Concepts généraux et objectifs de la mesure. Planification d'essais. Mesurage. Chaîne de mesure. Caractéristiques métrologiques des instruments. Erreur de mesure. Propagation des incertitudes. Analyse et validation des résultats de mesure. Mesures typiques en mécanique du solide et en mécanique des fluides. Description des principaux types de capteurs. Conditionneurs de signal. Instruments de lecture et d'enregistrement. Système informatisé d'acquisition de données. Introduction au logiciel LabVIEW. Travaux pratiques de laboratoire et conception d'un système informatisé d'acquisition.
Introduction à l'aéronautique. Historique de l'aéronautique, aérodynamique des aéronefs, spécificités des hélicoptères, structure, performances, poste de pilotage et instrumentation, propulsion, systèmes électriques, systèmes mécaniques, configuration et support client, conception et homologation. Observation de gouvernes et de systèmes sur avions et hélicoptères.
Définitions des composants de moteurs d'avion, de cellules d'avion et des pièces avioniques. Caractéristiques-clés du point de vue de la fabrication, des produits aéronautiques de la propulsion, des structures d'avion et de l'avionique. Éléments particuliers de la fabrication des pièces aéronautiques, de la mise en œuvre et du contrôle de la qualité. Aspects économiques de la fabrication. Gestion et organisation de la production. Logistique d'approvisionnement.
Ce cours qui s'échelonne sur deux trimestres, a pour objectif d'intégrer les connaissances acquises dans les cours d'aérodynamique, de mécanique du vol, de systèmes et de structures et de découvrir les nombreuses interactions entre ces différentes disciplines. L'intégration se déroule dans le cadre d'un projet qui consiste à effectuer la conception préliminaire d'un aéronef dans un contexte simulant un environnement industriel. Le groupe sera divisé en équipes techniques spécialisées, chacune responsable d'une discipline particulière. Les étudiants sont appelés à réaliser un prototype physique et/ou à élaborer les méthodes de fabrications détaillées du produit qu'ils développent. Les étudiants peuvent choisir parmi un des projets suivants : conception d'aéronef, conception d'un fuselage, conception dynamique d'un banc d'essai, propulsion ou autre.
Ce cours qui s'échelonne sur deux trimestres, a pour objectif d'intégrer les connaissances acquises dans les cours d'aérodynamique, de mécanique du vol, de systèmes et de structures et de découvrir les nombreuses interactions entre ces différentes disciplines. L'intégration se déroule dans le cadre d'un projet qui consiste à effectuer la conception préliminaire d'un aéronef dans un contexte simulant un environnement industriel. Le groupe sera divisé en équipes techniques spécialisées, chacune responsable d'une discipline particulière. Les étudiants sont appelés à réaliser un prototype physique et/ou à élaborer les méthodes de fabrications détaillées du produit qu'ils développent. Les étudiants peuvent choisir parmi un des projets suivants : conception d'aéronef, conception d'un fuselage, conception dynamique d'un banc d'essai, propulsion ou autre.
Introduction aux risques politiques et légaux reliés aux opérations aérospatiales. Analyse des différentes politiques et des multiples stratégies du milieu atmosphérique et extra-atmosphérique.Étude des grandes conventions multi-latérales régissant la navigation aérienne et spatiale pour les aéronefs civils et militaires. Revue de plusieurs accords de coopération affectant l\'industrie aérospatiale ayant comme perspective les aspects plus pertinents pour les ingénieurs dans le cadre de leurs fonctions au sein d\'équipes multidisciplinaires. Rappel de considérations éthiques et de la gestion des risques reliés aux ingénieurs au sein de cette industrie. Analyse avec une perspective canadienne de nos politiques incluant la réglementation des opérations aériennes et spatiales et leur évolution. Survol du rôle im-portant des ingénieurs au sein des lignes aériennes et organisations internationales.
Révision des notions fondamentales sur les sujets de stabilité structurale, fatigue et tolérance aux dommages. Propriétés mécaniques des matériaux métalliques, modélisation du domaine plastique. Fabrication et transformation des matériaux métalliques. Stabilité structurale avancée : colonne inélastique, analyse post flambage des panneaux raidis et poutre-colonne. Fatigue avancée : spectre de charge, comptage de cycles et approche par les déformations. Tolérance aux dommages : analyse de panneaux raidis et effet de la séquence des cycles. Flexion avancée : poutre courbe et flexion plastique. Analyse de chapes et ferrures. Joints structuraux avec fixations. Application des éléments-finis et des matériaux composites en aéronautique.
Cycles en propulsion aéronautique. Classification des turbomachines. Équations de conservation. Équation d'Euler. Définitions de rendement. Triangles de vitesses. Turbines et compresseurs axiaux et centrifuges. Analyse des composantes au point de design et hors design. Mariage des composantes et performance des turbines à gaz. Lois de similitude et courbes caractéristiques.
Principe de bases en aérodynamique : définitions, équations, forces et moments. Écoulements incompressibles irrotationnels. Profils aérodynamiques : méthode des panneaux. Aile d'envergure finie. Hélices propulsives et motrices. Aérodynamique de l'hélicoptère. Écoulements visqueux appliqués aux ailes d'avions. Stabilité des couches limites, phénomènes de transition. Interactions fluide parfait/fluide visqueux. Forces de trainées. Étude fondamentale de l'hypersustentation et estimation de la portance maximale. Ailes en écoulement compressible subsonique et transsonique. Théorie des profils aérodynamiques et des ailes d'avion en écoulement transsonique. Notions d'aérodynamique expérimentale: souffleries, balances, visualisation des écoulements.
Notions aérodynamiques essentielles. Bref historique des méthodes de contrôle et introduction aux commandes et gouvernes de l'avion. Description des repères utilisés. Obtention des équations du mouvement. Définition des coefficients et dérivées aérodynamiques. Équilibre de l'avion. Description des principes de stabilité statique et dynamique de l'avion. Effets des commandes de vol sur le contrôle de l'avion. Simplification dans le plan longitudinal et transversal. Introduction aux critères de certification. Introduction aux essais en soufflerie. Introduction aux commandes électriques.
Révision des notions fondamentales de résistance des matériaux. Principaux règlements d'homologation en structure. Charges externes sur les assemblages primaires : aile, empennage et fuselage. Revue du passage des efforts internes et de la fonction de la structure primaire des assemblages primaires. Calcul des efforts internes de la structure primaire à l'aide de la théorie de la poutre et de la méthode énergétique. Stabilité des colonnes et des tôles dans le domaine élastique. Fatigue par la méthode de la contrainte : diagramme de la vie en fatigue et facteur de concentration de contrainte. Tolérance aux dommages : facteur d'intensité de contrainte, résistance résiduelle et propagation de fissures.
L'ingénieur aérospatial et mécanique et les projets d'ingénierie. Présentation de leur expérience professionnelle par des ingénieurs de la pratique en génie aérospatial. Familiarisation de l'étudiant avec la méthodologie de conception et les outils de travail de l'ingénieur pour la conduite de projets. Travail en équipe, recherche d'informations, tenue d'un cahier de projet, rédaction de rapports techniques et préparation d'exposés oraux. Réalisation de trois études de cas portant sur des étapes de la méthodologie de conception et intégrant des notions des cours corequis.
Cette formation concernant les habiletés personnelles et professionnelles s'étale de la première à la troisième année. Elle couvre les volets de communication écrite et orale, de gestion du temps, de gestion des lectures et de la prise de notes, et de la façon d'établir un jugement critique. Elle se présente en quatre étapes avec élaboration d'un portfolio : une évaluation initiale en première année ; une prescription personnalisée en communication et sur deux autres volets ; la participation à des séances pratiques et à des ateliers ; une évaluation finale en troisième année. Cette formation vise à apprendre à communiquer et à améliorer d'autres habiletés personnelles et professionnelles.
Introduction : concepts de base associés à la performance des avions, données de performance certifiées, données de performance opérationnelles et rôle de l'ingénieur en performance dans l'industrie. Atmosphère standard. Principes aérodynamiques reliés à la performance de l'avion. Mesure des paramètres de vol. Erreurs de position. Définition des masses de référence. Effet de la position du centre de gravité. Performance moteur. Vol en palier. Performance en virage. Enveloppe de vol. Performance en montée et en descente. Croisière et endurance. Diagramme charge utile ' distance franchissable et optimisation des coûts d'opération. Performance au décollage, en route et à l'atterrissage. Opération sur pistes mouillées ou contaminées. Impact des performances sur le design de l'avion.

Réalisation en équipe d'un projet intégrateur de conception d'un prototype d'un aéronef testé en vol dans un espace clos. Réponse à des exigences imposées à l'aide d'un processus simplifié de développement de produit aéronautique. Sous la supervision du professeur, utilisation des éléments de gestion de projet : planification, budget, cahier de projet, processus de revue de conception. Tests de performance des prototypes lors d'une compétition inter-équipes.