Empirical Software Engineering

Yann-Gaél Guéhéneuc and Foutse Khomh

June 6, 2018

0.1 Introduction

Software engineering as a discipline exists since the 1960’s, when participants of
the NATO Software Engineering Conference in 1968 at Garmisch, Germany [39]
recognised that there was a “software crisis” due to the increased complexity
of the systems and of the software running (on) these systems. This increased
complexity of the systems was becoming unmanageable by the hardware de-
velopers who were also often the software developers, because they knew best
the hardware and there was little knowledge of software development processes,
methods, and tools. Many software developers at the time, as well as the par-
ticipants of the NATO Conference, realised that software development requires
dedicated processes, methods, and tools and that they were separate from the
actual hardware systems: how these were built and how the software systems
would run on them.

Until the software crisis, research mostly focused on the theoretical aspects
of software systems, in particular the algorithms and data structures used to
write software systems [32], or on the practical aspects of software systems, in
particular the efficient compilation of software for particular hardware systems
[61]. The software crisis led to the acknowledgment that software engineering is
more than computing theories and efficiency of code and that it requires dedi-
cated research. Thus, this crisis was the starting point of software engineering
research. It also yielded the distinction between the disciplines of computer
science and software engineering. Computer science research pertains to un-
derstanding and proposing theories and methods related to the efficient com-
putation of algorithms. Software engineering research pertains to all aspects
of engineering software systems: from software development processes [24] to
debugging methods [36], from theories of software developers’ comprehension
[68] to the impact of programming constructs [19], from studying post-mortems
of software development [66] to analysing the communications among software
developers [20].

Software engineering research has had a tremendous impact on software de-
velopment in the past decades, contributing with advances in processes, for
example with agile methods, in debugging methods, e.g., with integrated devel-
opment environments, and in tools, in particular with refactorings. It has also
contributed to improving the quality of software systems, bridging research and
practice, by formalising, studying, and popularising good practices. Software
engineering research acknowledged early that software engineering is fundamen-
tally an empirical discipline—thus further distinguishing computer science from
software engineering—because (1) software is immaterial and does not obey
physical laws and (2) software is written by people for people. Therefore, many
aspects of software engineering are, by definition, impacted by human factors.
Empirical studies are needed to identify these human factors impacting software
engineering and to study the impact of these factors on software development
and software systems.

In this chapter, we first introduce the concepts and principles on which em-
pirical software engineering is based. Then, using these concepts and principles,

we describe seminal works that led to the inception and popularisation of empir-
ical software engineering research. We use these seminal works to discuss some
idioms, patterns, and styles in empirical software engineering before discussing
some challenges that empirical software engineering must overcome in the (near)
future. Finally, we conclude and suggest further readings and future directions.
Thus, this chapter complements previous works existing regarding the choice of
empirical methods [14] or framework into which empirical software engineering
research could be cast, such as the evidence-based paradigm [30].

0.2 Concepts and Principles

Empirical software engineering is a field that encompasses several research meth-
ods and endeavours, including—but not limited to—surveys to collect data on
some phenomenon and controlled experiments to measure the correlation be-
tween variables. Therefore, empirical studies in software engineering are studies
that use any of the “usual” empirical research methods [71]: survey (including
systematic literature reviews), case studies, quasi experiments, and controlled
experiments. Conversely, we argue that software engineering research works,
which do not include any survey, case study, or experiments, are not empirical
studies (or do not contain empirical studies). Yet, it is nowadays rare for soft-
ware engineering research works not to include some empirical studies. Indeed,
empirical studies are among the top most popular topics in conferences like the
ACM/IEEE International Conference on Software Engineering. Therefore, we
believe useful at this point in time and for the sake of the completeness of this
chapter to recall the justification of and concepts related to empirical software
engineering.

0.2.1 Justification

While it was possible some years ago to publish a research work, for example,
proposing a new language mechanism to simplify the use of design patterns
[62] without detailed empirical studies of the mechanism, they were followed by
empirical studies to assess concretely the advantages and limitations of similar
mechanisms [69]. As additional example, keywords related to empirical software
engineering, such as “case study” or “experiment” appeared in the titles of only
two papers presented in the 27¢ International Conference on Software Engineer-
ing in 1976'. In the 37" International Conference on Software Engineering, in
2015, 39 years later, 7 papers had keywords related to empirical software engi-
neering in their titles and a whole track of four research papers was dedicated
to human factors in software engineering.

These examples illustrate that software engineering research is taking a clear
turn towards empirical research. The reasons for this clear turn are two-fold:
they pertain to the nature of software engineering research and to the benefits

1Yet, a whole track of this conference was dedicated to case studies with 6 short papers
and 1 long paper.

provided by empirical research. On the one hand, software engineering research
strives to follow the scientific method to offer sound and well-founded results and
it thus requires observations and experimentations to create and to assess hy-
potheses and theories. Empirical research offers the methods needed to perform
these observations and experimentations. Observations can usually be readily
made in real conditions, hence rooting empirical research into industry prac-
tices. Experimentations may be more difficult to carry but allow to compare
activities and tasks. On the other hand, empirical research has a long tradi-
tion in science, in particular in fields like medicine and—or physics. Therefore,
empirical researchers can draw inspiration from other fields and apply known
successful methods.

0.2.2 General Concepts

Empirical software engineering, as any other empirical field, relies on few general
concepts defined in the following. We begin by recalling the concept of scientific
method and present related concepts, tying them with one another. Therefore,
we present concepts by neither alphabetical order nor importance but rather as
a narrative.

Scientific Method. The scientific method can be traced back to early scien-
tists, including but not limited to Galileo and Al-Jazari and has been at the
core of all natural science research since the 17t century. The scientific method
typically consists in observations, measurements, and experimentations. Obser-
vations help researchers to formulate important questions about a phenomenon
under study. From these questions, researchers derive hypotheses that can be
tested through experimentations to answer the questions. A scientific hypothe-
sis must be refutable, i.e., it should be possible to prove it to be false (otherwise
it cannot be meaningfully tested), and must have for answers universal truths.
Once the hypothesis are tested, researchers compile and communicate the re-
sults of the experiments in the form of laws or theories, which may be universal
truths and which may still require testing. The scientific method is increas-
ingly applied in software engineering to build laws and theories about software
development activities.

Universal truth. An observation, a law, or a theory achieves the status of
universal truths when it applies universally in a given context, to the best of
our knowledge and notwithstanding possible threats to the validity of the exper-
iments that led to it, in particular threats to generalisability. A universal truth
is useful for practitioners who can expect to observe it in their contexts and
for researchers who can test it to confirm/infirm it in different contexts and-or
under different assumptions.

Empirical Method. At the heart of the scientific method are empirical meth-
ods, which leverage evidences obtained through observations, measurements, or

experimentations, to address a scientific problem. Although empirical methods
are not the only means to discover (universal) truths, they are often used by
researchers. Indeed, a fundamental principle of the scientific method is that re-
sults must be backed by evidences and, in software engineering, such evidences
should be based on concrete observations, measurements, or experimentations
resulting from qualitative and quantitative research, often based on a multi-
method or mixed-method methodology.

Refutability. Observations, measurements, or experimentations are used to
formulate or infirm/confirm hypotheses. These hypotheses must be refutable.
The refutability of an hypothesis is the possibility to prove this hypothesis to
be false. Without this possibility, an hypothesis is only a statement of faith
without any scientific basis.

Qualitative Research. Qualitative research aims to understand the reasons
(i.e., “why”) and mechanisms (i.e., “how”) explaining a phenomenon. A pop-
ular method of qualitative research is case-study research, which consists in
examining a set of selected samples in details to understand the phenomenon
illustrated by the samples. For example, a qualitative study can be conducted
to understand why developers prefer one particular static analysis tool over
some other existing tools. For such a study, researchers could perform struc-
tured, semi-structured, or unstructured interviews with developers about the
tools. They could also run focus groups and—or group discussions. They could
also analyse data generated during the usage of the tools to understand why
developers prefer the tool.

Quantitative Research. Quantitative research is a data-driven approach used
to gain insights about an observable phenomenon. In quantitative research,
data collected from observations are analyzed using mathematical/statistical
models to derive quantitative relationships between different variables capturing
different aspects of the phenomenon under study. For example, if we want to
investigate the relation between the structure of a program and its reliability
measured in terms of post-release defects, we must define a set of variables
capturing different characteristics of the program, such as the complexity of the
code, or the cohesion of the code, then, using a linear regression model, we can
quantify the relationship between code complexity values and the number of
post-release defects.

Multi-method Research Methodology. A multi-method research method-
ology combines different research methods to answer some hypotheses. It allows
researchers to gain a broader and deeper understanding of their hypotheses and
answers. Typically, it combines survey, case studies, and experiments. It can
also combine inductive and deductive reasoning as well as grounded theories.

Mixed-method Research Methodology. A mixed-method research method-
ology is a particular form of multi-method research methodology in which quan-
titative and qualitative data are collected and used by researchers to provide
answers to research hypotheses and to discuss the answers. This methodology
is often used in empirical software engineering research because of the lack of
theories in software engineering with which to interpret quantitative data and
because of the need to discuss qualitatively the impact of the human factor on
any experiments in software engineering.

Grounded Theory. While it is a good practice to combine quantitative anal-
yses, which help identify related attributes and their quantitative impact on
a phenomenon, with qualitative analyses, which help understand the reasons
and mechanisms for their impact on the phenomenon, such a methodology also
allows researchers to build grounded theories. Grounded theories are created
when researchers abstract their observations made from the data collected dur-
ing quantitative and qualitative research into a theory. This theory should
explain the observations and allow researchers to devise new interesting hy-
potheses and experiments to infirm/confirm these hypotheses and, ultimately,
refine the theory.

Activities and Tasks. Software engineers can expect to perform varied ac-
tivities and tasks in their daily work. Activities include but are not limited
to development, maintenance, evolution, debugging, comprehension. Tasks in-
clude but are not limited to the usual tasks found in any engineering endeavour:
feasibility studies, pre-project analysis, architecture, design, implementation,
testing, deployment. Typically, a task may involve multiple activities. For ex-
ample, the task of fixing a bug include the activities of (1) reading the bug
description, (2) reproducing the bug through test cases, (3) understanding the
execution paths, and (4) modifying the code to fix the bug.

0.2.3 Empirical Research Methods

When performing empirical research, researchers benefit from many well-defined
methods [71], which we present here. These methods use supporting concepts
that we define in the next Section 0.2.4.

Survey. Surveys are commonly used to gather from software engineers informa-
tion about their processes, methods, and tools. They can also be used to collect
data about software engineers’ behaviours, choices, or observations, often in the
form of self-reports. To conduct a survey, researchers must select a representa-
tive sample of respondents from the entire population or a well-defined cohort of
software engineers. Statistical techniques exist to assist researchers in sampling
a population. Once they have selected a sample of respondents, researchers
should choose a type of survey: either questionnaires or interviews. Then, they
should construct the survey, deciding on the types of questions to be included,

their wording, their content, their response format, and the placement and se-
quence of the questions. They must run a pilot survey before reaching out to
the all the respondents in sample. Pilot surveys are useful to identify and fix
potential inconsistencies in surveys. On-line surveys are one of the easiest form
of survey to perform.

Systematic Literature Review. Another type of surveys are system-
atic literature reviews. Systematic literature reviews are important and de-
serve a paragraph on their own. They are questionnaires that researchers self-
administer to collect systematically data about a subset of the literature on a
phenomenon. Researchers use the data to report and analyse the state of the
art on the phenomenon. Researchers must first ask a question about a phe-
nomenon, which requires a survey of the literature, and then follow well-defined
steps to perform the systematic literature review: identification and retrieval of
the literature, selection, quality assessment, data extraction, data synthesis, and
reporting the review. Systematic literature reviews are secondary studies based
on the literature on a phenomenon. Thus, they indirectly—with one degree of
distance—contribute to our understanding of software engineering activities and
tasks. They have been popular in recent years in software engineering research
and are a testimony of the advances made by software engineering researchers
in the past decades.

Case Study. Case studies help researchers gain understanding of and from
one particular case. A case in software engineering can a process, a method,
a tool, or a system. Researchers use qualitative and quantitative methods to
collect data about the case. They can conduct a case study, for example, to
understand how software engineers apply a new development method to build
a new system. In this example, researchers would propose a new development
method and ask some software engineers to apply it to develop a new system—
the case. They would collect information about the method, its application,
and the built system. Then, they could report on the observed advantages and
limitations of the new method. Researchers cannot generalise the results of case
studies, unless they selected carefully the set of cases to be representative of
some larger population.

Experiment. Experiments are used by researchers to examined cause—effect
relationships between different variables characterising a phenomenon. Exper-
iments allow researchers to verify, refute, or validate hypotheses formulated
about the phenomenon. Researchers can conduct two main types of experi-
ments: controlled experiments and quasi-experiments.

Controlled Experiment. In medicine, nursing, psychology and other
similar fields of empirical research, acknowledging the tradition established by
medicine, researchers often study the effect of a treatment on some subjects in
comparison to another group of subjects not receiving the treatment. This latter

group of subjects is called the controlled group, against which researchers mea-
sure the effect of the treatment. Software engineering researchers also perform
controlled experiments but, differently from other fields of empirical research,
they are rarely interested by the effect of a treatment (a novel process, method,
or tool) on some subjects but rather by the effect—and possibly the magnitude
of the effect—of the treatment on the performance of the participants. Conse-
quently, software engineering researchers often control external measures of the
participants’ performance, like the numbers of introduced bugs or the numbers
of failed test cases.

Quasi-Experiment. In quasi-experiments, researchers do not or cannot
assign randomly the participants in the experiments in the control and exper-
imental groups, as they do in experiments. For example, researchers could
perform a (quasi-)experiment to characterise the impact of anti-patterns on the
comprehensibility of systems. They should select some systems containing in-
stances of some anti-patterns. They would create “clean” versions of the systems
without these instances of the anti-patterns. They would use these versions of
the systems to compare participants’ performance during comprehension activ-
ities. Researchers should assign the participants to control and experimental
groups using an appropriate design model (e.g., a 2 x 3 factorial design). They
could also administer a post-mortem questionnaire to participants at the end of
the experiments to collect information about potential confounding factors that
could affect the results.

Replication Experiment. While experiments are conceived by researchers
and performed to produce new knowledge (observations, results), there is a
special form of experiments that is essential to the scientific method: replica-
tion experiments. Replication experiments are experiments that reproduce (or
quasi-reproduce) previous experiments with the objectives to confirm or infirm
the results from previous experiments or to contrast previous results in different
contexts. They are essential to the scientific method because, without repro-
ducibility, experiments provide only a collection of unrelated, circumstantial
results while their reproductions give them the status of universal truth.

0.2.4 Empirical Research Methods — Supporting Concepts

We now recall the concepts supporting the empirical research methods presented
before. We sort them alphabetically to acknowledge that all these concepts are
important to the methods.

Cohort. A cohort is a group of people who share some characteristics, for ex-
ample being born the same year or taking the same courses, and who participate
in empirical studies.

Measurement. A measurement is a numerical value that represents a charac-
teristic of an object and that researchers can compare with other values collected
on other objects.

Object. Surveys, case studies, and experiments often pertain to a set of objects,
which the researchers study. Objects can be processes, methods, or tools as well
as systems or any related artifacts of interest to the researchers.

Participant. A participant is a person who takes part in an experiment. Re-
searchers usually distinguish between participants and subjects. Participants
perform some activities related to a phenomenon and researchers collect data
related to these activities and phenomenon for analysis. Researchers are not
interested in the participants’ unique and—or relative performances. They con-
sider the participants’ characteristics only to the extent that these character-
istics could impact the data collected in relation to the phenomenon. On the
contrary, subjects perform some activities related to a phenomenon and re-
searchers are interested in the subjects’ performance, typically to understand
how subjects’ characteristics impact their performance.

Reproducibility. The ability to reproduce a research method and its results
is fundamental to the scientific method. Without reproducibility, a research
method and—or its results are only circumstantial evidences that do not advance
directly the state-of-the-art. It is a necessary condition for any universal truth.

Scales. A scale is a level of measurement categorising different variables. Scales
can be nominal, ordinal, interval, and ratio. Scales limit the statistical analyses
that researchers can perform on the collected values.

Transparency. Transparency is a property of any scientific endeavour. It
implies that researchers be transparent about the conduct of their research,
from inception to conclusion. In particular, it requires that researchers disclose
conflicts of interests, describe their methods with sufficient details for repro-
ducibility, provide access to their material for scrutiny, and share the collected
data with the community for further analyses. It is a necessary condition for
any universal truth and also an expectation of the scientific method.

0.2.5 Empirical Research Techniques

Many different techniques are applicable to carry empirical software engineering
research, depending on the chosen method, the hypotheses to be tested, or the
context of the research. Surveying all existing techniques is out of the scope
of this chapter. However, some techniques are commonly used by researchers
in empirical software engineering and have even spawned workshops and con-
ferences. Therefore, these techniques deserve some introduction because they
belong to the concepts available to empirical software engineering researchers.

Mining Software Repositories. One of the main objects of interest to re-
searchers in software engineering research are the software products resulting
from a software process. These products include the documentation, the source
code but also the bug reports and the developers’ commits. They are often
stored by developers in various databases, including but not limited to version
control systems or bug tracking tools. They can be studied by researchers us-
ing various techniques, which collectively are called mining techniques. These
mining techniques allow researchers to collect and cross-reference data from
various software repositories, which are an important source of information for
empirical software engineering researchers. Thus, mining software repositories
is an essential means to collect observations in empirical software engineering
research.

Consequently, they became popular and have dedicated forums, in partic-
ular the conference series entitled “Mining Software Repositories”. Although,
they are various and numerous, some techniques became de-facto standards
in empirical software engineering research, such as the SZZ algorithm used to
cross-reference commits and bug reports [56, 70] or the LHDiff algorithm used
to track source code lines across versions [3]. These techniques form a basis on
which researchers can build their experiments as well as devise new techniques
to analyse different and—or differently software repositories.

Correlation Tests and Effect Sizes. After collecting data from software
repositories, researchers are often interested in relating pieces of data with one
another or with external data, for example changes to source code lines and
developers’ efforts. They can use the many techniques available in statistics
to compute various correlations. These techniques depend on the data along
difference dimensions: whether the data follow a normal distribution or not
(parametric vs. non-parametric tests), whether the data samples are indepen-
dent or dependent (paired or unpaired tests), whether there are two or more
data samples to compare (paired or generalisation). For example, the paired t-
test can be applied on two parametric, dependent data samples. Yet, researchers
should be aware that correlation does not mean causation and that there exist
many threats to the validity of such correlations.

In addition to testing for correlation, researchers should also report the effect
size of any statistically-significant correlation. Effect size helps other researchers
assess the magnitude of a correlation, independently of the size of the correlated
data. They can use different measures of effect size, depending on the scale of
the data: Cohen’s d for means or Cliff’s § for ordinal data. They thus can
provide the impact of a treatment, notwithstanding the size of the sample on
which the treatment was applied.

0.3 Genealogy and Seminal Papers

Empirical software engineering research has become a prominent part of soft-
ware engineering research. Hundreds, if not thousands, of papers have been
published on empirical studies. It is out of the scope of this chapter to sys-
tematically review all of these empirical studies and we refer to the systematic
literature review of empirical studies performed by Zendler [74] in 2001 entitled
“A Preliminary Software Engineering Theory as Investigated by Published Ex-
periments”. In this systematic literature review, the author provides a history of
experimental software engineering from 1967 to 2000 and describes and divides
the empirical studies into seven categories: experiments on techniques for soft-
ware analysis, design, implementation, testing, maintenance, quality assurance,
and reuse.

Rather than systematically reviewing all empirical studies in software en-
gineering, we describe now some landmark papers, books, and venues related
to empirical software engineering research. Choosing landmark works is both
subjective and risky. It is subjective because we must rely on our (necessarily)
limited knowledge of the large field of empirical software engineering research.
It is risky because, in relying on our limited knowledge, we may miss important
works or works that would have been chosen by other researchers. The follow-
ing works must be taken as reading suggestions and not as the definitive list of
landmark works. This list is meant to evolve and be refined by the community
on-line?.

0.3.1 Landmark Articles

The landscape of software engineering research can be organised along two di-
mensions: by time and by methods. Time is a continuous variable that started
in 1967 and that continues to this date. Empirical research methods is a nom-
inal variable that includes: surveys, case studies, and experiments (quasi- and
controlled experiments), based on the methods defined in Section 0.2.3. We
discuss some landmark works for each dimension although many others exist
and are published every year.

Timeline

The software engineering research community recognised early that the software-
engineering endeavour is intrinsically a human endeavour and, thus, that it
should be studied experimentally. Therefore, even before software engineering
became a mainstream term [39], researchers carried out empirical studies. The
timeline in Figure 1 displays and relates some of these landmark articles, in
particular showing the citation-relation among these articles.

According to Zendler [74], Grant and Sackman published in 1967 the first
empirical study in software engineering entitled “An Exploratory Investigation
of Programmer Performance under On-line and Off-line Conditions”. This study

2http://www.ptidej.net /research /eselandmarks/

10

First ke empirical sty
Grant 20 Sxcimen - dn Emioratory imestizston of
Frogrzmmer Ferformence uncer Ormine =nd s
Conaitions ; 1957

—
Kot ; An Empiice1 Sty of FORTRAN
Progrems ;1972
|
W
nasmosorogy nmosonEy use or svusenns ss pervicosens
£x5ii 20 Wiziss - & Wstnossiegy For Cotecting Vi Cxsm Siusy Smsmarc Design 2o Mathess zvasin and Keignt An Brperimental Eatistion o tne Assumption
Ve Softmare Enginmering Datz 1884 e st n Whitiversion Frogrameing ; 1558

) Thrests towatcity
Swanaan 20 Semtn
Tre Use ofCase Stuzy Dste i Sstware
H Maragemat fassar ;1552 Lse o stusents as particpeens
J ‘ N I Leveson, Cna, rigr, 80 SR ; The Lse oF Sef Creces s
f

y

ot in Software Ervor Setestion. An Empina Shagy ; 1550
'
. ‘rarougn discussion o Tanests 1o veiidity
- \ ! Samarer ; smisziiny of Funtion S
J -- : \etsuramant A Fed Borrment 1558
i\

Diszusion o tha st sty [T—— s '

Srachet ; Toe 251 Gront Sxckmen Legend i Misiesding, O ' Vensolingen ana sergnou \ |
e Larga s mterperaanal Variation Sealy ;195 [GosuCussmion /vt Mo A P Guics
for Gusiity Improsement of Scftwere

Devsiogment - 1335

Mitimetoods
Emimass ot ol ; Snaved Mantl Models,
Famitarity and Cosrdination: A Mt-Mietnod
Stuy of Distted SawaTe Tabm £ 2002
Sepication metreds or ampiricn studes
Sl and Carver - Toe hote of Replcations
Eoirical Sofware Engoearg - 2008
Jr
Mitimetoods
Gun, Zimmermann, Negzppen, 20d Mgy -
N Craracrerizg aedl Pasiing whith s Gt
Fivec: m Empirical STy of MICToS Windows :
2010

Figure 1: Timeline of some landmark articles in empirical software engineering
(a dash arrow with circle depicts a relation of concepts but no citation while
a dash arrow with wedge depicts citations through other articles and a plain
arrow with wedge depicts direct citation)

11

compared the performance of two groups of developers working with on-line ac-
cess to a computer through a terminal or with off-line access, in batch mode. It
showed that differences exist between on-line and off-line accesses but that inter-
personal differences are paramount in explaining these differences. It generated
several discussions in the community and may have been the driver towards
more empirical research in software engineering, for example by Lampson in the
same year [35] or by Prechelt, who would write a longer critique of this study
twelve years later, in 1999 [41].

Another empirical study published early in the history of software engineer-
ing was an article by Knuth in 1971 entitled “An Empirical Study of FORTRAN
Programs” [33], in which the author studied a set of FORTRAN programs in
an attempt to understand what software developers really do in FORTRAN
programs. The authors wanted to direct compiler research towards an efficient
compilation of the constructs most used by developers. As in many others early
studies, the authors defined the goal of the study, the questions to research, and
the measures to answer these questions in an ad hoc fashion.

A systematic methodology to define empirical studies appeared in an arti-
cle by Basili and Weiss in 1984 entitled “A Methodology For Collecting Valid
Software Engineering Data” [4], which was popularised by Van Solingen and
Berghou in 1999 in their book “Goal/Question/Metric Method: A Practical
Guide for Quality Improvement of Software Development” [67]. The method-
ology, named Goal/Question/Metrics (GQM), came at a time of great interest
in academia and industry for software measurement programs and the defini-
tion of new software metrics. It was defined by Basili and Weiss after they
observed that many measurement programs and metrics were put together hap-
hazardly and without clear goals and—or without answering clear questions. It
helped managers and developers as well as researchers to define measurement
programs based on goals related to products, processes, and resources, that can
be achieved by answering questions that characterise the objects of measure-
ment, using metrics. This methodology was used to define experiments in many
studies on software quality in particular, and in empirical software engineering
in general.

The GQM methodology helped researchers define empirical studies system-
atically. However, empirical studies cannot be perfect in their definitions, re-
alisations, and results. Researchers discuss the goals, questions, and metrics
of empirical studies as well as their relations. For example, researchers often
debate the choice of metrics in studies, which depends both on the goals and
questions of the studies but also on the possibility to measure these metrics at
an acceptable cost. Thus, researchers must balance scientific rigor and practi-
cality when performing empirical studies. For example, researchers often must
draw participants from a convenient sample of readily available students. One
of the first papers to ask students to perform software activities and to analyse
their outputs was a series of article by Leveson, Knight, and colleagues between
1986 and 1990, for example entitled “An Experimental Evaluation of the As-
sumption of Independence in Multiversion Programming” [31] and “The Use of
Self Checks and Voting in Software Error Detection: An Empirical Study” [37]

12

in which the authors enrolled graduate students to perform inspection-related
tasks. They showed that self-checks are essential and stemmed a line of research
works on software inspection, thus contributing to make inspection mainstream.

Finally, researchers must deal with noisy empirical data that lead to un-
certain results. For example, researchers frequently obtain pieces of data with
outlier values or that do not lend themselves to analyses and yield statistically
non-significant results. Consequently, researchers must discuss the threats to
the validity of their studies and of their results. One of the first study explicitly
discussing its threats to validity was an article by Swanson and Beath in 1988
entitled “The Use of Case Study Data in Software Management Research” [61],
in which the authors discussed with some details the threats to the validity of
the study by following the landmark book by Yin [72], first published in 1984.

Threats to the validity of empirical studies and of their results are unavoid-
able. However, they do not necessarily undermine the interest and importance
of empirical studies. For example, despite some threats to its validity, the study
by Kemerer in 1993 entitled “Reliability of Function Points Measurement: A
Field Experiment” [27] provided a thorough discussion of its results to convince
readers of their importance. It was one of the first studies discussing explicitly
their threats. Discussing threats to validity is natural and expected in em-
pirical studies following a multi-method research methodology, in general, and
a mixed-method research methodology, in particular. With these methodolo-
gies, researchers put in perspective quantitative results using qualitative data,
including threats to the validity of both quantitative and qualitative data by
contrasting one with the other.

The multi-method and mixed-method research methodologies provide oppor-
tunities for researchers to answer their research questions with more comprehen-
sive answers than would allow using only quantitative or qualitative methods.
One of the first study to follow a multi-method research methodology was pub-
lished in an article by Espinosa et al. in 2002 entitled “Shared Mental Models,
Familiarity and Coordination: A Multi-Method Study of Distributed Software
Teams” [16]. These methodologies have then been made popular, for example,
by Guo, Zimmermann, Nagappan, and Muprhy in 2010 in an article entitled
“Characterizing and Predicting which Bugs Get Fixed: An Empirical Study of
Microsoft Windows” [18] that reported on a survey of “358 Microsoft employees
who were involved in Windows bugs” to understand the importance of human
factors on bug fixing activities. Since then, most empirical studies include qual-
itative and quantitative results.

Qualitative and quantitative results are often collected using experiments
and surveys. Yet, empirical studies can use other methods, discussed in the
next section. These methods were thoroughly described and popularised by
Wohlin, Runeson, Host, Ohlsson, Regnell, and Wesslén in 2000 in their book
entitled “Experimentation in Software Engineering” [71]. This book was the first
to put together, in the context of software engineering research, the different
methods of studies available to empirical software engineering researchers and to
describe “the scoping, planning, execution, analysis, and result presentation” of
empirical studies. However, this book, as other previous works, did not discuss

13

replication experiments. However, replication experiments are important in
other fields like social sciences and medicine. They have been introduced in
empirical software engineering research by Shull and Carver in 2008 in their
article entitled “The Role of Replications in Empirical Software Engineering”
[63]. They should become more and more prevalent in the years to come as
empirical software engineering research becomes an established science.

Methods

The main methods of empirical research are surveys, case studies, quasi-experiments,
and controlled experiments. While surveys are used to understand activities and
tasks, case studies bring more information about a reduced sets of cases. Quasi-
and controlled experiments are then used to test hypotheses possibly derived
from surveys and case studies.

The first method of empirical studies are surveys. Surveys are important
in software engineering research because software development activities are
impacted by human behaviour [52]. They are, generally, series of questions
asked to some participants to understand what they do or think about some
software processes, methods, or tools. They have been introduced by Thayer,
Pyster, and Wood in 1980 in their article entitled “The Challenge in Software
Engineering Project Management” [63], which reported on a survey of project
managers and computer scientists from industry, government, and universities
to understand their challenges when managing software engineering projects.
They also have been used to assess tool adoption and use by developers, for
example by Burkhard and Jenster in 1989 in their article entitled “Applica-
tions of Computer-aided Software Engineering Tools: Survey of Current and
Prospective Users” [10]. They were popularised by Zimmerman et al. in 2010
in an article entitled “Characterizing and Predicting which Bugs Get Fixed:
An Empirical Study of Microsoft Windows” [18], in which the authors used a
mixed-methods research methodology, as described in the previous section.

The second method of empirical studies are case studies. Case studies are
regularly used by empirical software engineering researchers because researchers
often have access to some cases, be them software systems or companies, but
in limited numbers either because of practical constraints (impossibility to ac-
cess industrial software systems protected by industrial secrets) or lack of well-
defined populations (impossibility to reach all software developers performing
some activities). Therefore, case studies have been used early by researchers in
empirical software engineering, for example by Curtis et al. in 1988 in an article
entitled “A Field Study of the Software Design Process for Large Systems” [12].
They were popularised by Murphy et al. in 2006 in an article entitled “Ques-
tions Programmers Ask during Software Evolution Tasks” [54]. Runeson et al.
published in 2012 a book entitled “Case Study Research in Software Engineer-
ing: Guidelines and Examples” [49] that includes an historical account of case
studies in software engineering research.

The third method of empirical studies are quasi-experiments. Quasi-expe-
riments are experiments where the participants and—or the objects of study

14

are not randomised. They are not randomised because it would be too expen-
sive to do so or because they do not belong to well-defined, accessible pop-
ulations. Kampenes et al. presented in 2009 a systematic literature review
of quasi-experiments in software engineering entitled “A Systematic Review of
Quasi-experiments in Software Engineering” [25]. They performed this review
on articled published between 1993 (creation of the ESEM conference series) and
2002 (10 years later). They observed four main methods of quasi-experiments
and many threats to the reported experiments, in particular due to the lack
of control for any selection bias. They suggested that the community should
increase its awareness of “ how to design and analyze quasi-experiments in SE
to obtain valid inferences”.

Finally, the fourth method of empirical studies pertains to controlled ex-
periments. Controlled experiments are studies “in which [...] intervention]s]
[are] deliberately introduced to observe [their] effects” [25]. Again, Kampenes
et al. presented in 2005 a survey of controlled experiments in software engi-
neering entitled “A Survey of Controlled Experiments in Software Engineering”
[65]. The survey was performed with articles published between 1993 and 2002.
They reported quantitative data regarding controlled experiments as well as
qualitative data about threats to internal and external validity. Storey et al.
popularised quasi-experiments and controlled experiments through their works
on visualisation and reverse-engineering techniques as well as human factors in
software development activities, for example, in 1996 with their article entitled
“On Designing an Experiment to Evaluate a Reverse Engineering Tool” [57], in
which they reported an evaluation of the Rigi reverse-engineering tool.

0.3.2 Landmark Books

The trend towards empirical studies in software engineering culminated with
the publication by Wohlin et al. in 2000 of the book entitled “Experimentation
in Software Engineering” [71]. This book marks an inflection point in software
engineering research because it became very popular and is used to train and
to guide researchers in designing sound empirical studies. This book is highly
recommended to researchers interested in performing empirical studies to learn
about the design and execution of surveys, case studies, and experiments.

This trend led to the publications of many books related to empirical soft-
ware engineering research, for example the book written by Runeson et al. in
2012 entitled “Case Study Research in Software Engineering: Guidelines and
Examples” [49], which focuses on practical guidelines for empirical research
based on case studies, or the one by Bird et al. in 2015 entitled “The Art
and Science of Analyzing Software Data” [7], which focuses on the analysis of
data collected during case studies. This later book covers a wide range of com-
mon techniques, such as co-change analysis, text analysis, topic analysis, and
concept analysis, commonly used in software engineering research. It discusses
some best practices and provides hints and advices for the effective applications
of these techniques in empirical software engineering research.

Another important, seminal book was published by Yin in 2009 and entitled

15

“Case Study Research: Design and Methods” [72]. It provides a detailed and
thorough description of case study research, outlining strengths and weaknesses
of case studies.

A common problem raised in empirical software engineering as well as other
empirical fields is that of reporting empirical results to help other researchers
to understand, assess, and (quasi-)replicate the studies. Runeson and Host
in 2009 published a book entitled “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering” [48] that provides guidelines
for conducting and reporting results of case studies in software engineering.
Thus, they contributed to the field by synthesising and presenting recommended
practices for case studies.

0.3.3 Landmark Venues

Some authors reported low numbers and percentages of empirical studies relative
to all works published in computer science and—or software engineering research
[48]. For examples, Sjgberg et al. [55] found 103 experiments in 5,453 works;
Ramesh et al. [44] reported less than 2% of experiments with participants and
0.16% of field studies among 628 works; Prechelt et al. [65] surveyed 400 works
and reported that between 40% and 50% did not have experimental validations
and, for those that had some, 30% were in computer science and 20% in software
engineering. These observations date back to 1995, 2004, and 2005. They did
not focused on venues publishing empirical studies but they are a useful baseline
to show how much the field of empirical software engineering research grew over
the years.

Another evidence showing the importance taken by empirical studies in soft-
ware engineering research was the creations and subsequent disappearances of
workshops related to empirical studies in software engineering. The workshops
International Workshop on Empirical Software Engineering in Practice (IWE-
SEP) (from 2009 to 2016) and Joint International Workshop on Principles of
Software Evolution and International ERCIM Workshop on Software Evolution
(from 1998 to 2016) and others all focused, at different periods in time, on
empirical studies for different domains. They are proofs of the interest of the
software engineering research community in empirical studies and also a testi-
mony that empirical studies are nowadays so essential to software engineering
research that they are not limited to dedicated workshops anymore.

There are a conference and a journal dedicated to empirical software engi-
neering research: the ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM) and the Springer journal of Em-
pirical Software Engineering (EMSE). The ESEM conference is the result of
the merger between two other conferences, the ACM/IEEE International Sym-
posium on Empirical Software Engineering, which ran from 2002 to 2006, and
IEEE International Software Metrics Symposium, which ran from 1993 to 2005.
Thus, if considering the oldest of the two conferences, the ESEM conference has
an history that dates back to 1993.

The Springer journal of Empirical Software Engineering was created in 1996

16

by Basili and has run, as of today, 21 volumes. While it started as a specialised
journal, it has become in 2015 the journal with the highest impact factor in
software engineering research, with an impact factor of 2.161 to be compared to
1.934 for the second highest ranking journal, the IEEE Transactions in Software
Engineering®. It publishes empirical studies relevant to both researchers and
practitioners, which include the collection and analysis of data and studies that
can be used to characterise, evaluate, and identify relationships among software
processes, methods, and tools.

The empirical study by Knuth [33] illustrated that early studies in software
engineering were already considering software developers as an important fac-
tor in software development activities (the humans in the loop). They were
also considering more objectives, quantitative factors, such as the compilation
and runtime efficiency of programs. This “trend” will continue to this day: in-
terestingly, among the first four articles published in the journal of Empirical
Software Engineering, in its first volume, is an article by Frazier et al. in 1996
entitled “Comparing Ada and FORTRAN Lines of Code: Some Experimental
Results” [17], in which the authors compared the number of lines of code re-
quired to write functionally-equivalent programs in FORTRAN and Ada and
observed that, as programs grow bigger, there may be a cross-over point after
which the size of an Ada program would be smaller than that of the equivalent
FORTRAN program.

Since then, the community has followed a clear trend towards empirical stud-
ies by publishing hundreds of studies in these two conference and journal but
also in many others venues, including but not limited to IEEE Transactions on
Software Engineering, Elsevier journal of Information and Software Technology,
ACM/IEEE International Conference on Software Engineering, IEEE Interna-
tional Conference on Software Maintenance (and Evolution), ACM SIGSOFT
International Symposium on the Foundations of Software Engineering. More
specialised venues also published empirical research, including but not limited
to IEEE International Conference on Software Testing and ACM International
Symposium on Software Testing and Analysis.

0.3.4 Other Landmarks

Burnett et al. have been forerunners in the study of end-users of programming
environments, in particular in the possible impact of users’ gender on software
development activities. Beckwith and Burnett received the Most Influential
Paper Award from 10 Years Ago awarded by the IEEE Symposium on Visual
Languages in 2015 for their landmark paper from 2004 entitled “Gender: An
Important Factor in End-User Programming Environments?” [5], in which they
surveyed the literature regarding the impact of gender in computer gaming,
computer science, education, marketing, and psychology and stated hypotheses
on the impact of gender in programming environments.

Kitchenham et al. helped the community by introducing, popularising, and

3http://www.guide2research.com/journals/software-programming

17

providing guidelines for systematic literature reviews (SLRs) in software engi-
neering. SLRs are important in maturing (and established) research fields to
assert, at a given point in time, the knowledge gathered by the community on
a topic. The article published by Kitchenham et al. in 2002 entitled “Prelim-
inary Guidelines for Empirical Research in Software Engineering” [29] was the
starting point of a long line of SLRs that shaped software engineering research.
For example, Zhang and Budgen applied in 2012 the guidelines by Kitchenham
et al. to assess “What [...] We Know about the Effectiveness of Software Design
Patterns?” [75].

Endres and Rombach in 2003 summarised and synthesised years of empirical
software engineering research into observations, laws, and theories in a hand-
book entitled “A Handbook of Software and Systems Engineering: Empirical
Observations, Laws, and Theories” [15]. These observations, laws, and theories
pertained to all software development activities, including but not limited to ac-
tivities related to requirements, composition, validation and verification as well
as release and evolution. They provided a comprehensive overview of the state-
of-the research and practice at the time as well as conjectures and hypotheses
for future research.

Arcuri and Briand in 2011 provided a representative snapshot of the use of
randomised algorithms in software engineering in a paper entitled “A practical
guide for using statistical tests to assess randomized algorithms in software en-
gineering” [2]. This representative snapshot shows that randomised algorithms
are used in a significant number of empirical research works but that some do
not account for the randomness of the algorithms adequately, using appropriate
statistical tests. Their paper provides a practical guide for choosing and using
appropriate statistical tests.

Another landmark is the article by Zeller et al. in 2011 entitled “Failure
is a Four-letter Word: A Parody in Empirical Research” [73], in which the
authors discuss, with some humour, potential pitfalls during the analysis of
empirical studies data. This landmark highlights real problems in the design
and threats to the validity of empirical studies and provides food for thoughts
when conducting empirical research.

Many other “meta-papers” exist about empirical software engineering re-
search, regarding sample size [43], bias [8], misclassification [1], and so on. These
papers describe potential problems with empirical research in software engineer-
ing and offer suggestions and-or solutions to overcome these problems. They
also warn the community about the current state-of-the-art on various topics in
which empirical methods may have been misused and—or applied on unfit data.
They serve as a remainder that the community can always do better and more
to obtain more sound observations and experimentations.

0.4 Challenges

Since Knuth’s first empirical study [33], the field of empirical software engi-
neering research has considerably matured. Yet, it faces continuing challenges

18

regarding the size of the studies, the recruitment of students or professional
developers as participants, theories (and lack thereof) in software engineering,
publication of negative results, and data sharing.

0.4.1 Size of the Studies

Two measures of the size of empirical studies are the numbers of participants
who took part in the studies and the numbers of systems on which the stud-
ies were conducted. These measures allow comparing the extent to which the
studies could generalise, irrespective of their other strengths or weaknesses. It
is expected that the greater the numbers of participants and systems, the more
statistically sound are the results and, thus, the more generalisable would be
these results.

For example, the first study by Knuth [33] included 440 programs on 250,000
cards, which translated into 78,435 assignments, 27,967 if statements, etc., i.e.,
a quite large system. Yet, other studies included only two programs, for ex-
ample the most influential paper of the 23"¢ IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER’16) by Kapser and
Godfrey in 2008 entitled ““Cloning Considered Harmful” Considered Harmful:
Patterns of Cloning in Software” [26]. Other studies also involved few partic-
ipants, for example the study by Lake and Cook in 1992 entitled “A Software
Complexity Metric for C++” was performed with only two groups of five and
six participants [34]. Yet, other studies were performed with more than 200
participants, as the study by Ng et al. in 2007 entitled “Do Maintainers Utilize
Deployed Design Patterns Effectively?” [40].

Although it should not be a mindless race towards larger numbers of sys-
tems and—or participants at the expenses of interesting research questions and
sound empirical design, empirical studies should strive to have as many systems
and participants as required to support their results. Other fields of research
in which people play an essential role, such as medicine, nursing, psychology,
have a long established tradition of recruiting statistically-representative sets of
participants. They also have well-defined cohorts to allow long-term studies and
to help with replications. Similarly, the empirical software engineering research
community should discuss the creation of such cohorts and the representative-
ness of the participants in empirical studies. It should also consider outsourcing
the creation of such cohorts as in other fields.

0.4.2 Recruiting Students

Software engineering is intrinsically a human endeavour. Although it is based
on sound mathematical and engineering principles, software developers play an
important role during the development of software systems because, essentially,
no two systems are identical. Therefore, they must use as much their creativity
as their expertise and experience [59] when performing their software develop-
ment activities. This creativity could prevent the generalisability of the results

19

of empirical studies if it was not taken into account during the design of the
studies.

While some early empirical studies used only few participants, for example
the study by Lake and Cook [34] involved 11 participants, other more recent
studies included hundreds of participants. To the best of our knowledge, the
largest experimental study to date in software engineering is that by Ng et al. in
2007 [40], which included 215 participants. This study considered the impact of
deployed design patterns on maintenance activities in terms of the activities per-
formed by the participants on the classes related to design patterns. However,
this study consisted of students “who were enrolled in an undergraduate-level
Java programming course offered by the Hong Kong University of Science and
Technology”. Hence, while large in term of number of participants, this study
nonetheless has weaknesses with respect to its generalisability because it in-
volved students from one and only one under-graduate class in one and only
one university.

There is a tension in empirical software engineering research between recruit-
ing students vs. professional developers. The lack of accessibility to large pools
of professional developers forces empirical software engineering researchers to
rely on students to draw conclusions, which they hope to be valid for profes-
sional developers. For example, Host et al. in 2000 conducted an experiment
entitled “Using Students as Subjects — A Comparative Study of Students and
Professionals in Lead-time Impact Assessment” [21], in which they involved
students and professional developers to assess the impact of ten factors on the
lead-time of software projects. They considered as factors the developers’ com-
petence, the product complexity, the stability of the requirements, time pressure,
priority, and information flow. They compared the students’ and professional
developers’ performance and found only minor differences between them. They
also reported no significant differences between the students’ and professional
developers’ correctness. This study, although not generalisable to all empiri-
cal studies, strengthens the advocates of the inclusion of students in empirical
studies.

Yet, the debate about the advantages and limitations of recruiting students
to participate in empirical studies is rather moot for several reasons. First, em-
pirical software engineering researchers may only have access to students to carry
their studies. They often have difficultly to convince professional developers in
participating in their studies because professional developers have busy sched-
ules and may not be interested in participating, essentially for free, to studies.
Second, they usually have access to students, in particular last-year students,
who will have worked as interns or freelancers in software companies and who
will work immediately after graduation. Hence, they can consider students as
early-career professional developers. Third, they have no access to theories that
explain the internal factors (intrinsic to developers) and external factors (due
to the developers’ processes, methods, tools) that impact software development
activities. Consequently, they cannot generalise their results obtained from any
number of professional developers to all professional developers.

Several authors commented on recruiting students as participants of empir-

20

ical studies (or professional in empirical studies with students [23]) and most
agreed that recruiting students may not be ideal but still represents an impor-
tant source of participants to carry out studies that advance the state-of-the-art
and state-of-the-practice in software engineering [11, 22, 50, 64]. In particular,
Thichy wrote “we live in a world where we have to make progress under less
than ideal circumstances, not the least of which are lack of time and lack of
willing [participants]” [64]. Therefore, it is acceptable to recruit students as
participants to empirical studies, notwithstanding the care taken to design the
studies and the threats to their validity [11]. Moreover, students, in particular
last-year student and graduate students, are “next-year” developers, trained on
up-to-date processes, methods, and tools. Therefore, they are representative of
junior industry developers. Finally, choosing an appropriate research method
and carefully considering threats to the validity of its results can increase the
acceptability of students as participants.

Thus, we claim that students represent an important population of
participants that the community can leverage in empirical software engineer-
ing research. However, we also emphasise that replication experiments should
ultimately be done with professional developers. A subpopulation of profes-
sional developers that is accessible at a low cost are freelancers. Freelancers can
be recruited through several on-line platforms, such as the Mechanical Turk* or
Freelancers for Hire®. Freelancers may increase the generalisability of empirical
studies but ethical consideration should be carefully weighted else they threaten
the validity of the results: paid freelancers may be solely motivated by financial
gain and could resort to practices that undermine conclusion validity, such as
plagiarism.

0.4.3 Recruiting Professional Developers

Although we claimed that recruiting students is acceptable, there also have
been more and more empirical studies performed in companies and involving
professional developers, for example the line of empirical studies carried out
by Zimmermann et al. at Microsoft, from 2007 [76] to 2016 [13]. Yet, as with
students, recruiting professional developers has both advantages and limitations.

An obvious first advantage of having professional developers perform empir-
ical studies is that these software developers most likely have different career
paths and, thus, represent better the “real” diversity of professional developers.
Thus, they help gathering evidence that is more generalisable to other companies
and, ultimately, more useful to the software industry. A less obvious advantage
is that these software developers are more likely to be dedicated to the empiri-
cal studies and, thus, will help gathering evidence that is more realistic to the
software industry. Finally, an even less known advantage is that these software
developers will likely perform the activities required by the empirical studies in
less time than would students, because they have pressure to complete activities
“without values” sooner.

4https:/ /www.mturk.com/mturk/welcome
Shttps://www.freelancer.ca/

21

However, recruiting professional developers has also some limitations. The
first obvious limitation also concerns generalisability. Although professional de-
velopers have experience and expertise that can be mapped to those of other
developers in other companies, they likely use processes, methods, tools that
are unique to their companies. They also likely work on software projects that
are unique to their companies. Moreover, they form a convenient sample that,
in addition to generalisability, also lacks reproducibility and transparency. Re-
producibility and transparency are important properties of empirical studies be-
cause they allow (1) other researchers to carry out contrasting empirical studies
and (2) other researchers to analyse and reuse the data. Without reproducibil-
ity and transparency, empirical studies cannot be refuted by the community
and belongs to the field of faith rather than that of science. For example, the
latest paper by Devanbu et al. in 2016 entitled “Belief & Evidence in Empirical
Software Engineering” [13] cannot be replicated because it involved professional
developers inaccessible to other researchers and it is not transparent because its
data is not available to other researchers.

Other less obvious limitations of recruiting professional developers concern
the possibility of hidden incentives to take part in empirical studies. Hidden
incentives may include perceived benefit for one’s career or other benefits, like
time off a demanding work. Therefore, researchers must clearly set, enforce,
and report the conditions in which the software developers were recruited to
allow other researchers to assess the potential impact of the hidden incentives
on the results of the studies. For example, a developer may participate in a
study because of a perceived benefit for her career with respect to her boss,
showing that she is willing, dynamic, and open-minded. On the contrary, a
developer may refuse participating in a study by fear that her boss perceives
her participation as “slacking”. Recruiting students may be a viable alternative
to remove these limitations because students, in general, will have no incentive
to participate in a study but their own, selfless curiosity.

0.4.4 Theories in ESE

Software engineering research is intrinsically about software developers and,
hence, about human factors. Consequently, there exist few theories to analyse,
explain, and predict the results of empirical studies pertaining to the processes,
methods, and tools used by software developers in their software development
activities. This lack of theories makes the reliance upon empirical studies even
more important in software engineering research. However, it also impedes
the definition and analysis of the results of empirical studies because, without
theories, researchers cannot prove that the results of their studies are actually
due to the characteristics of the objects of the studies rather than due to other,
hidden factors. They cannot demonstrate causation in addition to correlation.
Moreover, they cannot generalise the results of their studies to other contexts,
because their results could be due to one particular context.

The lack of theories in software engineering research can be overcome by
building grounded theories from the data collected during empirical studies.

22

The process of building grounded theories is opposite to that of positivist re-
search. When following the process of positivist research, researchers choose a
theory and design, collect, analyse, and explain empirical data within this the-
ory. When following the process of building grounded theories, researchers start
to design, collect, and analyse empirical data to observe repeating patterns or
other characteristics in the data that could explain the objects under study. Us-
ing these patterns and characteristics, they build grounded theories that explain
the data and they frame it in the context of the theories. Then, they refine their
theories through more empirical studies either to confirm further their theories
or, in opposite, to infirm them and, eventually, to propose more explanatory
theories.

The process of building grounded theories raises some challenges in software
engineering research. The first challenge is that grounded theories require many
replication experiments to confirm the theories, proving or disproving that they
can explain some objects under study. However, replication experiments are
difficult, for many reasons among which the lack of reproducibility and trans-
parency, including but not limited to the lack of access to the materials used
by previous researchers and the difficulty to convince reviewers that replication
experiments are worth publishing to confirm that some grounded theories hold
in different contexts.

Software engineering research would make great progress if the community
recognises that, without replication experiments, there is little hope to build
solid grounded theories on which to base future empirical studies. The recog-
nition of the community requires that (1) reviewers and readers acknowledge
the importance and, often, the difficulty to reproduce empirical studies and
(2) researchers provide all the necessary details and material required for other
researchers to reproduce empirical studies. The community should strive to
propose a template to report empirical studies, including the material used dur-
ing the studies, so that other researchers could more easily reproduce previous
empirical studies.

The second challenge is that of publishing negative results either of original
empirical studies to warn the community of empirical studies that may not
bear any fruits or of replication experiments to warn the community that some
previous empirical studies may not be built on sound grounded theories. We
discuss in details the challenges of publishing negative results in the following
section.

0.4.5 Publication of Negative Results

A colleague, who shall remain anonymous, once made essentially the following
statement at a conference:

By the time I perform an empirical study, I could have written three
other, novel visualisation techniques.

23

Although we can only agree on the time and effort needed to perform empir-
ical studies, we cannot disagree more about (1) the seemingly antinomy between
doing research and performing empirical studies and (2) the seemingly useless-
ness of empirical studies. We address the two disagreements in the following.

Antinomy between Doing Research and Empirical Studies

The time and effort needed to perform empirical studies are valid observations.
The book by Wohlin et al. [71] illustrates and confirms these observations by
enumerating explicitly the many different steps that researchers must follow to
perform empirical studies. These steps require time and effort in their setup,
running, and reporting but are all necessary when doing software engineering
research, because research is a “careful study that is done to find and report
new knowledge about something”% [38].

However, software engineering research is not only about building new knowl-
edge in software engineering, i.e., “writ[ing] [...] novel [...] techniques”. Research
is also:

[the] studious inquiry or examination; especially: investigation or
experimentation aimed at the discovery and interpretation of facts,
revision of accepted theories or laws in the light of new facts, or
practical application of such new or revised theories or laws.

Therefore, “doing research” and “performing empirical studies” are abso-
lutely not antinomic but rather two steps in the scientific method. First, re-
searchers must devise novel techniques so that, second, they can validate them
through empirical studies. The empirical studies generate new facts that re-
searchers can use to refine and—or devise novel techniques.

Seemingly Uselessness of Empirical Studies

It may seem that empirical studies are not worth the effort because, no mat-
ter the carefulness with which researchers perform them (and notwithstanding
threats to their validity), they may result in “negative” results, i.e., showing no
effect between two processes, methods, or tools and—or two sets of participants.
Yet, two arguments support the usefulness of negative empirical studies.

First, not withstanding the results of the studies, empirical studies are part
of the scientific method and, as such, are an essential means to advance soft-
ware engineering research. Novel techniques alone cannot advance software
engineering because they cannot per se (dis)prove their (dis)advantages. There-
fore, they should be carefully, empirically validated to provide evidence of their
(dis)advantages rather than to rely on hearsay and faith for support.

Second, not withstanding the threats to their validity, negative results are
important to drive research towards promising empirical studies and avoid that
independent researchers reinvent the “square wheel”. Without negative results,

Shttp://www.merriam-webster.com/dictionary/research

24

researchers are condemned to repeat the mistakes of previous, unknown re-
searchers and—or perform seemingly promising but actually fruitless empirical
studies.

What Is and What Should Be

The previous paragraphs illustrated the state of the practice in empirical soft-
ware engineering research and the importance of negative results. Negative re-
sults must become results normally reported by software engineering researchers.
They must be considered within the philosophy of science put forward by Popper
and others in which refutability is paramount: given that software engineering
research relates to developers, it is impossible to verify that a novel technique
works for all developers in all contexts but, thanks to negative results, it is pos-
sible to show that it does not work for some developers. Thus, no matter the
time and effort needed to perform empirical studies, such studies are invaluable
and intrinsically necessary to advance our knowledge in software engineering.

Moreover, the community must acknowledge that performing empirical stud-
ies is costly and that there is a high “fixed cost” in developing the material nec-
essary to perform empirical studies. This fixed cost is important for researchers
but should not prevent researchers from pursuing worthwhile empirical studies,
even with the risk of negative results. In other fields, like nursing, researchers
publish experimental protocols before they carry them. Thus, researchers are
not reluctant to develop interesting material, even if they do not carry out the
empirical studies for some other reasons independent of the material, like the
difficulty in recruiting participants.

0.4.6 Data Sharing

A frequent challenge with empirical studies, be them survey or controlled exper-
iments, is that of sharing all the data generated during the studies. The data
includes but is not limited to the documents provided to the participants to re-
cruit them, to educate them on the objects of the study as well as the software
systems used to perform the studies, the data collected during the studies, and
the post-hoc questionnaires. It also includes immaterial information, such as
the processes followed to welcome, set up, and thank the participants as well as
the questions answered during the studies. It is necessary for other researchers
to replicate the studies.

Some sub-communities of software engineering research have been sharing
data for many years, in particular the sub-community interested in predictive
models and data analytics in software engineering, which is federated by the
Promise conference series”. This sub-community actively seeks to share its re-
search data and make its empirical studies reproducible. Other sub-communities
should likewise try to share their data. However, the community does not pos-
sess and curate one central repository to collect data, which leads to many
separate endeavours. For example, the authors have strived to published all the

“promisedata.org/

25

data associated to their empirical studies and have, thus, built a repository® of
more than 50 sets of empirical data, including questionnaires, software systems,
and collected data.

However, the community should develop and enforce the use of templates
and of good practices in the sharing of empirical data. On the one hand, the
community must acknowledge that empirical data is an important asset for
researchers and that some data may be proprietary or nominative. On the
other hand, the community should put mechanisms in place to ease the sharing
of all empirical data, including nominative data. Consequently, we make four
claims to ease replication experiments. First, empirical data should not be
the asset of a particular set of researchers but, because collecting this data is
not free, researchers must be acknowledged and celebrated when sharing their
data. Second, the data should be shared collectively and curate frequently by
professional librarians. Third, nominative data could be made available upon
requests only and with non-disclosure agreement. Finally, the community should
build cohorts of participants and of objects for empirical studies.

0.4.7 Comparisons of Software Artifacts

While many experiments in software engineering require participants and involve
within- or between-subject designs, some experiments require different versions
of some software artifacts to compare these artifacts with one another in their
forms and contents. For example, some software engineering researchers studied
the differences between various notations for design patterns in class diagrams
[58] or between textual and graphical representations of requirements [60]. Other
researchers studied different implementations of the same programs in different
programming languages to identify and compare their respective merits [42].

One of the precursor work comparing different software artifacts is the work
by Knight and Leveson in 1986 [31] entitled “An Experimental Evaluation of the
Assumption of Independence in Multiversion Programming”, which reported on
the design of an experiment for multiversion programming in which 27 programs
implementing the same specification for a “launch interceptor” were developed
by as many students enrolled at the University of Virginia and the University of
California at Irvine. The work compared each version in terms of their numbers
of faults, given a set of test cases. (Simplified the text.)

Such comparisons of software artifacts provide invaluable observations needed
to understand the advantages and limitations of different versions of the same
artifacts in forms and contents. However, they are costly to perform because
they require obtaining these different versions and because different versions are
usually not produced by developers in the normal course of their work. Thus,
they require dedicated work that may limit the generalisability of the conclu-
sions drawn from these comparisons for two main reasons. First, researchers
often must ask students to develop different versions of the same software arti-
facts. Students risk producing under/over-performing versions when compared

8http://www.ptidej.net/downloads/replications/

26

to professional developers, see Sections 0.4.2 and 0.4.3. Second, researchers often
must choose one dimension of variations, which again limits the generalisability
of the comparisons. For example, the Web site “99 Bottles of Beer”® provides
more than 1,500 implementations of a same, unique specification. While it
allows comparing programming languages, it does not allow generalising the
comparisons because one and only one small specification is implemented.

Consequently, the community should strive to implement and share versions
of software artifacts to reduce the entry costs while promoting reproducibility
and transparency.

0.5 Future Directions

In addition to following sound guidelines, empirical studies changed from ad
hoc studies with low numbers of participants and-or objects to well-design,
large scale studies. Yet, empirical studies are still submitted to conference
and journals with unsound setup, running, and-or reporting. Such empirical
studies issues are due to a lack of concrete guidelines for researchers, in the
form of patterns and anti-patterns from which researchers can learn, and that
researchers can apply or avoid.

Consequently, we suggest that the community defines patterns and anti-
patterns of empirical software engineering research to guide all facets of empir-
ical studies, from their setup to their reporting. We exemplify such patterns
and anti-patterns at different levels of abstraction. We provide one idiom, one
pattern, and one style of empirical software engineering research and hope that
the community complements these in future work. Such idioms, patterns, and
styles could be used by researchers in two ways: (1) as “step-by-step” guides
to carry empirical studies and (2) as “templates” to follow so that different re-
search works are more easily and readily comparable. Thus, they could help
both young researchers performing their first empirical studies as well as senior
researchers to reduce their cognitive load when reporting their empirical studies.

0.5.1 Idioms for Empirical Studies

Pattern name “Tool Comparison”.

Problem: Determine if a newly developed tool outperforms existing tools from
the literature.

Solution:

e Survey the literature to identify tools that address the same problem as
the newly developed tool.

Shttp://99-bottles-of-beer.net/

27

e Survey the literature to identify benchmarks used to compare similar tools.
If no benchmark is available, examine the context in which evaluations of
previous tools have been performed.

e Download the replication packages that were published with the similar
tools. If no replication package is available, but enough details are avail-
able about the similar tools, implement these tools.

e Identify relevant metrics used to compare the tools.

e Using a benchmark and some metrics, compare the performance of the
newly developed tool against that of the similar tools. When doing the
comparison, use proper statistics and consider effect sizes.

e Perform usability studies, interviews, and surveys with the tools users
to assess the practical effectiveness and limitations of the proposed tool.
When conducting these usability and qualitative studies, select a repre-
sentative sample of users.

Discussion:

The evaluation of the newly developed tool is very important in software
engineering research. It must ensure fairness and correctness through repro-
ducibility and transparency. Researchers and practitioners rely on the results
of these evaluations to identify best-in-class tools.

Example:

Many evaluations reported in the literature failed to follow this idiom. They
do not allow researchers and practitioners to identify most appropriate tools.
However, some sub-communities have started to establish common benchmarks
to allow researchers to follow this idiom during their evaluations. For example,
Bellon’s benchmark [6] provides a reference dataset for the evaluations of clone-
detection tools.

0.5.2 Patterns for Empirical Studies

Pattern name “Prima facie evidence”.

Problem: Determine if evidence exists to support a given hypothesis. An ex-
ample hypothesis is that a newly developed tool outperforms similar tools from
the literature.

Solution:

e Survey the literature to identify tools that are similar to the ones on which
the hypothesis pertain.

e Identify metrics that can be used to test the hypothesis.

28

e Test the hypothesis on the identified tools. When testing the hypothesis,
use proper statistics and consider effect sizes.

e Survey users of the tools under study to explain qualitatively the results.
When conducting this qualitative analysis, select a representative sample
of users.

Discussion:

Prima facie evidence constitutes the initial evaluation of an hypothesis. Re-
searchers should perform subsequent evaluations and replication experiments
before building a theory. They must therefore carefully report the context in
which they obtained the prima facie evidence.

Example:

Many empirical studies follow this pattern. For example, Ricca et al. in
2008 [46] provided prima facie evidence that the use of Fit tables (Framework
for Integrated Test by Cunningham) during software maintenance can improve
the correctness of the code with a negligible overhead on the time required to
complete the maintenance activities. Yet, this prima facie evidence was not
enough to devise a theory and, consequently, these authors conducted five addi-
tional experiments to further examine the phenomenon and formulate guidelines
for the use of Fit tables [45].

Pattern name “Idea Inspired by Experience”.

Problem: Determine if an idea derived from frequent observations of a phe-
nomenon can be generalised.

Solution:

e Select a representative sample from the population of objects in which the
phenomenon manifest itself.

e Formulate null hypotheses from the observations and select appropriate
statistical tests to refute or accept the null hypotheses.

e Determine the magnitude of the differences in values through effect-size
analysis. Additionally, consider visualising the results, for example using
box-plots.

Discussion:

Researcher must use a parametric/non-parametric test for parametric/non-
parametric data. They must perform a multiple-comparison correction, for ex-
ample by applying the Bonferroni correction method, when testing multiple
hypotheses on the same data.

Sample selection is key to assess the generalizability of an idea based on
observations. In general, researchers may not know the characteristics of all

29

the objects forming the population of interest. They may not be able to de-
rive a representative sample of objects. Therefore, they cannot generalise their
empirical results beyond the context in which they were obtained.

Thus, researchers must report as much information as possible about the con-
texts in which they performed their empirical studies to allow other researchers
to replicate these studies and increase their generalisability.

Example:

Many empirical studies follow this pattern. For example, Khomh et al. [28]
investigated the change-proneness of code smells in Java systems following this
pattern. They reported enough details about the context of their study to allow
Romano et al. [47] to replicate their study a few years later.

0.5.3 Styles of Empirical Studies

Researchers can conduct different styles of empirical studies. They often have
the choice between quantitative, qualitative, and mixed-method styles.

Pattern name “Mixed-method style”.

Problem: Provide empirical evidence to support a conjecture. Mixed-method
style can be applied to explore a phenomenon, to explain and interpret the
findings about the phenomenon, and to confirm, cross-validate, or corroborate
findings within a study.

Solution:

e Collect quantitative and qualitative data from relevant sources and formu-
late hypotheses. The sequence of data collection is important and depends
on the goal of the study. If the goal is to explore a phenomenon, collect
and analyse qualitative data first, before quantitative data. If the goal
is to quantify a phenomenon, collect and analyse quantitative data first,
explain and contrast this data using qualitative data.

e Examine the obtained data rigorously to identify hidden patterns.
e Select appropriate statistical tests to refute or accept the hypotheses.

e Interpret the obtained results and adjust the hypotheses accordingly.

Discussion: A key advantage of a mixed-method methodology is that it over-
comes the weakness of using one method with the strengths of another. For
example, interviews and surveys with users are often performed to explain the
results of quantitative studies, to prune out irrelevant results, and to identify
the root cause of relevant results. However, this methodology does not help to
resolve discrepancies between quantitative and qualitative data.

30

Example:

Many empirical studies follow the mixed-method style. For example, Bird
and Zimmermann [9] followed this style during their assessment of the value of
branches in software development.

0.6 Conclusion

Software engineering research has more than five decades of history. It has grown
naturally from research in computer science to become a unique discipline con-
cerned with software development. It has recognised for more than two decades
the important role played by the people performing software development activi-
ties and has, consequently, turned toward empirical studies to better understand
software development activities and the role played by software developers.

Empirical software engineering hence became a major focus of software en-
gineering research. Since the first empirical studies [33], thousands of empirical
studies have been published in software engineering, showing the importance
of software developers in software engineering but also highlighting the lack of
sound theories on which to design, analyse, and predict the impact of processes,
methods, and tools.

Empirical software engineering will continue to play an important role in
software engineering research and, therefore, must be taught to graduate stu-
dents who wants to pursue research works in software engineering. It should
be also taught to undergraduate students to provide them with the scientific
method and related concepts, useful in their activities and tasks, such as de-
bugging. To ease teaching empirical software engineering, more patterns and
anti-patterns should be devised and catalogued by the community. As such, the
Workshop on Data Analysis Patterns in Software Engineering, which runs from
2013 to 2014) was important and should be pursued by the community.

Acknowledgements

The authors received the amazing support, suggestions, and corrections from
many colleagues and students, including but not limited to Mona Abidi, Giu-
liano Antoniol, Sung-deok Cha, Massimiliano Di Penta, Manel Grichi, Kyo
Kang, RubAn Saborido-Infantes, and Audrey W.J. Wong. Obviously, any er-
rors remaining in this chapter are solely due to the authors.

31

Bibliography

1]

Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh,
and Yann-Gaél Guéhéneuc. Is it a bug or an enhancement?: A text-based
approach to classify change requests. In Proceedings of the 2008 Conference
of the Center for Advanced Studies on Collaborative Research: Meeting of
Minds, CASCON 08, pages 23:304-23:318, New York, NY, USA, 2008.
ACM.

A. Arcuri and L. Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In 2011 33rd In-
ternational Conference on Software Engineering (ICSE), pages 1-10, May
2011.

M. Asaduzzaman, C. K. Roy, K. A. Schneider, and M. D. Penta. Lhdiff:
A language-independent hybrid approach for tracking source code lines. In
Software Maintenance (ICSM), 2013 29th IEEE International Conference
on, pages 230-239, Sept 2013.

V. R. Basili and D. M. Weiss. A methodology for collecting valid soft-
ware engineering data. IEFE Transactions on Software Engineering, SE-
10(6):728-738, Nov 1984.

L. Beckwith and M. Burnett. Gender: An important factor in end-user
programming environments? In Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on, pages 107-114, Sept 2004.

Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and evaluation of clone detection tools. IEEE Trans.
Software Eng., 33(9):577-591, 2007.

C. Bird, T. Menzies, and T. Zimmermann. The Art and Science of Ana-
lyzing Software Data. Elsevier Science, 2015.

Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bern-
stein, Vladimir Filkov, and Premkumar Devanbu. Fair and balanced?: Bias
in bug-fix datasets. In Proceedings of the the 7th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ESEC/FSE 09, pages 121—
130, New York, NY, USA, 2009. ACM.

32

[9]

[15]

[16]

[17]

[18]

Christian Bird and Thomas Zimmermann. Assessing the value of branches
with what-if analysis. In Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, FSE 12,
pages 45:1-45:11, New York, NY, USA, 2012. ACM.

Donald L. Burkhard and Per V. Jenster. Applications of computer-aided
software engineering tools: Survey of current and prospective users. SIG-
MIS Database, 20(3):28-37, June 1989.

J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Issues in using students
in empirical studies in software engineering education. In Software Metrics
Symposium, 2003. Proceedings. Ninth International, pages 239-249, Sept
2003.

Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software de-
sign process for large systems. Commun. ACM, 31(11):1268-1287, Novem-
ber 1988.

Prem Devanbu, Thomas Zimmermann, and Christian Bird. Belief & evi-
dence in empirical software engineering. In Proceedings of the 38th Inter-
national Conference on Software Engineering, May 2016.

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela
Damian. Guide to Advanced Empirical Software Engineering, chapter Se-
lecting Empirical Methods for Software Engineering Research, pages 285—
311. Springer London, London, 2008.

A. Endres and H.D. Rombach. A Handbook of Software and Systems En-
gineering: FEmpirical Observations, Laws, and Theories. Fraunhofer IESE
series on software engineering. Pearson/Addison Wesley, 2003.

J. Alberto Espinosa, Robert E. Kraut, Kogod School Of Business, and
Theme Organization. Shared mental models, familiarity and coordination:
A multi-method study of distributed software teams. In Intern. Conf.
Information Systems, pages 425-433, 2002.

Thomas P. Frazier, John W. Bailey, and Melissa L. Corso. Comparing ada
and fortran lines of code: Some experimental results. Empirical Software
Engineering, 1(1):45-59, 1996.

Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan
Murphy. Characterizing and predicting which bugs get fixed: An empiri-
cal study of Microsoft Windows. In Proceedings of the 32th International
Conference on Software Engineering, May 2010.

Stefan Hanenberg. ECOOP 2010 — Object-Oriented Programming: 24th
European Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings,
chapter Doubts about the Positive Impact of Static Type Systems on Pro-
gramming Tasks in Single Developer Projects - An Empirical Study, pages
300-303. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

33

[20]

[21]

[25]

[26]

[27]

[28]

J. D. Herbsleb and A. Mockus. An empirical study of speed and commu-
nication in globally distributed software development. IEEE Transactions
on Software Engineering, 29(6):481-494, June 2003.

Martin Host, Bjorn Regnell, and Claes Wohlin. Using students as subjects
— a comparative study of students and professionals in lead-time impact
assessment. Empirical Softw. Engg., 5(3):201-214, November 2000.

Martin Host, Bjorn Regnell, and Claes Wohlin. Using students as sub-
jects—a comparative study ofstudents and professionals in lead-time
impact assessment. Empirical Softw. Engg., 5(3):201-214, November 2000.

Letizia Jaccheri and Sandro Morasca. Involving industry professionals in
empirical studies with students. In Proceedings of the 2006 International
Conference on Empirical Software Engineering Issues: Critical Assessment
and Future Directions, pages 152-152, Berlin, Heidelberg, 2007. Springer-
Verlag.

Ivar Jacobson and Stefan Bylund, editors. The Road to the Unified Software
Development Process. Cambridge University Press, New York, NY, USA,
2000.

Vigdis By Kampenes, Tore Dyba, Jo E. Hannay, and Dag I. K. Sjgberg. A
systematic review of quasi-experiments in software engineering. Inf. Softw.
Technol., 51(1):71-82, January 2009.

Cory J. Kapser and Michael W. Godfrey. “cloning considered harmful” con-
sidered harmful: Patterns of cloning in software. Empirical Softw. Engg.,
13(6):645-692, December 2008.

Chris F. Kemerer. Reliability of function points measurement: A field
experiment. Commun. ACM, 36(2):85-97, February 1993.

F. Khomh, M. Di Penta, and Y. G. Gueheneuc. An exploratory study
of the impact of code smells on software change-proneness. In Reverse
Engineering, 2009. WCRE ’09. 16th Working Conference on, pages 75-84,
Oct 2009.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg. Preliminary guidelines for em-

pirical research in software engineering. IEEE Transactions on Software
Engineering, 28(8):721-734, Aug 2002.

Barbara A. Kitchenham, Tore Dyba, and Magne Jorgensen. Evidence-based
software engineering. In Proceedings of the 26th International Conference
on Software Engineering, ICSE ’04, pages 273-281, Washington, DC, USA,
2004. IEEE Computer Society.

34

[31]

[38]
[39]

[44]

J. C. Knight and N. G. Leveson. An experimental evaluation of the assump-
tion of independence in multiversion programming. I[EEE Transactions on
Software Engineering, SE-12(1):96-109, Jan 1986.

D. E. Knuth. The Art of Computer Programming: Fundamental Algo-
rithms. Addison-Wesley Publishing Company, Reading, MA, 1969.

Donald E. Knuth. An empirical study of fortran programs. Software:
Practice and Experience, 1(2):105-133, 1971.

Al Lake and Curtis R. Cook. A software complexity metric for C++.
Technical report, Oregon State University, Corvallis, OR, USA, 1992.

B. W. Lampson. A critique of “an exploratory investigation of programmer
performance under on-line and off-line conditions”. IEEFE Transactions on
Human Factors in Electronics, HFE-8(1):48-51, March 1967.

Raimondas Lencevicius. Advanced Debugging Methods. The Springer Inter-
national Series in Engineering and Computer Science. Springer US, 2012.

Nancy G. Leveson, Stephen S. Cha, John C. Knight, and Timothy J.
Shimeall. The use of self checks and voting in software error detection:
An empirical study. IEEE Trans. Softw. Eng., 16(4):432-443, April 1990.

Merriam-Webster. Merriam-Webster online dictionary, March 2003.

P. Naur and B. Randell, editors. Software Engineering: Report of a con-
ference sponsored by the NATO Science Committee. Brussels, Scientific
Affairs Division, NATO, Garmisch, Germany, October 1969.

T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu. Do maintainers utilize
deployed design patterns effectively? In Software Engineering, 2007. ICSE
2007. 29th International Conference on, pages 168-177, May 2007.

L. Prechelt. The 28:1 Grant-Sackman Legend is Misleading, Or: how Large
is Interpersonal Variation Really. Interner Bericht. Univ., Fak. fiir Infor-
matik, Bibliothek, 1999.

Lutz Prechelt. An empirical comparison of seven programming languages.
Computer, 33(10):23-29, October 2000.

Foyzur Rahman, Daryl Posnett, Israel Herraiz, and Premkumar Devanbu.
Sample size vs. bias in defect prediction. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
pages 147-157, New York, NY, USA, 2013. ACM.

V. Ramesh, Robert L. Glass, and Iris Vessey. Research in computer science:
An empirical study. J. Syst. Softw., 70(1-2):165-176, February 2004.

35

[45]

[46]

[47]

[48]

[49]

[50]

[53]

[54]

F. Ricca, M. Di Penta, and M. Torchiano. Guidelines on the use of fit tables
in software maintenance tasks: Lessons learned from 8 experiments. In
Software Maintenance, 2008. ICSM 2008. IEEE International Conference
on, pages 317-326, Sept 2008.

F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, M. Ceccato, and A. Vis-
aggio. Are Fit tables really talking? a series of experiments to understand
whether Fit tables are useful during evolution tasks. In International Con-
ference on Software Engineering, pages 361-370. IEEE Computer Society
Press, 2008.

Daniele Romano, Paulius Raila, Martin Pinzger, and Foutse Khomh. An-
alyzing the impact of antipatterns on change-proneness using fine-grained
source code changes. In Proceedings of the 2012 19th Working Confer-
ence on Reverse Engineering, WCRE 12, pages 437-446, Washington, DC,
USA, 2012. IEEE Computer Society.

Per Runeson and Martin Host. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131-164, 2008.

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case Study
Research in Software Engineering: Guidelines and Ezxamples. Wiley Pub-
lishing, 1st edition, 2012.

I. Salman, A. T. Misirli, and N. Juristo. Are students representatives of pro-
fessionals in software engineering experiments? In Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, vol-
ume 1, pages 666-676, May 2015.

Jean E. Sammet. Brief survey of languages used for systems implementa-
tion. SIGPLAN Notices, 6(9):1-19, October 1971.

C. B. Seaman. Qualitative methods in empirical studies of software engi-
neering. IEEE Transactions on Software Engineering, 25(4):557-572, Jul
1999.

Forrest J. Shull, Jeffrey C. Carver, Sira Vegas, and Natalia Juristo. The
role of replications in empirical software engineering. Empirical Software
Engineering, 13(2):211-218, 2008.

Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Questions pro-
grammers ask during software evolution tasks. In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, SIGSOFT ’06/FSE-14, pages 23-34, New York, NY, USA, 2006.
ACM.

D. I. K. Sjoeberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Kara-
hasanovic, N. K. Liborg, and A. C. Rekdal. A survey of controlled exper-
iments in software engineering. IEEFE Transactions on Software Engineer-
ing, 31(9):733-753, Sept 2005.

36

[56]

[58]

[60]

Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do
changes induce fixes? In Proceedings of the 2005 International Workshop
on Mining Software Repositories MSR 2005 Saint Louis Missouri USA,
May 17 2005.

M. A. D. Storey, K. Wong, P. Fong, D. Hooper, K. Hopkins, and H. A.
Muller. On designing an experiment to evaluate a reverse engineering tool.
In Reverse Engineering, 1996., Proceedings of the Third Working Confer-
ence on, pages 31-40, Nov 1996.

Gerardo Cepeda Porras and Yann-Gaél Guéhéneuc. An empirical study on
the efficiency of different design pattern representations in UML class dia-
grams. Empirical Software Engineering (EMSE), 15(5):493-522, February
2010. 29 pages.

Zéphyrin Soh, Zohreh Sharafi, Bertrand van den Plas, Gerardo Cepeda
Porras, Yann-Gaél Guéhéneuc, and Giuliano Antoniol. Professional status
and expertise for uml class diagram comprehension: An empirical study.
In Arie van Deursen and Michael W. Godfrey, editors, Proceedings of the
20" International Conference on Program Comprehension (ICPC), pages
163-172. IEEE CS Press, June 2012. 10 pages.

Zohreh Sharafi, Alessandro Marchetto, Angelo Susi, Giuliano Antoniol, and
Yann-Gaél Guéhéneuc. An empirical study on the efficiency of graphical vs.
textual representations in requirements comprehension. In Denys Poshy-
vanyk and Massimiliano Di Penta, editors, Proceedings of the 215t Inter-
national Conference on Program Comprehension (ICPC). IEEE CS Press,
May 2013. 10 pages.

E. Burton Swanson and Cynthia M. Beath. The use of case study data in
software management research. J. Syst. Softw., 8(1):63-71, January 1988.

Michiaki Tatsubori and Shigeru Chiba. Programming support of design
patterns with compile-time reflection. In Jean-Charles Fabre and Shigeru
Chiba, editors, Proceedings of the 1% OOPSLA workshop on Reflective
Programming in C++ and Java, pages 56—60. Center for Computational
Physics, University of Tsukuba, October 1998. UTCCP Report 98-4.

R. H. Thayer, A. Pyster, and R. C. Wood. The challenge of software
engineering project management. Computer, 13(8):51-59, August 1980.

Walter F. Tichy. Hints for reviewing empirical work in software engineering.
Empirical Softw. Engg., 5(4):309-312, December 2000.

Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz. Ex-
perimental evaluation in computer science: A quantitative study. J. Syst.
Softw., 28(1):9-18, January 1995.

M. J. Tiedeman. Post-mortems-methodology and experiences. IEEE Jour-
nal on Selected Areas in Communications, 8(2):176-180, Feb 1990.

37

[67]

R. van Solingen and E. Berghout. The Goal/Question/Metric Method:
A Practical Guide for Quality Improvement of Software Development.
McGraw-Hill, 1999.

Anneliese von Mayrhauser. Program comprehension during software main-
tenance and evolution. IEEE Computer, 28(8):44-55, August 1995.

R. J. Walker, E. L. A. Baniassad, and G. C. Murphy. An initial assessment
of aspect-oriented programming. In Software Engineering, 1999. Proceed-
ings of the 1999 International Conference on, pages 120-130, May 1999.

Chadd Williams and Jaime Spacco. Szz revisited: Verifying when changes
induce fixes. In Proceedings of the 2008 Workshop on Defects in Large
Software Systems, DEFECTS ’08, pages 32-36, New York, NY, USA, 2008.
ACM.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Reg-
nell, and Anders Wesslen. FExperimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers, 1% edition, December 1999.

R.K. Yin. Case Study Research: Design and Methods. Applied Social
Research Methods. SAGE Publications, 2009.

Andreas Zeller, Thomas Zimmermann, and Christian Bird. Failure is a
four-letter word: A parody in empirical research. In Proceedings of the 7th
International Conference on Predictive Models in Software Engineering,
Promise ’11, pages 5:1-5:7, New York, NY, USA, 2011. ACM.

Andreas Zendler. A preliminary software engineering theory as investigated
by published experiments. Empirical Software Engineering, 6(2):161-180,
2001.

C. Zhang and D. Budgen. What do we know about the effectiveness of
software design patterns? IFEE Transactions on Software Engineering,
38(5):1213-1231, Sept 2012.

Thomas Zimmermann and Nachiappan Nagappan. Predicting subsystem
failures using dependency graph complexities. In Proceedings of the The
18th IEEFE International Symposium on Software Reliability, ISSRE ’07,
pages 227236, Washington, DC, USA, 2007. IEEE Computer Society.

38

