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ABSTRACT 
It has been well documented that a large portion of the cost of any 
software lies in the time spent by developers in understanding a 
program's source code before any changes can be undertaken. One 
of the main contributors to software comprehension, by subsequent 
developers or by the authors themselves, has to do with the quality 
of the lexicon, (i.e., the identifiers and comments) that is used by 
developers to embed domain concepts and to communicate with 
their teammates. In fact, previous research shows that there is a 
positive correlation between the quality of identifiers and the qual-
ity of a software project. Results suggest that poor quality lexicon 
impairs program comprehension and consequently increases the 
effort that developers must spend to maintain the software. How-
ever, we do not yet know or have any empirical evidence, of the 
relationship between the quality of the lexicon and the cognitive 
load that developers experience when trying to understand a piece 
of software. Given the associated costs, there is a critical need to 
empirically characterize the impact of the quality of the lexicon on 
developers' ability to comprehend a program. 

In this study, we explore the effect of poor source code lexi-
con and readability on developers' cognitive load as measured by 
a cutting-edge and minimally invasive functional brain imaging 
technique called functional Near Infrared Spectroscopy (fNIRS). Ad-
ditionally, while developers perform software comprehension tasks, 
we map cognitive load data to source code identifiers using an eye 
tracking device. Our results show that the presence of linguistic 
antipatterns in source code significantly increases the developers' 
cognitive load. 
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1 INTRODUCTION 
Program comprehension is a fundamental activity within the soft-
ware development life cycle. An important contributor to software 
comprehension has to do with the quality of the lexicon, i.e., the 
identifiers (names of programming entities such as classes or vari-
ables) and comments that are used by developers to embed domain 
concepts and to communicate with their teammates. Previous stud-
ies show that source code contains 42% of the domain terms [19] 
meaning that the lexicon is a way to express understanding of the 
problem domain and solution, and comment upon the ideas that 
underlie developers' work. Previous research also shows that there 
is a correlation between the quality of identifiers and the quality of 
a software project [1, 7-9, 24, 29], 

However, despite considerable advancement in software engi-
neering research in recent years, very little is known about how 
the human brain processes program comprehension tasks. Cutting 
edge research conducted by Siegmund et al. involves the use of 
functional magnetic resonance imaging (fMRI) to study program 
comprehension in the brain [35] and to understand the cognitive 
processes related to bottom-up and top-down comprehension strate-
gies [36]. Similarly, Floyd et al. use fMRI to compare areas of brain 
activation between source code and natural language tasks [15]. 
Despite the success of fMRI studies in the domain, fMRI machines 
remain a costly and invasive approach, with which it is hard to 
reproduce the real life working conditions of software developers. 

Functional Near Infrared Spectroscopy (fNIRS) is a brain imaging 
technique comparable to fMRI [14] that can provide a minimally 
invasive way to empirically investigate the effects of source code on 
human cognition and the hemodynamic response within physical 
structures of the brain. To our knowledge, only two studies explore 
the use of fNIRS in the domain. Nakagawa et al. [27] investigate 
the hemodynamic response during mental code execution tasks of 
varying difficulty and Ikutani and Uwano investigate the effects 
of variables and control flow statements on blood oxygenation 
changes in the prefrontal cortex [22]. 

However, the effect of lexicon and readability of source code on 
developers' cognitive load during software comprehension tasks 
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remains unexplored. The low cost and minimally invasive nature of 
fNIRS makes it particularly well suited for this task. FNIRS data can 
be related to specific aspects of source code in real time through the 
use of modern eye tracking devices. This would allow to pinpoint 
problematic elements within the source code at a very fine level of 
granularity. 

We present an fNIRS study focused on investigating how the hu-
man brain processes source code comprehension tasks, in particular, 
the hemodynamic response of the prefrontal cortex to instances 
of poor programming practices pertaining to the lexicon and read-
ability of the source code. At a high level, we aim at answering 
whether we can use fNIRS and eyetracking technology to asso-
ciate identifiers in source code to cognitive load experienced by 
developers. Furthermore, we aim to understand how and if poor 
linguistic, structural, and readability characteristics of source code 
affect developers' cognitive load. 

Our results show that the presence of linguistic antipatterns in 
source code significantly increases the participants' cognitive load. 
Overall, when both linguistic antipatterns and structural inconsis-
tencies are introduced to the source code, we do not observe an 
increase in cognitive load, but, the number of participants that are 
unable to complete the tasks increases to 60%. 
The contributions of this work are as follows: 

(1) We provide a methodology to relate terms that compose 
source code identifiers to direct and objective measures to 
assess developers' cognitive load. 

(2) We provide empirical evidence on the significant negative 
impact of poor source code lexicon on developers' cognitive 
load during program comprehension. 

(3) We provide a replication package [13], which includes the 
source code snippets used for our experiment, to allow re-
producibility of our results. 

Paper organization. The rest of the paper is organized as fol-
lows. Section 2 discusses the background, in particular metrics and 
technologies used throughout the study. Section 3 defines our re-
search questions and presents the experimental set up and method-
ology used to answer those research questions. Section 4 presents 
the results and analysis of our findings. Section 5 discusses the 
threats to validity of this work. Section 6 discusses related work 
and Section 7 concludes the study. 

2 BACKGROUND 
In this section, we provide a brief background on Linguistic An-
tipatterns (Section 2.1), structural and readability metrics (Section 
2.2), Functional Near Infrared Spectroscopy (Sections 2.3), and Eye-
tracking (Section 2.4). 

2.1 Linguistic Antipatterns (LAs) 
Linguistic Antipatterns (LAs), are recurring poor practices in the 
naming, documentation, and choice of identifiers in the implemen-
tation of program entities [4], LAs are perceived negatively by 
developers as they could impact program understanding [3], In this 
section, we briefly summarize a subset of the catalog of Linguistic 
Antipatterns used in our study. 

A.1 "Get" - more than an accessor: A getter that performs actions 
other than returning the corresponding attribute without docu-
menting it. 

A.3 "Set" method returns: A set method having a return type different 
than void and not documenting the return type/values with an 
appropriate comment. 

B.l Not implemented condition: The method' comments suggest a 
conditional behavior that is not implemented in the code. When 
the implementation is default this should be documented. 

B.6 Expecting but not getting a collection: The method name suggests 
that a collection should be returned, but a single object or 
nothing is returned. 

B.7 Get method does not return corresponding attribute: A get method 
does not return the attribute suggested by its name. 

C.2 Method signature and comment are opposite: The documentation 
of a method is in contradiction with its declaration. 

D.l Says one but contains many: An attribute name suggests a single 
instance, while its type suggests that the attribute stores a 
collection of objects. 

D.2 Name suggests Boolean but type does not: The name of an at-
tribute suggests that its value is true or false, but its declaring 
type is not Boolean. 

E. l Says many but contains one: Attribute name suggests multiple 
objects, but its type suggests a single one. 

F.2 Attribute signature and comment are opposite: Attribute declara-
tion is in contradiction with its documentation. 

2.2 Structural and Readability Metrics 
There exists a depth of research about how various structural as-
pects of source code can affect both the readability of the source 
code and impede the comprehension of developers. Buse and Weimer 
[7] conduct a large scale study investigating code readability metrics 
and find that structured metrics such as the number of branching 
and control statements, line length, the number of assignments, 
and the number of spaces negatively affect readability. They also 
show that metrics such as the number of blank lines, the number 
of comments, and adherence to proper indentation practices pos-
itively impact readability. Metrics such as McCabe's Cyclomatic 
Complexity [25], nesting depth, the number of arguments, Hal-
stead's complexity measures [20], and overall number of lines of 
code have also been shown to impact code readability [30], 

Table 1 lists method level metrics that have been shown to corre-
late with readability and comprehensibility [7, 20, 25, 30, 33], The 
'+' symbol indicates that a feature is positively correlated with high 
readability and comprehensibility of the code, and the '-' symbol in-
dicates the opposite. The number of symbols indicate how strongly 
correlated each feature is. Three is high, two is medium, and one 
is low. A subset of these metrics, which are bold in the table, are 
used in our study. 

2.3 Functional Near Infrared Spectroscopy 
(fNIRS) 

Functional Near Infrared Spectroscopy is an optical brain imaging 
technique that detects changes in oxygenated and deoxygenated 
hemoglobin in the brain by using optical fibers to emit near-infrared 
light and measure blood oxygenation levels. The device we use is 
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Table 1: Metrics shown to correlate positively (+) or nega-
tively (-) with source code readability. 

Feature Corr. Feature Corr. 
Cyclomatic Complexity Halstead vocabulary -

Number of Arguments Halstead length -

Number of operands Number of casts -

Class References Number of loops -

Local Method References Number of expressions -

Lines of Code Number of statements -

Halstead effort — Variable Declarations -

Halstead bugs — Number of Comments + + 

Max depth of nesting — Number of Comment Lines + + 

External Method References — Number of Spaces + + 

Halstead volume - Number of operators + 

Halstead difficulty -

the fNIRlOO, a stand-alone functional brain imaging system, in the 
shape of a headband, produced by BIOPAC [5], Overall, the device 
is light weight, portable, and easy to set up. 

Light sources are arranged on the headband along with light 
detectors. The light sources send two wavelengths of near-infrared 
light into the forehead, where it continues through the skin and 
bone 1 to 3cm deep into the prefrontal cortex. These light sources 
and detectors form 16 distinct optodes which allow the fNIRlOO 
to collect data from 16 distinct points across the prefrontal cortex. 
Biological tissues in the prefrontal cortex are relatively transpar-
ent to these wavelengths, but the oxygenated and deoxygenated 
hemoglobin are the main absorbers of this light. After the light scat-
ters in the brain, some reaches the light detector on the surface. By 
determining the amount of light sensed by the detector, the amount 
of oxygenated and deoxygenated hemoglobin in the area can be cal-
culated using the modified Beer-Lambert Law [10]. Because these 
hemodynamic and metabolic changes are associated with neural 
activity in the brain, fNIRS measurements can be used to detect 
changes in a person's cognitive state while performing tasks [38], 
For example, fNIRS have been successfully used to detect task dif-
ficulty in real-time on path planning for Unmanned Air Vehicle 
tasks [2] and tasks designed to invoke working memory [14], 

From the measured oxygenated hemoglobin (HbO) and deoxy-
genated hemoglobin (HbR) concentration levels we are able to 
calculate HbT, which is the total hemoglobin HbO + HbR, as well as 
Oxy, which is the difference between HbO and HbR and reflects the 
total oxygenation concentration changes. In this study, we use Oxy, 
which has been shown in a wide variety of studies [14,17,21] to be a 
function of task difficulty, as a measure of cognitive load during the 
various code reading tasks. Due to the fact that fNIRS devices are 
highly sensitive to motion artifacts and light, users should remain 
relatively still and not touch the device during recording. Before 
any analysis can take place, fNIRS data must be refined and filtered 
to remove any motion artifacts and noise, as well as to exclude data 
collected by individual optodes that may not have been fit properly 
against the forehead. These optodes are usually optodes 1 and 5, 
which are located on the outer edge of the device, near the user's 
hairline. These optodes are easily identifiable as they show patterns 
of either sharp peaks and dips or remain flat. The exclusion of an 
optnode does not effect the data collected by other optodes. To 
remove noise, all data is filtered using a linear phase, low pass filter 
that attenuates high frequency components of the signal. We use 

the filtering provided by Biopac's fNIRSoft [6], If a user has any 
unexpected movement, such as sneezing or coughing, we place a 
marker in the data and such peaks are excluded during the data 
analysis process. 

2.4 Eyetracking 
There are an ample amount of studies within the eye tracking re-
search domain that give insight into visual attention patterns and 
behavior during reading tasks. For example, fixations, which are 
defined as a relatively steady state between eye movements, and 
fixation duration, which is the amount of time spent in one location. 
Research suggests that processing of visual information only occurs 
during a fixation and that fixation duration is positively correlated 
with cognitive effort [31], Therefore, we will use fixation and fixa-
tion duration to determine areas participants spent a substantial 
amount of time reading. 

We use the EyeTribe eyetracker [12] throughout this experiment. 
The Eyetribe offers a sampling rate of 60 Hz and an accuracy of 
around 0.5-1 degrees of visual angle which translates to an average 
error of 0.5 to 1 cm on a screen (19-38 pixels). To mitigate the effects 
of this error we set the font size of the source code to 18 pt which 
translates to an average error of one to three characters. The 60 Hz 
sampling rate of the Eyetribe is not suitable for eyetracking studies 
that study saccades, however it is appropriate for our purpose of 
investigating fixations within the source code [28]. We calibrate 
the eyetracker using 16 gaze points (as opposed to 9 or 12 points) 
to cover the screen with higher accuracy. To ensure the integrity of 
the eyetracking data collected, only calibration quality that is rated 
as 4 out of 5 stars or higher is accepted for use in the experiment. 
Calibration quality at these levels indicate an error of < 0.7 and 0.5 
degrees respectively. 

Participants use the Eclipse IDE [11] as their environment dur-
ing the experimental tasks. We will be using iTrace [34], a plugin 
for Eclipse that interfaces with the eyetracker to determine what 
source code elements the participants are looking at. We extend 
the iTrace plugin to identify source code elements at a lower level 
of granularity, which is terms that compose identifiers. iTrace has 
a fixation filter to filter out noisy data that may arise due to errors 
from the eyetracker. This filter estimates fixations on source code 
elements using the median and joins fixations that are spatially 
closer together within a threshold radius of 35 pixels (3 characters). 

3 METHODOLOGY 
The goal of this study is two-fold: First, to determine if fNIRS and eye 
tracking devices can be used to successfully capture high cognitive 
load within text or source code, at a word level of granularity. Sec-
ond, to determine if structural or linguistic inconsistencies within 
the source code increase developers' cognitive load during soft-
ware comprehension tasks. The perspective is that of researchers 
interested in collecting and evaluating empirical evidence about the 
effect of poor lexicon and readability of source code on developers' 
cognitive load during software comprehension. Specifically, the 
study aims at answering the following research questions: 

• RQi: Can developers' cognitive load be accurately associated 
with identifiers' terms using fNIRS and eye tracking devices? We 
ask participants to perform a comprehension task and then 
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Table 2: Participants' demographic data. 

Demographic Variables # of Participants 
Programming Languages C++ 5 

Java 1 
Both 9 

Degree Pursuing or Completed Bachelor 8 
Master 2 
PhD 5 

explore the similarity between fixations on text highlighted 
as difficult to comprehend by participants and fixations that 
are automatically classified as having high cognitive load. 

• RQ2: DO inconsistencies in the source code lexicon cause a 
measurable increase in developers' cognitive load during pro-
gram comprehension? We ask participants to perform bug 
localization tasks on a snippet that does not contain lexical 
inconsistencies and one that does. We then explore the aver-
age cognitive load experienced on the two snippets as well 
as the percentage of fixations that contain high cognitive 
load in each snippet. 

• RQ3: DO structural inconsistencies related to the readability 
of the source code cause a measurable increase in developers' 
cognitive load during program comprehension? We ask par-
ticipants to perform bug localization tasks on a snippet that 
contains structural inconsistencies and one that does not. 
We then explore the average cognitive load experienced on 
the two snippets. 

• RQ4: Do both structural and lexical inconsistencies combined 
cause a measurable increase in developers' cognitive load dur-
ing program comprehension? We ask participants to perform 
bug localization tasks on a snippet that contains both struc-
tural and lexical inconsistencies and one that does not. We 
then explore the average cognitive load experienced on the 
two snippets. 

3.1 Source Code Snippets 
In an effort to replicate real life development environment as close 
as possible we aim at identifying four code snippets from open-
source projects to use in our experiment. Snippets had to meet the 
following criteria: 

• The snippet should be able to be understood on its own 
without too much external references. 

• The snippets must be around 30-40 lines of code including 
comments so that all chosen snippets take similar time to 
comprehend without interference due to length. 

• The snippets should be able to be altered in such a way that a 
reasonably difficult to detect semantic defect can be inserted. 

• The snippets should be able to be altered to contain Linguistic 
Antipatterns. 

The snippets were chosen from JFreeChart, JEdit, and Apache 
Maven projects. Two snippets were chosen Apache Maven—methods 
replace and indexOfAny (from StringUtils.java), one from JEdit— 
method LoadRuleSets (from SelectedRules.java), and one from JFree-
Chart—method calculatePieDatasetTotal (from DatasetUtilities.java). 

After conducting a pilot study to assess the suitability of each snip-
pet we discarded method LoadRuleSets from JEdit as it required a 
good understanding of surrounding source code and domain knowl-
edge. Thus, the experiment is performed with the remaining three 
code snippets. 

3.7.7 Altering snippets. In this section we first describe how 
original snippets are altered to contain bugs to become control 
snippets. Then, we describe how control snippets are altered to 
contain either linguistic antipatterns, structural inconsistencies, 
or both. All snippets and treatments can be found online in our 
replication package. 

Bugs. Source code snippets are altered to contain a semantic fault. 
Participants are asked to locate the fault as a way to trigger program 
comprehension. Semantic defects are inserted in the code snippets 
as opposed to syntactic defects, which can be found without deep 
understanding of source code snippets. All bugs inserted are one line 
defects, inserted at around the same location in the code snippets 
to control for any unwanted location-based effect (i.e., finding a 
defect earlier if it located higher up in the code). 

Linguistic Antipatterns. Section 2.1 describes a subset of the cata-
log of LAs defined by Arnaoudova et al. [4], We alter the snippets to 
contain the listed LAs. Due to the limited number of code snippets 
it is impossible to include all seventeen LAs, which is why a subset 
is selected. We aimed at including a variety of antipatterns that 
arise in method signatures, documentation, and attribute names. 

Structural and Readability metrics. We alter the code snippets 
by introducing a subset of the metrics described in Section 2.2 
that have been shown to correlate with the readability and com-
prehensibility of code snippets. Snippets are formatted in a way 
that is against conventional Java formatting standards in order to 
reduce readability. This implies opening and closing brackets are 
not on their own lines and are not indented properly. Metrics that 
are described as having negative correlation to readability, such 
as number of loops, are increased in the snippet. Metrics that are 
shown to have positive correlation to readability, such as number 
of comments, are decreased in the snippet. 

3.2 Participants 
The participants were recruited from a pool of undergraduate and 
graduate Computer Science students at the authors' institution. A 
total of 70 participants indicated their interest. Participants were 
asked to complete an online eligibility survey to ensure that they 
have some programming experience, thus we require that they must 
have taken at least one introductory course in C++ or Java. This is 
to ensure the participants will be able to navigate the source code 
for the tasks and provide legitimately informed input. Participants 
receive a $15 giftcard as compensation for participation. 

Due to constraints with the eyetracker device used, participants 
who require the use of bi-focal or tri-focal glasses, or are diagnosed 
with persistent exotropia or esotropia, are considered ineligible to 
participate as the eyetracking data may be significantly impacted. 
Fifteen participants satisfied the eligibility criteria and participated 
in the experiments. Table 2 summarizes the programming language 
in which participants declare themselves as more proficient and 
their educational background. 
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Figure 1: Overview of the exper imental procedure. 

Table 3: Study design. 

Task: Comprehension Bug Localization 
Snippet 1 Snippet 2 Snippet 3 

Group 1 Prose Control LA Structural 
Group 2 German Code LA & Structural Control LA 
Group 3 Prose LA Structural LA & Structural 
Group 4 German Code Structural LA & Structural Control 

3.3 Study Design 
Participants are randomly assigned to one of four different groups, 
following a balanced design. Each group is shown one comprehen-
sion task snippet and three bug localization code snippets. The 
order of the type of treatment received is randomized to ensure 
the order of which the tasks are completed does not affect the data. 
Table 3.3 summarizes the design of the experiment. 

Group 1 contains 5 participants, groups 2 and 4 contain 3 par-
ticipants, and group 3 contains 4 participants. Participants have 
between 1-15 years of programming experience, with an average 
of around 4 years of experience, first quartile at 2.25 and the third 
quartile at 4 years. 

3.4 Procedure 
Figure 1 illustrates the steps of experimental procedure1. Each step 
has an estimated time for completion, determined through a pilot 
study. Overall, the experiment is planed to take no longer than one 
hour. Each step is described in the following sections. 

3.4.1 Setup. The researcher explains every step of the experi-
ment to the participants beforehand to ensure that they understand 
the experimental procedure and what is expected of them. Partici-
pants are given a consent form to read and sign if they agree. Next, 
participants are fit to the fNIRS device and positioned in front of 
the eye tracking device, computer screen, and keyboard. After this, 
the participant is asked to relax and a baseline for the fNIRS is 
conducted. Participants are then asked to calibrate the eye tracker 
by using their eyes to follow a sequence of dots on the screen in 
front of them. Anytime a baseline is conducted throughout the 
experiment, participants are shown a video of fish swimming for 
one minute. This has been used in similar fNIRS research studies 
to provide a controlled way to relax participants. 

3.4.2 Comprehension Task. To answer RQi, participants are 
shown either a short code snippet or a comment containing a 
paragraph of an English prose. The code snippet contains easy 

1-The experiment was approved through a full board review for human subject research 
from the Institutional Review Board (ERB) at the author's university (ERB #16113-001). 

to comprehend identifiers in English as well as difficult to compre-
hend identifiers in a language that the participant is not familiar 
with (i.e., German). The prose task was taken from an appendix of 
GRE questions used to test reading comprehension, and we used 
one reading comprehension question related to the text to assess 
comprehension. For both prose and code snippets, participants are 
asked to carefully go through the task, reading the text carefully. 
Upon completion, participants are asked describe the functionality 
of the code snippet or answer the comprehension question to en-
sure that they have properly understood the text and thus engaged 
throughout the task. 

3.4.3 Bug Localization Task. The bug finding task allows us 
to answer RQ2, RQ3, and RQ4. During this task participants are 
shown a relatively short code snippet on the computer screen. They 
are told that the code contains a semantic bug and that they should 
locate the fault in the code. Participants are asked to continue the 
task until they find the bug but they are also given the option to 
end the task if no bug could be found. 

We create four versions for each code snippet. Thus, a code 
snippet shown to a participant will be from one of the following 
categories: 

(1) Code snippet containing a bug and lexical inconsistencies as 
described in Section 2.1. 

(2) Code snippet containing a bug and poor structural/readabil-
ity characteristics as measured by the metrics described in 
Section 2.2. 

(3) Code snippet containing a bug and both lexical inconsisten-
cies and poor structural/readability characteristics, (i.e., cat-
egories (1) and (2)). 

(4) Code snippet containing a bug and no lexical inconsistencies or 
poor structural/readability characteristics, (i.e., the control 
snippet). 

3.4.4 Follow-up questions. In this step participants fill out a 
questionnaire about the snippet they have read. They are asked to 
explain if the code snippet provided in the bug localization task had 
any features that impeded their task of finding the bug, and if yes 
to describe the feature of interest and highlight it. They are also 
asked to rate, on a scale of 1 to 5 the effort taken to find the bug (1 
being 'little to no effort' and 5 being 'considerable effort'). These 
follow-up questions are used to add another level of validation to 
our results. 

3.4.5 Rest Period. Participant are asked to relax for a minute so 
that a new fNIR baseline is recorded to ensure that the measured 
cognitive load is not impacted by the strain of the previous task. 
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3.4.6 Post Analysis. The features of interest for each code snip-
pet shown to the participant will be revealed and the participant 
will be asked questions about comprehension and the impact of the 
features. 

Eye tracking and fNIRS data is only collected during the compre-
hension and bug finding tasks. Steps outlined in blue are repeated 
three times, sequentially, per participant before moving onto the 
post analysis survey. 

3.5 Pilot Study 
A pilot study is conducted with four participants so that every snip-
pet/treatment combination can be assessed. During the pilot study 
we make sure that bugs can be found within a reasonable amount 
of time and that they are not too difficult or too simple. We also 
determine if the experiment layout can be done within a reasonable 
amount of time (1 hour) and does not induce unneeded fatigue 
for the participants. Initially, we included four bug localizations 
tasks, and decided to reduce this to three. One of the snippets that 
was initially chosen makes references to external methods; it was 
discarded after the pilot study. 

3.6 Analysis Method 
3.6.1 High Cognitive Load. In order to determine fixations that 

contain high cognitive load, we analyze the Oxy values over the 
entire source code snippet. We classify fixations containing Oxy 
values in the highest 20% to be indicative of high cognitive load. 
Additionally, we calculate fixations that cause a peak, or a sharp 
increase in cognitive load, as causing high cognitive load. We refer 
to both of these high cognitive load points as 'points of interest'. 
A sharp increase is defined as a delta between two immediate fixa-
tions that is in the highest 10% of delta values. In order to obtain 
the most accurate classification of high cognitive load data points, 
we use participants' highlighted identifiers as a ground truth to 
determine the percentage thresholds. Therefore, it is important that 
participants accurately highlight areas of code and identifiers dur-
ing the follow up question portion of the experiment. We choose 
the thresholds that balance between classifying the maximum num-
ber of highlighted identifiers as high cognitive load, while still not 
over classifying fixations that are not highlighted. Thresholds are 
optimized using a subset of 5 out of 15 participants. 

3.6.2 Feature Scaling. Due to natural biological differentiation 
between participants and inherent HbO and HbR concentration 
differences in the prefrontal cortex, raw Oxy values cannot be 
reliably compared across subjects. Within subject comparisons can 
also be problematic. For example, if the baseline values for the 
fNIRS are sampled while the participant is not properly relaxed 
for one snippet, and then again while the participant is relaxed 
for another snippet, raw Oxy data will be skewed. To mitigate 
this, we normalize all raw Oxy data using feature scaling before 
comparing within participant. Feature scaling is a method used to 
standardize a range of independent variables within the dataset. To 
normalize Oxy values to a range between 0 and 1 inclusive, we use 
the following formula: normalizedOxy = Q*yraw_o* where 
Oxyraw is the raw Oxy value, Oxymin is the minimum Oxy value 

recorded over the snippet and Oxymax is the maximum Oxy value 
recorded over the snippet. Similar normalization on fNIRS data was 
performed by Ikutani and Uwano [22]. 

3.6.3 fNIRS and Eyetracking Data. To map fNIRS data to fixation 
points we use the output from our modified version of iTrace using 
system time as our reference point. Fixation data may not always 
be consistent with the areas of code that participants highlighted 
during the post analysis questions. This is due to participants error 
during the follow-up questions phase. In such cases, participants are 
asked to verify fixation data at the end of their experiment session. 
We use our visualization tool to identify areas of high cognitive load 
and peaks during the post analysis step of the procedure. These are 
then shown to the participants and they are asked about specific 
areas of code where we identify fixations with high cognitive load 
and are not highlighted by the participants. If the participants agree 
with the data, they are given the choice to highlight additional 
sections. 

3.6.4 Simple Matching Coefficient (SMC). To answer RQi, we 
use the Simple Matching Coefficient [37]—a statistic used to com-
pare similarity between two or more datasets. SMC is similar to 
the Jaccard index but counts mutual presence (when an attribute 
is present in both sets) and mutual absence (when an attribute is 
absent in both sets). The Jaccard index only counts mutual pres-
ence. We use SMC to calculate the similarity between the fixations 
on identifiers that are highlighted by participants and the set of 
fixations that are flagged as having high cognitive load. This way 
we count mutual absence (no high cognitive load, and not high-
lighted code) as part of the similarity to assess the algorithm used 
to determine high cognitive load. 

3.6.5 Wilcoxon Signed-Rank Test. To answer RQ2, RQ3, and 
RQ4 we need to determine if there is a significant increase between 
the average normalized Oxy on treatment snippets compared to the 
average normalized Oxy on control snippets. To this end, we use 
the paired Wilcoxon signed-rank test, a non-parametric statistical 
test used to compare two related samples, to assess whether the 
population mean ranks differ. Our null hypothesis is that there is 
no difference between the normalized average Oxy values for the 
control snippets and treatment snippets. Our alternative hypothesis 
is that the normalized average Oxy values for the control snippets 
are lower than the normalized average Oxy values for the treatment 
snippets. 

3.6.6 Cliff's Delta (d) Effect Size. After performing a Wilcoxon 
signed-rank test, we measure the strength of the difference between 
the average normalized Oxy on treatment snippets and the average 
normalized Oxy on control snippets. Cliff's delta (d) effect size [18] 
is a non-parametric statistic estimating whether the probability that 
a randomly chosen value from one group is higher than a randomly 
chosen value from another group, minus the reverse probability. 
Possible values for effect size range from -1 to 1, with 1 indicating 
there is no overlap between the two groups and all values from 
group 1 are greater than the values from group 2, -1 indicating there 
is no overlap between the two groups but all values from group 
1 are lower than the values from group 2, and 0 indicating there 
is a complete overlap between the two groups and thus there is 
no effect size. The guideline for interpreting effect size between 0 
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Table 4: Similarity between fixations wi th h igh cognitive 
load and highl ighted fixations. 

Treatment SMC Treatment SMC 
German Code 0.87 Prose 0.81 

0.76 0.81 
0.82 0.70 
0.79 0.73 
0.81 0.65 
082 0.75 

Average 0.81 Average 0.74 
Total Average 0.78 

and 1 is as follows: 0 < \d\ < 0.147: negligible, 0.147 < \d\ < 0.33: 
small, 0.33 < \d\ < 0.474: medium, 0.474 < \d\ < 1: large. 

4 RESULTS 
RQl: Can developers' cognitive load be accurately associated with 
identifiers' terms using fNIRS and eye tracking devices? 

Table 4 contains the SMC values calculated between fixation data 
containing identifiers highlighted by participants and fixations that 
have high cognitive load values. Each SMC value is calculated per 
participant. The average SMC for the two comprehension snippets, 
German code and English prose, is 0.81 and 0.74 respectively, with 
a total average of 0.78. This means that 78% of the fixations are cor-
rectly identified as having high cognitive load and are highlighted 
by the participant, or do not have high cognitive load and are not 
highlighted by the participant. Interestingly, for code snippets that 
contain German code, we observe a higher average similarity. 

Achieving 100% similarity is probably too optimistic. For code 
snippets that contain German code, for example, participants can-
not be expected to reliably highlight all parts of the code that may 
have caused confusion or that caused them difficulties. For instance, 
some parts of source code may cause an initial increase in cognitive 
load, such as a computational statement, and is picked up by the 
fNIRS. However, this statement might not be registered as some-
thing the participant deems as confusing or difficult to understand 
and is therefore not highlighted. When exploring the nature of the 
discrepancy over the remaining 19% of the data points—i.e., analyz-
ing the fixations that are not highlighted by participants—we find 
that three participants exhibit high cognitive load for fixations over 
"if statements" containing computations, two participants exhibit 
cognitive load over statements that contain return statements, one 
participant exhibits high cognitive load on a German comment, and 
one participant exhibits high cognitive load initially, at the very 
beginning of the code snippet. For example, one participant exhibits 
high cognitive load over the line of code: if(pos < 0), when asked 
if this statement indeed caused them any confusion the participant 
explains that it is not a confusing statement, but that it requires 
effort to understand and recall the variable pos. 

When analyzing the English prose treatment regarding the fixa-
tions recorded as containing high cognitive load and not highlighted 
by participants, we see that three participants exhibit high cogni-
tive load over the comprehension questions and three participants 
exhibit high cognitive load on words that are in sentences that 
contain other highlighted words. 

Control LA 
Treatment Treatment 

Figure 2: Percentage of points of interest fo r fixations in con-
trol t r ea tment and fixations containing LAs in LA t rea tment . 

RQl Summary: using fNIRS and eyetracking devices, develop-
ers' cognitive load can be accurately associated with identifiers 
in source code and text, with a similarity of 78% compared to 
self-reported high cognitive load. 

RQ2: Do inconsistencies in the source code lexicon cause a mea-
surable increase in developers' cognitive load during program com-
prehension? 

Figure 2 shows the distribution of the percentage of high cog-
nitive load data points identified automatically, i.e., the points of 
interest. The percentage of points of interest are calculated over 
fixations that do not contain linguistic antipatterns in snippets with 
the control treatment (i.e., all fixations) and over fixations that do 
contain linguistic antipatterns in snippets with the LA treatment. 
There are a total of 10 participants who completed both a control 
snippet and a snippet with the LA treatment. Performing a paired 
Wilcoxon signed-rank test we obtain a significant p-value (0.0009 
p-value), with a large effect size (d = -1), which indicates that fixa-
tions over identifiers that contain linguistic antipatterns contain a 
significantly higher percentage of points of interest, as compared 
to fixations in the control snippets. 

Figure 3 contains the distribution of normalized Oxy averages 
per participant, over both snippets that receive the LA treatment 
and control snippets. This data is taken from participants belonging 
to groups 1 and 2 as described in Section 3.3. There are a total of 
eight participants that completed both a task with a control treat-
ment and a task with an LA treatment. Five participants were able 
to complete the bug localization in both code snippets successfully 
and three participants were only able to complete the bug local-
ization in control snippets. One of the three participants failed the 
task in both code snippets and was excluded from the analysis, 
therefore the analysis is carried out on data from seven participants 
total. Performing a paired Wilcoxon signed-rank test we obtain 
a significant p-value (0.003), with a large effect size (d = -0.81), 
which indicates that the presence of linguistic anitpatterns in the 
source code significantly increases the average Oxy a participant 
experiences. 
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Figure 3: Normalized average Oxy 
on control vs. LA t reatments . 

Figure 4: Normalized average Oxy 
on control vs. s t ructural t reatments . 

Figure 5: Normalized average Oxy 
on control vs. LA & structural t reatments . 

From the post analysis survey, we observe that participants made 
comments on source code containing linguistic antipatterns in 9 out 
of 12 tasks. Two participants noted linguistic antipattern B. l (Not 
implemented condition), where a condition in a method comment 
is not implemented. One of these two participants showed high 
cognitive load when reading the line of comment that was not 
implemented and both participants explicitly stated that they spent 
time searching the code for the unimplemented condition but could 
not find it. Also, five participants noted linguistic antipattern C.2 
(Method signature and comment are opposite). One such example in 
the code snippets is that method signature is getPieDatasetTotals 
while the comment states sets the calculated total of a l l the 
values in a PieDataset. One participant highlighted that such 
linguistic antipattern is confusing. This participant as well as two 
other participants who stated that they were able to filter out the 
inconsistency between method names and comments showed high 
cognitive load on fixations over the source code containing the LA. 

RQ2 Summary: The existence of linguistic antipatterns in the 
source code significantly increases the cognitive load experi-
enced by participants. 

RQ3: Do structural inconsistencies related to the readability of the 
source code cause a measurable increase in developers' cognitive load 
during program comprehension? 

Figure 4 contains the distribution of normalized Oxy averages 
per participant, over both snippets that receive the structural treat-
ment and control snippets. There are a total of eight participants 
that completed both a task with a control treatment and a task with 
a structural treatment. This data is taken from participants belong-
ing to groups 1 and 4. Four participants were able to complete bug 
localization in both code snippets successfully, four participants 
were only able to complete bug localization in the control snippets. 
Results from a paired Wilcoxon signed-rank test are not statistically 
significant (p - value=0.14), with a medium effect size (d=-0.47), 
which indicates that there is no evidence that structural inconsis-
tencies alone increase the average cognitive load that participants 
experience during program comprehension in the context of a bug 
localization task. 

From the post analysis survey, we observe that participants made 
comments on source code containing poor structure in 10 out of 
12 tasks. 9 participants found poor structure, including incorrect 
indentation and breaking one line of code into multiple of lines, 
created frustration and slowed down their performance in bug local-
ization tasks. One participant commented that "terrible formatting 
severely increases readers burden". Only one participant commented 
that the structure was not confusing since she/he was able to click 
on opening brackets to find the associated closing brackets. 

RQ3 Summary: Although participants found structural incon-
sistencies to be frustrating, there is no statistical evidence that 
structural inconsistencies increase the average cognitive load 
that participants experience. 

RQ4: Do both structural and lexical inconsistencies combined cause 
a measurable increase in developers' cognitive load during program 
comprehension? 

Figure 5 contains the distribution of normalized Oxy averages 
per participant, over snippets with a control treatment and LA & 
Structural treatment. There are a total of six participants that com-
pleted tasks with both a control treatment and a treatment with 
linguistic anitpatterns and structural inconsistencies. This data is 
taken from participants belonging to groups 2 and 4. All six partici-
pants successfully completed the task with the control treatment 
but only two participants successfully completed the task in the 
treatment snippet. Performing a paired Wilcoxon signed-rank test 
did not show statistically significant results (p - value=0A8), with 
a small effect size (d=-0.28), meaning that there is no evidence that 
structural inconsistencies affecting the readability and comprehen-
sibility of the source code combined with linguistic antipatterns 
significantly increase the cognitive load that participants experi-
ence. 

Interestingly, in four out of six participants, the average Oxy over 
control snippets is higher than over snippets containing the LA & 
structural treatment. Using the post analysis survey, as well as the 
snippets questionnaire we observe that all four participants were 
mislead by the structural and linguistic elements when they are part 
of the same treatment. All four participants failed at locating the bug 
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Table 5: Bug localization task results: success rate and time. 

Treatment #Bugs # Bugs Found (%) Avg. Time (min.) 
Control 11 10 (90.9%) 3.7 
LA 12 9 (75.0%) 5.0 
Structural 12 7 (58.0%) 4.7 
LA & Structural 10 4 (40.0%) 6.3 

in the code, which indicates that the treatment did in fact negatively 
affect their comprehension of the code. For the two participants 
that did correctly locate the bug, their average cognitive load is 
considerably higher compared to the control snippets (i.e, 0.19 and 
0.51 difference between treatments per participant). 

From the post analysis survey, we observe that participants made 
comments on linguistic antipatterns in 7 out of 10 of the tasks and 
structural inconsistencies in 9 out of 10 of tasks with both the LA 
and structural treatments. Two participants noted linguistic an-
tipattern E.l (Says many but contains one), where variable name 
replacementValues actually contains a single value. Both partici-
pants commented that they were able to understand from the from 
context and the naming did not hinder bug finding. They showed 
low cognitive load for the identifiers containing the LA. Also, two 
participants noted LA F.2 (Attribute signature and comment are 
opposite), where the comment states min double value while the 
attribute is assigned with value Integer.MAX.VALUE. Both partici-
pants found this linguistic antipattern misleading, prolonged their 
task, and showed high cognitive load. All nine participants who 
identified structural inconsistencies in source code highlighted that 
such inconsistencies caused distractions and prolonged the bug 
localization task. One participant commented that although the 
indentations was frustrating, it did not hinder bug localization. 

Overall, 30 out of 45 bug localization tasks were completed suc-
cessfully. The distribution of successfully completed tasks amongst 
four treatment groups is shown in Table 5. Over 90% of the bugs 
were found in the control group with average time of 3.7 minutes. 
Performance decreases as linguistic antipatterns and poor struc-
ture characteristics are added (75% and 58%, respectively). At the 
same time, the average time spent on bug localization increases as 
linguistic antipatterns and poor structure characteristics are added 
(5 minutes and 4.71 minutes, respectively). When both linguistic 
antipatterns and poor structure are present in the code snippets, 
only 40% of the bugs were localized successfully with average time 
of 6.25 minutes. The outcome shows that the presence of struc-
tural and lexical inconsistencies slows down and even hinders bug 
localization. 

RQ4 Summary: When analyzing the within group participant 
data, source code containing both lexical and structural inconsis-
tencies mislead more than 60% of the participants. The remain-
ing participants who successfully completed the bug localization 
tasks experienced higher cognitive load on code containing both 
inconsistencies compared to the control snippets. 

5 THREATS TO VALIDITY 
This section discusses the threats to validity that can affect our 
study. A common classification [39, 40] involves five categories, 

namely threats to conclusion, internal, construct, external, and 
reliability threats. 

Threats to conclusion validity relate to issues that could affect 
the ability to draw correct conclusions about relations between 
the treatment and the outcome of an experiment. There is always 
heterogeneity in a study group. If the group is very heterogeneous, 
there is a risk that the variation due to individual differences is larger 
than the one due to the treatment. Our experiment is conducted 
with only undergraduate and graduate students instead of a general 
population of developers, which reduces the heterogeneity. Another 
threat to conclusion validity may come from the statistical tests used 
to draw conclusions. Since the collected data cannot be assumed to 
be normal, we use non-parametric statistical tests, specifically the 
Wilcoxon signed-rank test and the Cliff's delta effect size. 

Threats to internal validity concern the relation between the 
independent and dependent variables and factors that could have 
influenced the relation with respect to the causality. One potential 
confounding factor is the programming experience of participants. 
The code snippets used in our study are written in Java but 12 out 
of 15 participants consider that they are more proficient in C++ 
and 5 participants have no previous experience in Java. This might 
cause an increased cognitive load. However, that would impact 
the results for all treatments equally and thus does not invalidate 
our comparison of different treatment groups. Another threat here 
might be that as participants perform bug localization tasks, they 
can become tired or less motivated as time passes. To mitigate this 
threat, we asked feedback from students in the pilot study regarding 
the length and difficulty of the snippets to ensure that the exper-
iment is designed with an appropriate length, which is around 1 
hour. To minimize the effect of the order, in which participants use 
the treatments, the order is assigned randomly to each participant. 
Another threat could come from the calibration of thresholds to 
define high cognitive load. Indeed, different calibrations could have 
produced different results, and also indirectly affected the assess-
ment of the proposed approach. The threshold is experimentally 
determined, however, this does not guarantee that the choice is 
optimal for every single human subject. 

Threats to construct validity concern the relation between theory 
and observation. In this study, construct validity threats are mainly 
due to measurement errors. As for bug localization tasks, all code 
snippets within the same treatment groups are designed to be with 
the same difficulty level, which can be affected by subjectiveness 
of the researchers. If we conduct the experiment with a different 
set of code snippets, the results might not be the same. To mitigate 
this threat, performed a pilot study to ensure that the code snippets 
are at a similar level of difficulty. 

Threats to external validity concern the generalizability of the 
findings outside the experimental settings. A potential threat to 
external validity in this study might come from the use of students 
as participants in the experiment rather than professional develop-
ers, which can raise doubts about how transferable the results are 
to the software industry. However, research has shown that given 
a carefully scoped experiment on a development approach that 
is new to both students and professionals, similar performances 
are observed [32], We believe that students are expected to show 
similar performance as professionals when asked to perform bug 
localization on an open-source application that they are not familiar 
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with. Another potential threat is the selection of the code snippets, 
which may not be representative of the studied population. To 
mitigate this threat, we extracted code snippets from 2 different 
open-source applications from GitHub. We selected code snippets 
between 30 and 40 lines of code to ensure that participants will 
finish the bug localization tasks within an hour. However, results 
might be different on snippets with different length and complexity. 

Threats to reliability validity concern the ability to replicate a 
study with the same data and to obtain the same results. We provide 
details on the selected code snippets and their altered versions in 
our replication package [13]. Moreover, we are currently working 
on publishing the extension of iTrace and our visualization tool 
online. 

6 RELATED WORK 
A broad range of studies have explored the use of psycho-physiologi-
cal measures to investigate cognitive processes and states in soft-
ware engineering. Eye tracking metrics such as pupil size, saccades, 
and fixation duration have been used in combination with other 
biometric measures to investigate cognitive processes during soft-
ware engineering tasks. For example, Fritz et al. [16] combined 
EEG, eye tracking, and electro dermal activity (EDA) to investigate 
task difficulty during code comprehension. Participants performed 
mental execution of code and the authors were able to successfully 
predict the perceived task difficulty. 

Similarly, Miiller et al. conducted a study using heart rate vari-
ability and EDA [26], They associated biometric data to specific 
areas of code changed by developers through the use of interaction 
logs in Eclipse and were able to use the data to predict code quality 
concerns within areas of changed source code. Lee et al. [23] used 
a combination of EEG and eye tracking metrics to predict task dif-
ficulty and programmer expertise. They found that both metrics 
could accurately predict expertise and task difficulty. 

Although various psycho-physiological measures have proven 
to be successful measures of cognitive processes within the domain, 
brain imaging techniques as measures of cognitive states remain 
a relatively new trajectory of research in empirical software en-
gineering. The first fNIRS study within the domain of software 
engineering was conducted by Nakagawa et al. [27] in which they 
investigated oxygenation changes in the prefrontal cortex as a re-
sponse to mental code execution tasks of varying difficulty. They 
discovered a correlation between increased blood flow in the pre-
frontal cortex and difficulty of the task. The experiment was con-
ducted with 10 subjects and involved showing them code snippets 
on a sheet paper. 

To the best of our knowledge the only other fNIRS study con-
ducted within the domain was by Ikutani and Uwano [22], who 
used fNIRS to investigate the effects of variables and control flow 
statements on blood oxygenation changes in the prefrontal cor-
tex. They were able to conclude that oxygenation changes in the 
prefrontal cortex reflect working-memory intensive tasks. Their 
experiment involved 11 participants reading code on a screen that 
consisted of arithmetic and control flow statements. 

The first fMRI study within the domain was conducted by Sieg-
mund et al. [35] where participants were asked to read short source 
code snippets and find syntax errors in an effort to measure program 

comprehension in the brain. They discovered a network of brain 
areas activated that are related to natural language comprehen-
sion, problem solving, and working memory. Another fMRI study 
conducted by Siegmund et al. [36] was conducted with the aim of 
isolating specific cognitive processes related to bottom up and top 
down comprehension strategies. 11 participants were asked to find 
syntax and semantic bugs in code that was altered to either remove 
semantic cues or obfuscate code through formatting and indenta-
tion changes. They found evidence of semantic chunking during 
bottom-up comprehension and lower activation of brain areas dur-
ing comprehension based on semantic cues. Floyd et al. [15] also 
conducted an fMRI study, inspired by the work of Siegmund et al., 
which aimed to compare areas of brain activation between source 
code and natural language tasks. They use activation patterns to 
successfully predict which tasks were being completed. 

Although fMRI provides increased spatial resolution over fNIRS 
imaging techniques, participants in fMRI studies are asked to read 
code from a mirror placed within the fMRI machine. This signifi-
cantly impacts the type and length of the code snippets that can be 
used. Moreover, it is difficult to simulate real life working conditions 
that developers are used to with studies using fMRI. The portability 
and minimally invasive nature of the fNIRS device allows a more 
realistic simulation of a real working environment. Moreover, to 
the best of our knowledge, no previous studies map and analyze 
biometric data at such fine level of granularity that is terms that 
compose identifiers. Instead, conclusions are made about the entire 
source code snippets. Finally, our work is the first to empirically 
investigate the effect of source code lexicon and readability on 
developers' cognitive load. 

7 CONCLUSION 
In this paper we present an fNIRS study focused on investigating 
how the human brain processes source code comprehension tasks, 
in particular, whether we can use fNIRS and eyetracking technology 
to associate identifiers in source code to cognitive load experienced 
by developers. Furthermore, we investigate how poor linguistic, 
structural, and readability characteristics of source code affect de-
velopers' cognitive load. Results show that fNIRS and eyetracking 
technology are suitable for measuring and associating cognitive 
load to source code at the identifier level of granularity. In addition, 
we conclude that the presence of linguistic antipatterns in source 
code significantly increases the cognitive load of developers dur-
ing program comprehension tasks. We do not find any evidence 
to conclude the same for structural and readability characteristics. 
However, when a snippet contains both the structural and linguis-
tic antipattern treatments, program comprehension is significantly 
impacted and 60% of participants are unable to complete the task 
successfully; we do not observe an increase in cognitive load over 
the treatment snippet for those participants. However, for the re-
maining 40% of participants who do complete the tasks successfully, 
we observe an increase in cognitive load. 

Future work includes replicating the experiment with open-
source/industrial developers as well as evaluating other poor prac-
tices and source code characteristics. 
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