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ABSTRACT

Respiration is a major contributor to net exchange of CO2

between plants and the atmosphere and thus an important
aspect of the vegetation component of global climate change
models. However, a mechanistic model of respiration is
lacking, and so here we explore the potential for flux balance
analysis (FBA) to predict cellular CO2 evolution rates. Meta-
bolic flux analysis reveals that respiration is not always the
dominant source of CO2, and that metabolic processes such
as the oxidative pentose phosphate pathway (OPPP) and
lipid synthesis can be quantitatively important. Moreover,
there is considerable variation in the metabolic origin of
evolved CO2 between tissues, species and conditions. Com-
parison of FBA-predicted CO2 evolution profiles with those
determined from flux measurements reveals that FBA is able
to predict the metabolic origin of evolved CO2 in different
tissues/species and under different conditions. However, FBA
is poor at predicting flux through certain metabolic processes
such as the OPPP and we identify the way in which mainte-
nance costs are accounted for as a major area of improve-
ment for future FBA studies. We conclude that FBA, in its
standard form, can be used to predict CO2 evolution in a
range of plant tissues and in response to environment.

Key-words: climate change; flux balance analysis; metabolic
flux analysis; plant.

INTRODUCTION

The balance between photosynthesis and respiration is a key
determinant of the carbon economy of plants and their
exchange of CO2 with the atmosphere (Reich 2010).As these
carbon exchange fluxes are much greater than anthropogenic
carbon release into the atmosphere (Canadell et al. 2007),
quantitative measures of photosynthesis and plant respira-
tion are a prerequisite for global climate change models. The
response of these processes to increased temperature and
decreased water availability also needs to be taken into
account, and these effects will be critical in predicting the
future performance of agricultural systems. While photosyn-
thetic and respiratory CO2 exchanges are amenable to
experimental quantification at tissue level, empirical meas-
ures of CO2 exchange cannot be reliably extrapolated to
future environmental conditions. This leads to a requirement

for models that can predict the impact of environmental
conditions on the CO2 fluxes in the metabolic network.

There is a marked disparity between the current state of
modelling of photosynthesis and respiration. Photosynthesis
modelling centres on the landmark biochemical model of
Farquhar, von Caemmerer & Berry (1980, 2001).This mecha-
nistic model consists of rate equations for the main biochemi-
cal processes of photosynthesis (Rubisco kinetics and
electron transport rate accounting for light, temperature and
photorespiration) and is capable of predicting net rates of
photosynthetic CO2 fixation in response to variables such as
atmospheric CO2 concentration, light intensity and tempera-
ture. The model predictions have been extensively validated
and derivatives of the model are currently used in global
climate models (Sitch et al. 2008; Smith & Dukes 2013).

In contrast, a mechanistic model of respiratory responses is
currently lacking (Smith & Dukes 2013). Instead, respiration
is usually predicted on the basis of its correlation with other
processes. For example, in global climate change models,
respiration is assumed to be proportional to leaf nitrogen
content (Cox 2001; Reich et al. 2008). Other models correlate
respiration with Rubisco content (de Pury & Farquhar 1997)
or as a constant fraction of gross carbon gain (Waring,
Landsberg & Williams 1998).These phenomenological meas-
ures of respiration lack predictive power, and unlike a
mechanistic model, they do not generate new knowledge or
testable hypotheses.

The other major approach in respiration modelling
is the ‘growth-respiration/maintenance-respiration paradigm’
(Amthor 2000). While it may be useful to separate the respi-
ratory provision of energy/reductant/carbon skeletons for
growth and cell maintenance, quantification of growth and
maintenance respiration is problematic and the paradigm
lacks a mechanistic basis. Moreover, there are conceptual
problems with separating growth and maintenance in this
way: for example, the metabolic cost of cell maintenance,
defined as the cost of maintaining the steady-state levels of
metabolites and macromolecules and the electrochemical gra-
dients across membranes, inevitably depends on the growth
rate of immature tissues. There are also no distinct metabolic
pathways for maintenance and growth. The idea of mainte-
nance respiration as a distinct portion of respiration has long
been debated and remains controversial (Thornley 2011).
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respiratory rates and the necessity of integrating respiratory
models into larger-scale ecosystem models was the focus of
the 24th New Phytologist Symposium: ‘Plant respiration and
climate change: scaling from mitochondria to the globe’,
which was held in Oxford, UK, in 2010. The symposium high-
lighted several challenges that must be addressed in order to
attain the goal of a mechanistic respiration model applicable
across scales. But perhaps the starkest indicator of the nature
of the challenge was that there was no general consensus
among the participants of the meeting as to what the word
‘respiration’ actually means (Atkin, Millar & Turnbull 2010).
This uncertainty arises partly because of the different scales
at which the process can be considered and partly because of
the multi-faceted nature of oxidative metabolism in plants
(Plaxton & Podesta 2006).

For example, at the physiological scale, respiration is
simply defined as the release of CO2 that is distinct from
photorespiratory CO2, and it is not necessary to consider in
detail where the CO2 comes from. In contrast, at the bio-
chemical level, the focus tends to be on oxidative metabo-
lism. Respiration might then be defined in terms of oxygen
consumption, which focuses on the processes that depend on
oxygen as a terminal electron acceptor, or in terms of CO2

production by the tricarboxylic acid cycle (TCA) cycle plus
mitochondrial pyruvate dehydrogenase. Often the oxygen
consumption and CO2 production parameters are combined
into a ‘respiratory quotient’, variations in which are often
seen as evidence of switches of respiratory substrate,
although there are many other explanations.As none of these
definitions capture all of the light-independent metabolic
processes that lead to the net production of CO2, it becomes
apparent that the focus needs to shift from the poorly defined
term ‘respiration’ to ‘net CO2 evolution’, where ‘net CO2

evolution’ is defined as the sum of all the CO2-producing
steps minus the sum of all the CO2-consuming steps, exclud-
ing photosynthesis and photorespiration.

Focusing on net CO2 evolution leads to a network or
holistic view of CO2 production that corresponds to physi-
ological reality. It also leads to the identification of two spe-
cific challenges for the modelling process. Firstly, it is
necessary to identify all the metabolic processes that con-
tribute to net CO2 production and this is generally recog-
nized to be extremely difficult (Barbour & Hanson 2009).
Inspection of genome-scale models of Arabidopsis metabo-
lism (Poolman et al. 2009; de Oliveira Dal’Molin et al.
2010a) reveals that there are in excess of 200 reactions that
involve CO2 or bicarbonate as a reactant, although the
majority of these are not predicted to carry significant flux.
Secondly, any predictive model needs to allow for differ-
ences between tissue types and the impact of a change in
conditions on the processes that contribute to net CO2 evo-
lution. For example, net CO2 evolution by the TCA cycle is
considerably lower in leaves in the light than in hetero-
trophic tissues (Sweetlove et al. 2010); CO2 release by
6-phosphogluconate dehydrogenase increases when exog-
enous nitrite stimulates the oxidative pentose phosphate
pathway (OPPP; Averill, Bailey-Serres & Kruger 1998);
and in growing tissues, the synthesis of different biomass

components involves differential loss of CO2 leading to sub-
stantial differences in carbon conversion efficiency (Chen &
Shachar-Hill 2012). The recent progress that has been made
in addressing these challenges is discussed below.

QUANTIFICATION OF BIOCHEMICAL
PROCESSES LEADING TO CO2 EVOLUTION
BY METABOLIC FLUX ANALYSIS (MFA)

In order to understand the extent to which different proc-
esses contribute to net CO2 evolution, it is necessary to quan-
tify their rates in living tissues.The CO2 fluxes associated with
multiple steps in the network of central carbon metabolism
can be deduced from stable isotope labelling experiments
using MFA (Kruger, Masakapalli & Ratcliffe 2012; O’Grady
et al. 2012). There are two experimental approaches: steady-
state MFA, in which the system is analysed when it has
reached a metabolic and isotopic steady state, and non-
steady-state analysis, in which the fluxes are deduced from
a labelling time-course (Ratcliffe & Shachar-Hill 2006).
Tracing the dynamics of label incorporation is experimentally
and computationally more demanding than steady-state
analysis as it requires a time-course of both metabolite con-
centrations and labelling patterns. However, the approach
is essential for the analysis of photoautotrophic systems
because steady-state labelling with 13CO2 yields an unin-
formative labelling pattern (Roscher, Kruger & Ratcliffe
2000; Shastri & Morgan 2007). In fact, achieving an isotopic
and metabolic steady state in leaves is likely to be difficult
because of the slow turnover of metabolite pools (Lattanzi
et al. 2012; Szecowka et al. 2013) and the complications intro-
duced by the light-dark cycle, so even if a precursor other
than the usual substrate is used, it would be difficult to satisfy
the conditions for steady-state MFA (Tcherkez et al. 2012).
Accordingly, despite the complexity of the analysis, dynamic
labelling methods are essential for photoautotrophic net-
works, and the first flux maps of light-driven carbon fixation
have now been published (Young et al. 2011; Szecowka et al.
2013). In contrast, steady-state MFA is a well-established
technique that has been applied to a wide range of hetero-
trophic and mixotrophic plant tissues typically using posi-
tionally labelled glucose as a substrate.

The metabolic networks that are used in MFA to explain
the observed labelling of metabolic intermediates and end-
products include several steps that either assimilate or
release CO2 (Fig. 1). The relative contribution of these proc-
esses to the net production or assimilation of CO2 is shown in
Fig. 2a for a range of tissues, and two general conclusions can
be drawn from the data. Firstly, there are considerable differ-
ences between different tissues and different species. Clearly,
Rubisco activity dominates the CO2 balance in photoau-
totrophic Synechocystis, but it also makes a major contribu-
tion to the carbon balance in the embryos of Arabidopsis,
soybean and Brassica napus. However, among these
embryos, soybean shows a markedly different pattern of CO2

release, reflecting the higher protein content and lower oil
content of the embryo. Similarly, different tissues of maize
show different patterns of CO2 release, while heterotrophic
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cell cultures show a distinctive pattern in which CO2 release
is dominated by the TCA cycle and the OPPP. The second
general conclusion is that the TCA cycle, which is taken here
to include the CO2 output from mitochondrial pyruvate
dehydrogenase as well as the outputs from isocitrate dehy-
drogenase and 2-oxoglutarate dehydrogenase, does not nec-
essarily dominate CO2 production in many tissues. Thus, the
picture that emerges from these MFA studies is one in which
the contribution of different processes to the CO2 balance is
highly variable.

MFA has also been used to a limited extent to compare
different genotypes within a species (Arabidopsis embryos,
maize root tips) and to investigate the impact of changes in
growth conditions on CO2 consumption and production in
soybean cotyledons, Arabidopsis cell suspensions and Chlo-
rella (Fig. 2b). Significant changes were observed in some of
these studies. For example, the increased importance of the
TCA cycle as a source of CO2 in the embryos of the Arabi-
dopsis wri1-1 mutant and in Arabidopsis cells at elevated
temperature. In other studies, however, a change in condi-
tions, for example, the imposition of nitrogen limitation on
Chlorella cells, had very little effect on the proportion of CO2

produced by different processes. The limited number of
studies in the literature reflects the time-consuming nature of
MFA, but at this point, it appears that there may be greater
variability in the proportion of CO2 produced and consumed
between species and tissues, than between growth conditions.
Such a conclusion, which can only be provisional at this stage,
would reflect the expected biosynthetic specialization of
different tissues and species, and the need for a robust
central metabolic network in the face of suboptimal growth
conditions.

Although the implementation of fully quantitative MFA
presents technical challenges, and especially so in photoau-
trophic tissues, the multiplicity of CO2-consuming and CO2-
producing steps makes it difficult to assess their contribution
reliably from less rigorous assessments of labelling data. For
example, ratios of 14CO2 released from positionally labelled
glucose and gluconate provide a relatively rapid indication of
the relative fluxes through the pathways of carbohydrate
oxidation in plants (Harrison & Kruger 2008). However,
extracting reliable estimates of the intracellular CO2 fluxes
from such data would require a comprehensive flux analysis
equivalent in its complexity to conventional MFA. This is
certainly possible as it has been shown that CO2 release data
from analogous experiments with 13C-labelled substrates in
microorganisms can be used as the basis for complete MFA
when combined with biomass (Yang, Wittmann & Heinzle
2006a,b), but it does not provide a shortcut to an assessment
of the relative importance of the various contributions to net
CO2 production.

In an alternative approach (Barbour & Hanson 2009;
Tcherkez et al. 2012), pulse-labelling with positionally 13C-
labelled substrates and/or measurements of the carbon iso-
topic ratio (d13C) of CO2 and can be used to identify the
major contributions to net CO2 evolution in roots and leaves
(Bathellier et al. 2009; Gessler et al. 2009; Priault, Wegener &
Werner 2009). The quantitative interpretation of these
experiments is not trivial, and for heterotrophic tissues, it is
arguable that steady-state MFA is the better method for
extracting comprehensive and reliable flux data from a label-
ling experiment. However, for photoautotrophic tissues,
where labelling time-courses provide the only route to intra-
cellular fluxes and where the application of MFA is particu-
larly challenging, the case for the alternative approach is
stronger (Tcherkez et al. 2012). In a substantial study of illu-
minated leaves, positionally 13C-labelled substrates and deu-
terium isotope effects were used to reveal non-cyclic fluxes in
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Figure 1. The central metabolic network of a growing
heterotrophic/mixotrophic plant cell illustrating some of the major
reactions in which CO2 is produced or consumed. Numbered green
circles indicated CO2-producing reactions and numbered red
circles indicated CO2-consuming reactions. Solid lines indicate a
single reaction and dashed lines indicate multiple reactions.
Reactions catalysed by the following enzymes are illustrated: 1,
UDP-glucoronate decarboxylase; 2 PEP carboxylase; 3, pyruvate
dehydrogenase (mitochondrial); 4, isocitrate dehydrogenase; 5,
2-oxoglutarate dehydrogenase; 6, glutamate decarboxylase; 7,
phosphogluconate dehydrogenase; 8, Rubisco; 9, arogenate
dehydratase; 10, arogenate dehydrogenase; 11, NADP-dependent
malic enzyme; 12, acetolactate synthase; 13, pyruvate
dehydrogenase (plastidial); 14, spontaneous reaction; 15,
acetolactate synthase; 16, diaminopimelate decarboxylase; 17,
carbamoyl-phosphate synthase. Abbreviations: 2-OG,
2-oxoglutarate; 3PGA, 3-phosphoglycerate; GA3P, glyceraldehyde
3-phosphate; GABA, g-aminobutyric acid; OAA, oxaloacetate;
PEP, phosphoenolpyruvate; Ru, ribulose; UDPG, UDP-glucose;
UDPGa, UDP-glucuronate.
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Figure 2. Metabolic flux analysis (MFA) measurements of CO2 fluxes in plant tissues. Contributions to the net evolution of CO2 are
expressed as a percentage of net CO2 production, and the sources and sinks for CO2 are grouped into seven categories: TCA cycle (isocitrate
dehydrogenase, 2-oxoglutarate dehydrogenase plus mitochondrial pyruvate dehydrogenase), OxPPP (6-phosphogluconate dehydrogenase),
Rubisco, PEPC (phosphoenolpyruvate carboxylase), malic enzyme (plastidic, cytosolic and mitochondrial isoforms), pastidic PDH (plastidic
pyruvate dehydrogenase) and other (pentan synthesis, amino acid biosynthesis, fermentation). (a) Data for soybean embryos (Allen,
Ohlrogge & Shachar-Hill 2009), Brassica napus embryos (Schwender et al. 2006), Arabidopsis embryos (Lonien & Schwender 2009),
sunflower embryos (Alonso et al. 2007a), maize embryos (Alonso, Dale & Shachar-Hill 2010), maize endosperm (Alonso, Val & Shachar-Hill
2011) maize root tips (Alonso et al. 2007b), soybean cotyledons (Sriram et al. 2004), tomato cell suspensions (Rontein et al. 2002),
Catharanthus roseus hairy root cultures (Sriram, Fulton & Shanks 2007), Arabidopsis cell suspensions (Williams et al. 2010), heterotrophic
cultures of Chlorella protothecoides (Xiong et al. 2010), photoautotrophic cultures of Synechocystis (Young et al. 2011) and aerobic cultures
of Escherichia coli (Chen et al. 2011). (b) CO2 flux data allowing a comparison of genotypes or showing the effect of a change in conditions
for Arabidopsis embryos (Lonien & Schwender 2009), maize root tips (Alonso et al. 2007b), soybean cotyledons (Sriram et al. 2007; Iyer et al.
2008), tomato cell suspensions (Rontein et al. 2002), Arabidopsis cell suspensions (Williams et al. 2010) and heterotrophic cultures of
C. protothecoides (Xiong et al. 2010). Note that certain MFA studies were excluded from this analysis, either because the published data did
not provide sufficient information or because the studies were closely related to those already selected.
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the TCA cycle (Tcherkez et al. 2009). Quantification of fluxes
was attempted in terms of probability or transmission coef-
ficients, but the underlying usefulness of these terms for
deducing fluxes is questionable as they are not easily related
to conventional fluxes. Thus, although the qualitative inter-
pretation of the measurements is informative, it seems that
this approach will eventually be supplanted by the compre-
hensive analysis of labelling time-courses that has been pio-
neered in Synechocystis (Young et al. 2011) and recently
extended to Arabidopsis leaves (Szecowka et al. 2013).

THE CASE FOR FLUX BALANCE MODELLING
AS A PREDICTOR OF NET CO2 EVOLUTION

The available analyses of fluxes in the central metabolic
network of plants reveal the extent to which the metabolic
origin of released CO2 varies between different tissues and
under different conditions. Thus, any model of the effect of
environment on net CO2 evolution at the plant level needs to
be able to predict the response of each of the different CO2-
evolving processes within the tissues that make up the plant.
In green tissues, this will naturally require integration with
models that predict the change in net photosynthetic CO2

assimilation rate.
The large size of the metabolic network that must be

considered in accounting for net CO2 evolution more or less
precludes the construction of a fully mechanistic enzyme
kinetic model given the impracticality of quantifying the
kinetic parameters of a large number of enzymes (Schallau &
Junker 2010; Rohwer 2012). Indeed, it is a commonly held
viewpoint that plant respiratory regulation is too complex
for a mechanistic representation (Gifford 2003). This may be
true at the level of enzyme kinetics, but there are other mod-
elling approaches that may be able to provide appropriately
fine-grained prediction of metabolic fluxes without kinetic
parameters. The most promising alternative is currently flux
balance analysis (FBA), which provides a framework for
flux analysis based on reaction stoichiometry. By making a
steady-state assumption and applying constraints on the
inputs and outputs to the metabolic system, it is possible to
predict the internal flux states of all reactions in the network
by applying an optimization criterion (Orth, Thiele &
Palsson 2010; Sweetlove & Ratcliffe 2011). Typically, the con-
straints are the requirement to synthesize biomass of appro-
priate proportions and at a certain rate, and the optimization
criterion is usually based on metabolic efficiency, either mini-
mization of enzyme machinery costs (and hence minimal
total reaction fluxes in the network) or maximum carbon
conversion efficiency.This approach can thus predict fluxes of
each reaction in the network that consume or produce CO2.
Moreover, if there is information on how the constraints
respond to environmental changes, for example, the effect of
temperature or water stress on biomass composition, then
FBA can make predictions about the relationship between
environment and net CO2 evolution rates. Note that the
success of FBA is dependent on a complete and correct list of
enzymatic reactions and the accuracy of the experimentally
measured constraints.

The idea of using a stoichiometrically balanced metabolic
network model to account for net CO2 evolution during the
synthesis of new biomass and cell maintenance was first pro-
posed in the 1970s (Penning de Vries, Brunstin & Vanlaar
1974). More recently, the approach was taken up and
extended in a model that considered CO2 evolution in C3

leaves in the light and the dark (Buckley & Adams 2011).
However, in both studies, highly simplified metabolic
network models were used in which the overall CO2 stoichi-
ometry of lumped sets of reactions representing biochemical
processes (photosynthesis, photorespiration, oxidative phos-
phorylation, etc.) was considered. While this is perfectly
acceptable from a modelling perspective, the simplification
can inadvertently reduce the co-dependence of biochemical
processes if all the appropriate branch points between them
are not considered. Additionally, the metabolic network rep-
resentation is not compatible with that used currently in the
FBA field, in which every individual metabolic reaction is
accounted for. The majority of recent FBA models are
‘genome-scale’ and thus include all the enzymatic steps that
are encoded by the genome of the organism (de Oliveira
Dal’molin & Nielsen 2013; Seaver, Henry & Hanson 2012).
Given the accelerating appearance of such large-scale FBA
models, the question we wish to address in this review is
whether these models can be used to predict net CO2 evolu-
tion in plants.

DOES FLUX BALANCE ANALYSIS PREDICT
REALISTIC DISTRIBUTIONS OF NET
CO2 EVOLUTION?

Although the number of FBA studies of large-scale plant
metabolic networks is increasing rapidly, there are relatively
few which consider tissue types or conditions for which there
is also equivalent MFA data. Two studies explicitly compare
MFA and FBA flux predictions for the same cell/tissue: an
Arabidopsis cell suspension culture (Williams et al. 2010) and
cultured B. napus embryos (Hay & Schwender 2011).

In both cases, the FBA models were constrained to an
experimentally determined carbon conversion efficiency
value, and hence the amount of CO2 evolved in absolute
terms is a set parameter, not a prediction of the model.
Although the composition of biomass was similarly con-
strained by experimental data, the routes taken to synthesize
that biomass and the contribution of different biochemical
processes to the overall CO2 evolution budget were not fixed
in the FBA model and can be viewed as model predictions.
The comparative data are shown in Fig. 3. It can be seen that
FBA successfully predicts some aspects of the net CO2 evo-
lution budget determined by MFA, but not others.

For example, FBA is able to predict that respiration (TCA
cycle plus mitochondrial pyruvate dehydrogenase) domi-
nates the CO2 evolution profile of heterotrophic Arabidopsis
cell suspension cultures (Fig. 3a).The FBA model is also able
to predict the dramatic decrease in the contribution of respi-
ratory CO2 release to the total in B. napus embryos (Fig. 3b).
However, in both cases, there are quantitative differences
between the FBA predictions and those estimated by MFA.
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In B. napus embryos, a negative net respiratory flux is pre-
dicted by FBA in contrast to the small net positive flux esti-
mated by MFA. This is because the embryo culture medium
contains organic nitrogen sources (Gln, Glu, Ala, Asn) mim-
icking the supply of organic nitrogen from the mother plant,
and the high amino acid availability allows glutamate to feed
into a reverse-acting TCA cycle (Schwender, Shachar-Hill &
Ohlrogge 2006). In the FBA prediction, the reverse flux to
citrate is greater in relation to the forward fluxes through
pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase,
resulting in a net negative CO2 yield from the TCA ‘cycle’
(Hay & Schwender 2011).

The other substantial differences in the CO2 evolution
profile between B. napus embryos and Arabidopsis are
broadly captured by FBA. The greater contribution of plas-
tidial pyruvate dehydrogenase to CO2 evolution in B. napus,
reflecting the greater amount of fatty acid being synthesized, is
accurately predicted, as is the relatively smaller contribution

of other biosynthetic processes to CO2 evolution (Fig. 3a,b).
The contribution of Rubisco in the photoheterotrophic
embryo is also well predicted.

Similarly, FBA broadly captures the CO2 evolution distri-
bution in the heterotrophic Arabidopsis cell culture, with the
exception of one substantial inaccuracy: the OPPP (Fig 3a).
FBA predicts that the oxidative branch of the OPPP carries
zero flux, whereas this pathway accounts for 31% of the total
CO2 release in the MFA solution. As a consequence, flux
through the TCA cycle is substantially overestimated in the
FBA flux prediction. In fact, flux through the OPPP is absent
in the vast majority of the plant FBA models and we will
discuss the implications of this in subsequent sections.

It is also important to assess whether FBA can accurately
predict the distribution of CO2 release among different
biochemical processes in photosynthetic tissues. At the time
of writing, there are no published large-scale experimental
flux maps for a higher plant leaf with which to compare
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Figure 3. Comparison of the CO2 evolution profile predicted by flux balance analysis (FBA) with that calculated from metabolic flux
analysis (MFA)-derived flux maps. (a) Heterotrophic Arabidopsis cell suspension culture under standard growth conditions. Data from
Williams et al., 2010. (b) Brassica napus embryos supplied with organic nitrogen. MFA data from Schwender et al. (2006). FBA data from
Hay & Schwender (2011). (c) Photoautotrophic Synechocystis sp. PCC6803. MFA data from Young et al. (2011). FBA data from Nogales
et al. (2012) (iJN678) and Montagud et al. (2010) (iSyn669). (d) Heterotrophic Arabidopsis cell suspension culture cultured under standard
(control) conditions, under high temperature (29 °C) and under hyperosmotic stress; data from Williams et al. (2010). In order to facilitate
comparison between FBA and MFA, the simulations reported in this paper were repeated using identical biomass constraints.

1636 L. J. Sweetlove et al.

© 2013 John Wiley & Sons Ltd, Plant, Cell and Environment, 36, 1631–1640



published FBA studies of both C3 and C4 photosynthesis,
although the experimental and mathematical framework
for such flux calculations have recently been demonstrated
(Szecowka et al. 2013). There is an excellent instationary flux
analysis of the photosynthetic cyanobacterium Synechocystis
sp. PCC6803 (Young et al. 2011), which can be used as a point
of reference for two FBA models: iSyn669 (Montagud et al.
2010) and iJN678 (Nogales et al. 2012).

Again, broadly speaking, FBA is able to replicate the rela-
tive contribution of different processes to overall CO2 release
with some inaccuracies and differences (Fig. 3c). Some of
these discrepancies may be related to the fact that these are
independent studies and different experimental constraints
were applied to the models. However, other differences, such
as the CO2 flux attributed to biosynthesis in the FBA solutions,
reflect the use of different routes for the biosynthesis of
certain amino acids. Both FBA models provide an accurate
assessment of the 15% contribution of mitochondrial CO2

production to total CO2 evolution,but neither model captures
the 16% of the total CO2 exchange that originates from the
OPPP. As a result, the iSyn699 substantially underestimates
the CO2 released from photoautotrophic Synechocystis
metabolism. In contrast, the iJN678 model overestimates CO2

release, partly due to the high CO2 release by biosynthetic
processes and partly due to an unexpectedly high flux through
malic enzyme. It is not clear why malic enzyme carries such a
high flux, although it should be noted that the value for this
flux is highly variable in different solutions to the model (the
flux range is 0–0.164 mmol g DW-1 h-1).A high flux variability
in different solutions of the same model indicates that the
model is insufficiently constrained to provide a precise value
for this particular flux.

In addition to predicting changes in the fluxes through
CO2-evolving processes in different cell/tissue types, FBA
must also be able to predict the effect of altered environ-
ment. Thus far, this has only been examined in Arabidopsis
cell suspension cultures where it was reported that FBA can
accurately predict the change in flux distribution in central
metabolism caused by high temperature and hyperosmotic
stress treatments (Williams et al. 2010). Consequently, FBA
provides a reasonably accurate prediction of changes in the
CO2 evolution profile under these conditions (Fig 3d), suc-
cessfully predicting the increase in mitochondrial respira-
tion under high temperature conditions and the changes in
CO2 evolution due to plastidic pyruvate dehydrogenase
activity under both conditions. However, the failure to
predict a flux in the OPPP skews the CO2 evolution profile,
especially under hyperosmotic conditions where MFA
shows that its contribution to overall CO2 evolution
increases (Fig. 3d).

IMPROVING THE PREDICTIVE ACCURACY OF
FBA: THE MAINTENANCE ENERGY PROBLEM

The predictive accuracy of the CO2 fluxes in FBA models has
yet to be fully established, but the evidence to date is encour-
aging. The approach clearly has potential as a tool to predict
plant net CO2 evolution and this information can be

extracted from FBA studies in their standard form. However,
while FBA can readily predict changes in the CO2 evolution
profile that are driven by the synthesis of biomass of different
composition, for example, the difference between an oil-rich
developing embryo and a photosynthetic bacterium, the
ability of FBA to predict the effects of environment on the
CO2 evolution profile has only been tested on an Arabidopsis
cell suspension culture. Nevertheless, the cell suspension
comparison does reveal that FBA can, in principle, accurately
predict the effects of altered environment on the CO2 evolu-
tion profile. Moreover, it is apparent that the effects of envi-
ronment on the relative contribution of different processes to
net CO2 evolution is relatively minor, at least in hetero-
trophic Arabidopsis cell suspension cultures, in comparison
to the differences observed between tissues types and
species.

Although FBA is remarkably accurate in some predictions,
it is not able to reliably predict the quantity of CO2 released
from all biochemical processes and it is clear that improve-
ments are necessary before it can be used as part of global
plant CO2 exchange models. Perhaps, the biggest deficiency is
the consistent failure of FBA models to predict a flux in the
oxidative branch of the OPPP. This is significant because in
some tissues, such as soybean cotyledons and tomato cell
suspensions, and under some conditions, such as hyperos-
motic stress, the OPPP is a major contributor to overall CO2

release (Fig. 2). The oxidative branch of the OPPP is one
of the major sources of cellular reductant in the form of
NADPH. The fact that FBA models can synthesize biomass
in sufficient quantities without a flux through the oxidative
branch of the OPPP illustrates that other dehydrogenase
enzymes (e.g. isocitrate dehydrogenase, malate dehydroge-
nase, etc.) can satisfy the NADPH demand and are chosen
above the OPPP by the optimization algorithm. Structural
refinement of the models may alter this conclusion, but
the situation could also change when NADPH demands
additional to biomass synthesis are included, such as
antioxidant activity (Foyer & Noctor 2011) and lipid
turnover/resynthesis.

Such processes come under the category of cell mainte-
nance. Although some, but by no means all, FBA models
include a maintenance cost as a constraint, this is usually
based on reported values for cell maintenance that are
derived from experimental relationships between respira-
tion and growth rates. Recently, a more interesting way of
accounting for maintenance has emerged based on a require-
ment to match the carbon consumed by the model with the
experimental value (Poolman et al. 2009; Hay & Schwender
2011). The assumption is that any shortfall in carbon con-
sumed once biomass synthesis is accounted for must be due
to respiratory oxidation of carbohydrate to meet the ATP
cost of cell maintenance. In modelling terms, this equates to
the inclusion of an additional, generic ATPase reaction in the
model and allowing the flux through this reaction to vary
until the carbon consumption gap is closed.

However, whichever method is used for the estimation
of maintenance cost, it is equated to a cost expressed solely
in terms of ATP. This leads to the assumption that CO2
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evolution due to cell maintenance has its origin in the TCA
cycle (Amthor 2000).The prediction of zero OPPP flux in FBA
models calls this assumption into question and suggests that
maintenance energy costs must be divided between ATP and
NADPH. If this is not performed,TCA cycle CO2 evolution is
overestimated and CO2 evolution from the OPPP is underes-
timated, as is the case in current FBA model predictions.

Correct accounting for maintenance costs thus emerges
as a major area for improvement of existing FBA models.
Simply constraining maintenance costs to experimentally
determined maintenance CO2 evolution rates is not particu-
larly useful for several reasons. Firstly, it provides no predic-
tive power as to how this cost will vary under different
conditions. Secondly, experimental determination of mainte-
nance costs in plant tissues is beset with difficulties (Amthor
2000).Thirdly, measurements of the cost of maintenance gen-
erally provide no information about the partitioning between
ATP and NADPH demand. Ideally, then, maintenance costs
would be more directly captured in the flux balance model.

In FBA terms, maintenance essentially means anything
that is not directly involved in the net synthesis of biomass.
This therefore includes the cost of resynthesis of macromol-
ecules that turn over, with protein and mRNA turnover likely
to be quantitatively the most important. Additionally, main-
tenance includes the cost of energizing the plasma mem-
brane, and endomembranes such as the tonoplast, to permit
active transport of metabolites and macromolecules. Some of
these transport costs can be directly linked to the require-
ments of biomass synthesis provided the model is adequately
compartmented and appropriate transport mechanisms are
included. However, the inherent proton leak of all mem-
branes, which is likely to be highly dependent on environ-
mental conditions, and factors such as metabolite cycling
across membranes need to be accounted for as part of the
maintenance calculation. Another potentially significant
maintenance cost is that of metabolite cleansing – the
removal of unwanted, toxic side products of enzymatic reac-
tions and random chemical events (Seaver et al. 2012).
Finally, as already mentioned, the reductant cost of antioxi-
dant activity must also be considered.

It will be a substantial challenge to incorporate all of
these processes into FBA models. There are essentially two
approaches. One option is to estimate their rates experimen-
tally, which requires substantial effort (Piques et al. 2009),
and for some processes, such as flux through the ascorbate-
glutathione cycle, there has been very little in the way of
quantitative analysis. Alternatively, it may be possible to
model the processes and these models can be integrated into
the larger FBA model. For example, because proton leak
across membranes is a consequence of the biophysics of the
lipid bilayer, it should be possible to predict the effect of
altered environment on the leak rate using a biophysical
model. Nevertheless, is clear that some processes will remain
extremely difficult to predict. Protein turnover, for example,
is very much a feature of the specific protein and its local
environment, and there are order of magnitude differences in
the observed rates of turnover of different proteins. Hence, it
is not realistic to expect a generalizable rule that relates the

global rate of protein turnover, which is the relevant con-
straint for FBA modelling, to environment. In such cases,
experimentally measured information will be required to
constrain the model appropriately.

PERSPECTIVES

In assessing the merits of FBA as a tool to predict net CO2

evolution rates of plant tissues, we have been restricted by
the number of tissue types and environmental conditions for
which experimentally constrained metabolic flux maps are
available as a point of comparison/validation. This is mainly
because of the limited number of experimental systems that
are suitable for the more tractable steady-state stable isotope
MFA approach. In particular, because flux quantification in
photosynthetic tissues requires the more challenging analysis
of labelling time-courses, there is a shortage of quantitative
flux maps for such tissues. So, although there have been
several detailed FBA studies of photosynthetic tissues of
higher plants (Montagud et al. 2010; de Oliveira Dal’Molin
et al. 2010b; Chang et al. 2011; Saha, Suthers & Maranas 2011;
Nogales et al. 2012), at the time of writing, the only compa-
rable experimental flux map of a sufficiently large-scale
metabolic network is for the cyanobacterium Synechocystis
(Young et al. 2011).Although the requirement for calculation
of fluxes from dynamic labelling patterns is both experimen-
tally and computationally more demanding, there are several
groups that have been developing the necessary experimen-
tal and analytical tools for flux analysis in leaves in the light
(Huege et al. 2007; Hasunuma et al. 2010; Keerberg et al.
2011; Lattanzi et al. 2012) and it is likely that flux maps will
emerge in due course. Recently, a major step forward towards
this goal was made with the publication of an analysis of the
dynamic label redistribution of label from 13CO2 supplied to
Arabidopsis rosette leaves, from which a small set of fluxes
were calculated (Szecowka et al. 2013).This paper establishes
the experimental, analytical and mathematical frameworks
that will allow a more systematic analysis of metabolic
network fluxes in leaves and will facilitate the assessment of
FBA for predicting CO2 evolution profiles in the dominant
tissues of higher plants.

In summary, it is clear that FBA has the potential to predict
fluxes through the CO2-consuming and CO2-generating proc-
esses in plant tissues, and based on existing work, it should
be capable of predicting how the CO2 evolution profile will
change in response to environment. Given the increasing inter-
est in FBA as a tool to examine plant metabolic networks and
the acceleration of sequencing of diverse plant genomes, there
is every reason to expect that a more sophisticated, species-
specific prediction of plant net CO2 evolution could ultimately
be incorporated into higher-level ecosystem models.
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