LOG6306 : Patrons pour la
comprehension de programme

foutse.khomh@polymtl.ca

mailto:foutse.khomh@polymtl.ca

Design Decay

Design Decay 1’; .

Development team may implement software
features with poor design, or bad coding...

Code Smells (Low level (local) problems)
— Poor coding decisions

Lexical smells (Linguistic Anti-patterns)
— Poor naming, commenting... of an entity

Anti-patterns (High Level (global) problems)
— Poor design solutions to recurring design problems

Copyrighied Meaterial

atterns

Refactoring Software, Architectures,
and Projects in Crisis

William H. Brown Raphael C. Malveau
Hays W.“Skip” McCormick lll Thomas J. Mowbray

Copmrinided Material

Reractoring

IMPROVING THE DESIGN
oF ExisSTING CODE

MARTIN FOWLER

With Cantribations by Kl'“l "l'('k. ,'"h“ l‘nlnt.
William Opdyke, ana Don Roberts

Foceword by Erich Gamma
Object Technology International Inc

BOOCH

JACOBSOK
RUMBAUGH

e MRS N TORE

ADDIVOMN -WEMAEY

Copyrighied Meaterial

Refactoring Software, Architectures,
and Projects in Crisis

William H. Brown Raphael C. Malveau
Hays W.“Skip” McCormick lll Thomas J. Mowbray

Copmrinided Material

Reractoring

IMPROVING THE DESIGN
oF ExisSTING CODE

MARTIN FOWLER

With Cantribations by Kl'“l "l'('k. ,'"h“ l‘nlnt.
William Opdyke, ana Don Roberts

Foceword by Erich Gamma
Object Technology International Inc

BOOCH

JACOBSOK
RUMBAUGH

e MRS N TORE

ADDIVOMN -WEMAEY

Anti-patterns %‘;‘t'tem;

Refactoring Software, Architectures,
and Projects in Crisis_

Anti-patterns are “poor” solutions to
recurring design and implementation | .. .S85F
prObIemS I ys W.“Skip ! "

— Impact program comprehension,
software evolution and maintenance

activities
— Important to detect them early in

software development process, to
reduce the maintenance costs

—William H. Brown, 1998

Anti-patterns

* Design patterns are “good” solutions to recurring design issues, but on
the other side,..
* Anti-patterns are “bad” design practices that lead to negative

consequences.

Pattern AntiPattern
5 5 3
x | Forces S g Forces
. o
Solution Negative Solution
Refactored Solution :

Blob (God Class)

e Blob (God Class)

— “Procedural-style design — Conception procédurale
leads to one object with en programmation OO
a lion’s share of the — Large classe controleur

responsibilities while
most other objects only
hold data or execute
simple processes”

— Beaucoup d’attributs et
méthodes avec une
faible cohésion*

— Dépend de classes de
données

* A quel point les méthodes sont étroitement liées aux attributs et aux méthodes de la classe.

* FreeCAD project
2,540,559 lines of

code

Blob (God Class)

i
Hh
%
i
%
i
®

"““‘.;-i...m.....“.......w, .
Ty
S AN o rar v

%ﬂ.ﬂﬁ‘a.-uﬂm
saal i Gasiti, Gaseeed

0 eara e b sl

1

e, mmossareodic

reSPdare coraT e b MG A AN b v

ﬁ.&m‘m ST

AT asderd ol

v
:mmw ionatocl calze e T,
rarac, o0 e

W AN

R
SRR

geSvace Conc a Ga0S ve Poald Pondon GAsuras acse b PeaiLitashyacne kol
Varaid e oo a5 0ckr &, FOd CLRE S eEr &) V08

Ponfoa naesd e Feals Foro er

s riasaiPs (e v el Pares
< PasCoraca e

1) v0d vl

lt hog
~¢Mmdl‘g&% *“*"""Y.& B s s e e e

i ,.gm- aseay

ﬁ?s’.“" Il

T

Blob (God Class)

= Symptoms:
= Large controller class

= Many fields and methods

with a low cohesion™

= Lack of OO design.
» Procedural-style than object

oriented architectures.

*How closely the methods are related to the instance variables in the class.

Measure: LCOM (Lack of cohesion metric)

18 if (fNamespacesEnabled) {
19 fNamespacesScope.increaseDepth();
R0 if (attrIndex != -1) {

R1 gList.getFirstAttr(attr.

-1 |

gPool.equalNames(...)) {

30
31
32

33

10

Blob (God Class)

= Conseqguences:
= Lost of the benefits of using
Object Oriented programming!
= Too complex to reuse or test.

= EXxpensive to load.

*How closely the methods are related to the instance variables in the class.
Measure: LCOM (Lack of cohesion metric)

18 if (fNamespacesEnabled) {
19 fNamespacesScope.increaseDepth();
R0 if (attrIndex != -1) {

gList.getFirstAttr(attr.

-1 |

gPool.equalNames(...)) {

30
51
52

33

11

Blob (God Class)

The Library Blob

Blob (God Class) : Correction

Step 1:
Identify or categorize
related attributes and

operations according
to contracts.

related
methods

Library_Main_Cont

Do_|nyeotar..
*feck O {

13

Blob (God Class) : Correction

Step 2:

Find "natural homes"
for these contract-
based collections of
functionality and
them migrate them
there

14

Blob (God Class) : Correction

remove
far-coupiing

Final Step:

Remove all transient
associations, replacing
them as appropriate
with type specifiers to
attributes and
operations arguments

| X

' Cunent_Catalog
Currert_item

User ID
Fine_Amount
Etc.

15

Blob (God Class) : Correction

: Cioda lzte Fine

16

Spaghetti Code

— “Ad hoc software

structure makes it — Conception procédurale
difficult to extend and en programmation OO
optimize code.” — Noms des classes

suggerent une
programmation
procédurale

— Longues méthodes sans
parametres avec une
faible cohésion

— Manque de structure :
pas d’héritage, pas de
réutilisation, pas de
polymorphisme

— Utilisation excessive de
variables globales

Spaghetti Code

= Symptoms :
= Many object methods with no

parameters. o

= | ack of structure: no inheritance, no

reuse, no polymorphism.

» |Long process-oriented methods withno =M

parameters and low cohesion.

= Procedural thinking in OO programing. e

18

Spaghetti Code

= Conseqguences :
» The pattern of use of objects is very

predictable.

= Code is difficult to reuse.

= Benefits of OO are lost; inheritance is
not used to extend the system;

polymorphism is not used.

= i
.;\\‘k—‘ .

= Follow-on maintenance efforts

contribute to the problem.

19

Spaghetti Code

 Ring project
e 233,492 lines of code

[W

o)

3 :i 7

NN
N

20

Spaghetti Code

* FreeCAD project
e 2.540,559 lines of code

21

Refactoring

Copyrighied Meaterial

atterns

Refactoring Software, Architectures,
and Projects in Crisis

William H. Brown Raphael C. Malveau
Hays W.“Skip” McCormick lll Thomas J. Mowbray

Copmrinided Material

D

ReractoriNG
IMPROVING THE DESIGN
oF ExiSTING CODE

MARTIN FOWLER

With Cantribations by Kl'“l "l'('k. ,'"h“ l‘nlnt.
William Opdyke, ana Don Roberts

Foceword by Erich Gamma
Object Technology International Inc

BOOCH
JACOBSOK
RUMBAUGH

Reverse Conditional

You have a conditional that would be easier to understand
If you reversed its sense.

Reverse the sense of the conditional and reorder the
conditional's clauses.

if ('isSummer(date))

charge = winterCharge(quantity) ;
else

charge = summerCharge (quantity) ;

\ 4

if (isSummer(date))

charge = summerCharge (quantity) ;
else

charge = winterCharge(quantity) ;

23

Rename Method

The name of a method does not reveal its purpose.
Change the name of the method.

Customer

getinvodtimt

-

Customer

getlnvoiceableCredilimit

24

Move Method

A method is, or will be, (using or) used by more features of
another class than the class on which it is defined.

Create a new method with a similar body in the class it

uses most. Either turn the old method into a simple
delegation, or remove it altogether.

Class 1 Class 1

-

Class 2 Class 2

aMethod()

abMethod()

Pull Up Method

You have methods with identical results on subclasses.
Move them to the superclass.

Employee
Employee
; gethlarme
Salesman Engineer
Salesman Engineer
gettlarme gethlame

Extract Method

You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the purpose
of the method.

void printOwing() ({
printBanner () ;

//print details
System.out.println ("name: " + name);
System.out.println ("amount " + getOutstanding()) ;

void printOwing() ({
printBanner () ;
printDetails (getOutstanding()) ;

}

void printDetails (double outstanding) ({
System.out.println ("name: " + name);
System.out.println ("amount " + outstanding) ;

27

Extract Method

You have a code fragment that can be grouped together.
Turn the fragment into a method whose name explains the purpose
of the method.

void printOwing() ({
printBanner () ;

//print details
System.out.println ("name: " + name);
System.out.println ("amount " + getOutstanding()) ;

void printOwing() ({
printBanner () ;
printDetails (getOutstanding()) ;

}

void| printDetails |(double outstanding) ({
System.out.println ("name: " + name);
System.out.println ("amount " + outstanding) ;

28

Inline Method

A method's bodly is just as clear as its name.

Put the method's body into the body of its callers and
remove the method.

int getRating() {
return (moreThanFiveLateDeliveries()) ? 2: 1;
bs

boolean moreThanFiveLateDeliveries() {
return _numberOfLateDeliveries > 5;
>

int getRating() {

return (_numberOfLateDeliveries > 5)? 2:1;
bs

29

: — Opposite to Extract Method
nline Method >+ S

A method's bodly is just as clear as its name.

Put the method's body into the body of its callers and
remove the method.

int getRating() {
return (moreThanFiveLateDeliveries()) ? 2: 1;
bs

boolean moreThanFiveLateDeliveries() {
return _numberOfLateDeliveries > 5;
>

int getRating() {

return (_numberOfLateDeliveries > 5)? 2:1;
bs

30

Replace Conditional with Polymorphism

You have a conditional that chooses different behavior
depending on the type of an object.

Move each leg of the conditional to an overriding method in a
subclass. Make the original method abstract.

double getSpeed() {

switch (_type) {
case EUROPEAN:

return getBaseSpeed(); _}
case AFRICAN:

return getBaseSpeed() - getLoadFactor() * _numberOfCoconuts;
case NORWEIGIAN_BLUE:
return (_isNailed) ? 0 : getBaseSpeed(_voltage);

}

throw new RuntimeException ("Should be unreachable™);

31

Replace Conditional with Polymorphism
You have a conditional that chooses different behavior
depending on the type of an object.

Move each leg of the conditional to an overriding method in a
subclass. Make the original method abstract.

Bird

gelSpeed

European African Norweigian Blue

getSpeed getSpeed getSpeed

How To Perform Refactorings

e Either manually or automatically.

* When done manually, it is always done in
small steps (called refactorings).

e Larger refactorings are sequences of
smaller ones

33

Manual Refactoring

* Manual refactoring steps should always be
small, because:

— They are safer this way, because the steps are
simpler

— It is easier to backtrack

Pay attention to the mechanics:
— Mechanics should stress safety

34

Automatic Refactoring

* When automatic support is available, it should
be preferred, but ...

* ...only if the tool is really safe.

 Example: Rename Method

— Does it check for another method with the same
name?

— Does it account for overloading?
— Does it account for overriding?

35

Testing is Key When Refactoring

e Tests warn programmers of problems if they
unknowningly break other parts of the
application

* Tests give an immediate/quick analysis of the
effects of a change

36

When to Refactor?

We should refactor when the code stinks.

“If it stinks, change it.”

Grandma Beck,
discussing child-rearing philosophy

37

A simple example

public List<int[]> getThem() {

List<int[]> listl = new ArrayList<int[]>();

for (int[] x : thelist)
if (x[0] == 4)
listl.add (x);
return listl;

Thiscode Is quite simple
but what does it do?

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells (slide30-46)

38

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells

A simple example

public List<int[]> getThem() {

List<int[]> 1listl = new ArrayList<int[]>();

for (int[] x : thelist)
if (x[0] == 4)
listl.add (x);
return listl;

Thiscode Is quite simple but
what does it do?

Looking at it we can’t tell
what It 1s actually doing!

39

simple example

public List<int[]> getFlaggedCells () {

List<int[]> flaggedCells = new ArraylList<int[]>();

for (int[] cell : gameBoard)
if (cell [STATUS VALUE] == FLAGGED)
flaggedCells.add (x);
return flaggedCells;
}

Is this code any better?

40

simple example

public List<Cell> getFlaggedCells () {
List<Cell> flaggedCells = new ArrayList<Cell>();
for (Cell cell : gameBoard)
if (cell.isFlagged())
flaggedCells.add (x) ;
return flaggedCells;

}

What about this?

41

A simple example

What we have done:

used Intention
revealing names

flaggedCells
rather than list1

42

A simple example

What we have done:

used intention revealing flaggedCells
names rather than list1

replaced magic numbers cell[STATUS VALUE]
with constants rather than x[0]

43

A simple example

What we have done:

used intention revealing flaggedCells
names rather than list1
replaced magic numbers cell[STATUS VALUE]
with constants rather than x[0]
created an appropriate Cell cell rather than

abstract data type int[] cell

44

Benefits

“smore flexible thanks to use of objects instead of
primitives Int]].

s Better understandability and organization of code.

Operations on particular data are in the same place, instead of being scattered.

“*No more guessing about the reason for all these

strange constants and why they are in an array.

45

Another example

intd:

What does it mean?
Days? Diameter? ...

46

Another example

What does it mean?

Int d; :
Days? Diameter? ...

Int d; [lelapsed time In days
Is this any better?

47

Another example

What does it mean?

Int d; :
Days? Diameter?

int d; /lelapsed time in days
Is this any better?

Int elapsedTimelnDays;
What about this?

48

One more Example

public bool isEdible() {
if (this.ExpirationDate > Date.Now &&
this.ApprovedForConsumption == true &&
this.InspectorIld != null) {
return true;
} else { return
false;
}
}

How many things is the function doing?

49

One more Example

public bool isEdible() {
if (this.ExpirationDate > Date.Now &&
this.ApprovedForConsumption == true &&
this.Inspectorld != null) {
return true;
} else { return
false;

}
}

neck expiration
neck approval
neck inspection

. Answer the request

Bwp e
000

Can we implement it better?

50

Do one thing

public bool isEdible() {

return isFresh() && -
ieApproved() 8& Is this any better? Why?

isInspected();
}

¢ Now the function Is doing one thing!

¢ Easier to understand (shorter method)

*+ A change In the specifications turns into a
single change in the code!

Long Method example (~1622 LOC)
https://github.com/dianaelmasri/FreeCadMod/blob/master/Gui/ViewProviderSketch.cpp o1

https://github.com/dianaelmasri/FreeCadMod/blob/master/Gui/ViewProviderSketch.cpp

One more take...

public void bar(){
fOO(“A”);
fOO(“B”);
'FOO(“C”) ;

}

What about this?

52

Don’t Repeat Yourself

public void bar(){

ooy ! string [] elements = {“A”, “B”, “C”};
_F ﬂ'B.U ; .
_Fgggrfcng. » for(String element : elements){
} ’ foo(element);
}
}

Now the logic to handle the elements is written once
for all

Avoid copy and past, it smells!!!

53

Refactoring and code smells

Refactorings remove Bad Smells in the Code
i.e., potential problems or flaws

 Some will be strong, some will be subtler
e Some smells are obvious, some aren’t
* Some smells mask other problems

* Some smells go away unexpectedly when we
fix something else

54

22 Code Smells

What we don’t want to see 1n your code

Inappropriate naming
Comments

Dead code
Duplicate code
Primitive obsession
_arge class

God class

Lazy class

Middle Man

Data clumps

Data class

Long method

Long parameter list
Switch statements
Speculative generality
Oddball solution
Feature Envy

Refuse bequest

Black sheep
Contrived complexity
Divergent change
Shotgun surgery

55

Bloaters

Bloaters are code, methods and classes that have increased to
such gargantuan proportions that they are hard to work with.

Single responsibility
principle violated

= Largeclass =

» Long method (> 20 LOC is usually bad)
https://github.com/dianaelmasri/FreeCadMod/blob/master/Gui/ViewProviderSketch.cpp

= Data Clumps

= Primitive Obsession
Symptoms of Bad

= Long Parameter List Design

https://sourcemaking.com/refactoring/smells
56

https://github.com/dianaelmasri/FreeCadMod/blob/master/Gui/ViewProviderSketch.cpp

Primitive obsession

public Class Car({
private int red, green, blue;

public void paint(int red, int green, int blue) {
this.red = red;
this.green = green;
this.blue = blue;

public Class Car{
private Color color;

public void paint(Color color) {
this.color = color;

}

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells

57

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells

Data Clumps

bool SubmitCreditCardOrder (string creditCardNumber, int expirationMonth, int expirationYear,
double saleAmount)

{1}

bool Isvalid (string creditCardNumber, int expirationMonth, int expirationYear)

{1}

bool Refund(string creditCardNumber, int expirationMonth, int expirationYear, double Amount)
{1

58

bool SubmitCreditCardOrder (string creditCardNumber, int expirationMonth, int expirationYear, double
saleAmount)

{ }

bool Isvalid (string creditCardNumber, int expirationMonth, int expirationYear)

{ }

bool Refund(string creditCardNumber, int expirationMonth, int expirationYear, double Amount)

{1}

class CreditCard {
private:

string creditCardNumber;,
int expirationMonth;

int expirationYear;

¥

bool SubmitCreditCardOrder (CreditCard card, double saleAmount)
{ }

bool Isvalid (CreditCard card)

{ }

bool Refund(CreditCard card , double Amount)

{ }

59

Long Parameter List

* The height of this square (in pixels).
: |
private void render(Square square, Graphics g, ﬁnt X, int y, int w, int h} {
square.getSprite().draw(g, x, y, w, h);
for (Unit unit : square.getOccupants()) {
unit.getSprite().draw(g,(x, y, w, h);

}

} Toupurart i
¥ The position and dimension for rendering the square.
"
private vold render(Square square, Graphics g,[Rectangle d) {
Foint position = r.getPosition();|
square.getSprite().draw(g, Position.x, position.y, r.getWidth()}
ﬁ.getHeight()P;
for (Unit unit : square.getOccupants()) {
unit.getSprite().draw(g, position.x, position.y, r.getWidth(),
r.getHeight());

60

Long Parameter List

* The position and dimension for rendering the square.
e
private void render(Square square, Graphics g, Rectangle r) {
Point position = r.getPosition();
square.getSprite().draw(g, position.x, position.y, r.getWidth(),
r.getHeight());
for (Unit unit : square.getOccupants()) {
unit.getSprite().draw(g, position.x, position.y, r.getWidth(),
r.getHeight());

private void render(Square square, Graphics g, Rectangle r) {
Point position = r.getPosition();
square.getSprite(){draw(g, r);J
for (Unit unit : square.getOccupants()) {
unit.getSprite().draw(g, r);

61

Object-Orientation Abusers

All these smells are incomplete or incorrect

application of object-oriented programming
principles.

= Switch Statements — Should use Polymorphism
= Alternative Classes

: with Poor class hierarchy
Different Interfaces ;
» Refused Bequest

https://sourcemaking.com/refactoring/smells 62

62

Switch statements

 Why is this implementation bad? How can you
improve it?

class Animal {
int MAMMAL = @, BIRD = 1, REPTILE = 2;
int myKind; // set in constructor

string getSkin() {
switch (myKind) {
case MAMMAL: return "hair";
case BIRD: return "feathers";
case REPTILE: return "scales";
default: return "integument";

http://slideplayer.com/slide/7833453/ slides 59 to 62

63

http://slideplayer.com/slide/7833453/

Switch statements
Bad Implementation because

— A switch statement should not be used to distinguish between
various kinds of object

— What if we add a new animal type?

— What if the animals differ in other ways like “Housing” or
“Food:?

64

Switch statements

* Improved code: The simplest is the creation of subclasses

class Animal

{ string getSkin() { return "integument"; }
ilass Mammal extends Animal

{ string getSkin() { return "hair"; }

zlass Bird extends Animal

{ string getSkin() { return "feathers"; }
zlass Reptile extends Animal

{

string getSkin() { return "scales"; }

}

Switch statements
How iIs this an improvement?

— Adding a new animal type, such as Insect

» does not require revising and recompiling existing
code

— Mammals, birds, and reptiles are likely to differ in
other ways : class “housing” or class “food”

» But we’ve already separated them out so we won’t
need more switch statements

v 'we’re now using Objects as they were meant to be
used

66

Refused bequest

Subclass doesn’t use superclass methods and attributes

public abstract class Employee({
private int quota;
public int getQuota();

}
public class Salesman extends Employee{ ... }
public class Engineer extends Employee({

|c')u.bolic int getQuota(){

throw new NotSupportedException();

}
}

Engineer does not use quota. It should be
pushed down to Salesman

67

Refused Bequest

Inheritance (is a ...).

Does it make sense?? Delegation (has
a...)
ANIMAL ANIMAL
LEGS AAMAAA
VAYAAYAAAN AN
o s \ EGS
AYAAAAA
STVIN
NN
CHAIR AAAAAA
DOG CHAIR
VAVAAAAAS
LEGS LEGS AAAAAA
NNV N NN AN AAAAAA
NN\ NN \NA A A A AA
VAVAYAAAYAN NN \NAN

Refused Bequest

How this Is an improvement?

* Won’t violate Liskov substitution principle, i.e., if inheritance was
iImplemented only to combine common code but not because the

subclass Is an extension of the superclass.

« The subclass uses only a portion of the methods of the superclass.

» No more calls to a superclass method that a subclass was not supposed to

call.

69

Dispensable

Something pointless and unneeded whose absence
would make the code cleaner, more efficient and
easier to understand.

= Comments =

=% That isn’t useful

» Duplicate Code -
= Dead Code

= Speculative Generality s Predicting the future
= Lazy class

=» Class not providing logic

https://sourcemaking.com/refactoring/smells

70

Comments

Explain yourself in the code

Which one is clearer?

(A)

//Check to see if the employee is eligible for full benefits

if((employee.flags & HOURLY FLAG)&&(employee.age > 65))

(B)

if(employee.isEligibleForFullBenefits())

71

Duplicate Code: In the same class

Refactor: Extract method

int a [];

int b [] ;

int sumofa = 0O;

for (int i=0; i<sizel; i++){
sumofa += a[i];

}

int averageOfa= sumofa/sizel;

int sumofb = 0;

for (int i = 0; i<size2; i++){
sumofb += b[i];

}

int averageOfb = sumofb/size2;

int calcAverage(int* array, int size) {

i

}

i
i
i
i

nt sum= 0;

for (int i = 0; i<size; i++)
sum + =array[i];

return sum/size;

nt a[];
nt b[];

nt averageOfa = calcAverage(a[], sizel)
nt averageOfb = calcAverage(b[], size2)

https://www.slideshare.net/annuvinayak/code-smells-and-its-type-with-example

72

Duplicate Code: In the same class

« Example: consider the ocean scenario:
 Fish move about randomly

« Abig fish can move to where Fish
a little fish is (and eat it) <<abstract->move()
« Alittle fish will not move to where /\
a big fish is
- General move method: BigFish LittleFish
public void move() { move() move()
choose a random direction; /[same for both

find the location in that direction; // same for both
check if it’s ok to move there; [/ different
if it’s ok, make the move; // same for both

}

http://slideplayer.com/slide/7833453/

Duplicate Code

Refactoring solution:

 Extract the check on whether 1t’s
ok to move

 In the Fish class, put the actual
move() method

« Create an abstract okToMove()
method in the Fish class

* Implement okToMove() In each
subclass

http://slideplayer.com/slide/7833453/

Fish

move()

<<abstract>>okToMove(locn):boolean

/\

BigFish

BigFish

okToMove(locn):boolean

okToMove(locn):boolean

74

Couplers

All the smells In this group contribute to excessive
coupling between classes or show what happens if
coupling is replaced by excessive delegation.

= Feature Envy »Misplaced responsibility

* Inappropriate INtIMacy —— Classes should know as little as possible

= Middle Man about each other (¢ Cohesion)
. Message ChaiNToo complex data access

https://sourcemaking.com/refactoring/smells

75

Feature Envy

It’s obvious that the method wants to be elsewhere, so we can simply
use MOVE METHOD to give the method its dream home.

Before

Refactored

I ClossA_ |

ClassB

-envy Method()

ra ==y 7 r feature B1
+$::::r§i?. Ffeatured2
erqre A3()

+Peature A3()

r fearure B1
+featureB2

rfeature A1
+feature A2

T Eeoha re 33()

renvy Method()

v" We are reducing the coupling and enhancing the cohesion

https://www.slideshare.net/annuvinayak/code-smells-and-its-type-with-example

Feature Envy

— A method in one class uses primarily data and methods
from another class to perform its work

» Indicates the method was incorrectly placed in the wrong
class

— Problems:
 High class coupling
« Difficult to change , understand, and reuse

— Refactoring Solution: Extract Method & Method
Movement

» Move the method with feature envy to the class containing
the most frequently used methods and data items

77

Feature Envy

class OrderItemPanel {
private:
itemPanel _itemPanel;
void updateItemPanel() {
Item item = getItem();
int quant = getQuantity();
if (item == null)
_itemPanel.clear();
else{
_itemPanel.setItem(item);
_itemPanel.setInstock(quant);

}

http://slideplayer.com/slide/7833453/ slides 75 to 77

http://slideplayer.com/slide/7833453/

Feature Envy

« Method updateltemPanel is defined in class OrderltemPanel,
but the method interests are in class ItemPanel

class OrderItemPanel {
private:
itemPanel _itemPanel;
void updateItemPanel() {
Item item = getItem();
int quant = getQuantity();
if (item == null)
_itemPanel.clear();
else{
_itemPanel.setItem(item);
_itemPanel.setInstock(quant);

}
}
}

 Refactoring solution:
— Extract method doUpdate in class OrderltemPanel
— Mave method doUndate to class ltemPanel

class OrderItemPanel {

private:

itemPanel _itemPanel;

void updateItemPanel() {
Item item = getItem();
int quant = getQuantity();
_itemPanel.doUpdate(item, quant);

}

}

class ItemPanel {
public:
void doUpdate(Item item, int quantity){
if (item == null)
clear();
else{
setItem(item);
setInstock(quantity);

¥

80

Message chains

a.getB() .getC() .getD() .getTheNeededData ()

a.getTheNeededData ()

Law of Demeter: Each unit should
only talk with friends

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells

81

https://www.slideshare.net/mariosangiorgio/clean-code-and-code-smells

Message chains

» To refactor a message chain, use Hide Delegate.

Message chains

Client Class

J

I

VWG S —
| I

AV

Person

AV

Department

< —— >

getDepartment()

getManager()

https://sourcemaking.com/refactoring/smells

Refactor: Hide delegate

[Client Class]
|

\/

Person

getManager()

|
\/

Department]

82

82

Change preventers

If you need to change something in one place in your code, you
have to make many changes in other places too.

Program development becomes much more complicated and
expensive as a result.

= Divergent change == A class has to be changed in several parts

Shotgun surgery —, A single change requires changes in severall classes
= Parallel Inheritance Hierarchies

https://sourcemaking.com/refactoring/smells 83 83

Shotgun surgery

When changes are all over the place, they are hard to find
and it’s easy to miss an important change

<
9 (/ x 2 ﬂ

CHANGE! =
vyV Y

84

public class Account {
private String type;
private String accountNumber;

private int amount;

public Account(String type,String accountNumber,int amount)

{
this.amount=amount;
this.type=type;
this.accountNumber=accountNumber;
¥

public void debit(int debit) throws Exception

{
if(amount <= 500)
{
throw new Exception("Mininum balance shuold be over 500");
}
amount = amount-debit;
System.out.println("Now amount is" + amount);
}
public void transfer(Account from,Account to,int cerditAmount) throws Exception
{
if(from.amount <= 500)
{
throw new Exception("Mininum balance shuold be over 500");
}
to.amount = amount+cerditAmount;
}

The problem occurs when we add another criterion in validation logic that is if
account type is personal and balance is over 500 then we can perform above
operations

http://javaonfly.blogspot.ca/2016/09/code-smell-and-shotgun-surgery.html

85

public class AcountRefactored {
private String type;

private String accountNumber;
private int amount;

public AcountRefactored(String type,String accountNumber,int amount)

{
this.amount=amount;
this.type=type;
this.accountNumber=accountNumber;
}
private boolean isAccountUnderflow()
{
if(amount <= 500)
{
return true;
}
return false;
}

public void debit(int debit) throws Exception

{
if(isAccountUnderflow())

{
}

throw new Exception("Mininum balance shuold be over 500");

amount = amount-debit;
System.out.println("Now amount is" + amount);

}

public void transfer(AcountRefactored from,AcountRefactored to,int cerditAmount) throwsException

{
if(isAccountUnderflow())

{
}

throw new Exception("Mininum balance shuold be over 500");

to.amount = amount+cerditAmount;

http://;avaonfly.bIogspot.ca/2016/09/c0de—sme|I—and—shotgun—surgery.htmI

86

- Negative Impact of Bad Smells

Bad Smells hinder code comprehensibili
[Abbes et al. CSMR 201 1]

An Empirical Study of the Impact of Two
Antipatterns, Blob and Spaghetti Code,
On Program

e et de Recherche Opération:
c. and Comp. Engineering, Qu

ca, foutse.khomh
?polymtl.ca, antoniol @ie

Abstra tterns are “poor” solutions to recurring

design problems which are conjectured in the | ure to

make obje aintuin, However,

little quantitative evidence exists to support this conje

We performed un empirical study to inve whether 3

the occurrence of antipatterns does indeed affect the under- T ing. Spagheti Cod
ndability of systems by developers during comprehension D

red and conducted three

of procedural thi

nprehension and assessed the impact of
and of their combinations: Blob and Spa Y ; v
measured the developers' pe i AS. emise: A 1 are conject
task load index for their effort; (2) the time that they . . ity. of syst
spent performing their tasks; and, (3) their percentages of -

answers. Collected data show that the occurrence of

ipattern does not ficantly decrease developers’
performance while the combination of two antipatterns im-
pedes sig tly developers. We conclude that developers

cope with one antipattern but that combina:

antipatterns should be avoided possibly through detect
and refactorings.

erns, Blob, Spaghetti Code, Pro

Engineering,

Context: U
ing design probler

X like a
when applied™.

i
T e paler
Lt

https:

4
-
ww.slid

.

Negative Impact of Bad Smells

Bad Smells increase change- and fault-proneness
[Khomh et al. EMSE 2012]

| An exploratory study of the impact of antipatterns
on class change- and fault-proneness

Foutse Khomh - Massimiliano Di Penta -
Yann-Gaél Guéhéneuc - Giuliano Antoniol

e.net/fabiopaIom.a/icselS—smeII—inducingchange

88

Negative Impact of Bad Smells

Bad Smells increase maintenance costs
[Banker et al. Communications of the ACM]

D, Banker, Srikant y
SOFTWARE COMPLEXITY
AND MAINTENANCE COSTS

hile the link between the dif-
ficulty in understanding computer software and the cost of maintaining it is appealing, prior
empirical evidence linking software complexity to software maintenance costs is relatively weak
[21). Many of the attempts to link software complexity to maintainability are based on
experiments involving small pieces of code, or are based on analysis of software written by
students. Such evidence is valuable, but several rescarchers have noted that such results must

be applied cautio the large-scale lines of Cobol & ted 10 exist impact at a typical commercal site
commercial application sy worldwide, this D suggests that U'he esumatedt costs are high enough
their maintenance 10 justify strong efforts on the part of
formation systems (IS) a are managers moniton and
vonsiderable ecos comrol ¢ This analys
could also be us s the costs
software maint and benefits of a class of computer-
umple nance as a vehicke [2), this rescarch aided sofiware engineering (CASE)
25 of software modulamy and soft impact of software tools known as resiTucturers
ware structure (6, 12). Additionally, - s of software
ne of the pr - ntenance projects in a radisional Previous Research and
estimates of the actual cost of ¢ . IS environment el employs COnceptual Model

cstimates that could § Iridin approach to . complenty

software maint y 1ing software comp and : ¢ ANSIIEEE
e the best us e s for additor { 720 definition of maint

research tors under managerial contre ot modification of a software

are believed to affect ce product afier delivery correct

project costs w0 improve pe

T soft antributes adapt the

ware maintenance costs are signifi ac 1 environment

canly affected by software complex- (2 : costs of soft-

ity, measured in three dimensions: ware maintenance has much in com

odule size, procedure size, and mon with rescarch on the costy of

branching complexity. The findings new software development, since

on the costs of presented here also help 1o resolve both involve the creation of working
Cobol maintenance projects within a the current debate over the func. code through the efforts of human
large commercial hank. It has been tional form of the refationship be pped with approprs
estimated that 60 percent of all busi- tween software complexity and the ate ex nce, wols echmyues
ness expendicures on computing are £ » maintenance. The Soft maintenanc or,

€ of software written 2 provides actual dol- fundament cremt from new
Since over 50 bilion lar estimates of the magnitude of this systems development in that the soft

ww.slid e.net/fabiopalompa/icse15-smell-inducingchange

.

89

