
The Effect of GoF Design Patterns on Stability:
A Case Study

Apostolos Ampatzoglou, Alexander Chatzigeorgiou,Member, IEEE,

Sofia Charalampidou, and Paris Avgeriou, Senior Member, IEEE

Abstract—Stability refers to a software system’s resistance to the “ripple effect”, i.e., propagation of changes. In this paper, we

investigate the stability of classes that participate in instances/occurrences of GoF design patterns. We examine whether the stability

of such classes is affected by (a) the pattern type, (b) the role that the class plays in the pattern, (c) the number of pattern

occurrences in which the class participates, and (d) the application domain. To this end, we conducted a case study on about 65.000

Java open-source classes, where we performed change impact analysis on classes that participate in zero, one (single pattern), or

more than one (coupled) pattern occurrences. The results suggest that, the application of design patterns can provide the expected

“shielding” of certain pattern-participating classes against changes, depending on their role in the pattern. Moreover, classes that

participate in coupled pattern occurrences appear to be the least stable. The results can be used for assessing the benefits and

liabilities of the use of patterns and for testing and refactoring prioritization, because less stable classes are expected to require more

effort while testing, and urge for refactoring activities that would make them more resistant to change propagation.

Index Terms—Design Tools and Techniques, Object-oriented programming, Metrics/Measurement

Ç

1 INTRODUCTION

THE term pattern, in the field of software engineering,
refers to solutions to commonly occurring problems;

software patterns have been written for different develop-
ment phases (e.g., requirements, design, architecture) as
well as application domains (e.g., embedded systems, enter-
prise applications). Some of the most used patterns are
object-oriented design patterns [19], architectural patterns
[14] and analysis patterns [18]. The first ones ([19]) were
introduced in the mid-90s by Gamma, Helm, Johnson, and
Vlissides (known as Gang of Four or GoF), where solutions
to 23 common object-oriented problems were documented.
These patterns are also known as the GoF design patterns.

Since their inception, the GoF design patterns have
attracted large attention from the software engineering
research community, as revealed by two recent secondary
studies, conducted by Ampatzoglou et al. [6] and Zhang
and Budgen [53]. In these secondary studies, more than
130 scientific papers related to research on GoF design pat-
terns have been identified. The mapping study of Ampat-
zoglou et al. [6] revealed that one of the most important
research topics on GoF design patterns is their effect on
software quality characteristics (the rest research topics
were: pattern formalizations, pattern detection, patterns
application, and other topics [6]). One particular quality

characteristic that both secondary studies emphasize is
maintainability. According to both [6] and [53], research on
the effect of GoF design patterns on software maintainabil-
ity is highly active, but still deserves more investigation as
many research questions remain unanswered. In this arti-
cle, we adopt the ISO-9126 definition for maintainability as
the “software quality characteristic concerning the effort needed
to make specified modifications to an already implemented
system”. ISO-9126 decomposes maintainability into four
characteristics [24]:

� analyzability;
� changeability;
� stability;
� testability.
We focus on software stability1 (and its opposite, instabil-

ity), which according to ISO 9126 “characterizes the sensitivity
to change of a given system that is the negative impact that may
be caused by system changes”. Concerning design patterns’
effect on stability, until now, most studies have concen-
trated on pattern change proneness, i.e., the number of actual
changes to pattern-participating classes, without differenti-
ating between changes from new requirements, changes
due to debugging activities, and changes that propagate
from changes in other classes. Instability is different to
change proneness as follows:

� change proneness is a measurement of all changes
that occur to a class (e.g., new requirements, debug-
ging, change propagation, etc.) [25], whereas stabil-
ity only refers to the last type of change (propagation
of other changes).

� A. Ampatzoglou, S. Charalampidou, and P. Avgeriou are with the Insti-
tute of Mathematics and Computer Science, University of Groningen,
Groningen, Netherlands.
E-mail: {a.ampatzoglou, s.charalampidou}@rug.nl, paris@cs. rug.nl.

� A. Chatzigeorgiou is with the Department of Applied Informatics,
University of Macedonia, Thessaloniki, Greece. E-mail: achat@uom.gr.

Manuscript received 11 Apr. 2014; revised 6 Mar. 2015; accepted 16 Mar.
2015. Date of publication 23 Mar. 2015; date of current version 26 Aug. 2015.
Recommended for acceptance by A. Tanter.
For information on obtaining reprints of this article, please send e-mail to:
reprints.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2414917

1. Instability is used in this paper as the opposite of stability, i.e., the
probability of a system to change, due to changes occurring in different
parts of the system.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015 781

0098-5589� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

� change proneness is usually calculated from the
actual changes that occur in a class (a posteriori anal-
ysis), whereas stability can be calculated a priori.

Although instability and change proneness are closely
related concepts that can be characterized as two sides of the
same coin, there may be cases in which they are not corre-
lated. For example, a class heavily depending on other clas-
ses would be highly instable; however, if this class does not
actually change, then its change proneness would be low.

Therefore, in this study, instability is defined and mea-
sured at class level as the degree to which a class is subject to
change, due to changes in other, related classes, considering the
probability of such classes to change as equal to a certain value.
This value is obtained considering a constant value for its
internal change probability (due to reasons other than
change propagation) as well as its dependencies on other
classes. The exact value of the constant internal probability
of change for a class does not influence the ranking of clas-
ses according to their instability. It will only affect the range
of the absolute value of instability (for more details see Sec-
tion 3.2). Therefore, the co-change of classes that implement
the same requirement, which is not occurring because of
their dependency, but because of their overlapping class
contracts [35] is outside the aforementioned definition of
instability. Similarly, the above definition of instability
excludes all changes that occur to classes due to changing
or additional requirements, and bug-fixing activities (as
most definitions of co-change in the literature).

The reason that we focus on stability is that it has been
advocated as one of the major benefits of GoF design pat-
terns [19]: design patterns are expected to “shield” some
participating classes from ripple effects, i.e., changes propa-
gated to them due to changes occurring in the rest of the
system. For example, in the Façade design pattern, the class
playing the role of Façade should prevent the propagation of
changes from clients to subsystem and vice-versa. We
examine this “shielding” effect from the perspective of the
design pattern structure, rather than the change frequency
of the surrounding classes of the design pattern. Consider-
ing the change frequency of the surrounding classes would
invalidate the findings of our study because the stability of
the examined patterns classes would be subject to the his-
tory of changes in each system (see Section 3.2).

Therefore, we investigate if the claim that GoF patterns
support the stability of certain pattern-participating classes
holds in practice. In particular, our aim is to investigate
how the instability of classes that participate in a GoF
design pattern is influenced by four different factors, i.e.,
pattern type, class role, pattern coupling, and application
domain. These factors have also been examined in the litera-
ture (see Section 2.3). The reasons why these factors are
expected to be influential with respect to class instability are
as follows:

� Type of the GoF design pattern. The type of the pattern
is expected to influence the instability of the classes
that participate in it, because the particular structure
of each pattern is expected to provide “shielding” to
different classes.

� Role of the class inside the GoF design pattern. The role
that a class plays in the pattern is expected to lead to

different levels of instability since different roles
have different dependencies to the rest of the system.

� Intersection of several GoF patterns on a single class
(termed pattern coupling in [34]). In the literature
[27], [34], it is suggested that coupled pattern occur-
rences exhibit a different effect on several source
code metrics. Thus, we investigate if a different effect
holds for the instability of classes that participate in
more than one pattern occurrences.

� Application domain. The application domain of a soft-
ware system is expected to influence the way GoF
design patterns are implemented. According to [1]
and [48], quality differs significantly among applica-
tion domains. Therefore, based on these differences,
we assume the existence of: (a) differences in levels
of instability, (b) differences in the way that both
pattern and non-pattern parts of the system are
implemented w.r.t. the use of object-oriented charac-
teristics (e.g., encapsulation, inheritance, polymor-
phism etc.), and (c) potential differences on the
amount of design pattern occurrences that would be
identified in each domain. All the aforementioned
assumptions are expected to differentiate our results
per application domain.

To provide empirical evidence on the relation between
pattern instability and those four factors, we conducted a
multi-case study on about 65,000 classes of 537 open-source
software (OSS) projects by performing change impact analy-
sis (see Section 2.1). The reason for performing change
impact analysis is to investigate all possible dependencies,
through which a change can propagate from one class to
another and the probability of such an event, i.e., class insta-
bility. Comparing the scope, the goals, and the research
method of this study to the previous work on this subject
(presented in Section 2), the main contributions of this study
(elaborated in Section 2.4) are that:

� It investigates the effect of GoF design patterns on
the estimated instability of classes, i.e., the probability
of a class to change according to changes that
occurred in other classes of the system, rather than
actual changes occurring in the classes. Studying
class instability gives a different perspective on the
effect of design patterns on software maintainability,
because it relates to the design structure of the pat-
tern, rather than its context (surrounding classes).
Additionally, instability, as a design measure and
assuming constant internal probabilities of change,
can be calculated early (in a pre-deployment phase),
while, change proneness is a post-deployment mea-
sure. Therefore, instability indicates design spots
that might suffer from changeability issues, which
can be mitigated before software deployment.

� It is a large-scale empirical study. Until now, the larg-
est study on design patterns and change proneness
was conducted on three OSS (see Section 2.5).

� It investigates the effect of coupled patterns on stabil-
ity. This is the first study that investigates the afore-
mentioned phenomenon (see Section 2.5).

In the next section, we present related work on change
impact analysis, on the effect of GoF design patterns on

782 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

maintainability and stability, on pattern coupling, as well as
an overview of the main contributions of this work with
respect to related work. In Section 3, we present the tools
used in the case study data collection phase. In Section 4,
we present the case study design according to the guide-
lines provided by Runeson et al. [41]. In Section 5, we report
the findings of the case study, which are discussed against
each research question in Section 6. Threats to validity are
discussed in Section 7. Finally, conclusions and future work
are presented in Section 8.

2 RELATED WORK

In this section, we provide an overview of previous research
efforts related to the scope of this paper. More specifically,
in Section 2.1, we introduce related work in the field of
change impact analysis and in Sections 2.2 and 2.3, we dis-
cuss research findings on the effect of GoF design patterns
on system maintainability and stability. In Section 2.4, we
discuss research that has been performed on how design
patterns interact and possible implications of this interac-
tion. Finally, in Section 2.5, we summarize key results of
studies that have assessed the effect of GoF design patterns
on stability, introduced in detail in Section 2.3, and compare
those studies against our study.

2.1 Change Impact Analysis

Change impact analysis deals with identifying and quanti-
fying the effects caused by changes in one part of a system
on other parts of the same system. According to the first law
of software evolution stated by Lehman and Belady [31],
namely ‘Continuing Change’, software systems must be
continually adapted lest they become obsolete and therefore
change impact analysis plays an important role in software
development and maintenance. Before the actual applica-
tion of changes, change impact analysis can be valuable for
program comprehension and effort estimation ([13], [22])
whereas, after changes have been applied, it can be used to
prioritize test cases and reveal relations among components
[40]. The term impact analysis has been used for the first
time by Horowitz and Williamson [23] in the mid-80s.
Recently, Li et al. [32] have presented a survey of 23 code-
based change impact analysis techniques. Change impact
analysis techniques can be classified in two broad categories
[32]: (a) traceability-based, where the goal is to identify the
potential consequences of a change by relating different
types of software artifacts (e.g., requirements with source
code) and (b) dependency-based analysis, where dependen-
cies among program entities (usually at the code level) are
identified and used to assess change impact. The approach
and the tool that have been used in this study to assess the
stability of pattern- and non-pattern-participating classes
belong to the second category since the dependencies
among classes in object-oriented systems are used to iden-
tify potential change propagation.

2.2 Design Patterns and Maintainability

According to two recent mapping studies on the research
state of the art on GoF design patterns, [6] and [53], software
maintainability appears to be one of the key quality con-
cerns of researchers that investigate the use of GoF design

patterns. More specifically, according to Ampatzoglou
et al., 40% (14 out of 35) of the studies on the effect of GoF
design patterns on software quality attributes investigate
the effect of GoF design patterns on software maintainabil-
ity [6] whereas, according to Zhang and Budgen, GoF
design patterns offer a framework for maintainability and
future research efforts should be more focused on maintain-
ability [53].

Two of the most well-known controlled experiments on
the effect of GoF design patterns on software maintainabil-
ity have been performed by Prechelt et al. and Vokac et al.,
in 2001 and 2004 respectively ([38], [49]). The aim of both
studies was to compare the maintainability of systems with
and without design patterns. In [38], the patterns consid-
ered were Abstract Factory, Observer, Decorator, Compos-
ite, and Visitor, while the participants of the experiment
were professional software engineers. The results of the
experiment suggest that it is usually preferable to apply a
design pattern rather than a simpler solution (more details
on the examined simpler solutions can be found in papers
[38], [49]). In a later replication of the experiment by Vokac
et al. [49], who used the same patterns and similar subject
groups, the authors increased experimental realism
because participants used a real programming environ-
ment instead of pen and paper. The results suggest that
design patterns are not all beneficial or harmful with
respect to maintenance and that the decision of applying a
GoF design pattern or a simpler solution is best answered
by the designer’s common sense.

Jeanmart et al. [26] performed an experiment with stu-
dent participants that aimed at evaluating the understand-
ability and the modifiability of Visitor design pattern
instances. The experiment used three open-source projects
as objects (including canonical and non-canonical represen-
tations of the Visitor pattern) and various comprehension
and modification tasks as evaluation criteria. Their results
suggest that the effort needed for modification tasks is
reduced in cases where the canonical representation of the
Visitor pattern is used and when the subjects have a good
understanding of UML notations.

Ampatzoglou et al. [4] have attempted to provide an
objective way of selecting between the application of pat-
terns and alternative design solution, with respect to soft-
ware maintenance. They proposed an analytical method that
uses a set of maintainability predictors [47] and mathemati-
cally formalized their metric scores as functions of the num-
ber of pattern-participating classes. Applying that method
on Bridge and Abstract Factory design patterns, they pro-
vided several cut-off points, i.e., number of pattern partici-
pating classes thresholds that, when surpassed, make the
solutions becomemoremaintainable than the alternative sol-
utions, and vice versa. Both the study of Ampatzoglou et al.
[4] and Jeanmart et al. [26] point out the existence of certain
conditions, i.e., number of classes and design pattern repre-
sentation/knowledge of UML notations respectively, that
can be used as predictors to decide in which cases the design
pattern solution is more maintainable.

Several other research efforts have empirically evaluated
the use of design patterns, with respect to software main-
tainability. Specifically, Khomh and Gu�eh�eneuc per-formed
a survey with software engineers with significant

AMPATZOGLOU ET AL.: THE EFFECT OF GOF DESIGN PATTERNS ON STABILITY: A CASE STUDY 783

experience on GoF design patterns and asked them to evalu-
ate each pattern with respect to eight quality characteristics.
The quality characteristic that was related to maintainability
was expandability, i.e., the degree to which the design of a
system can be extended. The results suggested that 19 out
of the 23 GoF design patterns are evaluated as beneficial
with respect to maintainability, whereas only four as harm-
ful, i.e., Singleton, Flyweight, Proxy, and Memento [28].

Ampatzoglou and Chatzigeorgiou evaluated the main-
tainability of State, Strategy, and Bridge design pattern
occurrences [3]. The case study was performed on two
open-source computer games and provided a comparison
between a pattern and a non-pattern version, with respect
to complexity, coupling, cohesion, and size metrics. The
results suggested that all identified GoF design pattern
occurrences improved cohesion, coupling, and complexity
of the systems but, as a side effect, increased the size of the
systems, both in terms of lines of code and number of clas-
ses [3]. In a similar context, Kouskouras and Chatzigeorgiou
evaluated the use of an architectural pattern, i.e., namely
the Registry pattern adopted from [42], with respect to
maintainability, by comparing it to a simple OO implemen-
tation, without the use of a pattern, as well as an alternative
that combines the pattern with an AOP implementation.
The results suggested that using the pattern offers a more
maintainable design than the non-pattern version, while the
AOP solution was optimal because it retained all beneficial
pattern characteristics and limited coupling of the pattern
inside the aspect [30].

Finally, Martin et al. investigated the relation between
design patterns and the Open Closed Principle [33],
through experimentation. More specifically, the authors
checked real instances of the State design pattern to exam-
ine if the code that should be encapsulated within a partic-
ular design is actually using the encapsulation
mechanisms of the pattern. The results of the performed
experiment suggests that there is only a 20% chance of
achieving conformance to the Open Closed Principle if the
State design pattern is not used [37]. Assuming that con-
formance to the Open Closed Principle is the desired way
of extending a system, i.e., a way of maintaining the sys-
tem, the results suggested that there is only a 20% chance
for a system without a State design pattern to be main-
tained in the desired Object-Oriented way, i.e., by adding
subclasses, rather than modifying existing code. The result
that adding subclasses is the most common way of main-
taining a pattern instance during its evolution is supported
by the same author, in [36].

2.3 Design Patterns and Stability

In addition to the ISO-9126 definition provided earlier, Yau
and Collofello ([50], [51]) define software stability as resis-
tance to propagation of changes (ripple effect) that the soft-
ware would have when it is modified, which is also known
as modular continuity [35]. Although the goal of this study
is to evaluate the effect of GoF design patterns on stability,
we do not to exclude from this discussion studies related to
GoF design patterns and change proneness because: (a)
work on patterns and stability is limited and (b) because
results on change proneness and results on stability are

related in the sense that instability is a subset of change
proneness

Some of the first studies on the effect of design patterns
on class change proneness were produced by Bieman et al.
First, in 2001, the authors conducted an industrial case
study that aimed at investigating correlation among code
changes, reusability, design patterns, and class size. The
results of the study suggest that the number of changes is
highly correlated to class size and that classes that play roles
in patterns or that are reused through inheritance are more
change prone than others [9]. In a replication of the case
study, in 2003, the same authors used three professional
and two open-source projects, with the same research objec-
tives. The results of the second study do not fully agree
with those of the prior case study. The relationships
between class size, design patterns participation and change
proneness are still valid but appear weaker [10]. In 2009,
Gatrell et al. replicated the work of Bieman [9], [10] on pro-
prietary C# applications, by taking the same GoF design
patterns into account. The main difference, apart from the
programming language, was the metric used for measuring
changes. Gatrell used a change-per-class measurement,
whereas Bieman used a change-per-operation measure-
ment. However, the results of the replication validated that
classes that participate in GoF pattern occurrences are more
change prone than classes which do not [20].

Di Penta et al. [15] investigated possible correlations
among class change proneness, the role that a class holds in
a pattern, and the kind of change that occurs. The design
patterns under study are Abstract Factory, Adapter, Com-
mand, Composite, Decorator, Factory Method, Observer,
Prototype, Singleton, State, Strategy, and Template
Method. They studied three open-source projects. The
results of the paper are intuitive for the majority of the roles
that a class can play in a design pattern instance. For exam-
ple, classes playing the Abstract Factory role (Abstract Fac-
tory pattern) and the Product role (Command pattern)
change less frequently than the concrete ones. Another
example is the Command pattern, where classes playing
the role of Receiver change more frequently than classes
playing the role of Command. Furthermore, it is suggested
that design activities should take into consideration the
roles that a class can play, because interface roles’ change
proneness can make other parts of the system less robust to
changes. Building on [15], Aversano et al. [7] investigated
the evolution of GoF design patterns from the perspective
of real changes that occur on pattern occurrences, across
different releases. More specifically, the authors replicated
the research questions of Di Penta et al. [15] and built on
them by investigating the changes on pattern client and pat-
tern target classes [7]. The results of the study suggest that
pattern occurrences that are used for application purposes
are changing more frequently and that different types of
changes have a different effect on co-changing classes. Fur-
thermore, Elish has qualitatively investigated the effect of
structural GoF design patterns on stability [16] and describe
through examples the way changes propagate among GoF
design pattern participating classes. The illustrative exam-
ples suggest that the studied patterns (i.e., Adapter, Bridge,
Composite and Façade) have a positive effect on stability of
class diagrams.

784 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

Finally, as indirect related work, we have identified sev-
eral studies on the effect of anti-patterns and code smells on
change-proneness, that will be used in our discussion
section. Although this presentation is not exhaustive, we
provide an overview of the studies that we have used.
Firstly, Khomh et al. [29] investigate the impact of code
smells on change-proneness by performing a case study on
two OSS projects. The results that are relevant to ours are
those that are related to specific class roles, such as abstract
classes and subclasses. Secondly, Romano et al. [39], investi-
gated the effect of anti-patterns on actual source code
changes. More specifically, they indicate that different anti-
patterns have different effect on change proneness (also
underline the most change prone ones), and that specific
anti-patterns lead to specific types of changes.

2.4 Design Patterns Coupling

The term ‘design pattern coupling’ has been introduced in
2001 by McNatt and Bieman [34]. Two or more design pat-
tern occurrences are considered coupled when they share at
least one pattern participating class [34].

Concerning the effect of coupled GoF design patterns on
quality characteristics, we have been able to identify, only
one related study [27]. In this study, Khomh and
Gu�eh�eneuc, have identified coupled GoF design pattern
instances from five open-source projects and calculated sev-
eral well-known structural quality metrics, such as Cyclo-
matic Complexity, Lack of Cohesion of Methods, coupling
between objects (CBO), etc. The results revealed quite a dif-
ferent behavior of classes that participate in zero, one, or
two and more roles in GoF design pattern occurrences.
More specifically, the results suggest that classes that play
two and more roles in a design pattern are more complex,
more coupled, and less coherent than classes playing one or
zero roles in GoF design patterns. The study reported on

some demographic results, on the frequency of encounter-
ing GoF design pattern coupling. More specifically, the
study found that JHotDraw contains only 5.81% of classes
that play only one role while 24.45% play two roles in GoF
pattern occurrences [27].

2.5 Overview

In this section, we summarize the key characteristics of
studies (elaborated in Section 2.3) that have assessed the
effect of GoF design patterns on stability or change prone-
ness to discuss the main contribution of our study with
respect to related work. The key characteristics of research
that deals with patterns and stability or change proneness
are summarized in Table 1. In the last line of the table, we
present the features of our work.

Comparing the scope, the goals, and the research method
of this study to the previous work, this study is:

� the largest-scale empirical study investigating the
effect of GoF design patterns occurrences on stability.

� the first large-scale empirical study investigating the
effect of GoF design pattern occurrences on any
maintainability sub-characteristic, including, but not
limited to stability.

� the first empirical study that deals with the effect of
coupled GoF design patterns on stability.

3 USED TOOLS

In this section, we discuss background information needed
to understand the tools that we used for GoF pattern detec-
tion and for calculating the probability of a class to change.

3.1 Design Pattern Detection

We employed two different pattern detection tools (SSA, by
Tsantalis et al.) [45] and (PINOT, by Shi and Olson) [43],

TABLE 1
Research State of the Art on the Effect of GoF Design Patterns on Stability and Change Proneness

Study Patterns Assessed Stability Metric Pattern Coupling Validation Method Per Pattern Per Role

[7] FM, Pr, Si, Ad, Co, De,
Ob, Sta, Str, TM, Vi

CF, CFT, LoCCoC No Case study (3 OSS) Yes No

[9] Si, FM, Prx, It ACC ACO No Case study (39
versions of 1
commercial)

No No

[10] Ad, Bu, FM, It, Prx, Si,
Sta, Str, Vi

ACC ACO No Case study (3
commercial, 2 OSS)

No No

[15] AF, Cmd, Ad, Co, De,
FM, Ob, Pr, Si, Sta, Str,

TM, Vi

CF CFT No Case study (3 OSS) Yes Yes

[16] Ad, Br, Co, Fa N/A No Descriptive
Evaluation

Yes No

[20] Ad, Bu, FM, It, Prx, Si,
Sta, Str, Vi

ACC No Case study
(1 commercial)

Yes No

Our study AF, Pr, Si, Ad, Co, De,
Ob, Sta, Str, TM, Vi, Pr

Ins Yes Case Study
(537 OSS)

Yes Yes

Design PatternsAbbreviations. FactoryMethod (FM), Prototype (Pr), Singleton (Si), Adapter (Ad), Composite (Co), Decorator (De), Observer (Ob), State (Sta),
Strategy (Str), TemplateMethod (TM), Visitor (Vi), Proxy (Prx), Iterator (It), Builder (Bu), Abstract Factory (AF), Command (Cmd), Bridge (Br), Façade (Fa).
Metrics Abbreviations. Actual Change per Class (ACC), Not Available (N/A), Change Frequency (CF), Change Frequency Type (CFT), Actual Changes per
Operation (ACO), Lines of Code Changed in Other Classes (LoCCoC), Instability (Ins).

AMPATZOGLOU ET AL.: THE EFFECT OF GOF DESIGN PATTERNS ON STABILITY: A CASE STUDY 785

both capable of automatically identifying pattern occur-
rences (of the GoF catalogue) in a given Java project. Both
tools can be downloaded from the web.2

The tool proposed by Tsantalis et al. [45] identifies pat-
tern occurrences based on a similarity scoring algorithm
(SSA), even if the patterns are variations to the standard
forms in which they have been originally described. As an
example, the approach can identify an occurrence of the
Strategy pattern even if there is an intermediate inheritance
level between the Strategy role (abstract class or interface)
and the Concrete Strategy subclass role. The underlying
detection algorithm is based on a generalization of the link
analysis algorithms proposed by Blondel et al. [12].

Pattern inference and recovery tool (PINOT) is a pat-
tern detection approach [43] that can identify occurrences
from all structural and behavioral patterns in the GoF cat-
alogue. Detection places emphasis not only on the struc-
tural aspects of patterns (derived from inter-class
relationships) but also acknowledges the need to consider
their behavioral aspect. Once inter-class analysis has been
performed to narrow down the search space to particular
methods, further static behavioral analysis is applied to
each candidate method’s body in terms of control flow
and data flow.

Consequently, although both tools are performing static
analysis, the results of the tools are not expected to be iden-
tical, in the sense that:

� SSA investigates methods calls, whereas PINOT
does not;

� SSA investigates object creation, whereas PINOT
does not;

� PINOT investigates control flow and data flow,
whereas SSA does not;

� PINOT identifies pattern occurrences only in their
original versions. SSA identifies deviations, as well.

According to an independent study on design pattern
detection tools, by Binun and Kniesel [11], the recall rate
(i.e., the percentage of existing patterns that are identified by
the tool) of the SSA tool ranges from 24 to 52% (40.8 percent
in average), while the recall rate for PINOT ranges from 13
to 50% (27.2% in average). Additionally, the precision rate
(i.e., the percentage of the identified patterns that is correct) for
the SSA tool ranges from 51 to 80 percent (66.0% in aver-
age) and from 9 to 78% (30.6% in average) for the PINOT
tool. Yet, the evaluation was performed only on a limited
amount of GoF design pattern types (i.e., Composite,
Observer, Decorator, Chain of Responsibility, and Proxy)
and, therefore, cannot be generalized to all design pattern
occurrences that the tools identify. Finally, among the tools
discussed in [11], the similarity scoring tool and PINOT
are the only ones that can analyze projects regardless of
their size.

To increase the degree of confidence on the employed tools
and to exclude from the analysis patterns forwhich the results
are not sufficiently accurate, we have manually inspected a
number of design pattern occurrences, as presented in
Appendix A, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2015.2414917. We have selected to inspect one
pattern occurrence of each type, recovered from each applica-
tion domain (so in total approximately eight pattern occur-
rences per application domain, i.e., a grand total 119 pattern
occurrences). The processwas as follows:

a) One pattern occurrence of each type has been ran-
domly picked for every application domain (i.e.,
approximately eight design pattern occurrences for
each pattern type);

b) The first and the second author independently
reviewed the retrieved patterns, by providing a
“
p
”or an “X”;

c) All pattern occurrences in which the results were
contradictive have been discussed by the two
authors, this procedure could lead in a change in the
evaluation of the reviewer;

d) Every pattern occurrence that included even one “X”
was characterized as false positive, accompanied
with the reasoning for such a decision.

The results of the inspection led to the following correc-
tive actions:

� Merge State and Strategy occurrences, because they
are not easy to differentiate, even manually.

� Merge Façade and Mediator occurrences, because
many Mediator occurrences have been manually
identified as Façade occurrences.

� Remove Flyweight and Chain of Responsibility
occurrences, because the number of false-positives
was high.

These actions are expected to reduce the number of false
positive pattern occurrences, because pattern types with
low precision levels have been either removed from the
analysis or merged with similar patterns.

As a final step on the process of selecting and using
design pattern detection tools, we faced the decision on
whether we should consider the union or the intersection of
the two tools. In this study, as the final set of explored pat-
terns, we use the union of the results of the two tools, for
the following reasons:

� Increased number of investigated GoF design pattern
types. The SSA tool identifies occurrences from 11
GoF design patterns types, whereas PINOT from
13 types (nine in common and six unique). There-
fore, considering the intersection of the results
would lead to a dataset involving a reduced num-
ber of GoF design pattern types (i.e., 9 patterns,
compared to the 13 pattern types, in the case of
union).

� Increasing recall. Based on the low number of recall of
both tools, we can deduct that both tools “miss” a
significant number of pattern occurrences. By joining
the results of the tools we aim at including additional
true-positive occurences (decrease false negatives),
that will increase recall.

However, as a side-effect of this decision, we acknowl-
edge the possible increase of false-positive (decrease of pre-
cision). We discuss this as a threat to the validity of this
study.

2. http://java.uom.gr/�nikos/pattern-detection.html
http://www.cs.ucdavis.edu/�shini/research/pinot

786 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

3.2 Class Instability

Predicting whether a given software module will change in
a future version is an ambitious goal because any actual
decision to perform changes to a class is subject to numer-
ous factors. The probability that a certain class will change
in the future is affected not only by the likelihood of modify-
ing the class itself but also from possible changes in other
classes that might propagate to it. These so-called ripple
effects [21] (or change propagation) are the result of depen-
dencies or ‘axes of change’ (the term ‘axis of change’ is used
as in [46]) among classes through which a change in a class
(such as the change in a method signature—i.e., method
name, types of parameters and return type) can affect other
classes enforcing them to be modified.

The tool3 that has been employed in this study [46] ana-
lyzes the axes of change in which each class is involved and
calculates the instability incurred by each axis of change.
The accuracy of these probabilistic estimates can be
improved by using past data to calculate the probability of
change for each class due to modifications to the class itself
(internal probability), as well as the percentage of changes
that actually have propagated from other classes (propaga-
tion factor). As an example, for a class A having a depen-
dency on another class B due to the existence of a reference
(axisB), the probability of A being changed due to a change
in class B is obtained as P(A:axisB) ¼ P(A jB)�P(B). P(A jB) is
the conditional probability of a change in class A with
respect to a change in class B and represents the possibility
of propagating a change from one class to the other while P
(B) refers to the internal probability of changing class B. A
class might be involved in several dependencies and,
because even one change will be a reason for editing the
code, the probability in which we are interested is the joint
probability of all events.

Regarding the internal probability of change, a constant
value has been used for all classes. In that sense the results
of this study do not reflect the actual distribution of internal
changes, because classes are expected to change with differ-
ent frequencies. Because of this decision, the extracted prob-
abilities reflect only the extent to which a class is subject to
future changes because of propagation of changes due to
the underlying system design, i.e., due to the dependencies
that it has on other classes in terms of inheritance, reference
or name dependencies. Consequently, the obtained values
are consistent with the notion of stability, which according
to the ISO 9126 quality model [24] captures the capability of
a software product to avoid unexpected effects from modifi-
cations of the software (otherwise, if we had not used a con-
stant value for internal probability of change, it would
calculate change proneness and not instability.

As an example, suppose the same instance of a design
pattern used in two different circumstances, i.e., (a) in a
“design hotspot” where the classes that emit changes to the
pattern are changing very frequently (see Fig. 1a), (b) in a

design spot where the classes that emit changes to the pat-
tern are not changing very frequently (see Fig. 1b). In this
example, if we had not used a fixed internal probability of
change for the classes that communicate with the pattern
instance (classes in the pattern ‘neighborhood’), the same
design pattern instance would have been characterized as
stable in the case of Fig. 1b, and as instable in the case of
Fig. 1a. However, the structure and connectivity of the pat-
tern instance to the rest of the system is the same. Therefore,
we believe that considering the actual frequency of changes
in our study would invalidate the investigation of pattern
stability from a structural perspective, since in such a case,
stability would also be affected by the design spot, in which
the pattern is used.

Concerning the propagation factor of changes among
dependent classes, we preferred not to use a constant value,
because the change propagation factor should ideally reflect
as closely as possible the underlying design and the effect of
design patterns. For this reason, we used a ripple effect
measure (REM), which attempts to quantify the probability
of a change occurring in class B to be propagated to a depen-
dent class A, as discussed in Section 3.3.

3.3 Ripple Effects Measurement

In general, there are two types of axis of change, along
which a change can propagate: i.e., generalization and asso-
ciation relationships. To quantify the propagation factor, we
attempt to estimate the percentage of the accessible interface
of a class, which might emit changes to a dependent class. In
case of an association, this estimate can be obtained as the
ratio of distinct method calls from A to B, over the number
of public methods in class B. In case of generalization, there
are three possible reasons for change propagation: (a) super
method invocation (use of super), (b) access of protected
fields, and (c) override or implementation of abstract meth-
ods of the superclass. All these sources should be normal-
ized over the total number of accessible members in the

Fig. 1. (a) Design pattern instance placed in a frequently-changing spot
of the design, (b) design pattern instance placed in an infrequently-
changing spot of the design.

3. Old tool: http://java.uom.gr/nikos/probabilistic-evaluation.html
new tool: http://iwi.eldoc.ub.rug.nl/root/2014/ClassInstability/
We provide a link to both the old and the new version of the tool: (a)

as an acknowledgement to the tool that we used a starting point for
reuse and (b) as a reference for readers that might be interested in com-
paring the results of the two tools.

AMPATZOGLOU ET AL.: THE EFFECT OF GOF DESIGN PATTERNS ON STABILITY: A CASE STUDY 787

superclass. According to these observations, REM can be
calculated as follows:

REM ¼ NDMC þNOP þNPrA

NOM þNA
: (1)

NDMC: Number of distinct method calls from class A to
class B (super class method invocations for the
case of generalization)

NOP: Number of polymorphic methods in class B (valid
only for generalization)

NPrA: Number of protected attributes in class B (valid
only for generalization)

NOM: Number of methods in class B
NA: Number of attributes in class B (valid only for

generalization)
The aforementioned measure has been incorporated in

the employed tool, by re-writing the functionality related to
the calculation of class probability of change.4 Specifically,
for every dependency that is identified by the tool, we calcu-
late REM and set it as the propagation factor between the
depended classes. For example, consider the sample design
of Fig. 2, where class A extends class B.

In the general case, class A can change if a change occurs
in B in the following cases:

� if it overrides a method, and the signature (method
name, types of parameters and return type) of this
method changes.

� if it calls a method of the superclass and the signa-
ture of the superclass method changes.

� if it uses a protected attribute, and this attribute
changes name.

On the other hand, the following changes in B do not
propagate in A:

� changes in the body of any function.
� changes in the signature of methods that A does not

call or override.
� changes in private attributes.
In the above example there are three types of change

which might propagate from superclass B to subclass A:
(a) change in att2, (b) change in m1(), and (c) change in
m2(). Changing the type, the name, or deleting att2 will
lead to a compile error wherever att2 is accessed. Chang-
ing the signature of m2()would lead to a compile error in
the corresponding invocation. Finally, changing the

signature of m1() would lead to a compile error in the
place where m1() is overridden, because m1() is declared
abstract in the superclass. Thus, the estimate for the propa-
gation factor can be calculated as:

REM ¼ RFC þNOP þNPrA

NOM þNA
¼ 1þ 1þ 1

5þ 2
¼ 0:42:

Although REM is not a proper probability value, it cap-
tures the degree of interdependence between two classes,
and thus provides a relative estimate for the propagation
factor in each case.

3.4 Discussion on the REM

In this section we discuss some key strengths and limita-
tions of the previously defined measurement (REM). Specif-
ically, we discuss: (a) differences of REM to existing
metrics, (b) ability of REM to differentiate between pattern
and non-pattern versions of the system, and (c) REM as a
change proneness measure.

One of the first tasks that we have performed while
designing this study was the identification of an existing
software metric that would be adequate for quantifying the
instability of a class. Intuitively, instability can be associated
to coupling metrics, i.e., metrics that quantify the extent to
which classes are interconnected.4 After going through the
definition of the most popular coupling metrics we identi-
fied that all of them suffer from at least one of the following
limitations for measuring stability:

� they quantify only the number of dependencies
between classes, and not the intensity of the coupling
- e.g. coupling between objects, afferent coupling
(AfC), efferent coupling (EfC), etc.

� they quantify the intensity of a class dependency, but
use a count of how many times a method is called
inside another method as a measure - e.g., message
passing coupling (MPC). This is not desirable
because even one method call can lead to a change
propagation.

� they use attribute-related coupling, only by counting
the number of fields that are declared through an
aggregation relationship - e.g., measure of aggrega-
tion (MOA). This is not desirable, since for classes in
the same hierarchy, changes can propagate also
through protected fields.

Therefore, none of the already existing metrics was able
of quantifying all the identified ways that a class could emit
changes to another (see Section 3.3). Furthermore, to vali-
date our aforementioned qualitative evaluation, we per-
formed a small scale quantitative evaluation of REM (on
two open-source projects). The results suggested that REM
is more highly correlated to change propagation than any of
the aforementioned existing coupling metrics.

In addition to that, when comparing design-patterned
versus non-design-patterned spots of the system design, the
differences in the nature of the expected changes to them

Fig. 2. Sample code for illustrating the calculation of REM.

4. Other structural quality attributes like complexity or cohesion
have not been considered, because they quantify internal characteristics
of a class (e.g., similarity of methods/attributes or number of decision
statements in a method), and not its interconnection to other classes.

788 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

should be identified. The basic issue that discriminates
between these two spots is that the goal of many design pat-
terns is to make the design resilient against certain kinds of
change that are expected to be frequent. Those kinds of
change will never propagate, yet many (if not most) of the
changes will be of such type. According to [36], the most
common way of maintaining a design pattern instance is by
adding subclasses in the class hierarchies of the patterns (in
cases when they are applicable). Also, this way of maintain-
ing a system is acknowledged as the desired way, based on
the Open-Closed Principle [33]. Therefore, such a discrimi-
nation should not be neglected by the way that REM is cal-
culated. Based on the definition of REM, the difference
between propagating changes over inheritance versus prop-
agating changes over associations is captured, leading to
the desired differentiation.

For example, consider the following two cases (the first
with a template method instance, see Fig. 3a, and the second
an equivalent non-pattern solution, see Fig. 3b). We note
that in order for the examples to be realistic we do not con-
sider that the pattern instance is completely self-sufficient,
but some information is encapsulated in other classes as
well. For the design in Fig. 3a (Template Method pattern)
the calculation of REM is as follows:

� Client: 0.2, it depends on one out of five methods
of AbstractClass (templateOperation)

� AbstractClass: 0.5, it depends on 1 out of 2methods
of CommonBehaviour (primitiveOperation1Helper)

� ConcreteSubclasses: 0.4, they depend on 2
out of 5 methods of AbstractClass (i.e., primi-
tiveOperation1 and primitiveOperation2)

Whereas, for the design in Fig. 3b (Template Method
alternative) the calculation of REM is as follows:

� Client: 0.2þ 0.2 - 0.2�0.2¼ 0.36, it depends on 1 out
of 5 methods of both ConcreteSubclasses

(templateOperation)
� ConcreteSubclasses: 0.5 they depend on 1 out of

2 methods of CommonBehaviour (primitive
Operation1Helper).

During evolution, a typical expected change in the
design is the addition of ConcreteSubclasses, which in
the non-pattern version appear to have larger REM values
than the pattern version. Also, as ConcreteSubclasses

are added, the REM of the Client increases as well. Thus,
the proposed metric discriminates between design-pat-
terned spots from non-patterned spots (based on the depen-
dencies they are involved into), even with regard to the
particular changes for which the patterns have been
designed.

Finally, we acknowledge that the proposed metric is
incapable of quantifying class change proneness, because it
is purely syntactic and does not take into account class con-
tracts, changes due to modified requirements, and bug fix-
ing activities. To propose such a metric one would have to
consider the semantics of functions, but even then it would
be impossible to obtain an accurate estimate of change prop-
agation probability, without analyzing the history of actual
changes. However, addressing this need would invalidate
the findings of our study as the stability of the examined
patterns would be subject to the history of changes of the
surrounding classes and not only to their dependencies.

4 CASE STUDY DESIGN

The objective of this case study is to investigate the stability
of classes that participate in GoF design pattern occur-
rences. To achieve this goal, we compare the stability of
classes participating in zero, one, or more design pattern
occurrences, through a multi-case study. The case study has
been designed and reported according to the template sug-
gested by Runeson et al. [41]. The next sub-sections contain
the four parts of the design, i.e., Objectives and Research
Questions, Case Selection and Units of Analysis, Data Col-
lection and Pre-Processing, and Data Analysis.

4.1 Objectives and Research Questions

The goal of the study is described using the Goal-Question-
Metrics (GQM) approach [8]:

“Analyze open source projects for the purpose of evaluating
design pattern participating classes with respect to their stability,
i.e., their probability to change due to changes occurring on classes
directly or indirectly associated with them from the point of view
of software developers, in the context of open-source Java software
projects”.

According to our goal and the four factors that we
explained in the Introduction section (pattern type, class
role, pattern coupling, and application domain), we have
derived three research questions that will guide the case
study design and the reporting of the results:

RQ1: Is the number of pattern occurrences, in which a class
participates, correlated to the stability of the class?

Fig. 3. (a) Illustrative template method instance, (b) illustrative template
method alternative.

AMPATZOGLOU ET AL.: THE EFFECT OF GOF DESIGN PATTERNS ON STABILITY: A CASE STUDY 789

RQ1.1: Is there a difference in the stability of classes
that participate and classes that do not partici-
pate in design patterns?

RQ1.2: Is there a difference in the stability of classes
that participate in zero, one, or more than one
design pattern occurrences?

RQ1.3: Is there a difference in the stability of classes
that participate in zero, one, or more than one
design pattern occurrences, across different
application domains?

RQ2: Is the type of the pattern, in which a class participates,
correlated to the stability of the class?
RQ2.1: Is the type of the single pattern, in which a class

participates, correlated to the stability of the
class?

RQ2.2: Is the type of the coupled patterns, in which a
class participates, correlated to the stability of
the class?

RQ3: Is the role that a class plays in a single pattern, corre-
lated to the stability of the class?

Although RQ1.1 could be answered through the investigation

of RQ1.2, we have preferred to state it as a separate research

question because all previous studies have only answered

RQ1.1 and we can directly compare our results with those of

previous studies. The metrics used to answer these research

questions are discussed in Section 4.3.

4.2 Case Selection and Units of Analysis

According to Yin, for every case study, researchers must
determine the context, the cases, and the units of analysis
[52]. In this study, the context is open-source software and
the cases/units of analysis are open source system classes.
We note that this case study is holistic, because for each
case, one unit of analysis is extracted.

To gather as many cases as possible, we have decided to
use a software engineering repository that documents
design pattern occurrences (using the design pattern detec-
tion tools mentioned in Section 3.1); the repository, named
percerons.com, was created by one of the authors [5]. The
aforementioned repository was initially created in 2009 as a
catalogue of design pattern occurrences and a search engine
to provide access to them. In the current version, the reposi-
tory shares data on 537 OSS projects. In order to guarantee,
as far as possible, the data validity, we performed the pat-
tern occurrence validation process and the corrective
actions (see Section 3.1), before data extraction.

On the completion of this process we obtained 64,941
units of analysis. From these classes, 10,413 participated in
exactly one design pattern occurrence 2,716 participated in
more than one design pattern occurrences and 51,812 did
not participate in any design pattern occurrence.

4.3 Data Collection and Pre-Processing

The dataset that has been used in this study consists of
64,941 rows, one row for each class of the considered sys-
tems. For every class, we recorded nine variables:

[V1] Software system: The name of the OSS project from
where we extracted the data.

[V2] Application domain: The application domain of the
software system (as defined in Sourceforge).

[V3] Class name: The name of the class under study.
[V4] Type of pattern: The name/names of the GoF design

patterns that a class participates in (e.g., for single
patterns: State, for coupled patterns: Strategy and
Visitor)

[V5] Names of roles: The name/names of the role/roles that
a class [V3] plays in GoF design pattern/patterns
mentioned in [V4] (e.g., for single patterns: Concrete
Product, for coupled patterns: Concrete Strategy and
Concrete Element)

[V6] Instability: The probability of class [V3] to change due
to change propagation, as provided by the tool
described in Section 3.2. For the rest of the paper,
this value will be referred to as instability.

[V7] Count of pattern occurrences: A numeric representation
of [V4], i.e., number of pattern occurrences.

[V8] Pattern participation: A Boolean representation of
[V4]. It is set to true for classes that participate in at
least one pattern and to false for classes that partici-
pate in no pattern occurrences.

[V9] Coupled pattern participant: An additional representa-
tion of variable [V4]. It has three values: no pattern,
single pattern, or coupled pattern. We use this vari-
able to distinguish coupled from single patterns.

[V8] and [V9] are variables that are derived from [V7].
These variables have been created to ease the analysis of the
dataset because Boolean and ordinal representations offer
additional means for statistical analysis. In Section 4.4, we
map the aforementioned variables to the research questions
where they were used.

The produced dataset can be categorized with respect
to GoF design patterns participation as shown in Table 2.
The results of Table 2 suggest that approximately 20% of
system classes participate in at least one GoF design pat-
tern occurrence. This is in accordance to the outcome of a
previous study, by Khomh and Gu�eh�eneuc, who sug-
gested that the number of classes that participate in at
least one design pattern is between 4-30% [27]. However,
by comparing the percentage of classes playing exactly
one (in [27] it is reported to be between 4-30 percent) or
more than one role (in [27] it is reported to be between 12-
26 percent), we can observe a differentiation, that is prob-
ably due to the used pattern detection tools, and due to
the fact that in [27] the authors selected to investigate six
selected well-known OSS projects, whereas in our study
we investigated 537 projects, including both reputed and
less-known ones.

In Table 3, we present the application domains of the OSS
projects, the number of projects classes, and the number of
pattern participating classes in each domain.

The application domains have been recorded during
data extraction according to the categorization in

TABLE 2
Dataset Description

Pattern Participation Class Count %

No Pattern 51,812 79.8
Single Pattern 10,413 16,0
Coupled Pattern 2,716 4,2
Total 64,941 100.0

790 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

Sourceforge, which is the OSS repository that was used for
mining open-source software projects in 2009. We believe
that mapping OSS projects with the application domains
that their owners have selected to classify them is a safe
option for this kind of characterization. The data in Table 3
suggest that around 20% of classes in OSS systems partici-
pate in GoF patterns, a result which is in accordance with
[27, in which Khomh and Gu�eh�eneuc suggest that approxi-
mately 30% of JHotDraw (i.e., one of the most frequent and
pattern intensive OSS examples for GoF pattern research)
classes participate in patterns. In Fig. 4, we present the dis-
tribution of patterns across domains, across investigated
pattern types.

In Table 4, we present the number of classes that partici-
pate in single design pattern occurrences that have been
retrieved during our analysis, whereas in Table 5, we pres-
ent the number of classes that participate in the most com-
mon combinations of GoF design pattern occurrences that
occur in coupled patterns. The sum of coupled pattern

occurrences does not match the one presented in Table 2,
because there are 180 more coupled pattern types (with
lower occurrence frequency) that are omitted from Table 5.

In Table 6, we present the number of occurrences for each
pattern role, for single pattern occurrences. Similar to
Table 5, single pattern roles with a low number of occur-
rences are omitted. Finally, in Table 7, we present a synthe-
sized representation of roles across patterns. The rationale
behind this data synthesis is based on the existence of simi-
lar roles that are found in different patterns. Namely, every
role can be classified as:

� client,
� abstract class/interface,
� concrete subclass,
� aggregate/container in a “whole-part” relationship,

or the dependent class in a “simple association” (for
simplicity, further referenced as aggregate)

� component in a “whole-part” relationship or the
independent class in a “simple association” (for sim-
plicity, further referenced as component), and

� other type, with either more than one associations,
e.g., both inheritance and aggregation (composite/
decorator) or no association (singleton).

TABLE 3
GoF Design Patterns Repository Demographics

Application Domain Project
Count

Class
Count

Pattern
Participation (%)

Audio and Video 50 4,301 31,3%
Business and Enterprise 50 5,768 28,8%
Communications 59 4,305 28,6%
Development 119 16,273 13,3%
Games 135 12,970 20,9%
Graphics 53 7,715 25,9%
Home and Education 31 3,177 21,9%
Science and Engineering 40 10,432 12,4%
Total 537 64.941 20,2%

TABLE 4
Single GoF Design Patterns Participants

GoF Design Pattern Class Count

Adapter� 2,894
Template Method 2,388
Singleton 2,384
Façade-Mediator 1,280
Strategy-State 550
Factory Method 476
Prototype 161
Proxy 89
Abstract Factory 73
Decorator 57
Composite 32
Observer 24
Visitor 5
Total 10,413

�We note that both tools report occurrences of Object
Adapter

TABLE 5
Coupled GoF Design Patterns Participants

Coupled GoF Design Patterns Class Count

2 Façade-Mediator 314
Adapter, Template Method 250
Singleton, Adapter 133
Adapter, Strategy-State 106
Adapter, Façade-Mediator 84
Template Method, Prototype 78
2 Adapters 67
Singleton, Façade-Mediator 61
2 Template Methods 52
Adapter, Factory Method 44
Total 1,189

� 180 more combinations of patterns with occurrences that
involve less than 44 participating classesFig. 4. Distribution of pattern occurrences across application domains.

AMPATZOGLOU ET AL.: THE EFFECT OF GOF DESIGN PATTERNS ON STABILITY: A CASE STUDY 791

In Table 7, we observe that the number of clients is low,
namely 156. This fact is due to a limitation of pattern detec-
tion tools to identify classes that play this role in all types of
patterns (only for State-Strategy, Prototype, Observer).

4.4 Data Analysis

To explore our dataset for answering the research questions
described in Section 4.1, we applied descriptive statistics
and hypothesis testing, as shown in Table 8. From Table 8,
we observe that all variables are used in the investigation of
at least one research question, except for variables [V1] and
[V3]. Variables [V1] and [V3] are used for tracking/verifica-
tion purposes, i.e., to identify systems and classes that are
involved in design pattern occurrences so as to manually
assess the validity of the pattern detection tools.

Spearman correlation is used as measurement of correla-
tion between numerical and ordinal variables. Values of
Spearman Correlation Coefficient that are near unity (1.0)
suggest that the values are highly correlated. In addition,
although scatter plots are normally used for correlation
analysis (RQ1), a heat map has been used because both

variables are ordinal. The 95% CI Bars present the mean
value of a numerical variable and its 95% confidence inter-
val. Error bars can also be used to visually compare the
mean values of two or more groups and get preliminary
indications on the existence of statistically significant
differences.

To investigate the existence of statistically significant
differences in the mean values of numerical variables
among groups, we have used two kinds of tests: (a) inde-
pendent sample t-tests for comparing two groups of
variables and (b) analysis of variance (ANOVA) for com-
paring the mean values of more than two groups. In the
case of ANOVA, the test only reveals the existence of
some differences among groups but does not point out
the groups that differ. To have a more precise under-
standing of the relationships among certain groups, we
performed Hochberg’s GT2 Post Hoc tests, which is for
samples whose internal groups are not equal in terms of
population [17] and [44].

5 RESULTS

In this section, we present the results of the case study, orga-
nized per research question. All results and comparison to
related work are discussed in Section 6.

5.1 RQ1: Number of Pattern Occurrences

To investigate if the number of design pattern occurrences in
which a class participates is correlated to the instability of a
class, we performed a Spearman correlation test. The two
variables appear to be almost not correlated at all (Correla-
tion Coefficient: 0.18, sig: 0.00). Despite the weak correlation,
the results suggest that as the number of design patterns in which
a class participates increases, the less stable the class becomes (see
the heat map and embedded line chart in Fig. 5). In addition
to that, one can observe that the instability of classes that par-
ticipate in exactly one pattern occurrence is slightly smaller

TABLE 8
Data Analysis per Research Question

RQs Variables Data Analysis

RQ1 [V6] numerical
[V7] ordinal

Spearman Correlation Line
Chart and Heat Map

RQ1.1 [V6] numerical
[V8] binary

95% Confidence Interval Error
Bars Independent Sample t-test

RQ1.2 [V6] numerical
[V9] ordinal

95% Confidence Interval Error
Bars Independent Sample t-test
Hochberg’s GT2 Post Hoc test

RQ1.3 [V2] categorical
[V6] numerical
[V9] ordinal

95% Confidence Interval Error
Bars Independent Sample t-test
Hochberg’s GT2 Post Hoc test

RQ2 [V4] categorical
[V6] numerical

95% Confidence Interval Error
Bars Analysis of Variance
(ANOVA) Hochberg’s GT2 Post
Hoc test

RQ3 [V4] categorical
[V6] numerical

95% Confidence Interval Error
Bars Analysis of Variance
(ANOVA) Hochberg’s GT2 Post
Hoc test

RQ4 [V5] categorical
[V6] numerical

95% Confidence Interval Error
Bars Analysis of Variance
(ANOVA)

TABLE 7
Roles across GoF Design Patterns

GoF Design Pattern Class Count

Abstract Class / Interface 779
Concrete Subclass 2,864
Aggregate / Container 1,891
Component 2,283
Client 156
Other 2,440
Total 10,413

TABLE 6
Single Patterns Roles

GoF Design Pattern Class Count

Singleton 2,384
Concrete Class [Template Method] 1,883
Adapter 1,451
Adaptee 1,443
Hidden Type-Colleague 840
Abstract Class [Template Method] 505
Mediator-Façade 440
Concrete Factory [Factory Method] 363
Concrete Strategy-State 336
Context [Strategy-State] 119
Creator [Factory Method] 113
Concrete Prototype 102
Strategy-State 95
Concrete Factory [Abstract Factory] 66
Proxy 40
Real Subject [Proxy] 40
Client [Prototype] 37
Concrete Decorator 32
Leaf [Composite] 22
Prototype 22
Concrete Observer 16
Component [Decorator] 13
Decorator 11
Total 10,373

� 20 more roles with less than 10 occurrences

792 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

(approx. 3 percent) than the average instability of classes that
do not participate in any pattern.

The instability of classes is weakly correlated to the num-
ber of patterns that a class participates in (the correlation
is statistically significant). However, as the number of
pattern occurrences increases, the instability increases as
well.

Next, to further investigate the relationships between the
count of pattern occurrences in which a class participates
and its instability, we explore three null hypotheses:

H0(a) The mean instability of classes that participate in at
least one design pattern occurrence equals the mean
instability of classes that do not participate in any
design pattern occurrence.

H0(b) The mean instability of classes that participate in zero,
one and more pattern occurrences is equal.

H0(c) The mean instability of classes that participate in zero,
one and more GoF design pattern occurrences is equal,
regardless of the application domain.

5.1.1 RQ1.1: Participation in At Least One, or Zero

Occurrences

In Fig. 6, we observe that classes that participate in at least
one design pattern occurrence are slightly less stable than
classes that do not participate in any GoF design pattern
occurrence (meanat least one design pattern: 0.341 and meanzero
patterns: 0.339). This result is mainly caused by the fact that in
the “at least one pattern participant” category, we synthesize
the average instability of classes that participate in at least
one design pattern occurrences. Therefore, the results are
not contradictory to those of Fig. 5; however, although the
results in Fig. 5 indicate that classes that participate in
exactly one design pattern are slightly more stable than clas-
ses that do not participate in any pattern, the instability
increases significantly when the number of patterns in
which a class participates is higher.

The results of the corresponding independent sample t-
test (sig: 0.41, lower confidence interval of difference: –0.004
and higher confidence interval of difference: 0.001), cannot
lead to the rejection of the aforementioned hypothesis H0(a).

Thus, the mean instability of classes that participate in at
least one design pattern occurrence does not differ with sta-
tistical significance from the mean instability of classes that
do not participate in any design pattern occurrence.

The instability of classes that do not participate in design
pattern occurrences is not statistically significantly
different, from the instability of classes that participate in
design pattern occurrences

5.1.2 RQ1.2: Participation in Zero, One, or More

Occurrences

The results illustrated in Fig. 7 suggest that although the
mean instability of classes that participate in exactly one
GoF design pattern is slightly lower than the mean insta-
bility of classes that do not participate in any design pat-
tern occurrence, there is an overlap in the 95% intervals
of their mean values. This fact indicates that the differ-
ence in the corresponding mean values might not be
statistically significant.

To more thoroughly examine hypothesis H0(b), i.e.,
whether the mean instability of classes that participate in
zero, one, and more design pattern occurrences is equal, we
performed an analysis of variance (ANOVA).The results of

Fig. 5. Pattern occurrences vs. instability (Heat Map, plus line chart rep-
resenting average instability values). Fig. 6. Pattern participation vs. instability (error bars).

Fig. 7. Pattern coupling vs. instability (error bars).

AMPATZOGLOU ET AL.: THE EFFECT OF GOF DESIGN PATTERNS ON STABILITY: A CASE STUDY 793

ANOVA suggest that the three groups, i.e., no pattern, single
pattern, and coupled pattern present statistically significant dif-
ferences (F: 20.19 and sig: 0.00), but the Post-Hoc test of
Hochberg’s GT2 suggests that the differences are not signifi-
cant between all groups, but only between no pattern and coupled
pattern (sig: 0.03, lower confidence interval of difference:
–0.02 and higher confidence interval of difference: –0.01),
and single pattern and coupled pattern (sig: 0.03, lower confi-
dence interval of difference: –0.03 and higher confidence
interval of difference: –0.01).

The instability of classes that participate in more than one
design pattern occurrence is statistically significantly
higher, from the instability of classes that participate in
exactly one design pattern occurrence and of classes that
do not participate in any design pattern occurrences

5.1.3 RQ1.3: Application Domains

Finally, concerning the mean instability of classes that
participate in zero, one, and more GoF design pattern
occurrences, across different application domains, the
results reveal five different clusters of application
domains, that exhibit different effect of GoF design pat-
tern participation to class instability as follows (for 95%

CI Error Bars see Fig. 13 in Appendix B, available in the
online supplemental material). The main findings are
summarized in Fig. 8.

From Fig. 8, it becomes clear that the reported results on
RQ1.2 (i.e., the relationship of the participation of a class in
zero, one or more pattern occurrences and class instability)
vary, depending on the examined application domain. For
example, in Graphics, Audio and Video applications, the
most stable classes do not participate in GoF design pattern
occurrences, whereas the most instable ones, participate in
more than one design pattern occurrence. On the other
hand, in Games, Scientific and Engineering applications, the
most stable classes participate in exactly one design pattern
occurrence, whereas the most instable ones, do not partici-
pate in any pattern.

The instability of classes that participate in zero, one or
more design pattern occurrences is statistically signifi-
cantly different across different application domains

5.2 RQ2: Design Pattern Type

In this section, we present the results concerning RQ2, i.e.,
the effect of the design pattern type on class stability. More
specifically, in Section 5.2.1, we present results on single
design pattern occurrences whereas in Section 5.2.2 on cou-
pled design patterns.

5.2.1 RQ2.1: Single Design Pattern

To investigate if the effect of patterns on class instability is
equal across all studied GoF design patterns, we have set
and explored the following null hypothesis:

H0(d) The instability of a class that participates in a GoF
design pattern occurrence is equal, across the studied GoF
design pattern types.

Investigating the hypothesis, through an error bar on the
95% confidence interval (CI) of instability (see Fig. 9) sug-
gests that there are differences in the mean values of insta-
bility across different types of GoF design patterns. The
confidence interval for each design pattern is obtained con-
sidering the values of instability of individual classes

Fig. 8. Differences among various application domains.

Fig. 9. Single pattern type vs. instability (error bars).

794 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

participating in each pattern. In most of the cases, there are
limited or no overlaps of the 95% CI bars. The mean instabil-
ity of a pattern is calculated as the average instability of clas-
ses that participate in it. Although in Fig. 9, the mean
instability for each pattern is depicted (the dot in each line),
the main emphasis of the diagram is on the 95percent CI
bars. Focusing on the mean values poses a threat to the
validity of the results because the number of pattern partici-
pating classes in each pattern occurrence is related to the
type of the pattern (e.g., Singleton in its most common form
involves only one class, whereas other patterns like State or
Strategy can involve a large number of concrete subclasses),
as we discuss in Section 7.

The ANOVA test indicates that the studied groups, i.e.,
GoF design pattern types, present statistically significant
differences in terms of their mean values of instability
(F: 108.56 and sig: 0.00). The results of the Hochberg’s GT2
Post-Hoc tests are presented in Table 9. Patterns that are not
included in Table 9, do not differ from any other pattern,
possibly because of the small number of occurrences in the
dataset. In each cell of Table 9, we present the significance
value of the Hochberg’s GT2 test (i.e., the extent to which
the difference in the mean instability of one pattern [row]

from the mean instability of another pattern [column] is sta-
tistically significant). A difference between two pattern
types is statistically significant if the corresponding value is
less than 0.01(annotated with a double asterisk in Table 9,
whereas single asterisks denote a statistical significance at a
0.05 level).

The instability of classes that participate in exactly one
design pattern occurrence is statistically significantly
different across different types of GoF design patterns.

5.2.2 RQ2.2: Coupled Design Patterns

The results of this section concern only the coupled pattern
occurrences of Table 5, because of the large numbers of pos-
sible combinations of GoF design pattern occurrences. To
investigate RQ2.2, we have stated and investigated the fol-
lowing null hypothesis:

H0(e) The instability of a class that participates in more
than one GoF design pattern occurrences is equal, across
the studied combinations of GoF design pattern
occurrences.

The 95% Confidence Interval Error Bars (see Fig. 10) sug-
gest that classes that participate in most types of coupled

TABLE 9
Post-Hoc Results (Single Pattern Type vs. Instability)

Adapter Abstract
Factory

Composite Decorator Façade-
Mediator

Factory
Method

Observer Prototype Proxy Singleton Strategy-
State

Abstract Factory 0,848
Composite 0,001�� 0,773
Decorator 0,000�� 0,224 1,000
Façade -Mediator 0,000�� 0,000�� 1,000 1,000
Factory Method 0,000�� 1,000 0,647 0,052 0,000��

Observer 0,002�� 0,735 1,000 1,000 1,000 0,653
Prototype 0,103 1,000 0,411 0,030� 0,000�� 1,000 0,425
Proxy 1,000 1,000 0,025� 0,001�� 0,000�� 0,850 0,034� 1,000
Singleton 0,000�� 0,000�� 1,000 1,000 1,000 0,000�� 1,000 0,000�� 0,000��

Strategy – State 0,000�� 1,000 0,779 0,091 0,000�� 1,000 0,771 1,000 0,617 0,000��

Template Method 0,000�� 1,000 0,996 0,497 0,000�� 0,873 0,991 0,907 0,024� 0,000�� 0,998

Fig. 10. Coupled pattern types vs. instability (error bars).

AMPATZOGLOU ET AL.: THE EFFECT OF GOF DESIGN PATTERNS ON STABILITY: A CASE STUDY 795

design pattern occurrences exhibit similar levels of instabil-
ity because in most of them there are overlaps on their 95%
confidence interval error bars. However, the ANOVA test
suggests that mean values of instability differ across groups,
i.e., different types of coupled patterns (F: 53.66 and sig:
0.00). The Hochberg’s GT2 Post-Hoc analysis pointed out
the most stable and most unstable pattern couplings, as
follows:

Most Unstable Couplings :
- 2 Adapters

Most Stable Couplings :

- 2 Façade-Mediator
- Façade-Mediator, Singleton

The instability of classes that participate in more than one
design pattern occurrence is statistically significantly
different across different types of coupled GoF design
patterns.

5.3 RQ3: Design Pattern Roles

To investigate RQ3 we performed the same analysis, i.e.,
error bars, ANOVA and Hochberg’s GT2 Post-Hoc tests, on
the groups formed by the primary pattern roles and synthe-
sized pattern roles, defined in Tables 6 and 7:

H0(f) The instability of a class that participates in a single
GoF design pattern occurrence is the same, regardless of the
role that the class plays in the GoF design pattern
occurrence.

Concerning roles of specific GoF design patterns (see
error bars on Fig. 11), the ANOVA test suggests that the
mean values of instability across different pattern roles
have statistically significant differences (F: 118.52 and sig:
0.00). Thus, different roles are subject to different change
propagation from the classes not participating in the pat-
tern, because some roles are “shielded” inside the pattern
occurrence while others are not. The results of the
Hochberg’s GT2 Post-Hoc tests suggest that there are cer-
tain motifs on the roles that differ from others. These differ-
ences can be mainly explained by the purpose of the role in
the GoF design patterns, as described in Table 7. The find-
ings illustrated in Fig. 11 are summarized in Table 10.

As observed in association/aggregation-based patterns
(e.g., Adapter and Façade), the class playing the Aggregate
role is more unstable than the class playing the Component
role. On the other hand, in inheritance-based patterns (e.g.,
Strategy and Observer), the concrete subclasses are more
unstable than abstract classes (see discussion on Section 6.3).
The only exception are Template Method occurrences. The
results of ANOVA validate that the mean value of instabil-
ity is different across groups (F: 458.32 and sig: 0.00).

To further investigate the relationship between the role
that a class plays in a pattern and its instability, we differen-
tiate between instability caused by:

A) Dependencies among classes within the same pat-
tern (pattern-internal dependencies);

B) Dependencies between a pattern-participating class
and a class “outside” the pattern (pattern-external
dependencies).

The distinction between the two types of instability is
important because instability of type (b) can be used for
assessing the shielding from the “outside world” that a role
offers to the rest of the pattern-participating classes, whereas
instability of type (a) is representing the instability caused by
the structure of the pattern itself. To this end, in Table 11, we
present the average number of dependencies (both internal
and external) and the average REM per dependency, for
each pattern role. We list only pattern roles that can be

Fig. 11. Pattern roles vs. instability (error bars).

TABLE 10
Instability of GoF Design Patterns Participant Roles

GoF Design Pattern Roles Instability Comparison

Adapter Aggregate > Component
Façade-Mediator Aggregate > Component
Strategy-State Subclass > Superclass
Factory Method Subclass > Superclass
Prototype Subclass > Superclass
Proxy Subclass > Superclass
Abstract Factory Subclass > Superclass
Observer Subclass > Superclass
Template Method Superclass > Subclass

796 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

classified either as aggregate/component (when they partici-
pate in part-whole relations or a simple association) or as
subclass/superclass (when they participate in generalization
relationships). The results of Table 11 suggest that:

� Pattern-external dependencies are higher in number
than pattern-internal dependencies and therefore more
important concerning the instability of the pattern
participating classes;

� The only patterns with more than one pattern-internal
dependency per role are Proxy and Façade-Mediator;

� In association/aggregation-based patterns, pattern par-
ticipating classes are more tightly coupled (higher
REM) to pattern-external classes than pattern internal
classes;

� In inheritance-based patterns, pattern participating
classes are more tightly coupled (higher REM) to pat-
tern-internal classes (i.e., their superclass) than pat-
tern external;

� The average number of dependencies and REM,
regardless of the type of dependency (external or
internal), is in agreement with the results on the
Instability of GoF Design Pattern participating clas-
ses presented in Table 10;

� The roles that are most “shielded” behind an aggre-
gate class or a superclass are the Hidden Type
(Façade-Mediator), the Concrete Subclass (Template
Method), and the Concrete Observer (Observer).

The instability of classes that participate in design pattern
occurrences is statistically significantly different across
different GoF design patterns roles

6 DISCUSSION

In this section, we discuss the findings of our case study
organized per research question and in comparison to the
previous work. We remind that all evidence reported from

the literature on the stability of design patterns, in fact deal
with change proneness, i.e., the actual changes that occur in
a class, merging changes from new requirements, debug-
ging, and change propagation, whereas our study focuses
only on the impact of change propagation.

6.1 Number of Pattern Occurrences

The state-of-the-art on the change proneness of GoF design
pattern-participating classes suggests that classes that par-
ticipate in GoF design patterns change more often than the
classes that do not participate in design pattern occurrences
[9], [10], [20]. These results are validated from our case
study (see Fig. 5), if we do not differentiate between single
and coupled design pattern occurrences. Such a distinction
has not been made in any previous studies. The two studies
[27], [34] that investigate the effect of design pattern cou-
pling on quality attributes are not related to instability or
change proneness.

By distinguishing between single and coupled design
pattern occurrences, we observe that classes that participate
in a single design pattern are, on average, slightly more sta-
ble than classes that are not pattern participants. This is an
intuitive result, because design patterns provide decou-
pling, which stops changes from being propagated to the
classes that participate in the design pattern. On the con-
trary, classes that participate in more than one design pat-
tern occurrences are clearly losing this advantage (see
Figs. 5 and 7). This result is also intuitive because the more
responsibilities a class is assigned, the more unstable it
becomes in terms of propagated changes. This observation
is due to the fact that a class with more responsibilities must
communicate with more classes, increasing the number of
external dependencies, thus rendering it more “vulnerable”
to change propagation. The results are in accordance to
those of Khomh and Gu�eh�eneuc, that suggest that quality
characteristics, such as coupling, cohesion, and complexity
appear to be worse in classes that participate in more than

TABLE 11
Dependencies and REM for GoF Design Pattern Roles

GoF Design Pattern Roles
AVG (Dependencies) AVG (REM)

Internal External Internal External

Adapter Aggregate 1.00 5.52 0.13 0.18
Component 0.00 2.80 0.00 0.22

Façade-Mediator Aggregate 2.86� 2.25 0.15 0.19
Component 1.00 1.55 0.24 0.15

Strategy- State Subclass 1.00 2.40 0.38 0.34
Superclass 0.00 0.97 0.00 0.21

Factory Method Subclass 1.00 2.61 0.19 0.14
Superclass 0.00 2.81 0.00 0.20

Prototype Subclass 1.00 2.65 0.27 0.21
Superclass 0.00 2.53 0.00 0.20

Proxy Subclass 1.50 3.13 0.25 0.20
Superclass 0.00 1.50 0.00 0.35

Abstract Factory Subclass 1.00 2.83 0.15 0.12
Superclass 0.00 2.42 0.00 0.10

Observer Subclass 1.00 1.85 0.31 0.24
Superclass 0.50 1.55 0.11 0.16

Template Method Subclass 1.00 2.11 0.28 0.18
Superclass 0.00 2.71 0.00 0.17

� The average number of Hidden Types / Colleagues are not related to the structure of the pattern, but is empirically retrieved.

AMPATZOGLOU ET AL.: THE EFFECT OF GOF DESIGN PATTERNS ON STABILITY: A CASE STUDY 797

two design pattern occurrences, rather than classes that par-
ticipate in one or zero design pattern occurrences [27].

However, for the first observation (single pattern-partic-
ipating classes are more stable than the non-pattern partici-
pating classes) to be statistically significant, we must take
an additional parameter into consideration: application
domain. The abovementioned claims are statistically sig-
nificant for the application domains of Games, Home and
Education Applications, Development Tools, and Science and
Engineering Applications. This fact suggests that design pat-
tern occurrences in these domains are loosely coupled to
the rest of the system and thus become more resistant to
propagation of changes. On the contrary, in Communication
Tools, Business and Enterprise, Audio and Video, and Graphics
applications, classes that participate in GoF design pattern
occurrences are more prone to change propagation. There-
fore, developers of such applications should be aware of
the increased probability of changes propagating to pattern
participating classes from the rest of the system. The
results of our study are in accordance to those of Vasquez
et al. [48], that suggest that other indirect quality indicators
(such as anti-patterns or code smells) vary among different
application domains as well.

6.2 Design Pattern Type

A different perspective for further investigating the effect of
GoF design patterns on stability is not to examine the set of
patterns as a whole, but independently, according to the
type of each design pattern occurrence. To the best of our
knowledge, the only research results that are comparable
to ours are the results of Aversano et al. [7]. However,
Aversano et al. have not separately investigated single from
coupled design pattern occurrences, while they measured
change proneness by summing up changes due to new
requirements, debugging, and change propagation. Because
Aversano et al. [7] have not studied the same set of patterns,
we only compare results on the common subset. Our results
suggest that similarly to anti-patterns [39], each design pat-
tern has a different effect on change-proneness.

According to the results of Fig. 9 and the accompanying
ANOVA test, the most stable classes can be found in Single-
ton, Façade-Mediator, Observer, Composite, and Decorator
occurrences. Classes that participate in Proxy and Adapter
occurrences are more unstable than other pattern-participat-
ing and non-pattern-participating classes. These results are
similar to those of Aversano et al., in terms of Singleton,
Adapter, Composite and Decorator, but are not completely
similar for Observer.5 A possible reason is that Aversano
et al. [7] investigated change proneness incurred by the
addition, deletion. or modification of Observer occurrences,
whereas in our case the addition or deletion of Concrete
Observers or Subjects does not lead to the propagation of
any change: adding or deleting a subclass in an hierarchy
does not change the dependencies and the REM value of the
other classes in the system (Fig. 3a).

The fact that the Singleton design pattern occurrence is
more stable than other design pattern occurrences can be

explained by the fact that it consists of a single class, which
does not have to carry additional dependencies to imple-
ment the pattern. This lack of dependencies limits the clas-
ses through which it can receive change requests and
therefore its instability. Concerning Façade-Mediator, their
low levels of instability might be caused by the clean separa-
tion they provide between subsystems. When using Façade
or Mediator, the communication between Colleagues is syn-
chronized by a single class, limiting the number of depen-
dencies between them, and therefore their instability.
Finally, the fact that the instabilities of Composite and Deco-
rator are similar is intuitively correct, because these patterns
share a common structure.

Among the inheritance-based patterns Proxy is the most
unstable, because it is the only one in which one subclass
is dependent on the other, increasing the number of inter-
nal dependencies (see Table 11). Concerning association/
aggregation-based patterns, Adapter, which provides a means
for reusing the functionality of a class, is highly unstable,
especially in the role of the Adapter that holds a large
number of external dependencies (see Table 11).

Another interesting result with respect to design pat-
tern type instability is that the three creational patterns
that have been investigated, i.e., Factory Method, Abstract
Factory, and Prototype exhibit similar levels of instability.
This fact implies that all creational patterns are imple-
mented in a similar way in terms of dependencies and
that their structural differences are not strongly affecting
their stability.

The results of investigating the stability of coupled
design patterns (see Fig. 10) suggest that coupling: (a) two
Façade/Mediator or (b) Façade/Mediator with Singleton
occurrences does not have a substantial negative effect on
stability. Combining two Adapter occurrences should be
avoided, because this pattern combination exhibits high
levels of instability for the involved classes. These results
cannot be compared to any other results in the literature,
because this is the first time that design pattern coupling
is being explored with respect to stability. However, we
can observe that the effect of single patterns on instability
is propagated to the coupled pattern occurrences. For
example, one of the most stable single patterns, i.e.,
Façade-Mediator is part of the most stable coupled pattern
occurrences. In particular, when combining two occur-
rences of stable design patterns, e.g., Façade-Mediator
(instability � 0.28), the produced coupled pattern is
slightly more unstable than the single pattern occurrences.
However, the coupled pattern remains the most stable
among coupled pattern occurrences (instability � 0.30).
On the other hand, Adapter, which is one of the patterns
with the most unstable single pattern occurrences, is part
of the two most unstable coupled pattern types.

6.3 Design Pattern Roles

Finally, when taking into account the roles that a class can
play in GoF design pattern occurrences, we observed that
the instability of the role depends on the mechanism that
the pattern uses for relating classes, i.e., association or
aggregation (e.g., Adapter, Façade, etc.) or inheritance
(Strategy, Observer, etc.) and the type of pattern. From the

5. The Proxy, Façade, and Mediator design pattern are not examined
in Aversano et al. [6]

798 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

results of this study, we observe that the most stable design
pattern roles are the Strategy and the Hidden Type

(Façade-Mediator). Both results are intuitively correct,
because:

� Strategy classes are in many cases purely abstract
classes that hold a limited number of dependencies
to other classes (0.97 in general -they usually hold 0
or 1 dependencies). Therefore, they are not heavily
dependent on the public interface of other classes
and their role is not prone to change propagation;

� Hidden Type classes are expected to be “shielded”
behind Façade or Mediator classes. The original
intention of these classes (i.e., Façade and Mediator)
is to handle the communication among Hidden Type
classes, thereby decoupling them. This decoupling
offers shielding against change propagation from
classes outside the pattern.

The results of the study suggest that in a class hierar-
chy, the superclass is more stable than the subclass,
whereas in an association or a “part-whole” relationship
the component (or independent) class is more stable than
the aggregate (or dependent) class, as shown in Fig. 12.
This result might appear to be unexpected because the
Aggregate and the Superclass are the channel through which
the pattern is communicating with the rest of the system.
However, a closer investigation of how the mechanisms of
inheritance and aggregation or association work explains
these results.

Comparing the stability of the two roles in a hierarchy,
Subclasses inherits any dependency of the Superclass. So, if
the Superclass depends on many other “pattern-external”
classes, these dependencies are also added in the depen-
dency list of the Subclass. In addition, exactly because Sub-
classes supply concrete functionality, they usually must
collaborate with other classes, further increasing the num-
ber of external dependencies. Finally, they also hold a
strong relationship with their superclass. Therefore, the
dependencies of a Subclass are by definition more than those
of a Superclass. The fact that change proneness increases as
the depth of inheritance of a class becomes higher has also
been observed by Bieman et al. [10]. Additionally, the afore-
mentioned results agree with those of Khomh et al. [29],
which suggest that abstract classes are less change prone
than children classes.

On the contrary, in object association/aggregation the
Aggregate role is less stable, because: (a) it communicates
with all the Components of the sub-system (which act as

suppliers of concrete functionality) and (b) it handles the
communication between different sub-systems, whereas the
dependencies of Components (which are shielded behind the
interface of the Aggregate and usually perform limited inter-
action outside their boundaries) are at most equal to the
number of all Components in the same sub-system. There-
fore, the number of dependencies of the classes playing the
Component roles is less or equal to the number of dependen-
cies of classes playing the role of the Aggregate.

7 THREATS TO VALIDITY

In this section, we present and discuss construct, reliability,
external, and internal validity threats for this study [41].
Construct validity reflects to what extent the phenomenon
under study really represents what is investigated accord-
ing to the research questions. The reliability of the case
study is related to whether the data is collected and the
analysis is conducted in a way that can be replicated with
the same results. External validity deals with possible
threats while generalizing the findings derived from the
sample to population. Finally, internal validity is related to
identification of confounding factors, i.e., factors other than
the independent variables that might influence the value of
the dependent variable.

7.1 Construct Validity

The threat to construct validity is related to the accuracy of
the tools and approach used to assess class instability and
to detect design pattern occurrences. This is a construct
validity in the sense that inaccurate results might lead to
measuring a different phenomenon than the one that we
originally intended to investigate.

The selected algorithm for calculating class instability
considers, as explained in Section 3.2, the dependencies in
the system’s structure through which changes can propa-
gate from one class to another [46]. The calculation of the
possibility of future changes is by nature an ambitious
goal that cannot be achieved with high levels of accuracy,
considering the numerous factors that might affect the
decision of a designer to modify a classes, so this would be
an important threat to validity if our study’s objective
would be to estimate change proneness. Likewise, setting
a constant value for the internal probability of change for
system classes would also be a threat for accurately esti-
mating change proneness. However, the goal of this study
is to assess instability rather than the actual change prone-
ness, which is a straightforward procedure that is accurate,
in the sense that it is solely based on class dependency
analysis. Therefore, there is no real threat to validity from
estimating instability.

In addition to that, concerning the accuracy of the
selected design pattern detection tool, one possible threat is
related to the possibility of considering false positives in
our study or of neglecting true occurrences (false negatives)
[45]. To mitigate the threat regarding false positives, two of
the authors performed manual validation of design pattern
occurrences. Based on the results the authors performed
several enhancement actions, as presented in Section 3.1.
Finally, we believe that the precision rates in our dataset is
higher than the ones reported in [11], for two reasons:

Fig. 12. Stability of pattern roles w.r.t. class relation.

AMPATZOGLOU ET AL.: THE EFFECT OF GOF DESIGN PATTERNS ON STABILITY: A CASE STUDY 799

a) Based on our manual validation, we observed that
many false-positives were identified due to mis-
placement of a pattern occurrence between similar
patterns (e.g., Façade as Mediator, State as Strategy
and vice-versa). This threat is completely mitigated
in our study because we report results on such pat-
terns as one.

a) The patterns that have been used in [11] are quite
complex in their structure and therefore the chance
of observing a misclassification on them is higher
than for simpler patterns (about 70-75 percent) [11].
Also occurrences of simpler patterns is accurate by
these tools in approximately 80% of the cases [11].
Following this observation, and the frequency of
occurrence of these patterns in our dataset, we
believe that the precision in our dataset is higher.

The impact of false negatives in our study (due to limited
recall rate in certain patterns) is alleviated by the fact that
the examined data set contains already a vast number of
occurrences. Even if true occurrences have remained unde-
tected, the dataset is sufficiently large to enable the investi-
gation of the instability of pattern-participating classes, at
least for a number of patterns. In any case, as a mitigation
action for this threat we preferred to use the union of the
results of the used pattern detection tool, instead of using
the intersection.

7.2 Reliability

To mitigate threats to reliability, two different researchers
were involved in the data collection and one double-
checked the results of the other. Furthermore, one
researcher double-checked the results of the data analysis
performed by another researcher. All primitive data can be
reproduced by using the percerons.com online repository or
the tools mentioned in Section 3.

7.3 External Validity

Concerning external validity, we have identified three
possible threats to the validity of our results. Firstly, all
the investigated systems are written in Java and there is a
possibility that the results would be different for other
object-oriented languages and other patterns. Secondly,
we have examined fifteen (15) out of the twenty three (23)
design patterns described by Gamma et al. [19], thus the
results cannot be generalized to the rest of the GoF design
patterns, since their stability may differ. Finally, the
results of the study cannot be generalized to “special”
implementations of design patterns instances in which
there are no static relationships among classes playing
different roles. For example, in the reflective implementation
of the Visitor design pattern, the accept method uses reflec-
tion to choose the appropriate method to call on a Visitor.
However, these are certainly exceptional cases and there-
fore we believe they pose a minor threat to the validity of
the results.

7.4 Internal Validity

Finally, we consider pattern participation as an instability
factor, i.e., we examine how the roles that classes have due
to their participation in patterns lead to instability.

However, a class may have other responsibilities outside
the pattern, which may also result in dependencies and
thus cause instability. This may potentially be a confound-
ing factor and therefore constitutes an internal threat to
validity [41], in the sense that factors other than the inde-
pendent variables (pattern participation) affect the value of
the dependent variable (instability). To exclude other possi-
ble factors of instability, we should compare two versions of
the same class, one designed with a GoF pattern and one
designed with an alternative solution. The two systems
would offer the same functionality, with the only change
being the application of the pattern itself. In such a case, it
would be possible to investigate the effect of design patterns
isolated from the other change factors. However, such cases
are extremely difficult to find in existing real-world exam-
ples or even to implement artificially on a large scale. Fur-
thermore, GoF design patterns have been associated with a
large number of design alternatives, which can substitute
the role of the pattern [2]. Therefore, even if we set up such
an experiment, it would only be possible to compare the
GoF design patterns to a limited number of specific design
alternatives. Thus, both conducting a case study or a con-
trolled experiment have their own limitations and none of
the two would actually mitigate this risk.

8 CONCLUSION

This study investigated the effect of GoF design patterns on
class stability. To achieve this goal, we conducted a multi-
case study on about 65.000 open-source Java classes to
explore the probability of a class to change, due to propaga-
tion of changes that occurred in other classes. To assess the
stability of GoF design patterns, we examined classes that
participate in zero, one, or more design pattern occurrences.
To the best of our knowledge, this is the largest case study
on the effect of GoF design patterns on stability and the
only study that reveals the different levels of stability
between classes that participate in one or more pattern
occurrences.

The results of the case study indicate that classes that
play exactly one role in a GoF design pattern are more sta-
ble than classes that play zero or more than one role in GoF
design pattern occurrences. However, the level of statisti-
cal significance of that claim varies across different applica-
tion domains. The results also suggest that different GoF
design patterns provide different levels of stability to the
classes that participate in them. For example, Singleton,
Façade-Mediator, Observer, Composite, and Decorator
occurrences seem to consist of classes that are more resis-
tant to changes propagating from other classes. Finally, the
role that a class plays in a design pattern is also an indicator
of its resistance to propagation of changes. We observed
that the use of association/aggregation for establishing
object communication, classes that play the Aggregate role
are less stable than classes that play the Component role. On
the other hand, in design patterns that involve inheritance,
public Superclasses are more stable than Subclasses.

The aforementioned results are valuable to practitioners,
because they provide indications for testing and refactoring
prioritization. First, concerning testability, classes that are
less resistant to change propagation should be checked for

800 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

defects more often and more exhaustively, because they are
expected to be more defect-prone. Second, concerning refac-
torings, due to the harmful effects of instability, classes that
are less resistant to change propagation should be refac-
tored to more stable designs.

Additionally, we strongly believe that GoF design pat-
terns are not uniformly impacted by all possible sources of
change, such as propagation from other classes, accommo-
dation of new requirements, and removal of defects. Treat-
ing all potential sources of change as a common type might
lead to coarse-grain conclusions, because a particular design
pattern might be beneficial in preventing one type of change
and less helpful in shielding from other types of changes.
Thus, as a line of future research one could investigate the
susceptibility of GoF design pattern-participating classes to
change with respect to factors other than the propagation of
change, such as modifications due to corrective or adaptive
maintenance. This could be performed by contrasting insta-
bility and change proneness taking into account the history
of changes of system classes. Specifically, while inspecting
past data, one would have to consider not only method sig-
nature changes, but also changes in the contract of classes,
which might emit changes. By distinguishing among differ-
ent types of actual changes, it would be possible to investi-
gate whether design pattern roles offer selective shielding,
in terms of types of change (e.g., from new requirements,
from propagated changes, or from bug fixing).

Furthermore, the methodology that has been described in
this paper analyzes the proneness of classes that participate
in patterns to change, due to changes occurring in other
classes. The analysis can also be performed at a more fine-
grained level, that is, by examining the susceptibility of
individual methods to change, which would require the
analysis of dependencies between methods.

ACKNOWLEDGMENTS

This research was cofinanced by the European Union
(European Social Fund-ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF)-Research Funding Program: Thalis-Athens
University of Economics and Business-SOFTWARE
ENGINEERING RESEARCH PLATFORM. The authors
would like to thank the Associate Editor Prof. �Eric Tanter,
and the anonymous reviewers for their valuable comments
and suggestions to improve the quality of the paper.
Apostolos Ampatzoglou is the corresponding author.

REFERENCES

[1] A. Ampatzoglou, A. Gkortzis, S. Charalampidou, and P.
Avgeriou, “An Embedded multiple-case study on OSS design
quality assessment across domains,” in Proc. ACM/IEEE Int. Symp.
Empirical Softw. Eng. Meas., Oct. 2013, pp. 255–258.

[2] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Design pat-
tern alternatives: What to do when a GoF pattern fails,” in Proc.
17th PanHellenic Conf. Informat., Sep. 2013, pp. 122–127.

[3] A. Ampatzoglou and A. Chatzigeorgiou, “Evaluation of object ori-
ented design patterns in game development,” Inf. Softw. Technol.,
vol. 49, no. 5, pp. 445–454, May 2007.

[4] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, “A methodol-
ogy to assess the impact of design patterns on software quality,”
Inf. Softw. Technol., vol. 54, no. 4, pp. 331–346, Apr. 2012.

[5] A. Ampatzoglou, O. Michou, and I. Stamelos, “Building and min-
ing a repository of design pattern instances: Practical and research
benefits,” Entertainment Comput., vol. 4, no. 2, pp. 131–142, Apr.
2013.

[6] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research
state of the art on GoF design patterns: A mapping study,” J. Syst.
Softw., vol. 86, no. 2, pp. 1945–1964, Jul. 2013.

[7] L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, andM.Di Penta,
“An empirical study on the evolution of design patterns,” in Proc.
6th Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found.
Softw. Eng., Sep. 2007, pp. 385–394.

[8] V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal Question Met-
ric paradigm,” in Encyclopedia of Software Engineering, West Sus-
sex, U.K.: Wiley, 1994, pp. 528–532.

[9] J. M. Bieman, D. Jain, and H. J. Yang, “OO design patterns, design
structure, and program changes: An industrial case study,” in
Proc. 17th Int. Conf. Softw. Maintenance, Nov. 2001, pp. 580–589.

[10] J. M. Bieman, G. Straw, H. Wang, P. W. Munger, and R. T.
Alexander, “Design patterns and change proneness: An examina-
tion of five evolving systems,” in Proc. 9th Int. Softw. Metrics
Symp., Sep. 2003, pp. 40–49.

[11] A. Binun and G. Kniesel, “Witnessing Patterns: A data fusion
approach to design pattern detection,” Inst. of Comput. Sci. III,
Univ. Bonn, Bonn, Germany, Tech. Rep. IAI-TR-2009–02, Jan.
2009.

[12] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. A.
Van Dooren, “Measure of similarity between graph vertices:
Applications to synonym extraction and web searching,” SIAM
Rev., vol. 46, no. 4, pp. 647–666, 2004.

[13] S. A. Bohner, “Impact analysis in the software change process: A
year 2000 perspective,” in Proc. Int. Conf. Softw. Maintenance, Nov.
1996, pp. 42–51.

[14] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, Pattern-Oriented Software Architecture. West Sussex, U.K.:
Wiley, 1996.

[15] M. Di Penta, L. Cerulo, Y.-G. Gu�eh�eneuc, and G. Antoniol, “An
empirical study of relationships between design pattern roles and
class change proneness,” in Proc. 24th Int. Conf. Softw. Maintenance,
Sep./Oct. 2008, pp. 217–226.

[16] M. Elish, “Do structural design patterns promote design
stability?” in Proc. 30th Annu. Int. Comput. Softw. Appl. Conf., Sep.
2006, pp. 215–220.

[17] A. Field, Discovering Statistics Using SPSS, 3rd ed. Newbury Park,
CA, USA: SAGE, 2005.

[18] M. Fowler, Analysis Patterns: Reusable Object Models. Reading, MA,
USA: Addison-Wesley, Oct. 1996.

[19] E. Gamma, R. Helms, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA, USA:
Addison-Wesley, 1995.

[20] M. Gatrell, S. Counsell, and T. Hall, “Design patterns and change
proneness: A replication using proprietary C# software,” in Proc.
16th Working Conf. Reverse Eng., Oct. 2009, pp. 160–164.

[21] F. M. Haney, “Module connection analysis: A tool for scheduling
of software debugging activities,” in Proc. AFIPS Fall Joint Comput.
Conf., Dec. 1972, pp. 173–179.

[22] S. Hassaine, F. Boughanmi, Y.-G. Gu�eh�eneuc, S. Hamel, and G.
Antoniol, “A seismology-inspired approach to study change
propagation,” in Proc. 27th Int. Conf. Softw. Maintenance, Sep. 2011,
pp. 25–30.

[23] E. Horowitz and R. C. Williamson, “SODOS: A software docu-
mentation support environment—Its definition,” IEEE Trans.
Softw. Eng., vol. 12, no. 8, pp. 849–859, Aug. 1986.

[24] Information Technology: Software Product Evaluation, Quality
Characteristics and Guidelines for Their Use, Int. Organisation for
Standardization, ISO 9126, 1992.

[25] F. Jaafar, Y.-G. Gu�eh�eneuc, S. Hammel, and G. Antoniol,
“Detecting asynchrony and dephase change patterns by mining
software repositories,” J. Softw.: Evol. Process., vol. 26, no. 1,
pp. 77–106, Jan. 2014.

[26] S. Jeanmart, Y.-G. Gu�eh�eneuc, H. Sahraoui, and N. Habra, “A
study of the impact of the Visitor design pattern on program com-
prehension and maintenance tasks,” in Proc. 3rd Int. Symp. Empiri-
cal Softw. Eng. Meas., Lake Buena Vista, FLA, USA, Oct. 2009,
pp. 69–78.

[27] F. Khomh and Y.-G. Gu�eh�eneuc, “Playing roles in design patterns:
An empirical descriptive and analytic study,” in Proc. 25th Int.
Conf. Softw. Maintenance, Sep. 2009, pp. 83–92.

AMPATZOGLOU ET AL.: THE EFFECT OF GOF DESIGN PATTERNS ON STABILITY: A CASE STUDY 801

[28] F. Khomh and Y.-G. Gu�eh�eneuc, “Do design patterns impact soft-
ware quality positively?” in Proc. 12th Eur. Conf. Softw. Mainte-
nance Reeng., Athens, Greece, Apr. 2008, pp. 274–278.

[29] F. Khomh, M. Di Penta, and Y.-G. Gu�eh�eneuc, “An exploratory
study of the impact if code smells on software change-proneness,”
in Proc. 16th Working Conf. Reverse Eng., Lille, France, Oct. 2009,
pp. 75–84.

[30] K. Kouskouras, A. Chatzigeorgiou, and G. Stephanides,
“Facilitating software extension with design patterns and aspect-
oriented programming,” J. Syst. Softw., vol. 81, no. 10, pp. 1725–
1737, Oct. 2008.

[31] M. M. Lehman and L. A. Belady, Program Evolution: Processes of
Software Change. London, U.K.: Academic, 1985.

[32] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Softw. Testing, Verification
Rel., vol. 23, no. 8, pp. 613–646, Dec. 2013.

[33] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice-Hall, 2003.

[34] W. B. McNatt and J. M. Bieman. “Coupling of design patterns:
Common practices and their benefits,” in Proc. 25th Int.
Comput. Softw. Appl. Conf. Invigorating Softw. Develop., Oct.
2001, pp. 574–579.

[35] B. Meyer, Object-Oriented Software Construction, 2nd ed.
Englewood Cliffs, NJ, USA: Prentice Hall, 1997.

[36] T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu, “Toward effec-
tive deployment of design patterns for software extension: A case
study,” in Proc. 4th Workshop Softw. Qualit, Shanghai, China, May
2006, pp. 51–56.

[37] T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu, “Do maintainers
utilize deployed design patterns effectively?” in Proc. 29th Int.
Conf. Softw. Eng., May 2007, pp. 168–177.

[38] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta, “A
controlled experiment in maintenance comparing design patterns
to simpler solutions,” IEEE Trans. Softw. Eng., vol. 27, no. 12,
pp. 1134–1144, Dec. 2001.

[39] D. Romano, P. Raila, M. Pinzger, and F. Khomh, “Analyzing the
impact of antipatterns on change-proneness using fine-grained
source code changes,” in Proc. 19th Working Conf. Reverse Eng.,
Oct. 2012, pp. 437–446.

[40] P. Rovegard, L. Angelis, and C. Wohlin, “An empirical study on
views of importance of change impact analysis issues,” IEEE
Trans. Softw. Eng., vol. 34, no. 4, pp. 516–530, Apr. 2008.

[41] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study
Research in Software Engineering: Guidelines and Examples. West
Sussex, U.K.: Wiley, 2012.

[42] P. Sommerlad and M. R€uedi, “Do-it-yourself reflection,” in Proc.
3rd Eur. Conf. Pattern Lang. Programm. Comput., 1998.

[43] N. Shi and R. Olson, “Reverse engineering of design patterns from
Java source code,” in Proc. 21st Int. Conf. Automated Softw. Eng.,
Sep. 2006, pp. 123–134.

[44] SPSS Inc, “SPSS 16.0 Data Preparation,” SPSS Manual, retrieved
on-line at, Sep. 2013.

[45] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis, “Design pattern detection using similarity scoring,”
IEEE Trans. Softw. Eng., vol. 32, no. 11, pp. 896–909, Nov. 2006.

[46] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “Predicting
the probability of change in object-oriented systems,” IEEE Trans.
Softw. Eng., vol. 31, no. 7, pp. 601–614, Jul. 2005.

[47] A. Van Koten and A. R. Gray, “An application of Bayesian net-
work for predicting object-oriented software maintainability,” Inf.
Softw. Technol., vol. 48, no. 1, pp. 59–67, Jan. 2006.

[48] M. L. Vasquez, S. Klock, C. McMillan, A. Sabane, D. Poshyvanyk
and Y.-G. Gu�eh�eneuc, “Domain matters: Bringing further evi-
dence of the relationships among anti-patterns, application
domains, and quality-related metrics in Java mobile apps,” in
Proc. 22nd Int. Conf. Program Comprehension, Jun. 2014, pp. 232–243.

[49] M. Vok�ac, W. Tichy, D. I. K. Sjøberg, E. Arisholm, and M. Aldrin,
“A controlled experiment comparing the maintainability of pro-
grams designed with and without design patterns: A replication
in a real programming environment,” Empirical Softw. Eng., vol. 9,
no. 3, pp. 149–195, Sep. 2004.

[50] S. Yau and J. Collofello, “Some stability measures for software
maintenance,” IEEE Trans. Softw. Eng., vol. 6, no. 6, pp. 545–552,
Nov. 1980.

[51] S. Yau and J. Collofello, “Design stability measures for software
maintenance,” IEEE Trans. Softw. Eng., vol. 11, no. 9, pp. 849–856,
Sep. 1985.

[52] R. K. Yin, Case Study Research: Design and Methods, 3rd ed. Los
Angeles, California, USA: Sage, 2003.

[53] C. Zhang and D. Budgen, “What do we know about the effective-
ness of software design patterns,” IEEE Trans. Softw. Eng., vol. 38,
no. 5, pp. 1213–1231, Sep./Oct. 2012.

Apostolos Ampatzoglou received the BSc
degree in information systems in 2003, the MSc
degree in computer systems in 2005, and the
PhD degree in software engineering by the Aris-
totle University of Thessaloniki in 2012. He is an
assistant professor in the Johann Bernoulli Insti-
tute for Mathematics and Computer Science of
the University of Groningen, The Netherlands,
where he carries out research and teaching in the
area of software engineering. His current
research interests are focused on reverse engi-

neering, software maintainability, software quality management, open
source software engineering and software design. He has published
more than 25 articles in international journals and conferences. He is/
was involved in more than 10 R&D ICT projects, with funding from
national and international organizations.

Alexander Chatzigeorgiou received the
Diploma in electrical engineering and the PhD
degree in computer science from the Aristotle
University of Thessaloniki, Greece, in 1996 and
2000, respectively. He is an associate professor
of software engineering in the Department of
Applied Informatics, University of Macedonia,
Thessaloniki, Greece. From 1997 to 1999, he
was with Intracom S.A., Greece, as a telecommu-
nications software designer. Since 2007, he has
also been a member of the teaching staff at the

Hellenic Open University. His research interests include object-oriented
design, software maintenance, and software evolution analysis. He is a
member of the IEEE and the Technical Chamber of Greece.

Sofia Charalampidou received the BSc degree
in information technology from the Technological
Institute of Thessaloniki, Greece, and the MSc
degree in software engineering from the Chalm-
ers University of Technology, Sweden. She is
currently working toward the PhD degree at the
University of Groningen, The Netherlands, in the
group of Software Engineering and Architecture.
Her research interests include software design,
maintenance, and metrics.

Paris Avgeriou is a professor of software engi-
neering in the Johann Bernoulli Institute for Math-
ematics and Computer Science, University of
Groningen, The Netherlands where he has led
the Software Engineering research group since
September 2006. Before joining Groningen, he
was a postdoctoral fellow of the European
Research Consortium for Informatics and Mathe-
matics (ERCIM). He has participated in a number
of national and European research projects
directly related to the European industry of Soft-

ware-intensive systems. He has coorganized several international con-
ferences and workshops (mainly at the International Conference on
Software Engineering-ICSE). He sits on the editorial board of Springer
Transactions on Pattern Languages of Programming (TPLOP). He has
edited special issues in IEEE Software, Elsevier Journal of Systems and
Software and Springer TPLOP. He has published more than 130 peer-
reviewed articles in international journals, conference proceedings and
books. His research interests lie in the area of software architecture,
with strong emphasis on architecture modeling, knowledge, evolution,
patterns and link to requirements. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

802 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

