac{a + bz^{-1}}{1 - cz^{-1}}$$

✓ Forme directe

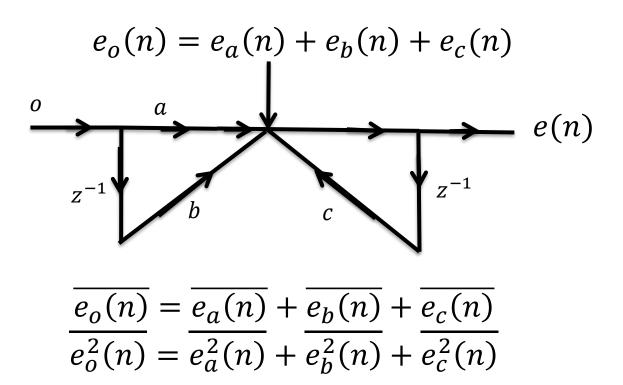


*Réalisation avec précision finie:



>Hypothèses:

- 1. Indépendance entre x(n) et $e_i(n)$, i = a, b, c
- 2. Indépendance entre les $e_i(n)$
- 3. Indépendance entre $e_i(n)$ et $e_i(n+k)$ et distribution uniforme



➤D'autre part:

$$e(n) = e_o(n) + ce(n-1)$$

 $E(z) = E_o(z) + cE(z)z^{-1}$

$$E(z) = H_2(z)E_o(z),$$
 $H_2(z) = \frac{1}{1 - cz^{-1}}$
 $e(n) = h_2(n) * e_o(n),$ $h_2(n) = c^n 1(n)$

Moyenne

$$\overline{e(n)} = \overline{e_o(n)} H_2(e^{j\omega})$$
ou
$$\overline{e(n)} = \overline{e_o(n)} \sum_{k=0}^{\infty} h_2(k)$$

$$\overline{e(n)} = \overline{e_o(n)} \frac{1}{1-c}$$

Puissance

$$\overline{e_o^2(n)} = \sum_{k=0}^{\infty} h_2(k) e_o(n-k) \sum_{l=0}^{\infty} h_2(l) e_o(n-l)$$

$$= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} h_2(k) h_2(l) \overline{e_o(n-k)} e_o(n-l)$$

$$\overline{e_o^2(n)} \delta(k-l)$$

$$= \overline{e_o^2(n)} \sum_{k=0}^{\infty} h_2^2(k)$$

$$= \overline{e_o^2(n)} \sum_{k=0}^{\infty} c^{2k} = \overline{e_o^2(n)} \frac{1}{1-c^2}$$