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Cellular engineering of bacteria, fungi, insect cells and

mammalian cells is a promising methodology to improve

recombinant protein production for structural, biochemical,

and commercial applications. Increased understanding of the

host organism biology has suggested engineering strategies

targeting bottlenecks in transcription, translation, protein

processing and secretory pathways, as well as cell growth and

survival. A combination of metabolic engineering and synthetic

biology has been used to improve the properties of cells for

protein production, which has resulted in enhanced yields of

multiple protein classes.
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Introduction
Expression of recombinant mammalian proteins is at the

heart of structural studies in the biomedical field and is

also important to commercial biotherapeutics, particularly

the expression of antibodies. Although cloning, expres-

sion and production methods are available for many hosts

[1–3], there is an ongoing effort to improve expression

through traditional bioprocess optimization and cell re-

engineering, especially for low yielding targets such as

membrane proteins, large protein complexes and post-

translationally modified proteins [4,5]. The first step in

any strategy to over-produce proteins is the selection of

the expression host. According to statistics from the

Protein Data Bank (http://www.rcsb.org) and the ‘Mem-

brane Proteins of Known Structure Database’ (http://

blanco.biomol.uci.edu/mpstruc/), of all the proteins that

had their structures determined between 2004 and 2013,

78% were expressed in Escherichia coli and only 4% in

insect cells (Figure 1A). However, for the overexpression

of membrane proteins, E. coli was utilized on average less

(61%) and eukaryotic expression systems were used
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comparatively more (Figure 1B). Notably, there is an

increasing trend in the use of more complex eukaryotic

hosts (insect and mammalian cells, Figure 1C), which

reflects an increase in the number of mammalian mem-

brane proteins being crystallized, particularly G protein-

coupled receptors (GPCRs) [6].

Despite many successes in the production of sufficient

protein for crystallization and structure determination,

proteins from, for example, mammalian sources and/or

are integral membrane proteins are often difficult to

overexpress [4,7]. Host cell engineering has emerged as

one effective strategy for improving recombinant protein

yields (Table 1) that can overcome bottlenecks in differ-

ent steps along the protein production process. Here we

discuss some recent successful cases that target potential

bottlenecks in protein production, using strategies

focused on optimizing transcription/translation, engineer-

ing the folding and secretory pathways, mutating the

target protein sequence, and enhancing cell proliferation

and/or survival.

Optimizing transcription and enhancing
translation
One of the most important choices in planning a strategy

for overexpression of proteins is the type of promoter to

use, and it is often the case that the strongest promoter

will be the best for producing large amounts of correctly

folded protein. Thus the most commonly used promoters

are the T7 promoter in E. coli, the polyhedrin promoter in

the baculovirus expression system and the CMV promo-

ter in mammalian cells. If transcription is the rate limiting

step in protein production, even after choosing a strong

promoter, then increasing further the strength of the

promoter may be effective. For example, Quilici et al.
constructed a strong CMV promoter variant through

introducing a 200-nucleotide deletion of intron A that

increased luciferase expression up to 2-fold in mammalian

cells [8]. However, recent studies have shown that

increasing the amount of mRNA encoding the protein

of interest does not necessarily lead to improved protein

production in E. coli [9�] or insect cells [10]. In these

instances, it is possible that the rate limiting step is

protein folding, perhaps due to limitations in host cell

factors, such as molecular chaperones. Enhancements in

protein expression can be achieved through reducing the

rate of transcription, either by substituting a strong pro-

moter with a weaker one [9�,10], or by weakening a strong

promoter by introducing a point mutation [11�]. An

alternative approach is to reduce the levels of polymerase

in the host cell. For example, the levels of the T7 DNA

polymerase expressed in E. coli can be modulated by
www.sciencedirect.com
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Figure 1
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Summary of host cell line usage for production of recombinant proteins

in structural studies between 2004 and 2013. (A) Break down of leading

host cell choices for the expression of all types of proteins. (B) Break

down of leading expression organisms for integral membrane protein

production. (C) Increasing application of higher eukaryotes (insect and

mammalian cells) for recombinant protein production.
altering the expression levels of the natural inhibitor T7

lysozyme, which is under the control of a tightly regulated

inducible promoter, hence fine-tuning the rates of tran-

scription. Wagner et al. improved expression of 14 mem-

brane proteins using this methodology [12].

Even when strong promoters are used, host cell factors

can result in low rates of transcription. For example,

during the construction of stable mammalian cell lines

with the gene of interest expressed from the CMV

promoter, poor expression could result from epigenetic

silencing of the promoter. This can be alleviated by
www.sciencedirect.com 
engineering the nuclear matrix attachment region

(MAR) [13] or by combining a MAR with a mammalian

replication initiation region (IR) [14,15��], consequently

improving recombinant protein production in mammalian

cell lines.

Translation of the gene of interest may also be inhibited

by host cell silencing processes during protein production.

For example, eukaryotic translation initiation factor 2 may

become phosphorylated after DNA plasmid transfection

or upon virus transduction, which will inhibit translation

and thus decrease protein expression. However, viruses

have evolved mechanisms to circumvent this. Gantke

et al. co-expressed the Ebola virus protein 35, which is

a viral protein that prevents translational silencing, and

increased recombinant protein production by 10-fold

[16�]. An alternative approach to circumvent translational

silencing in insect cells following baculovirus infection is

to co-express eIF4E, which resulted in a 2-fold increase in

the production of a secreted alkaline phosphatase

(SEAP)-EGFP fusion protein (SEFP) [17].

Folding and secretory pathway engineering
Molecular chaperones have been applied to improve

protein production in various systems, where they act

to preserve nascent proteins in a folding-competent con-

formation and prevent aggregation [18]. The most exten-

sively used chaperone systems that have facilitated

protein production in E. coli are DnaK–DnaJ–GrpE

and GroEL–GroES [19,20]. In insect cells, host protein

biosynthesis shuts down as a result of infection by the

recombinant baculovirus, which can adversely affect

levels of molecular chaperones important for the folding

of secreted proteins and membrane proteins in the endo-

plasmic reticulum (ER), particularly in relation to the

high levels of protein synthesis resulting from high

mRNA levels produced from the polyhedrin promoter.

Hence, co-expression of the membrane-bound molecular

chaperone calnexin enhanced the expression of func-

tional serotonin transporter (SERT) by nearly 3 fold

[21], and co-expression of the soluble molecular chaper-

one calreticulin increased secretion of SEFP in insect

cells [17]. Whether a lack of appropriate molecular cha-

perones in heterologous systems contributes to low levels

of functional protein sometimes is difficult to assess.

However, overproduction of mammalian calnexin in

the yeast Hansenula polymorpha did increase production

of the truncated glycoprotein of rabies virus [22],

suggesting that at least in this case the folding environ-

ment in the yeast ER was not optimal for folding large

amounts of glycoprotein.

However, co-expression of molecular chaperones is not a

panacea and does not often give a 10-fold or more im-

provement in expression levels. Part of the problem is

that overexpression of ER resident chaperones such as

calreticulin might burden the ER and activate an
Current Opinion in Structural Biology 2014, 26:32–38



34 New constructs and expressions of proteins

Table 1

Improvements in protein expression levels for different cell engineering strategies

Protein Location Expression host Fold increase in

protein production

Reference

Strategy 1: optimizing transcription and enhancing translation

Luciferase Intracellular CHO-K1, HepG2,

HEK-293, COS-7

3 [8]

D-Amino acid oxidase Intracellular E. coli 20 [9�]

Glutaryl-7-aminocephalosporanic acid

acylase

Intracellular E. coli 2 [9�]

N-carbamyl-D-amino acid amidohydrolase Intracellular E. coli 1.3 [9�]

Secreted alkaline phosphatase Extracellular Insect cells Significant [10]

Deltarhodopsin Membrane E. coli 5 [11�]

Sensory rhodopsin II Membrane E. coli 5 [11�]

14 different membrane proteins Membrane E. coli Significant [12]

Cyclooxygenase-1 Extracellular HEK293T Significant [14]

Antibody Extracellular COLO 320DM >8 [15��]

CHO DG44 >20 [15��]

Tumor progression locus 2 complex Intracellular HEK-293 10 [16�]

TBK1 Intracellular HEK-293 n.r. [16�]

Lck Membrane HEK-293 n.r. [16�]

CD40 Membrane HEK-293 n.r. [16�]

Bcl-2 Membrane HEK-293 n.r. [16�]

SEAP-EGFP fusion protein Extracellular Insect cells 2 [17]

Strategy 2: Folding and secretory pathway engineering

Secretory alkaline phosphatase-EGFP

fusion protein

Extracellular Insect cells 2 [17]

Human papillomavirus 16 E7 oncoprotein

fused to C-terminus of Tobacco mosaic

virus coat protein

Intracellular E. coli n.r. [19]

Aldehyde dehydrogenase 3A1 Intracellular E. coli 4.9 [20]

Serotonin transporter Membrane Insect cells 3 [21]

Glycoprotein of rabies virus (truncated) Extracellular H. polymorpha n.r. [22]

ZraS Membrane E. coli 3.6 [26��]

Deltarhodopsin Membrane E. coli 3.6 [26��]

Sensory rhodopsin II Membrane E. coli 3.4 [26��]

SEAP Extracellular CHO-K1 2 [27]

Antibody Extracellular 3 [27]

a-Amylase Extracellular S. cerevisiae 1.68 [28]

Insulin precursor Extracellular S. cerevisiae 1.3 [28]

t-PA Extracellular CHO 1.35 [29]

HSA Extracellular CHO 1.6 [30]

Antibodies Extracellular CHO 1.26 [30]

Interleukin-1 receptor antagonist – HSA Extracellular P. pastoris 3.7 [23�]

HSA-human growth hormone Extracellular P. pastoris 4 [23�]

Antibody Extracellular CHO 4–7 [24]

Strategy 3: Protein sequence mutagenesis

Benzenediol-oxygen oxidoreductase Intracellular E. coli 3.14 [31]

Coagulation Factor VIII Extracellular COS-1 1.3 [32�]

CHO 1.6 [32�]

Neurotensin receptor Membrane E. coli 10 [33]

Signal sequence of b-lactamase Intracellular E. coli 5.5 [34��]

YFP-Bcl-xL Membrane Ramos B-cell n.r. [35]

CHO n.r. [35]

Strategy 4: Cell proliferation and survival engineering

Epidermal growth factor receptor Membrane CHO Significant [37]

Fibroblast growth factor receptor 3 Membrane CHO Significant [37]

Receptor tyrosine kinases proteins Membrane CHO Significant [37]

Antibody Extracellular CHO-K1 4 [38�]

Secreted alkaline phosphatase Extracellular CHO 1.43 [39�]

Glycerol transport facilitator Fps1 Membrane S. cerevisiae 2 [40]

A2a adenosine receptor Membrane S. cerevisiae 5 [40]

Cannabinoid receptor 2 Membrane S. cerevisiae 4.5 [40]

Antibody Extracellular CHO 4 [41]

SEAP Extracellular CHO 3–7 [41]

Current Opinion in Structural Biology 2014, 26:32–38 www.sciencedirect.com



Cell engineering to improve protein expression Xiao, Shiloach and Betenbaugh 35

Table 1 (Continued )

Protein Location Expression host Fold increase in

protein production

Reference

Secreted a-amylase Extracellular CHO 3–7 [41]

Epo-Fc Extracellular CHO n.r. [42]

Other strategies

Lysozyme Intracellular E. coli 3000 [44��]

n.r., not recorded.
unfolded protein response [17]. Another more challen-

ging issue is that molecular chaperones may act in a

concerted fashion to promote protein folding in a poorly

understood process, suggesting that it may be best to

overexpress multiple chaperones simultaneously. How-

ever, expression levels will need to be tightly controlled

to prevent overwhelming the cells protein production

resource and also the stoichiometry between chaperones

will have to be regulated. Another problem associated

with engineering the chaperone and secretory pathway is

that it can be protein and host specific. For example, co-

expression of protein disulfide isomerase increased yields

of albumin fusion proteins in the yeast Pichia pastoris [23�]
but did not improve functional SERT expression in insect

cells [21]. Similarly, SRP 14 overexpression led to a

substantial improvement of IgG production in CHO cells,

but the strategy was ineffective in human cell lines

producing alkaline phosphatase [24,25].

An alternative strategy to overexpressing molecular cha-

perones is to delete endogenous competing chaperones in

order to channel the nascent peptide chain to the desired

signal recognition particle (SRP) secretory pathway.

Indeed, Nannenga et al. showed that membrane protein

insertion in E. coli improved and expression levels

increased through eliminating competition between trig-

ger factor (TF) and the signal recognition particle (SRP)

for the nascent polypeptide chain [11�,26��].

Another strategy to improve secretion is to improve

vesicular trafficking from the ER to the cell surface.

Co-expression of secretory proteins which modulate

vesicle trafficking, such as soluble NSF receptor

(SNARE) proteins (SNAP-23 or VAMP8), improved pro-

duction of SEAP and monoclonal antibodies by 2-3 fold in

mammalian CHO-K1 cells [27]. Likewise, overexpres-

sion of SNARE-interacting Sec1p and Sly1p proteins

improved expression of a-amylase and human insulin

precursor in Saccharomyces cerevisiae [28]. In addition,

the ceramide transfer protein S132A mutant improved

production of tissue-plasminogen activator (t-PA) [29],

human serum albumin (HSA) and monoclonal antibodies

in CHO [30].

Protein sequence mutagenesis
Mutating the sequence of the protein target can also

improve expression levels of the target protein. Some-

times this may be achieved through rational approaches
www.sciencedirect.com 
such as analyzing the structure of the protein, as in the

D500G mutation of laccase in E. coli [31] and the cysteine

mutation of coagulation factor VIII [32�]. However, in

many instances there is insufficient evidence to suggest

why a protein does not overexpress, so high-throughput

mutagenic strategies can be used. For example, directed

evolution coupled with random mutagenesis, followed by

screening and selection was used by Sarkar et al. to evolve

a GPCR, the rat neurotensin receptor (NTR) in E. coli. A

mutant with 14 nucleotide substitutions retained the

biochemical properties of the wild type receptor together

with a 10-fold increase in functional expression and

slightly increased thermostability [33]. Similarly, Hegge-

set et al. applied combinatorial mutagenesis and selection

based on ampicillin tolerance in E. coli to evolve the signal

sequence of b-lactamase and improved SEAP production

up to 8-fold [34��].

In theory, a more elegant and simple strategy would be to

use in vivo mutagenesis coupled to screening or selection

to improve expression. This approach was used by Majors

et al. to evolve an anti-apoptotic gene Bcl-xL in a mam-

malian expression system by harnessing the somatic

hypermutation capability of human Ramos B-cell line.

The Bcl-xL gene, coupled to the YFP reporter, was

mutated ‘in situ’ and subjected to rounds of staurosporine

treatment to identify mutants with reduced apoptosis

activation and higher YFP-Bcl-xL expression levels [35].

Cell proliferation and survival engineering
The delay or prevention of the apoptosis cascade acti-

vation has been successful in preventing cell death and

improving protein production in CHO cells under stress

conditions [36]. Co-expression of the anti-apoptotic

protein Bcl-xL in CHO cells improved the expression

of epidermal growth factor receptor, fibroblast growth

factor receptor 3 and receptor tyrosine kinases proteins

[37]. Knock-out of the genes encoding the pro-apoptotic

factors Bax and Bak in a CHO-K1 cell line improved cell

viability, reduced levels of transfection-induced apoptosis

and led to up to 4 fold higher antibody titers [38�].
Similarly, knock-out of the pro-apoptotic microRNA

mmu-miR-466h-5p in CHO cells delayed the onset of

apoptosis, increased the maximum viable cell density and

enhanced expression of SEAP [39�].

Enhanced cell proliferation represents another potential

approach to increase biomass and obtain higher
Current Opinion in Structural Biology 2014, 26:32–38
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volumetric yield during large scale production processes.

For example, a metabolically engineered respiratory

strain of S. cerevisiae (TM6*) doubled volumetric yield

of Fps1 and at least quadrupled the yield of two human

GPCRs (A2aR and CNR2) [40]. Overexpression of the

mammalian target of rapamycin (mTOR) simultaneously

improved cell growth, proliferation, viability and specific

productivity of antibody, SEAP and secreted a-amylase

in CHO cells [41]. Similarly, overexpression of miR-7 in

CHO cells enhanced cell proliferation, leading to higher

Epo-Fc titer [42]. However, accumulated biomass does

not always lead to increased production as demonstrated

by chemical inhibition of autophagy in CHO cells, which

led to decreased cell concentration but a 2.8-fold increase

in t-PA [43�].

Other strategies
In cases where the heterologous proteins are toxic to the

host cells, the presence of inhibitors can protect the host

by sequestering proteins and keeping them in an inactive

state. For example, co-expression of lysozyme together

with its inhibitor Ivy, repressed lysozyme lytic activity in

cytoplasm, and, along with transcription enhancement

and chaperone co-expression, remarkably improved

soluble lysozyme production in E. coli [44��].

Conclusion
Recombinant protein expression has facilitated biochemical

and structural studies of thousands of naturally low abun-

dance proteins. Methodologies that improve expression

levels can be particularly advantageous for many difficult-

to-produce proteins or if the protein is being produced for

therapeutic or industrial purposes. To improve expression

levels further through cell engineering requires an under-

standing of both the host organism and the biology of protein

expression. Considerable effort has been focused on engin-

eering E. coli and yeast strains, and now there is an expand-

ing effort to engineer insect and mammalian hosts such as

HEK293 and CHO cell lines [45,46,47�], especially for

functional expression of mammalian membrane proteins

that include particularly complex folding, assembly, and

processing pathways [48–50]. However, in many instances

there is only limited information on the factors that affect

expression of any particular protein, so current strategies are

often piecemeal and focus on only one or two aspects of the

protein production process. A goal for the future is robust cell

factories generated through a holistic approach that con-

siders all the bottlenecks in the protein expression process

such as transcription, translation, protein folding, secretion

and cell viability and engineer these through an integrative

process to enable high-level expression of a wide spectrum

of target proteins.
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