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ABSTRACT: The increasing demand for recombinant ther-
apeutic proteins highlights the need to constantly improve
the efficiency and yield of these biopharmaceutical products
from mammalian cells, which is fully achievable only
through proper understanding of cellular functioning. To-
wards this end, the current study exploited a combined
metabolomics and in silico modeling approach to gain a
deeper insight into the cellular mechanisms of Chinese
hamster ovary (CHO) fed-batch cultures. Initially, extracel-
lular and intracellular metabolite profiling analysis short-
listed key metabolites associated with cell growth limitation
within the energy, glutathione, and glycerophospholipid
pathways that have distinct changes at the exponential-
stationary transition phase of the cultures. In addition,
biomass compositional analysis newly revealed different
amino acid content in the CHO cells from other mammalian
cells, indicating the significance of accurate protein compo-
sition data in metabolite balancing across required nutrient
assimilation, metabolic utilization, and cell growth. Subse-
quent in silico modeling of CHO cells characterized internal
metabolic behaviors attaining physiological changes during
growth and non-growth phases, thereby allowing us to
explore relevant pathways to growth limitation and identify
major growth-limiting factors including the oxidative stress
and depletion of lipid metabolites. Such key information
on growth-related mechanisms derived from the current
approach can potentially guide the development of new
strategies to enhance CHO culture performance.
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Introduction

The majority of recombinant protein drugs currently
available are predominantly produced by mammalian cells
under various cell culture modes (Butler, 2005; Reff, 1993).
In order to meet the increasing demand of such
biopharmaceutical products, significant efforts have been
made for improving the recombinant protein production
yield from mammalian cell cultures (Barnes and Dickson,
2006; Ma et al., 2009). Among available mammalian cell
lines, Chinese hamster ovary (CHO) cells play a major role
in the industrial production of recombinant therapeutics
(Jayapal et al., 2007). To date, various approaches have
been explored to enhance CHO culture performance by
investigating the effect of genetic/environmental perturba-
tion on the cell growth and productivity via changes in gene
expression (Schaub et al., 2009), studying the correlation
of glucose and lactate metabolism with cell density under
different culture conditions (Tsao et al., 2005) and
examining the impact of replacing glutamine with alternate
carbon sources such as glutamate or pyruvate on the cell
growth (Altamirano et al., 2001; Genzel et al., 2005). While
these approaches help to characterize the functional
behavior of CHO cells qualitatively, quantitative improve-
ments may not be easily achieved due to the limited
understanding of intracellular metabolic activities (Dinnis
and James, 2005). To address this limitation, a number of
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‘‘-omics’’ profiling technologies such as transcriptomics
(Schaub et al., 2009), proteomics (Yizhak et al., 2010), and
most recently, metabolomics (Chong et al., 2009; Ma et al.,
2009) have been utilized to gain a more in-depth insight
into the complex mechanisms involved in the regulation
of major cellular processes. Of the different ‘‘-omics’’
technologies, metabolomics analysis enabled us to directly
identify key metabolites and pathways closely associated
with growth limitation and apoptosis (Chong et al., 2011).

Concurrently, advances in genomic technologies have
also led to the development of computational models of
cellular organisms that allow for the systematic elucidation
of their genotype–phenotype characteristics (Lee et al., 2005;
Price et al., 2003). The primary requirement of these
modeling approaches includes the incorporation of genome
annotation, biochemical and cell physiological data (Ma and
Zeng, 2003). Such models have been developed for a wide
range of microbes (Covert et al., 2003; Lee et al., 2005; Price
et al., 2004) and only a handful of mammalian systems such
as Homo sapiens, Mus musculus, and Cannis fabris (Duarte
et al., 2007; Price et al., 2004; Selvarasu et al., 2010a; Wahl
et al., 2008). Indeed, these models have been successfully
exploited in understanding the cell physiological activities of
various microorganisms in conjunction with ‘‘-omics’’ data
for biotechnological and biomedical applications within the
context of systems biology (Lee et al., 2005; O’Callaghan and
James, 2008). Similarly, for mammalian cell culture, it is
now possible to combine in silico metabolic modeling with
global ‘‘-omics’’ data for better understanding of cell culture
processes at the extracellular and intracellular levels (Lee
et al., 2006; Mo et al., 2009).

In this study, as illustrated in Figure 1, we present an
integrated framework where CHO fed-batch culture data
are analyzed and combined with metabolomics profiles,
followed by in silico modeling and analysis of mammalian
cells to investigate their metabolic states and cellular
physiology during the culture (Selvarasu et al., 2010a).

Materials and Methods

Cell Lines and Media

CHO cell lines expressing recombinant monoclonal anti-
body (IgG) against Rhesus D antigen were in-house
generated (Chusainow et al., 2009). CHO mAb M250-9
(M250-9) was a sub-clone derived from additional rounds
of methothrexate (MTX) amplification at 250 nM. For the
measurement of CHO cell composition, M250-9 cells were
cultured in a mixture consisting of a 1:1 (v/v) ratio of HyQ
PF-CHO (Hyclone, Logan, UT) and CD CHO (Gibco-
Invitrogen, Carlsbad, CA) supplemented with 6mM
L-glutamine (Sigma–Aldrich, St. Louis, MO) and 0.05% (v/v)
Pluronic1 F-68 (Invitrogen, Carlsbad, CA). Additional
250 nM MTX (Sigma–Aldrich) was added to the culture.
The cell line was maintained in a humidified incubator
controlled at 378C under 8% CO2 overlay. In addition, other

CHO cell lines (CHO mAb M500-7, CHO K1, CHO DG44,
and CHO DXB11) were also prepared for biomass com-
positional analysis. The method to determine cell composi-
tion of these cell lines is described in Supplementary 1.

Bioreactor Operations

The cultures were conducted in a 5 L double-walled, round-
bottom glass vessel (B. Braun, Melsungen, Germany) with
a heated water jacket. The reactor was inoculated with a
seeding density of 3� 105 cells/mL at a working volume of
4 L. The bubble-less aeration was effected through the use
of a silicon membrane tubing basket (B. Braun) and the
dissolved oxygen (DO) concentration maintained at 50% of
air saturation using an Air/N2 mix (early phase) or O2/Air
mix (late phase) set at 1 L/min. The agitation rate was
set at 120 rpm using a three-blade segmented impeller. The
culture pH was maintained at 6.9 using intermittent CO2

addition to the gas mix or 8.6% (w/v) NaHCO3 (Sigma–
Aldrich) solution.

The M250-9 cells were adapted to in-house proprietary
protein-free, chemically defined (PFCD) media before the
bioreactor runs and the protein-free feed was formulated
based on a fortified 10� DMEM/F12 (Sigma–Aldrich).
Glutamine and glutamate concentrations in the culture were
tracked online using an automated aseptic online sampling
loop as previously described (Lee et al., 2003). Online
sampling of glutamine/glutamate level was done every 1.5 h
with YSI 7100 biochemical analyzer (Yellow Springs
Instruments, Yellow Springs, OH) and an online algorithm
calculated the amount of concentrated feed required to
maintain cultures at a pre-set glutamine level of 0.6mM.
Online oxygen uptake rate (OUR) estimation was done
using the stationary liquid phase balance, maintaining a
constant oxygen mass transfer coefficient (kLA) across the
aeration membrane via control of DO in the reactor at a
fixed point (Miller et al., 1988). The overall mass transfer
coefficient for oxygen across the aeration membrane, kLA,
was determined previously in a separate experiment (data
not shown).

Cell Density Determination and Metabolite Analysis

Cell density was determined by cell counting using an
improved Neubauer hemocytometer (Weber, England) and
the viability of cells was estimated using the trypan blue
exclusion method. The concentrations of glucose, lactate,
glutamine, glutamate and ammonium in the culture
supernatant were determined using YSI 7100 biochemical
analyzer (Yellow Springs Instruments). Analysis of amino
acids from supernatant samples was carried out by reverse-
phase HPLC using a Shimpack VP-ODS column (Shimadzu,
Japan) and detected at 395 nm using a fluorescent detector
(Shimadzu). Amino acid derivatization prior to the HPLC
analysis was performed using the Waters AccQ Fluor
Reagent Kit (Millipore, Billerica, MA).
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Metabolomics Data Analysis

For extracellular metabolomics analysis, culture supernatant
was obtained daily from replicate M250-9 fed-batch cultures
and filtered through a 10 kDa molecular weight cut-off
device (Vivaspin 500 PES membrane, Sartorius AG,
Germany) by centrifugation at 48C for 30min. The filtered
samples were diluted 1:1 with sample buffer comprising
of 20% (v/v) methanol (Optima grade, Fisher Scientific,
Singapore) in water prior to analysis.

For intracellular metabolomics analysis, 1� 107 cells were
obtained daily from the fed-batch cultures beginning at 24 h.
The cells were quenched in five volumes of ice-cold 150mM
sodium chloride (Sigma–Aldrich) solution and centrifuged
for 3min at 1,250g and 48C. The resulting solution was

aspirated and 400mL of ice-cold methanol (Merck,
Whitehouse Station, NJ) added to the cell pellet. The
resuspended cells-methanol mixture was transferred to a
2mL sample tube containing 200mL of chloroform (J.T.
Baker, Center Valley, PA). Subsequently, 900mL of cold
methanol, 3.8mM tricine (Sigma–Aldrich) (9:10) mixture,
and 400mL of chloroform were added to the sample tube.
The mixture was vortexed for 30 to 60 s after the addition of
each solution. The sample was then centrifuged at 18,000g
for 20min at 48C. 800mL aqueous methanol–tricine layer
was transferred to a clean tube. A further 700mL of cold
methanol and 3.8mM tricine (9:10) mixture was added to
the chloroform phase, which was then centrifuged at 18,000g
for another 10min at 48C. 1mL of the aqueous layer was
extracted, combined with the first aqueous extract and

Figure 1. Schematic representation of combined framework involving statistical data analysis, in silico modeling and metabolomics analysis of CHO cell culture. Fed-batch

data were initially preprocessed and statistical analysis was conducted to determine correlation among cell growth, nutrients, and toxic secretions. Concurrently, intracellular and

extracellular metabolomics data analysis was performed to identify growth-limiting metabolites. Subsequently, CHO metabolic model was developed based on existing mouse

model, in-house CHO cDNA annotation and metabolomics data. Then, the intracellular metabolic characteristics of CHO fed-batch culture was investigated by combining in silico

modeling and metabolomics data analysis. [Color figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/bit]
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stored at�808C. Prior to analysis, the aqueous extracts were
dried and concentrated four times by adding the appropriate
volume of sample buffer (20% methanol in water).

Both extracellular and intracellular samples were analyzed
in replicates using an ultra performance liquid chromatog-
raphy (UPLC) system (Acquity; Waters Corp., Milford,
MA) coupled to a mass spectrometer (MS; LTQ-Orbitrap;
Thermo Scientific, Bremen, Germany). A reversed phase
(C18) UPLC column with polar end-capping (Acquity
UPLC HSS T3 column, 2.1� 100mm, 1.7mm; Waters
Corp.) was used with two solvents: ‘‘A’’ being water with
0.1% formic acid (Merck), and ‘‘B’’ being methanol
(Optima grade, Fisher Scientific, Pittsburgh, PA) with
0.1% formic acid. The UPLC program was as follows: the
column was first equilibrated for 0.5min at 0.1% B. The
gradient was then increased from 0.1% B to 50% B over
8min before being held at 98% B for 3min. The column was
washed for a further 3min with 98% acetonitrile (Optima
grade, Fisher Scientific) with 0.1% formic acid and finally
equilibrated with 0.1% B for 1.5min. The solvent flow rate
was set at 400mL/min; a column temperature of 308C was
used. The eluent from the UPLC system was directed into
theMS. Electrospray ionization (ESI) was conducted in both
positive and negative modes in full scan with a mass range
of 80 to 1,000m/z at a resolution of 15,000. Sheath and
auxiliary gas flow was set at 40.0 and 15.0 (arbitrary units)
respectively, with a capillary temperature of 4008C. The
ESI source and capillary voltages were 4.5 kV and 40V,
respectively, for positive mode ionization, and 3.2 kV and
�15V, respectively, for negative mode ionization. Mass
calibration was performed using standard LTQ-Orbitrap
calibration solution (Thermo Scientific) prior to injection of
the samples. The raw LC-MS data obtained was then pre-
processed and analyzed using an in-house software which
incorporated the XCMS peak finding algorithm (Smith
et al., 2006). Detected mass peaks were assigned putative
metabolite identities by matching the respective masses
(< 10 ppm error) with the KEGG and Human Metabolome
Database (HMDB). The pre-processed data was further
analyzed using hierarchical clustering for the classification
of common trends, which led to the identification of
metabolites that were associated with cell growth. Where
possible, the metabolite identities were confirmed by MS2

spectral comparison with commercially available metabolite
standards (all standards purchased from Sigma–Aldrich
unless otherwise stated).

Metabolic Network Development and In Silico Analysis

Recently available genome-scale metabolic model for
mammalian cells accounts for 1,494 metabolic reactions,
724 ORFs and 715 enzymes (Selvarasu et al., 2010a). We
expanded the network model by adding reactions obtained
from CHO cDNA annotation, resulting in the addition of 35
new reactions from various metabolic subsystems. We also
examined the model for missing links and improved the

network connectivity by filling the gaps with necessary
reactions that were identified based onmetabolome analysis,
while some reactions were excluded since their existence
in CHO cell metabolism is not clear. As a result, we
reconstructed a stoichiometrically balanced metabolic
network model comprising 1,540 reactions and 1,302
metabolites (see Supplementary 2 for full list of reactions.
The model is also available as Systems Biology Markup
Language (SBML) file (level 2, version 1, http://sbml.org) in
Supplementary 3. In addition to metabolic reactions, we
included two balance equations representing biomass and
IgG synthesis, both mainly composed of the biosynthetic
precursors and relevant cofactors with appropriate coeffi-
cients, that are experimentally measured or obtained
elsewhere for mammalian cells. Then, the steady state flux
distributions across the network were quantitatively pre-
dicted by resorting to constraints-based flux analysis. The
growth and non-growth conditions during the culture
can be simulated by maximizing biomass and minimizing
errors between experimental measurements and prediction,
respectively, while satisfying thermodynamic and physico-
chemical constraints, using the linear programming
technique (Edwards and Palsson, 1998). The detailed
mathematical formulations pertinent to in silico analysis
are available in Supplementary 1.

Results

Physiological Behavior of CHO Fed-Batch Cell Culture

Fed-batch bioreactor cultures of a CHO cell line producing
recombinant monoclonal antibody (IgG) against Rhesus D
antigen (M250-9) were conducted using an in-house
proprietary protein free chemically defined medium.
Concentrated feed media was supplied to the culture based
on online monitoring of glutamine, with a set point of
0.6mM to minimize the secretion of toxic metabolites like
ammonia. The initial exponential (P1) and transition (P2)
phases lasted until 190 h during which cell density reached a
maximum of 1.2� 107 cells/mL, followed by shift to short
stationary phase (P3) up to 250 h and finally approaching
death phase (Fig. 2A). The IgG concentration increased
gradually during the exponential and stationary phase,
reaching a maximum of 1.3 g/L after 260 h (Fig. 2A). Lactate
and ammonia concentrations during the mid-exponential
phase were 9.5mM and 8.44mM respectively, correspond-
ing to secretion rates (P1) of 0.121mmol/gDCW/h and
0.083mmol/gDCW/h. During the exponential-stationary
transition phase from 120 to 194 h, lactate and ammonia
concentration increased significantly (secretion rates during
P2 at 0.121 and 0.083mmol/gDCW/h) and eventually
reached a maximum of 39.5mMg/L and 13.88mM,
respectively (Fig. 2B). Among various amino acids, alanine
and glycine had the largest increases, while asparagine show-
ed the most significant decrease as the fed-batch cultures
progressed (Fig. 3A and C). Additionally, accumulation of
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arginine was observed during the late exponential and non-
growth phases, indicating excess supply of arginine from
feed media during the stationary and cell death phases
(Fig. 3A). From Figure 3C, asparagine was observed to be
depleted significantly during the exponential phase despite
continuous feeding of media. The higher consumption of
asparagine had previously been shown to increase accumu-
lation of alanine, glycine and ammonia in the media
(Hansen and Emborg, 1994). It is therefore evident that the
increasing secretion of alanine and glycine could be from
asparagine conversion.

It should also be noted that the accumulation of lactate
and ammonia inhibits the cell growth; hence, it is highly
important to identify the relevant nutrients that contribute
substantially to their secretion. To this end, we conducted
multivariate statistical analysis using PCA and PLS on the
cell culture profile that allows us to unravel the correlation

among the nutrient components, lactate and ammonia. The
method for conducting these analysis techniques were
adopted from Selvarasu et al. (2010b) (Supplementary 1).
The results confirmed the expected correlation between
glucose–lactate and glutamine–ammonia and also revealed
an interesting correlation between ammonia and asparagine.
Presumably, the conversion of asparagine via aspartate and
glutamate could lead to the secretion of ammonia in the
culture.

Extracellular Metabolite Profiling

Extracellular metabolite profiling was conducted on culture
supernatant obtained daily from fed-batch cultures of the
M250-9 cell line (Fig. 2A). The samples were processed using
UPLC–MS and subsequently, trends of individual mass
peaks were obtained using hierarchical clustering. The main
objective of the analysis was to shortlist metabolites that
are accumulated in the media over the progression of
the cultures, as these represented compounds that could be
potentially associated with growth-limitation or apoptosis.
The information gained can be subsequently incorporated
into the developed CHO metabolic model, which will be
discussed later.

The specific cluster of mass peaks, which built up during
the fed-batch cultures, is shown in Figure 4A. From the
figure, the accumulation of these peaks appeared to coincide
with the exponential-stationary transition phase (P2) of the
cultures, suggesting that they were likely to be closely related
to cell growth and apoptosis. A total of 100 mass peaks with
putative identities were derived from both the positive and
negative MS modes. From these masses, the identities of
19 metabolites were confirmed through MSMS spectral
comparison with standard solutions (Table I). The majority
of these metabolites can be categorized into three different
compound classes—media components, amino acid deri-
vatives, and nucleotides. Nine media components were
found to accumulate extracellularly, suggesting that
they were supplied in excess during the fed-batch cultures.
The build-up of alanine, arginine, and glutamine reflects
the amino acid trends observed in Figure 3A–D. Note
that glycine was not detected as it had a molecular
weight of <80Da. Other media components identified
included folic acid, nicotiamide, pantothenic acid, and
riboflavin, indicating that feeding of these vitamins was in
excess.

Of the six amino acid derivatives identified in the analysis,
at least two were previously reported to be associated with
apoptosis in other cell types. These include acetylphenyla-
lanine (ACPHE), a harmful derivative present in the urine of
phenylketonuria patients and dimethylarganine (DARG),
known to induce apoptosis in endothelial cells (Jiang et al.,
2006) by increasing intracellular reactive oxygen species
production (Boger et al., 2000). In addition, the nucleotides
AMP and GMP have also been known to arrest growth in

Figure 2. Time profiles of key CHO fed-batch bioreactor culture variables. Three

distinct culture phases are shown, including initial exponential phase (P1), late

exponential (transitional) phase (P2) and stationary phase (P3). A: Viable cell density

and monoclonal antibodies (IgG) concentration profiles for the fed-batch cultures.

Time points at which metabolomics samples were obtained for analysis are repre-

sented by arrows. B: Extracellular concentration profiles of major nutrients glucose

(Glc), glutamine (Gln) and by-products lactate (Lac), and ammonia (NH3). [Color figure

can be seen in the online version of this article, available at http://wileyonlinelibrary.

com/bit]
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CHO cells (Carvalhal et al., 2003) and apoptosis in IEC-6
intestinal epithelial cells (Chen et al., 2005).

Apart from the main compound classes, three other
metabolites were identified. The accumulation of malic acid
(MAL) was previously found to be a potential growth-
limiting factor, attributed to the presence of an enzymatic
bottleneck at malate dehydrogenase II, which catalyses the
conversion of malic acid to oxaloacetate in the TCA cycle.
Subsequent overexpression of the enzyme successfully
improved cell growth and total product titre from CHO
cells (Chong et al., 2010). Oxidized glutathione (GSSG) is a
well-known marker for oxidative stress (Rossignol et al.,
2007) and its build-up extracellularly suggests that reactive
oxygen species are likely to be a key factor relating to
growth-limitation and apoptosis. Additionally, GSSG was
also known to induce apoptosis in U937 cells (Filomeni
et al., 2003). Finally, glycerophosphocholine (G3PC) is a
degradation product of phosphatidylcholine (PC) (Zablocki
et al., 1991), a major constituent of the plasma membrane.
The accumulation rate of G3PC increased sharply between
120 and 144 h, coinciding with the exponential-stationary
transition phase (P2). This behavior indicated that there
could be a corresponding increase in the degradation rate of

PC intracellularly, which would once again be associated
with growth-limitation.

Intracellular Metabolite Profiling

An intracellular metabolite profiling study was also
conducted on the M250-9 fed-batch cultures to identify
important metabolic pathways that are closely associated
with growth limitation. Cell samples were obtained daily
during the cultures from 24 to 216 h (Fig. 2A) and processed
using UPLC–MS. Similarly, the trends of individual mass
peaks were obtained using hierarchical clustering. As the
main focus of the study was on growth limitation, mass
peaks showing a downward trend as the cultures progressed
from the exponential (P1 and P2) to the stationary phase
(P3) were shortlisted for further investigation (Fig. 4B).
Among the resultant 42 mass peaks with putative identities,
nine had their identities confirmed through MSMS spectral
comparison with standard solutions and two were putatively
identified based on accurate mass, as their standards were
not commercially available (Table II). Interestingly, the
metabolites were mostly components of three major

Figure 3. Extracellular concentration profiles of various amino acids over the course of the fed-batch culture. A: Gly, Ala, Gln, and Arg, (B) Phe, Met, Tyr, and His, (C) Asp, Ser,

Asn, Pro, and Cys, and (D) Thr, Leu, Ile, Lys, and Val. Ala, alanine; Arg, arginine; Asn, asparagine; Asp, aspartate; Glc, glucose; Gln, glutamine; Glu, glutamate; Gly, glycine; His,

histidine; Ile, isoleucine; Lac, lactate; Leu, leucine; Lys, lysine; Met, methionine; NH3, ammonia; OUR, oxygen uptake rate; Phe, phenylalanine; Ser, serine; Thr, threonine; Tyr,

tyrosine; and Val, valine.
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pathways: energy, glutathione and glycerophospholipid
metabolic pathways. This implied that the intracellular
pools of metabolites in all three pathways were declining
over the course of the culture. In particular, the intracellular
levels of both reduced glutathione (GSH) and GSSG
decreased progressively. The reduction in GSH seemed to
support the hypothesis that the cells were experiencing
oxidative stress. The decreasing trend of intracellular GSSG
can be attributed to the attempt by the cells to maintain the
intracellular GSH/GSSG ratio and hence, their redox
potential. This appeared to be consistent with the
observation that GSSG was being exported from the cells
and accumulating in the extracellular media.

In glycerophospholipid metabolism, both choline phos-
phate (PCHO) and ethanolamine phosphate (PETHAM)
decreased progressively, while CDP-choline (CDPCHO)
and CDP-ethanolamine (CDPETN) were almost depleted
intracellularly at around 144 h into the cultures (P2). The

two latter metabolites are the direct precursors for PC and
phosphatidylethanolmine (PE), the major components of
the plasma membrane. Their depletion appeared to be
linked to the build-up of extracellular G3PC, at the
exponential-stationary transition phase of the cultures.
These observations strongly suggest that glycerophospho-
lipid metabolism was closely associated with cell growth
limitation. As such, an investigation of the internal
metabolic flux changes in the glycerophospholipid meta-
bolic pathway at different culture phases could help identify
potential bottlenecks leading to growth limitation and
subsequently contribute towards strategies to enhance
culture viability.

In Silico Metabolic Modeling

The intracellular metabolic states of CHO cells grown in fed-
batch culture can be examined using metabolic model of
mammalian cells. Since recent efforts on sequencing and
annotation of the CHO genome and gene function
identification are still ongoing (Kantardjieff et al., 2009;
Xu et al., 2011), alternatively, we used current generic
metabolic models of mammalian cells as a template to
analyze and characterize the metabolism of CHO cells. An
initial set of enzymatic reactions for the CHO metabolic
model was assembled based on genetic genome-scale mouse
metabolic model (Selvarasu et al., 2010a). Subsequently, the
model was further improved by including additional
information from our in-house CHO cDNA annotation
data. This led to the inclusion of 35 new gene-associated
metabolic reactions. Metabolomics data analysis also
contributed to the identification of additional metabolites
and their respective enzymatic reactions as detailed in
Table II, thereby improving the network connectivity of the
CHO model. For instance, formylmethionine, a secretory
metabolite, was identified based on the extracellular
metabolite profiling study and subsequently included in
the metabolic network as an additional reaction (EC:
3.5.1.31). Furthermore, transport reactions were included to
reflect the accumulation of metabolites extracellularly. The
list of additional genes and reactions is available in
Supplementary 2. The resulting CHO metabolic model
comprised of 1,540 enzymatic reactions and 1,302 meta-
bolites categorized into two major compartments—the
cytosol and mitochondria, besides the addition of reactions
for transport of metabolites across the membranes.

Cellular biomass composition is an important prerequi-
site for in silico analysis, particularly during the exponential
growth phase, where the primary objective of the cells is to
maximize biomass growth. Until recently, many studies
often assumed that cell biomass composition is conserved
across closely related species. For instance, most of
mammalian cell culture studies utilized the biomass
composition derived from mouse hybridoma cells without
any doubt (Altamirano et al., 2001). However, the biomass
composition may vary across different species and is also

Figure 4. Selected trends associated with cell growth and apoptosis, derived

from metabolomics analysis. A: Cluster of mass peaks with increasing trends over the

course of the fed-batch culture obtained from extracellular metabolite profiling, (B)

Cluster of mass peaks which decreased from the exponential (P1) to the stationary

phase (P3) obtained from intracellular metabolite profiling.
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likely to change under varying nutrient conditions. Previous
studies have reported that incorporating inaccurate cell
biomass composition into metabolic models could lead
to erroneous conclusions when examining the metabolic
activities (Carnicer et al., 2009; Raghunathan et al., 2003).
Therefore, we conducted amino acids analysis on total cell
proteins for five different CHO cell lines (M250-9, M500-7,
CHO DG44, CHO DXBII, and CHO KI) to investigate their
variations within CHO cells and difference with other
mammalian cells (see Supplementary 1 for experimental
method). The percentage of total cellular proteins in
biomass was assumed to be same for all the cell lines. As

expected, comparison of amino acids composition among
CHO cell lines could not reveal significant differences
(Fig. 5A). However, when the amino acids composition of
CHO cells was compared with that of mouse hybridoma
cells (Bonarius et al., 1996; Selvarasu et al., 2009; Xie and
Wang, 1994; Zupke and Stephanopoulos, 1995; Fig. 5B),
surprisingly, we found significant changes in the composi-
tions of lysine, glutamate, aspartate, and proline (Fig. 5C).
In addition, the PCA results revealed two distinct clusters,
(i) CHO cells and (ii) hybridoma mouse cells (Fig. 5D),
implying that the amino acids content in total cell protein is
likely to vary across different mammalian cell types. The

Table I. List of metabolites accumulating in the extracellular media over time.

Metabolite identity MS polarity Observed mass (m/z) Theoretical mass (m/z) Mass error (ppm)

Media components

Folic acid (FOL) þ 442.1469 442.1469 �0.02

L-alanine (ALA)� þ 90.0546 90.0550 4.95

L-arginine (ARG) þ 175.1186 175.1190 2.01

L-glutamine (GLN) � 145.0624 145.0619 �3.36

L-tryptophan (TRP) þ 205.0967 205.0972 2.36

Nicotinamide (NAM) þ 123.0550 123.0553 2.82

Pantothenic acid (PNTO) þ 220.1178 220.1179 0.47

Riboflavin (RIBFLAV) þ 377.1454 377.1455 0.30

Amino acid derivatives

5-L-glutamyl-L-alanine (GALA) � 217.0836 217.0830 �2.76

dimethyl-L-arginine (DARG) þ 203.1502 203.1503 0.72

N-acetyl-L-leucine (ACLEU) � 172.0986 172.0979 �4.06

N-acetyl-L-phenylalanine (ACPHE) þ 208.0968 208.0968 0.02

N-acetylmethionine (ACMET) � 190.0552 190.0543 �4.82

N-formyl-L-methionine (FMMET) � 176.0392 176.0387 �2.87

Nucleotides

AMP � 348.0703 348.0704 0.37

GMP � 362.0516 362.0507 �2.43

Other metabolites

Glycerophosphocholine (G3PC) þ 258.1099 258.1106 2.67

Malic acid (MAL) � 133.0148 133.0142 �4.48

Oxidized glutathione (GSSG) � 611.1469 611.1447 �3.60

�The mass of L-alanine was too small for MS–MS fragmentation. Its identity was confirmed by accurate mass and retention time comparison with its
standard.

Table II. List of confirmed intracellular metabolites with a downward trend as the cultures progress.

Metabolite identity MS polarity Observed mass (m/z) Theoretical mass (m/z) Mass error (ppm)

Glycerophospholipid pathway metabolites

CDP-choline (CDPCHO) þ 489.1134 489.1146 2.38

CDP-ethanolamine (CDPETN)� � 445.0538 445.0538 �0.09

Choline phosphate (PCHO) þ 184.0728 184.0739 5.81

Ethanolamine phosphate (PETHAM) � 140.0124 140.0118 �4.06

Energy pathway metabolites

Citric acid (CIT) � 191.0201 191.0197 �2.29

Malic acid (MAL) � 133.0148 133.0142 �4.54

Oxalosuccinic acid (OSUC)� � 189.0053 189.0041 �6.41

ADP � 426.0231 426.0231 0.10

Glutathione pathway metabolites

Oxidized glutathione (GSSG) � 611.1462 611.1447 �2.53

Reduced glutathione (GSH) þ 308.0905 308.0911 2.08

Other metabolites

Aspartic acid (ASP) � 132.0308 132.0302 �4.90

�No standards are commercially available for these compounds. They were identified putatively based on accurate mass.
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results also clearly highlight the need for a cautious approach
in deriving the cell biomass equation for a specific cell type,
especially while calculating the amino acids composition in
total cell proteins for metabolite balancing.

In Silico Simulation of Metabolic Behavior during
Growth and Non-Growth Phases

The intracellular metabolic characteristics of CHO cell
lines producing monoclonal antibodies (IgG) were exam-
ined using the metabolic model under both exponential
growth and non-growth phases. This could possibly explain

unique features of the varying metabolic states during the
culture.

Initial and Late Exponential Phases

The major cellular objective in the exponential phase of
a culture is to maximize cell growth. Thus, the metabolic
model can be simulated to mimic the experimental
conditions by maximizing cell growth rate subjected to
constraints such as nutrient uptake rates and by-product
production rates. For this, the uptake rates of nutrients,
glucose, glutamine, amino acids and oxygen and secretion
rates of cell biomass, IgG, ammonia, lactate and CO2 were

Figure 5. Amino acids composition in total cell proteins for various mammalian cells. A: CHO cell lines, (B) mouse hybridoma cell lines. C: average amino acids composition in

CHO (red) and mouse hybridoma cells (blue). D: Principal component analysis of amino acid composition in the total cell proteins of CHO and mouse hybridoma cell lines. [Color

figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/bit]
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calculated from the residual concentration data by following
the general procedure (Selvarasu et al., 2010b). In silico
simulations were carried out during initial (P1) and late (P2)
exponential phases. When the experimental amino acids
composition of total cell proteins in CHO M250-9 was
considered in the biomass equation, simulated growth rates
(P1: 0.0249/h; P2: 0.0106/h) matched very well with
experimental growth rate (P1: 0.0247/h, P2: 0.0116/h)
(Fig. 6). However, discrepancy between measured and
predicted growth rates was observed when we used amino
acids content from other mammalian cells (P1: 0.0171/h, P2:
0.008/h). Again, the results confirmed the need for having
accurate CHO-specific biomass composition for reliable in
silico analysis. We further explored the intracellular
metabolic fluxes to characterize the metabolic behaviors
during initial and late growth phases. Highly active
glycolysis fluxes and lower activity in TCA cycle fluxes
were the characteristic feature for both phases. However, the
metabolic flux distributions of pentose phosphate, amino
acids and fatty acid biosynthetic pathways were high for

initial exponential compared to the late exponential phase.
Interestingly, when the glycerophospholipid pathway was
explored, G3PC secreted during the late exponential
(transitional) phase. This was highly consistent with our
extracellular metabolite profiling results that showed the
accumulation of G3PC during the transitional phase. Thus,
the reduced activity of key metabolic pathways coupled
with limited availability of intracellular G3PC could be
associated with the reduction in cell growth rate in late
exponential phase (see metabolic flux distribution details in
Supplementary 4). The metabolic fluxes over amino acids
biosynthetic pathways were also explored to understand
the inter-conversion of asparagine into alanine and
ammonia. First, asparagine was converted into glutamate
via asparagine synthase (ASNS) and glutamate oxaloacetate
transaminase 1 (GOT21). Subsequently, glutamate was
transaminated to alanine via alanine aminotransferase
(ALAAT) and ammonia via glutamate dehydrogenase
(GDH), which was in good agreement with the experimental
observation. In order to affirm confidence of the current

Figure 6. Comparison of in silico growth rate with experimentally observed growth rate during initial (phase 1) and late (phase 2) exponential phase of the culture. The bars

with black and white colors represent specific consumption and production rates, respectively. Simulation 1 and 2 indicate predicted cell growth using amino acids content in

biomass equation for mouse hybridoma and CHO M250-9 cells, respectively. [Color figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/

bit]
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simulation, we also conducted flux variability analysis
(Mahadevan and Schilling, 2003) for initial exponential
phase (P1). The results revealed 345 active reactions and
their ranges of possible flux variations achieving the same
phenotypic state (maximum cell growth) possibly through
alternative pathways (see details in Supplementary 4).
However, the small and consistent flux variation in central
metabolism and very little or no variation in lipid and some
amino acids pathways clearly indicated that the characteristic
metabolic behavior discussed herein based on the simulated
flux distributions would be highly plausible. Nevertheless,
the actual flux determination must await experimental
verification by isotope-based labeling measurements.

Non-Growth Phase

It is not appropriate to describe the stationary cellular phase
by maximizing cell growth, as viable cell numbers tended to
remain static, with either zero or negligible growth rates.
Thus, we should consider an alternative approach to
characterize the metabolic behavior during the non-growth
phase. Based on previous studies, least square minimization
(LSM) of error between experimental measurements and
in silico simulations was successfully used to examine
metabolic characteristics when the correct cellular objective
could not be ascertained (Blank et al., 2005; Bonarius et al.,
1996). Therefore, LSM was similarly applied in this study
to evaluate the intracellular metabolic fluxes of CHO
cells during the stationary culture phase. The uptake rates
of measured nutrients and production rates of other
by-products were first calculated as described earlier.
Subsequently, LSM was conducted and the results indicated
that flux distributions in energy and carbohydrate meta-
bolism were similar to the growth phase. Although the cell
growth was negligible during stationary phase, the consis-
tent use of carbohydrate (glycolysis) pathways could be
possibly utilized to meet energy demands arising from other
cellular functions such as heat shock resistance and signal
transduction. It is evident from the in silico simulations
that further experiments aimed at examining the energy
maintenance during the later phase of mammalian cell
culture is worthwhile as it can provide clues to reengineer
cells to enhance their viability, thereby optimizing recom-
binant productivity. Moreover, the results revealed signifi-
cant reduction in metabolic fluxes of lipid and nucleotides
pathways compared to their fluxes during exponential
growth phase, suggesting that a slowdown in the activities of
these pathways occurred during the non-growth culture
phase. Additionally, in silico simulation also revealed the
secretion of amino acid derivatives, which was consistent
with the observed accumulation of these derivatives
extracellularly based on the metabolomics analysis.

Discussion

This study describes how a combined metabolomics and
modeling approach can be utilized to understand the

intracellular behaviors of CHO cell culture. To date, the
majority of mammalian cell culture studies focused on the
analysis of extracellular glucose, lactate, glutamine, ammo-
nia, and other amino acids. While these trends allow for
an overview of cell metabolism, a more in-depth study of
metabolites is required for better understanding of key
intracellular mechanisms in relation to cell growth and
death processes. As such, the extracellular and intracellular
metabolite profiling studies have facilitated the detection
of previously unmeasured metabolites, hence allowing for
improved characterization of intracellular metabolic states.
Specifically, the extracellular study resulted in the identifi-
cation of previously unmeasured media components that
were accumulating in the extracellular media. Additionally,
a group of amino acid derivatives, nucleotides and other
key metabolites were also found to build up extracellularly.
This information could contribute towards improving
the predictive capability of the CHO cell metabolic model,
particularly during the non-growth culture phase.

The intracellular metabolite profiling study allowed us to
identify key pathways potentially associated with cell growth
limitation; metabolites participating in the energy, glutathi-
one and glycerophospholipid metabolic pathways were
found to show decreasing trends as the culture progressed.
To derive a better understanding of this behavior, the
corresponding fluxes for the three pathways were investi-
gated using the in silico CHO model (Fig. 7). In terms of
energy metabolism, the fluxes in the TCA cycle appear to be
distinctly smaller than those of glycolysis. This is in good
agreement with the largely known fact that glycolysis is
the main energy production pathway in CHO cells, with
build-up of lactate extracellularly (Xie and Wang, 1996).
Additionally, the TCA cycle fluxes reduced from the late-
exponential phase, further decreasing its contribution
towards cellular energy production during the later culture
phases.

Glutathione metabolism has been previously reported to
be associated with the removal of reactive oxygen species in
mammalian cells (O’Donovan and Fernandes, 2000). The
intracellular metabolite profiling study revealed decreasing
trends for both GSH and GSSG, while the latter was also
shown to accumulate extracellularly, thereby suggesting that
GSSG was secreted from the cells as the culture progressed.
This observation was supported by in silico analysis results,
shown by the positive transport flux of GSSG to the
extracellular media in Figure 7. Interestingly, the results
also indicated that the GSH formation flux, based on
the conversion of glycine, glutamate, and cysteine via the
enzymes D-aminoacid oxidase and aldehyde dehydrogenase,
was relatively less during the later culture phases in
comparison to the early exponential phase. This suggested
that in order to maintain the reductive-oxidative potential
intracellularly, GSSG had to be expelled from the cells.
In addition, the reduction in the intracellular GSH pool
also coincided with the transition of the cultures from
exponential phase to stationary phase, which implied that
the cells could have been undergoing oxidative stress due to
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the reduced availability of GSH (Hayes andMcLellan, 1999).
These observations suggest that oxidative stress could be a
potential cause of cellular apoptosis and growth limitation
in the fed-batch cultures. Thus, strategies to attenuate
oxidative stress by adding antioxidants, e.g., butylated
hydroxyanisole, N-acetylcysteine or ascorbic acid (Malhotra
et al., 2008), could be evaluated for the enhanced cell growth
and culture performance, in conjunction with metabolic

engineering of specific enzymes to better control the
intracellular redox environment (Jo et al., 2001; Krishnan
et al., 2008).

Glycerophospholipid metabolism was also found to be
associated with growth limitation, based on the results of
the intracellular metabolite profiling study, which revealed
downward trends for several pathway intermediates
(Table II). Both PC and PE are key constituents of the

Figure 7. Schematic representation of the major metabolic pathways in CHO cell network. Pathways highlighted in different colors correspond to Glycolysis and TCA cycle

(blue), Glutathione (magenta), lipid (orange), and glycerophospholipid (green) metabolisms. Specific consumption/production rates of major nutrients/products during three

different cell culture phases are provided for the TCA cycle, glutathione, and glycerophospholipid metabolisms below. The given flux values have been determined under growth

(P1, P2) and non-growth (P3) conditions. Depleting intracellular and accumulating extracellular metabolites are highlighted in red and blue colors, respectively.
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plasma membrane and intracellular transport vesicles;
hence, their synthesis is likely to be an important factor
for cell growth and protein production. In particular,
CDPCHO and CDPETN, the direct precursors to PC and
PE, respectively, were found to be depleted during the
exponential-stationary phase transition period. It should be
highlighted that in silico analysis of CHO model allowed us
to characterize metabolic states in the glycerophospholipid
pathway. An overall reduction in the glycerophospholipid
pathway fluxes was observed during the late exponential
and stationary phases in comparison to the initial
exponential phase (Fig. 7). In particular, the fluxes for
the conversion of PCHO to CDPCHO and PETHAM to
CDPETN were both zero in the stationary phase, suggesting
that the synthesis of the PC and PE precursors could indeed
have become limiting. A closer look at the fluxes also
indicated that G3PC was being secreted continuously after
the initial exponential phase of the culture, resulting in its
accumulation extracellularly. These combined trends appear
to point towards a slowdown in the production of PC and
PE, which may potentially initiate the transition of cells to
the stationary phase. However, more in-depth studies are
required to further evaluate this hypothesis and to identify
possible causes of the flux reductions in PC and PE synthesis.
For instance, a potential focus could be on investigating
the presence of enzymatic bottlenecks at the PCHO to
CDPCHO and the PETN to CDPETN junctions in the
pathway. This would enable the development of strategies to
maintain PC and PE synthesis, which could subsequently
lead to the extension of culture viability and in turn,
improved culture performance.

From the discussion of the abovementioned metabolic
pathways, the simulated fluxes derived from the in silico
model have been successfully utilized to improve our
understanding of key metabolic pathways presumably
associated with the cell growth limitation. However, the
current model has not accounted for compartment
localization other than cytosol and mitochondria. Thus,
inclusion of compartmental information could be beneficial,
particularly, for investigating protein glycosylation mecha-
nism with metabolic details corresponding to golgi and
endoplasmic reticulum. Further improvements to the model
can be made based on the recent availability of the CHO-K1
genome (Xu et al., 2011), in which the authors focused
specifically on important gene functions relevant to protein
glycosylation. With this information, glycosylation genes
can be investigated using the metabolic model, which
would eventually lead to enhancing the protein quality of
recombinant therapeutics. Besides this, the consortium
for CHO Cell Genomics, established by the Bioprocessing
Technology Institute of Singapore and University of
Minnesota in 2006 (Jayapal et al., 2007), has built a
repertoire of approximately 80,000 EST sequences obtained
from both traditional Sanger sequencing and next genera-
tion sequencing technologies such as Roche 454 and Solexa
Illumina (Kantardjieff et al., 2009). This collection of ESTs
can be subsequently used to examine the transcriptional

activity of CHO cells. In the future, CHO specific genome
sequences could be annotated with the availability of
large amount of data. Such identified gene function from
annotations can be added to improve the metabolic model
representing CHO metabolism more precisely. Thus, the
current limitations of the model can be overcome and it can
be employed to identify strategies for cellular engineering.

Concluding Remarks

Mammalian cells are widely used for industrial production
of recombinant therapeutics owing to their ability to
perform post-translational modifications, including glyco-
sylation. In this work, a combined metabolomics and in
silico modeling approach was used to improve understand-
ing of the intracellular mechanisms of CHO fed-batch
cultures. Metabolites associated with cell growth limitation
were first shortlisted based on both extracellular and
intracellular metabolite profiling studies. A metabolic model
representing the key metabolic functions of CHO cells was
also developed using a template mouse genome-scale model
and subsequently improved through integration of the
extracellular metabolite profiling data. The in silico analysis
of different fed-batch culture phases additionally high-
lighted the importance of obtaining accurate amino acid
compositions in cell biomass. Finally, three key metabolic
functions, including energy, glutathione, and glyceropho-
spholipid pathways, potentially associated with cell growth
limitation were studied in detail. Additional insights into
these pathways were gained successfully based on the
combined analysis of the experimental metabolite trends
and the flux data obtained from the in silico model. In
future, such an understanding could potentially facilitate
the development of additional metabolic strategies for
improvement of CHO cell culture productivity.
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