Ocean Thermal Energy Conversion (OTEC): Electricity and Desalinated Water Production

Luis A. Vega, Ph.D. PICHTR

Visionary Perspective

• Solar energy absorbed by oceans is $\approx 4000 \text{ x}$ humanity annual consumption;

 Less than 1 % of this energy would satisfy all needs.

[@ thermal \rightarrow electric conversion \approx 3 %]

Engineering Perspective

 Ocean's vertical temperature distribution:

Two layers with $\Delta T \approx 25~^{\circ}\text{C}$ in equatorial waters...

heat source and heat sink required to operate heat engine

OTEC Concept

· Ocean Thermal Resource (fuel)

Cold Water: @1000 m depth
 4 °C to 5 °C

 Warm Water: Tropical seas at "surface"

24 °C to 30 °C

What is known about OTEC Technology?

 <u>Continuous</u> production of electricity and desalinated water has been demonstrated with experimental plants:

Nauru (1982) 100 kW CC-OTEC

210 kW OC-OTEC Experimental Plant

Desalinated
Water
Production
(1994-1998)

What is known about OTEC Economics?

Economic feasibility
 achievable under certain
 (fuel-and-water-costs)
 scenarios:

Cost of Electricity Production

```
COE ($/kWh) = CC + OMR&R + Profit
+ Fuel
- Environmental Credit
```

```
CC = Capital Cost Amortization

OMR&R = Operations + Maintenance

+ Repair + Replacement
```

Tariff = COE - Subsidy

Cost of Electricity Production

Offshore Distance, km	Capital Cost, \$/kW	COE, \$/kWh
10	4200	0.07
50	5000	0.08
100	6000	0.10
200	8100	0.13
300	10 200	0.17
400	12 300	0.22

Table 2. Cost Estimates for 100 MW CC-OTEC Plantship (COE for 10 % Fixed Rate, 20 years, Annual O&M 1% of Capital Cost).

Commercialization (Hawai'i)

- Hawai'i could use OTEC to Generate all Electricity Consumed (100%);
- Commercial-size ≈ 100 MW floater
 - \$4500/kW (\$450M)
 - C.O.E from 0.07 to 0.10 \$/kWh

5 MWe OTEC Pre-Commercial Plant

Development Barriers (Hawai'i)

Tech. Issues: Need to Build & Operate Pre-Commercial Size Plant Cost Issues: Cost Effective for Size ≈ 100 MW

Enviro. Issues: Relatively Minimal Political Issues: Need Federal Help... only Hawai'i benefits (1/250 citizens)?

Energy Carriers

OTEC energy could be transported via electrical, chemical, thermal and electrochemical carriers:

all yield costs higher than those estimated for the submarine power cable (*400 km offshore).