
Empir Software Eng (2016) 21:104–158
DOI 10.1007/s10664-014-9350-8

Linguistic antipatterns: what they are and how
developers perceive them

Venera Arnaoudova ·Massimiliano Di Penta ·
Giuliano Antoniol

Published online: 29 January 2015
© Springer Science+Business Media New York 2015

Abstract Antipatterns are known as poor solutions to recurring problems. For example,
Brown et al. and Fowler define practices concerning poor design or implementation solu-
tions. However, we know that the source code lexicon is part of the factors that affect the
psychological complexity of a program, i.e., factors that make a program difficult to under-
stand and maintain by humans. The aim of this work is to identify recurring poor practices
related to inconsistencies among the naming, documentation, and implementation of an
entity—called Linguistic Antipatterns (LAs)—that may impair program understanding. To
this end, we first mine examples of such inconsistencies in real open-source projects and
abstract them into a catalog of 17 recurring LAs related to methods and attributes. Then,
to understand the relevancy of LAs, we perform two empirical studies with developers—
30 external (i.e., not familiar with the code) and 14 internal (i.e., people developing or
maintaining the code). Results indicate that the majority of the participants perceive LAs as
poor practices and therefore must be avoided—69% and 51% of the external and internal
developers, respectively. As further evidence of LAs’ validity, open source developers that
were made aware of LAs reacted to the issue by making code changes in 10% of the cases.
Finally, in order to facilitate the use of LAs in practice, we identified a subset of LAs which
were universally agreed upon as being problematic; those which had a clear dissonance
between code behavior and lexicon.

This work is an extension of our previous paper (Arnaoudova et al. 2013)

Communicated by: Nachiappan Nagappan

V. Arnaoudova (�)
Soccer Lab., DGIGL, Polytechnique Montréal, 2900, Boulevard Édouard-Montpetit 2700,
chemin de la Tour Montréal, QC H3T 1J4, Canada
e-mail: venera.arnaoudova@polymtl.ca

M. Di Penta
Department of Engineering, University of Sannio, Benevento, Italy
e-mail: dipenta@unisannio.it

G. Antoniol
Soccer Lab., DGIGL, Polytechnique Montréal, Montréal, Canada
e-mail: antoniol@ieee.org

mailto:venera.arnaoudova@polymtl.ca
mailto:dipenta@unisannio.it
mailto:antoniol@ieee.org

Empir Software Eng (2016) 21:104–158 105

Keywords Source code identifiers · Linguistic antipatterns · Empirical study ·
Developers’ perception

1 Introduction

There are many recognized bad practices in software development, known as code smells
and antipatterns (Brown et al. 1998a; Fowler 1999). They concern poor design or imple-
mentation solutions, as for example the Blob, also known as God class, which is a large
and complex class centralizing the behavior of a part of the system and using other classes
simply as data holders. Previous studies indicate that APs may affect software comprehen-
sibility (Abbes et al. 2011) and possibly increase change and fault-proneness (Khomh et al.
2012; Khomh et al. 2009). From a recent study by Yamashita and Moonen (2013) it is also
known that the majority of developers are concerned about code smells.

Most often, documented bad practices deal with the design of a system or its
implementation—e.g., code structure. However, there are other factors that can affect soft-
ware comprehensibility and maintainability, and source code lexicon is surely one of
them.

In his theory about program understanding, Brooks (1983) considers identifiers and com-
ments as part of the internal indicators for the meaning of a program. Brooks presents the
process of program understanding as a top-down hypothesis-driven approach, in which an
initial and vague hypothesis is formulated—based on the programmer’s knowledge about
the program domain or other related domains—and incrementally refined into more specific
hypotheses based on the information extracted from the program lexicon. While trying to
refine or verify the hypothesis, sometimes developers inspect the code in detail, e.g., check
the comments against the code. Brooks warns that it may happen that comments and code
are contradictory, and that the decision of which indicator to trust (i.e., comment or code)
primarily depends on the overall support of the hypothesis being tested rather than the type
of the indicator itself. This implies that when a contradiction between code and comments
occur, different developers may end up trusting different indicators, and thus have different
interpretations of a program.

The role played by identifiers and comments in source code understandability has been
also empirically investigated by several other researchers showing that commented pro-
grams and programs containing full word identifiers are easier to understand (Shneiderman
and Mayer 1975; Chaudhary and Sahasrabuddhe 1980; Woodfield et al. 1981; Takang et al.
1996; Lawrie et al. 2006, 2007).

For the reasons emerged from the above studies, researchers have developed approaches
to assess the quality of source code lexicon (Lawrie et al. 2007; Caprile and Tonella 2000;
Merlo et al. 2003) and have provided a set of guidelines to produce high-quality identi-
fiers (Deissenbock and Pizka 2005). Also, in a previous work (Arnaoudova et al. 2013),
we have formulated the notion of source code Linguistic Antipatterns (LAs), i.e., recurring
poor practices in the naming, documentation, and choice of identifiers in the implementa-
tion of an entity and we defined a catalog of 17 types of LAs related to inconsistencies. The
notion of LAs builds on those previous works. In particular, we concur with Brooks (1983)
that inconsistencies may lead to different program interpretations by different programmers
and some of these interpretation may be wrong, thus impairing program understanding.
An incorrect initial interpretation may impact the way developers complete their tasks
as their final solution will possibly be biased by this initial interpretation. This cogni-
tive phenomenon is known as anchoring and the difficulty to move away (or to adjust)

106 Empir Software Eng (2016) 21:104–158

from the initial interpretation as the adjustment bias. For example, Parsons and Saunders
(2004) provide evidence of the existence of the phenomenon in the context of reusing soft-
ware code/design. Our conjecture is that defining a catalog of LAs will increase developer
awareness of such poor practices and thus contributes to the improvement of the lexicon and
program comprehension.

An example of an LA, which we have named Attribute Signature and comment are
opposite, occurs in class EncodeURLTransformer of the Cocoon1 project. The class
contains an attribute named INCLUDE NAME DEFAULT whose comment documents the
opposite, i.e., a “Configuration default exclude pattern”. Whether the pattern is included or
excluded is therefore unclear from the comment and name. Another example of LA called
“Get” method does not return occurs in class Compiler of the Eclipse2 project where
method getMethodBodies is declared. Counter to what one would expect, the method
does not either return a value or clearly indicate which of the parameters will hold the result.

To understand whether such LAs would be relevant for software developers, two general
questions arise:

– Do developers perceive LAs as indeed poor practices?
– If this is the case, would developers take any action and remove LAs?

Indeed, although tools may detect instances of (different kinds of) bad practices, they may
or may not turn out to be actual problems for developers. For example, by studying the
history of projects (Raţiu et al. 2004) showed that some instances of antipatterns, e.g., God
classes being persistent and stable during their life, are considered harmless.

This paper aims at empirically answering the questions stated above, by conducting two
different studies. In Study I we showed to 30 developers an extensive set of code snip-
pets from three open-source projects, some of which containing LAs, while others not.
Participants were external developers, i.e., people that have not developed the code under
investigation, unaware of the notion of LAs. The rationale here is to evaluate how rele-
vant are the inconsistencies, by involving people having no bias—neither with respect to
our definition of LAs, nor with respect to the code being analyzed. In Study II we involved
14 internal developers from 8 projects (7 open-source and 1 commercial), with the aim of
understanding how they perceive LAs in systems they know, whether they would remove
them, and how (if this is the case). Here, we first introduce to developers the definition of
the specific LA under scrutiny, after which they provide their perception about examples of
LAs detected in their project.

Overall, results indicate that external and internal developers perceive LAs as poor prac-
tices and therefore should be avoided—69% and 51% of participants in Study I and Study
II, respectively. Interestingly, developers felt more strongly about certain LAs. Thus, an
additional outcome of these studies was a subset of LAs that are considered to be the most
problematic. In particular, we identify a subset of LAs i) that are perceived as poor prac-
tices by at least 75% of the external developers, ii) that are perceived as poor practices by
all internal developers, or iii) for which internal developers took an action to remove it. In
fact, 10% (5 out of 47) of the LAs shown to internal developers during the study have been
removed in the corresponding projects after we pointed them out. There are three LAs that
both external and internal developers find particularly unacceptable. Those are LAs con-
cerning the state of an entity (i.e., attributes) and they belong to the “says more than what

1http://cocoon.apache.org
2http://www.eclipse.org

http://cocoon.apache.org
http://www.eclipse.org

Empir Software Eng (2016) 21:104–158 107

it does” (B) and “contains the opposite” (F) categories—i.e., not answered question (B.4),
attribute name and type are opposite (F.1), and attribute signature and comment are oppo-
site (F.2). External developers found particularly unacceptable (i.e., more than 80 % of them
perceived as poor or very poor) the LAs with a clear dissonance between the code behav-
ior and its lexicon— .i.e., get method does not return (B.3), not answered question (B.4),
method signature and comment are opposite (C.2), and attribute signature and comment are
opposite (F.2). The extremely high level of agreement on these LAs motivates the need for
a tool pointing out these issues to developers while writing the source code.

Paper Structure Section 2 provides an overview of the LA definitions (Arnaoudova et al.
2013) and tooling. Sections 3 describes the definition, design, and planning of the studies.
In Section 4 we detail the catalog of LAs while reporting and discussing the results of the
two studies. After a discussion of related work in Section 6, Section 7 concludes the paper
and outlines directions for future work.

2 Linguistic Antipatterns (LAs)

Software antipatterns—as they are known so far—are opposite to design patterns (Gamma
et al. 1995), i.e., they identify “poor” solutions to recurring design problems. For example,
Brown’s 40 antipatterns describe the most common pitfalls in the software industry (Brown
et al. 1998b). They are generally introduced by developers not having sufficient knowledge
and–or experience in solving a particular problem or misusing good solutions (i.e., design
patterns). Linguistic antipatterns (Arnaoudova et al. 2013) shift the perspective from source
code structure towards its consistency with the lexicon.

Linguistic Antipatterns (LAs) in software systems are recurring poor practices in the
naming, documentation, and choice of identifiers in the implementation of an entity, thus
possibly impairing program understanding.

The presence of inconsistencies can mislead developers—they can make wrong assump-
tions about the code behavior or spend unnecessary time and effort to clarify it when
understanding source code for their purposes. Therefore, highlighting their presence is
essential for producing easy to understand code. In other words, our hypothesis is that the
quality of the lexicon depends not only on the quality of individual identifiers but also on the
consistency among identifiers from different sources (name, implementation, and documen-
tation). Thus, identifying practices that result in inconsistent lexicon, and grouping them
into a catalog, will increase developer awareness and thus contribute to the improvement of
the lexicon.

We defined LAs and group them into categories based on a close inspection of source
code examples. We started by analyzing source code from three open-source Java projects—
namely ArgoUML, Cocoon, and Eclipse.

Initially, we randomly sampled a hundred files and analyzed the source code looking for
examples of inconsistencies of lexicon among different sources of identifiers (i.e., identi-
fiers from the name, documentation, and implementation of an entity). For each file, we
analyzed the declared entities (methods and attributes) by asking ourselves questions such
as “Is the name of the method consistent with its return type?”, “Is the attribute comment
consistent with its name?”. Two of the authors of this paper were involved in the process.
The set of inconsistencies examples that we found were then organized into an initial set of

108 Empir Software Eng (2016) 21:104–158

LAs. We iterated several times over the sampling and coding process and refine the ques-
tions based on the newly discovered examples. For example, “What is an inconsistent name
for a boolean return type?”, “Is void a consistent type for method isValid?”, “What
other types are inconsistent with method isValid?”, etc.

As the goal is to capture as many different lexicon inconsistencies as possible, the sam-
pling was guided by the theory (theoretical sampling Strauss (1987)), and thus cannot be
considered to be representative of the entire population of source code entities. We stopped
iterating over the sampling and coding process when new examples of inconsistencies did
not anymore modify the defined LAs and their categories. Also, it is important to point out
that during our analyses we did not follow a thorough grounded-theory approach (Strauss
1987; Glaser 1992)—i.e., we did not measure the inter-agreement at each iteration—as
the process was meant to identify possible inconsistencies for which we would gather
developers’ perceptions. Thus, the agreement between the authors of this paper was a guid-
ance rather than a requirement. Nevertheless, similarly to grounded-theory, we performed
refinements to our initial categories.

Over the iterations LAs were refined, compared, and grouped into categories. Categories
were modified according to the new examples of inconsistencies, i.e., some categories were
combined, refined, or split to account for the newly defined LAs. For instance, we ended up
with a preliminary list of 23 types LAs for which we abstracted the type of inconsistency
they concern. At a very high level, all but 6 of those 23 types LAs concerned inconsistencies
where i) a single entity (method or attribute) is involved, and ii) the behavior of the entity
is inconsistent with what its name or related documentation (i.e., comment) suggests, as it
provides more, says more, or provides the opposite. Thus, we discarded from this catalog
those LAs that did not obey the above two rules. An example of a discarded LAs from the
preliminary list is the practice consisting in the use of synonyms in the entity signature—
e.g., method completeResults(..., boolean finished), where the term complete in the method
name is synonym of finished (parameter). Similarly, we discarded the following five cases
of comment inconsistencies:

– Not documented or counter-intuitive design decision, e.g., using inheritance instead of
delegation.

– Parameter name in the comment is out of date.
– Misplaced documentation, e.g., entity documentation exists, but it is placed in a parent

class.
– The entity comment is inconsistent across the hierarchy.
– Not documented design pattern. Previous work has proposed approaches to document

design patterns (Torchiano 2002), and has shown that design patterns’ documenta-
tion helps developers to complete maintenance tasks faster and with fewer errors
(Prechelt et al. 2002).

The fact that we discarded the above practices from the current catalog does not mean
that we consider them any less poor. On the contrary, we believe that further investi-
gation in different projects may result in discovering other related poor practices that
can be abstracted into new categories of inconsistencies, thus extending the current
catalog.

After pruning out the six types described above, the analysis process resulted in 17 types
of LA, grouped into six categories, three regarding behavior—i.e., methods—and three
regarding state—i.e, attributes. For methods, LAs are categorized into methods that (A) “do
more than they say”, (B) “say more than they do”, and (C) “do the opposite than they say”.
Similarly, the categories for attributes are (D) “the entity contains more than what it says”,

Empir Software Eng (2016) 21:104–158 109

Table 1 LAs catalog: definitions and examples

A.1 “Get” - more than accessor A getter that performs actions other than returning

the corresponding attribute without documenting it.

Example: method getImageData which, no

matter the attribute value, every time returns a new

object (see Fig. 1).

A.2 “Is” returns more than a boolean The name of a method is a predicate suggesting a

true/false value in return. However the return type is

not Boolean but rather a more complex type thus

allowing a wider range of values without

documenting them. Example: isValid with return

type int (see Fig. 6).

A.3 “Set” method returns A set method having a return type different than

void and not documenting the return type/values

with an appropriate comment (see Fig. 7).

A.4 Expecting but not getting single instance The name of a method indicates that a single object

is returned but the return type is a collection.

Example: method getExpansion returning

List (see Fig. 9).

B.1 Not implemented condition The comments of a method suggest a conditional

behavior that is not implemented in the code. When

the implementation is default this should be

documented (see Fig. 10).

B.2 Validation method does not confirm A validation method (e.g., name starting with

“validate”, “check”, “ensure”) does not confirm

the validation, i.e., the method neither provides

a return value informing whether the validation

was successful, nor documents how to proceed to

understand (see Fig. 12).

B.3 “Get” method does not return The name suggests that the method returns

something (e.g., name starts with “get” or “return”)

but the return type is void. The documentation

should explain where the resulting data is stored

and how to obtain it (see Fig. 12).

B.4 Not answered question The name of a method is in the form of predicate

whereas the return type is not Boolean. Example:

method isValid with return type void (see Fig. 13).

B.5 Transform method does not return The name of a method suggests the transformation

of an object but there is no return value and it is not

clear from the documentation where the result is

stored. Example: method javaToNative with

return type void (see Fig. 14).

110 Empir Software Eng (2016) 21:104–158

Table 1 (continued)

B.6 Expecting but not getting a collection The name of a method suggests that a collection

should be returned but a single object or nothing

is returned. Example: method getStats with

return type Boolean (see Fig. 15).

C.1 Method name and return type are opposite The intent of the method suggested by its name is

in contradiction with what it returns. Example:

method disable with return type

ControlEnableState. The inconsistency

comes from “disable” and “enable” having opposite

meanings (see Fig. 16).

C.2 Method signature and comment are opposite The documentation of a method is in contradiction

with its declaration. Example: method

isNavigateForwardEnabled is in

contradiction with its comment documenting

“a back navigation”, as “forward” and “back”

are antonyms (see Fig. 17).

D.1 Says one but contains many The name of an attribute suggests a single instance,

while its type suggests that the attribute stores a

collection of objects. Example: attribute target

of type Vector. It is unclear whether a change

affects one or multiple instances in the collection

(see Fig. 18).

D.2 Name suggests boolean but type is not The name of an attribute suggests that its value is

true or false, but its declaring type is not Boolean.

Example: attribute isReached of type int[]

where the declared type and values are not

documented (see Fig. 19).

E.1 Says many but contains one The name of an attribute suggests multiple instances,

but its type suggests a single one. Example: attribute

stats of type Boolean. Documenting such

inconsistencies avoids additional comprehension

effort to understand the purpose of the attribute

(see Fig. 20).

F.1 Attribute name and type are opposite The name of an attribute is in contradiction with its

type as they contain antonyms. Example: attribute

start of type MAssociationEnd. The use of

antonyms can induce wrong assumptions

(see Fig. 21).

F.2 Attribute signature and comment are opposite The declaration of an attribute is in contradiction

with its documentation. Example: attribute

INCLUDE NAME DEFAULT whose comment

documents an “exclude pattern”. Whether the

pattern is included or excluded is thus unclear

(see Fig. 22).

Empir Software Eng (2016) 21:104–158 111

(E) “the name says more than the entity contains”, and (F) “the name says the opposite than
the entity contains”. Table 1 provides a summary of the defined LAs. We further detail the
LAs during the qualitative analysis of the results (Section 4.3).

We implemented the LAs detection algorithms in an offline tool, named LAPD (Linguis-
tic Anti-Pattern Detector), for Java source code (Arnaoudova et al. 2013); for the purpose of
this work, we extended the initial LAPD to analyze C++. LAPD analyzes signatures, lead-
ing comments, and implementation of program entities (methods and attributes). It relies
on the Stanford natural language parser (Toutanova and Manning 2000) to identify the Part-
of-Speech of the terms constituting the identifiers and comments and to establish relations
between those terms. Thus, given the identifier notVisible, we are able to identify that
‘visible’ is an adjective and that it holds a negation relation with the term ‘not’.

Finally, to identify semantic relations between terms LAPD uses the WordNet ontology
(Miller 1995). Thus, we are able to identify that ‘include’ and ‘exclude’ are antonyms.

Fig. 1 LAPD Checkstyle plugin: “Get” more than accessor (A.1)

112 Empir Software Eng (2016) 21:104–158

Consider for example the code shown in Fig. 1. To check whether it contains an LA
of type “Get” more than accessor (A.1) LAPD first analyses the method name. As it
follows the naming conventions for accessors—i.e., starts with ‘get’—LAPD proceeds
and searches for an attribute named imageData of type ImageData defined in class
CompositeImageDescriptor. The existence of the attribute indicates that the imple-
mentation of getImageData would be expected to satisfy the expectations from an
accessor, i.e., return the value of the corresponding attribute. Thus, LAPD analyses the body
of getImageData and reports the method as an example of “Get” more than acces-
sor (A.1) as it contains a number of additional statements before returning the value of
imageData. Indeed, one can note that the value of the attribute is always overridden (line
69) which is not expected from an accessor except if the value is null—as for example the
Proxy and Singleton design patterns). Further details regarding the detection algorithms of
LAs can be found in Appendix A.

For Java source code, we also made available an online version of LAPD3 integrated into
Eclipse as part of the Eclipse Checkstyle Plugin.4 Checkstyle5 is a tool helping developers
to adhere to coding standards, which are expressed in terms of rules (checks), by reporting
violations of those standards. Users may choose among predefined standards, e.g., the Sun
coding conventions,6 or define their owns. Figure 1 shows a snapshot of a code example
and an LA, of type “Get” more than accessor (A.1), reported by the LAPD CHECKSTYLE

PLUGIN3 detected in the example. After analyzing the entity containing the reported LA, the
user may decide to resolve the inconsistency or disable the warning report for the particular
entity.

3 Experimental Design

Before studying the perception of developers, it is important to study the prevalence of
LAs. Section 3.1 provides details about our preliminary study on the prevalence of LAs.
Next, we report the definition, design, and planning of the two studies we have conducted
with external (Section 3.2) and internal (Section 3.3) developers. To report the studies we
followed the general guidelines suggested byWohlin et al. (2000), Kitchenham et al. (2002),
and Jedlitschka and Pfahl (2005).

3.1 Prevalence of LAs

The goal of our preliminary study is to investigate the presence of LAs in software systems,
with the purpose of understanding the relevance of the phenomenon. The quality focus is
software comprehensibility that can be hindered by LAs. The perspective is of researchers
interested to develop recommending systems aimed at detecting the presence of LAs and
suggesting ways to avoid them. Specifically, the preliminary study aims at answering the
following research question:

RQ0: How prevalent are LAs?We investigate how relevant is the phenomenon of LAs in
the studied projects.

3http://www.veneraarnaoudova.ca/tools
4http://eclipse-cs.sourceforge.net/
5http://checkstyle.sourceforge.net/
6http://www.oracle.com/technetwork/java/codeconv-138413.html

http://www.veneraarnaoudova.ca/tools
http://eclipse-cs.sourceforge.net/
http://checkstyle.sourceforge.net/
http://www.oracle.com/technetwork/java/codeconv-138413.html

Empir Software Eng (2016) 21:104–158 113

Table 2 Preliminary study - Objects characteristics

Project Size (LOC) Language

Apache Mavena 3.0.5 71 K Java

Apache OpenMeetingsb 2.1.0 52 K Java

GanttProjectc 57 K Java

boostd 1.53.0 1.9 M C++

BWAPIe 118 K C++

CommitMonitorf 1.8.7.831 148 K C++

OpenCVg 544 K Java, C++
ahttp://maven.apache.org/
bhttp://openmeetings.apache.org/
chttp://www.ganttproject.biz/
dhttp://www.boost.org/
ehttps://code.google.com/p/bwapi/
fhttps://code.google.com/p/commitmonitor/
ghttp://opencv.org/

Experiment design: For each LA we report the occurrences in the studied projects. We
also report the percentage of the programming entities in which an LA occurs with
respect to the population for which the LA been defined. Finally, we report the rele-
vance of each LA with respect to the total entity population of its kind. For example, for
“Get” more than accessor (A.1) we report the the number of occurrences, the percent-
age of the occurrences with respect to the number of accessors, and the percentage of the
occurrences with respect to all methods.

Objects: Using convenience sampling (Shull et al. 2007), we select seven open-source
Java and C++ projects Table 2 shows the projects’ characteristics.7 We have chosen
projects from various application domains, with different size, different programming
language, and different number of developers.

Data collection: For this study, we simply downloaded the source code archives of the
considered system releases (Table 2), and analyzed them using the LAPD tool with the
aim of identifying LAs.

Next, we report the definition, design, and planning of the two studies we have conducted
with external (Section 3.2) and internal (Section 3.3) developers. Both studies were designed
as online questionnaires. A replication package is available.8 It contains (i) all the material
used in the studies, i.e., instructions, questionnaires, and LA examples, and (ii) working data
sets containing anonymized results for both studies. We do not disclose information about
participants’ ability and experience.

7For projects where we did not provide a version, we used version control (accessed on 31/05/2013).
8http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/lapd-rep-pckg.zip

http://maven.apache.org/
http://openmeetings.apache.org/
http://www.ganttproject.biz/
http://www.boost.org/
https://code.google.com/p/bwapi/
https://code.google.com/p/commitmonitor/
http://opencv.org/
http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/lapd-rep-pckg.zip

114 Empir Software Eng (2016) 21:104–158

3.2 Study I (SI)—External Developers

The goal of the study is to collect opinions about code snippets containing LAs from the
perspective of external developers, i.e., people new to the code containing LAs—with the
purpose of gaining insights about developers’ perception of LAs. The feedback of external
developers will help us to understand how LAs are perceived by developers who are new
to the particular code, as it is often the case when developers join a new team or maintain
a large system they are not entirely familiar with. Specifically, the study aims at answering
the following research questions:

RQ1: How do external developers perceive code containing LAs?We investigate whether
developers actually recognize the problem and in such case how important they believe
the problem is.

RQ2: Is the perception of LAs impacted by confounding factors? We investigate whether
results of RQ1 depend on participant’s i) main programming language (for instance
Java versus C++, as the LAs were originally defined for Java), ii) occupation (i.e.,
professionals or students), and iii) years of programming experience.

In the following, we report details of how the study has been planned and conducted.

Experiment design: The study was designed as an online questionnaire estimated to take
about one hour for an average of two and a half minutes per code snippet. However, par-
ticipants were free to take all the necessary time to complete the questionnaire. The use
of an online questionnaire was preferred over in person interview, as it is more conve-
nient for the participants. Participants were free to decide when to fill the questionnaire
and in how many steps to complete it—i.e., participants may decide to complete the
questionnaire in a single session or to stop in between questions and to resume later. To
avoid biasing the participants, we also consider as part of the questionnaire 8 code snip-
pets that do not contain any LA. Thus, we ask participants to analyze 25 code snippets
(17 being examples of LAs, and 8 not containing any LA), and to evaluate the qual-
ity of each example comparing naming, documentation, and implementation.Ideally, we
would have preferred to evaluate an equal number of code snippets with and without
LAs. This, however, would have increased the required time with more than 20 min and
increased the chances that participants do not complete the survey. Therefore, we decided
to decrease the number of code snippets without LAs by half (compared to the number
of code snippets with LAs).
We (the authors) selected examples covering the set of LAs from the analyzed projects

that in our opinion are representative of the studied LAs. In particular, we used the exam-
ples from our previous work as the study was performed before the proceedings were
publicly available.
For each code snippet, we formulated a specific question, trying to avoid any

researcher bias on whether the practice is good or poor. Thus, for example, when show-
ing the code snippet of method getImageData (used in Fig. 1) corresponding to the
example of “Get” more than accessor, we asked participants to provide their opinion on
the practice consisting of using the word “get” in the name of the method with respect
to its implementation. Note that if the question does not indicate what aspect of the snip-
pet the participants are expected to evaluate, there is a high risk that the participants
evaluate an unrelated aspect—e.g., performance or memory related. However, specific
questions are subject to the hypothesis guessing bias thus participants may evaluate as
poor practices all code snippets as they may guess that this is what is expected. This is

Empir Software Eng (2016) 21:104–158 115

Table 3 Study I—programming
experience of the participants Programming

experience (years)

of participants < 5 ≥ 5

Graduate students 19 9 10

Professionals 11 1 10

Overall 30 10 20

why inserting code snippets that do not contain LAs is a crucial part of the design. To
compare the scores given by developers to code snippets that contain LAs and those that
do not, we perform a Mann-Whitney test.
To minimize the order/response bias, we created ten versions of the questionnaire

where the code snippets appear in a random order. Participants were randomly assigned
to a questionnaire. To achieve a design as balanced as possible, i.e., equal number of par-
ticipants for each questionnaire, we invited participants through multiple iterations. That
is, we sent an initial set of invitations to an equal number of participants. After a couple
of days, we sent a second set of invitations assigning such additional participants to the
questionnaire instances that received the lowest number of responses.

Objects: For the purpose of the study, we choose to evaluate LA instances detected and
manually validated in our previous work (Arnaoudova et al. 2013). Such LAs have been
detected in 3 Java software projects, namely ArgoUML9 0.10.1 (82 KLOC) and 0.34 (195
KLOC), Cocoon10 2.2.0 (60 KLOC), and Eclipse11 1.0 (475 KLOC).

Participants: Ideally, a target population—i.e., the individuals to whom the survey
applies—should be defined as a finite list of all its members. Next, a valid sample is a
representative sample of the target population (Shull et al. 2007). When the target popu-
lation is difficult to define, non-probabilistic sampling is used to identify the sample. In
this study, the target population being all software developers, it is impossible to define
such list. We selected participants using convenience sampling. We invited by e-mail 311
developers from open-source and industrial projects, graduate students and researchers
from the authors’ institutions as well as from other institutions. 31 developers completed
the study and after a screening procedure (see Section 3.2), 30 participants remained—
11 professionals, and 19 graduate students, resulting in a response rate close to 10%—as
expected (Groves et al. 2009). Participants were volunteers and they did not receive any
reward for the participation to the study. We explicitly told them that anonymity of results
was preserved, and so we did.
Table 3 provides information on participants’ programming experience and Fig. 2

shows their native language and the country they live in.

Study Procedure: We did not introduce participants to the notion of LAs before the
study. Instead, we informed them that the task consists of providing their opinion of code
snippets.

9http://argouml.tigris.org
10http://cocoon.apache.org
11http://www.eclipse.org

http://argouml.tigris.org
http://cocoon.apache.org
http://www.eclipse.org

116 Empir Software Eng (2016) 21:104–158

Native language

French

English

Arabic

Italian

Other

Percentage

0% 10% 20% 30% 40%

31%
9%
9%
13%

38%

Country

Canada

Italy

Other

Percentage

0% 10% 20% 30% 40% 50% 60% 70% 80%

17%

10%

73%

Fig. 2 Study I—native language and country of the participants

For each code snippet—containing LAs or not—we asked participants the five ques-
tions reported in Table 4. With SI-q1 participants judge the quality of the practice on a
5-point Likert scale (Oppenheim 1992), ranging between ‘Very poor’ and ‘Very good’.
The purpose of SI-q2 is to ensure that the participants provide their judgement for the
practice targeted by the question. For both SI-q4 and SI-q5, we provide predefined
options, to decrease the effort and ease the analysis, however we left space in the form

Table 4 Study I - Questionnaire

Question Possible answers

SI-q1: You judge this practice as: (Single choice)

Very poor

Poor

Neither poor nor good

Good

Very good

No opinion

SI-q2: Please justify (Free-form)

SI-q3: Would you undertake an action with respect (Single choice)

to the practice? Change

Keep it ‘as is’

No opinion

SI-q4: Illustrate the kind of action you would undertake (Multiple choice)

(when this is the case). Comments (add/remove/modify)

Renaming

Implementation (add/remove/modify)

Other

SI-q5: Explain the reason why you would not undertake (Multiple choice)

any action (when this is the case). It is a common practice

Naming and functionality are consistent

Comments and naming are consistent

Comments and functionality are consistent

Other

Empir Software Eng (2016) 21:104–158 117

to provide a customized answer. In addition, for each code snippet, we also allow partic-
ipants to share any additional comment they would make. At any point, participants are
free to decide not to answer a question by selecting the option ‘No opinion’.

Data Collection: We collected 31 completed questionnaires. Before proceeding with the
analysis, we applied the following screening procedure: For each LA we remove subjects
who chose ‘No opinion’ as answer to SI-q1.
The collected answers being in nominal and ordinal scales, standard outlier removal

techniques do not apply here. Thus, we first sought for inconsistent answers between
questions SI-q1 and SI-q3, i.e., between the quality of the code snippet and whether
an action should be undertaken. Although one may judge a code snippet as ‘Poor’ but
believes that no action should be undertaken, we fear that participants providing high
number of such combinations may have misunderstood the questions. We intentionally
sought for participants providing high number of such combinations (> 75%), resulting
in removing one participant.
Then, we individually analyze the justification, i.e., answers of SI-q2, and we remove

the answer of a participant for an LA if it is clear that the participant judge an aspect
different from the one targeted by the LA. For example, when a participants are asked
to give their opinion on the use of conditional sentence in comments and no conditional
statement in method implementation, participant providing the following justification is
removed for the particular LA: “the method name is well chosen and is well commented
too”. Thus, the number of obtained answers for each kind of LA varies between 25 and
30, as it can be noticed from Fig. 5.

3.3 Study II (SII)—Internal Developers

The goal of this study is to investigate the perception of LAs from the perspective of internal
developers, i.e., those contributing to the project in which LAs occur. Internal developers
will provide us not only with their opinion about LAs but also with insights on the typical
actions they are willing to undertake, to correct the existing inconsistencies and possibly
help us to understand what causes LAs to occur. The context consists of examples of code,
selected from projects to which the surveyed developers contribute. To extend the exter-
nal validity of the results, for this study, we considered projects written in two different
programming languages, i.e., Java and C++. The study aims at answering the following
research questions:

RQ3: How do internal developers perceive LAs? This research question is similar to RQ1
of Study I, however here we are interested in the perception of developers familiar
with the code containing LAs, i.e., of people who contributed to it.

RQ4: What are the typical actions to resolve LAs? Other than the opinion on the prac-
tices described by LAs, we investigate whether developers are willing to undertake
actions to correct the suggested inconsistencies.

RQ5: What causes LAs to occur? We are interested to understand under what circum-
stances LAs appear to better cope with them.

Experiment Design: The study was designed as an online questionnaire. The number of
LAs was selected so that the questionnaire requires approximately 15min to be com-
pleted, and therefore ensures a high response rate from internal developers. As in Study
I, the time was simply indicative, i.e., participants are free to take all the necessary time
to complete the questionnaire. As LAs were related to methods having different size and
complexity, the questionnaires contained between 5 and 6 examples, i.e., not always the

118 Empir Software Eng (2016) 21:104–158

Table 5 Study II - questionnaire

Question Possible answers

SII-q1: How familiar are you with this code? (Single choice)

I wrote it

I didn’t write it but I came across this code

Don’t remember seeing it before

Other

SII-q2: Why the inconsistency (Multiple choice)

occurred, i.e., what are the causes? Evolution (it was consistent initially)

Didn’t give it enough thought initially

Copy/paste and forgot to change

Reuse without changing since it is working

Other

SII-q3: Equivalent to SI-q3 Equivalent to SI-q3

SII-q4: Equivalent to SI-q4 (Free-form)

SII-q5: Equivalent to SI-q5 Equivalent to SI-q5

same number. Thus, each participant evaluates only a subset of the LAs.We, the authors,
selected examples of LAs from the analyzed projects that in our opinion are representa-
tive of the studied LAs. We selected the examples in a way to have higher diversity, i.e.,
so that the study includes examples of all 17 types of LAs.

Objects: To select the projects for this study we also used a convenience sampling.
We consider LAs extracted from 8 software projects, specifically 1 industrial, closed-
source project, namelyMagicPlan,12 and 7 open-source projects—i.e., the projects used
in the preliminary study (see Table 2). The projects have different size and belong to
different domain, ranging from utilities for developers/project managers (e.g., Apache
OpenMeetings, GanttProject, commitMonitor, Apache Maven) to APIs (Boost, BWAPI,
and OpenCV) or mobile applications (MagicPlan). We chose more projects than in Study
I, in order to obtain a larger external validity from developers belonging to different
projects (including a commercial one), and in order to consider both Java and C++ code.

Participants: The study involved 14 developers from the projects mentioned above. As
for the distribution across projects, one developer per project participated in the study,
except for Boost, for which 3 developers participated, and for BWAPI, for which 4 devel-
opers participated. Such 14 developers are the respondents from an initial set of 50 ones
we invited to participate, resulting in a response rate of 28%. Invited participants were
committers whose e-mails were available in the version control repository of the project.
Also in this case, participants were volunteers and did not receive any reward. Similarly
to the previous study, anonymity of results was preserved.

Study Procedure: We showed to participants examples of LAs detected in the system
they contribute to. For each example, we first provided participants with the definition

12http://www.sensopia.com/english/index.html

http://www.sensopia.com/english/index.html

Empir Software Eng (2016) 21:104–158 119

of the corresponding LA, and then we asked them to provide an opinion about the gen-
eral practice—i.e., question SII-q0 “How do you consider the practice described by the
above Linguistic Antipattern?”—using, again, a 5-point Likert scale. Then, we asked par-
ticipants to provide indications about the specific instance of LA by asking the questions
shown in Table 5.

Data Collection: We collected responses of 14 developers regarding 47 unique examples
of all types of LAs except C.2.13 The collected answers represent 72 data points, where
each data point is a unique combination of a particular example (instance) of an LA and
a developer who evaluated it.

4 Developers’ Perception of LAs

In this section we present the results of our studies. First, in Section 4.1 we report the results
of our preliminary study on the prevalence of LAs. Next, we present the results of the two
studies on developers’ perceptions of LAs providing both quantitative (Section 4.2) and
qualitative (Section 4.3) analyses.

4.1 Prevalence of LAs

RQ0: How Prevalent are LAs?
Table 6 shows the number of detected instances of LAs per project and per kind of

LA. Based on previous evaluation on a subset of those systems, LAPD has an average
precision of 72% (95% confidence level and a confidence interval of ±10%). As the
goal of this work is to evaluate developers’ perception of LAs we did not re-evaluate the
precision but rather manually validated a subset of the detected examples to assure that
they are indeed representative of LAs.

Table 7 shows how relevant is the phenomenon in the studied projects. For each LA we
report its relevance with respect to the population for which it has been defined as well as
its relevance with respect to the total entity population of its kind. For example, the first
row of Table 7—“Get” more than accessor (A.1)—shows that such complex accessors
represent 2.65% of the accessors and 0.05% of all methods. By looking at the table, the
percentage of LAs instances may appear rather low (Min.: 0.02%; 1st Qu.: 0.17%; Median:
0.26%; Mean: 0.61%; 3rd Qu.: 0.65%; Max.: 3.40%). However, in their work on smell
detection using change history information (Palomba et al. 2013) provide statistics about
the number of actual classes involved in 5 types of code smells in 8 Java systems; the per-
centages of affected classes are below 1% for each type of smell, thus somewhat consistent
with our findings—although a direct comparison is difficult (due to the different types of
entities) the numbers can be taken as a rough indication. Slightly higher are the statistics
provided by Moha et al. (2010) in which for 10 systems the percentage of affected classes
for 4 design smells are as follows: Blob: 2.8%, Functional Decomposition: 1.8%, Spaghetti
Code: 5.5%, and Swiss Army Knife: 3.9%.

13None of the questionnaires containing examples of type C.2 was answered.

120 Empir Software Eng (2016) 21:104–158

Ta
bl
e
6

L
A
s
:D

et
ec
te
d
oc
cu
rr
en
ce

in
th
e
st
ud
ie
d
pr
oj
ec
ts

A
rg
oU

M
L

A
rg
oU

M
L

C
oc
oo
n

E
cl
ip
se

1.
0

A
pa
ch
e

A
pa
ch
e

G
an
tt
P
ro
je
ct

bo
os
t

B
W
A
P
I

C
om

m
it
M
on
it
or

O
pe
nC

V
To

ta
l

0.
10
.1

0.
34

2.
2.
0

M
av
en

O
pe
nM

ee
ti
ng
s

1.
53
.0

1.
8.
7.
83
1

3.
0.
5

2.
1.
0

A
.1

“
G
et
”
-
m
or
e

0
2

1
15

6
2

2
0

0
1

36
65

th
an

an

ac
ce
ss
or

A
.2

“
Is
”
re
tu
rn
s

2
0

4
26

1
0

5
13
7

2
36

33
24
6

m
or
e
th
an

a
bo
ol
ea
n

A
.3

“
Se
t”

m
et
ho
d

4
30

6
53

31
4

29
9

6
73

50
67

64
1

re
tu
rn
s

A
.4

E
xp
ec
ti
ng

bu
t

7
3

8
33

40
78

42
16

0
0

5
23
2

no
tg

et
ti
ng

si
ng
le
in
st
an
ce

B
.1

N
ot

20
28

43
23
2

2
1

1
1

0
9

3
34
0

im
pl
em

en
te
d

co
nd
it
io
n

B
.2

Va
li
da
ti
on

1
8

11
23
5

27
1

0
29
7

4
18

19
62
1

m
et
ho
d
do
es

no
tc
on
fi
rm

B
.3

“
G
et
”
m
et
ho
d

1
3

2
57

17
5

3
0

0
0

0
88

do
es

no
tr
et
ur
n

B
.4

N
ot

an
sw

er
ed

0
2

0
34

0
0

1
5

0
0

3
45

qu
es
tio

n

B
.5

Tr
an
sf
or
m
m
et
ho
d

0
86

15
44

1
4

0
46

11
24

17
7

40
8

do
es

no
tr
et
ur
n

Empir Software Eng (2016) 21:104–158 121

Ta
bl
e
6

(c
on
tin

ue
d)

A
rg
oU

M
L

A
rg
oU

M
L

C
oc
oo
n

E
cl
ip
se

1.
0

A
pa
ch
e

A
pa
ch
e

G
an
tt
P
ro
je
ct

bo
os
t

B
W
A
P
I

C
om

m
it
M
on
it
or

O
pe
nC

V
To

ta
l

0.
10
.1

0.
34

2.
2.
0

M
av
en

O
pe
nM

ee
ti
ng
s

1.
53
.0

1.
8.
7.
83
1

3.
0.
5

2.
1.
0

B
.6

E
xp
ec
ti
ng

bu
tn

ot
8

39
12

13
5

14
27

19
12

55
3

16
34
0

ge
tt
in
g
a
co
ll
ec
ti
on

C
.1

M
et
ho
d
na
m
e
an
d

0
0

0
6

0
1

2
15

2
0

0
26

re
tu
rn

ty
pe

ar
e

op
po
si
te

C
.2

M
et
ho
d
si
gn
at
ur
e

7
20

12
24
3

7
68

8
55

44
28
8

10
5

85
7

an
d
C
om

m
en
tA

re

O
pp
os
it
e

D
.1

Sa
ys

on
e
bu
t

15
92

42
10
3

42
31

10
2

12
72

21
9

47
82
5

27
90

co
nt
ai
ns

m
an
y

D
.2

N
am

e
su
gg
es
ts
bo
ol
ea
n

14
13

21
13
8

9
25

11
89

17
1

15
1

19
4

83
6

bu
tt
yp
e
is
no
t

E
.1

Sa
ys

m
an
y
bu
t

45
11
7

24
11
6

13
7

6
30
5

77
38
8

68
0

17
78

co
nt
ai
ns

on
e

F.
1

A
tt
ri
bu
te
na
m
e
an
d

1
0

0
0

0
0

2
52
8

0
5

5
54
1

ty
pe

ar
e
op
po
si
te

F.
2

A
tt
ri
bu
te
si
gn
at
ur
e
an
d

1
0

3
19

0
1

0
9

3
88

94
21
8

C
om

m
en
tA

re
O
pp
os
it
e

12
6

44
3

20
4

14
89

49
3

28
0

21
3

27
93

66
1

11
08

22
62

10
07
2

122 Empir Software Eng (2016) 21:104–158

Table 7 LAs : relevance of the phenomenon in the studied projects

Relevance of Considered Relevance with

the phenomenon population respect to the entities

of the same kind

A.1 “Get” more than 2.65 % (65/2457) getters 0.05 % (65/129984)

an accessor

A.2 “Is” returns more than 7.44 % (246/3307) methods starting 0.19 % (246/129984)

a boolean with ‘is’

A.3 “Set” method returns 10.95 % (641/5855) methods starting with ‘set’ 0.49 % (641/129984)

A.4 Expecting but not 1.72 % (232/13527) methods expecting 0.18 % (232/129984)

getting single instance single instance to

be returned

B.1 Not implemented 6.39 % (340/5317) methods having a 0.26 % (340/129984)

condition documented condition

B.2 Validation method 69.31 % (621/896) validation method 0.48 % (621/129984)

does not confirm

B.3 “Get” method 0.52 % (88/17065) methods whose name 0.07 % (88/129984)

does not return suggest that a result

will be returned

B.4 Not answered 1.19 % (45/3783) methods whose name 0.03 % (45/129984)

question suggest Boolean value

as a result

B.5 Transform method 19.33 % (408/2111) transform method 0.31 % (408/129984)

does not return

B.6 Expecting but not 23.35 % (340/1456) methods whose name 0.26 % (340/129984)

getting a collection suggest that a collection

is returned

C.1 Method name and 0.02 % (26/129984) methods 0.02 % (26/129984)

return type are

opposite

C.2 Method signature and 2.53 % (857/33910) documented methods 0.66 % (857/129984)

comment are opposite

D.1 Says one but 5.98 % (2790/46624) the number of attributes 3.41 % (2790/81886)

contains many whose name suggests that

it contains a single object

D.2 Name suggests Boolean 64.31 % (836/1300) then number of attributes 1.02 % (836/81886)

but type does not whose name suggest that

it contains a boolean value

E.1 Says many but contains 69.53 % (1778/2557) attributes whose 2.17 % (1778/81886)

one contains one names suggest plural

F.1 Attribute name and 0.66 % (541/81886) attributes 0.66 % (541/81886)

type are opposite

F.2 Attribute signature and 1.18 % (218/18498) documented attributes 0.27 % (218/81886)

comment are opposite

Empir Software Eng (2016) 21:104–158 123

Moreover, when we consider only the relevant population, the phenomenon appears to be
sufficiently important to justify our interest (Min.: 0.02%; 1st Qu.: 1.19%; Median: 5.98%;
Mean: 16.89%; 3rd Qu.: 19.33%; Max.: 69.53%).

In the rest of this section we present the results of both studies providing both quantitative
(Section 4.2) and qualitative (Section 4.3) analyses.

4.2 Quantitative Analysis

Quantitative analysis pertain all RQs from RQ1 to RQ5. In RQ1 and RQ2 we report the
results from the study with external developers, i.e., Study I, while inRQ3 toRQ5we report
the results from the study with internal developers, i.e., Study II.

RQ1: How Do External Developers Perceive Code Containing LAs?
We first analyzed the developers’ perception of examples without LAs. Figure 3 shows

violin plots (Hintze and Nelson 1998) depicting the developers’ perception of examples
without LAs. Violin plots combine boxplots and kernel density functions, thus providing
a better indication of the shape of the distribution. The dot inside a violin plot represents
the median; a thick line is drawn between the lower and upper quartiles; a thin line is
drawn between the lower and upper tails. As expected, those examples are perceived as
having a median ‘Good’ quality (1st quartile: ‘Neither good nor poor’, median: ‘Good’,
3rd quartile: ‘Very good’).

Figure 4 shows violin plots depicting the developers’ perception of LAs individually for
each kind—having a median ‘Poor’ quality (1st quartile: ‘Poor’, median: ‘Poor’, 3rd quar-
tile: ‘Neither good nor poor’). Mann-Whitney test indicates that the median score provided
for code without LAs is significantly higher than for code with LAs (p − value <0.0001),
with a large (d = 0.66) Cliff’s delta (d) effect size (Grissom and Kim 2005). Overall, if
we consider all LAs, 69 % of the participants perceive LAs as ‘Poor’ or ‘Very Poor’ prac-
tices. However, as Fig. 4 shows, the perception distribution varies among different LAs. For
instance, boxplots—i.e., the inner lines of violin plots—for A.3 (“Set” method returns), B.1
(Not implemented condition), B.3 (“Get” method does not return), B.4 (Not answered ques-
tion), C.2 (Method signature and comment are opposite), and F.2 (Attribute signature and
comment are opposite) have lower quartile at ‘Very Poor’, median at ‘Poor’, and, for all of
them except B.1, higher quartile at ‘Poor’.

Very
Good

Good

Poor

Very
Poor

Neither

G.1 G.2 G.3 G.4 G.5 G.6 G.7 G.8

Fig. 3 Violin plots representing how participants perceive examples without LAs

124 Empir Software Eng (2016) 21:104–158

A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4 B.5 B.6 C.1 C.2 D.1 D.2 E.1 F.1 F.2

Very
Good

Good

Poor

Very
Poor

Neither

Fig. 4 Violin plots representing how participants perceive LAs

We also observe that the perceptions of B.6 (Expecting but not getting a collection),
D.2 (Name suggests Boolean but type does not), E.1 (Says many but contains one), and F.1
(Attribute name and type are opposite) have little variability and are generally ‘Poor’.

On the contrary, the most controversial LAs are A.1 (“Get more than accessor) and
A.2 (“Is” returns more than a Boolean), with lower and higher quartiles being at ‘Poor’
and ‘Good’ respectively. Other controversial LAs are A.4 (Expecting but not getting sin-
gle instance), B.2 (Validation method does not confirm), B.5 (Transform method does not
return), C.1 (Method name and return type are opposite), and D.1 (Says one but con-
tains many), with lower and higher quartiles being at ‘Poor’ and ‘Neither poor nor good’
respectively.

In addition to violin plots, we show proportions of the LA perception by grouping, on
the one hand, ‘Poor’ and ‘Very Poor’ judgements, and on the other hand, ‘Good’ and ‘Very
Good’ ones. Results are reported in Fig. 5, where we sort LAs based on the proportion of
participants that perceive them as ‘Poor’ or ‘Very Poor’. We observe that, for all but three

Fig. 5 Percentage of participants perceiving LAs as ‘Poor’ or ‘Very Poor’

Empir Software Eng (2016) 21:104–158 125

LAs, majority of participants perceive LAs as ‘Poor’ or ‘Very Poor’. The three exceptions
are A.1 (“Get” more than accessor), A.4 (Expecting but not getting single instance), and
D.1 (Says one but contains many), for all of which the percentage of participants perceiving
them as ‘Poor’ or ‘Very Poor’ is 36 %, 37 %, and 39 %, respectively. These are the three
LAs having a median perception of ‘Neither poor nor good’ (see Fig. 4).

RQ2: Is the Perception of LAs Impacted by Confounding Factors?
We grouped the results of the participants according to their (i) main programming

language (Java/C# or C/C++), (ii) occupation (student vs. professional), and (iii) years
of programming experience (< 5 or ≥ 5 years). The grouping concerning the main
programming language is motivated by the different way the languages handle Boolean
expressions i.e., in C/C++ an expression returning a non-null or non-zero value is eval-
uated as true, whereas Java and C# do not perform this cast directly. For this reason, our
conjecture is that developers who are used to C/C++ would consider acceptable that
a method/attribute that should return/contain a Boolean could instead return/contain an
integer.

We performed a Mann-Whitney test to compare the median perception of participants in
each group. Results regarding the main programming language and the experience of partic-
ipants indicate no significant difference (p-value>0.05) with a negligible Cliff’s delta effect
size (d < 0.147). We obtained consistent results—i.e., no statistically significant differ-
ences when analyzing each LA separately—thus, neither the main programming language
nor the experience affect the way participants perceive LAs. Only when considering LAs
separately, the difference between the rating given by professionals and students is statisti-
cally significant for D.2—i.e., Name suggests Boolean but type does not, p−value = 0.049,
with a medium effect size (d = 0.40)—and a marginally significant for E.1—i.e., Says many
but contains one, p − value = 0.053, with a medium effect size (d = −0.39). Thus, we
conclude that developers’ perceptions of LAs are not impacted by their main programming
language, occupation, or experience.

With the remaining three research questions we investigate the perception of LAs of
internal developers—i.e., we report the results of Study II.

RQ3: How Do Internal Developers Perceive LAs?
Regarding the general opinion of participants (i.e., answers of SII-q0), 51 % of the

times participants perceived LAs as ‘Poor’ or ‘Very poor’. This percentage is lower than
the one obtained in Study I with external developers, i.e., 69 %. In our understanding—
and also according to what we observed from developers’ comments (see Section 4.3)—
such a decrease in the proportion may sometimes be due to the context in which LAs
occur where internal developers perceive LAs as acceptable.

RQ4: What are the Typical Actions to Resolve LAs?
Participants would undertake an action in 56 % of the cases, and in 44 % of the

cases they believe that the code should be left ‘as is’. We discuss the reasons behind
these two choices—as reported by the participants—and illustrate them with examples
in Section 4.3.14

14We do not report project names with the examples to avoid disclosing the confidentiality of the provided
answers.

126 Empir Software Eng (2016) 21:104–158

Overall, the kind of changes that participants are willing to undertake to reduce the
effect of LAs fall into one of the following (or a combination of those) categories:
renaming, change15 in comments, and change in implementation. In 42 % of the cases,
the solution involved renaming, 14 % involved a change of comments, and 11 % a
change in the implementation. Resolving an LA may involve changes from the different
categories.

Ten percent (5 out of 47) of the LAs shown to internal developers during the study have
been removed in the corresponding projects after we pointed them out. The removed exam-
ples were instances of A.2 (“Is” returns more than a Boolean), A.3 (“Set” method returns),
B.2 (Validation method does not confirm), and B.4 (Not answered question). We report
the examples in the corresponding LA tables when discussing the perception of internal
developers.

Clearly, one must consider that whether or not developers would actually undertake an
action depends on other factors such as the potential impact on other projects, the risk of
introducing a bug, and the high effort that is required (Arnaoudova et al. 2014). Sometimes,
developers are reluctant to rename programming entities that belong to non-local context
(e.g., public methods) or that are bound at runtime (e.g., when classes are loaded by name
or methods are bound by name). We believe that some of those factors can be mitigated if
LAs are pointed out as developers write source code thus, for example, removing or limiting
the impact on other code entities.

RQ5: What Causes LAs to Occur?
Regarding the possible causes of LAs, we limit our analysis only to cases where the

participants wrote the code containing the LAs and cases where they were knowledgeable
of that code, e.g., because they were maintaining it. The reported causes and the number
of times they occur are as follows (ordered by decreasing order of frequency):

1. Evolution (8): The code was initially consistent, but at some point an inconsistency
was introduced, hence causing the LA.

2. Developers’ decision (7): It is a design choice or simply personal preference.

3. Not enough thought (5): Developers did not carefully choose the naming when
writing the code.

4. Reuse (2): Code was reused from elsewhere without properly adapting the naming.

4.3 Qualitative Analysis

For each type of LA, we first briefly summarize its definition and we provide the ratio-
nale behind it. Then, we illustrate it using the example we showed to external developers
(i.e., in Study I)—examples coming from real software projects— followed by possible
consequences and solutions. Next, we highlight the perception of external and internal
developers. Finally, we report the causes of LA introduction—when reported by the internal
developers.

15A change may be one or more of the following: modification, addition, or removal.

Empir Software Eng (2016) 21:104–158 127

4.3.1 Summary of Developers’ Perception on LAs

We can summarize what we have learned from the studies on LAs perceptions as follows:

Does more than what it says (A): Methods that do more than what they say seem to be
perceived acceptable in some situations by both external and internal developers. In such

128 Empir Software Eng (2016) 21:104–158

Empir Software Eng (2016) 21:104–158 129

130 Empir Software Eng (2016) 21:104–158

situations the surveyed developers tend to infer the behavior suggested by the name.
Sometimes such inference is wrong and may lead to faults. This was the case with the
example of “Is” returns more than a Boolean (A.2) where 3 of the external developers

Empir Software Eng (2016) 21:104–158 131

public int isValid() {
final long currentTime = System.currentTimeMillis();
if (currentTime <= this.expires) {

// The delay has not passed yet -
// assuming source is valid.
return SourceValidity.VALID;

}
// The delay has passed, prepare for the next interval.
this.expires = currentTime + this.delay;
return this.delegate.isValid();

}

Fig. 6 “Is” returns more than a Boolean (A.2)

public Dimension setBreadth(final Dimension target, final int source) {
if (this.orientation == Orientation.VERTICAL) {

return new Dimension(source, (int) target.getHeight());
} else {

return new Dimension((int) target.getWidth(), source);
}

}

Fig. 7 “Set” method returns (A.3)

Fig. 8 Changes applied to resolve an occurrence of A.3—setAnimationView

/**

@return the expansion state for a tree

public List getExpansion() {
return this.fExpansion;

.

/

* Returns the expansion state for a tree
*
*
*

}

Fig. 9 Expecting but not getting single instance (A.4)

132 Empir Software Eng (2016) 21:104–158

Empir Software Eng (2016) 21:104–158 133

134 Empir Software Eng (2016) 21:104–158

wrongly mapped the return values for method isValid and assumed 2 possible return
values whereas in reality there are 3.

Says more than what it does (B): Developers are less lenient with methods that say
more than what they do. LAs from this category are perceived often as unacceptable as

Empir Software Eng (2016) 21:104–158 135

/**

@param object The object to get the children for.

public Object[] getChildren(final Object o) {
return new Object[0];

* Returns the children of this object. When this object is
* displayed in a tree, the returned objects will be this
* element's children. Returns an empty array if this object
* has no children.
*
*
*/

}

Fig. 10 Not implemented condition (B.1)

public void checkCollision(final String before,
final String after) {

final boolean collision = before != null
&& before.equals(this._shortName) || after != null
&& after.equals(this._shortName);

if (collision) {
if (this._longName == null) {

this._longName = this.getLongName();
 }

this._displayName = this._longName;
}

}

Fig. 11 Validation method does not confirm (B.2)

protected void getMethodBodies(
final CompilationUnitDeclaration unit,
final int place) {

// fill the methods bodies in order for the code
// to be generated
if (unit.ignoreMethodBodies) {
 unit.ignoreFurtherInvestigation = true;

return; // if initial diet parse did not work,
// no need to dig into method bodies.

}
if (place < this.parseThreshold) {

return; // work already done ...
}
// real parse of the method....
this.parser.scanner

.setSourceBuffer(
unit.compilationResult.compilationUnit
.getContents());

if (unit.types != null) {
for (int i = unit.types.length; --i >= 0;) {

unit.types[i].parseMethod(this.parser, unit);
 }
}

}

Fig. 12 “Get” method does not return (B.3)

136 Empir Software Eng (2016) 21:104–158

the expectations resulting from the method’s name/documentation are not fulfilled—as
for method isValidwith void return type, example of Not answered question (B.4)—
or it is unclear how to obtain the result—as for method getMethodBodieswith void
return type, example of “Get” method does not return (B.3).

Does the opposite (C): Developers perceive as poor practices methods that do the oppo-
site of what they say. When the inconsistency is between the method’s name and return
type developers try to infer the actual behavior from the method’s comments—which

Empir Software Eng (2016) 21:104–158 137

138 Empir Software Eng (2016) 21:104–158

Empir Software Eng (2016) 21:104–158 139

140 Empir Software Eng (2016) 21:104–158

public void isValid(final Object[] selection,
final StatusInfo res) {

// only single selection
if (selection.length == 1

&& selection[0] instanceof IFile) {
 res.setOK();
} else {
 res.setError(""); //$NON-NLS-1$
}

}

Fig. 13 Not answered question (B.4)

public void javaToNative(final Object object,
final TransferData transferData) {

final byte[] check =
LocalSelectionTransfer.TYPE_NAME.getBytes();

super.javaToNative(check, transferData);
}

Fig. 14 Transform method does not return (B.5)

public boolean getStats() {
return SAXParserBase._stats;

}

Fig. 15 Expecting but not getting a collection (B.6)

/**

@param w the control
@return an object capturing the enable/disable state

public static ControlEnableState disable(Control w) {
return new ControlEnableState(w);

l
s

.
*

* Saves the current enable/disable state of the given contro
* and its descendents in the returned object; the control
* are all disabled

*
*
*/

}

Fig. 16 Method name and return type are opposite (C.1)

Empir Software Eng (2016) 21:104–158 141

they correctly did for the particular examples that we showed. However, developers are
less lenient when the inconsistency is between the method’s signature and comments as
they wouldn’t know which one to trust.

Contains more than what it says (D): The surveyed developers are more lenient with
attributes that contain more than what they say when they feel they need more context—
e.g., for Says one but contains many (D.1) some developers explained that whether it is a
poor practice would depend on the context and in the particular example the attribute dec-
laration is not sufficient to understand the intent. Thus, developers would need to browse
the source code and possibly other sources of documentation to clarity the attribute’s
intent. However developers perceived as poor practice attributes whose Name suggests

142 Empir Software Eng (2016) 21:104–158

Boolean but type does not. We suspect that examples of LAs in this category may be
more likely to increase comprehension effort.

Says more than what it contains (E): Attributes that say more than what they contain
are perceived more severely by external developers; internal developers are more lenient.

Empir Software Eng (2016) 21:104–158 143

Thus, although LAs in this category may impede comprehension of newcomers—they
may have difficulties to infer the implicit aggregation function—it seems that developers
familiar with the code simply get used to and have less issues with those LAs.

Contains the opposite (F): Attributes that contain the opposite of what they say are per-
ceived as poor practices by the majority of the surveyed developers, especially when

144 Empir Software Eng (2016) 21:104–158

the inconsistency occurs between the attribute’s signature and comments—similar to
methods that do the opposite of what they say.

4.4 LAs Perceived as Particularly Poor

Based on the two studies with developers we distill a subset of 11 LAs (see Table 8) that are
perceived by external (column SI) and–or internal (column SII) developers as particularly
poor practices. From Study I, we consider that LAs are perceived as particularly poor when
they are perceived as ‘Poor’ or ‘Very poor’ by at least 75 % of the external developers. As

Empir Software Eng (2016) 21:104–158 145

proportions for Study II are not meaningful—due to the limited number of data points—
we consider that LAs are perceived as particularly poor when there is a full agreement
among internal developers—i.e., all internal developers perceived them as ‘Poor’ or ‘Very
poor’—or when internal developers took an action to resolve them.

146 Empir Software Eng (2016) 21:104–158

Empir Software Eng (2016) 21:104–158 147

/**

public boolean isNavigateForwardEnabled() {
boolean enabled = false;
if (this._isForwardEnabled == 1) {
 enabled = true;
} else {

if (this._isForwardEnabled != 0) {
enabled =

this.navigateForward(false) != null;
 }
}
return enabled;

* Returns true if this listener has a target for a
* back navigation. Only one listener needs to return
* true for the back button to be enabled.
*/

}

Fig. 17 Method signature and comment are opposite (C.2)

Vector _target;

Fig. 18 Says one but contains many (D.1)

int[] isReached;

Fig. 19 Name suggests boolean but type does not (D.2)

private static boolean _stats = true;

Fig. 20 Says many but contains one (E.1)

MAssociationEnd start = null;
Fig. 21 Attribute name and type are opposite (F.1)

/**

public final static String INCLUDE_NAME_DEFAULT

,
c

* Configuration default exclude pattern
* ie .*\/@href|.*\/@action|frame/@sr
*/

= ".*/@href=|.*/@action=|frame/@src=";

Fig. 22 Attribute signature and comment are opposite (F.2)

148 Empir Software Eng (2016) 21:104–158

Table 8 LAs perceived as particularly poor

SI SII

A.2 “Is” returns more than a Boolean �
A.3 “Set” method returns � �
B.2 Validation method does not confirm �
B.3 “Get” method does not return �
B.4 Not answered question � �
B.6 Expecting but not getting a collection �
C.2 Method signature and comment are opposite �
D.2 Name suggests Boolean but type does not �
E.1 Says many but contains one �
F.1 Attribute name and type are opposite � �
F.2 Attribute signature and comment are opposite � �

There are three LAs that both external and internal developers find particularly unac-
ceptable. Those are LAs concerning the state of an entity (i.e., attributes) and they belong to
the “says more than what it does” (B) and “contains the opposite” (F) categories—i.e., Not
answered question (B.4), Attribute name and type are opposite (F.1), and Attribute signature
and comment are opposite (F.2).

In addition, internal developers appear to be concerned with “Is” returns more than a
Boolean (A.2). External developers are more lenient with this practice as only 60 % of them
consider it as poor. However, we believe that A.2 may cause comprehension problems as 3
of the external developers that perceive this practice as good wrongly assumed the return
values.

Finally, we observe that external developers perceive as particularly unacceptable LAs
from all categories.

5 Threats to Validity

Threats to construct validity concern the relation between theory and observation, and
they are mainly related to the accuracy of the measurements we performed to address
our research questions. We manually validated the instances of the LAs we showed to
the participants, and we selected a representative sample of the different kinds of LAs.
Clearly, there is always a risk that the developer’ perception is bound to the particular
instance of an LA rather than to its category. However, we limited this threat by collecting
comments helping us to understand whether the LAs are indeed a general problem—
which we found most of the times to be the case—or whether, instead, it depends on the
context.

Regarding the measurement of the participants’ perception, we used Likert scale
(Oppenheim 1992), which helps to aggregate and compare results from multiple partici-
pants.

Threats to internal validity concern factors that could have influenced our results. When
asking participants to evaluate code snippets, we formulate a specific question thus possibly
affecting the internal validity of the study as participants may guess the expected answer

Empir Software Eng (2016) 21:104–158 149

(Shull et al. 2007). To cope with this threat we also evaluate a set of examples not containing
LAs and show a statistically significant difference in developers’ evaluations. In Study I,
we analyzed the effect of the experience, the main programming language, and occupation
of the participants. Another threat to validity is that external developers are only provided
with code snippets and thus unaware of the context, i.e., the particular project that a snippet
belongs to. Providing context may lead to more lenient evaluations by external developers
as they may resolve the inconsistencies from other places in the code (e.g., from the way the
entity is used), which could bias the perception of the practice itself. Also, as participants in
Study I are external to the project, the lack of domain knowledge may have impacted their
perception. We believe that this threat is limited as LAs concern general inconsistencies and
thus are mainly domain independent.

Due to the limited number of data points, we did not perform any particular analysis in
Study II, where we discussed results qualitatively rather than quantitatively. Our results may
have been impacted by the fact that participants in Study II only validate a subset of the
LAs. More data points for each LA may produce different results. More important, we have
conducted the two studies to gain insights from different perspectives, i.e., both external
and internal developers. A threat for Study II is that internal developers could have been
more lenient with their own code. We mitigated this threat by asking them to motivate their
answer and, in any case, also for Study II we found a pretty high proportion of poor/very
poor perception of LAs.

As shown in Table 3 Note that the majority of the participants are native French speak-
ers and that only for 13 % of the participants are native English speakers. However, we
believe that this threat to validity is limited as our questions relate to basic grammar rules
(e.g., singular/plural) and we analyze the justification for each question to ensure that the
participants properly understood the question.

Threats to external validity concern the generalizability of our findings. In terms of
objects, the two studies have been conducted on three and eight systems respectively.
Although we cannot really ensure full diversity (Nagappan et al. 2013), as explained in Sec-
tion 3, the chosen systems are pretty different in terms of size and application domain. In
terms of subjects, the studies involved both students and professionals (from industry and
from the open-source community), as well as developers of projects from which the LAs
were detected and developers of other projects.

6 Related Work

This section discusses related work, concerning (i) the relationship between source code lex-
icon and software quality (Section 6.1), (ii) the identification and analysis of lexicon-related
inconsistencies (Section 6.2), and (iii) empirical studies aimed at investigating developers’
perception of code smells (Section 6.3).

6.1 Role of Source Code Identifiers in Software Quality

Many authors have shown that the quality of the lexicon is an important factor for program
comprehensibility.

As discussed in the introduction, Brooks (1983) considers identifiers and comments as
part of the internal indicators for the meaning of a program.

Shneiderman (1977) presents a syntactic/semantic model of programmer behavior. The
syntactic knowledge about a program is built through a perception process; it is precise,

150 Empir Software Eng (2016) 21:104–158

language dependent and easily forgettable. The semantic knowledge is built through cog-
nition; it is language independent and concerns important concepts at different levels of
details. On the basis of several experiments, Shneiderman and Mayer (1975) observed a
significantly better program comprehension by subjects with commented programs. Higher
number of subjects located bugs in commented programs compared to not commented
programs, although the difference is not statistically significant. They argue that program
comments and mnemonic identifiers simplify the conversion process from the program
syntax to the program internal semantic representation.

Chaudhary and Sahasrabuddhe (1980) argue that the psychological complexity of a
program—i.e., the characteristics that make a program difficult to be understood—is an
important aspect of program quality. They identify several features that contribute to the
psychological complexity one of which is termed “meaningfulness”. They argue that mean-
ingful variable names and comments facilitate program understanding as they facilitate
the relation between the program semantics and the problem domain. An experiment with
students using different versions of FORTRAN programs—with and without meaningful
names—confirms the hypothesis.

Weissman (1974a) also considers that the program form—e.g., comments, choice of
identifiers, paragraphing—is a an important factor that affects program complexity, in
particular suggesting that meaningless and incorrect comments can be harmful and that
mnemonic names of reasonable length ease program understanding. However empirical
evidence showed that comments lead to faster but more error prone hand simulation of a
program (Weissman 1974a). Sheil (1981) reviews studies on the psychological research on
programming, and argues that the ineffectiveness of the research in the domain is partly due
to the unsophisticated experimental techniques.

Other authors have focused their attention on source code identifiers and their importance
for various tasks in software engineering. Among them, Caprile and Tonella (1999,2000),
Merlo et al. (2003), and Anquetil and Lethbridge (1998) show that identifiers carry impor-
tant source of information and that identifiers are often the starting point for program
comprehension. Deissenbock and Pizka (2005) provided guidelines for the production of
high-quality identifiers. Later, Lawrie et al. (2006, 2007) performed an empirical study to
assess the quality of source code identifiers, and suggest that the identification of words
composing identifiers could contribute to a better comprehension.

6.2 Identifying Inconsistencies in the Lexicon

Previous studies have shown that poor source code lexicon correlates with faults (Abebe
et al. 2012), and negatively affects concept location (Abebe et al. 2011).

Abebe and Tonella (2011) extract concepts and relations between concepts from program
identifiers to build an ontology. They use the ontology to help developers in choosing iden-
tifiers consistent with the concepts already used in the system (Abebe and Tonella 2013).
To this aims, given partially written identifiers, they suggest and rank candidate comple-
tions and replacements. We complement the above work, as Abebe and Tonella focus on the
quality of the lexicon, whereas we identify inconsistencies among identifiers, source code,
and comments.

De Lucia et al. (2011) proposed an approach and tool—named COCONUT—to ensure
consistency between the lexicon of high-level artifacts and of source code. In their approach,
the inconsistent lexicon is measured in terms of textual similarity between high-level arti-
facts traced to the code, and the code itself. In addition, COCONUT uses the lexicon of
high-level artifacts to suggest appropriate identifiers.

Empir Software Eng (2016) 21:104–158 151

Tan et al. (2007, 2011, 2012) proposed several approaches to detect inconsistencies
between code and comments. Specifically, @ICOMMENT (Tan et al. 2007) detects lock-
and call-related inconsistencies; the validation made by developers confirmed 19 of the
detected inconsistencies. @ACOMMENT (Tan et al. 2011) detects synchronization inconsis-
tencies related to interrupt context, and the evaluation by developers confirmed 7 previously
unknown bugs. @TCOMMENT infers properties form Javadoc related to null values and
exceptions; then, it generates tests cases by searching for violations of the inferred prop-
erties. Also in this case, Tan et al. reported the detected inconsistencies to the developers
who indeed resolved 5 of them. Zhong et al. (2011) automatically generate specifications
from API documentation concerning resource usage, namely creation, lock, manipulation,
unlock, and closure. They contacted developers of the open-source projects who confirmed
5 previously unknown defects.

While the approaches described above address inconsistencies specific to certain source
code aspect/implementation technology—i.e., lock/call, null values/exceptions, synchro-
nization, and resource usage—our approach can be considered as complementary as it deals
with generic naming and commenting issues that can arise in OO code, and specifically in
the lexicon and comments of methods and attributes.

6.3 Developers’ Perception of Code Smells

Yamashita and Moonen (2013) performed a study—involving 85 professionals—with the
aim of investigating the perception of code smells, in particular, the degree of awareness
of code smells, their severity, and the usefulness of automatic tool support. Surprisingly,
23 of the participants (32 %) were not aware of such code smells. From the remaining
50 participants, i.e., those that have at least heard of anti-patterns and code smells, only 3
participants (6 %) were not concerned about the presence of code smells. 47 of the partic-
ipants (94 %) were concerned at a different level—10 (20 %) were slightly concerned, 11
(22 %) were somewhat concerned, 19 (38 %) were moderately concerned, and 7 (14 %)
were extremely concerned. Yamashita and Moonen performed categorical regression analy-
sis and found that the more familiar participants are with anti-patterns and code smells, the
more concerned they are. Palomba et al. (2014) also studied developers’ perceptions of code
smells. They evaluated examples of 12 code smells found in 3 open-source Java projects
from the perspective of 34 external and internal developers. Their results show that there are
some code smells that developers do not perceive as poor practices. They also observed that
for several code smells experienced developers are more concerned than less experienced
developers.

We share with the above works the interest in how developers perceive poor practices.
The main difference between previous work and our work is that while they evaluate
practices that have been out there more than a decade, we study practices with which devel-
opers were not at all familiar with Study I or just introduced to Study II. This could be
one of the reasons why a lower number of participants perceive LAs as ‘Poor’ or ‘Very
Poor’—69 % and 51 % for Study I and Study II respectively—as opposed to anti-patterns
and code smells—94 % when only considering participants familiar with anti-patterns
and code smells. Also, while they evaluate the awareness and the concern of profession-
als about the code smells in general, we focus on evaluating the perception of developers
of LAs i) through the mean of concrete examples thus allowing us to also investigate
possible solutions, and ii) from both perspectives i.e., newcomers (Study I), and internal
developers (Study II).

152 Empir Software Eng (2016) 21:104–158

7 Conclusion and Future Work

This work aimed at investigating the developers’ perception of Linguistic Anti-patterns
(LAs)—i.e., “poor practices in the naming, documentation, and choice of identifiers in
the implementation of an entity, thus possibly impairing program understanding”—and the
extent to which they suggest that such LAs need to be removed. The studies concerned a
catalog of 17 types of LAs—defined in our previous work (Arnaoudova et al. 2013)—that
we conjecture to be poor practices. In this paper, we rely on the opinion of developers as
an indication of the quality of source code containing such poor practices with the aim of
confirming or refuting our conjecture.

First, we conducted a study involving 30 external developers among graduate stu-
dents and professional, i.e., people that did not participate to the development of the
system in which the LAs were detected and unaware of the notion of LAs. They pro-
vided information about their perception of LAs found in 3 Java open-source projects,
and the majority of them (69 %) indicated that such LAs are poor or very poor
practices. Overall, developers perceived as more serious ones the instances where the
inconsistency involved both method signature and comments. The perception of external
developers is important as 1) it provides an indication of the difficulties that new-
comers may encounter understanding code that contains LAs, and 2) it is an unbiased
opinion.

In a second study we asked 14 (internal) developers of 7 open-source Java/C++ projects
and one C++ commercial system to provide us their perception of LAs we found in the
code of their projects. Internal developers provides us 1) with an indication whether code
containing LAs is problematic even for people that are familiar with the project and 2) with
insights on why LAs occurred in the code and how can they be refactored. 51 % of respon-
dents evaluated LAs as poor or very poor practices. The percentage is lower compared to the
one observed with external developers, as in some cases internal developers perceive LAs
acceptable in the particular context. When asked why the LAs were possibly introduced—
and developers had elements to answer—they pointed out maintenance activities—e.g.,
done by developers different from the original code authors—that deteriorated the lexicon
quality, or lack of attention to naming conventions/comments. For a conspicuous proportion
of LAs (56 %) developers highlighted that such LAs should be removed and, at the time
of writing this paper, internal developers had already resolved 10 % of the cases contain-
ing LAs that we pointed out. As a result of the studies with developers, we distill a subset
of LAs i) that are perceived as poor practices by at least 75 % of the external developers,
ii) that are perceived as poor practices by all internal developers, or iii) for which internal
developers took an action to remove it. There are three LAs that both external and internal
developers agree on and perceived as particularly poor. Those are LAs concerning the state
of an entity (i.e., attributes) and they belong to the “says more than what it does” (B) and
“contains the opposite” (F) categories—i.e., Not answered question (B.4), Attribute name
and type are opposite (F.1), and Attribute signature and comment are opposite (F.2). Exter-
nal developers found particularly unacceptable (i.e., more than 80 % of them perceived as
poor or very poor) the LAs with a clear dissonance between code behavior and its lexicon—
i.e., “Get” method does not return (B.3), Not answered question (B.4), Method signature
and comment are opposite (C.2), and Attribute signature and comment are opposite (F.2).
Given the extremely high level of agreement on those LAs, our results encourage the use of
a recommender tool highlighting LAs, like such as the Checkstyle extension we developed
and described in Section 2.

Empir Software Eng (2016) 21:104–158 153

Clearly, one must consider that, whether or not developers could remove LAs also
depends on the impact that this can have on the whole system. In other words, developers
are less prone to remove LAs if this has a large impact on the code, as such change can be
too risky. Instead, it can be more useful to point out LAs as developers write source code—
e.g., on-the-fly using our LINGUISTIC ANTIPATTERN DETECTOR (LAPD) CHECKSTYLE

PLUGIN— thus removing or limiting the impact on other code entities.
Work-in-progress includes: (i) proposing automatic refactorings to resolve LAs, and (ii)

performing a study involving developers using (or not) the LAPD CHECKSTYLE PLUGIN,
with the aim of observing to what extent the recommendations will be followed, and to what
extent will the code lexicon be improved.

Acknowledgments The authors would like to thank the participants to the two studies for their precious
time and effort. They made this work possible.

Appendix

A Detection

A.1 - “Get” more than accessor: Find accessor methods by identifying methods whose
name starts with ‘get’ and ends with a substring that corresponds to an attribute in the
same class and where the attribute’s declared type and the accessor’s return type are
the same. Then, identify those accessors that are performing more actions than return-
ing the corresponding attribute. Cases where the attribute is set before it is returned
(i.e., Proxy and Singleton design patterns) should not be considered as part of this LA.
For a detection built on top of an Abstract Syntax Tree (AST) expressions other than a
return statement—where the attribute is returned—can be allowed only if they are child
of a conditional check for null value. Other measures for complexity, such as LOC or
McCabe’s Cyclomatic Complexity, can be used for a simpler but less accurate detection.

A.2 - “Is” returns more than a Boolean: Find methods starting with “is” whose return
type is not Boolean.

A.3 - “Set” method returns: Find modifier methods (or more generally methods whose
name starts with “set”) and whose return type is different from void.

A.4 - Expecting but not getting single instance: Find methods returning a collection
(e.g., array, list, vector, etc.) but whose name ends with a singular noun and does not
contain a word implying a collection (eg., array, list, vector, etc.).

B.1 - Not implemented condition: Find methods with at least one conditional sentence
in comments but with no conditional statements in the implementation (e.g., no control
structures or ternary operators).

B.2 - Validation method does not confirm: Find validation methods (e.g., method
names starting with “validate”, “check”, “ensure”) whose return type is void and that
do not throw an exception.

B.3 - “Get” method does not return: Find methods where the name suggests a return
value (e.g., names starting with “get”, “return”) but where the return type is void.

154 Empir Software Eng (2016) 21:104–158

B.4 - Not answered question: Find methods whose name is in the form of predicate (e.g.,
starts with “is”, “has”) and whose return type is void.

B.5 - Transform method does not return: Find methods whose name suggests a trans-
formation of an object, (e.g., toSomething, source2target) but its return type is
void.

B.6 - Expecting but not getting a collection: The method name suggests that it returns
(e.g., starts with “get”, “return”) multiple objects (e.g., ends with a plural noun), however
the return type is not a collection.

C.1 - Method name and return type are opposite: Find methods where the name and
return type contain antonyms.

C.2 - Method signature and comment are opposite: Find methods whose name or
return type have an antonym relation with its comment.

D.1 - Says one but contains many: Find attributes having a name ending with a singular
noun and having a collection as declaring type.

D.2 - Name suggests Boolean but type does not: Find attributes whose name is struc-
tured as a predicate, i.e., starting with a verb in third person (e.g., “is”, “has”) or ending
with a verb in gerund/present participle, but whose declaring type is not Boolean.

E.1 - Says many but contains one: Find attributes having a name ending with a plural
noun, however their type is not a collection neither it contains a plural noun.

F.1 - Attribute name and type are opposite: Find attributes whose name and declaring
type contain antonyms.

F.2 - Attribute signature and comment are opposite: Find attributes whose name or
declaring type have an antonym relation with its comment.

References

Abbes M, Khomh F, Guéhéneuc YG, Antoniol G (2011) An empirical study of the impact of two antipatterns,
Blob and Spaghetti Code, on program comprehension. In: Proceedings of the European Conference on
Software Maintenance and Reengineering (CSMR), pp 181–190

Abebe S, Tonella P (2011) Towards the extraction of domain concepts from the identifiers. In: Proceedings
of the Working Conference on Reverse Engineering (WCRE), pp 77–86

Abebe S, Tonella P (2013) Automated identifier completion and replacement. In: Proceedings of the
European Conference on Software Maintenance and Reengineering (CSMR), pp 263–272

Abebe SL, Haiduc S, Tonella P, Marcus A (2011) The effect of lexicon bad smells on concept location in
source code. In: Proceedings of the International Working Conference on Source Code Analysis and
Manipulation (SCAM), pp 125–134

Abebe SL, Arnaoudova V, Tonella P, Antoniol G, Guéhéneuc YG (2012) Can lexicon bad smells improve
fault prediction? In: Proceedings of the Working Conference on Reverse Engineering (WCRE), pp 235–
244

Anquetil N, Lethbridge T (1998) Assessing the relevance of identifier names in a legacy software system.
In: Proceedings of the International Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), pp 213–222

Arnaoudova V, Di Penta M, Antoniol G, Guéhéneuc YG (2013) A new family of software anti-patterns:
Linguistic anti-patterns. In: Proceedings of the European Conference on Software Maintenance and
Reengineering (CSMR), pp 187–196

Arnaoudova V, Eshkevari L, Di Penta M, Oliveto R, Antoniol G, Guéhéneuc YG (2014) Repent: Analyzing
the nature of identifier renamings. IEEE Trans Softw Eng (TSE) 40(5):502–532

Brooks R (1983) Towards a theory of the comprehension of computer programs. In J Man-Machine Stud
18(6):543–554

Brown WJ, Malveau RC, Brown WH, McCormick III HW, Mowbray TJ (1998a) Anti patterns: refactoring
software, architectures, and projects in crisis, 1st edn. Wiley, New York

Empir Software Eng (2016) 21:104–158 155

Brown WJ, Malveau RC, HWM III, Mowbray TJ (1998b) AntiPatterns: refactoring software, architectures,
and projects in crisis. Wiley, New York

Caprile B, Tonella P (1999) Nomen est omen: Analyzing the language of function identifiers. In: Proceedings
of Working Conference on Reverse Engineering (WCRE), pp 112–122

Caprile B, Tonella P (2000) Restructuring program identifier names. In: Proceedings of the International
Conference on Software Maintenance (ICSM), pp 97–107

Chaudhary BD, Sahasrabuddhe HV (1980) Meaningfulness as a factor of program complexity. In: Proceed-
ings of the ACM Annual Conference, ACM, ACM ’80, pp 457–466

De Lucia A, Di Penta M, Oliveto R (2011) Improving source code lexicon via traceability and information
retrieval. IEEE Trans Softw Eng 37(2):205–227

Deissenbock F, Pizka M (2005) Concise and consistent naming. In: Proceedings of the International
Workshop on Program Comprehension (IWPC), pp 97–106

Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley, MA
Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object oriented

software. Addison-Wesley, Boston
Glaser BG (1992) Basics of grounded theory analysis. Sociology Press
Grissom RJ, Kim JJ (2005) Effect sizes for research: a broad practical approach, 2nd edn. Lawrence Earlbaum

Associates
Groves RM, Fowler Jr FJ, Couper MP, Lepkowski JM, Singer E, Tourangeau R (2009) Survey methodology,

2nd edn. Wiley, New York
Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52(2):181–184
Jedlitschka A, Pfahl D (2005) Reporting guidelines for controlled experiments in software engineering. In:

International symposium on empirical software engineering
Khomh F, Di Penta M, Guéhéneuc YG (2009) An exploratory study of the impact of code smells on software

change-proneness. In: Proceedings of the working conference on reverse engineering (WCRE), pp 75–84
Khomh F, Di Penta M, Guéhéneuc YG, Antoniol G (2012) An exploratory study of the impact of antipatterns

on class change- and fault-proneness. Empir Softw Eng 17(3):243–275
Kitchenham B, Pfleeger S, Pickard L, Jones P, Hoaglin D, El Emam K, Rosenberg J (2002) Preliminary

guidelines for empirical research in software engineering. IEEE Trans Softw Eng (TSE) 28(8):721–734
Lawrie D, Morrell C, Feild H, Binkley D (2006) What’s in a name? a study of identifiers. In: Proceedings of

the International Conference on Program Comprehension (ICPC), pp 3–12
Lawrie D, Morrell C, Feild H, Binkley D (2007) Effective identifier names for comprehension and memory.

Innovations Syst Softw Eng 3(4):303–318
Merlo E, McAdam I, DeMori R (2003) Feed-forward and recurrent neural networks for source code informal

information analysis. J Softw Maint 15(4):205–244
Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41
Moha N, Guéhéneuc YG, Duchien L, Le Meur AF (2010) DECOR: a method for the specification and

detection of code and design smells. IEEE Trans Softw Eng (TSE’10) 36(1):20–36
Nagappan M, Zimmermann T, Bird C (2013) Diversity in software engineering research. In: Proceed-

ings of the joint meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), pp 466–476

Oppenheim AN (1992) Questionnaire design, interviewing and attitude measurement. Pinter, London
Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2013) Detecting bad smells

in source code using change history information. In: Proceedings of the international conference on
automated software engineering (ASE), pp 268–278

Palomba F, Bavota G, Penta MD, Oliveto R, Lucia AD (2014) Do they really smell bad? A study on develop-
ers’ perception of code bad smells. In: International conference on software maintenance and evolution
(ICSME), p. to appear

Parsons J, Saunders C (2004) Cognitive heuristics in software engineering: applying and extending anchoring
and adjustment to artifact reuse. IEEE Trans Softw Eng (TSE) 30(12):873–888

Prechelt L, Unger-Lamprecht B, Philippsen M, Tichy W (2002) Two controlled experiments assessing the
usefulness of design pattern documentation in program maintenance. IEEE Trans Softw Eng (TSE)
28(6):595–606

Raţiu D, Ducasse S, Girba T, Marinescu R (2004) Using history information to improve design flaws detec-
tion. In: Proceedings of the European conference on software maintenance and reengineering (CSMR),
pp 223–232

Sheil BA (1981) The psychological study of programming. ACM Comput Surv (CSUR) 13(1):101–120
Shneiderman B (1977) Measuring computer program quality and comprehension. Int J Man-Machine Stud

9(4):465–478

156 Empir Software Eng (2016) 21:104–158

Shneiderman B, Mayer R (1975) Towards a cognitive model of progammer behavior, Tech Rep, vol 37.
Indiana University, Bloomington

Shull F, Singer J, Sjøberg DI (eds) (2007) Guide to advanced empirical software engineering. Springer, New
York

Strauss AL (1987) Qualitative analysis for social scientists. Cambridge Univsersity Press
Takang A, Grubb PA, Macredie RD (1996) The effects of comments and identifier names on program

comprehensibility: an experiential study. J Program Lang 4(3):143–167
Tan L, Yuan D, Krishna G, Zhou Y (2007) /*iComment: bugs or bad comments?*/, Proceedings of the ACM

SIGOPS Symposium on Operating Systems Principles (SOSP) 41(6):145–158
Tan L, Zhou Y, Padioleau Y (2011) Acomment: mining annotations from comments and code to detect inter-

rupt related concurrency bugs. In: Proceedings of the International Conference on Software Engineering
(ICSE)

Tan SH, Marinov D, Tan L, Leavens GT (2012) @tComment: Testing Javadoc comments to detect comment-
code inconsistencies. In: Proceedings of the international conference on software testing, verification
and validation (ICST), pp 260–269

Torchiano M (2002) Documenting pattern use in java programs. In: Proceedings of the international
conference on software maintenance (ICSM), pp 230–233

Toutanova K, Manning CD (2000) Enriching the knowledge sources used in a maximum entropy part-of-
speech tagger. In: Proceedings of the Joint SIGDAT conference on empirical methods in natural language
processing and very large corpora (EMNLP/VLC-2000), association for computational linguistics, pp
63–70

Weissman L (1974a) Psychological complexity of computer programs: an experimental methodology.
SIGPLAN Not 9(6):25–36

Weissman LM (1974b) A methodology for studying the psychological complexity of computer programs.
PhD thesis

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software
engineering - an introduction. Kluwer, Boston

Woodfield SN, Dunsmore HE, Shen VY (1981) The effect of modularization and comments on program
comprehension. In: Proceedings of the international conference on software engineering (ICSE), pp
215–223

Yamashita A, Moonen L (2013) Do developers care about code smells? - An exploratory survey. In:
Proceedings of the working conference on reverse engineering (WCRE), pp 242–251

Zhong H, Zhang L, Xie T, Mei H (2011) Inferring specifications for resources from natural language api
documentation. Autom Softw Eng 18(3–4):227–261

Venera Arnaoudova is a research associate at Polytechnique Montréal (Canada). She received her bachelor
degree in computer and electrical engineering (major of computer science) from the engineering school
Polytech’Lille (France) and her master degree in computer science from Concordia University (Canada) in
2008. She received her Ph.D. degree in 2014 from Polytechnique Montréal under the supervision of Dr.
Giuliano Antoniol and Dr. Yann-Gaël Guéhéneuc. Her research interest is in the domain of software evolution
and particularly, the analysis of source code lexicon and documentation, empirical software engineering,
refactoring, patterns, and antipatterns. Her dissertation focused on the improvement of the code lexicon
and its consistency using natural language processing, fault prediction models, and empirical studies. More
information available at: http://www.veneraarnaoudova.ca/.

http://www.veneraarnaoudova.ca/

Empir Software Eng (2016) 21:104–158 157

Massimiliano Di Penta is associate professor at the University of Sannio, Italy since December 2011. Before
that, he was assistant professor in the same University since December 2004. His research interests include
software maintenance and evolution, mining software repositories, empirical software engineering, search-
based software engineering, and service-centric software engineering. He is currently involved as principal
investigator for the University of Sannio in a European Project about code search and licensing issues
(MARKOS - www.markosproject.eu). Previously, he was principal investigator in other national and Euro-
pean projects on topics related to software evolution and service-centric software engineering. He is author
of over 190 papers appeared in international journals, conferences and workshops. He serves and has served
in the organizing and program committees of over 100 conferences such as ICSE, FSE, ASE, ICSM, ICPC,
GECCO, MSR WCRE, and others. He has been general co-chair of various events, including the 10th IEEE
Working Conference on Source Code Analysis and Manipulation (SCAM 2010), the 2nd International Sym-
posium on Search-Based Software Engineering (SSBSE 2010), and the 15th Working Conference on Reverse
Engineering (WCRE 2008). Also, he has been program chair of events such as the 28th IEEE International
Conference on Software Maintenance (ICSM 2012), the 21st IEEE International Conference on Program
Comprehension (ICPC 2013), the 9th and 10th Working Conference on Mining Software Repository (MSR
2013 and 2012), the 13th and 14th Working Conference on Reverse Engineering (WCRE 2006 and 2007), the
1st International Symposium on Search-Based Software Engineering (SSBSE 2009), and other workshops.
He is currently member of the steering committee of ICSME, MSR, SSBSE, and PROMISE. Previously, he
has been steering committee member of other conferences, including ICPC, SCAM, and WCRE. He is in the
editorial board of IEEE Transactions on Software Engineering, the Empirical Software Engineering Journal
edited by Springer, and of the Journal of Software: Evolution and Processes edited by Wiley.

158 Empir Software Eng (2016) 21:104–158

Giuliano Antoniol (Giulio) received his Laurea degree in electronic engineering from the Universita’ di
Padova, Italy, in 1982. In 2004 he received his PhD in Electrical Engineering at Polytechnique Montréal. He
worked in companies, research institutions and universities. In 2005 he was awarded the Canada Research
Chair Tier I in Software Change and Evolution. He have participated in the program and organization com-
mittees of numerous IEEE-sponsored international conferences. He served as program chair, industrial chair,
tutorial, and general chair of international conferences and workshops. He is a member of the editorial boards
of four journals: the Journal of Software Testing Verification & Reliability, the Journal of Empirical Soft-
ware Engineering and the Software Quality Journal and the Journal of Software Maintenance and Evolution:
Research and Practice. Dr. Giuliano Antoniol served as Deputy Chair of the Steering Committee for the
IEEE International Conference on Software Maintenance. He contributed to the program committees of more
than 30 IEEE and ACM conferences and workshops, and he acts as referee for all major software engineer-
ing journals. He is currently Full Professor at the Polytechnique Montreal, where he works in the area of
software evolution, software traceability, search based software engineering, software testing and software
maintenance.

	Linguistic antipatterns: what they are and how developers perceive them
	Abstract
	Introduction
	Paper Structure

	Linguistic Antipatterns (LAs)
	Experimental Design
	Prevalence of LAs
	Study I (SI)—External Developers
	Study II (SII)—Internal Developers

	Developers' Perception of LAs
	Prevalence of LAs
	Quantitative Analysis
	Qualitative Analysis
	Summary of Developers' Perception on LAs

	LAs Perceived as Particularly Poor

	Threats to Validity
	Related Work
	Role of Source Code Identifiers in Software Quality
	Identifying Inconsistencies in the Lexicon
	Developers' Perception of Code Smells

	Conclusion and Future Work
	Acknowledgments
	Appendix A
	A Detection
	References

